
1 
 

Effects of Chain Length on the Structure and Dynamics of Polyvinyl Chloride During Atomistic 

Molecular Dynamics Simulations   

 

Feranmi V. Olowookere, Ali Al Alshaikh, Jason E. Bara, and C. Heath Turner* 

Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 

35487-0203, United States 

Abstract 

Molecular dynamics (MD) simulations have proven to be useful for predicting and interpreting the 
conformational and dynamic properties of various polymer-solvent systems.  The number of repeat units 
used to represent a polymer chain in an MD study is intended to provide a balance between the 
computational demands and the reliability of the specific phenomena being studied.  To date, this balance 
has not received sufficient attention.  Here, we investigate how the chain length of an atomistic polymer 
model influences the structure and dynamics of the polymer in different solvents.  Seven different 
polyvinyl chloride (PVC) models, ranging from 5 to 240 –(CH2CHCl)- repeat units, are studied using 
atomistic MD simulations in two polar organic solvents: tetrahydrofuran (THF) and dimethylformamide 
(DMF).  After benchmarking our MD results against experimental density data, we calculate polymer end-
to-end distances, radii of gyration, radial distribution functions, shape descriptors, end-to-end vector 
correlation functions, dihedral autocorrelation functions, surface areas, surface electrostatic potentials, 
glass transition temperature and melt viscosities.  Our MD simulations demonstrate that most of these 
properties converge when approximately 100-120 repeat units are used to represent PVC, and this 
convergence behavior is observed in different solvents and at different temperatures. 
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1. Introduction 

Given the urgent need to develop more environmentally-benign and efficient polymer recycling 

processes, it is imperative to gain more mechanistic insights into polymer-solvent interactions and to 

design sustainable solvent formulations through molecular design strategies [1].  Common theoretical 

techniques for studying interactions in polymer-solvent systems include models such as the Flory-Huggins 

(FH) [2], Debye-Huckel (DH) [3], Poisson-Boltzmann (PB) [4], and Hansen & Hildebrand solubility 

models (HH) [5].  The HH and FH models are mainly focused on predicting polymer solubility in solvents, 

while DH and PB theories describe electrostatic interactions in solution.  The HH solubility models are 

based on solute-solvent interaction, whereas the FH theory assumes a random distribution of polymer and 

solvent molecules in solution. The PB theory is predominantly used for studying biomolecules, while the 

DH theory is more broadly applicable to ionic solutions.  While these models can provide valuable 

guidance, their fundamental simplicity makes it difficult to capture many of the complexities encountered 

in polymer-solvent systems. In conjunction with these theoretical models, various experimental techniques 

have been used to quantify (or infer) the interactions within polymer-solvent systems, such as viscosity 

measurements, light scattering, X-ray scattering, and infrared (IR) spectroscopy [6-10].   

Molecular dynamics (MD) simulations are a complementary tool for evaluating polymer-solvent 

interactions and for gaining insights into the molecular-level behavior of these polymer systems, including 

both structural and dynamic properties.  MD simulations of polymer systems first emerged in the literature 

several decades ago [11, 12].  Most of the early work focused on very simple systems, such as alkane 

chains (or polymer chains composed of alkane monomers, such as polyethylene) and bead and spring 

models [13, 14].  Since then, simulation studies have been conducted to extensively examine more 

complex polymer-solvent systems across a wide range of polymer chain lengths [15].  For instance, 

Steinhauser [16] used a coarse-grained (CG) bead spring model of 50-400 repeat units to examine the 



3 
 

conformational behavior of long linear polymer chains by calculating the gyration tensors and form 

factors.  Also, classical density functional theory (DFT) and MD simulation have been used to investigate 

dilute and semi-dilute solutions of polymer nanoparticle composites near a solid surface [17].  By testing 

N = 10 and N = 40 repeat units, it was concluded that longer chain lengths improve the surface coverage 

of the polymer segments.  On the other hand, Harmandaris [18] used MD simulations to model 

polydisperse linear polyethylene (PE) melts (ranging from PE20 to PE150).  They calculated fundamental 

properties such as the radius of gyration (Rg), end-to-end distance, radial distribution functions (RDFs), 

and end-to-end vector autocorrelation functions, considering the differences in properties of longer 

polymer chains.  A minimal chain length value of approximately C60 was identified, beyond which the 

chain length independent parameters can be considered a constant (i.e., the PE model starts behaving more 

like a polymer versus a long alkane).  To the best of our knowledge, PE150 is the longest synthetic polymer 

ever simulated with a fully atomistic model in MD [19]. 

 Due to the increasing performance of modern computers, as well as advancements in algorithms, 

it is now possible to use MD simulations to model relatively large polymers using atomistic force fields.  

In conjunction, a variety of computational methods have recently been developed to help characterize the 

mechanical, physical, and chemical behavior of polymers in different applications [20-24], such as the 

polymer behavior underlying the fundamental mechanisms of molecular imprinting [21]. 

Among synthetic polymers, polyvinyl chloride (PVC) is one of the most common thermoplastics 

in use worldwide, with ~40 Mt produced annually [25].  However, recycling PVC via conventional (i.e. 

thermomechanical) methods is problematic, and thus, PVC has recently gained attention as a viable 

candidate for upcycling from a waste plastic to other value-added products [25-27].  MD simulations can 

potentially provide valuable insights to guide the design of new, environmentally benign solvents for 

processing PVC waste.  However, from an MD modeling perspective, it is important to know the minimum 
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system size (e.g., PVC chain length) necessary to obtain converged material properties.  Currently, this 

information is lacking with respect to many synthetic polymer models.  For instance, very little guidance 

is available in the literature regarding the effects of the PVC chain length on its simulated structural or 

dynamic properties, and the few studies that exist have modeled polymers of arbitrary length [16-19, 28, 

29].  Recent studies, particularly on PVC, have not directly explored or explained the impacts of selecting 

different polymer chain lengths on the predicted polymer properties.  Some MD investigations indicate 

the need to minimize computational costs, and therefore, choose to model relatively short polymers. While 

others claim that longer polymer chains are needed to properly capture phenomena induced by 

entanglements.  In the present work, we define different PVC chain lengths as PVCN, where N is the 

number of –(CH2CHCl)- repeat units.  Two different atomistic PVC models (PVC76 and PVC153) were 

investigated by Neelov et al. [28], while in  another case, nanoparticles composed of PVC10 were used by 

Li et al. [29] to simulate PVC interactions with a model membrane.  Considering these previous studies, 

more information is needed about the reliability of using different PVC chain lengths in MD simulations. 

The behavior of PVC has been previously experimentally studied in a variety of different solvents, 

including tetrahydrofuran (THF), N-methyl-2-pyrrolidone (NMP), and N,N-dimethylformamide (DMF) 

to determine the degree of polymer-solvent interaction [7].  The experimental studies are typically 

conducted with PVC molecular weights that are much higher (MN ~200 kg/mol) than what can be normally 

simulated in an atomistic MD simulation (~ 5 kg/mol).  Thus, it is critical to understand the impact of 

PVC chain length on the simulated behavior to help design the most appropriate model system, i.e., a 

system that is large enough to minimize finite-size effects, yet one that is still computationally tractable.  

To address this balance in model design, atomistic simulations have been either constrained to 

arbitrary chain lengths or CG models have been used to extend the time and length scales accessible [30-

32].  For instance, CG models have been used to simulate systems with chains of up to 2000 beads long 
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(MN = ~32 kg/mol) at time scales of up to 10-6 to 10-3 s.  These CG models have also been used to explore 

the effects of (long) polymer chain lengths on the aggregation and dispersion of nanoparticles in polymer 

melts [33].  However, it can be challenging to capture site-specific interactions with CG models, and 

dynamic properties are often highly skewed when using CG models.   

This work aims to identify the tradeoff in the structural and dynamic properties of a solvated 

polymer model (specifically PVC), as a function of the chain length when performing atomistic MD 

simulations.  Seven different PVC models are simulated in two different solvents, with polymer chain 

lengths ranging from PVC5 to PVC240; several experimental benchmarks are included to help evaluate the 

reliability of the model predictions.  Overall, we find that most of the polymer properties investigated 

converge when model sizes of PVC120 or larger are used. 

 

2. Methodology 

The MD simulations were performed using the Gromacs 2021.1 simulation package [34, 35], and 

VMD [36] was used for visualization purposes.  Seven different PVC models (Figure 1) of varying chain 

lengths were investigated in both THF and DMF, and the OPLS-AA force field [37] was used to describe 

the bonded and non-bonded interactions (Figure 1).  PolyParGen with the ab-initio HF STO-3G method 

[38] was used to obtain the OPLS-AA parameters and atomic charges within the polymer, respectively, 

while LigParGen with the 1.14*CM1A-LBCC method [39, 40] was used to obtain the OPLS-AA 

parameters and atomic charges of the solvents, respectively.  The PACKMOL package [41] was used to 

obtain the initial configurations of the solvent and PVC molecules.  In this work, we simulated systems 

containing ~10 wt./wt.% PVC in solvent, similar to the compositions of the corresponding experiments.  

The number of molecules in each system is shown in Table 1.  Five independent replicas of each system 

are simulated to generate statistical confidence integrals for the computed properties. 
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The initial system configurations were first minimized by employing the steepest descent method.  

Then, an annealing process was implemented, whereby each system was subjected to high temperature (T 

= 800 K) in the NVT ensemble and then cooled to T = 323 K in 25 ns.  The system was then subjected to 

high pressure (P = 100 bar) in the NPT ensemble before being reduced to P = 1 bar in 25 ns.  Following 

that, the NPT ensemble went through an equilibration stage for 50 ns, in which the velocity rescaling 

thermostat [42] and the Parrinello-Rahman barostat [43] were used to keep the pressure and temperature 

constant (with time constants of 5 ps and 0.1 ps, respectively).  After these equilibration stages, the 

relevant properties were computed during a 50 ns production run, with results collected every 30 ps.  The 

statistical uncertainties were obtained via a block-averaging method with 5 ns sub blocks.  In accordance 

with the force field used, the Lennard-Jones potential was used to represent van der Waals interactions, 

with a 1.0 nm cut-off radius and geometric combination rules for unlike pair interactions.  Long-range 

electrostatic interactions beyond a cut-off radius of 1.0 nm were also calculated using the Particle Mesh 

Ewald (PME) method [44].  The LINCS algorithm [45] was used to constrain the hydrogen bond lengths, 

and periodic boundary conditions were imposed in all three dimensions. 

The Gromacs package utilities gmx rdf, gmx distance, gmx gyrate and gmx angle were used to 

determine the RDFs, end-to-end distances, Rg, and dihedral autocorrelation functions, respectively.  The 

end-to-end autocorrelation functions were calculated using the reorientation dynamics tool in the TRAVIS 

package [46], while the surface area and electrostatic potential were obtained using an in-house code. 

 

Table 1.  Composition details of each system simulated. 

 Molecular 
weight of PVC 

(g/mol) 

No. of solvent 
molecules (THF, 

DMF) 

Wt. % PVC 
(THF) 

Wt. % PVC 
(DMF) 

PVC5 313.5 40 9.80 9.68 
PVC20 1,251 156 10.01 9.89 
PVC40 2,501 312 10.01 9.88 
PVC60 3,751 470 9.97 9.84 
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PVC100 6,251 783 9.97 9.85 
PVC120 7,501 940 9.96 9.84 
PVC240 15,001 1,880 9.96 9.84 

 

Fundamental size and shape properties of our polymer-in-solvent systems are calculated here to 

provide statistical descriptions of our polymer structures.  For instance, Rg is used to estimate the 

magnitude of the random coil shape: 

 

〈𝑅𝑅𝑔𝑔2〉 =  1
2𝑁𝑁2

∑ 〈(𝑟𝑟𝑛𝑛 −  𝑟𝑟𝑚𝑚 )2〉𝑛𝑛,𝑚𝑚          (1) 

 

where the coordinates of the n repeat units (n = 1…N) along the polymer chain are denoted by 𝑟𝑟𝑛𝑛, and the 

center-of-mass of the polymer is represented by 𝑟𝑟𝑚𝑚.  Also, the principal moments of Rg (𝜆𝜆x, 𝜆𝜆y, 𝜆𝜆z) can be 

combined to generate several different shape parameters that describe the average structure of the polymer 

particles.  These parameters include the asphericity (b), acylindricity (c), and anisotropy (k), and these 

terms are defined as: 

 

𝑏𝑏 =  3
2
𝜆𝜆𝑧𝑧2 −  𝑅𝑅𝑔𝑔

2

2
            (2) 

𝑐𝑐 =  𝜆𝜆𝑦𝑦2 −  𝜆𝜆𝑧𝑧2             (3) 

𝑘𝑘 =  3
2

𝜆𝜆𝑥𝑥4+ 𝜆𝜆𝑦𝑦4+ 𝜆𝜆𝑧𝑧4

(𝜆𝜆𝑥𝑥2+ 𝜆𝜆𝑦𝑦2+ 𝜆𝜆𝑧𝑧2)2
−  1

2
          (4) 

 

The end-to-end distance (R) of a polymer chain is calculated as the distance (ri) between the carbon 

sites of the head and tail of the polymer, and it provides a good statistical measure of the polymer length: 

 

〈𝑅𝑅〉 =  ∑ 𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=1             (5) 
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Furthermore, the end-to-end vector reorientation dynamics of the polymers are analyzed in order 

quantify the system’s dynamical heterogeneity.  A Legendre polynomial Pn is applied to the dot product 

of the two vectors in TRAVIS, as shown in the correlation function Cn (𝜏𝜏) below: 

 

𝐶𝐶𝑛𝑛(𝜏𝜏) =  ∫ 𝑃𝑃𝑛𝑛 �
𝑢𝑢(𝑡𝑡)⋅𝑢𝑢(𝑡𝑡+ 𝜏𝜏)

‖𝑢𝑢(𝑡𝑡)‖‖𝑢𝑢(𝑡𝑡+ 𝜏𝜏‖
� 𝑑𝑑𝑑𝑑∞

0          (6) 

𝑇𝑇𝑛𝑛 =  ∫ 𝐶𝐶𝑛𝑛(𝜏𝜏)𝑑𝑑𝑑𝑑∞
0            (7) 

 

The reorientation time Tn is thus an integral of the correlation function based on the system’s 

trajectory. Because Cn(τ) does not decay to zero, the integration cannot be performed directly. As a result, 

the function is fitted with a Levenberg-Marquardt minimizer [47], which is then analytically integrated to 

yield the reorientation time. 

The dihedral autocorrelation function (DACF) is another dynamical tool for quantifying the 

temporal evolution and correlation of dihedral angles in a molecular system over time.  The correlation 

function C(t) is defined as follows: 

 

𝐶𝐶(𝑡𝑡) = �cos�𝜃𝜃(𝜏𝜏) − 𝜃𝜃(𝜏𝜏 + 𝑡𝑡)��𝜏𝜏         (8) 

 

where θ is the dihedral angle between four consecutive carbon atoms of the polymer backbone, and τ is 

the correlation time.  It can also be rewritten as the sum of two products: 

 

𝐶𝐶(𝑡𝑡) = �cos�𝜃𝜃(𝜏𝜏)� cos�𝜃𝜃(𝜏𝜏 + 𝑡𝑡)� + sin�𝜃𝜃(𝜏𝜏)� sin�𝜃𝜃(𝜏𝜏 + 𝑡𝑡)��𝜏𝜏     (9) 
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Figure 1. Molecular structure of PVC5. 

  

Figure 2. Snapshots of the PVC-THF system; (a) THF molecules (b) PVC (bold) in THF (transparent); 
Color code: cyan = carbon, white = hydrogen, red = oxygen, green = chlorine 
 

For an understanding of the mechanical and rheological properties of PVC, we also simulated separate 

melt systems (ranging from PVC5 to PVC240), each comprising 50 chains. Specifically, the melt systems 

were annealed over 7 heating-cooling cycles, with the temperature being raised to 600 K and then lowered 

to 323 K for a total of 70 ns. The system was then equilibrated for 100 ns at 600 K and 1 bar, after which 

the relevant properties were computed during a 50 ns production run with results collected every 30 ps. 

To identify the glass transition temperature (Tg), the systems were cooled to 100 K at a rate of 4 x 10-3 

K/ps. The systems were allowed to equilibrate at 5 ns intervals after every 20 K reduction. To obtain the 

Tg values, the volume was related to the temperature via a regularization function [48] described by Eq. 

10: 

(a) (b) 
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𝑉𝑉(𝑇𝑇) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 − 𝑐𝑐(𝑇𝑇 − 𝑇𝑇𝑔𝑔) �1 + (𝑇𝑇−𝑇𝑇𝑔𝑔)

�(𝑇𝑇−𝑇𝑇𝑔𝑔)2+ ξ2
�       (10) 

where Tg, determined by non-linear regression, corresponds to the glass transition temperature, and ξ is 

the regularization parameter, where 1 > ξ >>> 0. The parameters a, b, and c are obtained from the fitting 

of the data to the regularization function. 

Shear viscosity (η) was determined using non-equilibrium molecular dynamics simulations (NEMD) 

by employing the periodic perturbation technique [49]. This approach involves applying a periodic 

acceleration profile to the system as per Eq. 11, simulating the system’s interaction with an external field: 

𝑎𝑎𝑥𝑥(𝑧𝑧) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �2𝜋𝜋𝜋𝜋
𝐿𝐿𝑧𝑧
�           (11) 

where A is the amplitude of the periodic profile and ax is the x-component of the acceleration vector. When 

Newtonian fluids in steady-state under the Navier-Stokes equation are subjected to an external field of 

this nature, it results in a velocity profile shown in Eq. 12: 

𝑣𝑣𝑥𝑥(𝑧𝑧) = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 �2𝜋𝜋𝜋𝜋
𝐿𝐿𝑧𝑧
�           (12) 

where the amplitude V is proportional to the inverse of the viscosity following: 

𝑉𝑉 = 𝐴𝐴𝐴𝐴
𝜂𝜂 �

𝐿𝐿𝑧𝑧
2𝜋𝜋
�
2
            (13) 

We conducted five 2 ns NEMD simulations, each with varying A values of 0.1, 0.075, 0.05, 0.01, 

and 0.0025 nm ps− 2. Steady state was achieved within 1 ns, so we utilized the final 1 ns to derive the 

average of V. Considering the importance of sampling frequency in viscosity calculation, the data was 
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gathered every picosecond for these simulations. This facilitated the extrapolation of η towards zero 

perturbation. 

 

3. Results 

3.1 System Densities 

Tables 2 and 3 summarize the average simulated densities of the polymer solutions in this work, 

as well as a relative comparison of the densities to the longest polymer model, PVC240.  By default, all 

simulated data correspond to T = 323 K, unless otherwise specified.  As the chain lengths are increased, 

the system density values converge to ~878 kg/m3 in THF and ~971 kg/m3 in DMF, and the values agree 

very well with the experimental data.  As a comparison, simulations were also performed at T = 298 K 

and 400 K (see Supporting Information), and similar convergence trends are found. To adequately sample 

the configuration space, the equilibration times were extended to 200 ns for PVC100, PVC120, and PVC240 

chains. Moreover, the simulation boxes were enlarged for the longer chains to prevent PVC-PVC mirror 

interactions. 

 

Table 2. Average bulk density, end-to-end distance, and radius of gyration of PVC in the THF solvent.  

The density deviation is calculated with respect to the PVC240 system.  The density in parenthesis 

corresponds to the experimental value, with an error of 5% (MW ~ 48,000). 

No. of PVC 
repeat units 

Density 
(kg/m3) 

% Density 
deviation 

R (nm) Rg (nm) 

5 871.1 -0.76 1.26 ± 0.28 0.38 ± 0.02 
20 883.0 +0.59 1.67 ± 0.33 0.89 ± 0.12 
40 889.6 +1.34 1.76 ± 0.48 1.46 ± 0.25 
60 882.3 +0.51 2.04 ± 0.52 1.91 ± 0.29 
100 875.1 -0.31 2.36 ± 0.64 1.98 ± 0.27 
120 877.7 -0.01 2.61 ± 0.63 2.57 ± 0.34 
240 877.8 (916.8) 0.00 3.11 ± 0.51 2.75 ± 0.40 
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Table 3. Average bulk density, end-to-end distance, and radius of gyration of PVC in the DMF solvent.  

The density deviation is calculated with respect to the PVC240 system.  The density in parenthesis 

corresponds to the experimental value, with an error of 5% (MW ~ 48,000). 

No. of PVC 
repeat units 

Density 
(kg/m3) 

% Density 
deviation 

R (nm) Rg (nm) 

5 974.4 +0.37 0.90 ± 0.10 0.38 ± 0.02 
20 978.1 +0.75 1.43 ± 0.34 0.90 ± 0.13 
40 980.0 +0.95 1.70 ± 0.52 1.36 ± 0.19 
60 975.1 +0.44 1.86 ± 0.53 1.65 ± 0.24 
100 985.1 +1.47 2.55 ± 0.55 2.13 ± 0.23 
120 976.7 +0.61 2.57 ± 0.59 2.41 ± 0.27 
240 970.8 (971.5) 0.00 3.03 ± 0.64 2.50 ± 0.27 

 

3.2 Radius of Gyration and End-to-End Distance 

Tables 2 and 3 show the R and Rg values of the polymer chains in THF and DMF as a function of 

chain length.  These values are commonly used to quantify the tendency to form the random coil structure 

that many polymers adopt in solution or in the amorphous bulk state.  The Rg values increase in proportion 

to the length of the chain, and the R values of the chains exhibit a similar pattern.  When plotted against 

the number of Kuhn’s segments (which is the contour length divided by the Kuhn length), as shown in 

Figure 3, the R and Rg values exhibit a linear trend, similar to the results by Harmandaris [18].  The 

relationship between end-to-end distance and chain length satisfies the power law relationship in random 

walk and self-avoiding random walk, 

 

𝑅𝑅 ~ 𝑏𝑏𝑏𝑏ν            (14) 

 

where b is the monomer-monomer distance (center of mass); ν is the size exponent, where ν = 1/2 for 

random walk and ν = 3/5 for self-avoiding random walk given by Flory theory [50].  For large enough 
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molecules with N >> 1, the radius of gyration is related to the mean end to end distance by 𝑅𝑅𝑔𝑔 =  �3
5

 𝑅𝑅.  

In our current system, we obtain ν = 0.48 (r2 = 1.000), with b = 0.248 nm and 𝑅𝑅𝑔𝑔
𝑅𝑅

=  3
4
. 

 

Figure 3. End-to-end distance and radius of gyration (in nm) as a function of number of Kuhn’s segments 
in THF and DMF solvents. 
 

 The shape descriptors (asphericity, acylindricity, and anisotropy) are obtained and presented in 

Figure 4 to further elucidate the polymer shape.  These values, as defined in Eq. (2-4), measure the 

configurations with respect to the principal axis system.  The asphericity parameter is smaller for short 

chain lengths because the conformations are almost spherically symmetric, but it dramatically increases 

for longer chains. The acylindricity values do not change as much as the asphericity values, but they do 

increase when the error bars are considered.  The particle distribution is also cylindrically symmetric with 

respect to the two coordinate axes for shorter chain lengths.  The relative shape anisotropy reveals further 

details. Increasing the chain length has no effect on this parameter, so the particle distribution is uniform 

in all directions; the values are all close to zero. 
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Figure 4. Shape descriptors (asphericity, acylindricity and anisotropy) of different chain lengths in (a) 
THF, (b) DMF; note: x-axis scale is not linear. 
 

3.3 Radial Distribution Function 

Figure 5 shows the calculated intramolecular RDF for C-C atoms along the PVC backbone.  As 

expected, the first peak occurs at 0.15 nm, which is the approximate C-C bond length.  Both peaks at 0.15 

nm and 0.25 nm are attributed to intramolecular correlations [51] due to the underlying polymer topology.  

The high peak intensities indicate that the C atoms in the respective systems are highly ordered. 

  

Figure 5. Intramolecular radial distribution function (RDF) of carbon-carbon (C-C) sites along the PVC 
backbone in (a) THF (b) DMF, where N indicates the number of repeat units. 

 

(a) (b) 

(a) (b) 
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The site-site radial distribution functions (RDFs) in Figure 6 show the presence of short-range 

interactions between the PVC and the solvent atoms in the system.  The presence of the initial peaks at 

0.3 nm (in Figures 6b and 6d) indicates that there is a primary interaction between the Cl and H atoms in 

PVC and the H and O atoms in THF, respectively.  There is a secondary, weaker coordination between 

the C atoms of PVC and the O atoms of THF at a distance of around 0.55 nm (in Figures 6a).  Similar 

trends are also observed in the RDF plots involving DMF. 

To further quantify the structural features of these systems, Figure 7 presents the magnitudes of 

the first peaks, as a function of increasing PVC chain length.  The peak intensity is shown to decrease as 

the number of repeat units increases.  The polymer structure tends to become less ordered with increasing 

chain length, and the peak intensities tend to converge at N = 100~120.   Beyond just the magnitudes of 

the first peaks in the RDFs, the other features of the RDFs tend to adopt consistent characteristic patterns 

with PVC120 models and longer.  

 

 

  

(a) C(PVC)-O(THF) (b) Cl(PVC)-H(THF) 



16 
 

  

  

   

Figure 6. Site-site RDFs at 323 K between different PVC and solvent sites, where N indicates the number 
of repeat units. 
 

(c) Cl(PVC)-O(THF) (d) H(PVC)-O(THF) 

(e) Cl(PVC)-N(DMF) (f) Cl(PVC)-H(DMF) 

(g) Cl(PVC)-O(DMF) (h) H(PVC)-O(DMF) 



17 
 

  

Figure 7. First peak intensity of (a) PVC-THF and (b) PVC-DMF RDFs as a function of the number of 
repeat units. 

 

3.4 End-to-End Reorientation Dynamics 

The structural characterization of the polymers in these solvents can be further quantified by 

evaluating the polymer dynamics via analyses of the end-to-end vector correlations of the PVC chains.  

The rate of correlation decay can be used to describe the orientation and translational dynamics of the end-

to-end vectors of the polymer chains, as well as to infer the extent of chain stretching or contraction.  

Likewise, the value of the fitted time constant (τ) of the decay can be compared to the duration of the 

simulation to ensure that the maximum simulation time significantly exceeds the characteristic 

reorientation time.  Figure 8 shows the time-dependent reorientation of the polymer end-to-end vectors 

for different PVC chain lengths.  The time constant of the exponentially decaying autocorrelation function 

for PVC240 is nearly 200 times smaller than that for PVC5 in THF, indicating that the reorientation rate of 

the end-to-end vectors of the polymer chain is greatly influenced by chain length.  Longer chains have a 

shorter reorientation time, implying that end-to-end vectors are less correlated.  This behavior is also 

consistent with the end-to-end distance and Rg, which indicates that longer chains are more flexible.  

Similar trends are seen in DMF, but it appears that the end-to-end vectors of shorter chains appear to be 

(a) (b) 
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less correlated in DMF than THF.  Figure 8c shows that the reorientation time decreases to ~ 0.1 ns at N 

= 120 and above. 

   

 

Figure 8. End-to-end reorientation autocorrelation function of PVC in (a) THF and (b) DMF; (c) 
reorientation time as a function of the number of repeat units. 
 

3.5 Dihedral Autocorrelation Function  

To understand the internal motion of the polymer chain, the decay of the dihedral angles along the 

PVC backbone is analyzed using the dihedral autocorrelation function (DACF), as shown in Eq. 8, to 

further describe the effects of chain lengths on the polymer dynamics.  According to Figure 9, the DACF 

of shorter chains decays faster than that of the longer chains in both solvents, indicating that the dihedral 

angles in the shorter polymers rapidly decorrelates.  The longer chain lengths tend to retard the dihedral 

(a) THF (b) DMF 

(c) 
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relaxation, likely due to entanglement and other intramolecular interactions; as the chain lengths increase, 

there are increased opportunities for repeat units to interact with themselves, creating energetic and steric 

barriers for dihedral motions.  At polymer chain lengths of N = 100 and 120, the DACFs are very similar 

in shape and quantitatively very close to the longest polymer, PVC240. 

   
 

 

Figure 9. DACF of PVC in (a) THF and (b) DMF as a function of the number of repeat units. 
 

3.6 Solvent Accessible Surface Area and Electrostatic Potential 

As shown in Figure 10, the normalized solvent accessible surface area (SASA/N) is plotted relative 

to polymer chain length.  The SASA is defined as the surface created by the path traced by the center of a 

spherical probe, as it rolls along the van der Waals surface of the atoms (defined as the Lennard-Jones 

diameters of the atoms, taken from the OPLS-AA force field).  Accordingly, as the SASA increases, more 

of the polymer is in contact with the surrounding solvent.  In both THF and DMF, the surface area of PVC 

increases linearly with increasing chain length.  When combined with the Rg value, the SASA is also an 

excellent indicator of changes in the polymer structure.  Small chain lengths usually have lower theoretical 

surface area than the larger chains, which is supported by the low Rg values in Tables 2 and 3.  When 

normalized by N, as shown in Figure 10, the surface area per repeat unit (SASA/N) is shown to deviate 

significantly among the shorter chains, but it eventually converges at N = 120 and above, reaching a 

(a) THF (b) DMF 
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constant value of ~ 0.64.  Thus, beyond a minimal chain length (N ~ 120), the surface area per repeat unit 

could potentially be used to estimate the SASA for much longer chains.  

This convergence likely results from the interplay between entropy, which encourages a larger 

surface area per unit due to its preference for various configurations, and enthalpy, which reduces it to 

minimize potential energy. At N = 120, these contributions balance, leading to a stable polymer chain 

configuration. 

 

Figure 10. SASA/N versus number of repeat units for PVC in THF and DMF solvents (using a probe 
diameter of 0.3 nm). 
  

There is also a relationship between polymer chain length and the electrostatic potential (ESP) of 

the polymer SASA, as shown in Figure 11.  At relatively short chain lengths (N = 5~20), there can be 

significant deviations in the ESP distributions.  These deviations could potentially lead to anomalous 

solvation behavior in different environments, especially depending on the polarity of the surrounding 

solvent. While there are still some small variations in the ESP among the different PVC models, the results 

tend to converge when using PVC40 models and longer. 
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Figure 11. Electrostatic potential of PVC in (a) THF and (b) DMF at 323K 
 

3.7 Glass transition temperature 

Beyond the previously discussed structural and dynamic characterizations, the calculated Tg value of 

the PVC models can offer additional insights into the polymer mechanical behavior. Figure 12 illustrates 

the trend of Tg values across various PVC chain lengths, revealing a plateau at approximately 366 K for 

chains extending 120 units and beyond. This observed behavior suggests that the increased chain length 

corresponds to an increase in the molecular interactions within the polymer, including entanglement, 

leading to a higher kinetic energy requirement (temperature) for the transition from the glassy to rubbery 

state. However, the variations in Tg values across the different chain lengths remain relatively small, within 

an 11 K range. Notably, these values are within the experimental Tg range reported in the literature for 

PVC [52-55]. While simulated Tg values generally match experimental ranges (350 K – 370 K), exact 

values can differ due to varying experimental and simulation conditions.  

(a) (b) 



22 
 

  

  

  

 

(a) PVC5 

366K 

356K 

355K 

360K 

363K 

(b) PVC20 

(c) PVC40 (d) PVC60 

(e) PVC100 (f) PVC120 

361K 
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Figure 12. Volume versus temperature plots for PVC melt systems of different chain lengths used to 
determine Tg values (indicated on graphs). 
 

3.8 Viscosity 

To further probe the influence of chain length on the rheological characteristics of PVC, the zero shear 

viscosity values were determined for each chain length by extrapolating the plot of 1/η versus amplitude 

(see Supporting Information). As depicted in Figure 13, there is a distinct correlation between the melt 

viscosity and the molecular weight of the polymer. These results are similar with the experimental results 

of Collins et al. [56], showing a consistent increase in viscosity with increasing chain length. This can be 

attributed to two predominant factors. First, longer polymer chains present increased drag due to their 

larger size. Second, there is an enhanced effect of intermolecular attractions as chain length increases. In 

the molten state, these factors give rise to more entanglements within the polymer matrix. These 

entanglements pose resistance to shear forces and restrict polymer flow, thereby increasing the viscosity.  

To better represent this relationship, the viscosity and polymer molecular weight (M) data are fitted 

according to Eq. 15: 

 
𝜂𝜂 = 7.3𝑀𝑀0.52             (15) 

366K 

(g) PVC240 
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The equation indicates that, while the viscosity does increase with molecular weight, the rate of increase 

gradually declines for very large chain lengths. This can be rationalized by understanding that beyond a 

certain threshold of chain length, additional entanglements contribute minimally to the flow properties. In 

essence, the influence of entanglements on viscosity appears to plateau, marking a limit to the extent they 

can impede polymer flow. 

 

Figure 13. Viscosity versus PVC molecular weight of the melt system at a temperature of 600 K. 

 

4.0 Conclusions 

PVC chains of varying lengths (5 – 240 repeat units) have been studied in THF and DMF solvents 

to understand the influence of the polymer chain length on the polymer structural and dynamic properties 

in an MD simulation.  Most of the polymer properties converge above a chain length of N ~ 120 (PVC120).  

For all chain lengths studied, there exist distinct short-range interactions between the polymer atoms and 

the solvent atoms.  As the PVC chain length increases, the intensity of the first peak in the RDFs decrease 

and converge with N ~ 120 or more repeat units.  Furthermore, the end-to-end distance is found to display 

a linear relationship with the number of repeat units.  The shape descriptors also demonstrate that as the 

number of repeat units increases, the conformations become less spherically symmetric.  The radius of 
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gyration increases with chain length, indicating that the end-to-end vectors of shorter chains are more 

correlated than those of longer chains, and thus, the reorientation time is significantly longer.  

Additionally, the dihedral motions of the polymer backbone become more correlated in longer chains due 

to constraints imposed by neighboring intermolecular interactions.  The surface area per repeat unit and 

electrostatic potential both tend to converge at N = 40 repeat units and above. 

While a distribution of chain lengths should be considered when studying real polymer-solvent 

systems (as well as defects in the polymer backbone), the results of this work suggest that PVC120 is a 

reasonable model for capturing the essential physics within a polymer-solvent system. We believe that a 

PVC model with 100-120 repeat units is able to sufficiently capture the chain entanglement that is 

representative of much longer chains, consistent with the structures/interactions present in the bulk 

material. Once the entanglement length is reached, additional repeat units do not significantly affect the 

polymer’s structure and dynamics. This observation also aligns with findings from previous studies [57-

59]. Thus, while the molecular weight of an experimental PVC sample is expected to be an order-of-

magnitude larger, an atomistic polymer model with approximately 120 repeat units should be sufficient to 

model its solvation behavior within different prototype solvents.  Further studies are warranted to 

determine the chain-length dependence of other atomistic polymer models on the emergent structural and 

dynamic properties, to develop a consistent modeling framework for comparing solvation behavior. 
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