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ABSTRACT: Calculating solute diffusion in dense, viscous
solvents can be particularly challenging in molecular dynamics
simulations due to the long time scales involved. Here, a new
scaling approach is developed for predicting solute diffusion based
on analyses of CO, and SO, diffusion in two different multivalent
ionic liquid solvents. Various scaling approaches are initially
evaluated, including single and separate thermostats for the solute
and solvent, as well as the application of the Arrhenius relationship
and the Speedy—Angell power law. A very strong logarithmic
correlation is established between the solvent-accessible surface
area and solute diffusion. This relationship, reflecting Danckwerts’
surface renewal theory and the Vrentas—Duda free volume model,
presents a valuable method for estimating diffusion behavior from

In(DIFFUSION)

SURFACE AREA

short simulation trajectories at elevated temperatures. The approach may be beneficial for enhancing predictive modeling in similar

challenging systems and should be more broadly evaluated.

1. INTRODUCTION

Diffusion processes are essential to understanding many
phenomena in materials science, chemistry, and other fields,
including the transport of ions in batteries and fuel cells,"” the
movement of pollutants in the environment,” and the
behavior of biomolecules in biological systems.” Diffusion
plays a critical role in understanding the behavior of molecules
and ions and is key to the development of new materials and
processes in many industries.™” In particular, the effectiveness
of solvation and separation processes is strongly dictated by
transport and diffusion rates, and these are important
properties to quantify when screening for new solvent
formulations. In recent years, there have been many studies
exploring the solvation performance of ionic liquids (ILs) and
their gas absorption behavior,'*~"* largely due to their unique
characteristics (e.g., high stability, low volatility, tunable
selectivity). These properties make ILs a promising alternative
to traditional liquid solvents, particularly for gas separation,
absorption, and storage applications,"'® which are important
for addressing the environmental aspects of industrial
processes and climate change.

It is crucial to understand the behavior of gas solutes in
novel IL solvent formulations, especially during computational
screening stages. However, gas diffusion is strongly influenced
by the complex interactions between neighboring atoms or
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molecules,'”” as well as the thermodynamic operating
conditions, making the prediction of solute behavior a
challenging task. While there have been many studies'® '
focused on equilibrium gas solvation and selectivity behavior in
ILs, there has been much less work focused on describing the
solute transport properties, which must be evaluated for any
practical application.

The diffusion of solutes in condensed systems has been
studied extensively since the pioneering work of Graham™ and
Fick,” using experimental methods such as nuclear magnetic
resonance (NMR),”* Raman microspectroscopy,” and dy-
namic light scattering (DLS).*® However, depending on the
system, these methods can be expensive, time-consuming, and
challenging to perform, especially under unfavorable con-
ditions, such as high temperatures and pressures. To overcome
these limitations, theoretical models have been developed
based on kinetic theory and hydrodynamics, such as those of
Gross,”’ Wilke—Chang,28 and Stokes—Einstein.”” However,
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these models have limitations in their ability to predict the
performance over a wide range of fluids, and they provide
rather inaccurate predictions for nonionized compounds, as
their diffusivities tend to be anomalously high.*® For example,
recent studies by Tsimpanogiannis et al.”’ —>* assessed the
experimental and simulation data on intradiffusivities of H, and
O, in H,O and the self-diffusivity of pure H,O to test the
Stokes—Einstein relation. Findings revealed deviations from
the expected values, suggesting that the Stokes—Einstein
relation is not consistently valid for these systems; improve-
ments are possible by refining the slope calculations. Recent
enhancements to other models (e.g., Darken-based models®”)
have doubled their accuracy in predicting self-diffusion
coeflicients in nonideal binary Iiguid mixtures, surpassing the
McCarty and Mason correlation.*®

Molecular dynamics (MD) simulations have become
increasingly valuable for studying the diffusion of solutes in
dense or viscous systems, especially for gaining insight into the
behavior of solutes that is difficult to observe experimen-
tally.””*® The diffusion predictions are typically based on
various analyses of the molecular trajectories, such as the mean
square displacement (MSD) or the velocity autocorrelation
function (VACF),” as shown in egs 1 and 2, respectively. The
diffusion coefficient (D;) of the component i can be
determined by averaging the MSDs over time using the
Einstein correlation:

1 d 5
E('n(t) - 1(0)I")

= —Ilim

6N t— o0

: (1)
Alternately, the diffusion coefficient can be calculated as an
integral over the VACF, which is based on the correlation
between particle velocities at different time increments:

/:o (v(0)-v(7))dr

D.

1

3N ()

The MSD analysis is generally more accurate in viscous
systems, as it can capture the diffusion of particles that may not
have fully decoupled their velocities. Additionally, the Einstein
correlation® can be used to estimate diffusion coefficients,
provided the viscosity of the medium in which the solute is
diffusing is known. However, it is important to recognize that
the solute might alter the viscosity of the fluid, complicating
the application of the Einstein correlation. MD simulations can
often predict diffusion coefficients with an accuracy of around
+10%,*"** depending on the specific system and simulation
parameters used; predictions can be compromised by the finite
size and periodic boundary effects, among other underlying
factors, such as poorly parametrized force fields. For instance,
Jamali et al.”> showed a notable dependency of diffusion
coeflicients on the system size in molecular mixtures, leading
to a proposed correction based on factors such as viscosity and
system nonideality, which when applied, significantly improves
the reliability. For more information on the influence of finite
size effects on diffusion coefficients, we refer the reader to a
comprehensive review by Celebi et al.**

Many studies have been conducted in the literature using
MD simulations to obtain diffusion coefficients of different
gases in viscous solvents. Reddy et al,'® for instance, studied
the structure and dynamics of certain ILs, revealing higher
diffusion coefficients from VACFs than from MSDs (using
trajectories of over 100—250 ns); they highlighted the
decelerating influence of hydroxyalkyl chains on cation
dynamics. Building on this, Figueiredo et al.*’ employed
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MSDs over a 10 ns trajectory to investigate room-temperature
ILs (RTILs), as well as their binary mixtures with methanol
and ethanol. They observed that reducing the IL composition
increases the ion self-diffusion coefficients while inversely
affecting the density and viscosity. In addition, MD simulations
(using ~20 ns trajectories) have been used to assess the effects
of external electric fields (EEFs) on deep eutectic solvents
(DESs); the EEFs tend to increase the self-diffusion
coefficients while concurrently decreasing the viscosity.”
Overall, MD simulations have proven to be instrumental in
advancing our understanding of key environmental and
chemical processes by capturing the diffusion behavior in
different IL solvents.

In order to extract a representative diffusion coefficient from
MD, it is important to ensure a convergence of the MSD or
VACEF data, i.e., a linear slope of the MSD versus time and a
convergence of the VACF near zero at long times. However,
describing diffusion accurately using MD can be a challenging
task, particularly in dense and viscous solvents. This can make
it difficult to obtain reliable diffusion rates from MD simulation
trajectories, which typically range from tens to hundreds of
nanoseconds in duration. To accurately represent solute
behavior in such systems, it is often necessary to use very
long MD trajectories that allow for the exploration of rare
events and thoroughly sample the phase space. For instance, in
previous simulations of ILs, Tsuzuki*' found that at least 10 ns
is necessary before observing any behavior similar to diffusion
at room temperature. Similarly, Reddy et al,'® Figueiredo et
al,'” and Jahanbakhsh-Bonab et al.>’ noted MSD evaluations
requiring trajectories of 20—300 ns. In some cases, the
trajectories may need to be extended for microseconds, leading
to severe computational bottlenecks.

Several methods have been devised to enhance the efficiency
of MD simulations for diffusion calculations and improve the
sampling of the phase space.””*’ These techniques include
advanced sampling methods such as umbrella sampling
(UMS)*® and metadynamics (MET),” which use bias
potentials to explore a wide range of configurations in the
energy landscape, and accelerated MD (AMD) techniques
such as temperature-accelerated MD (TAMD)’" and hyper-
molecular dynamics (HMD).*>** For instance, MET has been
applied to explore a broad range of energy configurations in
alanine dipeptides and amino acids,”* while AMD has been
used to improve the sampling of rare events in simulations of
liquid water, including hydrogen bond formation and water
diffusion.”’ Furthermore, recent studies have employed HMD
to study self-interstitial diffusion in a-iron.”’

While these techniques can be useful in some cases, they can
also introduce artifacts or bias in the simulation results. In
particular, accelerated sampling methods can lead to over-
representation of rare events or states, which can skew the
results of diffusion calculations.”” Additionally, these methods
can still be very computationally demanding, and their
implementation is not trivial. For instance, UMS may require
the use of multiple simulations or replicas to generate sufficient
data for accurate estimation of the diffusion coefficient, which
can be particularly challenging when dealing with large or
complex systems.”

The diffusion of gas sg_ecies in ILs is typically attributed to a
“hopping” mechanism.””>” However, the hopping behavior is
shown to be non-Arrhenius, a fact that has been frequently
identified in the IL literature.”®” Adding to the complexity,
the amorphous nature of ILs introduces significant variability
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Figure 1. Chemical structures of the anion (Al [NpO,]*”) and the two cations (C2 [Bzmim;]** and C3 [Bzmim,]*") composing the ILs simulated

in this study.

in these hopping pathways. Furthermore, gas absorption can
significantly alter the properties of the IL system, such as a
reduction in viscosity and other substantial changes.”” Thus, it
can be very challenging to make theoretical or phenomeno-
logical predictions of diffusion behavior. Regardless, the
Speedy—Angell power law (eq 3) is often used to correlate
simulated diffusion (D,) results:®'

T m
T,

©)
where T is temperature and D, T, and m are fitted
parameters. Previously, the diffusion coefficient of CO,
molecules in the supercritical region has been fit to this
power law equation, resulting in good agreement with MD
simulation results (R* = 0.985).” This trend highlights the non-
Arrhenius behavior. Nevertheless, this equation has shown
limited applicability in other mixtures and at certain super-
critical and subcritical 1‘egions.62’63
Here, we examine the diffusion behavior of carbon dioxide
(CO,) and sulfur dioxide (SO,) in two different multivalent
ILs, in an attempt to develop an extrapolation approach for
predicting solute diffusion at room temperature conditions,
which otherwise requires extremely long trajectories for
convergence. Our findings suggest that the accessible surface
area of the solvent has a strong logarithmic correlation to
solute diffusion rates, which provides a simple and efficient
approach for rapidly obtaining diffusion rates in viscous
systems (such as ILs at room temperature). We show that as
the temperature increases, the liquid expands, and the surface
area increases in a predictable manner, creating more space (or
windows between adjacent pockets) for the solute molecules to
diftuse. This extrapolation approach avoids the need for long
trajectories in the systems studied, and it motivates future
investigation of its reliability for predicting diffusion in other
viscous solvents.

2. METHODS

Quantum chemical (QC) methods were used to refine the
intermolecular potentials for our system, while grand canonical
Monte Carlo (GCMC) and MD simulations were used to
perform the diffusion calculations. The solute concentrations
were determined by carrying out a combination of GCMC and
MD simulations, which allowed us to obtain well-converged
estimates of the gas loading. For a more detailed explanation of
the QC calculations and GCMC simulations, we refer the
reader to our previous work.”*

The intermolecular potentials used for the multivalent IL
systems in this work have been described previously,” and the
different ions are illustrated in Figure 1. To initialize the
systems, the ion pairs were randomly inserted into the
simulation box at a low density using PACKMOL,® followed
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by MD simulation using Gromacs 5.0.°” The number of ions
used in the simulations varied based on the system
stoichiometry, with the exact compositions summarized in
Table 1. The force field parameters for the ionic liquids and

Table 1. Summary of the Simulated IL Properties
Composed of the Different Ion Pairs (m = Number of
Cation Molecules, n = Number of Anion Molecules, x =
Number of Solute Molecules, and M,, = Molecular Weight
of ILs), as well as the Average Density of Each System at a
Temperature of 300 K and a Pressure of 1 Bar

densit;r M, gas solubility
system m n x (g/ecm®)  (g/mol) (g/L)
SO,-A1C2 648 432 172 1.421 1502 45.6 + 0.2
SO,-A1C3 432 216 142 1.447 975 58.8 + 0.3
CO,-A1C2 648 432 133 1.400 1502 25.6 + 0.2
CO,-A1C3 432 216 108 1.404 975 29.7 £ 0.2

input files are presented in the Supporting Information. The
OPLS-AA force field,*® as assigned by LigParGen,*” was used
to describe the ion interactions in the system. The molecular
parameters for CO, were taken from the TraPPE force field
provided by Siepmann et al.,”® while the SO, parameters were
taken from Ketko et al.”' The simulations were performed in
the isothermal—isobaric (NPT) ensemble; the temperature
was maintained using the Nose—Hoover thermostat,”” and the
pressure was maintained using the Parrinello—Rahman
barostat,”” with time constants of 0.5 and 1 ps, respectively.

Following an initial relaxation via the steepest-descent
algorithm, the system was equilibrated in the NPT ensemble
at 300 K and 1 bar for 10 ns using a time step of 1 fs.
Subsequently, the production phases were conducted for
varying durations, ranging from tens of nanoseconds to several
microseconds, depending on the convergence behavior at
different temperatures. The Lennard—Jones potential and
electrostatic interactions were calculated with a cutoff distance
of 1.2 nm, and the particle mesh Ewald (PME) method”* was
used for long-range electrostatic interaction with 0.12 nm of
Fourier spacing. Cross-term interactions between unlike sites
were approximated with the Lorentz—Berthelot mixing rules.
The bonds with H atoms were constrained using the LINCS
method.”” Periodic boundary conditions were implemented in
all three dimensions.

3. RESULTS AND DISCUSSION

In this section, we present the outcomes of standard MD
simulations to calculate gas diffusion coefficients in different
multivalent ILs, followed by different scaling approaches (both
naive and more effective techniques) for estimating diffusion
coefficients under challenging conditions (i.e., low temper-
atures). Initially, “brute force” MD simulations are used to
evaluate the convergence behavior over very long trajectories.

https://doi.org/10.1021/acs.jpcb.3c03858
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Figure 3. (a) MSD vs time; (b) log MSD vs log t of SO, in the A1C3 IL, corresponding to different simulations in which the solute molecule
temperatures are elevated (as shown), while the solvent molecules remain near room temperature (300 K) by using separate thermostats, over a S0

ns time frame.

As depicted in Figure 2 (SO, in the A1C3 IL), accurate
diffusion predictions necessitate extended simulation trajecto-
ries. Despite the long simulation times shown in Figure 2, as
well as long segments of seemingly converged (linear)
behavior, the MSD values indicate that the solutes are
relatively stagnant, even over the course of several hundred
nanoseconds. On average, the solutes have a net MSD
displacement of only ~0.3 nm* (or a linear displacement of
~0.55 nm), indicating that the solute traveled only ~ 0.06 box
sizes. Thus, the solute diffusion at room temperature is highly
restricted in these ILs, requiring a very long trajectory to reach
beyond subdiffusive motion. In order to mitigate these
challenging dynamics, we test different scaling approaches for
predicting the solute diffusion at these conditions, based on
simulations at higher temperatures (with inherently faster
solute dynamics).

3.1. Separate Temperature Coupling and the Ther-
mal Scaling Behavior of Diffusivity. The first scaling
approach is to perform simulations at higher temperatures by
using separate thermostats for the solute and solvent. Although
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this is unphysical, the strategy is to significantly elevate the
solute temperature to incrementally higher values (in different
independent simulations) to provide additional kinetic energy
for the solutes to hop from one IL domain to a neighboring
cavity while the solvent remains fixed at room temperature
(300 K). Using the Berendsen thermostat, various solute
thermostat parameters were tested, ranging from small to very
large time constants as well as small to large temperature
increments.

A representative plot of the MSD of the SO, molecules in
the A1C3 IL is shown in Figure 3, which illustrates the effect of
this approach (i.e.,, implementation of different solute temper-
atures). Although the displacements of the SO, molecules are
moderately increased by imposing a higher temperature, even
over a duration of 50 ns, the SO, molecules do not display
significant movement (~0.3 nm?). Furthermore, the different
curves do not provide any discernible scaling behavior over the
range of temperatures tested, preventing the development of
predictive correlations. The same slow, spurious behavior is
also observed when simulating CO, solutes within the A1C3

https://doi.org/10.1021/acs.jpcb.3c03858
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Figure 4. Arrhenius correlations (A, C) and Speedy—Angell power law correlations (S, A) of the thermal scaling behavior in the different solute—
solvent systems using a single thermostat for both the solute and solvent. The black squares represent the data points, which are also fitted using a

cubic polynomial function (solid black lines).

IL (see Figure S1). These observations suggest that the strong
interactions and high solvent viscosities are very difficult to
overcome even when the temperature (i.e., kinetic energy) of
the solute molecules is significantly elevated. Also, it is clear
that the diffusion behavior of the solute molecules in the IL is
much more complex than simply traversing a well-defined
activation barrier.

3.2. Single Temperature Coupling and the Thermal
Scaling Behavior of Diffusivity. A more direct approach is
tested next, using a single thermostat to raise the temperature
of both the solute and solvent with the intent of developing a
predictive scaling relationship. The MSD vs time plots at
various temperatures can be found in the Supporting
Information (Figures S2—SS). Both an Arrhenius relationship
and the Speedy—Angell power law (Figure 4) are used to fit
the thermal scaling behavior, which converges more quickly
(100—200 ns) at the elevated temperatures explored. The
Arrhenius relationship is not able to accurately capture the
diffusion behavior, likely because the elevated temperatures
distort the diffusion pathways and diffusion mechanisms in the
solvent, as these are inherently soft amorphous systems.
Likewise, although the power law relationship is moderately
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better, the thermal scaling behavior is still not sufficiently
captured.

A change in the slope around 1/T = 0.002 can be observed
in Figure 4, which also includes a cubic polynomial fit to the
data. The self-diffusivities of the ILs (Table S6) help explain
the likely cause of this shift. For instance, the diffusivities of the
Al and C2 ijons in the CO,—AI1C2 system increase by ~50%
from 300 to S00 K, while those of the Al and C3 ions in the
SO,—A1C3 system show a ~90% increase from 500 to 600 K.
In both systems, the IL diffusivity jumps ~150% from 600 to
800 K, implying a strong temperature influence on the IL
diffusion. This underlying shift in IL diffusivity likely influences
the CO, and SO, displacement, e.g., transitioning from
localized hopping at lower temperatures to a more classical
diffusion at higher temperatures, leading to the observed
change in slope. Therefore, using simple Arrhenius-based
scaling relationships to predict diffusion across a range of
temperatures poses challenges, especially for diverse systems
with varying components.

3.3. Thermal Scaling Behavior of the Surface Area
and Diffusivity. In an attempt to establish alternative scaling
approaches, we evaluated a wide range of other system metrics
(e.g., fractional free volume of the solvent, pore size

https://doi.org/10.1021/acs.jpcb.3c03858
J. Phys. Chem. B 2023, 127, 9144-9154
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Figure 5. Correlations (dashed lines) of the thermal scaling behavior in the different solute—solvent systems as a function of the solvent surface
area, calculated using a probe size of r = 0.075 nm. The points corresponding to the highest and lowest temperatures are indicated. The points
marked with red crosses represent the In(D®) values using the Yeh—Hummer (YH) correction (Figure 7), suggesting minimal influence (<1%

difference) of finite size effects on the proposed scaling relationship.

distribution of the solvent, etc.) as a function of temperature.
Ultimately, it was found that the accessible surface area of the
solvent, calculated over a range of incremental temperatures, is
strongly correlated with solute diffusion. The surface area is
calculated by tracing the accessible surfaces of the solvent
molecules (with diameters defined by the Lennard—Jones
parameters of the OPLS force field) using a spherical probe
particle. Due to the dynamic nature of the system
configurations, S0 different independent snapshots are used
to calculate well-converged average solvent surface areas. The
results, as shown in Figure 5, indicate a remarkably strong
logarithmic correlation between temperature and the solvent
surface area, even when different probe sizes are used (Figure 6
shows the optimal probe size as 0.075 nm). This relationship is
observed for different solutes (CO, and SO,), as well as
different IL solvents (A1C2 and A1C3), implying that the
solvent surface area may be a general descriptor for capturing
complex diffusion behavior in similar dense, viscous systems.

One possible explanation for this correlation is that the
solvent surface area reflects the available space for the solute
molecules to move and diffuse. As the temperature increases,
the liquid expands, and the surface area increases in a
predictable manner, creating more space (or windows between
adjacent pockets) for the solute molecules to diffuse.
Additionally, the surface area can affect the rate of exchange
of solute molecules between the bulk liquid and the surface,
which can also influence the diffusion rate. This phenomenon
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Figure 6. Correlation between solute diffusion and solvent surface
area for CO, in the A1C3 IL, calculated using different spherical
probe radii.

may be related to Danckwerts’ surface renewal theory,”® which
expresses the liquid-side mass transfer coefficient (k) in terms
of the surface renewal frequency (s) and the molecular
diffusivity (D,g) of the gas in the liquid:
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Figure 7. Einstein-derived diffusivity showcases the dependence on the system size. Red squares represent the values of D adjusted by using the

Yeh—Hummer (YH) finite size correction, as illustrated in eq 6.

k; = (Dygs)* 4)
This theory assumes that the rate of mass transfer between two
phases is limited by the rate of surface renewal. In other words,
as the surface area of the liquid increases, the rate of surface
renewal also increases, which, in turn, can increase the rate of
solute diffusion. This concept offers an interesting alternative
to the strict Arrhenius hopping, although it does not factor in
the expansivity effect.

Other models,””~” including the free volume theory of
solvent diffusivity in polymer solutions, as proposed by Vrentas
and Duda,®” do address this expansivity factor. Their model,
substantiated by experimental diffusivity data, postulates that
the movement of molecules (such as solvents) in a polymer
matrix is limited by the availability of free volume. In essence,
for a molecule to move, there has to be a sufficient unoccupied
volume adjacent to it. The Vrentas—Duda equation is given by

eq S:
E )[ )(l
()

RT
where V; and V] are the free volume fractions of the solvent at
the reference and the system temperature, respectively, while o
accounts for the concentration-dependent diffusion. The
Vrentas—Duda model was primarily designed for polymers;
ILs introduce additional complexities due to their ionic nature
and specific interactions. However, the fundamental principle

Vr

D =D, exp( v
1
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of diffusion being governed by available free spaces (or
accessible areas) remains valid. Parameters such as expansivity
and solubility that are central to the Vrentas—Duda model
could be directly inferred from these simulations. For example,
expansivity can be related to how much the accessible surface
area expands with temperature, and solubility might dictate
how the solute molecules interact with these accessible regions.

Similarly, Paul’s free volume theory®' proposes that, just as
with polymers, the accessible surface area in ionic liquids can
be seen as a representation of free volume. The solvent-
accessible surface area can be interpreted as a metric
comparable to free volume (i.e., as the accessible surface area
increases, the free volume available for solute molecules should
increase as well). Yet, our study indicates that the surface area
displays the strongest correlation with diffusion. This could be
due to the underlying details of the different systems, especially
in ILs with their unique ionic interactions as opposed to
conventional synthetic polymers.

To further validate the diffusivity data, it is important to
consider finite size effects. This is emphasized by the studies of
Celebi et al.** and Jamali et al,*>** which show the need to
correct the diffusivities of both pure components and mixtures
for system size effects. For such corrections, the Yeh—Hummer
correction®’ is commonly used:

kyTe
67mnL

Doo D MD

(6)
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where DMP is the finite self-diffusion coefficient computed in

MD simulations, kg is the Boltzmann constant, T is the
absolute temperature, 7 is the shear viscosity computed in MD
simulations, and & is a dimensionless constant equal to
2.837298 for periodic (cubic) lattices.**

Figure 7 plots DMP (obtained from the MSD plots, as shown
in Figure S6) against 1/N'3 where N denotes the total
number of molecules, and the inverse of the simulation box
length, L, is directly proportional to 1/N'3. The solute
diffusion coeflicients exhibit a linear relationship with the
inverse of the simulation box length; 1 /N3 =0 provides the
diffusivity value for a system of infinite size (D*), which is
depicted in the figure as a horizontal line. The corrected
diffusivities, taking into account the % factor from eq 6, are
represented by red squares. As anticipated, these corrected
values converge on the horizontal line, reaffirming the accuracy
and reliability of the YH correction.

It is also essential to highlight that the finite size effects
presented in Figure 7 influence diffusivity results by a
maximum of 5—10% at the highest temperature (800 K).
The impact would diminish even more at lower temperatures
due to the substantial increase in the IL viscosity. Moreover,
applying the YH correction to the diffusivity data within the
scaling relationship shown in Figure S (illustrated by marked
cross points at 800 K) ona logarithmic scale reveals a marginal
difference (<1%). Thus, in the context of the In D vs surface
area scaling relationship, the influence of the YH correction is
minimal.

Although the mechanistic underpinnings of the diffusive
scaling behavior in these ILs are not definitive, the primary
advantage of this approach is that the average surface area of
the solvent converges very rapidly, even in these dense viscous
liquids at room temperature. Therefore, simulations performed
at elevated temperatures (requiring relatively short trajecto-
ries) can be used to quickly and accurately estimate the solute
diffusion at lower temperatures based on a relatively short
trajectory at room temperature (needed to estimate the solvent
surface area). Although only a few different solvent and solute
combinations have been explored in this work, initial results
indicate that this method may provide a simple and efficient
way for predicting solute diffusion in similar challenging
systems.

4. CONCLUSIONS

Here, we studied the diffusion behavior of CO, and SO, in two
multivalent ionic liquids, A1C2 and A1C3, in an attempt to
accelerate predictions of solute diffusion in viscous solvents
(which otherwise require extremely long MD trajectories).
Attempts to improve simulation dynamics via temperature
scaling techniques, whether by independently increasing the
temperature of the solutes or by raising both solute and solvent
temperatures, did not yield satisfactory outcomes. This
highlights the complexity of the molecular interactions and
solute diffusivity, which does not easily correlate to common
scaling relationships. Based on a survey of different physical
properties of the solvents, we find a very strong correlation
between the solvent-accessible surface area and the diffusion of
the solute, as a function of the temperature. This suggests that
a solvent’s surface area can potentially serve as a key descriptor
for predicting complex diffusion behavior in similar dense,
viscous systems. This correlation, aligned with Danckwerts’
surface renewal theory and the Vrentas—Duda free volume
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model, offers an efficient protocol for estimating diffusion
behavior using relatively short simulation trajectories per-
formed at elevated temperatures. The precise mechanism
underpinning this correlation remains inconclusive and
warrants further exploration.

Some of the scaling consistency can be attributed to the fact
that CO, and SO, are both small, rigid solute molecules.
However, the outcomes may differ for larger, flexible
molecules, potentially presenting weaker correlations or even
anomalous behavior, especially with bulkier or more polar
solute molecules. Investigating the influence of different solute
architectures in future studies will help to clarify the broader
applicability of this method. Nonetheless, the approach holds
promise for significantly accelerating predictive simulations in
challenging comparable systems.
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