

1 **Recovery of both Volatile Fatty Acids and Ammonium from**
2 **Simulated Wastewater: Performance of Membrane Contactor and**
3 **Understanding the Effects of Osmotic Distillation**

4 Matthew Ferby ^a and Zhen He ^{a,*}

5 ^a Department of Energy, Environmental and Chemical Engineering, Washington University in
6 St. Louis, St. Louis, MO 63130, USA

7

8

9

10

11

12 *Corresponding author. Phone: (314) 935-7124; E-mail: zhenhe@wustl.edu

13

14

15

16

17

18

19 **Abstract**

20 Membrane Contractor (MC) is a separation method that has had growing interest because of its
21 recovery performance and comparably lower energy consumption. Herein, a two-stage recovery
22 MC system was investigated to recover volatile fatty acids (VFAs) and ammonium from
23 simulated wastewater. The MC achieved the total VFA recovery of $77\% \pm 3\%$, $82\% \pm 5\%$, and
24 $74\% \pm 8\%$, with 0.1, 0.3, and 0.5 M NaOH permeate solutions, respectively. The 0 M NaOH
25 permeate recovered only $38\% \pm 2\%$ of the VFAs due to the osmotic distillation occurring in the
26 opposite direction (permeate to feed) of the VFA transport. Despite the initial pH of the feed
27 solution, osmotic distillation was similar when the permeate was maintained at 0.5 M NaOH.
28 The vapor pressure changes at each sampling period showed high correlation with the water
29 transported ($R^2=0.958$). Ammonium recovery was not significantly different when the pH was
30 maintained while increasing the molarity of the H_2SO_4 permeate, likely due to the high vapor
31 pressure of ammonia gas. Multi-criteria decision analysis was used to determine the optimal
32 operation conditions for MC operation. The results of this study would encourage further
33 exploration of MC technologies for efficiency recovery of VFA and ammonium from
34 wastewater.

35

36 **Keywords:** Membrane separation; resource recovery; volatile fatty acid; ammonium; anaerobic
37 digestate, wastewater treatment

38

39 **1.1 Introduction**

40 Anaerobic digestion (AD) is a waste treatment technology capable of recovering energy in the
41 form of biogas. Factors that determine the efficacy of the AD process include waste feed source,
42 digester temperature, and microbial community composition (1, 2). Among the key compounds
43 of interest in digestate, both volatile fatty acids (VFAs) and ammonia can be separated and then
44 recovered with reuse value in the agricultural, textiles and food industries (3, 4). They
45 abundantly co-exist in environments where anaerobic process or fermentation is occurring.

46 Ammonia ($pK_a \sim 9.23$) is a reduced nitrogen species of weak base and commonly found in
47 wastewater and sludge (5). VFAs (e.g., acetic ($pK_a \sim 4.76$), propionic ($pK_a \sim 4.88$), and butyric
48 ($pK_a \sim 4.82$) acid at $25^\circ C$) are weak acids that are produced during acidogenesis from biological
49 degradation of carbohydrates (6). Despite the robustness of AD, there are many toxins that
50 negatively affect the treatment process (7). For example, a high ammonium concentration can
51 significantly alter the carbon-nitrogen ratio which inhibits microbial degradation of long-chained
52 carbon molecules to simple carbon structures (8, 9). This can result in the accumulation of VFAs
53 in the digestate and low biogas production because microorganisms cannot properly carry out
54 acetogenesis and methanogenesis reactions (10). Increased ammonium concentrations have been
55 shown to directly affect the transport of K^+ across the cell membrane for the purpose of
56 maintaining intercellular pH levels (Xing, 2021). It is possible that this change causes the
57 microbial community to diversify its composition to still carry out methane production.
58 However, in cases where this is not evident it presents an opportunity for the digestate to have
59 increased amounts of VFAs and ammonium for subsequent recovery, for example using
60 membrane technologies.

62 Membrane based technologies such as membrane distillation (MD), electrodialysis (ED)
63 and reverse osmosis (RO) have been employed to recover useful resources from wastewater, and
64 factors such as energy consumption, recovery efficiency and efficacy, and technology durability
65 are used to assess a technology's applicability (11). MD operation requires a temperature
66 gradient between a feed solution and a permeate solution which promotes water vapor transport
67 from the hot to the cold source (12). It was reported that nutrients such as ammonia can have a
68 higher flux at a higher temperature of 60°C ($0.82 \pm 0.02 \text{ g m}^{-2} \text{ h}^{-1}$) compared to that at a lower
69 temperature of 20°C ($0.26 \pm 0.03 \text{ g m}^{-2} \text{ h}^{-1}$) during the MD treatment (13). Typical ED treatment
70 takes advantage of an applied voltage to increase the migration of anions and cations across ion
71 exchange member towards different compartments, resulting in the concentrated solutions of
72 cations or anions (14). Previous ED studies have reported ammonia recovery efficiency of 95.8-
73 100% (15) and 95% recovery for acetic acid (16). The main challenges that arise with ED and
74 MD approaches are the increased inputs of electrical and thermal energy to drive resource
75 recovery. Although RO is typically used as a desalination technology, it has also shown potential
76 for ammonia recovery via concentration or gas permeation depending on the feed pH (17). For
77 example, 95% of ammonium was concentrated when the solution pH < 9 but 63% of ammonia
78 gas was able to pass the RO membrane when pH > 9 (18). The demand for a high pressure that
79 causes acute fouling however would let RO to be less considered for resource recovery compared
80 to other technologies.

81

82 Evolved from MD, membrane contactor (MC) has received a growing interest for
83 resource recovery because of its low energy consumption and comparably good recovery
84 efficiency (19). MC has been studied to remove carbon dioxide from air sources (20, 21), and

85 other compounds such as sulfur dioxide (22), alcohols (23), ammonia (24) and VFAs (25) as its
86 applicability has become broader. Specifically for ammonia and VFAs, MC works if a pH
87 gradient exists so that the gaseous form is released from the feed solution and then absorbed in
88 the aqueous form in the permeate solution. For example, the mass flux rate of acetic acid
89 decreased from ~ 11.03 to ~ 2.45 g $m^{-2} h^{-1}$ when the solution pH was adjusted from 3 to 5.45,
90 suggesting the immobility of acetic acid in its ionic form at the higher pH level, and the
91 increased acetic acid recovery was observed for the increased NaOH absorption solution
92 normality (26). One factor that has been overlooked in many MC studies is water vapor transport
93 via osmotic distillation because of vapor pressure difference between the feed and permeate
94 solutions (27). Recent studies have begun to report water flux (28, 29), but the further
95 understanding of the implications that osmotic distillation may have on VFA and ammonia
96 recovery is still necessary. Modeling ammonia recovery using MC has been pursued in a few
97 studies (30-33), but many of these models lack the consideration of how water vapor transport
98 affects recovery of volatile compounds as well as economic feasibility of using MC.

99

100 In this study, the effects of permeate composition and pH adjustment on osmotic
101 distillation and resource recovery via MC were investigated. We proposed a two-step recovery
102 process using a hollow fiber membrane module where switching pH would allow VFAs recovery
103 in a NaOH absorption solution and then ammonium recovery in a H_2SO_4 absorption solution.
104 The operation mode used in this study was direct contact, liquid-liquid MC with no temperature
105 gradient between the feed and permeate solution, thereby minimizing the temperature influenced
106 water vapor transport, which is common in MD processes. This will highlight the effects of
107 osmotic distillation. Acetic, propionic, and butyric acids are used to better identify the effects

108 VFAs have on the MC separation and osmotic distillation. A synthetic solution was used in order
109 to effectively compare the recovery of VFA and ammonium during the different iterations of the
110 study. The specific objectives of this study included: (1) demonstrating the feasibility of two-step
111 recovery of VFAs and ammonia; (2) optimizing operation conditions for maximum VFA and
112 ammonium recovery; (3) developing a model to predict VFA recovery, ammonium recovery, and
113 water movement based on operation conditions; and (4) conducting initial evaluation of
114 economic feasibility of recovering VFAs and ammonium using MC. System optimization based
115 on the order of recovery was then investigated after all individual experiment iterations were
116 compared using multi-criteria decision making.

117

118 **2. Method & Material**

119 **2.1 Membrane Contractor Set Up & Operation**

120 A hollow fiber membrane module (St. Louis, USA) was used for the membrane contactor
121 experiment. The initial volumes of the feed and permeate solutions were equal at 400 mL before
122 pH adjustments. The detailed operation conditions are shown in Table 1 that outlines the initial
123 pH and solute molarity for the feed and permeate solutions. The feed solution composed of 2000
124 mg L⁻¹ acetic acid, 750 mg L⁻¹ propionic acid, 750 mg L⁻¹ butyric acid, and 3.68 g L⁻¹
125 (NH₄)₂HPO₄, and other elements (per liter of deionized (DI) water): 0.15 g NH₄Cl, 0.5 g NaCl,
126 0.015 g MgSO₄, 0.02 g CaCl₂, 0.1 g NaHCO₃. The pH adjustments were made with H₂SO₄
127 and/or NaOH solutions under continuous stir mode with pH probe inserted into the solution. The
128 basic and acidic permeate solutions were prepared on a stir plate until the solute was completely
129 dissolved in the water. The feed and permeate solutions were recirculated through the membrane
130 module at 20 mL min⁻¹. The VFA recovery tests were operated in a batch mode of 24 hours with

131 sample collection at 0, 3, 6, 12, and 24 h. The ammonium recovery tests were operated in a batch
132 mode of 6 hours with samples taken at 0, 1, 2, 3, and 6 h. Membrane cleaning was performed
133 before MC operation for VFA and ammonium separation. The membrane was cleaned by (i)
134 backwash with DI water, (ii) backwards flushing with acid/ base, (iii) acid/base soak, and (iv)
135 forward flushing with DI water. Before VFA separation, an acid solution (0.10 M H₂SO₄) was
136 used on the feed side of the membrane and a base solution (0.05 M NaOH) was used on the
137 permeate side for membrane cleaning step (ii) and (iii). Before ammonium separation, a base
138 solution (0.10 M NaOH) was used on the feed side of the membrane and an acid solution (0.05
139 M H₂SO₄) was used on the permeate side for membrane cleaning step (ii) and (iii). All solutions
140 were prepared using a stir plate until the solute was completely dissolved. All tests were
141 performed in triplicate under room temperature (~24 °C).

142

143 2.2 Measurement and Analysis

144 A digital balance (Scort Pro, Ohous, Columbia, MD, USA) was used to measure the
145 permeate solution mass. LoggerPro data collection software was used to record mass of the
146 permeate at 2-minute intervals. Water flux (J_w , L h⁻¹) was calculated according to Eq. 1:

$$147 J_w = \frac{\Delta m}{\Delta t} \quad (1)$$

148 where Δm (g) is the change in mass of the feed solution that is converted to liters and Δt is the
149 change in time (h⁻¹).

150 The VFA and NH₄⁺ transport and recovery were calculated using Eq. 2-3:

$$151 J_S = \frac{C_f V_f - C_i V_i}{\Delta t} \quad (2)$$

$$152 \% = \frac{C_f V_f - C_i V_i}{C_i V_i} \quad (3)$$

153 where C_f and C_i (mmol L⁻¹ and mg L⁻¹) represent the final and initial concentration, respectively,
154 of VFA and NH₄⁺. The V_f and V_i (L) variables represent the final and initial volumes of the feed
155 solution, respectively.

156 Specific flux (g L⁻¹) was calculated according to Eq. 4:

157 Specific flux = J_S/J_w (4)

158

159 VFAs were analyzed using gas chromatography equipped with a flame ionization
160 detector (Focus GC, Thermo Scientific; GC-FID). The ammonium concentration was analyzed
161 using cation chromatography equipped with IonPac CS12A (Dionex Easion, Madison, WI,
162 USA). Electrical Conductivity (Mettler-Toledo, Columbus, OH, USA) and pH (Oakton
163 Instruments, Vernon Hills, IL, USA) were measured using benchtop conductivity and pH meters.

164

165 **2.3 Modeling**

166 To understand water permeation during the MC treatment, the vapor pressures of the feed
167 and permeate solutions were calculated. Raoult's Law was used to calculate the theoretical vapor
168 pressure (P_{solution}) of each solution according to Eq. 5-8

169 $P_{solution} = P_{water} - \sum_1^n \chi_{solvent} P_{solvent}^o + \sum_1^n \chi_{solvent} P_{solvent}^o$ (5)

170 $\chi_A = \frac{n_A}{n_A + n_B}$ (6)

171 $K_a = \frac{[H^+][VFA^-]}{[VFA]}$ (7)

172 $K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$ (8)

173 where P_{water} (mmHg) is the vapor pressure of pure water (23.8 mmHg at 25°C), χ_A is the mole
174 fraction of the solvent, $P_{solvent}^o$ (mmHg) is the initial vapor pressure of the solvent, n_A and n_B

175 represent the moles of the solvents and solutes, K_a represents the disassociation constant of the
176 acids to determine the state of VFAs based on pH and K_b represents the disassociation constant
177 of the base to determine the state of ammonium based on pH in the solution.

178 The vapor pressure gradient between the feed and permeate solution was calculated
179 according to Eq. 9:

$$180 \Delta(P_{feed} - P_{permeate}) = \frac{(P_{feed} - P_{permeate})_f - (P_{feed} - P_{permeate})_i}{2} \quad (9)$$

181 where P_{feed} and $P_{permeate}$ (mmHg) are the vapor pressure of the feed and permeate solutions,
182 respectively, and the P_f and P_i are the vapor pressure gradients of the final and initial samples,
183 respectively.

184

185 3. Results & Discussion

186 3.1 VFAs recovery dependence on NaOH and pH

187 VFAs were successfully recovered using the MC with NaOH in the permeate solution. In
188 details, the recovery of acetic acid was less affected by NaOH and exhibited similar efficiency of
189 $76 \pm 3\%$, $79 \pm 6\%$, and $70 \pm 9\%$ with the 0.1 M, 0.3 M and 0.5 M of NaOH, respectively (Fig.
190 2A). The MC achieved more recovery of propionic acid ($80 \pm 3\%$, $86 \pm 2\%$, and $80 \pm 8\%$) and
191 butyric acid ($86 \pm 8\%$, $92 \pm 2\%$, and $89 \pm 5\%$) with three tested NaOH solutions. The
192 phenomenon that higher recovery of higher-chained VFAs was also reported in the previous
193 studies that utilized gas permeable membranes for VFAs separation and recovery (25). In the
194 absence of NaOH in the permeate solution (0 M), the MC recovered $36 \pm 2\%$, $39 \pm 2\%$, and $45 \pm$
195 2% of three different types of VFAs, with a total VFAs recovery efficiency of $38 \pm 2\%$ in a
196 period of 24 hours. Despite a lack of alkaline solution in the permeate, the highly acidic feed
197 (pH=3) should have resulted in some VFAs being able to cross the gas permeable membrane.

198 The previous finding that increasing the molarity permeate solutions yield greater recovery
199 across gas permeable membrane (26) was not clearly observed in the present study.

200

201 Because of water osmosis, the 0.5 M and 0.3 M NaOH adsorption solutions extracted 100
202 ± 5 mL and 60 ± 8 mL of water from the feed solution, respectively (Fig. 2B). That is, some
203 water was moving in the same direction as VFAs from the feed to the permeate solution. On the
204 contrary, when the adsorption solution did not contain NaOH, 30 ± 9 mL of water transported in
205 a reverse direction from the permeate to the feed, because the pure water permeate (0 M NaOH)
206 had a higher vapor pressure due to the lack of solutes than the feed solution. This reversal water
207 movement in the opposite direction of VFAs migration might have created some resistance to
208 VFAs migration and contributed to the significantly lower VFAs recovery ($38 \pm 2\%$) ($p < 0.05$)
209 than that with the 0.1, 0.3, and 0.5 M NaOH ($77 \pm 3\%$, $82 \pm 5\%$, and $74 \pm 8\%$) (Fig. 2C).

210

211 To further understand the effects of osmotic distillation, the permeate solution containing
212 0.5 M NaOH was maintained while the pH of the feed solution was adjusted from 3 to 6. After
213 the MC treatment, the total VFAs concentration in the feed was 5.30 mM, 15.36 mM, 40.91 mM,
214 and 53.14 mM, at the pH of 3, 4, 5, and 6, respectively (Fig. 3A). A higher VFAs concentration
215 at a higher feed pH was because of VFAs being more ionized at the higher pH level and thus
216 rejected by the gas permeable membrane. Interestingly, these results occurred under relatively
217 high water transport compared to the tests where the pH was maintained and the permeate
218 solution molarity was adjusted. The water displaced increased from 91.5 ± 2.9 mL (pH=6), to
219 101.8 ± 0.9 mL (pH=5), 103.5 ± 1.7 mL (pH=3), or 110.8 ± 9.8 mL (pH=4) (Fig. 3B). The total
220 VFAs recovered was significantly lower at pH=5 ($28 \pm 4\%$) or pH=6 ($16 \pm 2\%$) because of the

221 solution pH exceeding the pKa for each VFA (Fig. 3C). The pH and EC of the feed and permeate
222 solutions had little effect on the VFA recovery (Figure S1-2).

223

224 Specific VFAs flux corroborated the observation that VFAs transport is a separate
225 phenomenon from osmotic distillation. When the permeate solution was maintained at 0.5 M
226 NaOH, the water flux decreased from 5.26 mL h⁻¹ at 3 h to 3.65 mL h⁻¹ after 24 h of the MC
227 treatment (Fig. 4). The test under the condition of 0.1 M NaOH and pH=3 showed that VFAs
228 could transport across the membrane despite water movement. The reason for water transport
229 during MC has yet to be defined to any particular variable. However, experimental observations
230 suggest that the vapor pressure difference between the feed and permeate solutions is likely the
231 driving force for water transport. In the presence of individual VFAs, the water transport showed
232 high correlation ($R^2=0.958$) to the vapor pressure gradient (Fig. 5). As the theoretically
233 calculated vapor pressure increased, more water moved from the feed to the permeate. Reverse
234 water transport was observed when the vapor pressure of the permeate was higher than that of
235 the feed (pH=3, pure water permeate). A small range (0.126-0.173 mmHg) of vapor pressure
236 gradient difference with an average of 0.154 ± 0.015 mmHg was determined for the operation
237 modes using 0.5 M NaOH as a permeate, because the amount of VFAs in the gaseous state did
238 not alter the solutions vapor pressure compared to the amount of base that did significantly
239 decrease the permeates vapor pressure. Additionally, the transport of water across the membrane
240 due to the differences in vapor pressure could inhibit maximum recovery of the VFA. This was
241 evident in the case where osmotic distillation from the permeate to the feed decreased the VFA
242 transport across the membrane. Limiting the amount of water transport would also decrease the
243 dilution of the permeate which could complicate reuse of the VFAs.

244

245 **3.2 Ammonium recovery and the effects of permeate volume**

246 Ammonium recovery was mainly dependent on the initial pH of the feed solution instead of the
247 H_2SO_4 molarity of the permeate (adsorption solution). The water displaced also had direct
248 correlation to the permeate solution. As the H_2SO_4 molarity in the permeate increased from 0.1
249 to 0.5 M, the water displaced from the feed to the permeate increased from 19.1 ± 6.4 to $54.2 \pm$
250 8.1 mL (Fig. 6A). Similar to the VFA recovery, the displaced water was due to osmotic
251 distillation based on the vapor pressure gradient between the feed and the permeate. Ammonium
252 recovery efficiencies of $64 \pm 6\%$ (0.1 M of H_2SO_4), $70 \pm 1\%$ (0.3 M), and $73 \pm 18\%$ (0.5 M)
253 were obtained in the first hour of MC separation (Fig. 6B), benefited from the high vapor
254 pressure of NH_3 gas when the pH of the feed solution was adjusted to 12 using NaOH. After 6
255 hours of the MC operation, the recovered ammonium using 0.1 M, 0.3 M and 0.5 M H_2SO_4
256 permeate solutions was $71 \pm 6\%$, $75 \pm 2\%$, and $81 \pm 7\%$, respectively. The difference of recovery
257 efficiency between 1-hour and 6-hour operation suggested that most of recovery occurred in a
258 relatively short period of time and thus the extended MC operation might not be necessary
259 (which would help decrease the operation related expense). Indeed, less than 10% of the
260 recovered ammonium was obtained in the last 5 hours of the treatment time. Changes in pH for
261 feed pH=9-10 explain the decrease in recovery (Figure S3). Additionally, less water was
262 displaced with the lower molarity permeate solutions, suggesting that the vapor pressure gradient
263 was lower than the higher molarity permeate solution tests.

264

265 Water displacement increased as the feed pH was adjusted from 9 to 12 due to the increased
266 vapor pressure gradient. Only 25.4 ± 1.9 mL of the feed water transported into the permeate at

267 the feed pH of 9, much lower than 54.6 ± 7.5 mL at the pH=12, related to the $\text{NH}_4^+/\text{NH}_3$ ratio
268 (Fig. 7A): the solution having more NH_4^+ present at lower pH levels would lower the vapor
269 pressure and thus result in less water transport; in contrast, higher pH levels mean more NH_3 is
270 present which increases the vapor pressure resulting in a greater vapor pressure gradient and
271 more water transport. The pH and EC of the feed and permeate also adjusted as ammonium
272 moved across the membrane (Figure S4). Ammonium recovery obtained after 6 hours of
273 operation was $30 \pm 7\%$, $63 \pm 4\%$, $70 \pm 3\%$, and $81 \pm 7\%$, at pH=9, 10, 11 and 12, respectively.
274 Clearly, a higher permeate pH could drive more NH_3 to transport across the gas permeable
275 membrane. Compared to the H_2SO_4 permeate solution tests, ammonium recovered went from 17
276 $\pm 4\%$ to $30 \pm 7\%$ (pH=9) and $44 \pm 7\%$ to $63 \pm 4\%$ (pH=10) from the first to last hour,
277 respectively. Higher recovery was observed initially for pH=11 and pH=12, indicating that less
278 time is necessary for ammonium recovery at higher pH levels despite the molarity of the
279 permeate solution. Additional benefits of less acid usage and less energy demand could be
280 beneficial to the overall MC recovery process.

281

282 The specific flux of ammonium between the tests where the permeate solution was
283 maintained (0.5 M H_2SO_4) decreased from $59.9 \text{ g NH}_4^+ \text{-N L}^{-1}$ at pH=11 to $16.4 \text{ g NH}_4^+ \text{-N L}^{-1}$ at
284 pH=9. When the pH of the feed was maintained at pH=12, the specific flux of ammonium
285 trended downward with an increase in permeate solution molarity. The highest specific
286 ammonium fluxes were $59.9 \text{ g NH}_4^+ \text{-N L}^{-1}$ (0.5 M H_2SO_4 and feed pH=11), $52.7 \text{ g NH}_4^+ \text{-N L}^{-1}$
287 (permeate: 0.1 M H_2SO_4 and feed pH=12), and $47.7 \text{ g NH}_4^+ \text{-N L}^{-1}$ (permeate: 0.5 M H_2SO_4 and
288 feed pH=10) (Fig. 8). An evident trend was not observed based on pH or molarity. A point to
289 highlight however is that similar recovery at the different starting feed pH levels may suggest

290 that adjusting to the highest pH or generating a higher molarity permeate might not be necessary.
291 This would decrease the need for dilution of the permeate and cost for operation. In addition, the
292 water transport rate for the conditions when the feed pH=12 for the 0.1 M, 0.3, and 0.5 M
293 permeate solutions increased from 5.1 ± 3.4 to $6.3 \pm 3.6 \text{ mL h}^{-1}$, 9.0 ± 3.2 to $13.0 \pm 3.5 \text{ mL h}^{-1}$,
294 and 10.1 ± 3.4 to $12.8 \pm 1.5 \text{ mL h}^{-1}$, respectively, from the first hour to the second hour of the
295 MC operation. This is likely due to the decrease of the permeate vapor pressure after the rapid
296 recovery of ammonium. A similar transport rate trend ($4.3 \pm 3.9 \text{ mL h}^{-1}$ to $6.2 \pm 4.8 \text{ mL h}^{-1}$) was
297 observed when the permeate was 0.5 M H_2SO_4 and the pH=11 in the feed. In the case where the
298 ammonium recovery happened more slowly due to a lower $\text{NH}_4^+/\text{NH}_3$ ratio (pH=9 and 10) at pH
299 levels closer to $\text{pK}_a=9.23$, lower water transport was observed. However, higher water recovery
300 occurred when the feed pH=10 compared to feed pH=9 that did not yield greater ammonium
301 transport, suggesting that the pH of the solution had a greater effect than osmotic distillation.
302 This ultimately means that each operating conditions optimal recovery requires less time because
303 of NH_3 having a high vapor pressure at higher pH levels.

304

305

306 3.3 Economic Factors and Decision Analysis

307 Economic feasibility of the proposed two-stage recovery system should be considered
308 when determining optimal operating conditions. The cost of each operation condition is related
309 to the amount of acid (H_2SO_4) and base (NaOH) necessary to (1) adjust the pH of both feed and
310 (2) generate permeate solutions to trap the resources (Table S1). These values were determined
311 based on market value of the chemicals at the time of data collection. The cost increased as the
312 feed pH decreased in the VFA recovery mode or the feed pH increased in the NH_4^+ recovery

313 mode, as well as for increasing molarity permeate solutions. The cost of each combination of
314 VFA and NH_4^+ recovery was then compared to the recovery percentages observed during the
315 MC experiments (Fig. 9). The recovery of ammonium had the lowest Quartile range (66.5%-
316 78.0%) for variables that would determine operation conditions. The decreased range of recovery
317 efficiencies is likely due to the high vapor pressure of ammonia gas. After the pH exceed the
318 pKa, the ammonia effectively moved across the hollow fiber membrane with little adverse
319 effects as the pH was increased. The VFA recovery ranged from the 1st Quartile to the 2nd
320 Quartile is 35.9% to 74.8%, respectively, suggesting that operational decisions are more
321 important to the MC efficacy separation for VFA recovery compared to ammonium recovery. In
322 contrast to ammonium recovery, VFAs have lower vapor pressures and do not completely
323 disassociate in solution. This means that VFAs in the solution would be available for recovery in
324 their gases state compared to stronger acids. The use of acid and base for pH change and
325 permeate generation also showed a wide range from \$0.27 to \$1.19 for the various configuration
326 of VFA and ammonium recovery that were possible based on combining operation modes. The
327 balance between VFA recovery, ammonium recovery, and cost are not well explained by the
328 variability to understand which operation modes would be most favorable. Additional analysis is
329 warranted to identify optimal conditions based on economic feasibility and resource recovery
330 efficacy.

331

332 Multi-criteria decision analysis was used to determine the optimal operating conditions
333 based on VFA recovery, ammonium recovery and cost of operation. The 42 number of possible
334 combinations were evaluated using 4 variables (v_1 =Cost, v_2 =VFA recovery, v_3 = NH_4^+ recovery
335 v_4 =VFA/ NH_4^+ ratio) for 4 situations (S_1 - equal variable weight, S_2 - cost variable heavily

336 considered S₃- cost variable mildly considered , S₄- cost variable lowly considered). The
337 different situations were able to evaluate the cases where recovery performance and cost were of
338 equal importance, as well as a range of importance of either variable. The 42 combinations were
339 listed from the highest score to the lowest score for each of the 4 situations. After compiling the
340 operation combinations, multiple combinations were favorable in more than 1 situation due to
341 high rankings after applying variable weights (Table 2). The only combination recovery steps
342 that made it into the top of the analysis of the 4 situations was NH₄⁺ (pH=12, 0.1 M H₂SO₄;
343 pH=3, 0.1 M NaOH). This is considered the most optimized coupling because regardless of the
344 variable weights, it resulted in the top 5 of all possible combinations of VFA and NH₄⁺ recovery
345 conditions. In addition, this is due to the low cost necessary to generate the permeate solutions in
346 both VFA and NH₄⁺ recovery modes. Situation 2 is the only situation where a different operation
347 mode was favored because of a lack of a NaOH permeate solution. Overly considering cost
348 however may not be a strong evaluation due to such low consideration of performance. While
349 not considered in the multi-criteria decision analysis, limiting the dilution of the permeate due to
350 osmotic distillation would allow for a more concentrated source of each resource. To determine
351 if there are any advantages of recovering VFA or NH₄⁺ first, additional MC separation tests were
352 completed. The recovery of acetic acid (1st: 71 ± 4% vs. 2nd: 70 ± 4%), propionic acid (1st: 77 ±
353 4% vs. 2nd: 76 ± 3%) and butyric acid (1st: 81 ± 3% vs. 2nd: 81 ± 3%) was the similar regardless
354 of the recovery order and minimal lost (Fig. 10). The NH₄⁺ recovered was higher at 81 ± 7% as
355 the second step compared to 73 ± 3% as the first step based on the amount of ammonium
356 available. However, the absolute amount revealed that NH₄⁺ lost was lower when it was
357 recovered first. This suggests that the 1-hour recovery of ammonium should take place initially
358 before the 24-hour VFA recovery.

359

360

361 **3.4 Perspectives**

362 Utilizing MC for recovery of volatile fatty acids and ammonium is potentially a
363 promising method because of the decreased energy demand compared to MD. Challenges around
364 recovery time, operational cost, and performance decline due to fouling would need to be
365 addressed to improve the technologies implementation. First, VFAs in their gaseous state have a
366 much lower vapor pressure than ammonia which results in a long recovery time that is over 24
367 times slower. This could be solved through design where MC retention time for VFA recovery is
368 greater than that for ammonia. Absorption of VFAs utilizing amine-functional groups has shown
369 to have recovery times less than 280 minutes (34) and could potentially be applied in membrane
370 fabrication to increase recovery rate during MC operation. VFA selectivity could also be
371 explored based on the membrane fabrication. Second, the use of acids and bases can increase
372 cost of the operation for both VFA and ammonium recovery. Addressing this issue is highly
373 necessary to increase the economic feasibility of MC separation. Producing acid and based using
374 electrolysis has shown to be an effective approach for recovery of many resources from
375 wastewater (35) but would increase the energy intensiveness. Using renewable energy such as
376 solar energy that is becoming more popular in wastewater treatment plants may help address the
377 energy need by electrolysis that provides onsite acid/base production. Third, membrane fouling
378 is an inevitable issue. This issue could be further evident when using MC to separate VFA and
379 ammonium from AD from a real digester. The presence of other wastewater constituents such as
380 microbes and toxic gases could exacerbate the fouling in the membrane. Additionally, the two-
381 stage recovery MC process requires acidification and alkalization of the wastewater, the effects

382 of membrane fouling might be decreased during operation changes (36). Understanding long
383 term effects of VFA and ammonium recovery could help increase the financial feasibility
384 inclusive of membrane requirements. For instance, using less acid and base to achieve recovery
385 with less osmotic distillation could increase the chances of biological fouling in membrane pores
386 (37). Using AD effluents as the feed solution would be an important next step to fully understand
387 performance implications of MC for real world application. This could be averted using different
388 membrane fabrication and modification techniques that has been explored in membrane fouling
389 literature.

390

391 **4. Conclusions**

392 This study has demonstrated a two-stage MC system for effective recovery of both VFAs
393 and ammonium. The VFAs were recovered from the feed solution most effectively when the pH
394 was less than the pKas of the VFAs. Recovery of VFAs was hindered in cases when the vapor
395 pressure of the permeate solution was higher than the feed solution. A high correlation
396 ($R^2=0.958$) was observed between the vapor pressure difference and water transport across the
397 hollow fiber membrane. This suggests that permeate solutions can be determined based on the
398 composition and characteristics of the feed solution. Ammonium recovery occurred much faster
399 than VFA recovery due to its higher vapor pressure. Multi-criteria decision analysis also
400 identified the most optimal operating conditions when considering the cost and recovery
401 performance of each operating condition. VFAs recovered with an initial feed pH=3 and 0.1 M
402 NaOH absorption solution and ammonium recovered with an initial feed pH=12 and 0.1 M
403 H₂SO₄ absorption solution was the optimal recovery conditions for the two-stage recovery.

404 Future research should seek to address the challenges about VFA/ NH_4^+ recovery coordination,
405 operation costs, performance prediction, and membrane fouling due to long term operation.

406

407 **Acknowledgements**

408 This work was financially supported by the US National Science Foundation (award # 2150613)
409 and a faculty startup fund at Washington University in St. Louis.

410 **References**

411 1. D. Kondusamy, A. S. Kalamdhad, Pre-treatment and anaerobic digestion of food waste for high
412 rate methane production – A review. *Journal of Environmental Chemical Engineering* **2**, 1821-
413 1830 (2014).

414 2. W. Li, J. Guo, H. Cheng, W. Wang, R. Dong, Two-phase anaerobic digestion of municipal solid
415 wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial
416 community evaluation. *Applied Energy* **189**, 613-622 (2017).

417 3. S. Aghapour Aktij *et al.*, Feasibility of membrane processes for the recovery and purification of
418 bio-based volatile fatty acids: A comprehensive review. *Journal of Industrial and Engineering
419 Chemistry* **81**, 24-40 (2020).

420 4. I. González-García, B. Riaño, B. Molinuevo-Salces, M. B. Vanotti, M. C. García-González,
421 Improved anaerobic digestion of swine manure by simultaneous ammonia recovery using gas-
422 permeable membranes. *Water Research* **190**, 116789 (2021).

423 5. Y. Liu *et al.*, The roles of free ammonia (FA) in biological wastewater treatment processes: A
424 review. *Environment International* **123**, 10-19 (2019).

425 6. Y. Lu, Q. Zhang, X. Wang, X. Zhou, J. Zhu, Effect of pH on volatile fatty acid production from
426 anaerobic digestion of potato peel waste. *Bioresource Technology* **316**, 123851 (2020).

427 7. Y. Chen, J. J. Cheng, K. S. Creamer, Inhibition of anaerobic digestion process: A review.
Bioresource Technology **99**, 4044-4064 (2008).

429 8. O. Yenigün, B. Demirel, Ammonia inhibition in anaerobic digestion: A review. *Process
430 Biochemistry* **48**, 901-911 (2013).

431 9. X. Shi *et al.*, Effects of free ammonia on volatile fatty acid accumulation and process
432 performance in the anaerobic digestion of two typical bio-wastes. *Journal of Environmental
433 Sciences* **55**, 49-57 (2017).

434 10. X. Peng *et al.*, Long-term high-solids anaerobic digestion of food waste: Effects of ammonia on
435 process performance and microbial community. *Bioresource Technology* **262**, 148-158 (2018).

436 11. M. Xie, H. K. Shon, S. R. Gray, M. Elimelech, Membrane-based processes for wastewater nutrient
437 recovery: Technology, challenges, and future direction. *Water Research* **89**, 210-221 (2016).

438 12. L. Fortunato, H. Elcik, B. Blankert, N. Ghaffour, J. Vrouwenvelder, Textile dye wastewater
439 treatment by direct contact membrane distillation: Membrane performance and detailed fouling
440 analysis. *Journal of Membrane Science* **636**, 119552 (2021).

441 13. B. Xu, Z. He, Ammonia recovery from simulated anaerobic digestate using a two - stage direct
442 contact membrane distillation process. *Water Environment Research* **93**, 1619-1626 (2021).

443 14. F. Djouadi Belkada *et al.*, Electrodialysis for fluoride and nitrate removal from synthesized
444 photovoltaic industry wastewater. *Separation and Purification Technology* **204**, 108-115 (2018).

445 15. X. Wang *et al.*, Simultaneous recovery of ammonium and phosphorus via the integration of
446 electrodialysis with struvite reactor. *Journal of Membrane Science* **490**, 65-71 (2015).

447 16. R. Chalmers Brown, R. Tuffou, J. Massanet Nicolau, R. Dinsdale, A. Guwy, Overcoming nutrient
448 loss during volatile fatty acid recovery from fermentation media by addition of electrodialysis to
449 a polytetrafluoroethylene membrane stack. *Bioresource Technology* **301**, 122543 (2020).

450 17. H. Ray, F. Perreault, T. H. Boyer, Rejection of nitrogen species in real fresh and hydrolyzed
451 human urine by reverse osmosis and nanofiltration. *Journal of Environmental Chemical
452 Engineering* **8**, 103993 (2020).

453 18. H. Ray, F. Perreault, T. H. Boyer, Ammonia recovery and fouling mitigation of hydrolyzed human
454 urine treated by nanofiltration and reverse osmosis. *Environmental Science: Water Research &
455 Technology* **8**, 429-442 (2022).

456 19. A. Babin, F. Bougie, D. Rodrigue, M. C. Iliuta, A closer look on the development and
457 commercialization of membrane contactors for mass transfer and separation processes.
458 *Separation and Purification Technology* **227**, 115679 (2019).

459 20. D. deMontigny, P. Tontiwachwuthikul, A. Chakma, Using polypropylene and
460 polytetrafluoroethylene membranes in a membrane contactor for CO₂ absorption. *Journal of*
461 *Membrane Science* **277**, 99-107 (2006).

462 21. V. Y. Dindore, D. W. F. Brilman, P. H. M. Feron, G. F. Versteeg, CO₂ absorption at elevated
463 pressures using a hollow fiber membrane contactor. *Journal of Membrane Science* **235**, 99-109
464 (2004).

465 22. H. J. Park *et al.*, Experimental Study on the Selective Removal of SO₂ from a Ship Exhaust Gas
466 Stream Using a Membrane Contactor. *Industrial & Engineering Chemistry Research* **58**, 14897-
467 14905 (2019).

468 23. H. Ravishankar, P. Dessì, S. Trudu, F. Asunis, P. N. L. Lens, Silicone membrane contactor for
469 selective volatile fatty acid and alcohol separation. *Process Safety and Environmental Protection*
470 **148**, 125-136 (2021).

471 24. E. E. Licon Bernal, C. Maya, C. Valderrama, J. L. Cortina, Valorization of ammonia concentrates
472 from treated urban wastewater using liquid-liquid membrane contactors. *Chemical Engineering*
473 *Journal* **302**, 641-649 (2016).

474 25. H. Yesil, B. Calli, A. E. Tugtas, A hybrid dry-fermentation and membrane contactor system:
475 Enhanced volatile fatty acid (VFA) production and recovery from organic solid wastes. *Water*
476 *Research* **192**, 116831 (2021).

477 26. A. E. Tugtas, Recovery of volatile fatty acids via membrane contactor using flat membranes:
478 Experimental and theoretical analysis. *Waste Management* **34**, 1171-1178 (2014).

479 27. M. Darestani, V. Haigh, S. J. Couperthwaite, G. J. Millar, L. D. Nghiem, Hollow fibre membrane
480 contactors for ammonia recovery: Current status and future developments. *Journal of*
481 *Environmental Chemical Engineering* **5**, 1349-1359 (2017).

482 28. M. Reig, X. Vecino, O. Gibert, C. Valderrama, J. L. Cortina, Study of the operational parameters in
483 the hollow fibre liquid-liquid membrane contactors process for ammonia valorisation as liquid
484 fertiliser. *Separation and Purification Technology* **255**, 117768 (2021).

485 29. X. Vecino *et al.*, Liquid fertilizer production by ammonia recovery from treated ammonia-rich
486 regenerated streams using liquid-liquid membrane contactors. *Chemical Engineering Journal*
487 **360**, 890-899 (2019).

488 30. M. Rezakazemi, S. Shirazian, S. N. Ashrafizadeh, Simulation of ammonia removal from industrial
489 wastewater streams by means of a hollow-fiber membrane contactor. *Desalination* **285**, 383-
490 392 (2012).

491 31. W. Rongwong, S. Sairiam, A modeling study on the effects of pH and partial wetting on the
492 removal of ammonia nitrogen from wastewater by membrane contactors. *Journal of*
493 *Environmental Chemical Engineering* **8**, 104240 (2020).

494 32. L. He, Y. Wang, T. Zhou, Y. Zhao, Enhanced ammonia resource recovery from wastewater using a
495 novel flat sheet gas-permeable membrane. *Chemical Engineering Journal* **400**, 125338 (2020).

496 33. A. Serra-Toro *et al.*, Ammonia recovery from acidogenic fermentation effluents using a gas-
497 permeable membrane contactor. *Bioresource Technology* **356**, 127273 (2022).

498 34. E. Reyhanitash, S. R. A. Kersten, B. Schuur, Recovery of Volatile Fatty Acids from Fermented
499 Wastewater by Adsorption. *ACS Sustainable Chemistry & Engineering* **5**, 9176-9184 (2017).

500 35. Q. Zeng, H. Huang, Y. Tan, G. Chen, T. Hao, Emerging electrochemistry-based process for sludge
501 treatment and resources recovery: A review. *Water Research* **209**, 117939 (2022).

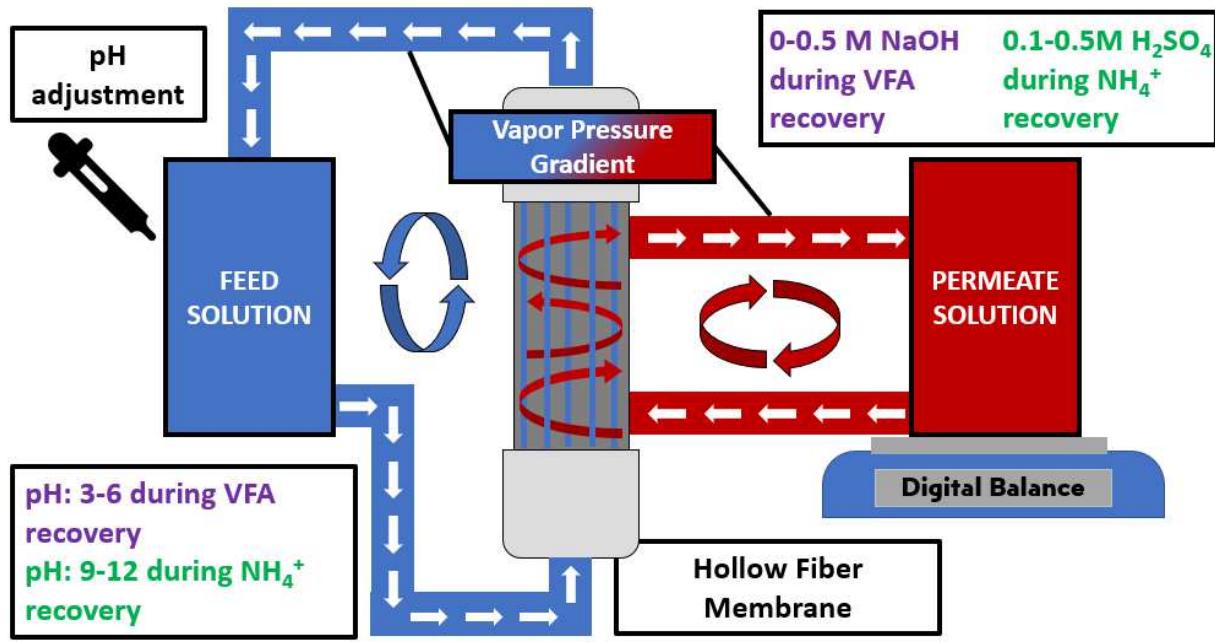
502 36. Z. Yan *et al.*, Application of membrane distillation to anaerobic digestion effluent treatment:
503 Identifying culprits of membrane fouling and scaling. *Science of The Total Environment* **688**, 880-
504 889 (2019).

505 37. H. Wang *et al.*, Membrane fouling mitigation in different biofilm membrane bioreactors with
506 pre-anoxic tanks for treating mariculture wastewater. *Science of The Total Environment* **724**,
507 138311 (2020).

508

509

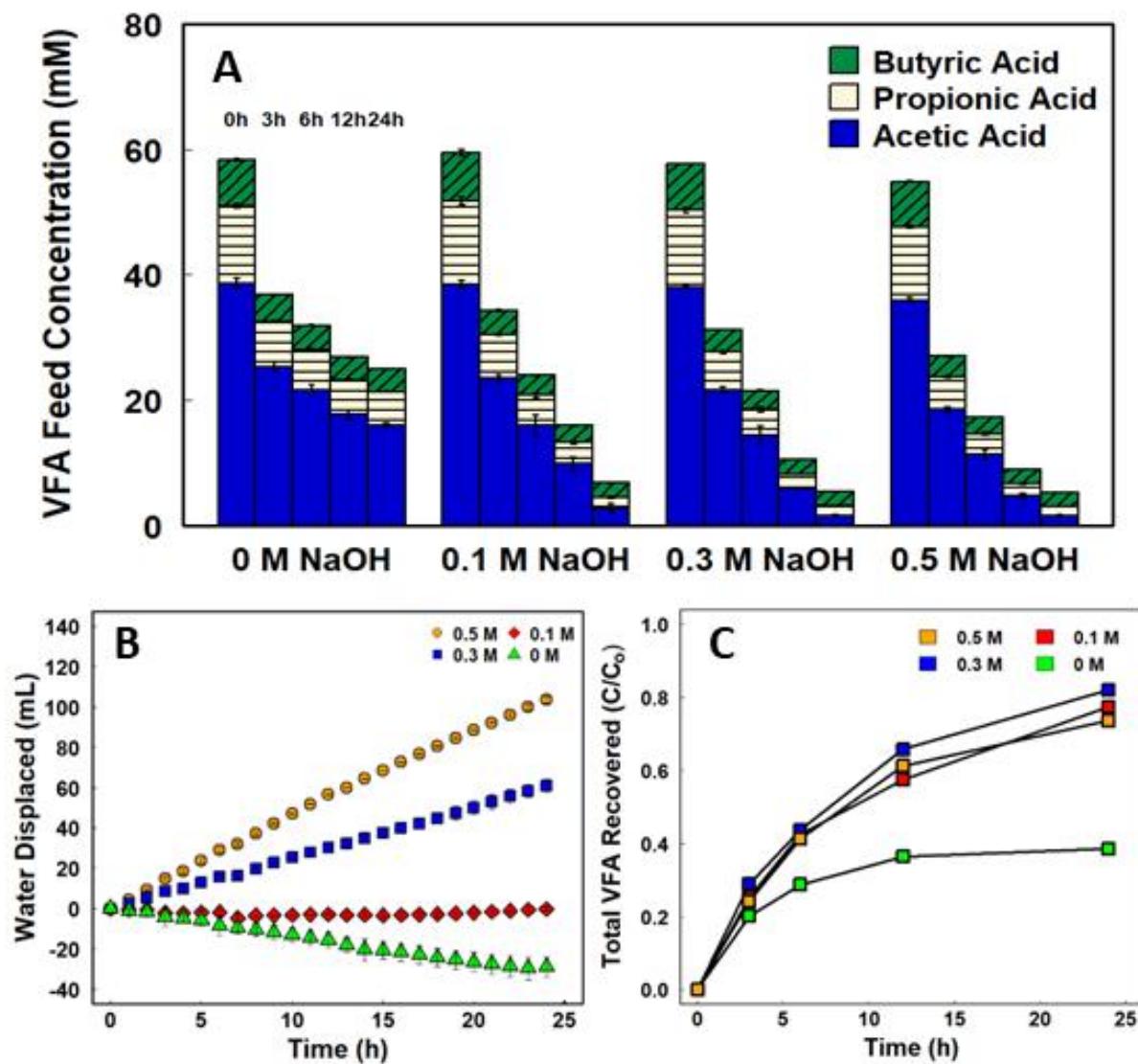
510 **Table 1.** Operation Conditions for MC experiments. The VFA Recovery experiments varied
 511 permeate molarity (A) and initial feed solution pH (B). The NH_4^+ Recovery experiments varied
 512 initial feed solution pH (A) and varied permeate molarity (B).

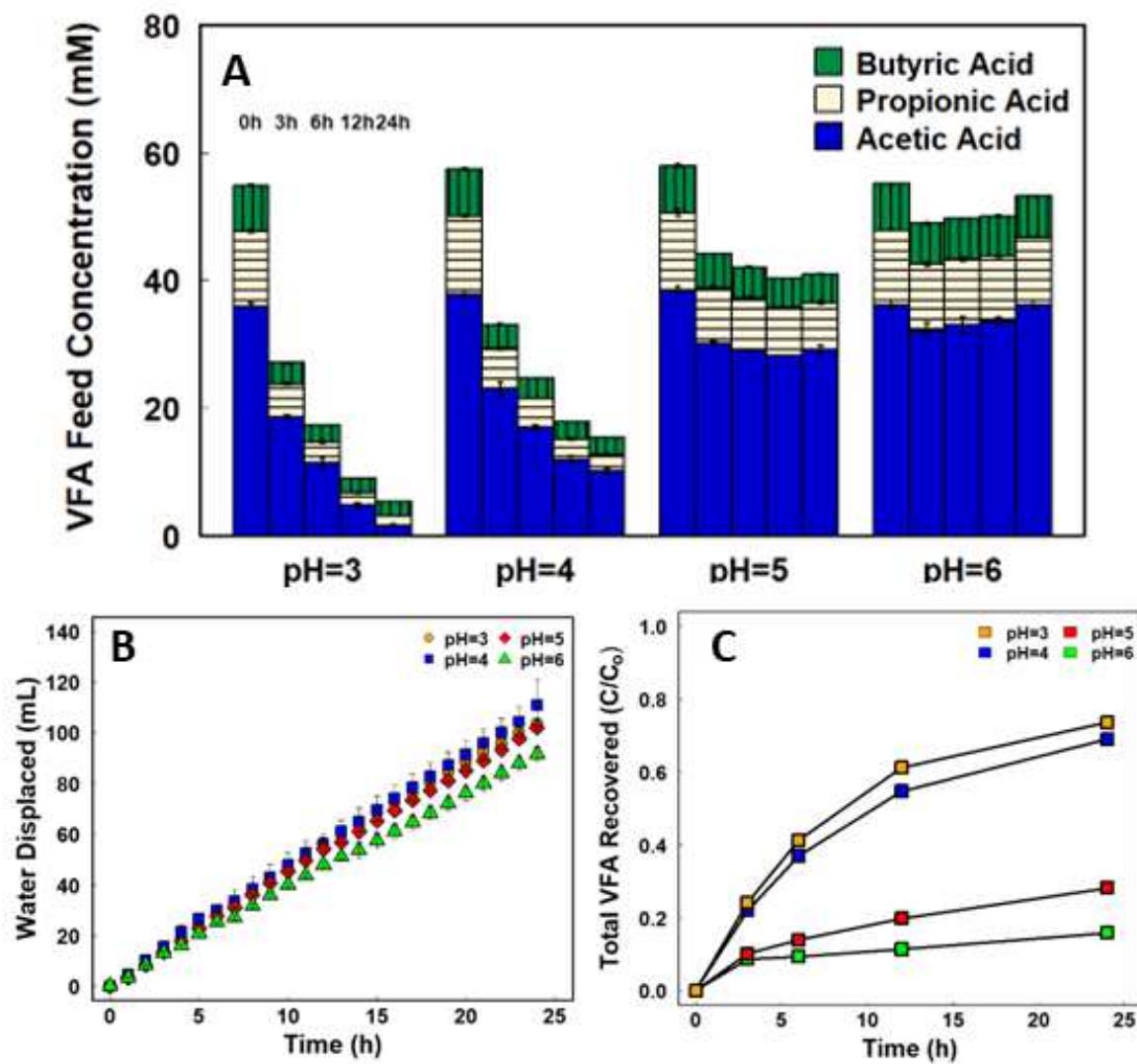

513

	Condition	pH (Feed)	Permeate Solution (NaOH)		Condition	pH (Feed)	Permeate Solution (H_2SO_4)
VFA Recovery (A)	(i)	3	0.5 M	NH_4^+	(i)	9	0.5 M
	(ii)	3	0.3 M	Recovery (A)	(ii)	10	0.5 M
	(iii)	3	0.1 M		(iii)	11	0.5 M
	(iv)	3	0 M		(iv)	12	0.5 M
VFA Recovery (B)	(i)	3	0.5 M	NH_4^+	(i)	12	0.5 M
	(ii)	4	0.5 M	Recovery (B)	(ii)	12	0.3 M
	(iii)	5	0.5 M		(iii)	12	0.1 M
	(iv)	6	0.5 M				

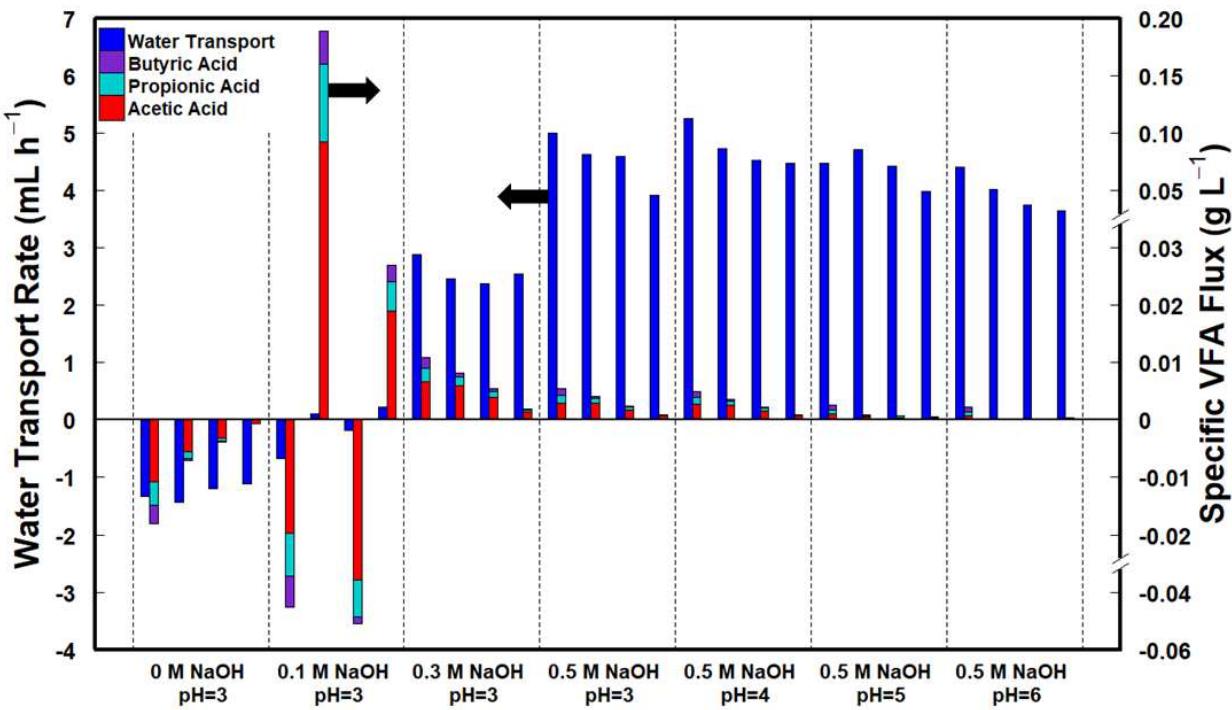
514

515 **Table 2.** Multiple Criteria Decision Analysis for 4 Situations (S) with 4 decision variables (v)
 516 normalized between 0 and 1. S_1 - Equal variable weight, S_2 - Cost variable heavily considered S_3 -
 517 Cost variable mildly considered , S_4 - Cost variable lowly considered. v_1 =Cost, v_2 =VFA
 518 recovery, v_3 = NH_4^+ recovery v_4 =VFA/ NH_4^+ ratio

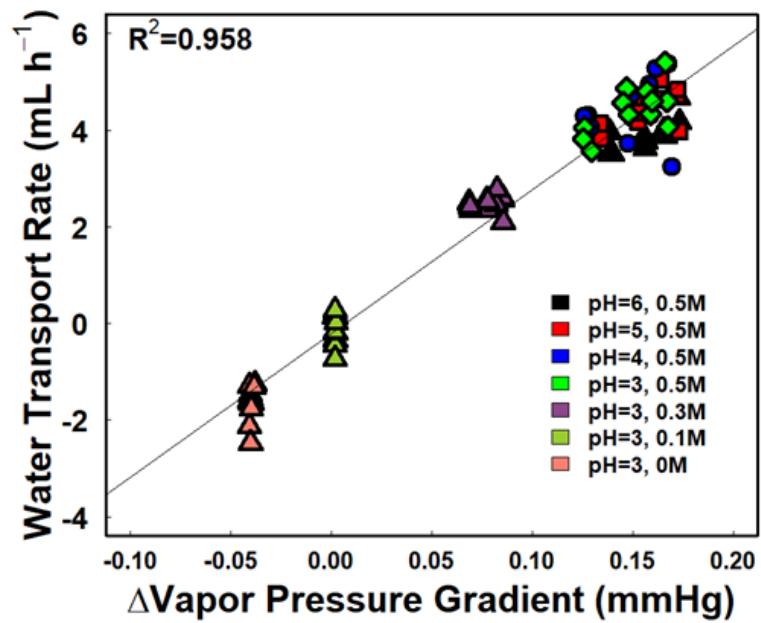

	S_1 ($v_1=0.25$, $v_2=0.25$, $v_3=0.25$, $v_4=0.25$)	S_2 ($v_1=0.70$, $v_2=0.10$, $v_3=0.10$, $v_4=0.10$)	S_3 ($v_1=0.40$, $v_2=0.20$, $v_3=0.20$, $v_4=0.20$)	S_4 ($v_1=0.10$, $v_2=0.30$, $v_3=0.30$, $v_4=0.30$)
1	$^A\text{NH}_4^+$:pH=12,0.1M VFA: pH=3,0.1M	$^E\text{NH}_4^+$:pH=12,0.1M VFA: pH=3,0M	$^A\text{NH}_4^+$:pH=12,0.1M VFA: pH=3,0.1M	$^C\text{NH}_4^+$:pH=12,0.5M VFA: pH=3,0.1M
2	$^B\text{NH}_4^+$:pH=12,0.3M VFA: pH=3,0.1M	$^A\text{NH}_4^+$:pH=12,0.1M VFA: pH=3,0.1M	$^B\text{NH}_4^+$:pH=12,0.3M VFA: pH=3,0.1M	$^B\text{NH}_4^+$:pH=12,0.5M VFA: pH=3,0.3 M
3	$^C\text{NH}_4^+$:pH=12,0.5M VFA: pH=3,0.1M	$^B\text{NH}_4^+$:pH=12,0.3M VFA: pH=3,0 M	$^E\text{NH}_4^+$:pH=12,0.1M VFA: pH=3,0M	$^B\text{NH}_4^+$:pH=12,0.5M VFA: pH=3,0.3 M
4	$^D\text{NH}_4^+$:pH=11,0.5M VFA: pH=3,0.1M	$^D\text{NH}_4^+$:pH=10,0M VFA: pH=3,0 M	$^C\text{NH}_4^+$:pH=12,0.5M VFA: pH=3,0.1M	$^B\text{NH}_4^+$:pH=12,0.3M VFA: pH=3,0.1M
5	$^A\text{NH}_4^+$:pH=12,0.1M VFA: pH=3,0.3M	$^A\text{NH}_4^+$:pH=11,0.5M VFA: pH=3,0 M	$^D\text{NH}_4^+$:pH=11,0.5M VFA: pH=3,0.1M	$^A\text{NH}_4^+$:pH=12,0.1M VFA: pH=3,0.1M


520

521 Figure 1. Schematic and experimental description for membrane contactor set up

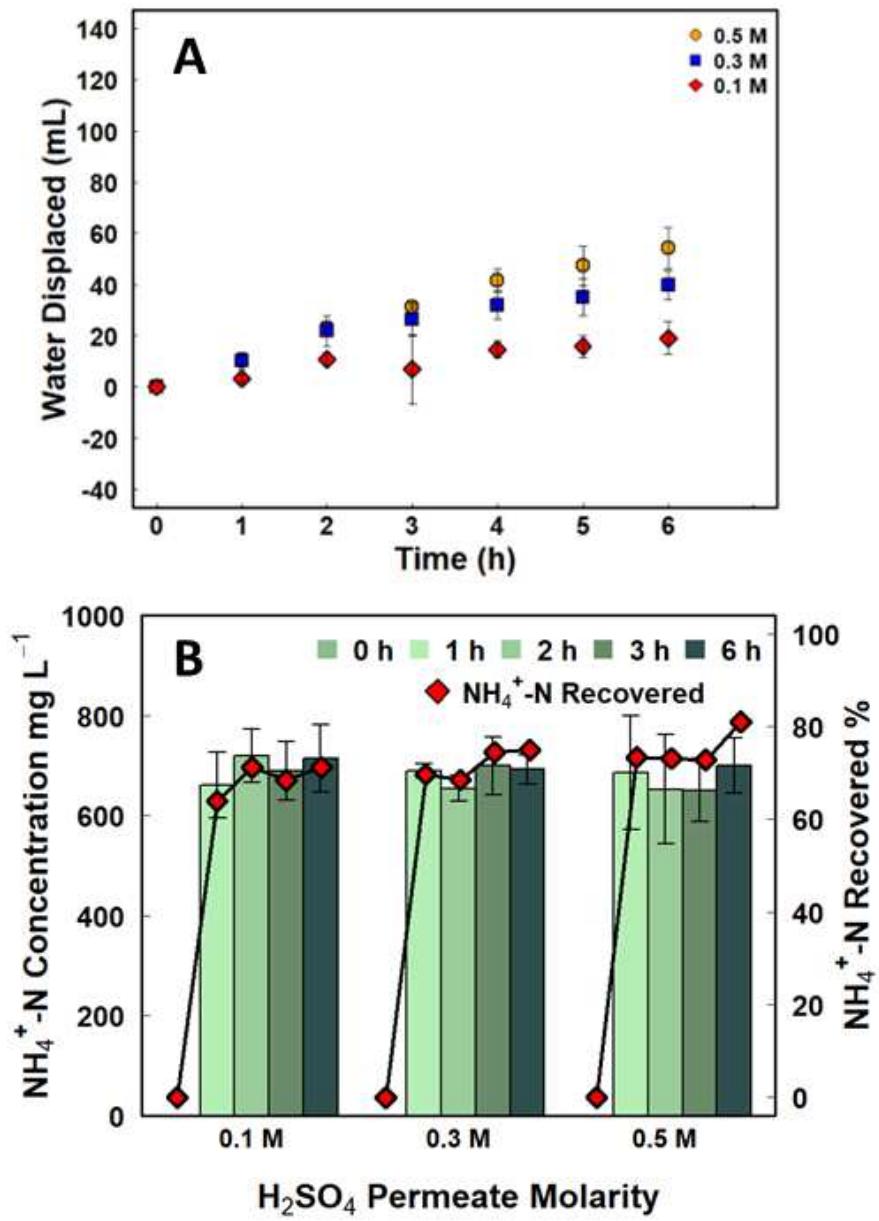

522

525 Figure 2. VFA separation using various NaOH molarities as the permeate while maintaining feed
 526 pH=3: (A) Feed VFA distribution at each sampling time, (B) water displacement, and (C) total
 527 VFA recovery



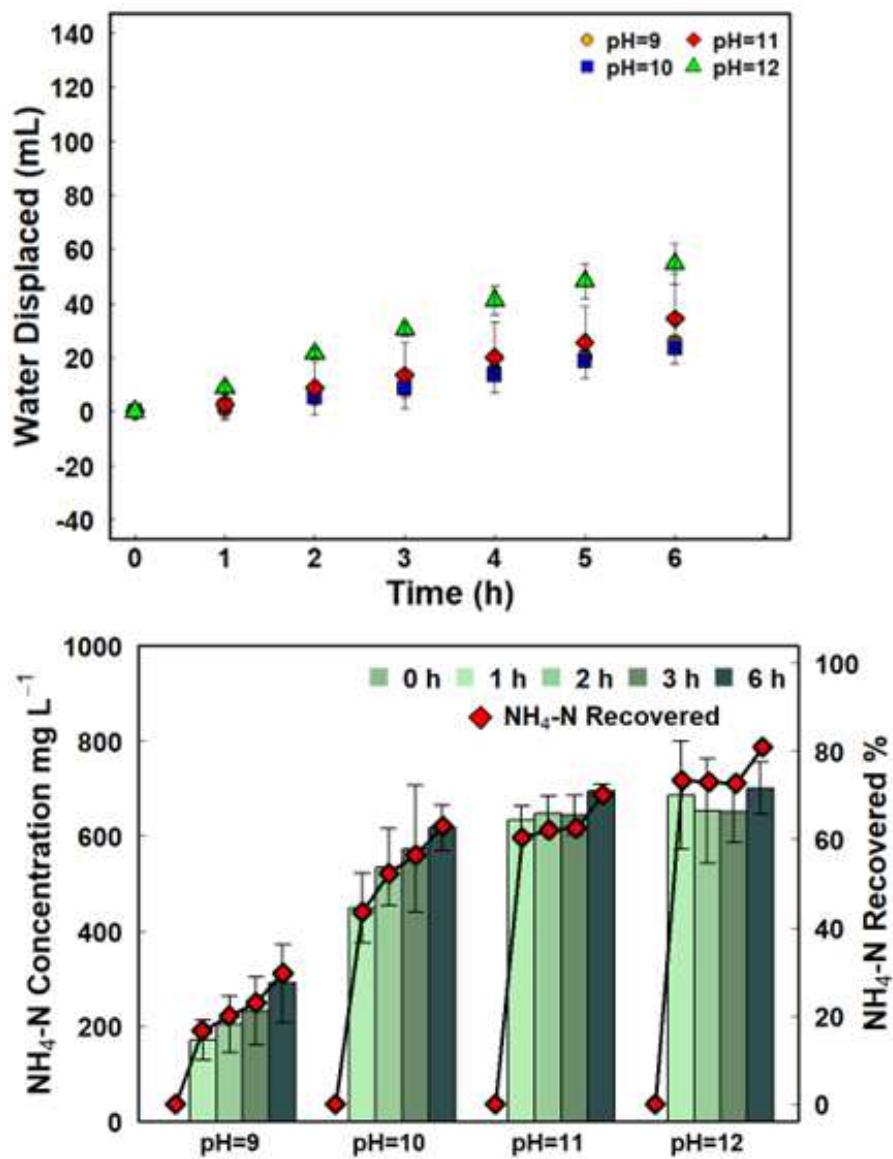
530 Figure 3. VFA separation using various initial feed pH levels while maintaining 0.5 M NaOH
 531 permeate: (A) Feed VFA distribution at each sampling time, (B) water displacement, and (C)
 532 total VFA recovery

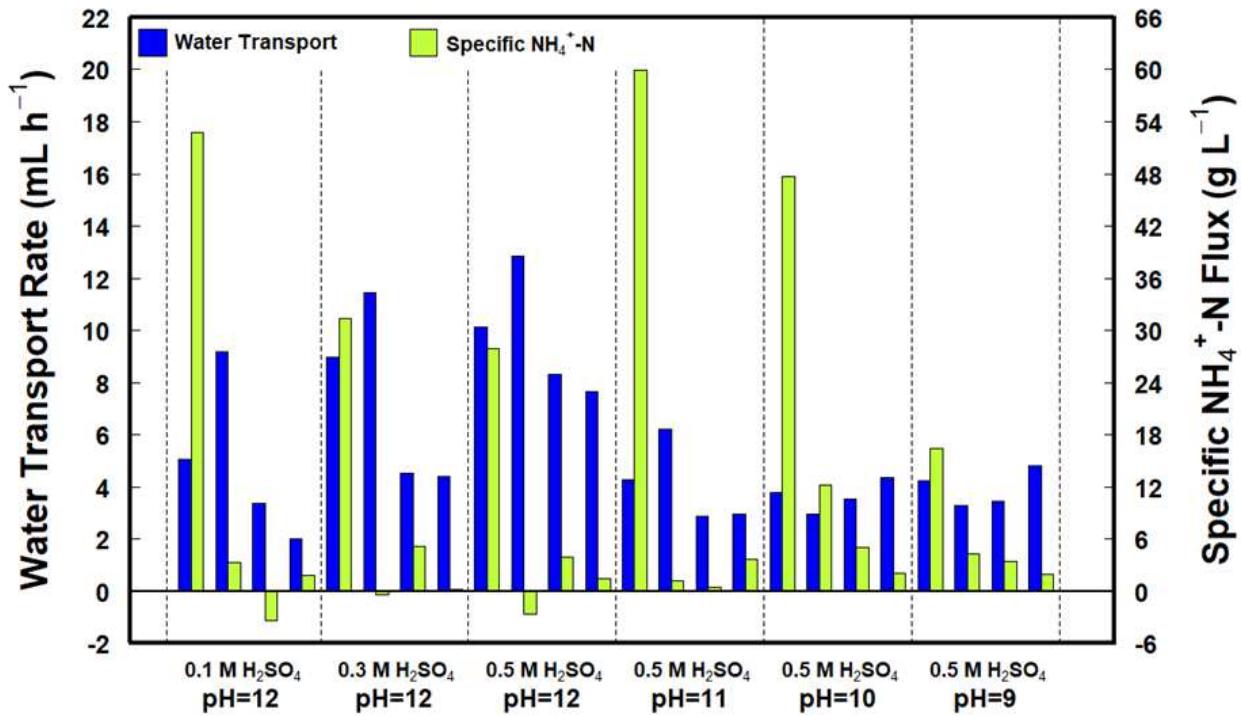
534


535 Figure 4. Water transport and specific VFA flux for MC operation modes

536

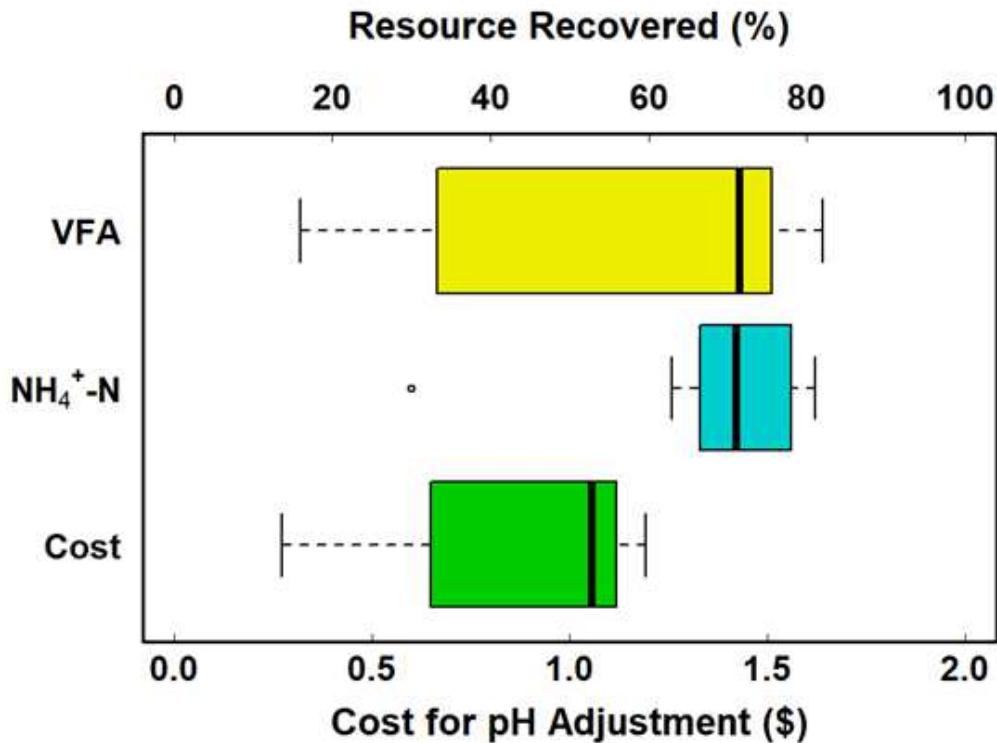
537 Figure 5. Water transport during each sampling period for each iteration of the MC separation of
 538 VFAs


539


540

541 Figure 6. Ammonium separation using different H₂SO₄ solutions as the permeate while
 542 maintaining initial feed pH=12: (A) water displacement and (B) NH₄⁺ concentration and
 543 recovered amount in the permeate

544



547 Figure 7. Ammonium separation using different initial feed pH levels while maintaining 0.5 M
 548 H_2SO_4 permeates: (A) water displacement and (B) NH_4^+ concentration and recovered amount in
 549 the permeate

551

552 Figure 8. Water transport and specific NH_4^+ flux for MC operation modes

553

554 Figure 9. VFA and NH₄⁺ recovered for every experiment iteration and cost based to generate
 555 either the NaOH or H₂SO₄ and adjust the feed pH

556

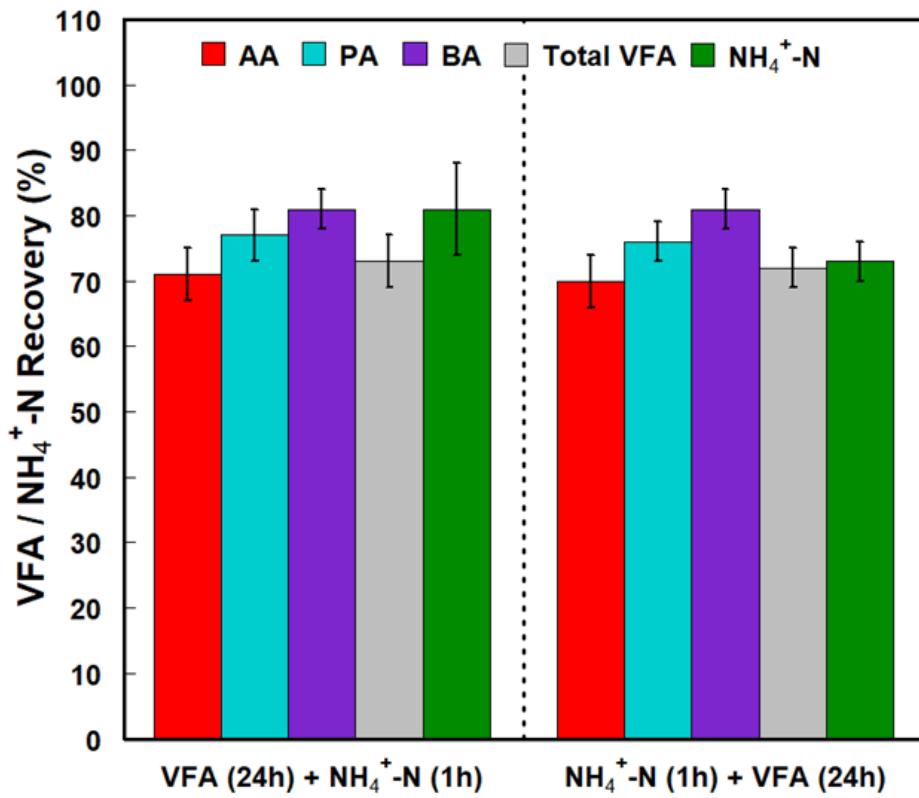
557

558

559

560

561


562

563

564

565

566

567

568 Figure 10. VFA and NH₄⁺ recovered in two phases for both altering which compound was
 569 recovered first,