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Abstract

The goal of this paper is extend Kottwitz’s theory of B(G) for global fields. In particular, we
show how to extend the definition of “B(G) with adelic coefficients” from tori to all connected
reductive groups. As an application, we give an explicit construction of certain transfer factors
for non-regular semisimple elements of non-quasisplit groups. This generalizes some results
of Kaletha and Taibi. These formulas are used in the stabilization of the cohomology of
Shimura and Igusa varieties.
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1 Introduction

Let F be a p-adic field and F be the completion of the maximal unramified extension of F
with o the Frobenius endomorphism. Then for a connected reductive group G deﬁned over
F, the Kottwitz set B(G) is given as the set of o'-twisted conjugacy classes of G(F). Namely
we say that g, g’ € G(F) are in the same o- conjugacy class if g’ = h~!go () for some
h € G(F ). The set B(G) appears throughout the theories of p-adic geometry and p-adic
representation theory.

In [5], Kottwitz constructed a set B(F, G) for every local and global field F and linear
algebraic group G defined over F. The sets B(F, G) are defined to be certain cohomology
sets and we have a natural bijection B(G) = B(F, G) in the p-adic case. More precisely, the
sets B(F, G) are defined in terms of the cohomology of Galois gerbes. In each case there
is a certain F-protorus Dy and for each finite Galois extension K/F, Kottwitz defines an
extension of groups:

11— Dp(K) > EK/F)— Gal(K/F) — 1.

He then defines a certain cohomology set Hallg(E(K/F), G(K)) and B(F, G) is defined as
the limit:

lim H,j, (E(K/F), G(K)),
K

where the maps between these sets are given by certain inflation maps. We frequently use the
notation H ! alg (€, G(F)) for the above limit when we want to stress the cohomological nature
of the construction.

In the global case, the situation is more complicated than we have indicated because

Kottwitz defines three pro-tori D, Dy, D3(= DF) and additional gerbes
1 — Dy(Ag) — &(K/F) — Gal(K/F) — 1,
and
1 — Di(Ag)/Di(K) — E1(K/F) — Gal(K/F) — 1.

In the case where G = T is a torus, these other gerbes give rise to cohomology sets

alg(gz(K/F) T(AK)) and H (El(K/F), T (Ak)/T(K)) respectively. By taking injec-
tive limits, we get sets B, (F, T) and B (F, T) which can be thought of as “B(F, T') with
Ag-and Ak /K -coefficients” respectively. Unfortunately, this construction does not extend
to general G since, for instance, when i = 2 it requires an action of G (A ) on Homg (D>, G)
that restricts to the action of G(K). In the torus case this action can be defined to be trivial,
but in general there does not appear to be a natural way to define such an action.

Our first main result is to extend the theory of the cohomology of £ (K /F) and £1(K /F)
beyond the case of tori to allow G to be any connected reductive group. We do this by
generalizing the cohomology set “H} (E, M)” that Kottwitz constructs in [5, §12]. In the
specific example mentioned in the previous paragraph, our construction allows us to consider
the pair of sets Homg (D2, G) < [[Homg, (D2, G) and we only require that G (Ag) acts

v

on the larger space.

This allows us to define sets Hl (SZ(K/F) G(Ag))and bag(& (K/F),G(Ak)/Zg(K)).
We develop the theory for these sets in analogy with [5] and in particular define a “total local-
ization map” relating Hallg(é'z(K/F), G (K)) to the local gerbes at each place u of F and v
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of K such that v | u. We get

1" Hyo(&2(K /F), G(AK)) = @D Hag (Eiso(Ku/Fu), G(Ky)),

where i, is the notation we use for Kottwitz’s local gerbe.
We then prove this map fits into a fundamental commutative diagram connecting the
cohomology of these different gerbes and certain character groups:

F
@ H\(Eiso(Ko/F). G(Ky) < HL (E3(K/F). Glhg) —— HL(E1(K/F). G(Ag)/ZG(K))

J | J .

D X*ZG)Ga(Ky/Fa) [ ® X*(Z((A;)):|
ueVp veVg Gal(K/F)

— s X*(ZG)GakF)-

This diagram generalizes an analogous diagram for tori appearing in Kottwitz’s paper [5,
§1.5].

The three global gerbes correspond to cohomology classes that were first studied systemat-
ically by Tate [18] and appear to be very important objects. The group D1 equals G, and hence
the Galois gerbe £ (K /F) corresponds to the canonical class in H? (Gal(K/F), G (K)) of
global class field theory. On the other hand, the £ (K / F') gerbe is constructed from the local
canonical classes at each place of K. Scholze [15, Conjecture 9.5] has conjectured the exis-
tence of a cohomology theory for varieties over FP valued in the representation category of
the &3 gerbe that would specialize to most known cohomology theories. Scholze notes that an
important first step in the direction of this conjecture is to give a linear algebraic description
of this representation category in analogy with the theory of isocrystals for p-adic fields. The
n-dimensional representations of &3 are classified by the set B(F, GL,). The cohomology
of the & gerbe is closely related to the cohomology of the other gerbes as Diagram (1.1)
indicates. In fact, the existence of the £3-gerbe itself is only deduced as a consequence of
the construction of the & and £ gerbes. Hence, one motivation for developing the results
of this paper is to define the sets By (F, GL,) and By (F, GL,) which should shed light on
B(F,GL,).

Another application of the global theory of B(F', G) for a number field F is in the normal-
ization of the Langlands correspondence. In particular, for G satisfying the Hasse principle,
this set is used to state the “global multiplicity formula” describing the decomposition of the
discrete part of Li (G(F)\ G(AF)). This is accomplished by Kaletha and Taibi [11]. When
the group G is not quasi-split, the statement of this formula seems to require use of either the
B(F, G)-normalization or the more general but more complicated rigid normalization. This
problem is discussed in [3] and [11] and the B(F, G)-normalization is used in [2] to prove
the global multiplicity formula for unitary groups in the non quasi-split case.

In trace formula arguments where the global multiplicity formula is used, one needs a
normalization of local and global transfer factors between G and an endoscopic group H that
is compatible with the normalization of the global multiplicity formula. Such a normalization
isconstructed in [11] for strongly regular semi-simple y € G (F) using the theory of B(F', G).
We recall that y is strongly regular if its centralizer in G is a torus.

Crucially, the construction of Kaletha and Taibi requires that y is strongly regular because
they need to use the “adelic form” of B(F, G) which was only known for G a torus. As an
application of the first part of the paper, we prove:
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Theorem 1.1 (Imprecise version of Theorem 3.5) Suppose F is a number field and G is a
connected reductive group over F that satisfies the Hasse principle and has simply connected
derived subgroup. Then the theory of Hallg(gz, G(AF)) gives an explicit normalization of
the transfer factors between G and any endoscopic group H for semisimple y € G(F).
This normalization is compatible with the isocrystal normalization of the global multiplicity
formula as in [11].

The normalization of transfer factors for non-strongly regular elements is needed in the
analysis of the trace formula for the cohomology of Shimura varieties. In particular, the results
of this paper are used in work of the author that uses the cohomology of Shimura varieties
to deduce new formulas for the cohomology of Rapoport—Zink spaces [16] and related work
of the author and K. H. Nguyen proving the Kottwitz conjecture on the cohomology of
Rapoport-Zink spaces for odd unramified unitary similitude groups [17].

Finally, we make some remarks about the organization of the paper. In Sect. 2 we develop
the abstract theory of the cohomology of &, (K /F) and £; (K / F), in particular constructing
the maps and proving the commutativity of Diagram (1.1). In Sect. 3 we discuss the B(F', G)-
normalization of transfer factors for (G, H)-regular elements. We remark that to do this, we
do not need the full strength of the theory developed in Sect. 2 because we need only work
with the basic sets B; (F, G)pas. However, the theory from Sect. 2 is used in Proposition 3.3,
which is then used in Corollary 3.10. We also use Sect. 2 to prove (before Corollary 3.10) that
for a fixed pair (yH, y) € H(F) (G, n)-reg X G(F) and F a number field, the local transfer
factors vanish at almost every place.

2 Global B(G) with adelic coefficients

In this section we develop a formalism that allows us to define a global cohomology set
Hallg(é‘z(K/F), G (Ag)) for a Galois extension K/ F, the Galois gerbe & (K / F) defined by
Kottwitz [5], and a general reductive group G defined over F. This generalizes the construc-
tion given by Kottwitz [5] of the set Hallg(EZ(K /F), T(Ag)) for T an algebraic torus split

by K. We then develop the theory of the set Hallg (&2(K /F), G(Ak)) in analogy with [5].

In Kottwitz’s article, these groups are defined in the case where T is a torus using the
H)I, (E, M) construction of his §3 and §12. This construction is not sufficient for our purposes
because Kottwitz requires the group M to act on Y. In our setting, we would therefore need
G (Ak) to act on the set of algebraic maps Homg (D, G) (where D is a pro-torus) which
it does not. Our solution is to develop a theory in the spirit of [5, §12] but in a setting that
allows for adelic coefficients.

Our setup is as follows.

Setup 2.1 We suppose we have the following objects:

e an abstract group G,
e an abelian group A equipped with a G-action (i.e. a G-module),
e an extension

l1>A—>F—>G—1,

such that the conjugation action of G on A coincides with the action in the previous item,
e a possibly non-abelian group M equipped with an action of G by automorphisms of M,
e an M x G-set?Y,

@ Springer



Global B(G) with adelic coefficients and transfer factors at... Page50f47 74

eamap& : Y — Hom(A, M) of M x G sets where M x G acts on Hom(A, M) by
¢ — Int(m) o (gogpog™"),
e Asubset Y C Y which need not be an M x G-subset.
Note that E acts on M through G. We further require
o £(y)(A) C My forall y € Y (where M, is the stabilizer of y in M).

For a fixed extension | - A — E — G — 1, we call the tuple (M,Y,£,Y) a
cohomology datum for E.

Definition 2.2 Given an extension E as in Setup 2.1 and a cohomology datum (M, Y, £,Y)
for E, we define Z},(E, M) to be the set of pairs (v, x) such thatv € Y and x € ZYE, M)
is an abstract cocycle satisfying the following conditions.

(1) The restriction of x to A gives &£(v).
(2) xy -0 (v) = v foreach w € E where ¢ is the projection of w to G.

Note that when £ is injective, the second condition above is implied by the cocycle relation.
We define H} (E, M) to be the quotient of Z},(E , M) by the equivalence relation that
(v, x) ~ (v, x') if there exists m € M such that v = m - v’ and for all w € E, we have
m~x,w(m) = x,.
Suppose that H' (G, A) = 0. Then all automorphisms of the extension
l1-A—E—-G—1,

are given by conjugation by some element a € A. Such an automorphism induces an auto-
morphism of Z%(E, M) given by (v, x) — (v, x oInt(a)). If we letm = £(v)(a) = x, then
we see that by assumption m acts trivially on v and hence that (v, x) and (v, x o Int(a)) =
m=1 v, w e mxywim1)) agree inside H} (E, M). In particular, we have proven that if
H'(G, A) = 0 then the set H} (E, M) depends up to canonical isomorphism only on M and
the class @ € H>(G, A) giving the extension E.

Key Example 2.3 When Y = Y, this construction specializes to the H} (E, M) construction
given in [5, §12]. In particular we review the following key examples.

e Let K/F be a finite extension of local fields and consider G, (K) with the natural
Gal(K / F) action. Then the fundamental classe € H 2(Gal(K /F), Gy (K)) corresponds
to an isomorphism class of extensions. We choose a representative which we denote by

1 - Gn(K) = &s(K/F) — Gal(K/F) — 1.

Then for any connected reductive group G over F, we give G (K) the natural Gal(K / F)-
action and define Yiso = Yiso = Homg (G, G). Then we have a natural map

¢ : Homg (Gp, G) - Hom(Gy (K), G(K))

and we can define the set Hallg (&iso(K/F), G(K)) tobeequal to Hll’iso (Eiso(K/F), G(K)).

e Now fix K/F a finite Galois extension of global fields and D;, Dy, D3 the F pro-tori
with character groups X1 = Z, X2 = Z[Vk], X3 = Z[Vk]o where Vk is the set of places
of K, where Z[ V] is the free abelian group generated by K, and Z[ Vi ]o is the subgroup
of elements whose coefficients sum to 0. Let Ay = Ag /K™, Ay = A, A3 = K*. In
[5, §6.2], Kottwitz describes the construction due to Tate for i = 1, 2, 3 of canonical
classes a; € H? (Gal(K/F), Hom(X;, A;)) corresponding to extensions

1 — Hom(X;, A;) — &(K/F) — Gal(K/F) — 1.
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Now fix an F-torus T that is split by K and define ¥; = Homg (D;, T). Then one can
form the groups

Hy, (&1, T(Ak)/T(K)), Hy, (&, T (Ak)), Hy, (3. T (K)),
using the above definition. These are the sets

Hyi, (E1(K/F), T(AK)/T(K)), Hyo(E2(K /F), T(Ak)), Hyo(E3(K /F), T (K)),

as given in [5].
e Using the notation in the previous item, we define Y3 = Hom(D3, G) and then can define
the set Hdllg(&(K/F) G(K)) to be equal to H; (&(K/F), G(K)).

Definition 2.4 Our definitions are slightly more general than those of Kottwitz because we
allow ¥ C Y to be a proper subset and allow Y to not be an M x G set. This means that
we can define Hallg (&2(K /F), G(Ag)) for a general reductive group G defined over a global
field F and K a finite Galois extension.

Let Vg be the set of places of K as before. Then we define Y, := Homg (D>, G) and note
there is a natural inclusion

Y, — l_[ Homg, (D2, G).

veVg

We then define Y5 to be the G(Ag) x Gal(K / F)-orbit of Y inside ]_[UGSK Homg, (D2, G).

Then Y, is naturally a G(Ag) x Gal(K/F)- -set and we have a natural map & : Y, —
Hom(Dy(Ak), G(Ag)). Finally, we define

Hy,(E2(K/F), G(Ak)) := Hy,(E2(K/F), G(A)).

Note that Y> does not have a natural G (A )-action so we do indeed need the more general
formalism.

We now study, as in [5, §12], the naturality of our construction.

2.1 Naturality with respect to (M, Y, &Y

The most basic situation to consider is for £ fixed. Then we suppose we have two cohomology
data (M,Z, £,Y)and M, 7, £, Y’)ﬂlchthatwehaveaG—mapf ‘M — M'andaM xG-
map g : ¥ — Y’ (where M acts on Y’ through f) such that g(¥) C Y’ and such that the
diagram

Yy 5 Hom(A, M)
] |7
¥~ Hom(4, M)

commutes.
We have a map le,(E, M) — ZL(E, M) given by (v, x) — (g(v), f ox). This induces
a map

H}(E, M) — HL(E, M), (2.1)
since if (v, x) ~ (V/, x’) via m, then

f(m)-g() =g(m-v)) =g,
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and
F) ! fapw(f(m) = fm ™ xpw(m)) = f(x],).

2.2 Changing G
Suppose we have amap p : H — G and an extension
l1-A—>FE—-G— 1.
Let
1> A— FEy—>H—>1

be the extension defined so that Ey = E X H and consider the diagram of extensions given
by:

l—A— Ey — H—1

I b

l— A —E — G — 1

Then define a map Z)I,(E, M) — Z},(EH, M) so that (v, x) — (v, xg) where xg is the
pullback of x to Ey. This clearly induces a map

H}(E,M) — H}(Ey, M). (2.2)

2.3 The map P(f, g, I~1)
Suppose we have extensions

l1-A—->E—->G—1
and

1A - E —-G—1

and cohomology data (M,Y,&,Y) and (M',Y’,&',Y’) giving us sets H)I,(E, M) and
H;, (E’, M"). Suppose further that we have the following maps:

e A G-homomorphism f : M — M’,
e An M x G-map g : Y — Y’ such that g(Y) C Y/,
e A homomorphism /4 : E — E’ of extensions:

A E G — 1
I

] —A —E —G—1
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We further require that the following diagram commutes:

Y % Hom(4, M)

I b
Y Hom(A, M)
gl Toh

Y’ - Hom(A’, M)

We now define ®(f, g, h) : Z;(E, M) — ZL,(E’, M) so that (v, x) — (g(v), x’) where
x'is the unique cocycle so that the restriction of x’ to A’ is equal to £’(g(v)) and the pullback
of x’ to E via h equals f(x). It is a tedious but straightforward check that such a cocycle
exists and is unique.

We check that (g(v), x”) satisfies Int(x/,) o o (v) = v for w" € E' projecting to o € G.
Write w’ = a’fi(¢). Then we have

Int(x,) 0 o (g(v)) = Int(x),) o [f (xe)o (g(1)) f (xe) ']
= Int(x),) o [g(xeo (V)x, D]
= Int(x;,) og(v) =gW).

The last equality follows from the condition that £’(g(v))(A") C M ;(V).

Lemma 2.5 The map ®(f, g, h) on cocycles induces a map
O(f, g, h): HY(E, M) — HL(E', M").

Proof 1tis an easy check thatif (v, x1) ~ (v2, x2) viam € M, then (g(vy), x{) ~ (g(v2), x5)
via f(m). O

From the definitions, it is clear~ that if we have triples (f1, g1, h~1) between (M, Y, £, Y)
and (M',Y’, &', Y") and (f2, g2, h7) between M, Y, &, YYand (M",Y",&",Y") then we
can form a triple (f2 o fi1, g2 o g1, h2 o hy) satisfying the necessary conditions.

Lemma 2.6 We have ®(f20 fi, 820 g1, hy o h1) = (f2, g2, h2) o D(f1, g1, ).
Proof Clear from uniqueness of x’ in the definition of ®(f, g, ﬁ). O

Observe that the map & : A — A’ induces a map H*(G,A) - H?*(G, A and that if
o € HX(G, A) and o’ € H%(G, A') are the classes of the extensions E and E’ respectively
then h(a) = «’. This follows because a 2-cocycle giving @ can be constructed from any
sections : G — Eand hos : G — E’ is then a section of E’. Conversely, a map
h: A — A’ and an extension

1>A—->FE—>G—1,

with class @ € H2(G, A) yields a class h(a) € H 2(G, A). Via the natural bijection between
H?(G, A’) and extensions of G by A’, one constructs an extension E’ and a diagram:

1 G —1

A E
bl

l1— A —E —G—1
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where / is canonical up to an automorphism of the extension E’. In particular, if H (G, A’) =
0 then / is canonical up to A’-conjugacy. It is easy to check that ®(f, g, i) = ®(f, g, k')
for  and A’ in the same A’ -conjugacy class. Hence we have proven that if H'(G, A’) = 0
then ®(f, g, h) only depends on f, g, h and the extensions E, E’. If we furthermore have
H'(G, A) = 0, then by the remark before Key Example 2.3 the map ®(f, g, i) only depends
on f,g,hand the « € H%(G, A) and o’ € H*(G, A"). In particular, whenever we have
maps f, g, h such that Diagram (2.3) commutes and 4 («) = «’ for any classes in the relative
cohomology groups, there exists a canonical map ®(f, g, h) : H}(E, M) — H;,(E’, M)
where E and E’ are any extensions representing the relevant cohomology classes.

2.4 Themap ¥ (g, I~1)

Suppose we have extensions

l1-A—->E—->G—1
and

1A - E —-G—1

with cohomology data (M, Y, £, Y) and (M', Y', &, Y') as before. Suppose further that M =
M’ and that we have the following data:

eanM xG-mapg:Y — Y’ withg(Y) C Y/,

e a homomorphism p : E/ — E of extensions:

1 G —1

A E
N

l1—A —E —G—1

such that the following diagram commutes

Y — Hom(A, M)

o [
Y’ s Hom(A’, M)
We define
(g, p): HY(E, M) — H}(E', M) (2.3)

as a map on cocycles by (v, x) — (g(v), x’) where x’ is the pullback of x via p. If (vy, x1) ~
(v2, x2) via m, then we also have (g(v1), x1) ~ (g(v2), x5) via m.

It’s clear that if (g1, p1) and (g2, p2) are tuples satisfying the requisite conditions then so
are (g2 o g1, p2 o p1). Moreover, we have

Lemma 2.7 (g2, p2) o W(gy, p1) = W(g2081, P10 p2)
Proof Clear. o

It is easy to check that we have W(g, p) = W(g, p') if p and p’ are in the same A-
conjugacy class. Hence, as we noted for ®, when H'!(G, A) = 0 the map W(g, j) only
depends on g, p and when H'(G, A’) = 0 as well, then whenever we have maps g and p
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and classes o € H*(G, A), o’ € H*>(G, A’) such that p(a’) = «, we have a canonical map
up to canonical isomorphism ®(g, p) : H} (E,M) — H},(E’, M) where E and E' are any
representatives of the classes «, o',

2.5 Compatibility of ® and ¥ and change of G

We first check that & commutes with change of G. Suppose we have maps ®(f, g, i) as in
Sect. 2.3 and p : H — G. Then we have a commutative diagram of extensions:

E—"E
7] &

/
where the map Ey — E; is the unique map so that the above diagram commutes.

Lemma 2.8 In the above setup, we get a commutative diagram

o(f.g.h
HYE, )™ L 5l (B, M)

15 7
HYEy,M) —_H\ (E,, M
v(En )<I>(f,g,h> e )
Proof The left vertical map takes a a cocycle (v, x) to one of the form (v, x o p) and the
bottom map takes this to the unique cocycle (g(v), (x o 8)") such that (x o g)’ pulls back to

X o p via /. Hence it suffices to show that ~the cocycle (g(v), x" o p) also has this property.
For e € Eg, we have (x" o p)(h(e)) = x'(h(p(e))) = (x o p)(e) as desired. o

We now check the compatibility of W with change of G. We suppose we have maps
W(g, p)and p : H — G giving a diagram of extensions

E<«l
7] IE

/

such that E}; = E’ xg H and the map E}, — Ep is induced by the composition of j and
the projection given by E}; — E’ — E, as well as the projection E};, — H.

Lemma 2.9 In the above setup, we get a commutative diagram

s
HYE, My 258 1l (B, M)

I 7l

Hy(En, M) gt Hy, (E};, M')

Proof This is immediate from the fact that all maps are defined via pullback and that the
above diagram of extensions commutes. O
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Finally, we check the following compatibility of ® and W. Suppose we have the following
commutative diagram of extensions

E < E
T

E' <— E|
P
a G-homomorphism f : M — M’, and a diagram

vy
gi lgl

v 57

such that g, g/, g1 are maps of M X G-sets, g; is a map of M’ x G-sets, and g(Y) C
Y, g'(Y) C Yi,g1(Y1) C Y{,g"(Y") C Y|. We further assume that (f, g, 1), (f, g1, 1)
satisfy the requirements of the definition of ® and (g’, p), (g”, ];’ ) satisfy the requirements
as in the definition of W.

Lemma 2.10 Under the above assumptions, the following diagram commutes:

v
HY(E, M) YR H) (), )

O(f.8.h)] Lo e
Hl(E', M) *> Hl,(E’,M)
( //

Proof This is straightforward but somewhat tedious to check. O

2.6 Localization

Fix a finite Galois extension K /F of global fields and a connected reductive group G.
Let v be a place of K over a place u of F. We now study the localization of the set

dlg (&2(K /F), G(Ak)) introduced in Definition 2.4. We let EV C K be the fixed field of the
decomposition group at v of Gal(K / F'). Then Gal(K /E") = Gal(K,/F,) and hence acts on
D;(K,) such that the natural projection 7 : D2(Ag) — Dy (K,) is equivariant with respect
to the Gal(K / E?)-action. Following Kottwitz, we define the gerbe £7 (K /E") via pushout
as & (K/EY) := Dy(Ky) x &(K/EY)/N where N = {((d)™ ", 1(d)) : d € Da(Ak)),
giving the following commutative diagram of extensions

1 — Dy(Agx) — &(K/F) — Gal(K/F) — 1

H il I

1 — Dy(Ag) —— &(K/EY) —> Gal(K/EY) — 1 24

b I H

1 — Dy(K,) — EY(K/E") —» Gal(K/E") —> 1.

By restrictionasin Eq. (2.2) we get anatural map H, alg
G(Ak)). Now define ¥, = Y, = Homg, (D2, G) and then define

(E2(K/F), G(Ag))— Hyy, (E2(K /EY),

H, (€YK /EY). G(K.))
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to equal H}U(EE(K/E”),G(KU)). Let g : Y» — Y, be the base-change map and
f : G(Agx) — G(K,) be the natural projection. Then we get a map ®(f, g, 7) :

dlg(ci'z(K/E”) G(Ag)) — dlg(é'z (K/E?), G(Ky)) as in Eq. (2.5). By composing these
maps we have now constructed a map

Hh(&(K/F), G(Ag)) — Hi,(EY(K/E"). G(Ky)).

‘We now construct a map

Hyo (E3(K/E"), G(Ky)) = Hyyg(Eiso(Ky/Fu), G(Ky)),

where Halg(&go(Kv/Fu), G (Ky)) is defined as in Key example 2.3. For each place v € Vg,
we have anatural map u, : G, — D, coming from the map of character groups Z[ V] — Z
given by projecting to the vth coordinate. In [5, Remark 7.2], Kottwitz shows there is a map

1y making the following diagram commute.

1 — Gn(Ky) — &iso(Ky/Fy) — Gal(K,/F,) — 1

I I H 3

I — Dy(K,) — EV(K/EY) — Gal(K/EY) —> 1.

Then p, inducesamap g : Y, — Yis and this givesamap W (g, () : alg (EY(K/EY), G(Ky))
- Halg(giso(Kv/Fu)» G(Ky)) as in Eq. (2.4).
Composing with our earlier map gives the localization map

I (Eiso(Kv/ Fu), G(Kyp)). (2.6)

(&2(K/F), G(Ag)) —

alg al g

2.7 Total localization map

We now want to check that we can promote the localization map defined in the previous
subsection to a map:

Hy (E2(K /F), G(Ak)) > @D Hjg(Eiso(Ku/Fu), G(Ky)), 2.7

ueVp

where on the righthand side we choose for each u € Vg a v € Vg over u. The right-hand
side is a direct sum of pointed sets consisting of tuples (s, ), such that at all but finitely many
u, s, equals the distinguished point ¢,,.
To do so, it suffices to show that for each [v, x] € alg(:‘,'Z(K/F) G(Ag)), its image in
dlg(5150(K v/ Fu), G(Ky)) is trivial for almost all v. To prove this result, we emulate Kot-
twitz’s argument in [5, §14]. In fact, the reader will note that the argument in this subsection
is nothing more than a detailed verification that Kottwitz’s argument goes through in our
setting.

To begin, we recall the setup of [5, §14]. We let K/F be a finite Galois extension of
global fields. For a place v € K, we often write Gal(K / F), for the decomposition group of
Gal(K/F) at v. We let Vr denote the set of places of F. For any subset S C Vr we denote
by Sk the pre-image of S under the surjection Vx — V. We let So denote the set of infinite
places of F. If Soo C S then we have

o Fg:={xeF:xeOfVYueVp\S}
o Kg:={xeK:xeOkVveVg\ Sk},
° AK,S = {XGAK ZXUGOKUVUG VK\SK}.
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We define D; s fori = 1, 2, 3 to be the pro-tori with character groups X (S) := Z, X»(S) :=
Z[Sk], X3(S) := Z[Sk]o respectively.
We have the following lemma

Lemma 2.11 Let S C Vi be any subset such that we have equality of the following sets:
{Gal(K/F)y : w € Sk} = {Gal(K /F)y, : w € Vg}.
Then
e For every subgroup G' C Gal(K / F), we have H'(G', D> s(Ak)) = 0.
e For every place v of K, we have H'(Gal(K,/F,), Dy 5(Ky)) =0

Proof To prove the first statement, we note that similarly to [5, Lemma 6.2], we have a
canonical isomorphism

H'(G', Dysthk) =[] H' G, A},
[v]e(Sk/G")

where v € Sk is some lift of [v]. For each v, we let F” C K be the fixed field of G’,. Then by
a standard argument involving Hensel’s lemma and Lang’s theorem we have an isomorphism

H'(G,, AY) = @D H'(G)ug. Kip).
weVpy
where for each w € Vpv, we have that wg is some chosen place of K over w. The groups
on the right all vanish by Hilbert’s Theorem 90, which proves the first claim.
The second statement is deduced in the proof of the second part of [5, Lemma 14.4]. O
We now restrict to those S C VF satisfying the properties of [5, §6.1]. Namely:

e S contains all infinite places

e S contains finite places that ramify in K.

e For every intermediate field E of K/F, every ideal class of E contains an ideal with
support in Sg.

We define A,(S) = A;,S’ A3(S) = K¢ and A((S) to be the set of Sk idele classes of K.
We have a short exact sequence

1 — A3(S) = Ax(S) = A1(S) — 1.

Finally we define the set Hom (X, A) to be the subgroup of Hom(X, A1) x Hom(X3, Aj) X
Hom(X3, A3) consisting of triples (h1, h2, h3) such that the following diagram commutes:

X3 — X, — X,

[T

A3 — Ay — A4
Then Tate [18] defines a canonical class o € HZ(Gal(K/F), Hom(X, A)) and defines
the classes «; € HZ?(Gal(K/F), Hom(X;, A;) via the projections m; : Hom(X, A) —
Hom(X;, A;). For each S, there are analogous constructions and we get similarly «; (S) €
H? (Gal(K/F), Hom(X; (S), A;(S)). We then have natural maps pis fitting into a diagram

00— X3(8) — Xo(S) — X1(S) — 0

1# 1 Lt
X1

0 X3 X5
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and hence inducing a a morphism p°¥ of exact sequences. We also have maps kiS and a
morphism k5 of exact sequences

0 — A3(S) —> Ax(S) — A1(S) — O

18 18 L

0 Aj Ay Ay 0

We now record a lemma of Kottwitz comparing «(S) and «. Observe that we have the
following diagram

Hom (X (S), A(S)) L Hom(X (S), A) <L Hom(X, A)

m | 7| |m

Hom(X;(S), A;(S)) T Hom(X;(S), A;) — Hom(X;, A;)
i Pi

Then we have

Lemma 2.12
K (a(8) = p*(e) (2.8)
and
Sy, — S (e
kP (i (8)) = p; (o) (2.9
fori=1,2,3.
Proof This is [5, Lemma 14.6]. O

With the above notation and preliminaries, we now return to our connected reductive
group G. We extend G to a smooth affine group scheme G defined over Fy(g), where S(G)
is a finite subset of VF containing all infinite places. We now define a subset S C VF to be
adequate if it satisfies all of the following conditions:

S is finite

S contains S(G)

S contains all finite places that ramify in K

For every intermediate field E of K/F, every ideal class of E contains an ideal in the
support of Sg

o S satisfies the condition of Lemma 2.11.

Such sets exist (for instance see [5, Remark 14.4]) and if S’ C VF is finite S’ D S for S
adequate, then S’ is also adequate. The first condition implies that D, s is a torus and in
addition, the third implies that D g extends uniquely to a torus D; g over Fs. Indeed, this
last fact is the same as a factoring of the Galois action on X*(D ) through Gal(M/F)
where M is the maximal extension of F unramified outside of S. Since K C M, and D g
splits over K, such a factoring indeed exists.

We will need the following lemma;

Lemma 2.13 Let u € Vr\S and v € Vg lying over u. Then the following Tate cohomology
groups satisfy

H" (Gal(Ky/Fy), D2,5(Oy)) =0
forallr € Z.
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Proof [5, Lemma 14.7]. O

Now, for adequate S, we want to construct a set Hallg (&2(8), G(Ak,s)) where & (S) is the
extension

1 - Dy s(Ak.s) = &(S) - Gal(K/F) — 1,

with corresponding cohomology class a»(S). We define alg(€2(S) G(Ak s)) via the
H;(E, M) construction above. We let M = G(Ak s), E = £(S), Y = Homg (D> s, G).
Let Y be the orbit of Y inside [T Homg, (D25, G) under the action of G(Ak s) and let

UEV](
£ : Y — Hom(D, s(Ak.s), G(Ak.s)) be the natural map.
Next, we want to define a canonical map

Hy o (£2(5), G(Ak ) = Hy (E2(K/F), G(Ak)) (2.10)

as a composition

(&2(9). G(Ak.5) =5 Hy, (E5(8), G(Ax)) 2 H (&2(K/F), G(Ak)),

alg alg

whereiZK (S)isthe pushoutofSQ(S) alongthemap D, s(Ag s) — D3 s(Ag). Wefirstdefine
alg(E (S), G(Ag)) via the H (E, M) construction letting E = EK(S) M = G(Ag),

Y = Homg (D2 s, G). We let Y be the G(Ag)-orbit of Y in [ Homg, (D25, G) and

veVg
£ :Y — Hom(D; s(Ak), G(Ak)) be the natural map. The map BC is then defined via the
@ construction.
Now, by Lemma 2.12 we have k5 (a2(S)) = p5(a2). Since k3 (a2(S)) is a class in

H*(Gal(K/F), D; s(Ak)), this implies there is a map pZS giving a map of extensions:

| —— Dy(Ag) — E(K/F) —s Gal(K/F) —s 1
lpﬁ 1 H

1 — Dy s(Ag) — EX(S) —— Gal(K/F) —> 1.

Smce by Lemma 2.11 we have that H! (Gal(K/F), Da,s(Ak)) = 0, the induced map
p2 alg(é’K 8, G(Ag)) — alg(SZ(K/F) G (Ak)) coming from the W construction

does not depend on the choice of p2. Hence, we call this map p*. We need the following
lemma:

Lemma 2.14 Foreach b € Hallg (&2(K /F), G(Ak)), there exists an adequate set S so that b
lies in the image of the map in Eq. 2.10.

Proof Pick a cocycle (v, x) representing b. We have v : Dy — G is a map over K. Since
X*(Dy) = Z[Vk], we can find an adequate set S such that v factors to give a map v’

D, s — G. This implies that (v, x) comes from an algebraic cocycle (v/, x”) of SZK (S) for
some adequate S. By enlarging S, we can assume that v’ comes fromamap v” : Dy s — Gg.
Since Dy.s(Ak s) has finite index in £(S), we can enlarge S so that the restriction x” of
x’ to £2(S) has image in G(Ag_s). We then note that (v, x”) € Zalg(Sz(S), G(Ak . 5)) and
maps to (v, x). This completes the lemma. O
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We now construct for every adequate set S and place u ¢ S, a localization map I3 such
that the following diagram commutes:

(£2(8), G(Ak 5)) — Hy,(E2(K/F), G(Ag))

is L (2.11)

H'(Gal(K,/Fy), G(0y)) — Hy,(Eiso(Ku/Fu), G(Ky))

a]g

al g

In the above diagram top map is the canonical one we constructed previously and the bottom is
the composition of the map on cohomology induced by G(O,) < G(K,) and the canonical
inclusion H!(Gal(K,/F,), G(K,)) — alg (Eiso(Ky/ Fy), G(Ky)). If we can construct such
a diagram, we will have completed our construction of the total localization map. This is
because the bottom left group in the above diagram is trivial by Lang’s theorem and Hensel’s
lemma.

As in our construction of the localization map of Eq. (2.6), we may restrict the entire
top row of the diagram to be over the extension K/E" where EV is the fixed field of the
decomposition group of v. Hence we can and do assume that Gal(K,/F,,) = Gal(K/F).

To construct the above commutative diagram, we will construct a larger diagram:

(©2(5), Gk ) —25 HY €K ($), Gak)) AN HY (E2(K/F), G(AK))

\LL()C iLoc lLoc

HY, (€50 (5), 6(00) —E25 H) &5 (), G(Ky) —2 HY (EY(K/F), G(Ky)) (2:12)

l“o i/‘o ilh

H'(Gal(Ky/Fu). G(Oy) — H'(Gal(Ky/Fu). G(Kv)) — Hyy, (Eiso(Ku/Fu). G(Ky)).

alg

alg

The top two maps compose to give Eq. 2.10, the right vertical maps compose to give
the localization map l,f , and the bottom maps compose to give the bottom map in Diagram
2.11. Hence, if we can construct all the relevant objects and maps and show that the diagram
commutes, the above left arrows will compose to give I3 as desired.

‘We need to define two of the above sets: Hallg(fzol’ (8), G(0Oy)) and Hallg(EzKU (S), G(Ky)).
These are defined analogously to the way &5 (K /F) is defined relative to £ (K /F). In par-
ticular, we define 520” (S) as the pushout of & (S) via the map D, s(Ag.s) — D2.5(Oy)
and SK (S) as the pushout of 52 (S) via the map Dy s(Ax) — D3 s(K,). We then define

alg(f)ol’ (S), G(Oy)) using the H (E, M) construction with Y = Y = Homep, (D35, G).
Similarly, we define Hallg(SZK” (S), G(K,)) suchthatY =Y = Homg, (D2 s, G).

We now turn to constructing the maps and showing they commute. To start, we have the

following commutative diagram:

Dy,s(Ak.s) — Das(Ag) <— Da(Ak)

l l |

D2,5(Oy) — D2, 5(Ky) <— Da(Ky) (2.13)
MOT MOT MUT
1 I ¢—— Gm(Ky),
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where the map o and ¢ are trivial and p, was defined as part of the localization map. The
unlabeled maps are induced from the following commutative diagram:

Ax s — Ag Ag
! | |
0O, — K, K,

We remark that Diagram 2.13 is commutative since pu, is trivial because u ¢ S.

Claim 2.15 We now claim that for each group A in Diagram 2.13, the group H'(Gal(K,/
F,), A) vanishes. Indeed, these groups vanish by [5, Lemma 6.5], Lemmas 2.11, 2.13, and
Hilbert’s Theorem 90. As a result of this claim all, the sets in 2.12 are well-defined up to
canonical isomorphism.

Claim 2.16 We claim that the maps in 2.13 can be extended to homomorphisms of extensions
as follows, and that each smaller square is essentially commutative in that it is commutative
up to conjugation by Dy s(K,).

&(S) —— &K —— &E(K/F)

! ! |

EXV(S) ——— EFY(S) —— E(K/F)

o] o] i

Gal(Ky/F,) — Gal(Ky/Fy) T Eiso(Ky/Fy)

Ifwe can construct such a diagram, the essential commutativity will follow from the previous
claim. The diagram exists by the following claim.

Claim 2.17 We claim that for each A in Diagram 2.13, there is a unique element ap €
H*(Gal(K,/F,), A) such that

oDy s(Ag.s) = a2(S),

Dy (Ag) = 2,

ap =1,

ag,(k,) = «(Ky/F,) (the local fundamental class),

Each arrow A — A’ maps aa to ay,

Each ay gives the cohomology class corresponding to the relevant extension in Dia-
gram 2.16.

To verify the claim, the commutativity of Diagram 2.13 implies that we need only check that
along each outer edge, the maps A’ — A < A” map the canonical elements o4/, azr to the
same ap € H2(Gal(KU/Fu), A). For the top of the diagram, this follows from Lemma 2.12,
for the left this follows from Lemma 2.13, for the bottom this is trivial, and for the right this
is [5, Equation (7.7)]. That these cohomology classes correspond to the various extensions
is clear from their definitions. This implies the requisite maps of extensions in the previous
claim do indeed exist.

We are now in a position to define the maps in Diagram 2.12. We first give a diagram
relating the various sets Y. We use the notation G - A to denote the G-orbit of A inside a
natural product space.
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G(Ag.s) - Homg (D, 5,G) — G(Ag)-Homg (Da 5, G), — G(Ag) - Homg (D2, G)

! l

Homo, (D35, G) ———— Homg, (D25, G) ————— Homg, (D2,G)  (2.14)
ro iﬂo Iz
1 1 1 Homg, (Gm, G)

In the above diagram, the horizontal maps have all been defined or are clear from inspec-
tion. The o maps are trivial and p, was defined when we defined the localization map.
An element v € G(Ag 5) - Homgg (D2 s, G) consists of a sequence of maps v, for each
place v of K such that the if v ¢ Sk, then v, is defined over O,. In particular, there is a
natural projection to Homp, (D2 s, G) given by v — v,. The other vertical maps are defined
analogously. It is also clear that each map x : ¥ — Y’ satisfies x(Y) C Y.

We also have a diagram of Gal(K,/ F,,)-groups:

G(Ax s) — G(Ax) == G(Ag)
! ! !

G(0,) — G(K,) == G(K,) (2.15)
[ [ [

G(0,) — G(K,) = G(K,).

We can now define all the maps in Diagram 2.12 via Diagrams 2.16, 2.14, 2.15. In particular,
all are examples of the ® and W constructions. We then observe that all the squares commute
by Lemmas 2.6, 2.7, and 2.10.

This finishes the proof and hence establishes the existence of the total localization map.

2.8 Basic subsets

We now define, for K /F a finite extension of number fields, a set Hblas(fz(K/F), G(Ag)).
In particular, we define Hblas(Ez(K/F), G(Ag)) C Hallg(fz(K/F), G(Ag)) to be the set
of classes represented by algebraic cocycles (v, x) such that v : D, — G factors through
the center Zg of G. This set is given via the HI], (E, M) construction with Ypas = Ypas 1=
HOmK(Dz, Z(;).

We now define a set Hblas(&(K/F), G(Ak)/Zg(K)). We let Di = Gpp and
define Y7 to be the subset of Homg (D1, G) factoring through Zs. We let Y, = 1
and define £ = & (K/F) and M = G(Ak)/Zs(K)). We define & : Y, —
Homg (D1 (Ak)/D1(K), G(Ak)/Zg(K)) to be the natural map.

Remark 2.18 1t would be tempting to try to define a set Hallg(gl(K/F), G(Ak)/Zg(K))
where we do not require the elements of Y] to be central. However, the map &; does not make
sense in this case.

2.9 Some maps of global cohomology

We now claim there are canonical maps
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HL (&(K/F), G(K)) — HL (E2(K/F), G(Ag)) — HL (E1(K/F), G(Ak)/Zc(K)).
(2.16)

We will spend the rest of this subsection constructing these maps.
We begin by constructing the map H, (&2(K/F),G(Ag)) — HL (E(K/F),
G(Ak)/Zs(K)). From [5, §6.3], we have an extension:

1 — Dy(Ag)/Dy(K) > F — Gal(K/F) — 1,
and maps of extensions

Il —— Dy(Ag) — &(K/F) — Gal(K/F) — 1

<l ] H

1 — Dy(Ak)/D2(K) Gal(K/F) — 1

p4
ol i H

1 — Di(Ag)/D1(K) — &1(K/F) — Gal(K/F) — 1

where a is the natural projection and b is induced by the map of characters X : Z[Vg] —
Z where X (v) = 1 for each v € Vg. This extension satisfies a(x;) = b(ap) €
H*(Gal(K/F), D2(Ag)/D2(K)).

Lemma 2.19 We have H'! (Gal(K /F), D2(Ak)/D2(K)) = 0 and hence b and a are unique
up to conjugacy by Dy(Ag)/ D> (K).

Proof By [5, Lemma A.6], we have

H'(Gal(K/F), Day(Ak)/Da(K) =[] H'Gy, AR/KX).
veG\ Vg

In particular, it suffices to show that for each G’ C Gal(K /F), we have H! (G, AY/K*) =
0. Since G’ = Gal(K /E) where E C K is the fixed field of G’, this is a standard fact from
global class field theory. O

We construct the map in Eq. 2.16 using the following series of morphisms:

Hl (&(K/F), G(Ag))

l

H}, (&K /F), G(AK)/Z6(K))
|
H} (F.G(AK)/Za(K))
B
Hy (E1(K [ F), G(Bk)/ Z6(K))
The first map is induced via functoriality from G(Ax) — G(Ak)/Zg(K) and the maps

a*, b* are defined via pullback. We note that &* and b* only depend on a and b respectively
by the previous lemma.
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To complete the construction, we need to show thatthemapa* : H }bas (F,G(Ak)/Zg(K))
— Hylvbas (&2(K/F), G(Ak)/Zg(K)) is an isomorphism. The map D>(Ag) — D>(Ag)/
D> (K) is a surjection and hence it follows that the map a : £&,(K /F) — F is also surjective.
Hence, a* is injective. To prove surjectivity of a*, we take a cocycle of (v, x) of £&,(K /F)
valued in G(Ak)/Zg(K). Then for d € D>(K), we have x4 = v(d) mod Zg(K) = 0. In
particular, x factors through F.

We now construct the map Hblas(£3 (K/F),G(K)) — Hblas(c‘fz(K/F), G(Ag)). Again,
from [5, §6.3], we have an extension:

1 - D3(Ag) - F — Gal(K/F) — 1,
and maps of extensions

1 — D3(K) — &(K/F) —> Gal(K/F) —> 1

ol |

1 — D3(Ag) v Gal(K/F) — 1

il |

1 — Dy(Ag) — &(K/F) — Gal(K/F) — 1,

where a’(a3) = b/ (a2).

Lemma 2.20 We have H' (Gal(K /F), D3(Ak)) = 0 and hence b and a' are unique up to
conjugacy by D3 (Ag).

Proof We have
H'(Gal(K /F), D3(Ax)) = €D H'(Gal(K,/F.), D3(Ky)).

uEVF
The groups on the right vanish by [5, Lemma 7.1.(1)]. O

Let Yl;as be the set of homomorphisms Homg (D3, Zg). Then we construct the map in
Eq. 2.16 using the following series of morphisms:

H\ (& (K/F), G(K))

|
Hy, (€3(K/F). G(Ax)
a7
Hy, (F'.G(Ax)
)

Hp, (E2(K /F), G(Ag))

The first map is induced via functoriality from G(K) — G(Ag) and the maps c;’*, B are
defined via pullback. We note that a’ “and 5" only depend on a’ and b’ respectively by the
previous lemma.

To complete the construction, we need to show that the map a’ H;/ (F,G(Ag)) —
bas

H;, (&3(K/F), G(Ag)) is an isomorphism. On the one hand the map is surjective since if
bas
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we have a cocycle (v, x) of £&3(K /F), we can push it forward to F’ to get a cocycle (v, x”)
that pulls back to (v, x). On the other hand, if (v, x1) and (v, x2) are algebraic cocycles
of F’ that pull back to cocycles that are equivalent via m € G(Ag), then this implies that
V| = vy and that for all w € F/, m~ x| (w)w(m) = x, since this is true on D3(Ag) and the
image of &3 and these sets generate F.

We now show that the map

HY(E(K/F), G(K)) — HL(&E2(K/F), G(Ag))

commutes with localization. In [5, §7], Kottwitz defines for a place v of K, a localization
map

HY(E(K/F), G(K)) > HY,(Eiso(Ku/F). G(K,))

that is entirely analogous to the localization map for H L&k /F), G(Ag)). Then we have
Lemma 2.21 The following diagram commutes

Hl (&(K/F), G(K)) — H]L (&2(K/F), G(Ak))

1 !

Hblas(giso(Kv/Fu)s G(Ky) — Ht}as(giso(Kv/Fu)v G(Ky)),

where the vertical maps are the respective localization maps and the upper horizontal map
is the one constructed in this section.

Proof First it suffices to show the lemma in the case where the base field F is the fixed field
EV C K of the decomposition group of K at v so we assume this.

Then all the maps in the above diagram are compositions of W and & maps. Hence our
strategy is to expand the above diagram to one of the form

HY\ (E3(K/EY). G(K)) — H;l; (E3(K/E). G(AK)) ¢—=— H;év (FLG(Ag) —— Hy,(E2(K/EY), G(Ag))

| o o |

Hyo (EF(K/EY), G(Ky) == Hyy (€ (K/E"). G(Ky) ¢—=— H}, P G —— HYL(EV(K/EY), G(Ky))
Hblas(giso(KU/Fv)v G(Ky)) = H[,las(giso(Kt,'/Ft/). G(Ky)) == Hblas(giso(KU/Fv)v G(Ky) = Hblas(giso([(v/Fv)- G(Kv))

where each small square will consist of W and & maps and hence commute by Lem-
mas 2.6, 2.7, 2.10. The above diagram will be induced from a diagram of extensions:

E3(K/EY) =——= &(K/EY) F' E(K/F)
! ! l |
EJ(K/EY) —= EJ(K/EY) F & (K/EY)
T T T T
giso(Kv/Fv) — 5iso(Kv/Fv) — giso(Kv/Fv) — giso(Kv/Fv)
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as well as a diagram of coefficients

G(K) — G(Ag) =— G(Ax) — G(Ak)
i) i) i) i)
G(K,) == G(K,) == G(K,) == G(K,)
H H H H
G(K,) == G(K,) == G(K,) =—= G(K,)

and a diagram of Y sets

Homg (D3, Zg) =—— Homg (D3, Zg) =—— Homg (D3, Zg) —— Homg (D2, Zg)
Homg, (D3, Zg) == Homg, (D3, Zg) == Homg, (D3, Zg) — Homg, (D3, Z¢)
Homg, (Gm, Zg) == Homg, (G, Zg) == Homg, (G, Zg) == Homg, (G, Z¢)

We need to define all the objects and morphisms in these diagrams. We recall that as in
[5, §7.3], the gerbe £3(K/EV) is defined to be D3(Ky) X pyk) E3(K/EY)/N where we
have D3(K) = D3(K,) and D3(K) — &(K/EV) and then N := {(r(d)"!,1(d)) : d €
D3(K)}. The gerbe £ (K /E?) was defined already in Sect. 2.6. The gerbe F/ is defined to
be D3(Ky) Xpyag) F'/N' where now we have D3(Ag) I, D3(K,) and D3(Ag) — F
and N' := {('(d)"', /(d)) : d € D3(Ak)}.

In the diagram of gerbes, all the vertical maps except the ones in the third column are
parts of the localization map and have already been defined. All the maps in the top row have
been constructed already in this section and the maps of the bottom row are all the identity.
This leaves the four maps involving 7. The upper vertical one is the natural inclusion of 7’
into the semi-direct product. It is easy to check that the map

&(K/EY) > F
induces a map
E(K/E") = D3(Ky) X pycag) E3(K/EY)/N — D3(Ky) Xpycag) F'/N'.
and the map
E(K/F) — F
induces a map
EY(K/E") = Da(Ky) Xpyag) E2(K/EY)/N — D3(Ky) Xpyag) F /N

In fact, the map £ (K /E") — F' induces an isomorphism of extensions.
We can then define by composition

Eiso(Ky/Fy) — ‘7:1/; = Eiso (Ky/Fy) — 5%}(K/Ev) i ‘7:1/;

Now, in the gerbe diagram, all the squares except the bottom right one are known to commute
by construction. We want to deduce that this square commutes up to conjugacy by proving
that all the maps are canonical up to conjugacy. To prove the maps are canonical we need to
show that H!(Gal(K /EV), D3(K,)) = H'(Gal(K/E"), D>(K,)) = 0. This follows from
Lemma 2.11 and [5, Lemma 14.4].
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The diagrams of Y-sets and coefficients clearly commute, and this then implies the state-
ment of the lemma. O

Remark 2.22 Tt is easy to check that the map
Hi(E3(K [ F), G(K)) — Hy(E2(K /F), G(Ag))

can also be defined for Hallg and that the above lemma is also true. We will not need this fact
in this paper.

2.10 Key global diagram: G4, simply connected case

Let G be a connected reductive group over a global field F and let K /F be a finite Galois
extension such that G is split over K. In this section and the following we construct the key
global diagram for G. Namely, the commutative diagram

69 Hy, (Eiso(Ku/F), G(Ky)) L h, Hy, (E2(K/F), G(Ag)) — H, (E1(K/F), G(Ak)/Zg(K))

ueVp
J l J (2.17)
B X*(Z(G)aak,/F {EB X*<Z(6)>] —Z s X*(ZG))cak/F)
Gal(K /F)

ueVp veVg

where the bottom left map is given as the composition

B x*z(©G)) = [X*(2(©) ® ZWVk ] gak /1)
veVg Gal(K/F)

= @ (X*(Z(G)) ® ZIVu))Gal(k /F)

ueVp

= B x*(Z(G))cak,/F)

ueVp

where V,, consists of the places of K over u. The map X is induced by the map
P X*(Z(G)) — X*(Z(G)) summing all the coordinates together. Such a diagram is already

kL;IOWH to exist in the case of tori (see [5, pg 6]). In this section we prove it for G such that
G ger 1s simply connected. In the next section we tackle the general case using z-extensions.
In fact we construct a bit more than this diagram because we are also able to construct the
middle vertical map for algebraic cocycles (not just basic). Namely, we get a map

dlg(62(K/F) G(Ag)) — @ X*(Z(G))
veVk Gal(K /F)

Suppose now that G is a connected reductive group over F' and G ger is 31mply connected
Then we define D to be the torus given by G/Gger. Note that by assumption, D and Z(G)
are canonically isomorphic. We now consider the following diagram:
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D Hl(Eo(Kuo/F), G(K) < HY (E2(K/F), G(Ax) — HL(E1(K/F), G(Ak)/Z6(K))

B | |

D Hyy(Eiso(Ku/Fu), D(Ky)) = H, (E2(K/F), D(A)) — Hy,(E1(K/F), D(Ag)/D(K))
ueVp

L g L

@B X*(Z(G)cak, /Ry = [@ X*(Z(a)):| —Z s X*(Z(@)cak/r)
ueVp veVk Gal(K/F)

(2.18)

The top and middle left arrows are the total localization maps and the top and middle
right arrows are the ones we constructed in the previous subsection. The vertical arrows from
the first to second row are all induced via functoriality from the map G — D. The vertical
bottom left arrow is the sum of local Kottwitz maps k¢ and the remaining two vertical arrows
are as in the diagram [5, pg 6]. The commutativity of the lower right square is as in loc cit.
and the commutativity of the bottom left square is [5, Lemma 7.4]. All the maps comprising
the upper and middle right arrows are given by compositions of the ¥ and ® maps while
the upper and middle vertical arrows come from changing coefficients. Hence this square
commutes by an easy application of Lemmas 2.10 and 2.6. To show the upper left square
commutes, we need only show it commutes for a fixed place u. Since the localization map
is a composition of ¥ and & and restriction maps, this again follows from Lemma 2.10 and
Lemma 2.6.

2.11 Key global diagram: general case

In this section we use the theory of z-extensions to construct the key global diagram for
connected reductive G over F and split by K. Our argument will be analogous to similar

arguments for H;lg(Sg(K/F), G (K)) appearing in [5].

We need some preliminaries. Unfortunately, we need to prove each lemma for the gerbe
&> (K / F) with algebraic cocycles valued in G (Ag) as well as the gerbe £1 (K / F) with basic
cocycles valued in G(Ag)/Zg(K).

Lemma2.23 Let
1>z56 561
be a central extension of linear algebraic groups over F.
(1) The group Hallg(fz(K/F), Z(Ak)) acts on the fibers of
p: HY(E2(K/F), G (Ag)) — Hi,(2(K/F), G(A)).

When p : G'(Ag) — G(Ag) is surjective, these actions are transitive.
(2) The group Hblas(Sl(K/F), Z(Ak)/Z(K)) acts on the fibers of
p: Hy(E1(K/F), G'(Ak)/Zg (K)) — Hallg(gz(K/F), G(Ak)/Zg(K)).

When Z is the Weil restriction of a split K -torus, these actions are transitive.

Proof We first construct the action of Hallg (&2(K /F), Z(Ak)) onthe fibers of Hallg (&2(K/F),
G'(Ag)). Pick b € Hallg(Sz(K/F), G'(Ag)) and ¢ € Hallg(EZ(K/F), Z(Ag)) and pick
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cocycle representatives (v, x) of b and (u,y) of c¢. Then (vu,xy) is another cocy-

cle of Hallg(c‘:g(K/F), G'(Ak)) and this cocycle agrees with (v, x) when we project to

ZI(SZ(K/F), G(Ag)) via p. If we replace (i, y) with z - (i, y) and (v, x) with m - (v, x)
for z € Z(Ag) and m € G'(Ag) then the corresponding product gives mz - (viu, xy) which
is clearly in the same cohomology class as (v, xy). An analogous argument proves the first
part of (2).

We now show the second part of (1): that when p : G’'(Ax) — G(Ag) is surjective, the
action is transitive. Pick b, b’ € Hallg(SQ(K/F), G'(Ak)) in the same fiber under p and fix
cocycle representatives (v, x) and (v/, x"). We can assume that the cocycles become equal
in Z;lg(é‘z(K /F), G(Ak)). Indeed, since the cocycles are in the same cohomology class in
Hallg(c‘fg(AK), G(Ag)), we can pick some m € G(Ag) such that m - (v, x) = (v/, x). We
then use surjectivity to pick m’ € G’(Ag) such that p(m’) = m and observe that m’ - (v, x)
and (V/, x) agree in Z;lg(é’z(K/F), G(Ag)). It is then easy to check that (v, x) and (V/, x”)
differ by a unique cocycle (i, y) € Z;lg(Sz(K/F), Z(Ak)).

We now show the second part of (2). We first remark that since H'(Gal(K /K), Z(Ak))
vanishes by assumption, we have a surjection G'(Ag) — G(Ag) and hence a surjection

G'(Ax)/Zg (K) - G(Ag)/Zg(K). We claim that

Z(A)/Z(K) > G'(hk)/Zo/(K) & G(hg)/Zg(K) — 1

is exact. We have already shown that p is surjective so it remains to show thatim(i) = ker(p).
It is clear that im(i) C ker(p). To show the other inclusion, pick g’ € ker(p). Lift g’ to an
element g~’ € G'(Ag). Then we must have that p(g~’) € Zg(K). Since H' (Gal(K /K), Z) =
0, we have that

1l > Z(K)—> Zg(K) > Zg(K) —> 1

is exact. Hence we can pick z € Zg/(K) such that p(g) = p(z). Now, p(z~'g) = 1 and
so there is some 7/ € Z(Ag) so that i(z) = z~'g’. It follows that the projection of z’ to
Z(Ak)/Z(K) maps to the projection of z7'g’ to G'(Ak)/Z¢ (K) which is precisely g'.
Hence, g’ € im(i).

At this point, we can prove transitivity using the same argument as in (1). Namely, we
pick cocycles (v, x), (v, x") € Zgas(é’l(K/F), G'(Ag)/Zs (K)) which we can assume
map to the same cocycle in Zéas(é’l(K/F), G(Ak)/Zs(K)) since we have a surjection
p: G'(Ag)/Zg (K) - G(Ak)/Zs(K). Then by middle-exactness, it follows that (v, x)
and (V/, x’) differ by a cocycle of Ztl)aS (E1(K/F), Z(Ak)/Z(K)) as desired. O

Remark 2.24 We really do need the stronger assumption to prove part (2). Indeed, consider
1> pg— Gm 2 G — 1,

where p is the 8th power map and let K = Q(+/7). Then by the counter-example to the
Grunwald-Wang theorem, there is an element g € G, (A ) such that p(g) = 16 but no such
element can be contained in G, (K). Hence,

18(Ax) /13 (K) = Gm(Ag)/Gm(K) L Gum(Ar)/Gm(K)
is not middle-exact.

Lemma2.25 Let

1T T —>T;—~>1
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be a short exact sequence of F-tori that are split by K. Then the natural maps
Hy,(&2(K /F), Ta(Ag)) — Hy,(E2(K /F), T3(Ax))
and
Hyo(E1(K/ F), Ta(Ag)/Ta(K)) — Hyo(E1(K/F), T3(Ax)/T3(K))

are surjective.

Proof The surjectivity of the first map follows from the isomorphism for such tori given in

[5]:
a1g(52(K/F) T(Ak)) = (X(T) @ Z[Vk DGal(k / F)

and the fact that the functor T — (X4 (T) ® Z[Vk1)Gai(x /F) is right exact.
The surjectivity of the second map follows for the same reason from the isomorphism of
Kottwitz:

HL(E1(K/F), T(Ag)/T(K)) = X4 (T)Gai(k/F)

Lemma2.26 Let
I->NL6 L5651
be a short exact sequence of linear algebraic groups over F.

(1) If p: G'(Ag) — G(Ag) is surjective, then

(&(K/F), N(Ag)) = Hby(E2(K/F), G'(Ax))

al g alg

Hb (&2(K/F), G(Ak))

is an exact sequence of pointed sets.
(2) Now suppose that i(Zy) C Zg and that N(Ag)/ZN(K) — G'(Ag)/Zg(K) —
G(Ak)/Zg(K) — 1is exact. Then

(E&(K/F). N(Ag)/Zn(K)) > Hhy(E(K/F). G'(hg)/Zgr(K))

alg
- Ha]g(SZ(K/F)a G(Ak)/Zg(K))

alg

is an exact sequence of pointed sets.

Proof We prove (1) first. Ifb € H alg (&2(KF), G'(Ak)) isin the image of i, then p(b) is trivial
since N(Ag) = ker(G'(Ag) — G(Ag)). On the other hand, if p(b) is trivial, then we can
pick a cocycle representative (v, x) and using the surjectivity of p, may assume that the image
of x lies in ker(p) = i(N(Ag)). Then (v, x) gives an element of Z;lg(EQ(K/F), N(Ag))
and hence b lies in the image of i.

To prove (2), use the same argument noting that we have a stronger assumption to preclude
the possible failure of middle exactness. O

The following proposition is an analogue of [5, Prop. 2.8].
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Proposition 2.27 Let
15256561

be a short exact sequence of linear algebraic F-groups such that Z is a torus that splits over
K and is central in G'. Then the natural maps

P Hig(E(K/F), G'(Ag)) — Hhy(&2(K/F). G(Ag))
and
p i HY(ENK/F), G'(Ak)/Z6/(K)) — Hb(E1(K/F), G(Ak)/Z6(K))

are surjective. Moreover, they induce bijections between Hallg (&2(K/F), G(Ak)) and the

quotient of Hallg(é‘z(K/F), G'(Ak)) by the action of Hallg(é’z(K /F), Z(Ag)) as well as
between Hblas(&(K/F), G(Ak)/Zs(K)) and the quotient of Hblas(éfl(K/F), G'(Ag)/

Zg/(K)) by Hy, (E1(K/F), Z(Ag)/Z(K)).

Proof We first give the proof for the statements involving £ (K /F). To begin, pick b €
Hallg(éfz(K/F), G(Ag)) and let (v, x) be a cocycle representative of b. Since D; is K-split,
we have that the image of v in G is a split K-torus 7 C G. Then pulling back along p we
have a short exact sequence of K -tori

1>Z—>T —>T—1.

Since Z and T are K-split, this implies that 7’ is as well. Hence the short exact sequence
splits and so we have an exact sequence

1 — Homg (D3, Z) = Homg (D2, T') — Homg (D, T) — 1.

Let v € Homg (D3, T') be a lift of v.
We now claim that p : G'(Ag) - G(Ag) is surjective. Indeed this would
be implied by the vanishing of Hl(Gal(K/K), Z(Ak)). This set is isomorphic to
) H'(Gal(K,/Ky), Z(K,)) and thus vanishes by Hilbert’s theorem 90.

veVg

Now, for each o € Gal(K /F), choose a lift ¢ € & (K /F). Foreach 6 € &(K/F), we
choose an element xé € G'(Ag) lifting xs. We claim that Int(x;) o o (V') is independent of
our choice of & and xé. Indeed, if we pick a different lift 6/, then we have o’ = &d for some
d € Dy(Ag). Then a lift of x4/ is of the form zxgo(v’)(d) for z € Z(Ag), which implies
our claim.

Since by definition Int(x,,) o o (v) = v for each w € &(K/F) projecting to o, it fol-
lows that v" and Int(x}) o o (V') are two lifts of v. A priori, we have Int(x}) o 6 (V') €
[THomg, (D2, T"). But we claim that in fact, this element lies in Homg (D2, T"). If not, there

v

would exist places vy, vy and for i = 1, 2, elements x5 ; € G(K,,) with lifts x(/-”. € G'(Ky,)
such that Int(xs ;) o o (v) = v but Int(x(;,l) oo (V') = vj and Int(x(’-ryz) oo (V) =) are
not equal to the images in Hom Ky, (D,, T') and Hom Ky (D5, T') of the same element of
Homg (D2, T”). We claim that we can choose x|, xj € G'(K) such that Int(x/) (o (V")) = v/.
Indeed, o (1) and v/ lie in Hom K, (D2, ) for some K -split maximal torus S of G’ and then
the proof of [6, Lemma 1.1.3.(a)] implies that for each i = 1, 2, we have o (v') and vi’ are
conjugate by some Weyl group element, and then our claim follows from the fact that the
Weyl group of S is a constant group scheme over K. Now consider x’ flxé € G'(K) and its
projection to x ;- v, eG (K). We have that x|~ Lx; centralizes T by assumption, and therefore
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that x'} ' x, normalizes but does not centralize T”. But now consider the action of x'; ' x5 on T’
by conjugation. It acts trivially Z and the induced action on T is also trivial. We have already
observed that we have a splitting 7' = Z @ T. This makes it clear that the action of x’ flxﬁ
on T’ is by a unipotent matrix. But Ng/(T")/Z ¢/ (T") is finite so some power of x/l_]xé acts
trivially on 7. Since x/l_lxé is unipotent, this implies that Int(x’ flxé) € Zg(T"), contrary
to assumption. Hence we have proven that Int(x},) o o (v') € Homg (D3, T').

Hence, there exists a A, € Homg (D2, Z) such that Int(x},) o o (v') = v/ 4 A,. We claim
that 0 > Ay € Zl(Gal(K/F), Homg (D3, Z)). Indeed, since for o1, 0o € Gal(K/F) we
have that x;l o1 (x;.z) is a lift of x4,4,, we have

V' + Aoy = Int(xy; 01(x},)) 0 0102(V)
= Int(xy;,) o o1 (Int(x;,) 0 32(v))
= Int(x},) o (01(v') 4+ 01(hay))
=V 4+ Ao, + 01(heo,).

In order to trivialize this cohomology class, we need to enlarge G'. Define Z” :=
Resk/rZk and push out G" along Z < Z” to get a diagram

l— 7z g L

Lol

-z 16 46— 1.

G 1
H

Then the Gal(K / F)-module Homy (D,, Z"”) = X*(D;) ® X«(Z") is coinduced from the
Z-module X*(D>) ® X+(Z) and hence H'(Gal(K /F), Hom (D>, Z")) vanishes. It follows
that there exists a u € Homg (D>, Z”) such that A, = o(u) — . Thenv” :=v' — pisa
lift of v to v” such that

Int(x;) oo (v") =",

for all o € Gal(K/F).

Now define a 1-cochain of £ (K /F) valued in G”(Ag) by x;; := v”(d)x],. One can
easily check that (w1, w2) > zu, w, defined by x, = Zu, wy Xy, w1 (xy,) is a 2-cocycle
of £&(K /F) valued in Z"(Ag). We see that changing w; and w; by elements of Dy(Ag)
does not change the value of z,, v, and hence that z, , is inflated from a 2-cocycle of
Gal(K/F). But

H*Gal(K /F), 2"(Ax)) = @) H*(Gal(Ky/F.), 2" (K.))

Lt€VF

which is trivial by Shapiro’s lemma. Hence there is a function y : Gal(K/F) — Z"(Ag)
such that (o1, 03) y;llr,zal (¥o,) Yo, 18 a 2-coboundary equal to z. We can then pullback
y to &2(K/F) and define x]) := y,x]. It is easy to check that (v”,x") is an algebraic
1-cocycle of & (K /F) valued in G”(Ag) and a lift of (v, x). We have now shown that
Hallg(EZ(K/F), G"(Ag)) — H;]g(gz(K /F), G(Ag)) is surjective.
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Our goal is to use this to show the surjectivity: H alg (&2(K/F), G'(Ag)) —
G(Ag)). We first define C := Z”/Z = G”/G. The commutative diagram

H}Y (&2 (K [ F),
1 zZ ‘s s 1

Lol

1 —2z' 1y 6" 136 — 1.

Lol

C ——C

induces a diagram

(&K /F). Z(Ag)) — Hj,(&2(K /F), G'(Ak)) L H,, (&2(K /F), G(Ak))

l ! H

(E(K/F). 2" (Ag)) — Hj, (&2(K/F), G"(Ak)) s H),(&(K/F), G(Ag))

l l

(&2(K/F), C(Ak)) —= (&2(K/F), C(Ag)).

alg

alg alg

al g alg

We claim the sequence

(&2(K/F), G'(Ak)) — Hyo(E2(K/F), G"(Ak)) = Hyy(E2(K/F), C(Ag))

alg alg alg
is exact. Indeed, by Lemma 2.26, it suffices to show that G”(Ag) — C(Ag) is surjective.

This follows from the exactness of
1-Z—>27Z'">C—>1

and Hilbert’s Theorem 90 applied to Z.

So far we have shown that starting with a b € alg(52(K /F), G(Ag)), we can find
a b” € Hallg(iz(K/F) G"(Ag)) such that g(b) = b”. Now by Lemma 2.25, the map
(&2(K/F), Z"(Ag)) — alg(Sz(K/F) C(Ag)) is surjective and so we can find b, €
(&2(K /F), Z"(Ag)) such that the projections of by and b” to H) (&(K /F), C(Ak))

alg
are equal. Then b, ' e Hallg(SQ(K /F), G"(Akg)) and projects to the trivial element of

(&2(K /F), C(Ag)). Hence by exactness, there exists b’ € H} (&(K/F), G'(Ag)) so

alg
that the image of b’ in Hallg (&2(K/F), G"(Ak)) equals by 'p”. By the commutativity of the

diagram, we have p(b') = b since q(b; )y =b by Lemma 2.23. We have now proven the
desired surjectivity.

To prove the last statement, we apply Lemma 2.23 using the fact that p : G'(Ag) —
G (Ag) is surjective by Hilbert’s Theorem 90 applied to Z.

We have now proven the statements for £, (K /F). The argument for £ (K /F) is highly
analogous but we comment on the differences.

dlg
alg

alg

(1) In the second paragraph when we show p : G'(Ag) — G(Ag) is surjective, we instead
need to show that

Z(Ag)/Z(K) — G'(Ak)/Zg/(K) — G(Ak)/Zg(K) — 1

is exact. The surjectivity follows from the surjectivity of G'(Ax) — G(Ag) and the
middle-exactness follows from the vanishing of H 1(Gal(K/K), Z(K)) as in Lemma
2.23.
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(2) In the third paragraph we use the exactness of the above sequence to prove that all lifts
of x,/ are of the form zv(d)x(’.7 forz € Z(Ak)/Z(K)andd € D (Ag)/D;(K).

(3) Most of the fourth paragraph is unnecessary since we only work with basic cocycles.

(4) In the 7th paragraph, we define a 1-cochain of & (K /F) valued in G”(Ag)/Zg"(K)
by x7. := v"(d)x} and then need to define a 2-cocycle (wi,w2) > Zw,uw, €
Z"(AK)/Z(K) by Xy, 1y = Zuwy.wyXyy, w1(xy,,). For this to make sense we need the
exactness of

Z"(Ak)/Z"(K) — G"(Ag)/Zg(K) — G(Ak)/Zg(K).

The follows as in Lemma 2.23 from the vanishing of H'(Gal(K/K), Z" (K)).
(5) In paragraph 7 we also need the vanishing of H>(Gal(K /F), Z"(Ag)/Z"(K)). This
follows from the exact sequence

1—- Z'(K)— Z'(Ag) — Z"(Ag)/Z(K) — 1

and the fact that the other groups in the sequence have vanishing cohomology.
(6) In the 8th paragraph, to get the desired diagram on cohomology, we need to show we
have a diagram

Z(Ak)/Z(K) —— G'(Ak)/Zc/(K) 2 G(Ak)/ZG(K)

| l H

Z"(Ax)/Z"(K) =15 G"(Ak)/Zon(K) —1 G(Ak)/Zg(K)

! !

C(Ak)/C(K) === C(Ag)/C(K).

All the maps are already known to exist except G'(Ax)/Zs (K) — G"(Ag)/Zg (K).
This one exists because by construction the map G’ — G” induces amap Zg — Zgr.
(7) In the 8th paragraph, in order to apply Lemma 2.26 to prove that
Hy, (E1(K/F), G'(AK)/Zg/(K)) = Hpy (E1(K /F), G"(Ak)/Zgr (K))
— Hyy(E1(K/F), C(Ag)/C(K)

is exact, we need to show that
G'(Ax)/Zg(K) - G"(Ag)/Zg(K) — C(Ag)/C(K) — 1

is exact. Surjectivity follows from the surjectivity of G”"(Ag) — C(Ag). As in
Lemma 2.23, we can show middle-exactness by proving that Zg#(K) surjects onto
C(K). This follows because Z”(K) C Zg»(K) and Z”(K) surjects onto C (K) because
H'(Gal(K/K), Z(K)) = 1.

(8) In the final paragraph, we apply Lemma 2.23 using that H' (Gal(K /K), Z(K)) vanishes.

[m}

We are now ready to construct the diagram in the previous section for connected reductive
G over F and split by a finite Galois extension K . Choose a z-extension G’ of G. In particular
we have a short exact sequence of F-groups

l>Z—>G - G—1

such that Z is central in G, the torus Z is obtained by Weil-restriction from a split K -torus,

and G}, is simply connected.
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Now, by Proposition 2.27, we have surjections
H, (E2(K/F), G'(Ak)) — Hy,(&2(K/F), G(Ag))
and
P Hyp(E1(K/F), G'(Ag)/Zg/(K)) — Hpp (E1(K/F), G(Ag)/Zg(K))
that induce bijections:
Hy, (E2(K /F), G(Ak)) = Hy,(E2(K /F), G'(Ak))/Hyg (E2(K /F), Z(Ak)),
and

Hyo (E1(K/F), G(AK)/ZG(K)) = Hyy (E1(K /F), G'(Ak)/Zg(K))/ Hpys (E1(K [ F),
Z(Ak)/Z(K)).

We claim that the natural maps

P x*z@G)) — | P x*z©G)y)
veVi Gal(K /F) vev Gal(K /F)
and
P X*(Z(G)Gak ) — X (Z(G))Gak F)

induce bijections

P x*z@G)) = | P x*z(@G) /| B x*@) :
veVg Gal(K /F) veVk Gal(k/F) LveVx Gal(K /F)
and
X*(Z(@)cak/p = X Z(G)cak 5/ X (D)aalk /-
Indeed, this follows from the exact sequence
0> Az —> Ag > Ag—0

where A is Borovoi’s fundamental group (recall Ag = X*(Z (6)) ) and the fact that tensor
product and co-invariants functors are right-exact.
Finally, we remark that by construction, the maps

a1g(52(1(/F) G'(Ag)) — @ X*(Z(G")
veVk Gal(K /F)

and
Hi(E1(K/F), G'(Ak)/ Zg (K)) — X*(Z(G))

constructed in the previous section are equivariant with respect to the actions of

Hy,(&2(K/F), Z(Ag)) = EB X*(Z) ,

veVk Gal(K/F)
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and
HY(ELK/F), Z(Ak)/Z(K)) = X*(z)Gal(K/F),

respectively.
Together, these facts give us unique maps

Hyjy(E2(K /F), G(AK) — | D X*(Z(G))
veVk Gal(K/F)

and
HY\(E1(K/F), G(Ak)/Z(K)) — X*(Z(G))

making the following diagrams commute:

H), (E2(K /F), G' (k) —"— Hj (E2(K/F), G(Ak))

{GB X*(Z@))} RN [EB X*(Z(G))
Gal(K /F)

veVg veVg i|Ga1(K/F)
and

HY (VK /F), G'(AK)/ Zc/(K)) — Hb (E1(K/F), G(AK)/Z6(K))

! !

X*(Z(a/))Gal(K/F) —r X*(Z(G))Gal(k F)-

The maps we have constructed do not depend on our choice of z-extension. This follows

from [7, Lemma 2.4.4] where Kottwitz shows that if we have a map of reductive groups
f 1 G — G; and z-extensions H; of G; fori = 1,2, then H3 := Hy Xg, Hj is a
z-extension of G| and we have a commutative diagram:

H1<—H3L>H2

A

Gy —= Gy *f> Go.

In particular, to prove our maps do not depend on choice of z-extension, we let G| = G2
and let the map f be the identity. Note in that in the £ case, we also need that the maps
H3 — Hj and H3 — H; are both surjections and hence induce maps Zy, — Zp, and
ZH, —> ZH,.

We can also use this lemma to prove that the map we have constructed for &, is functorial
for connected reductive G and the map for &; is functorial for connected reductive G and
maps G1 — G thatinduce amap Zg, — Zg,. To prove this last functoriality, we need that
if f: Gy — Gyinducesamap Zg, — Zg, thenf: H3 — Hpinducesamap Zy, — Zp,.
To see this, pick z € Zy,. Then f(73(z)) € Zg, since both f and 73 induce maps of centers.
Then f (z2) ey 1(ZGZ) = Zpy, since H, is a central extension of G».

We have now constructed all the maps in Diagram 2.17 in the general case. It remains to
show the diagram commutes. Let | - Z — G’ — G — 1 be a z-extension of G. Then we
can form Diagram 2.17 for G’ and for Z. We get a map from the diagram of G’ to that of G
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by functoriality and all the maps between these diagrams are surjective since they are given
as quotients by the analogous objects in the diagram for Z. Since G, is simply connected,
we have proven in the previous section that the diagram for G’ is commutative. Moreover, all
the squares between the diagram for G’ and the diagram for G commute by a combination of
the functoriality we proved in the previous paragraph, the functoriality of the Kottwitz map,
and the compatibility of localization with the ® construction. It follows by a simple diagram
chase that the diagram for G must also be commutative.

2.12 Inflation

In this section, we recall the results of [5, §8] which allow us to obtain inﬂatig maps
that are compatible with localization. In particular, we can define Hallg(gz, G(Ap)) =
h'_n)1 Hallg (&2(K/F), G(Ak)) and analogously for the other cohomology sets. We can then
promote Diagram 2.17 to a commutative diagram

D Hyy(Eisor G(Fu)) L Hyo (&2, G(AF)) — Hgy (€1, G(AR)/ZG(F))

MEVF
l J/ l (2.19)

D X*(ZG)r;, ¢ X2(G) ———— X*(Z(G)r,
ueVyg

where X»(G) = lim(X*(Z(G)) ® ZIVk Daai(k /-

K
We first recall the localization maps for the gerbe &so. Suppose K /F and L/ F are finite
Galois extensions of local fields and that K C L. Then we have the following diagram of
extensions

1 — Gn(K) — &g (K/F) — Gal(K/F) — 1

H T dl

1 — Gm(K) — & (K/F) — Gal(L/F) — 1

180

l ! H

1 — Gu(L) — EM(K/F) — Gal(L/F) — 1

1S0

] ] |

1 — Gm(L) — Eiso(L/F) —> Gal(L/F) — 1

The gerb 5{SO(K/F) is defined to be the fiber product Eiso (K /F) XGai(k/r) Gal(L/F) via

the natural projection p : Gal(L/F) — Gal(K/F). We define 51‘;“0f (K /F) as the pushout of
E{SO(K/F) along the natural inclusion Gy (K) <> Gy, (L). Finally, the map py/k is given
by x > xLK1 and Kottwitz show it induces a map 1,k as in the above diagram. To each
extension in the above diagram, we assign a set M and a set ¥ as in Definition 2.2. For the
top extension, we let Y; = Y; = Homg (G, G) and M; = G(K). For the second extension
we let M, = G(K) and Y» = Y» = Homg (G, G). We further set Mz = My = G(L)
and Y3 = Y3 = Y4 = Y4 = Hom; (G, G). We have a natural map M> — M3 given by
inclusion and a map Y, — Y3 given by base change. The map Y3 — Yy is pre-composition
with pr k. Then we get the desired local inflation map

H}y(Eso(K /F). G(K)) — H}y(Eo(L/F). G(L))
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as a composition of a change of G map by p, a ® map, and a ¥ map.

‘We now consider global inflation. Suppose K /F and L/F are finite Galois extensions of
global fields and that K C L. Recall the objects A;, X;, D; of Key Example 2.3. Because
we are changing the field extension, we use the notations A; g, X; g, D; k instead. Then we
have the following diagram of extensions

I — Hom(X; x, Aj x) — &(K/F) — Gal(K/F) —» 1

H T dl

1 — Hom(X; k., A; k) — E(K/F) —— Gal(L/F) — 1

l l H

1 — Hom(X; g, Aj,r) — EM(K/F) — Gal(L/F) —> 1

i o1 |

1 — Hom(X; 1, A;1) — &(L/F) — Gal(L/F) —» 1

The gerbe &£/(K/F) is defined via pullback along p. The map Hom(X; x, A; k) —
Hom(X; k, A;,1) is given by post-composition with the obvious isomorphism A; ¢ =
Ai(:’il(” X Then the gerbe Sii“f(K /F) is defined via pushout along this map. The map
pi : Hom(X; , Ai.1) — Hom(X; g, A; ) is defined via pre-composition with maps
pi » Xik = XiL. Wehave X1 ¢k = Z = X;,; and we define p; to be multiplication
by [L : K]. We recall that X, ¢ = Z[Vk] and hence we define p; : X ¢ — X1 by
p2(v) = Y [Ly : Ky]w. The map p3 is defined via restriction of p;. Then Kottwitz shows

wlv
[5, Lemma 8.3] that p; exists and is unique up to conjugation by Hom(X; g, A; ).
We now define sets M; j and ¥; j and Y; ; where i = 1, 2, 3 corresponds with the index i
in&(K/F) and j = 1,2, 3, 4 indicates which extension in the above diagram we consider.
For M; ; we have:

G(Ak)/Zc(K)|G(Ak)/ZG(K)|G(AL)/ZG(L)|G(AL)/Zg(L)
G(Ag) G(Ag) G(Ar) G(Ar)
G(K) G(K) G(L) G(L)

For Y; ; we have:

Homg (D1,x, Zg)|Homg (D1, x, Zg)|Homg (D1 x, Zg)|Homy (D1,1, Z¢)
Homg (D2 k, G) | Homg (D3 k, G) | Homg (D2 k, G) | Homp (D3 1, G)
Homg (D3, G) | Homg (D3 x, G) | Homg (D3, x, G) | Homy (D3 1, G)

Finally Y; ; is:

Homg (D1, Zg) Homg (D1, Zg) Homg (D1, Zg) Homy (D1, Zg)
G(Ag) -Homg (D, G)|G(Ak) - Homg (D2, G)|G(Ag) - Homg (D2, G)|G(AL) - Homy (D3, G)
Homg (D3, G) Homg (D3, G) Homg (D3, G) Homj (D3, G)

In all cases, the maps &; ; are obvious. Finally, the map Y;3 — Y;4 is given by pre-
composition with p; : D; k — D; .
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Then the desired inflation maps

Hypoo(E1(K /F), G(Ag)/Z(K)) — Hpoo(E1(L/F), G(AL)/ZG(L))
Hy,(&2(K/F), G(Ak)) = Hy,(&2(L/F), G(AL))

alg alg
Hyo (E3(K/F), G(K)) = Hy,(€3(L/F), G(L))

are given as a composition of a change of G map, a ® map and a W map. Note that one can
also define inflation for basic sets when i = 2, 3 in analogy with the case wheni = 1.

One must also check that inflation is compatible with localization when i = 2. Note that
since the inflation map is a composition of change of G and ® and W maps, it is compatible
with these forms of functoriality. The localization map is also a composition of such maps and
so to prove functoriality it suffices to show that the local inflation map is the “localization”
of the global one for D;. This compatibility is stated for instance in [5, §10.9].

3 Normalizing transfer factors

In this section we define global transfer factors using the theory of global B(G) developed
in [5] as well as our modest additions in the previous section. In this section we use the bold
lettering to refer to algebraic groups defined over a number field.

Let G be a connected reductive group over a number field F. Fix a quasisplit inner form
G* of G and an inner twist ¥ : GX — G (i.e. W is an isomorphism and U looW)is
inner for all 0 € T'p := Gal(F5P/F)).

An extended pure inner twist (W1, z!) consists of an inner twist W; : G*F — Gz and a
cocycle z! € leas (&3(K /F), G*(K)) for some finite Galois extension K/F such that the
projection of 7zl to ZY (T, G;‘d(F)) equals 0 +— \1/1—1 o 0 (W¥;). An isomorphism of two
extended pure inner twists (W1, z) and (¥, 72) is a map f : G — G defined over F
and an element g € G*(F*°P) such that \IJ;1 o f oW =Int(g) and z; = g_lzgae(g) for
all e € &(K/F) projecting to o, € Gal(K/F). One can easily check that if (f, g) is an
automorphism of the extended pure inner twist (¥, z) then f is given by Int(¥(g)) : G — G
and W(g) € G(F) so that f is given by conjugation by an element of G(F). The map
(W1, z1) +— z! induces a bijection between isomorphism classes of extended pure inner
twists and Hblas(gg, G*(F)). An analogous construction works locally with the gerbe .

We now impose the following assumptions on G:

(1) W lifts to an extended pure inner twist (by [11, Cor. 3.13.13] this is true if G has connected
center).

(2) G satisfies the Hasse principle.

(3) Gyer is simply connected.

3.1 Defining invariants
To begin we need to describe the construction of some invariants. Fix a semisimple element

y* € G*(F). Let y € G(AF) be stably conjugate to W(y*). We choose g € G*(Ar) such
that

wgy*g H=1v. G.1)
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Denote the centralizer in G* of y* by / f: .Note that this is connected since we are assuming

that Gger is simply connected. In [8, §6], Kottwitz describes an obstruction, obs(y) € K(1 }f;:),
constructed by Langlands in [ 12, CH VII] to the existence of an element of G(F) inthe G(A )
conjugacy class of y. The construction proceeds by first describing the obstruction in the
case that G satisfies the Hasse principle and then reducing to that case by considering Ggc.
In our case we are actually assuming G satisfies the Hasse principle so this simplifies the
discussion. We now describe the construction in the present case where G satisfies the Hasse
principle. See also [11, §4.1] whose exposition we follow somewhat closely, generalizing to
the non-regular case.

Let o > u, be a set-theoretic lift of the cocycle o > W~ o o (¥) € ZI(I'F, G, (F))
to G*(F). Then we can easily check

g 'uso(g) € IS (Af). (3.2)
Moreover, it is easy to see that the projection

o 1> g o0 (9) € I (hp)/ Zy6: (F) (3.3)

is independent of the choice of our lift u and gives a 1-cocycle and hence a cohomology class
in H'(Tp, I (Ap)/Z(LE ) (F)).
Now, by [8, Theorem 2.2] we have a map

H'(Cp, 1S (hp) | ZUE)(F)) — mo(Z(U5 )P (3.4)

We denote the image of the above cohomology class in 7o (Z (If:)FF yD by obs(y). Itis easy
to see that this class is independent of our choice of g.

Given two semi-simple elements y, )y’ € G(Ar) that are conjugate in G(Af), we
find a g € G(Ar) such that gyg~! = y’. Then we define the invariant inv(y’, y’) €
HY\(Tp, I;} (Ap)) given as the cohomology class corresponding to the cocycle o +
g 'o(g). Here we are thinking of IVG as a group defined over A but not necessarily F.
It is easy to check that inv(y, y') is independent of g and is trivial precisely when y and
y’ are conjugate in G(A ). Finally, observe that at each place v of F we can define a local
invariant inv, in the analogous way and that we have a natural isomorphism

H'(Tp, IT(AF) = @ H' Tk, I7(Fy)), (3.5)

(where the right-hand side is a direct sum of pointed sets). Indeed, for each cohomology
class on the left there is a finite Galois extension K /F so that the cocycle comes from some
H'(Gal(K /F), IS (Ak)). Each cocycle in Z!(Gal(K /F), I8 (Ag)) has finite image hence
factors through Z}(,} (Ok,) for all but finitely many places u of K where If is a suitable

integral model of 1}9 away from finitely many places. The set H L(Gal(K, /Fy), IJ(/; (Ok,))
is then trivial at those v such that K,/ F, is unramified by a standard application of Hensel’s
lemma and Lang’s theorem.

We now prove

Proposition 3.1 The invariant obs(y) satisfies the following properties

(1) The invariant obs(y) depends only on the G(AF)-conjugacy class of y.
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(2) If y,y’ € G(AF) are stably conjugate, then
obs(y’) = inv(y, y') - obs(y), (3.6)
where the product on the right is given as in [8, Lemma 2.4]

(3) The invariant obs(y) is trivial if and only if the G(AF)-conjugacy class of y contains
an F-point.

Proof For the most part, the proofs in [11, 4.1.1, 4.1.2] go through unchanged.
For the first part, suppose that ¥’ € G(AFp) is conjugate to y. Then pick some x € G(AF)
so that xyx~! = /. Then obs(y’) is given by the class of

o g Yy T Do (Y ()a (9).
Then by definition of u (o),
Int(ug) (o (¥~ () = ¥~ (0 (x)),
so that the above becomes
o g v e ())uso(g).

Finally, since x € G(AF), we have o (x) = x so that the above equals obs(y) as desired.
For the second part, we choose x € G(Ar) such that xyx~! = y’. Then we get by a
similar computation that obs(y’) is given by the class of

gy T lo()uso(g) = Mnt(g ™ H oy Hx o) - g usa (g).

We then note that we are precisely in the situation of [8, Lemma 2.4].

Lastly, we show the third and most important part of the proposition. If the G(Af)-
conjugacy class of y has an F-point, then by the first part of the proposition, we can assume
that y is that F-point. Then we can pick g € G*(F) whichimpliesthat g~ us0(g) € If: (F).
Now we cite [8, Theorem 2.2] where it is proven that the kernel of the map

H' (T, IE (Ap) ) ZUE)(F)) > mo(Z(IE)THP,
is given by the image of the map
H'(Cp, IS (F)/ 2 ) (F)) — H'(Tp, 15 (Ap)/ ZUE ) (F)).
This implies that obs(y) is trivial.
Conversely, suppose that obs(y ) is trivial. Then by [8, Theorem 2.2] we have that the class
of g7 ugo (g) in H'(Tr, I (AF)/Z(IS)(F)) lies in the image of the map
H'(Tp, 18 (F)/ 2 (F)) - H' (Tp, IS (B )/ Z(IE)(F)).

in particular, this means we can pick an x € I;}: (Af) such that the image of
xlelugo(g)o(x) € Zl(FF,Iﬁ*(Kp)/Z(I)ﬁ*)(f)) lies in lg*(f)/zuy%*)(f). Hence
for each 0 € I'r we can find an element ¢ € Z (If:)(?) such that

cxflgflug(r(g)a(x) € If’:(f),

which implies that x_lg_luga(g)a (x) € If: (F).
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Therefore, we can assume without loss of generality that g \uso(g) el Jf;: (F) forallo.
Now observe that

V(g ugo(@u)™) = y(g)o((g)

and hence

=0 > Y(g lugo(guyh),

gives anelementof Z' (', G(F)) whose image is cohomologically trivialin Z' ("', G(AF)).
Hence by the Hasse principlg for G, we have z € ZL(T'r, G(F)) is cohomologically trivial
and so there equals 2 € G*(F) such that

1=y (gh) o (gh) = ¥(g uso(gu,").
Then v (gh) € G(AF) so that

v =g~ vy (gh)
is in the G(A r)-conjugacy class of y. On the other hand, by definition

v = v vy,
so that

vyt =y
which implies ¥’ € G(F) hence G(F) as desired. u]

3.2 Refined invariants

Using Kottwitz’s theory of B(G) for local and global fields as well as our work in Sect. 2, we
construct, in the case that G satisfies the assumptions of the previous subsection, a refinement
of the invariant obs(y ). We loosely follow [11, §4.1] and freely use the notation from Sect. 2.

Since we assume that W lifts to an extended pure inner twist, there exists a finite Galois
extension K of F and a cocycle (v, 79 e Zt])as(€3(K /F), G*(K)) that lifts the element

ze€Z' T, G}y (F)) corresponding to W. In particular, we have that
Wl o 0, (W) = Int(zis (3.7)

where g denotes the projection G*(F) — G}y (F), for any e € &; that projects to o, € T'p.
We now pick semisimple y* € G*(F) and y € G(AF) conjugate to y* in G(Ar) and
choose a g € G*(AF) such that

Uigr'gH =17

We now use the maps constructed in Sect. 2.9 to produce a cocycle (v, z%%2) €
le)as(ﬁz(K/F), G*(Ag)) such that for each o € Gal(K/F), if ey, e3 are lifts of o to

& (K/F) and & (K /F) respectively, then zi° = 0% e G*,(F). In particular, starting
with (v, z1°), we post-compose 715 with the map G(K) — G(Ag), then pushforward to F
and pullback to & (K / F) to get 7192 The desired property is then clear from the definitions
of the pullback and pushforward maps and the fact that the image of v is central in G*.

We define an abstract & (K / F)-cocycle valued in 1 Jf;: (Ak) by

e > g 17526, (g). (3.8)
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It is easy to see that we indeed have g~ 17520, (g) € I;}: (Ag) from the fact that @ =

1%02 % I
27 € Gy (F).

If we restrict this cocycle to &(AK) it equals v and hence induces an element
inv[z®°](y*, y) € Hblas(é‘z, I}f;: (AF)). Via the localization maps, we get an element
inv[Z*°1(y*, y) () € HL (Eisor If: (F,)). Crucially, this class is trivial for all but finitely
many places « as shown in §2.7. Let z'*° () be the localization of the cocycle z'*°
u. We record the following lemma.

at the place

Lemma3.2 The class of e — g, ~17150(44) .00 (gy) in bas(&go, bt “(F))) equals that of
inv[Z*1(y*, ¥) ().
Proof We work at some fixed extension K such that zi%° factors through H,

G*(AK)) and g € G*(AK)
The localization map defined in Sect. 2.6 at u is a composition of maps

(&E2(K/F),

bas

HY(&2(K/F), G*(Ag)) —> Hi,(E2(K/EY), G*(Ag))
— H,(EY(K/E"), G*(Ky) —> H}y(Eso(Ky/Fu). G(Ky)).

These maps are all defined on the level of cocycles and are induced from maps of extensions.
In particular, we have a natural map i, : oK, /F,) — &J(K/E?) as in Sect. 2.6.
Pick some ¢ € £°(K,/F,). Then i1, (e) € EY(K/E") and we have (i, (e) = di(e’) where
e € &(K/E”) andd € Dy(K,) and where ! : £&(K/EY) — EY(K/EV).
Then by definition of the localization map, we have that the cocycle z giving
inv[z%°](y*, y)(u) that is induced by the above maps from g~ 15924 (g) satisfies the fol-
lowing equality:

2(e) = [g71 2520 (@) Tovo (d) = g7 25" 20y (@)]oe(g0) = g5 ' 252 (v)e00 (g0).

This is the desired equality. O

Proposition 3.3 The image of inv[Z°1(y*,y) in (S],IG*(AF)/ZIG*(F)) lies in

bas

HY(Tp, I;%Z‘ (Ap)/Z /6 (F)) and agrees with obs(y) € X*(Z(If:))Gal(f JF):
Y

Proof Suppose (v1, z%1) is a cocycle representative of the image of inv[z%°](y*, ¥) in
Hbas &1, 1 (AF)/ZIG* (F)). Then vy is trivial since it is equal to the pre-composition of v
by D1 — D2 — D3 Wthh is trivial. This implies the first claim.

For the second claim, we note that by definition, the projection of z'*° to G} is constant
on D3(K) and descends to give the cocycle z € Z L, G}y (F)). By construction the same
will also be true 752 if we quotient out by the image of v, and leo if we quotient by the
image of v;. But v is in fact trivial so this gives our desired result. O

We have now constructed inv[zis"](y*, y) which is a refinement of obs(y).

3.3 Overview of transfer factors
In this subsection, we briefly review the theory of transfer factors. To that end, we consider

a connected reductive group G defined over a local field F of characteristic 0 and let £ (G)
denote the set of isomorphism classes of refined endoscopic data as in [16, §2.3]. A refined
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endoscopic datum is a tuple (H, s, n) where H is a quasisplit connected reductive group over
F, where s € Z(H)FF and 7 : H — G is such that I n(s
class of 1 is I'p-stable. We say that (H, s, ) and (H’, s n ) are isomorphic if there exists
an F- -isomorphism « : H’ — H and a choice of @ : H — H’ (@ is determined by « up to
H- -conjugacy) and g € G such that the diagram

)y = n(ﬁ) and the 6—conjugacy

H-'3G
al llm(g)

H— G
n

commutes and a@(s) = s’.

Transfer factors arise in the comparison of orbital integrals over G and endoscopic groups
H. To describe them, we fix a refined endoscopic datum (H, s, n) and fix a lift of n to a
map 'y : “H — LG. Such a lift will always exist if Gger is simply connected but may
not exist in general. Langlands and Shelstad [13] construct a local transfer factor which is a
function A : H(F)g—s X G(F)g — C, where G (F)g denotes the subset of strongly regular
semisimple elements of G(F) and H (F)g—_g denote the subset of semisimple elements of
H (F) that transfer to strongly regular elements of G (F'). The local transfer factor is canonical
up to multiplication by a scalar in C*.

Now suppose that F is a global field and fix G a reductive group over F and an inner
twist ¥ : G* — G between G and its quasi-split inner form G*. Then after fixing global
analogues of the data (H, s, 7), Langlands and Shelstad construct a global transfer factor,
which is a function A : H(Ar)g—sr X G(Afp)ss — C. Following the construction in [10,
§7.3], this global factor is defined as a product over each place v of F of local transfer
factors of (H,, G,). We require that these local transfer factors are compatibly chosen in
the sense that they are constructed from fixed global Whittaker data, a-data and x-data
by taking localizations at each place. Unlike the local factors, this global factor is made
completely canonical by observing that when yH € H(F)g—sr and transfers to y* € G*(F)
and y € G(Af), one has

Ay, y) = (0bs(¥). @, u(s), (3.9)

where @yx yH Sg — S is an admissible isomorphism of the maximal tori Sg C H and
S C G* equal to the centralizers of ™ and y* in their respective groups.

In practice, one often uses transfer factors to relate the Langlands correspondences of
G(F,) and H(F},). To do so, one needs a canonical normalization of local transfer factors
that is compatible with analogous constructions in representation theory. When G is quasi-
split, a canonical normalization is given by fixing a Whittaker datum as described in [10,
§5.3]. When G is not quasi-split, the problem of finding a canonical normalization of transfer
factors at each place v of F compatible with the Langlands correspondence is quite subtle
and described extensively in [3]. There are two approaches to solving this problem. The first
uses B(F, G) and is described in [11] and the second uses the rigid gerbe of Kaletha [4].

However, in the context of the trace formula for Shimura varieties one needs to extend
transfer factors to the domain H(A )G, H)—reg X G(AF)ss, where H(A ) (G H)—reg denotes
the locus of (G, H)-regular semisimple elements of H(A ). These are the semisimple yH €
H(AF) such that if y* € G*(F) is a transfer of yH, then If: is an inner form of I;IH‘ In
[14], Langlands and Shelstad show that one can extend local and global transfer factors by
continuity to H(F)(G,H)—reg X G(F)ss and H(AF) (G, H)—reg X G(AF)ss respectively. It will
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be useful to record explicit formulas for these transfer factors on the H (F) (G, 1) —reg X G (F)ss
locus. This will be done in § 3.4.

Itis asserted in [14, §2.4] (immediately before their §2.5) that the global transfer satisfies
(3.9) for yH ¢ H(F)(G,H)—reg that transfers to y* € G*(F) and y € G(AF) but no proof of
this assertion is given. In [1, Lemma 4.1.(i)], Arthur proves a formula that implies this fact in
the case of elliptic endoscopy and elliptic semisimple elements. In Corollary 3.10 we record
a proof of this fact for all G arising from B(F, G*).

For applications (cf. [16, §4]), it is useful to describe the transfer factors on the (G, H)-
regular locus explicitly without using limits. In Sect. 3.4, we use the theory of B> (F, G) we
have developed to construct local and global transfer factors on the (G, H)-regular locus that
agree with Kaletha’s construction of B(F, G)-normalized transfer factors on the strongly
regular locus.

3.4 Construction of factors

We now construct our transfer factors. We return to the notation of Sect. 3.2. Fix an F-splitting
(B, T, {Xy}) of G* and a nontrivial character x : Ap/F — C*. Following [10, §5.3] (see
also [3]), the F-splitting and y induce a pair (B, 1, ) where B has unipotent radical N and
Ay : N(Ap)/N(F) — C* is a generic character (i.e. A, is non-trivial when restricted to
each simple relative root subgroup). The G*(F)-conjugacy class of (B, A,) gives a global
Whittaker datum o of G*. For each place v of F, our splitting plus the restriction, x,, of
X to F, induce a local Whittaker datum tv,. This is the same as the local Whittaker datum
induced by the inclusion N (F,) — N (AF). In this section we use the notation B(F, G) for
dlg(&so, G(F)), where F is a local field.

We now fix an isomorphism class in £"(G) and a representative (H, s, n) of this class.
Since Gy is s1mp1y connected, we can lift  toamap L5 : LH — LG. We fix I'r equivariant
splittings of G and G*. Then the map ¥ : G* — G induces an isomorphism /G — LG*
preserving the splittings and hence we can consider (H, s, ) to be a refined endoscopic
datum of G*.

Ateach place v of F, we getarefined endoscopic datum (Hp, , s, ) of G}‘,-v . This combined
with our choice of L1 gives the “Whittaker normalized” transfer factor between H, and G}
which we denote A[mv](yH, y*) for yH € H(F,) a (G, H)-regular semisimple element and
y™* a semisimple element of G*(F,). As explained in [9, §5.5], there are two normalizations
of the factor which are compatible with twisted endoscopy and these are denoted by A} and
A’\D. The first transfer factor is compatible with the arithmetic normalization of the local
Langlands correspondence while the second is compatible with the geometric normalization.
In this paper, we will use the second of these normalizations which notably differs from the
choice made in [11]. Our construction of the various obs and inv invariants is analogous to
[11] and hence differs from that of [10] (cf [11, Rem. 4.2.2]).

We now record explicit formulas for A [mv](yH, y*). Recall that these transfer factors are
defined in [14, §2.4] by taking a limit of A[mv](ynH, y,¥), such that (y”H, v) € H(Fy)gr—sr X
G*(F,)sr and each yH transfers to y,*. We assume further that all yH (resp. y,) lie in a
fixed maximal torus Sy C H (resp. S C G*) containing yH (resp. y*). We let @,
Sg — S be an admissible isomorphism of these tori satisfying wy*,yﬂ(yH) = y*, and
we assume (yn , v have been chosen such that <py oA (yn ) = . We also make use
of ﬁxed Gal(F/F) -stable Borel pairs (B, T), (B T) (Bu, Tw), (BH, TH) and assume that

n(Tu) = T and n(By) =
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The Whittaker-normalized transfer factor A[to,] is a product of a number of terms:
Alw] = €L (V, xo)ArA1AIIL ALy,

which we examine in turn. See also [3, §1.3] for a summary of these terms (though beware
that this source uses the A’A normalization).

The local e-factor €, (V, x,) for the virtual representation V. = X*(T)¢c — X*(Tq)c does
not depend on (y,f{, y,) and hence is the same as in the strongly regular case. Similarly, A
depends only on S, T and s and so is constant over our limit.

The term Ay requires picking x and a-data for the roots R(S, G*). Then it is given as a
product

) —1
A =] (%) (3.10)

Ay

where the product is over sets of representatives of Gal(F,/F,)-orbits in R(S, G*)\(py*’yn
R(Su, H). Note that this limit exists because by the (G*, H)-regular assumption, y* does
not vanish on the roots « that appear formula (3.10). Moreover, the limit is clearly given by
replacing y,* with y* in formula (3.10).

The term Ajyy, , equals a(y,’), where a is a certain character of S(F) coming from
Langlands duality for tori. The character does not depend on (y,,H, v,) and hence the limit is
simply a(y*).

Finally, the term Ay is given by

_ ldet(Ad(y,;) — 1| Lie(G*)\Lie(S))lé

Ary (3.11)

T
| det(Ad(y,1) — 1| Lie(H) \ Lie(Sn))|s
As y; — y* (resp. ynH — yH) the map Ad(y,)) — 1 : Lie(If:) — Lie(G*) (resp.
Ad(ynH) —1: Lie(I;{H) — Lie(H)) becomes trivial. Because of (G*, H)-regularity, the Lie
algebras Lie(I;IH) and Lie(I}f;:) are of the same dimension so formula (3.11) becomes in the
limit:

|det(Ad(y*) — 1| Lie(G*) \ Lie(ZS))I7

Ay = (3.12)

T
| det(Ad(y™) — 1| Lie(H) \Lie(lyHH))lﬁ
We now prove the following Lemma using the above computations.

Lemma 3.4 For the number field F and a pair (Y2, y*) € H(F)G* H)—reg X G*(F)ss such
that y¥ transfers to y*, we have

Alw]l(H y) = 1.

Proof We prove that for each term in the transfer factor, the product over all places equals 1.
The product of the local €7 (V, x,) terms equals a global root number of a virtual Gal(F / F)
representation coming from base change from Z (and hence also R) and therefore equals 1.
The global A; term vanishes as in the proof of [13, Theorem 6.4A] since this term doesn’t
depend on (yH, y*) beyond the fixed isomorphism @+ ,u Which is also used for each pair
s Vi)-
The global Aj; also vanishes by the same argument as [13, Theorem 6.4A] once we
fix a global x-datum and use the local y-data coming via pullback from the global one. In
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particular, the point is that the global x-datum gives functions from y, : A;a /FS — C*,

and these will vanish on % e F).

A similar principle proveg the vanishing of the global A;;y, ,, term. Namely, by fixing
global x-data, we get that our local characters a,, : F, — C* come from a global character
a: S(Afr)/S(F) — C* which therefore vanishes on y*.

Finally, the vanishing of A;y follows from the fact that the adelic absolute value on A;
vanishes on F*. O

Now, in analogy with the definition given in equation [11, (4.2)], we define a candidate
transfer factor as a function

Alto,, Ziso(v)] : Hv(Fv)(G,H)—reg X Gy(Fy)ss = C
by
Alwy, 2 I y) = Al oMy ) - (VP10 ) ). 8w ()7 (3.13)

where yH € H(F,) is (G, H)-regular semisimple, y € G(F,) and y* € G*(F),) are semisim-
ple, and W, (y*) and y are stably conjugate.
Note that we have a natural pairing

B(F,, 1S) x Z(18)FF/F) s ¢, (3.14)
induced by the Kottwitz map
€6 BOF 1) — X*H(Z(G )T Fel ), (3.15)
Then the term
(v )W) 8, ()7 (3.16)

is the above pairing with ¢, » , 1 some admissible homomorphism transferring yHto y*.
We now fix place v of F and define H := Hy, and similarly for G and G*. Our main
result is as follows.

Theorem 3.5 The term A[w,, 75°(v)] is a local transfer factor as in [14, §2.4] and is the
continuous extension of the B(F,, G)-normalized local transfer factors from H (F,)G—gr X
G(Fy)s to H(Fv)(G,H)—reg X G(Fy)ss.

Before we give the proof of Theorem 3.5, we need to establish some lemmas.

Lemma3.6 Letw : B(F,, I}f;:) — B(F,, G*) be the projection. There is a natural bijection
(W, 2. [yD)/ ~ ¢ {b € Buas(Fy. 1E) : () € Bras(Fy, G¥)) (3.17)

where (W, ) is an extended pure inner twist of G* and [y] C G (Fy) is a conjugacy class such
that for one (and hence any) y € [y], there exists g € G*(F,) such that W(gy*g™") = y.
We say that (W1, z1, [y11) ~ (W2, 22, [v]2) if there exists an isomorphism of extended pure
inner twists (f, 8) such that f([y1]) = [y2].

Proof The map from left to right in Eq. (3.17) is defined as follows. We pick a y € [y] and
g € G*(Fy) as above and define an element of B(F},, I)ﬁ ) via the cocycle e — g 1z.00(2).
It is clear that the projection to B(F,, G*) recovers the cohomology class of z which is basic.

@ Springer



74 Page 44 of 47 A.B. Meli

We show the map is well-defined. Indeed if we choose a different y; € [y], g1 € G*(F,)
such that \IJ(gly*gfl) = y1, then we can pick & € G(F,) such that Int(2)(y) = y;. Then

we get gl_llll_l (h)g € I}ﬁ* (F,) and hence ¢ g_lzeae(g) is in the same cohomology
class as
e [g7" W (M)glg ™ zeoe ()loe (g7 W (kg

= g7 U (Wzeoe (U (7))o (g1)

= g7 W zelz, "W (h Dzeloe(g1)

= gflzeae(gl)-
If (Wy, z1, [y]D) ~ (W2, 22, [¥]) and (f, d) is an isomorphism then we can pick y; € G;(Fy)
so that f(y1) = y2 and g; € G} (F,) so that g = dg1. Then we have

g{lzz,goe(gz) = gflzLecfg(gl)

as desired. Hence, we indeed get a well defined map
(¥, 2, [y )/ ~— Bras(Fy, I).

Conversely, let b € Bypas(Fy, Iﬂ*) such that 7(b) € B(F,, G*) is basic. Then let 2
giso Iﬁf be a cocycle representing b and note that the composition with the inclusion

il )ﬁ* < G* gives a cocycle 7' representing 7 (b). Let ¥ : G* — G be an extend pure

inner twist associated to z5°. Now we consider W (y*). We will be done if we can show that
this is an element of G(F,). Pick o € I'r, and e € £° so that 0, = o. Then since we have

Ul oo (W) = Int(z1%°), we get

o (W(y) = o (W)(o (y)
= W00 ()70

=W (")

=Wy,
as desired. We leave it to the reader to check that the two maps we have constructed are
inverses of each other. O

The next lemma is related to the analogous fact for Galois cohomology [8, Lemma 10.2].
We recall that for G a connected reductive group over F, (where v is possibly infinite), a
Sfundamental torus is defined to be a maximal F,-torus of minimal split rank. In the case
where v is p-adic, such a T will be elliptic.

Lemma 3.7 Suppose that G is a connected reductive group over F,. Let T C G be a funda-
mental torus. Then the image of B(Fy, T) in B(Fy, G) contains Byys(Fy, G).

Proof When v is infinite, this follows from [5, Lemma 13.2].

When v is finite, T is elliptic maximal and we can essentially use [5, Remark 13.3]. In
particular, for each b € B(F,, T'), the Newton point of b must factor through Z(G) since T
is elliptic. Hence b has basic image in B(F,, G). Then the desired result follows from the
fact that in the p-adic case, the Kottwitz map is an isomorphism on basic elements and the
map X* (?)r g > X *(Z (6)) I's, I8 surjective (since coinvariants are right exact). O
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Lemma 3.8 Suppose v is a place of F, that G* is a quasisplit group over F,, and that
U : G* — G is an extended pure inner twist represented by a cocycle 7%°. Suppose that
y € G(Fy) and y* € G*(F,) are semisimple and there exists g € G*(F,) such that
W(gy*g™") = y. Then there exist maximal F, tori T* 3 y* and T > y and an element
g1 € G*(F,) such that \I'(gly*gl_l) =y and \Il(ng*gl_l) = T and V¥ o Int(g) gives an
isomorphism of F,-tori.

Proof By Lemma 3.6 we can associate to the triple (W, 750, [¥D, an element b €
Bpas (Fy, I}ﬁ*). We now pick a fundamental torus 7* of I}ﬁ*. Then by Lemma 3.7 we can

pick alift b’ € B(F,, T*) that maps to b under the canonical map B(F,, T*) — B(F,, I}ﬁ*).
We now fix a strongly regular y;. € T*(F) and by applying the construction in Lemma 3.6
to &’ and the projection w : T* — G*, we get a triple (¥, 7%, [yr]) corresponding to
b'. Note, that by construction, we can indeed pick (W, zis") in this triple to be the (¥, zis")
we started with. We let T be the centralizer of y7 in G. By the proof of loc. cit. we get a
cocycle z¥' representing &’ and a g; € G*(F,) so that 7% is given by e gl_lzi;ooe(gl)
and \I/(gly;*gfl) = yr. In particular, \IJ(ng*gfl) = T and induces an isomorphism of
F, tori. Let y' = \I-'(gly*gfl) € T. Then (W, z%°, [y']) is another representative of the
equivalence class of triples corresponding to b under Lemma 3.6. Since any automorphism
of (W, z'*°) will be given by conjugation by an element of G(F,), it follows that ¥’ and y
are conjugate in G (F)). Thus by taking a G (F,)-conjugate of 7" and similarly modifying g
we can arrange that \D(gly*gfl) =vy. O

Lemma3.9 For a fixed choice of y* € G*(F,) and y € G(F,) such that there exists
g € G*(F,) with W(gy*g™") = y, we can find sequences of elements (yj) and (y;) such
that each y; € G(F)s: and y € Gy satisfying:
(1) lim y; =y,
1—> 00
(2) lim y/ =y*
11— 00
(3) Foreach i, we have that y is a V-transfer of y;,
(4) There are fixed maximal tori T* C G* and T C G such that the centralizer of each y}*
is T* and the centralizer of each y; is T, ' '
(5) Foreachi, we have that the cocycles defining inv[z*°](y;*, yi) (v) and inv[z"°](y*, y) (v)
are equal in Zéas(é’iso, Ig* (Fy)).

Proof By the previous lemma, we find ¢ € G*(F,) and maximal tori T* C G and T C G
such that W(gT*g~") = T and W(gy*g~') = y. Pick a sequence of strongly regular
elements y;* in T7* and converging to y*. Then define y; = \Il(gyi*g’l). The last point
then follows from the proof of Lemma 3.2 and the fact that we have W (gy/* ¢ =y and
W(gy*g~") = y for the same g. O

We now complete the proof of Theorem 3.5.

Proof To prove Theorem 3.5, it suffices to show that A[ro,,, z'°(v)] equals the unique con-
tinuous extension of the B(F),, G)-normalized local transfer factor (as in [11, Prop. 4.3.1])
from the strongly regular to (G, H)-regular locus. Our transfer factor is identical to that
of Kaletha and Taibi on the strongly regular locus, so it suffices to show that we can find
sequences (yiH ), (yi) of strongly regular elements converging to y ¥, y such that our factor
satisfies ll_l)rgo Alr,, ziso(v)]()/,»H, ¥i) = Aoy, 2%°W)](y ¥, y). The Whittaker-normalized

transfer factor, A[w, ], for G* is already known to have this property. Hence if we have found
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sequences as above, we need only choose a sequence (y;*) for y* € G*(F,) and W, (y;")
stably conjugate to y; such that
lim (inv[Z"*°1(/", ) (V). @;*] i (9) = (inv[Z*°1(r*, ) (v), @JW ().

1—>00 i

This is the content of Lemma 3.9. |

We can now define the global transfer factor A[t, z'°] to be the product of the local factors.
Note that in order for such a product to make sense, we must have that A[to,, Z5°(v)] (yH, Y)
is trivial at all but finitely many places v. This follows from the analogous statement for A[tv,]
as well as the fact (derived in Sect. 3.2 from our work in Sect. 2.7) that inv[z®°](y*, ¥) (v)
is trivial for all but finitely many v. Because of our normalization choices, we now expect
Alw, z%°] to satisfy

Alw, ). ¥) = (0bs() ™. 9 u(s)). (3.18)
This turns out to be the case.

Corollary 3.10 The term A[ro, z%°] is equal to the unique continuous extension to
H(AF)G,H)—reg X G(AF)ss of the canonical global absolute transfer factor of [10, §7.3]
and satisfies Eq. (3.18) when restricted to H(F) (G H)—reg X G(AF)ss.

Proof To prove the first claim, we note that Afto, 71%°] is defined to be a product of local
factors that are continuous extensions of the B(F,, G)-normalized transfer factors of [11,
Prop. 4.3.1]. The product of these local factors equals the canonical global factor on the
H(AF)G—reg X G(AF)s: locus since it satisfies Eq. (3.18) [11, Prop. 4.3.2]. This implies the
first claim.

To prove the second claim, we recall that by Lemma 3.4, we have

[Tam 0" v =1,

for (yH, y*) e H(F)G* H)—reg X G*(F)ss Hence, it suffices to show that
: iso * ~—1 _ A—]
vz (7 v) @, n () = (0bs(y), @ u(s)),

for (yH,y) € H(F)G,H)—reg X G(AF)ss and y* € G*(F). But this follows from Proposi-
tion 3.3 and Diagram (2.17). ]
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