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Abstract

The goal of this paper is extend Kottwitz’s theory of B(G) for global fields. In particular, we

show how to extend the definition of “B(G) with adelic coefficients” from tori to all connected

reductive groups. As an application, we give an explicit construction of certain transfer factors

for non-regular semisimple elements of non-quasisplit groups. This generalizes some results

of Kaletha and Taibi. These formulas are used in the stabilization of the cohomology of

Shimura and Igusa varieties.
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1 Introduction

Let F be a p-adic field and F̆ be the completion of the maximal unramified extension of F

with σ the Frobenius endomorphism. Then for a connected reductive group G defined over

F , the Kottwitz set B(G) is given as the set of σ -twisted conjugacy classes of G(F̆). Namely

we say that g, g′ ∈ G(F̆) are in the same σ -conjugacy class if g′ = h−1gσ(h) for some

h ∈ G(F̆). The set B(G) appears throughout the theories of p-adic geometry and p-adic

representation theory.

In [5], Kottwitz constructed a set B(F, G) for every local and global field F and linear

algebraic group G defined over F . The sets B(F, G) are defined to be certain cohomology

sets and we have a natural bijection B(G) ∼= B(F, G) in the p-adic case. More precisely, the

sets B(F, G) are defined in terms of the cohomology of Galois gerbes. In each case there

is a certain F-protorus DF and for each finite Galois extension K/F , Kottwitz defines an

extension of groups:

1 → DF (K ) → E(K/F) → Gal(K/F) → 1.

He then defines a certain cohomology set H1
alg(E(K/F), G(K )) and B(F, G) is defined as

the limit:

lim−→
K

H1
alg(E(K/F), G(K )),

where the maps between these sets are given by certain inflation maps. We frequently use the

notation H1
alg(E, G(F)) for the above limit when we want to stress the cohomological nature

of the construction.

In the global case, the situation is more complicated than we have indicated because

Kottwitz defines three pro-tori D1, D2, D3(= DF ) and additional gerbes

1 → D2(AK ) → E2(K/F) → Gal(K/F) → 1,

and

1 → D1(AK )/D1(K ) → E1(K/F) → Gal(K/F) → 1.

In the case where G = T is a torus, these other gerbes give rise to cohomology sets

H1
alg(E2(K/F), T (AK )) and H1

alg(E1(K/F), T (AK )/T (K )) respectively. By taking injec-

tive limits, we get sets B2(F, T ) and B1(F, T ) which can be thought of as “B(F, T ) with

AK - and AK /K -coefficients” respectively. Unfortunately, this construction does not extend

to general G since, for instance, when i = 2 it requires an action of G(AK ) on HomK (D2, G)

that restricts to the action of G(K ). In the torus case this action can be defined to be trivial,

but in general there does not appear to be a natural way to define such an action.

Our first main result is to extend the theory of the cohomology of E2(K/F) and E1(K/F)

beyond the case of tori to allow G to be any connected reductive group. We do this by

generalizing the cohomology set “H1
Y (E, M)” that Kottwitz constructs in [5, §12]. In the

specific example mentioned in the previous paragraph, our construction allows us to consider

the pair of sets HomK (D2, G) ↪→
∏
v

HomKv (D2, G) and we only require that G(AK ) acts

on the larger space.

This allows us to define sets H1
alg(E2(K/F), G(AK )) and H1

bas(E1(K/F), G(AK )/ZG(K )).

We develop the theory for these sets in analogy with [5] and in particular define a “total local-

ization map” relating H1
alg(E2(K/F), G(K )) to the local gerbes at each place u of F and v
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of K such that v | u. We get

l F : H1
alg(E2(K/F), G(AK )) →

⊕

u

H1
alg(Eiso(Kv/Fu), G(Kv)),

where Eiso is the notation we use for Kottwitz’s local gerbe.

We then prove this map fits into a fundamental commutative diagram connecting the

cohomology of these different gerbes and certain character groups:

⊕
u∈VF

H1
bas

(Eiso(Kv/Fu ), G(Kv)) H1
bas

(E2(K/F), G(AK )) H1
bas

(E1(K/F), G(AK )/ZG (K ))

⊕
u∈VF

X∗(Z(Ĝ))Gal(Kv/Fu )

[
⊕

v∈VK

X∗(Z(Ĝ))

]

Gal(K/F)

X∗(Z(Ĝ))Gal(K/F).

l F

�∼

(1.1)

This diagram generalizes an analogous diagram for tori appearing in Kottwitz’s paper [5,

§1.5].

The three global gerbes correspond to cohomology classes that were first studied systemat-

ically by Tate [18] and appear to be very important objects. The group D1 equals Gm and hence

the Galois gerbe E1(K/F) corresponds to the canonical class in H2(Gal(K/F), Gm(K )) of

global class field theory. On the other hand, the E2(K/F) gerbe is constructed from the local

canonical classes at each place of K . Scholze [15, Conjecture 9.5] has conjectured the exis-

tence of a cohomology theory for varieties over Fp valued in the representation category of

the E3 gerbe that would specialize to most known cohomology theories. Scholze notes that an

important first step in the direction of this conjecture is to give a linear algebraic description

of this representation category in analogy with the theory of isocrystals for p-adic fields. The

n-dimensional representations of E3 are classified by the set B(F, GLn). The cohomology

of the E3 gerbe is closely related to the cohomology of the other gerbes as Diagram (1.1)

indicates. In fact, the existence of the E3-gerbe itself is only deduced as a consequence of

the construction of the E2 and E1 gerbes. Hence, one motivation for developing the results

of this paper is to define the sets B2(F, GLn) and B1(F, GLn) which should shed light on

B(F, GLn).

Another application of the global theory of B(F, G) for a number field F is in the normal-

ization of the Langlands correspondence. In particular, for G satisfying the Hasse principle,

this set is used to state the “global multiplicity formula” describing the decomposition of the

discrete part of L2
χ (G(F) \ G(AF )). This is accomplished by Kaletha and Taibi [11]. When

the group G is not quasi-split, the statement of this formula seems to require use of either the

B(F, G)-normalization or the more general but more complicated rigid normalization. This

problem is discussed in [3] and [11] and the B(F, G)-normalization is used in [2] to prove

the global multiplicity formula for unitary groups in the non quasi-split case.

In trace formula arguments where the global multiplicity formula is used, one needs a

normalization of local and global transfer factors between G and an endoscopic group H that

is compatible with the normalization of the global multiplicity formula. Such a normalization

is constructed in [11] for strongly regular semi-simple γ ∈ G(F) using the theory of B(F, G).

We recall that γ is strongly regular if its centralizer in G is a torus.

Crucially, the construction of Kaletha and Taibi requires that γ is strongly regular because

they need to use the “adelic form” of B(F, G) which was only known for G a torus. As an

application of the first part of the paper, we prove:
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Theorem 1.1 (Imprecise version of Theorem 3.5) Suppose F is a number field and G is a

connected reductive group over F that satisfies the Hasse principle and has simply connected

derived subgroup. Then the theory of H1
alg(E2, G(AF )) gives an explicit normalization of

the transfer factors between G and any endoscopic group H for semisimple γ ∈ G(F).

This normalization is compatible with the isocrystal normalization of the global multiplicity

formula as in [11].

The normalization of transfer factors for non-strongly regular elements is needed in the

analysis of the trace formula for the cohomology of Shimura varieties. In particular, the results

of this paper are used in work of the author that uses the cohomology of Shimura varieties

to deduce new formulas for the cohomology of Rapoport–Zink spaces [16] and related work

of the author and K. H. Nguyen proving the Kottwitz conjecture on the cohomology of

Rapoport-Zink spaces for odd unramified unitary similitude groups [17].

Finally, we make some remarks about the organization of the paper. In Sect. 2 we develop

the abstract theory of the cohomology of E2(K/F) and E1(K/F), in particular constructing

the maps and proving the commutativity of Diagram (1.1). In Sect. 3 we discuss the B(F, G)-

normalization of transfer factors for (G, H)-regular elements. We remark that to do this, we

do not need the full strength of the theory developed in Sect. 2 because we need only work

with the basic sets Bi (F, G)bas. However, the theory from Sect. 2 is used in Proposition 3.3,

which is then used in Corollary 3.10. We also use Sect. 2 to prove (before Corollary 3.10) that

for a fixed pair (γ H, γ ) ∈ H(F)(G,H)−reg × G(F) and F a number field, the local transfer

factors vanish at almost every place.

2 Global B(G)with adelic coefficients

In this section we develop a formalism that allows us to define a global cohomology set

H1
alg(E2(K/F), G(AK )) for a Galois extension K/F , the Galois gerbe E2(K/F) defined by

Kottwitz [5], and a general reductive group G defined over F . This generalizes the construc-

tion given by Kottwitz [5] of the set H1
alg(E2(K/F), T (AK )) for T an algebraic torus split

by K . We then develop the theory of the set H1
alg(E2(K/F), G(AK )) in analogy with [5].

In Kottwitz’s article, these groups are defined in the case where T is a torus using the

H1
Y (E, M) construction of his §3 and §12. This construction is not sufficient for our purposes

because Kottwitz requires the group M to act on Y . In our setting, we would therefore need

G(AK ) to act on the set of algebraic maps HomK (D, G) (where D is a pro-torus) which

it does not. Our solution is to develop a theory in the spirit of [5, §12] but in a setting that

allows for adelic coefficients.

Our setup is as follows.

Setup 2.1 We suppose we have the following objects:

• an abstract group G,

• an abelian group A equipped with a G-action (i.e. a G-module),

• an extension

1 → A → E → G → 1,

such that the conjugation action of G on A coincides with the action in the previous item,

• a possibly non-abelian group M equipped with an action of G by automorphisms of M ,

• an M � G-set Y ,
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• a map ξ : Y → Hom(A, M) of M � G sets where M � G acts on Hom(A, M) by

φ �→ Int(m) ◦ (g ◦ φ ◦ g−1),

• A subset Y ⊂ Y which need not be an M � G-subset.

Note that E acts on M through G. We further require

• ξ(y)(A) ⊂ My for all y ∈ Y (where My is the stabilizer of y in M).

For a fixed extension 1 → A → E → G → 1, we call the tuple (M, Y , ξ, Y ) a

cohomology datum for E .

Definition 2.2 Given an extension E as in Setup 2.1 and a cohomology datum (M, Y , ξ, Y )

for E , we define Z1
Y (E, M) to be the set of pairs (ν, x) such that ν ∈ Y and x ∈ Z1(E, M)

is an abstract cocycle satisfying the following conditions.

(1) The restriction of x to A gives ξ(ν).

(2) xw · σ(ν) = ν for each w ∈ E where σ is the projection of w to G.

Note that when ξ is injective, the second condition above is implied by the cocycle relation.

We define H1
Y (E, M) to be the quotient of Z1

Y (E, M) by the equivalence relation that

(ν, x) ∼ (ν′, x ′) if there exists m ∈ M such that ν = m · ν′ and for all w ∈ E , we have

m−1xww(m) = x ′
w .

Suppose that H1(G, A) = 0. Then all automorphisms of the extension

1 → A → E → G → 1,

are given by conjugation by some element a ∈ A. Such an automorphism induces an auto-

morphism of Z1
Y (E, M) given by (ν, x) �→ (ν, x ◦ Int(a)). If we let m = ξ(ν)(a) = xa then

we see that by assumption m acts trivially on ν and hence that (ν, x) and (ν, x ◦ Int(a)) =
(m−1 · ν,w �→ mxww(m−1)) agree inside H1

Y (E, M). In particular, we have proven that if

H1(G, A) = 0 then the set H1
Y (E, M) depends up to canonical isomorphism only on M and

the class α ∈ H2(G, A) giving the extension E .

Key Example 2.3 When Y = Y , this construction specializes to the H1
Y (E, M) construction

given in [5, §12]. In particular we review the following key examples.

• Let K/F be a finite extension of local fields and consider Gm(K ) with the natural

Gal(K/F) action. Then the fundamental class α ∈ H2(Gal(K/F), Gm(K )) corresponds

to an isomorphism class of extensions. We choose a representative which we denote by

1 → Gm(K ) → Eiso(K/F) → Gal(K/F) → 1.

Then for any connected reductive group G over F , we give G(K ) the natural Gal(K/F)-

action and define Yiso = Yiso = HomK (Gm, G). Then we have a natural map

ξ : HomK (Gm, G) → Hom(Gm(K ), G(K ))

and we can define the set H1
alg(Eiso(K/F), G(K )) to be equal to H1

Yiso
(Eiso(K/F), G(K )).

• Now fix K/F a finite Galois extension of global fields and D1, D2, D3 the F pro-tori

with character groups X1 = Z, X2 = Z[VK ], X3 = Z[VK ]0 where VK is the set of places

of K , where Z[VK ] is the free abelian group generated by K , and Z[VK ]0 is the subgroup

of elements whose coefficients sum to 0. Let A1 = A×
K /K ×, A2 = A×

K , A3 = K ×. In

[5, §6.2], Kottwitz describes the construction due to Tate for i = 1, 2, 3 of canonical

classes αi ∈ H2(Gal(K/F), Hom(X i , Ai )) corresponding to extensions

1 → Hom(X i , Ai ) → Ei (K/F) → Gal(K/F) → 1.
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Now fix an F-torus T that is split by K and define Yi = HomK (Di , T ). Then one can

form the groups

H1
Y1

(E1, T (AK )/T (K )), H1
Y2

(E2, T (AK )), H1
Y3

(E3, T (K )),

using the above definition. These are the sets

H1
alg(E1(K/F), T (AK )/T (K )), H1

alg(E2(K/F), T (AK )), H1
alg(E3(K/F), T (K )),

as given in [5].

• Using the notation in the previous item, we define Y3 = Hom(D3, G) and then can define

the set H1
alg(E3(K/F), G(K )) to be equal to H1

Y3
(E3(K/F), G(K )).

Definition 2.4 Our definitions are slightly more general than those of Kottwitz because we

allow Y ⊂ Y to be a proper subset and allow Y to not be an M � G set. This means that

we can define H1
alg(E2(K/F), G(AK )) for a general reductive group G defined over a global

field F and K a finite Galois extension.

Let VK be the set of places of K as before. Then we define Y2 := HomK (D2, G) and note

there is a natural inclusion

Y2 ↪→
∏

v∈VK

HomKv (D2, G).

We then define Y2 to be the G(AK ) � Gal(K/F)-orbit of Y2 inside
∏

v∈SK
HomKv (D2, G).

Then Y2 is naturally a G(AK ) � Gal(K/F)- -set and we have a natural map ξ2 : Y2 →
Hom(D2(AK ), G(AK )). Finally, we define

H1
alg(E2(K/F), G(AK )) := H1

Y2
(E2(K/F), G(AK )).

Note that Y2 does not have a natural G(AK )-action so we do indeed need the more general

formalism.

We now study, as in [5, §12], the naturality of our construction.

2.1 Naturality with respect to (M, Y, �, Y)

The most basic situation to consider is for E fixed. Then we suppose we have two cohomology

data (M, Y , ξ, Y ) and (M ′, Y
′
, ξ ′, Y ′) such that we have a G-map f : M → M ′ and a M �G-

map g : Y → Y ′ (where M acts on Y ′ through f ) such that g(Y ) ⊂ Y ′ and such that the

diagram

Y Hom(A, M)

Y ′ Hom(A, M ′)

g

ξ

f ◦
ξ ′

commutes.

We have a map Z1
Y (E, M) → Z1

Y ′(E, M ′) given by (ν, x) �→ (g(ν), f ◦ x). This induces

a map

H1
Y (E, M) → H1

Y ′(E, M ′), (2.1)

since if (ν, x) ∼ (ν′, x ′) via m, then

f (m) · g(ν) = g(m · ν)) = g(ν′),
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and

f (m)−1 f (xw)w( f (m)) = f (m−1xww(m)) = f (x ′
w).

2.2 Changing G

Suppose we have a map ρ : H → G and an extension

1 → A → E → G → 1.

Let

1 → A → EH → H → 1

be the extension defined so that EH = E ×G H and consider the diagram of extensions given

by:

1 A EH H 1

1 A E G 1

ρ̃ ρ

Then define a map Z1
Y (E, M) → Z1

Y (EH , M) so that (ν, x) �→ (ν, xH ) where xH is the

pullback of x to EH . This clearly induces a map

H1
Y (E, M) → H1

Y (EH , M). (2.2)

2.3 Themap8(f, g, h̃)

Suppose we have extensions

1 → A → E → G → 1

and

1 → A′ → E ′ → G → 1

and cohomology data (M, Y , ξ, Y ) and (M ′, Y ′, ξ ′, Y ′) giving us sets H1
Y (E, M) and

H1
Y ′(E ′, M ′). Suppose further that we have the following maps:

• A G-homomorphism f : M → M ′,
• An M � G-map g : Y → Y ′ such that g(Y ) ⊂ Y ′,
• A homomorphism h̃ : E → E ′ of extensions:

1 A E G 1

1 A′ E ′ G 1

h h̃
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We further require that the following diagram commutes:

Y Hom(A, M)

Y Hom(A, M ′)

Y ′ Hom(A′, M ′)

ξ

f ◦

g

ξ ′

◦h

We now define �( f , g, h̃) : Z1
Y (E, M) → Z1

Y ′(E ′, M ′) so that (ν, x) �→ (g(ν), x ′) where

x ′ is the unique cocycle so that the restriction of x ′ to A′ is equal to ξ ′(g(ν)) and the pullback

of x ′ to E via h̃ equals f (x). It is a tedious but straightforward check that such a cocycle

exists and is unique.

We check that (g(ν), x ′) satisfies Int(x ′
w′) ◦ σ(ν) = ν for w′ ∈ E ′ projecting to σ ∈ G.

Write w′ = a′h̃(e). Then we have

Int(x ′
w′) ◦ σ(g(ν)) = Int(x ′

a′) ◦ [ f (xe)σ (g(ν)) f (xe)
−1]

= Int(x ′
a′) ◦ [g(xeσ(ν)x−1

e )]
= Int(x ′

a′) ◦ g(ν) = g(ν).

The last equality follows from the condition that ξ ′(g(ν))(A′) ⊂ M ′
g(ν)

.

Lemma 2.5 The map �( f , g, h̃) on cocycles induces a map

�( f , g, h̃) : H1
Y (E, M) → H1

Y ′(E ′, M ′).

Proof It is an easy check that if (ν1, x1) ∼ (ν2, x2) via m ∈ M , then (g(ν1), x ′
1) ∼ (g(ν2), x ′

2)

via f (m). 
�

From the definitions, it is clear that if we have triples ( f1, g1, h̃1) between (M, Y , ξ, Y )

and (M ′, Y ′, ξ ′, Y ′) and ( f2, g2, h̃2) between (M ′, Y ′, ξ ′, Y ′) and (M ′′, Y ′′, ξ ′′, Y ′′) then we

can form a triple ( f2 ◦ f1, g2 ◦ g1, h̃2 ◦ h̃1) satisfying the necessary conditions.

Lemma 2.6 We have �( f2 ◦ f1, g2 ◦ g1, h̃2 ◦ h̃1) = �( f2, g2, h̃2) ◦ �( f1, g1, h̃1).

Proof Clear from uniqueness of x ′ in the definition of �( f , g, h̃). 
�

Observe that the map h : A → A′ induces a map H2(G, A) → H2(G, A′) and that if

α ∈ H2(G, A) and α′ ∈ H2(G, A′) are the classes of the extensions E and E ′ respectively

then h(α) = α′. This follows because a 2-cocycle giving α can be constructed from any

section s : G → E and h ◦ s : G → E ′ is then a section of E ′. Conversely, a map

h : A → A′ and an extension

1 → A → E → G → 1,

with class α ∈ H2(G, A) yields a class h(α) ∈ H2(G, A). Via the natural bijection between

H2(G, A′) and extensions of G by A′, one constructs an extension E ′ and a diagram:

1 A E G 1

1 A′ E ′ G 1

h h̃
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where h̃ is canonical up to an automorphism of the extension E ′. In particular, if H1(G, A′) =
0 then h̃ is canonical up to A′-conjugacy. It is easy to check that �( f , g, h̃) = �( f , g, h̃′)
for h̃ and h̃′ in the same A′-conjugacy class. Hence we have proven that if H1(G, A′) = 0

then �( f , g, h̃) only depends on f , g, h and the extensions E, E ′. If we furthermore have

H1(G, A) = 0, then by the remark before Key Example 2.3 the map �( f , g, h̃) only depends

on f , g, h and the α ∈ H2(G, A) and α′ ∈ H2(G, A′). In particular, whenever we have

maps f , g, h such that Diagram (2.3) commutes and h(α) = α′ for any classes in the relative

cohomology groups, there exists a canonical map �( f , g, h) : H1
Y (E, M) → H1

Y ′(E ′, M ′)
where E and E ′ are any extensions representing the relevant cohomology classes.

2.4 Themap9(g, h̃)

Suppose we have extensions

1 → A → E → G → 1

and

1 → A′ → E ′ → G → 1

with cohomology data (M, Y , ξ, Y ) and (M ′, Y ′, ξ, Y ′) as before. Suppose further that M =
M ′ and that we have the following data:

• an M � G-map g : Y → Y ′ with g(Y ) ⊂ Y ′,
• a homomorphism p̃ : E ′ → E of extensions:

1 A E G 1

1 A′ E ′ G 1

p p̃

such that the following diagram commutes

Y Hom(A, M)

Y ′ Hom(A′, M)

g

ξ

◦p

ξ ′

We define

�(g, p̃) : H1
Y (E, M) → H1

Y ′(E ′, M) (2.3)

as a map on cocycles by (ν, x) �→ (g(ν), x ′) where x ′ is the pullback of x via p̃. If (ν1, x1) ∼
(ν2, x2) via m, then we also have (g(ν1), x ′

1) ∼ (g(ν2), x ′
2) via m.

It’s clear that if (g1, p̃1) and (g2, p̃2) are tuples satisfying the requisite conditions then so

are (g2 ◦ g1, p̃2 ◦ p̃1). Moreover, we have

Lemma 2.7 �(g2, p̃2) ◦ �(g1, p̃1) = �(g2 ◦ g1, p̃1 ◦ p̃2)

Proof Clear. 
�

It is easy to check that we have �(g, p̃) = �(g, p̃′) if p̃ and p̃′ are in the same A-

conjugacy class. Hence, as we noted for �, when H1(G, A) = 0 the map �(g, p̃) only

depends on g, p and when H1(G, A′) = 0 as well, then whenever we have maps g and p
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and classes α ∈ H2(G, A), α′ ∈ H2(G, A′) such that p(α′) = α, we have a canonical map

up to canonical isomorphism �(g, p) : H1
Y (E, M) → H1

Y ′(E ′, M) where E and E ′ are any

representatives of the classes α, α′.

2.5 Compatibility of8 and9 and change of G

We first check that � commutes with change of G. Suppose we have maps �( f , g, h̃) as in

Sect. 2.3 and ρ : H → G. Then we have a commutative diagram of extensions:

E E ′

EH E ′
H

h̃

ρ̃

h̃

ρ̃

where the map EH → E ′
H is the unique map so that the above diagram commutes.

Lemma 2.8 In the above setup, we get a commutative diagram

H1
Y (E, M) H1

Y ′(E ′, M ′)

H1
Y (EH , M) H1

Y ′(E ′
H , M ′)

�( f ,g,h̃)

ρ̃ ρ̃

�( f ,g,h̃)

Proof The left vertical map takes a a cocycle (ν, x) to one of the form (ν, x ◦ ρ̃) and the

bottom map takes this to the unique cocycle (g(ν), (x ◦ ρ̃)′) such that (x ◦ ρ̃)′ pulls back to

x ◦ ρ̃ via h̃. Hence it suffices to show that the cocycle (g(ν), x ′ ◦ ρ̃) also has this property.

For e ∈ EH , we have (x ′ ◦ ρ̃)(h̃(e)) = x ′(h̃(ρ̃(e))) = (x ◦ ρ̃)(e) as desired. 
�

We now check the compatibility of � with change of G. We suppose we have maps

�(g, p̃) and ρ : H → G giving a diagram of extensions

E E ′

EH E ′
H

p̃

ρ̃

p̃

ρ̃

such that E ′
H = E ′ ×G H and the map E ′

H → EH is induced by the composition of p̃ and

the projection given by E ′
H → E ′ → E , as well as the projection E ′

H → H .

Lemma 2.9 In the above setup, we get a commutative diagram

H1
Y (E, M) H1

Y ′(E ′, M ′)

H1
Y (EH , M) H1

Y ′(E ′
H , M ′)

�(g, p̃)

ρ̃ ρ̃

�(g, p̃)

Proof This is immediate from the fact that all maps are defined via pullback and that the

above diagram of extensions commutes. 
�
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Finally, we check the following compatibility of � and �. Suppose we have the following

commutative diagram of extensions

E E1

E ′ E ′
1

h̃

p̃

h̃1

p̃′

a G-homomorphism f : M → M ′, and a diagram

Y Y1

Y ′ Y ′
1

g

g′

g1

g′′

such that g, g′, g1 are maps of M � G-sets, g′
1 is a map of M ′ � G-sets, and g(Y ) ⊂

Y ′, g′(Y ) ⊂ Y1, g1(Y1) ⊂ Y ′
1, g′′(Y ′) ⊂ Y ′

1. We further assume that ( f , g, h̃), ( f , g1, h̃1)

satisfy the requirements of the definition of � and (g′, p̃), (g′′, p̃′) satisfy the requirements

as in the definition of �.

Lemma 2.10 Under the above assumptions, the following diagram commutes:

H1
Y (E, M) H1

Y1
(E1, M)

H1
Y ′(E ′, M ′) H1

Y ′
1
(E ′

1, M ′)

�(g′, p̃)

�( f ,g,h̃) �( f ,g1,h̃1)

�(g′′, p̃′)

Proof This is straightforward but somewhat tedious to check. 
�

2.6 Localization

Fix a finite Galois extension K/F of global fields and a connected reductive group G.

Let v be a place of K over a place u of F . We now study the localization of the set

H1
alg(E2(K/F), G(AK )) introduced in Definition 2.4. We let Ev ⊂ K be the fixed field of the

decomposition group at v of Gal(K/F). Then Gal(K/Ev) = Gal(Kv/Fu) and hence acts on

D2(Kv) such that the natural projection π : D2(AK ) → D2(Kv) is equivariant with respect

to the Gal(K/Ev)-action. Following Kottwitz, we define the gerbe Ev
2 (K/Ev) via pushout

as Ev
2 (K/Ev) := D2(Kv) � E2(K/Ev)/N where N = {(π(d)−1, »(d)) : d ∈ D2(AK )},

giving the following commutative diagram of extensions

1 D2(AK ) E2(K/F) Gal(K/F) 1

1 D2(AK ) E2(K/Ev) Gal(K/Ev) 1

1 D2(Kv) Ev
2 (K/Ev) Gal(K/Ev) 1.

»

π π̃

j

(2.4)

By restriction as in Eq. (2.2) we get a natural map H1
alg(E2(K/F), G(AK ))→ H1

alg(E2(K/Ev),

G(AK )). Now define Yv = Yv = HomKv (D2, G) and then define H1
alg(E

v
2 (K/Ev), G(Kv))
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to equal H1
Yv

(Ev
2 (K/Ev), G(Kv)). Let g : Y2 → Yv be the base-change map and

f : G(AK ) → G(Kv) be the natural projection. Then we get a map �( f , g, π̃) :
H1

alg(E2(K/Ev), G(AK )) → H1
alg(E

v
2 (K/Ev), G(Kv)) as in Eq. (2.5). By composing these

maps we have now constructed a map

H1
alg(E2(K/F), G(AK )) → H1

alg(E
v
2 (K/Ev), G(Kv)).

We now construct a map

H1
alg(E

v
2 (K/Ev), G(Kv)) → H1

alg(Eiso(Kv/Fu), G(Kv)),

where H1
alg(Eiso(Kv/Fu), G(Kv)) is defined as in Key example 2.3. For each place v ∈ VK ,

we have a natural map μv : Gm → D2 coming from the map of character groups Z[VK ] → Z
given by projecting to the vth coordinate. In [5, Remark 7.2], Kottwitz shows there is a map

μ̃v making the following diagram commute.

1 Gm(Kv) Eiso(Kv/Fu) Gal(Kv/Fu) 1

1 D2(Kv) Ev
2 (K/Ev) Gal(K/Ev) 1.

μv μ̃v (2.5)

Thenμv induces a map g : Yv → Yiso and this gives a map�(g, μ̃v) : H1
alg(E

v
2 (K/Ev), G(Kv))

→ H1
alg(Eiso(Kv/Fu), G(Kv)) as in Eq. (2.4).

Composing with our earlier map gives the localization map

l F
u : H1

alg(E2(K/F), G(AK )) → H1
alg(Eiso(Kv/Fu), G(Kv)). (2.6)

2.7 Total localizationmap

We now want to check that we can promote the localization map defined in the previous

subsection to a map:

l F : H1
alg(E2(K/F), G(AK )) →

⊕

u∈VF

H1
alg(Eiso(Kv/Fu), G(Kv)), (2.7)

where on the righthand side we choose for each u ∈ VF a v ∈ VK over u. The right-hand

side is a direct sum of pointed sets consisting of tuples (su)u such that at all but finitely many

u, su equals the distinguished point tu .

To do so, it suffices to show that for each [ν, x] ∈ H1
alg(E2(K/F), G(AK )), its image in

H1
alg(Eiso(Kv/Fu), G(Kv)) is trivial for almost all v. To prove this result, we emulate Kot-

twitz’s argument in [5, §14]. In fact, the reader will note that the argument in this subsection

is nothing more than a detailed verification that Kottwitz’s argument goes through in our

setting.

To begin, we recall the setup of [5, §14]. We let K/F be a finite Galois extension of

global fields. For a place v ∈ K , we often write Gal(K/F)v for the decomposition group of

Gal(K/F) at v. We let VF denote the set of places of F . For any subset S ⊂ VF we denote

by SK the pre-image of S under the surjection VK � VF . We let S∞ denote the set of infinite

places of F . If S∞ ⊂ S then we have

• FS := {x ∈ F : x ∈ OFu ∀u ∈ VF \ S},
• KS := {x ∈ K : x ∈ OKv∀v ∈ VK \ SK },
• AK ,S := {x ∈ AK : xv ∈ OKv∀v ∈ VK \ SK }.
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We define Di,S for i = 1, 2, 3 to be the pro-tori with character groups X1(S) := Z, X2(S) :=
Z[SK ], X3(S) := Z[SK ]0 respectively.

We have the following lemma

Lemma 2.11 Let S ⊂ VF be any subset such that we have equality of the following sets:

{Gal(K/F)w : w ∈ SK } = {Gal(K/F)w : w ∈ VK }.
Then

• For every subgroup G ′ ⊂ Gal(K/F), we have H1(G ′, D2,S(AK )) = 0.

• For every place v of K , we have H1(Gal(Kv/Fu), D2,S(Kv)) = 0

Proof To prove the first statement, we note that similarly to [5, Lemma 6.2], we have a

canonical isomorphism

H1(G ′, D2,S(AK )) =
∏

[v]∈(SK /G ′)

H1(G ′
v, A×

K ),

where v ∈ SK is some lift of [v]. For each v, we let Fv ⊂ K be the fixed field of G ′
v . Then by

a standard argument involving Hensel’s lemma and Lang’s theorem we have an isomorphism

H1(G ′
v, A×

K ) =
⊕

w∈VFv

H1((G ′
v)wK

, K ×
wK

),

where for each w ∈ VFv , we have that wK is some chosen place of K over w. The groups

on the right all vanish by Hilbert’s Theorem 90, which proves the first claim.

The second statement is deduced in the proof of the second part of [5, Lemma 14.4]. 
�

We now restrict to those S ⊂ VF satisfying the properties of [5, §6.1]. Namely:

• S contains all infinite places

• S contains finite places that ramify in K .

• For every intermediate field E of K/F , every ideal class of E contains an ideal with

support in SE .

We define A2(S) = A×
K ,S, A3(S) = K ×

S and A1(S) to be the set of SK idele classes of K .

We have a short exact sequence

1 → A3(S) → A2(S) → A1(S) → 1.

Finally we define the set Hom(X , A) to be the subgroup of Hom(X1, A1)×Hom(X2, A2)×
Hom(X3, A3) consisting of triples (h1, h2, h3) such that the following diagram commutes:

X3 X2 X1

A3 A2 A1

h3 h2 h1

Then Tate [18] defines a canonical class α ∈ H2(Gal(K/F), Hom(X , A)) and defines

the classes αi ∈ H2(Gal(K/F), Hom(X i , Ai ) via the projections πi : Hom(X , A) →
Hom(X i , Ai ). For each S, there are analogous constructions and we get similarly αi (S) ∈
H2(Gal(K/F), Hom(X i (S), Ai (S)). We then have natural maps pS

i fitting into a diagram

0 X3(S) X2(S) X1(S) 0

0 X3 X2 X1 0

pS
3 pS

2 pS
1
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and hence inducing a a morphism pS of exact sequences. We also have maps kS
i and a

morphism kS of exact sequences

0 A3(S) A2(S) A1(S) 0

0 A3 A2 A1 0

kS
3 kS

2 kS
1

We now record a lemma of Kottwitz comparing α(S) and α. Observe that we have the

following diagram

Hom(X(S), A(S)) Hom(X(S), A) Hom(X , A)

Hom(X i (S), Ai (S)) Hom(X i (S), Ai ) Hom(X i , Ai )

kS

πi πi

pS

πi

kS
i pS

i

Then we have

Lemma 2.12

kS(α(S)) = pS(α) (2.8)

and

kS
i (αi (S)) = pS

i (αi ) (2.9)

for i = 1, 2, 3.

Proof This is [5, Lemma 14.6]. 
�

With the above notation and preliminaries, we now return to our connected reductive

group G. We extend G to a smooth affine group scheme G defined over FS(G), where S(G)

is a finite subset of VF containing all infinite places. We now define a subset S ⊂ VF to be

adequate if it satisfies all of the following conditions:

• S is finite

• S contains S(G)

• S contains all finite places that ramify in K

• For every intermediate field E of K/F , every ideal class of E contains an ideal in the

support of SE

• S satisfies the condition of Lemma 2.11.

Such sets exist (for instance see [5, Remark 14.4]) and if S′ ⊂ VF is finite S′ ⊃ S for S

adequate, then S′ is also adequate. The first condition implies that D2,S is a torus and in

addition, the third implies that D2,S extends uniquely to a torus D2,S over FS . Indeed, this

last fact is the same as a factoring of the Galois action on X∗(D2,S) through Gal(M/F)

where M is the maximal extension of F unramified outside of S. Since K ⊂ M , and D2,S

splits over K , such a factoring indeed exists.

We will need the following lemma;

Lemma 2.13 Let u ∈ VF\S and v ∈ VK lying over u. Then the following Tate cohomology

groups satisfy

H r (Gal(Kv/Fu), D2,S(Ov)) = 0

for all r ∈ Z.
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Proof [5, Lemma 14.7]. 
�

Now, for adequate S, we want to construct a set H1
alg(E2(S), G(AK ,S)) where E2(S) is the

extension

1 → D2,S(AK ,S) → E2(S) → Gal(K/F) → 1,

with corresponding cohomology class α2(S). We define H1
alg(E2(S), G(AK ,S)) via the

H1
Y (E, M) construction above. We let M = G(AK ,S), E = E2(S), Y = HomKS

(D2,S, G).

Let Y be the orbit of Y inside
∏

v∈VK

HomKv (D2,S, G) under the action of G(AK ,S) and let

ξ : Y → Hom(D2,S(AK ,S), G(AK ,S)) be the natural map.

Next, we want to define a canonical map

H1
alg(E2(S), G(AK ,S)) → H1

alg(E2(K/F), G(AK )) (2.10)

as a composition

H1
alg(E2(S), G(AK ,S)) H1

alg(E
K
2 (S), G(AK )) H1

alg(E2(K/F), G(AK )),
BC p∗

where E K
2 (S) is the pushout of E2(S) along the map D2,S(AK ,S) → D2,S(AK ). We first define

H1
alg(E

K
2 (S), G(AK )) via the H1

Y (E, M) construction letting E = E K
2 (S), M = G(AK ),

Y = HomK (D2,S, G). We let Y be the G(AK )-orbit of Y in
∏

v∈VK

HomKv (D2,S, G) and

ξ : Y → Hom(D2,S(AK ), G(AK )) be the natural map. The map BC is then defined via the

� construction.

Now, by Lemma 2.12 we have kS
2 (α2(S)) = pS

2 (α2). Since kS
2 (α2(S)) is a class in

H2(Gal(K/F), D2,S(AK )), this implies there is a map p̃S
2 giving a map of extensions:

1 D2(AK ) E2(K/F) Gal(K/F) 1

1 D2,S(AK ) E K
2 (S) Gal(K/F) 1.

pS
2 p̃S

2

Since by Lemma 2.11 we have that H1(Gal(K/F), D2,S(AK )) = 0, the induced map

p̃S
2

∗
: H1

alg(E
K
2 (S), G(AK )) → H1

alg(E2(K/F), G(AK )) coming from the � construction

does not depend on the choice of p̃S
2 . Hence, we call this map p∗. We need the following

lemma:

Lemma 2.14 For each b ∈ H1
alg(E2(K/F), G(AK )), there exists an adequate set S so that b

lies in the image of the map in Eq. 2.10.

Proof Pick a cocycle (ν, x) representing b. We have ν : D2 → G is a map over K . Since

X∗(D2) = Z[VK ], we can find an adequate set S such that ν factors to give a map ν′ :
D2,S → G. This implies that (ν, x) comes from an algebraic cocycle (ν′, x ′) of E K

2 (S) for

some adequate S. By enlarging S, we can assume that ν′ comes from a map ν′′ : D2,S → GKS
.

Since D2,S(AK ,S) has finite index in E2(S), we can enlarge S so that the restriction x ′′ of

x ′ to E2(S) has image in G(AK ,S). We then note that (ν′′, x ′′) ∈ Z1
alg(E2(S), G(AK ,S)) and

maps to (ν, x). This completes the lemma. 
�
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We now construct for every adequate set S and place u /∈ S, a localization map l S
u such

that the following diagram commutes:

H1
alg(E2(S), G(AK ,S)) H1

alg(E2(K/F), G(AK ))

H1(Gal(Kv/Fu), G(Ov)) H1
alg(Eiso(Kv/Fu), G(Kv))

lS
u l F

u
(2.11)

In the above diagram top map is the canonical one we constructed previously and the bottom is

the composition of the map on cohomology induced by G(Ov) ↪→ G(Kv) and the canonical

inclusion H1(Gal(Kv/Fu), G(Kv)) ↪→ H1
alg(Eiso(Kv/Fu), G(Kv)). If we can construct such

a diagram, we will have completed our construction of the total localization map. This is

because the bottom left group in the above diagram is trivial by Lang’s theorem and Hensel’s

lemma.

As in our construction of the localization map of Eq. (2.6), we may restrict the entire

top row of the diagram to be over the extension K/Ev where Ev is the fixed field of the

decomposition group of v. Hence we can and do assume that Gal(Kv/Fu) = Gal(K/F).

To construct the above commutative diagram, we will construct a larger diagram:

H1
alg(E2(S), G(AK ,S)) H1

alg(E K
2 (S), G(AK )) H1

alg(E2(K/F), G(AK ))

H1
alg(E

Ov
2 (S), G(Ov)) H1

alg(E
Kv
2 (S), G(Kv)) H1

alg(Ev
2 (K/F), G(Kv))

H1(Gal(Kv/Fu), G(Ov)) H1(Gal(Kv/Fu), G(Kv)) H1
alg(Eiso(Kv/Fu), G(Kv)).

Loc

BC

Loc

p∗

Loc

BC

μ∗
0

p∗

μ∗
0 μ∗

v

(2.12)

The top two maps compose to give Eq. 2.10, the right vertical maps compose to give

the localization map l F
u , and the bottom maps compose to give the bottom map in Diagram

2.11. Hence, if we can construct all the relevant objects and maps and show that the diagram

commutes, the above left arrows will compose to give l S
u as desired.

We need to define two of the above sets: H1
alg(E

Ov

2 (S), G(Ov)) and H1
alg(E

Kv

2 (S), G(Kv)).

These are defined analogously to the way Ev
2 (K/F) is defined relative to E2(K/F). In par-

ticular, we define E
Ov

2 (S) as the pushout of E2(S) via the map D2,S(AK ,S) → D2,S(Ov)

and E
Kv

2 (S) as the pushout of E K
2 (S) via the map D2,S(AK ) → D2,S(Kv). We then define

H1
alg(E

Ov

2 (S), G(Ov)) using the H1
Y (E, M) construction with Y = Y = HomOv (D2,S, G).

Similarly, we define H1
alg(E

Kv

2 (S), G(Kv)) such that Y = Y = HomKv (D2,S, G).

We now turn to constructing the maps and showing they commute. To start, we have the

following commutative diagram:

D2,S(AK ,S) D2,S(AK ) D2(AK )

D2,S(Ov) D2,S(Kv) D2(Kv)

1 1 Gm(Kv),

p

p

μ0 μ0

q

μv

(2.13)
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where the map μ0 and q are trivial and μv was defined as part of the localization map. The

unlabeled maps are induced from the following commutative diagram:

AK ,S AK AK

Ov Kv Kv

We remark that Diagram 2.13 is commutative since pμv is trivial because u /∈ S.

Claim 2.15 We now claim that for each group A in Diagram 2.13, the group H1(Gal(Kv/

Fu), A) vanishes. Indeed, these groups vanish by [5, Lemma 6.5], Lemmas 2.11, 2.13, and

Hilbert’s Theorem 90. As a result of this claim all, the sets in 2.12 are well-defined up to

canonical isomorphism.

Claim 2.16 We claim that the maps in 2.13 can be extended to homomorphisms of extensions

as follows, and that each smaller square is essentially commutative in that it is commutative

up to conjugation by D2,S(Kv).

E2(S) E K
2 (S) E2(K/F)

E
Ov

2 (S) E
Kv

2 (S) Ev
2 (K/F)

Gal(Kv/Fu) Gal(Kv/Fu) Eiso(Kv/Fu)

p̃

p̃

μ̃0 μ̃0

q̃

μ̃v

If we can construct such a diagram, the essential commutativity will follow from the previous

claim. The diagram exists by the following claim.

Claim 2.17 We claim that for each A in Diagram 2.13, there is a unique element αA ∈
H2(Gal(Kv/Fu), A) such that

• αD2,S(AK ,S) = α2(S),

• αD2(AK ) = α2,

• α1 = 1,

• αGm(Kv) = α(Kv/Fu) (the local fundamental class),

• Each arrow A → A′ maps αA to αA′ ,

• Each αA gives the cohomology class corresponding to the relevant extension in Dia-

gram 2.16.

To verify the claim, the commutativity of Diagram 2.13 implies that we need only check that

along each outer edge, the maps A′ → A ← A′′ map the canonical elements αA′ , αA′′ to the

same αA ∈ H2(Gal(Kv/Fu), A). For the top of the diagram, this follows from Lemma 2.12,

for the left this follows from Lemma 2.13, for the bottom this is trivial, and for the right this

is [5, Equation (7.7)]. That these cohomology classes correspond to the various extensions

is clear from their definitions. This implies the requisite maps of extensions in the previous

claim do indeed exist.

We are now in a position to define the maps in Diagram 2.12. We first give a diagram

relating the various sets Y . We use the notation G · A to denote the G-orbit of A inside a

natural product space.
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G(AK ,S) · HomKS
(D2,S , G) G(AK ) · HomK (D2,S , G), G(AK ) · HomK (D2, G)

HomOv
(D2,S , G) HomKv (D2,S , G) HomKv (D2, G)

1 1 HomKv (Gm, G)

p

μ0 μ0

p

μv

q

(2.14)

In the above diagram, the horizontal maps have all been defined or are clear from inspec-

tion. The μ0 maps are trivial and μv was defined when we defined the localization map.

An element ν ∈ G(AK ,S) · HomKS
(D2,S, G) consists of a sequence of maps νv for each

place v of K such that the if v /∈ SK , then νv is defined over Ov . In particular, there is a

natural projection to HomOv (D2,S, G) given by ν �→ νv . The other vertical maps are defined

analogously. It is also clear that each map x : Y → Y ′ satisfies x(Y ) ⊂ Y ′.
We also have a diagram of Gal(Kv/Fu)-groups:

G(AK ,S) G(AK ) G(AK )

G(Ov) G(Kv) G(Kv)

G(Ov) G(Kv) G(Kv).

(2.15)

We can now define all the maps in Diagram 2.12 via Diagrams 2.16, 2.14, 2.15. In particular,

all are examples of the � and � constructions. We then observe that all the squares commute

by Lemmas 2.6, 2.7, and 2.10.

This finishes the proof and hence establishes the existence of the total localization map.

2.8 Basic subsets

We now define, for K/F a finite extension of number fields, a set H1
bas(E2(K/F), G(AK )).

In particular, we define H1
bas(E2(K/F), G(AK )) ⊂ H1

alg(E2(K/F), G(AK )) to be the set

of classes represented by algebraic cocycles (ν, x) such that ν : D2 → G factors through

the center ZG of G. This set is given via the H1
Y (E, M) construction with Ybas = Ybas :=

HomK (D2, ZG).

We now define a set H1
bas(E1(K/F), G(AK )/ZG(K )). We let D1 = Gm F and

define Y1 to be the subset of HomK (D1, G) factoring through ZG . We let Y1 = Y1

and define E = E1(K/F) and M = G(AK )/ZG(K )). We define ξ1 : Y1 →
HomK (D1(AK )/D1(K ), G(AK )/ZG(K )) to be the natural map.

Remark 2.18 It would be tempting to try to define a set H1
alg(E1(K/F), G(AK )/ZG(K ))

where we do not require the elements of Y1 to be central. However, the map ξ1 does not make

sense in this case.

2.9 Somemaps of global cohomology

We now claim there are canonical maps
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H1
bas(E3(K/F), G(K )) → H1

bas(E2(K/F), G(AK )) → H1
bas(E1(K/F), G(AK )/ZG(K )).

(2.16)

We will spend the rest of this subsection constructing these maps.

We begin by constructing the map H1
bas(E2(K/F), G(AK )) → H1

bas(E1(K/F),

G(AK )/ZG(K )). From [5, §6.3], we have an extension:

1 → D2(AK )/D2(K ) → F → Gal(K/F) → 1,

and maps of extensions

1 D2(AK ) E2(K/F) Gal(K/F) 1

1 D2(AK )/D2(K ) F Gal(K/F) 1

1 D1(AK )/D1(K ) E1(K/F) Gal(K/F) 1

a ã

b b̃

where a is the natural projection and b is induced by the map of characters � : Z[VK ] →
Z where �(v) = 1 for each v ∈ VK . This extension satisfies a(α1) = b(α2) ∈
H2(Gal(K/F), D2(AK )/D2(K )).

Lemma 2.19 We have H1(Gal(K/F), D2(AK )/D2(K )) = 0 and hence b̃ and ã are unique

up to conjugacy by D2(AK )/D2(K ).

Proof By [5, Lemma A.6], we have

H1(Gal(K/F), D2(AK )/D2(K )) =
∏

v∈G\VK

H1(Gv, A×
K /K ×).

In particular, it suffices to show that for each G ′ ⊂ Gal(K/F), we have H1(G ′, A×
K /K ×) =

0. Since G ′ = Gal(K/E) where E ⊂ K is the fixed field of G ′, this is a standard fact from

global class field theory. 
�

We construct the map in Eq. 2.16 using the following series of morphisms:

H1
bas(E2(K/F), G(AK ))

H1
Ybas

(E2(K/F), G(AK )/ZG(K ))

H1
Ybas

(F, G(AK )/ZG(K ))

H1
bas(E1(K/F), G(AK )/ZG(K ))

ã∗

b̃∗

The first map is induced via functoriality from G(AK ) → G(AK )/ZG(K ) and the maps

ã∗, b̃∗ are defined via pullback. We note that ã∗ and b̃∗ only depend on a and b respectively

by the previous lemma.

123



74 Page 20 of 47 A. B. Meli

To complete the construction, we need to show that the map ã∗ : H1
Ybas

(F, G(AK )/ZG(K ))

→ H1
Ybas

(E2(K/F), G(AK )/ZG(K )) is an isomorphism. The map D2(AK ) → D2(AK )/

D2(K ) is a surjection and hence it follows that the map ã : E2(K/F) → F is also surjective.

Hence, ã∗ is injective. To prove surjectivity of ã∗, we take a cocycle of (ν, x) of E2(K/F)

valued in G(AK )/ZG(K ). Then for d ∈ D2(K ), we have xd = ν(d) mod ZG(K ) = 0. In

particular, x factors through F .

We now construct the map H1
bas(E3(K/F), G(K )) → H1

bas(E2(K/F), G(AK )). Again,

from [5, §6.3], we have an extension:

1 → D3(AK ) → F
′ → Gal(K/F) → 1,

and maps of extensions

1 D3(K ) E3(K/F) Gal(K/F) 1

1 D3(AK ) F ′ Gal(K/F) 1

1 D2(AK ) E2(K/F) Gal(K/F) 1,

a′ ã′

b′ b̃′

where a′(α3) = b′(α2).

Lemma 2.20 We have H1(Gal(K/F), D3(AK )) = 0 and hence b̃′ and ã′ are unique up to

conjugacy by D3(AK ).

Proof We have

H1(Gal(K/F), D3(AK )) =
⊕

u∈VF

H1(Gal(Kv/Fu), D3(Kv)).

The groups on the right vanish by [5, Lemma 7.1.(1)]. 
�

Let Y ′
bas be the set of homomorphisms HomK (D3, ZG). Then we construct the map in

Eq. 2.16 using the following series of morphisms:

H1
bas(E3(K/F), G(K ))

H1
Y ′

bas
(E3(K/F), G(AK ))

H1
Y ′

bas
(F ′, G(AK ))

H1
bas(E2(K/F), G(AK ))

ã′∗

b̃′∗

The first map is induced via functoriality from G(K ) → G(AK ) and the maps ã′∗, b̃′∗ are

defined via pullback. We note that ã′∗ and b̃′∗ only depend on a′ and b′ respectively by the

previous lemma.

To complete the construction, we need to show that the map ã′∗ : H1
Y ′

bas
(F ′, G(AK )) →

H1
Y ′

bas
(E3(K/F), G(AK )) is an isomorphism. On the one hand the map is surjective since if
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we have a cocycle (ν, x) of E3(K/F), we can push it forward to F ′ to get a cocycle (ν, x ′)
that pulls back to (ν, x). On the other hand, if (ν1, x1) and (ν2, x2) are algebraic cocycles

of F ′ that pull back to cocycles that are equivalent via m ∈ G(AK ), then this implies that

ν1 = ν2 and that for all w ∈ F ′, m−1x1(w)w(m) = x2 since this is true on D3(AK ) and the

image of E3 and these sets generate F ′.
We now show that the map

H1
bas(E3(K/F), G(K )) → H1

bas(E2(K/F), G(AK ))

commutes with localization. In [5, §7], Kottwitz defines for a place v of K , a localization

map

H1
alg(E3(K/F), G(K )) → H1

alg(Eiso(Kv/Fu), G(Kv))

that is entirely analogous to the localization map for H1(E2(K/F), G(AK )). Then we have

Lemma 2.21 The following diagram commutes

H1
bas(E3(K/F), G(K )) H1

bas(E2(K/F), G(AK ))

H1
bas(Eiso(Kv/Fu), G(Kv)) H1

bas(Eiso(Kv/Fu), G(Kv)),

where the vertical maps are the respective localization maps and the upper horizontal map

is the one constructed in this section.

Proof First it suffices to show the lemma in the case where the base field F is the fixed field

Ev ⊂ K of the decomposition group of K at v so we assume this.

Then all the maps in the above diagram are compositions of � and � maps. Hence our

strategy is to expand the above diagram to one of the form

H1
bas(E3(K/Ev), G(K )) H1

Y ′
bas

(E3(K/Ev), G(AK )) H1
Y ′

bas

(F ′, G(AK )) H1
bas(E2(K/Ev), G(AK ))

H1
bas(E

v
3 (K/Ev), G(Kv)) H1

bas(E
v
3 (K/Ev), G(Kv)) H1

Y ′
v,bas

(F ′
v, G(Kv)) H1

bas(E
v
2 (K/Ev), G(Kv))

H1
bas(Eiso(Kv/Fv), G(Kv)) H1

bas(Eiso(Kv/Fv), G(Kv)) H1
bas(Eiso(Kv/Fv), G(Kv)) H1

bas(Eiso(Kv/Fv), G(Kv))

∼

∼

where each small square will consist of � and � maps and hence commute by Lem-

mas 2.6, 2.7, 2.10. The above diagram will be induced from a diagram of extensions:

E3(K/Ev) E3(K/Ev) F ′ E2(K/F)

Ev
3 (K/Ev) Ev

3 (K/Ev) F ′
v Ev

2 (K/Ev)

Eiso(Kv/Fv) Eiso(Kv/Fv) Eiso(Kv/Fv) Eiso(Kv/Fv)
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as well as a diagram of coefficients

G(K ) G(AK ) G(AK ) G(AK )

G(Kv) G(Kv) G(Kv) G(Kv)

G(Kv) G(Kv) G(Kv) G(Kv)

and a diagram of Y sets

HomK (D3, ZG) HomK (D3, ZG) HomK (D3, ZG) HomK (D2, ZG)

HomKv (D3, ZG) HomKv (D3, ZG) HomKv (D3, ZG) HomKv (D2, ZG)

HomKv (Gm, ZG) HomKv (Gm, ZG) HomKv (Gm, ZG) HomKv (Gm, ZG)

We need to define all the objects and morphisms in these diagrams. We recall that as in

[5, §7.3], the gerbe Ev
3 (K/Ev) is defined to be D3(Kv) �D3(K ) E3(K/Ev)/N where we

have D3(K )
π−→ D3(Kv) and D3(K )

»−→ E3(K/Ev) and then N := {(π(d)−1, »(d)) : d ∈
D3(K )}. The gerbe Ev

2 (K/Ev) was defined already in Sect. 2.6. The gerbe F ′
v is defined to

be D3(Kv) �D3(AK ) F ′/N ′ where now we have D3(AK )
π ′
−→ D3(Kv) and D3(AK )

»′−→ F ′

and N ′ := {(π ′(d)−1, »′(d)) : d ∈ D3(AK )}.
In the diagram of gerbes, all the vertical maps except the ones in the third column are

parts of the localization map and have already been defined. All the maps in the top row have

been constructed already in this section and the maps of the bottom row are all the identity.

This leaves the four maps involving F ′
v . The upper vertical one is the natural inclusion of F ′

into the semi-direct product. It is easy to check that the map

E3(K/Ev) → F
′

induces a map

E
v
3 (K/Ev) = D3(Kv) �D3(AK ) E3(K/Ev)/N → D3(Kv) �D3(AK ) F

′/N ′.

and the map

E2(K/F) → F
′

induces a map

E
v
2 (K/Ev) = D2(Kv) �D2(AK ) E2(K/Ev)/N → D3(Kv) �D3(AK ) F

′/N ′.

In fact, the map E3(K/Ev) → F ′ induces an isomorphism of extensions.

We can then define by composition

Eiso(Kv/Fv) → F
′
v := Eiso(Kv/Fv) → E

v
3 (K/Ev) → F

′
v .

Now, in the gerbe diagram, all the squares except the bottom right one are known to commute

by construction. We want to deduce that this square commutes up to conjugacy by proving

that all the maps are canonical up to conjugacy. To prove the maps are canonical we need to

show that H1(Gal(K/Ev), D3(Kv)) = H1(Gal(K/Ev), D2(Kv)) = 0. This follows from

Lemma 2.11 and [5, Lemma 14.4].
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The diagrams of Y -sets and coefficients clearly commute, and this then implies the state-

ment of the lemma. 
�

Remark 2.22 It is easy to check that the map

H1
bas(E3(K/F), G(K )) → H1

bas(E2(K/F), G(AK ))

can also be defined for H1
alg and that the above lemma is also true. We will not need this fact

in this paper.

2.10 Key global diagram: Gder simply connected case

Let G be a connected reductive group over a global field F and let K/F be a finite Galois

extension such that G is split over K . In this section and the following we construct the key

global diagram for G. Namely, the commutative diagram

⊕
u∈VF

H1
bas(Eiso(Kv/Fu ), G(Kv)) H1

bas(E2(K/F), G(AK )) H1
bas(E1(K/F), G(AK )/ZG (K ))

⊕
u∈VF

X∗(Z(Ĝ))Gal(Kv/Fu )

[
⊕

v∈VK

X∗(Z(Ĝ))

]

Gal(K/F)

X∗(Z(Ĝ))Gal(K/F)

l F

�∼

(2.17)

where the bottom left map is given as the composition

⎡
£ ⊕

v∈VK

X∗(Z(Ĝ))

¤
⎦

Gal(K/F)

=
[
X∗(Z(Ĝ)) ⊗ Z[VK ]

]
Gal(K/F)

=
⊕

u∈VF

(X∗(Z(Ĝ)) ⊗ Z[Vu])Gal(K/F)

∼=
⊕

u∈VF

X∗(Z(Ĝ))Gal(Kv/Fu),

where Vu consists of the places of K over u. The map � is induced by the map⊕
u

X∗(Z(Ĝ)) → X∗(Z(Ĝ)) summing all the coordinates together. Such a diagram is already

known to exist in the case of tori (see [5, pg 6]). In this section we prove it for G such that

Gder is simply connected. In the next section we tackle the general case using z-extensions.

In fact we construct a bit more than this diagram because we are also able to construct the

middle vertical map for algebraic cocycles (not just basic). Namely, we get a map

H1
alg(E2(K/F), G(AK )) →

⎡
£ ⊕

v∈VK

X∗(Z(Ĝ))

¤
⎦

Gal(K/F)

.

Suppose now that G is a connected reductive group over F and Gder is simply connected.

Then we define D to be the torus given by G/Gder . Note that by assumption, D̂ and Z(Ĝ)

are canonically isomorphic. We now consider the following diagram:
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⊕
u∈VF

H1
bas(Eiso(Kv/Fu ), G(Kv)) H1

bas(E2(K/F), G(AK )) H1
bas(E1(K/F), G(AK )/ZG (K ))

⊕
u∈VF

H1
bas(Eiso(Kv/Fu ), D(Kv)) H1

alg(E2(K/F), D(AK )) H1
alg(E1(K/F), D(AK )/D(K ))

⊕
u∈VF

X∗(Z(Ĝ))Gal(Kv/Fu )

[
⊕

v∈VK

X∗(Z(Ĝ))

]

Gal(K/F)

X∗(Z(Ĝ))Gal(K/F)

l F

�
�

∼

�

�
∼

(2.18)

The top and middle left arrows are the total localization maps and the top and middle

right arrows are the ones we constructed in the previous subsection. The vertical arrows from

the first to second row are all induced via functoriality from the map G → D. The vertical

bottom left arrow is the sum of local Kottwitz maps ¼G and the remaining two vertical arrows

are as in the diagram [5, pg 6]. The commutativity of the lower right square is as in loc cit.

and the commutativity of the bottom left square is [5, Lemma 7.4]. All the maps comprising

the upper and middle right arrows are given by compositions of the � and � maps while

the upper and middle vertical arrows come from changing coefficients. Hence this square

commutes by an easy application of Lemmas 2.10 and 2.6. To show the upper left square

commutes, we need only show it commutes for a fixed place u. Since the localization map

is a composition of � and � and restriction maps, this again follows from Lemma 2.10 and

Lemma 2.6.

2.11 Key global diagram: general case

In this section we use the theory of z-extensions to construct the key global diagram for

connected reductive G over F and split by K . Our argument will be analogous to similar

arguments for H1
alg(E2(K/F), G(K )) appearing in [5].

We need some preliminaries. Unfortunately, we need to prove each lemma for the gerbe

E2(K/F) with algebraic cocycles valued in G(AK ) as well as the gerbe E1(K/F) with basic

cocycles valued in G(AK )/ZG(K ).

Lemma 2.23 Let

1 → Z
i−→ G ′ p−→ G → 1

be a central extension of linear algebraic groups over F.

(1) The group H1
alg(E2(K/F), Z(AK )) acts on the fibers of

p : H1
alg(E2(K/F), G ′(AK )) → H1

alg(E2(K/F), G(AK )).

When p : G ′(AK ) → G(AK ) is surjective, these actions are transitive.

(2) The group H1
bas(E1(K/F), Z(AK )/Z(K )) acts on the fibers of

p : H1
bas(E1(K/F), G ′(AK )/ZG ′(K )) → H1

alg(E2(K/F), G(AK )/ZG(K )).

When Z is the Weil restriction of a split K -torus, these actions are transitive.

Proof We first construct the action of H1
alg(E2(K/F), Z(AK )) on the fibers of H1

alg(E2(K/F),

G ′(AK )). Pick b ∈ H1
alg(E2(K/F), G ′(AK )) and c ∈ H1

alg(E2(K/F), Z(AK )) and pick
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cocycle representatives (ν, x) of b and (μ, y) of c. Then (νμ, xy) is another cocy-

cle of H1
alg(E2(K/F), G ′(AK )) and this cocycle agrees with (ν, x) when we project to

Z1(E2(K/F), G(AK )) via p. If we replace (μ, y) with z · (μ, y) and (ν, x) with m · (ν, x)

for z ∈ Z(AK ) and m ∈ G ′(AK ) then the corresponding product gives mz · (νμ, xy) which

is clearly in the same cohomology class as (νμ, xy). An analogous argument proves the first

part of (2).

We now show the second part of (1): that when p : G ′(AK ) → G(AK ) is surjective, the

action is transitive. Pick b, b′ ∈ H1
alg(E2(K/F), G ′(AK )) in the same fiber under p and fix

cocycle representatives (ν, x) and (ν′, x ′). We can assume that the cocycles become equal

in Z1
alg(E2(K/F), G(AK )). Indeed, since the cocycles are in the same cohomology class in

H1
alg(E2(AK ), G(AK )), we can pick some m ∈ G(AK ) such that m · (ν, x) = (ν′, x ′). We

then use surjectivity to pick m′ ∈ G ′(AK ) such that p(m′) = m and observe that m′ · (ν, x)

and (ν′, x ′) agree in Z1
alg(E2(K/F), G(AK )). It is then easy to check that (ν, x) and (ν′, x ′)

differ by a unique cocycle (μ, y) ∈ Z1
alg(E2(K/F), Z(AK )).

We now show the second part of (2). We first remark that since H1(Gal(K/K ), Z(AK ))

vanishes by assumption, we have a surjection G ′(AK ) � G(AK ) and hence a surjection

G ′(AK )/ZG ′(K ) � G(AK )/ZG(K ). We claim that

Z(AK )/Z(K )
i−→ G ′(AK )/ZG ′(K )

p−→ G(AK )/ZG(K ) → 1

is exact. We have already shown that p is surjective so it remains to show that im(i) = ker(p).

It is clear that im(i) ⊂ ker(p). To show the other inclusion, pick g′ ∈ ker(p). Lift g′ to an

element g̃′ ∈ G ′(AK ). Then we must have that p(g̃′) ∈ ZG(K ). Since H1(Gal(K/K ), Z) =
0, we have that

1 → Z(K ) → ZG ′(K ) → ZG(K ) → 1

is exact. Hence we can pick z ∈ ZG ′(K ) such that p(g̃′) = p(z). Now, p(z−1 g̃′) = 1 and

so there is some z′ ∈ Z(AK ) so that i(z′) = z−1 g̃′. It follows that the projection of z′ to

Z(AK )/Z(K ) maps to the projection of z−1 g̃′ to G ′(AK )/ZG ′(K ) which is precisely g′.
Hence, g′ ∈ im(i).

At this point, we can prove transitivity using the same argument as in (1). Namely, we

pick cocycles (ν, x), (ν′, x ′) ∈ Z1
bas(E1(K/F), G ′(AK )/ZG ′(K )) which we can assume

map to the same cocycle in Z1
bas(E1(K/F), G(AK )/ZG(K )) since we have a surjection

p : G ′(AK )/ZG ′(K ) → G(AK )/ZG(K ). Then by middle-exactness, it follows that (ν, x)

and (ν′, x ′) differ by a cocycle of Z1
bas(E1(K/F), Z(AK )/Z(K )) as desired. 
�

Remark 2.24 We really do need the stronger assumption to prove part (2). Indeed, consider

1 → μ8 → Gm
p−→ Gm → 1,

where p is the 8th power map and let K = Q(
√

7). Then by the counter-example to the

Grunwald-Wang theorem, there is an element g ∈ Gm(AK ) such that p(g) = 16 but no such

element can be contained in Gm(K ). Hence,

μ8(AK )/μ8(K ) → Gm(AK )/Gm(K )
p−→ Gm(Ak)/Gm(K )

is not middle-exact.

Lemma 2.25 Let

1 → T1 → T2 → T3 → 1
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be a short exact sequence of F-tori that are split by K . Then the natural maps

H1
alg(E2(K/F), T2(AK )) → H1

alg(E2(K/F), T3(AK ))

and

H1
bas(E1(K/F), T2(AK )/T2(K )) → H1

bas(E1(K/F), T3(AK )/T3(K ))

are surjective.

Proof The surjectivity of the first map follows from the isomorphism for such tori given in

[5]:

H1
alg(E2(K/F), T (AK )) ∼= (X∗(T ) ⊗ Z[VK ])Gal(K/F)

and the fact that the functor T �→ (X∗(T ) ⊗ Z[VK ])Gal(K/F) is right exact.

The surjectivity of the second map follows for the same reason from the isomorphism of

Kottwitz:

H1
bas(E1(K/F), T (AK )/T (K )) ∼= X∗(T )Gal(K/F)


�

Lemma 2.26 Let

1 → N
i−→ G ′ p−→ G → 1

be a short exact sequence of linear algebraic groups over F.

(1) If p : G ′(AK ) → G(AK ) is surjective, then

H1
alg(E2(K/F), N (AK ))

i−→ H1
alg(E2(K/F), G ′(AK ))

p−→ H1
alg(E2(K/F), G(AK ))

is an exact sequence of pointed sets.

(2) Now suppose that i(Z N ) ⊂ ZG ′ and that N (AK )/Z N (K ) → G ′(AK )/ZG ′(K ) →
G(AK )/ZG(K ) → 1 is exact. Then

H1
alg(E2(K/F), N (AK )/Z N (K ))

i−→ H1
alg(E2(K/F), G ′(AK )/ZG ′(K ))

p−→ H1
alg(E2(K/F), G(AK )/ZG(K ))

is an exact sequence of pointed sets.

Proof We prove (1) first. If b ∈ H1
alg(E2(K F ), G ′(AK )) is in the image of i , then p(b) is trivial

since N (AK ) = ker(G ′(AK ) → G(AK )). On the other hand, if p(b) is trivial, then we can

pick a cocycle representative (ν, x) and using the surjectivity of p, may assume that the image

of x lies in ker(p) = i(N (AK )). Then (ν, x) gives an element of Z1
alg(E2(K/F), N (AK ))

and hence b lies in the image of i .

To prove (2), use the same argument noting that we have a stronger assumption to preclude

the possible failure of middle exactness. 
�

The following proposition is an analogue of [5, Prop. 2.8].
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Proposition 2.27 Let

1 → Z
i−→ G ′ p−→ G → 1

be a short exact sequence of linear algebraic F-groups such that Z is a torus that splits over

K and is central in G ′. Then the natural maps

p : H1
alg(E2(K/F), G ′(AK )) → H1

alg(E2(K/F), G(AK ))

and

p : H1
bas(E1(K/F), G ′(AK )/ZG ′(K )) → H1

bas(E1(K/F), G(AK )/ZG(K ))

are surjective. Moreover, they induce bijections between H1
alg(E2(K/F), G(AK )) and the

quotient of H1
alg(E2(K/F), G ′(AK )) by the action of H1

alg(E2(K/F), Z(AK )) as well as

between H1
bas(E1(K/F), G(AK )/ZG(K )) and the quotient of H1

bas(E1(K/F), G ′(AK )/

ZG ′(K )) by H1
bas(E1(K/F), Z(AK )/Z(K )).

Proof We first give the proof for the statements involving E2(K/F). To begin, pick b ∈
H1

alg(E2(K/F), G(AK )) and let (ν, x) be a cocycle representative of b. Since D2 is K -split,

we have that the image of ν in G K is a split K -torus T ⊂ G. Then pulling back along p we

have a short exact sequence of K -tori

1 → Z → T ′ → T → 1.

Since Z and T are K -split, this implies that T ′ is as well. Hence the short exact sequence

splits and so we have an exact sequence

1 → HomK (D2, Z) → HomK (D2, T ′) → HomK (D2, T ) → 1.

Let ν′ ∈ HomK (D2, T ′) be a lift of ν.

We now claim that p : G ′(AK ) → G(AK ) is surjective. Indeed this would

be implied by the vanishing of H1(Gal(K/K ), Z(AK )). This set is isomorphic to⊕
v∈VK

H1(Gal(Kv/Kv), Z(Kv)) and thus vanishes by Hilbert’s theorem 90.

Now, for each σ ∈ Gal(K/F), choose a lift σ̇ ∈ E2(K/F). For each σ̇ ∈ E2(K/F), we

choose an element x ′
σ̇ ∈ G ′(AK ) lifting xσ̇ . We claim that Int(x ′

σ̇ ) ◦ σ(ν′) is independent of

our choice of σ̇ and x ′
σ̇ . Indeed, if we pick a different lift σ̇ ′, then we have σ̇ ′ = σ̇d for some

d ∈ D2(AK ). Then a lift of xσ̇ ′ is of the form zx ′
σ̇ σ(ν′)(d) for z ∈ Z(AK ), which implies

our claim.

Since by definition Int(xw) ◦ σ(ν) = ν for each w ∈ E2(K/F) projecting to σ , it fol-

lows that ν′ and Int(x ′
σ̇ ) ◦ σ(ν′) are two lifts of ν. A priori, we have Int(x ′

σ̇ ) ◦ σ(ν′) ∈∏
v

HomKv (D2, T ′). But we claim that in fact, this element lies in HomK (D2, T ′). If not, there

would exist places v1, v2 and for i = 1, 2, elements xσ̇ ,i ∈ G(Kvi
) with lifts x ′

σ̇ ,i ∈ G ′(Kvi
)

such that Int(xσ̇ ,i ) ◦ σ(ν) = ν but Int(x ′
σ̇ ,1) ◦ σ(ν′) = ν′

1 and Int(x ′
σ̇ ,2) ◦ σ(ν′) = ν′

2 are

not equal to the images in HomKv1
(D2, T ′) and HomKv2

(D2, T ′) of the same element of

HomK (D2, T ′). We claim that we can choose x ′
1, x ′

2 ∈ G ′(K ) such that Int(x ′
i )(σ (ν′)) = ν′

i .

Indeed, σ(ν′) and ν′
i lie in HomKvi

(D2, S) for some K -split maximal torus S of G ′ and then

the proof of [6, Lemma 1.1.3.(a)] implies that for each i = 1, 2, we have σ(ν′) and ν′
i are

conjugate by some Weyl group element, and then our claim follows from the fact that the

Weyl group of S is a constant group scheme over K . Now consider x ′−1
1 x ′

2 ∈ G ′(K ) and its

projection to x−1
1 x2 ∈ G(K ). We have that x−1

1 x2 centralizes T by assumption, and therefore

123



74 Page 28 of 47 A. B. Meli

that x ′−1
1 x ′

2 normalizes but does not centralize T ′. But now consider the action of x ′−1
1 x ′

2 on T ′

by conjugation. It acts trivially Z and the induced action on T is also trivial. We have already

observed that we have a splitting T ′ ∼= Z ⊕ T . This makes it clear that the action of x ′−1
1 x ′

2

on T ′ is by a unipotent matrix. But NG ′(T ′)/ZG ′(T ′) is finite so some power of x ′−1
1 x ′

2 acts

trivially on T ′. Since x ′−1
1 x ′

2 is unipotent, this implies that Int(x ′−1
1 x ′

2) ∈ ZG ′(T ′), contrary

to assumption. Hence we have proven that Int(x ′
σ̇ ) ◦ σ(ν′) ∈ HomK (D2, T ′).

Hence, there exists a ½σ ∈ HomK (D2, Z) such that Int(x ′
σ̇ ) ◦ σ(ν′) = ν′ + ½σ . We claim

that σ �→ ½σ ∈ Z1(Gal(K/F), HomK (D2, Z)). Indeed, since for σ1, σ2 ∈ Gal(K/F) we

have that x ′
σ̇1

σ1(x ′
σ̇2

) is a lift of xσ1σ2 , we have

ν′ + ½σ1σ2 = Int(x ′
σ̇1

σ1(x ′
σ̇2

)) ◦ σ1σ2(ν
′)

= Int(x ′
σ̇1

) ◦ σ1(Int(x ′
σ̇2

) ◦ σ2(ν
′))

= Int(x ′
σ̇1

) ◦ (σ1(ν
′) + σ1(½σ2))

= ν′ + ½σ1 + σ1(½σ2).

In order to trivialize this cohomology class, we need to enlarge G ′. Define Z ′′ :=
ResK/F Z K and push out G ′ along Z ↪→ Z ′′ to get a diagram

1 Z G ′ G 1

1 Z ′′ G ′′ G 1.

i p

j q

Then the Gal(K/F)-module Homk(D2, Z ′′) ∼= X∗(D2) ⊗ X∗(Z ′′) is coinduced from the

Z-module X∗(D2)⊗ X∗(Z) and hence H1(Gal(K/F), HomK (D2, Z ′′)) vanishes. It follows

that there exists a μ ∈ HomK (D2, Z ′′) such that ½σ = σ(μ) − μ. Then ν′′ := ν′ − μ is a

lift of ν to ν′′ such that

Int(x ′
σ̇ ) ◦ σ(ν′′) = ν′′,

for all σ ∈ Gal(K/F).

Now define a 1-cochain of E2(K/F) valued in G ′′(AK ) by x ′′
dσ̇ := ν′′(d)x ′

σ̇ . One can

easily check that (w1, w2) �→ zw1,w2 defined by x ′′
w1w2

= zw1,w2 x ′′
w1

w1(x ′′
w2

) is a 2-cocycle

of E2(K/F) valued in Z ′′(AK ). We see that changing w1 and w2 by elements of D2(AK )

does not change the value of zw1,w2 and hence that zw1,w2 is inflated from a 2-cocycle of

Gal(K/F). But

H2(Gal(K/F), Z ′′(AK )) =
⊕

u∈VF

H2(Gal(Kv/Fu), Z ′′(Kv))

which is trivial by Shapiro’s lemma. Hence there is a function y : Gal(K/F) → Z ′′(AK )

such that (σ1, σ2) �→ y−1
σ1σ2

σ1(yσ2)yσ1 is a 2-coboundary equal to z. We can then pullback

y to E2(K/F) and define x ′′′
w := ywx ′′

w . It is easy to check that (ν′′, x ′′′) is an algebraic

1-cocycle of E2(K/F) valued in G ′′(AK ) and a lift of (ν, x). We have now shown that

H1
alg(E2(K/F), G ′′(AK )) → H1

alg(E2(K/F), G(AK )) is surjective.
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Our goal is to use this to show the surjectivity: H1
alg(E2(K/F), G ′(AK )) → H1

alg(E2(K/F),

G(AK )). We first define C := Z ′′/Z = G ′′/G. The commutative diagram

1 Z G ′ G 1

1 Z ′′ G ′′ G 1.

C C

i p

j q

induces a diagram

H1
alg(E2(K/F), Z(AK )) H1

alg(E2(K/F), G ′(AK )) H1
alg(E2(K/F), G(AK ))

H1
alg(E2(K/F), Z ′′(AK )) H1

alg(E2(K/F), G ′′(AK )) H1
alg(E2(K/F), G(AK ))

H1
alg(E2(K/F), C(AK )) H1

alg(E2(K/F), C(AK )).

i p

j q

We claim the sequence

H1
alg(E2(K/F), G ′(AK )) → H1

alg(E2(K/F), G ′′(AK )) → H1
alg(E2(K/F), C(AK ))

is exact. Indeed, by Lemma 2.26, it suffices to show that G ′′(AK ) → C(AK ) is surjective.

This follows from the exactness of

1 → Z → Z ′′ → C → 1

and Hilbert’s Theorem 90 applied to Z .

So far we have shown that starting with a b ∈ H1
alg(E2(K/F), G(AK )), we can find

a b′′ ∈ H1
alg(E2(K/F), G ′′(AK )) such that q(b) = b′′. Now by Lemma 2.25, the map

H1
alg(E2(K/F), Z ′′(AK )) → H1

alg(E2(K/F), C(AK )) is surjective and so we can find b2 ∈
H1

alg(E2(K/F), Z ′′(AK )) such that the projections of b2 and b′′ to H1
alg(E2(K/F), C(AK ))

are equal. Then b−1
2 b′′ ∈ H1

alg(E2(K/F), G ′′(AK )) and projects to the trivial element of

H1
alg(E2(K/F), C(AK )). Hence by exactness, there exists b′ ∈ H1

alg(E2(K/F), G ′(AK )) so

that the image of b′ in H1
alg(E2(K/F), G ′′(AK )) equals b−1

2 b′′. By the commutativity of the

diagram, we have p(b′) = b since q(b−1
2 b′′) = b by Lemma 2.23. We have now proven the

desired surjectivity.

To prove the last statement, we apply Lemma 2.23 using the fact that p : G ′(AK ) →
G(AK ) is surjective by Hilbert’s Theorem 90 applied to Z .

We have now proven the statements for E2(K/F). The argument for E1(K/F) is highly

analogous but we comment on the differences.

(1) In the second paragraph when we show p : G ′(AK ) → G(AK ) is surjective, we instead

need to show that

Z(AK )/Z(K ) → G ′(AK )/ZG ′(K ) → G(AK )/ZG(K ) → 1

is exact. The surjectivity follows from the surjectivity of G ′(AK ) → G(AK ) and the

middle-exactness follows from the vanishing of H1(Gal(K/K ), Z(K )) as in Lemma

2.23.
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(2) In the third paragraph we use the exactness of the above sequence to prove that all lifts

of xσ ′ are of the form zν(d)x ′
σ̇ for z ∈ Z(AK )/Z(K ) and d ∈ D1(AK )/D1(K ).

(3) Most of the fourth paragraph is unnecessary since we only work with basic cocycles.

(4) In the 7th paragraph, we define a 1-cochain of E1(K/F) valued in G ′′(AK )/ZG ′′(K )

by x ′′
dσ̇ := ν′′(d)x ′

σ̇ and then need to define a 2-cocycle (w1, w2) �→ zw1,w2 ∈
Z ′′(AK )/Z(K ) by x ′′

w1,w2
= zw1,w2 x ′′

w1
w1(x ′′

w2
). For this to make sense we need the

exactness of

Z ′′(AK )/Z ′′(K ) → G ′′(AK )/ZG ′′(K ) → G(AK )/ZG(K ).

The follows as in Lemma 2.23 from the vanishing of H1(Gal(K/K ), Z ′′(K )).

(5) In paragraph 7 we also need the vanishing of H2(Gal(K/F), Z ′′(AK )/Z ′′(K )). This

follows from the exact sequence

1 → Z ′′(K ) → Z ′′(AK ) → Z ′′(AK )/Z(K ) → 1

and the fact that the other groups in the sequence have vanishing cohomology.

(6) In the 8th paragraph, to get the desired diagram on cohomology, we need to show we

have a diagram

Z(AK )/Z(K ) G ′(AK )/ZG ′(K ) G(AK )/ZG(K )

Z ′′(AK )/Z ′′(K ) G ′′(AK )/ZG ′′(K ) G(AK )/ZG(K )

C(AK )/C(K ) C(AK )/C(K ).

i p

j q

All the maps are already known to exist except G ′(AK )/ZG ′(K ) → G ′′(AK )/ZG ′′(K ).

This one exists because by construction the map G ′ → G ′′ induces a map ZG ′ → ZG ′′ .

(7) In the 8th paragraph, in order to apply Lemma 2.26 to prove that

H1
bas(E1(K/F), G ′(AK )/ZG ′(K )) → H1

bas(E1(K/F), G ′′(AK )/ZG ′′(K ))

→ H1
bas(E1(K/F), C(AK )/C(K )

is exact, we need to show that

G ′(AK )/ZG ′(K ) → G ′′(AK )/ZG ′′(K ) → C(AK )/C(K ) → 1

is exact. Surjectivity follows from the surjectivity of G ′′(AK ) → C(AK ). As in

Lemma 2.23, we can show middle-exactness by proving that ZG ′′(K ) surjects onto

C(K ). This follows because Z ′′(K ) ⊂ ZG ′′(K ) and Z ′′(K ) surjects onto C(K ) because

H1(Gal(K/K ), Z(K )) = 1.

(8) In the final paragraph, we apply Lemma 2.23 using that H1(Gal(K/K ), Z(K )) vanishes.


�

We are now ready to construct the diagram in the previous section for connected reductive

G over F and split by a finite Galois extension K . Choose a z-extension G ′ of G. In particular

we have a short exact sequence of F-groups

1 → Z → G ′ → G → 1

such that Z is central in G ′, the torus Z is obtained by Weil-restriction from a split K -torus,

and G ′
der is simply connected.
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Now, by Proposition 2.27, we have surjections

p : H1
alg(E2(K/F), G ′(AK )) → H1

alg(E2(K/F), G(AK ))

and

p : H1
bas(E1(K/F), G ′(AK )/ZG ′(K )) → H1

bas(E1(K/F), G(AK )/ZG(K ))

that induce bijections:

H1
alg(E2(K/F), G(AK )) ∼= H1

alg(E2(K/F), G ′(AK ))/H1
alg(E2(K/F), Z(AK )),

and

H1
bas(E1(K/F), G(AK )/ZG(K )) ∼= H1

bas(E1(K/F), G ′(AK )/ZG ′(K ))/H1
bas(E1(K/F),

Z(AK )/Z(K )).

We claim that the natural maps

p :

⎡
£ ⊕

v∈VK

X∗(Z(Ĝ ′))

¤
⎦

Gal(K/F)

→

⎡
£ ⊕

v∈VK

X∗(Z(Ĝ))

¤
⎦

Gal(K/F)

and

p : X∗(Z(Ĝ ′))Gal(K/F) → X∗(Z(Ĝ))Gal(K/F)

induce bijections
⎡
£ ⊕

v∈VK

X∗(Z(Ĝ))

¤
⎦

Gal(K/F)

∼=

⎡
£ ⊕

v∈VK

X∗(Z(Ĝ ′))

¤
⎦

Gal(K/F)

/

⎡
£ ⊕

v∈VK

X∗(Ẑ)

¤
⎦

Gal(K/F)

,

and

X∗(Z(Ĝ))Gal(K/F)
∼= X∗(Z(Ĝ ′))Gal(K/F)/X∗(Ẑ)Gal(K/F).

Indeed, this follows from the exact sequence

0 → �Z → �G ′ → �G → 0

where �G is Borovoi’s fundamental group ( recall �G
∼= X∗(Z(Ĝ)) ) and the fact that tensor

product and co-invariants functors are right-exact.

Finally, we remark that by construction, the maps

H1
alg(E2(K/F), G ′(AK )) →

⎡
£ ⊕

v∈VK

X∗(Z(Ĝ ′))

¤
⎦

Gal(K/F)

and

H1
bas(E1(K/F), G ′(AK )/ZG ′(K )) → X∗(Z(Ĝ ′))

constructed in the previous section are equivariant with respect to the actions of

H1
alg(E2(K/F), Z(AK )) ∼=

⎡
£ ⊕

v∈VK

X∗(Ẑ)

¤
⎦

Gal(K/F)

,
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and

H1
bas(E1(K/F), Z(AK )/Z(K )) ∼= X∗(Ẑ)Gal(K/F),

respectively.

Together, these facts give us unique maps

H1
alg(E2(K/F), G(AK )) →

⎡
£ ⊕

v∈VK

X∗(Z(Ĝ))

¤
⎦

Gal(K/F)

and

H1
bas(E1(K/F), G(AK )/ZG(K )) → X∗(Z(Ĝ))

making the following diagrams commute:

H1
alg(E2(K/F), G ′(AK )) H1

alg(E2(K/F), G(AK ))

[
⊕

v∈VK

X∗(Z(Ĝ ′))

]

Gal(K/F)

[
⊕

v∈VK

X∗(Z(Ĝ))

]

Gal(K/F)

p

p

and

H1
bas(E1(K/F), G ′(AK )/ZG ′(K )) H1

bas(E1(K/F), G(AK )/ZG(K ))

X∗(Z(Ĝ ′))Gal(K/F) X∗(Z(Ĝ))Gal(K/F).

p

p

The maps we have constructed do not depend on our choice of z-extension. This follows

from [7, Lemma 2.4.4] where Kottwitz shows that if we have a map of reductive groups

f : G1 → G2 and z-extensions Hi of Gi for i = 1, 2, then H3 := H2 ×G2 H1 is a

z-extension of G1 and we have a commutative diagram:

H1 H3 H2

G1 G1 G2.

π1

f̃

π3 π2

f

In particular, to prove our maps do not depend on choice of z-extension, we let G1 = G2

and let the map f be the identity. Note in that in the E1 case, we also need that the maps

H3 → H1 and H3 → H2 are both surjections and hence induce maps Z H3 → Z H1 and

Z H3 → Z H2 .

We can also use this lemma to prove that the map we have constructed for E2 is functorial

for connected reductive G and the map for E1 is functorial for connected reductive G and

maps G1 → G2 that induce a map ZG1 → ZG2 . To prove this last functoriality, we need that

if f : G1 → G2 induces a map ZG1 → ZG2 then f̃ : H3 → H2 induces a map Z H3 → Z H2 .

To see this, pick z ∈ Z H3 . Then f (π3(z)) ∈ ZG2 since both f and π3 induce maps of centers.

Then f̃ (z) ∈ π−1
2 (ZG2) = Z H2 since H2 is a central extension of G2.

We have now constructed all the maps in Diagram 2.17 in the general case. It remains to

show the diagram commutes. Let 1 → Z → G ′ → G → 1 be a z-extension of G. Then we

can form Diagram 2.17 for G ′ and for Z . We get a map from the diagram of G ′ to that of G
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by functoriality and all the maps between these diagrams are surjective since they are given

as quotients by the analogous objects in the diagram for Z . Since G ′
der is simply connected,

we have proven in the previous section that the diagram for G ′ is commutative. Moreover, all

the squares between the diagram for G ′ and the diagram for G commute by a combination of

the functoriality we proved in the previous paragraph, the functoriality of the Kottwitz map,

and the compatibility of localization with the � construction. It follows by a simple diagram

chase that the diagram for G must also be commutative.

2.12 Inflation

In this section, we recall the results of [5, §8] which allow us to obtain inflation maps

that are compatible with localization. In particular, we can define H1
alg(E2, G(AF )) =

lim−→ H1
alg(E2(K/F), G(AK )) and analogously for the other cohomology sets. We can then

promote Diagram 2.17 to a commutative diagram

⊕
u∈VF

H1
bas(Eiso, G(Fu)) H1

bas(E2, G(AF )) H1
bas(E1, G(AF )/ZG(F))

⊕
u∈VF

X∗(Z(Ĝ))�Fu
X2(G) X∗(Z(Ĝ))�F

l F

�
∼

(2.19)

where X2(G) = lim−→
K

(X∗(Z(Ĝ)) ⊗ Z[VK ])Gal(K/F).

We first recall the localization maps for the gerbe Eiso. Suppose K/F and L/F are finite

Galois extensions of local fields and that K ⊂ L . Then we have the following diagram of

extensions

1 Gm(K ) Eiso(K/F) Gal(K/F) 1

1 Gm(K ) E ′
iso(K/F) Gal(L/F) 1

1 Gm(L) E inf
iso (K/F) Gal(L/F) 1

1 Gm(L) Eiso(L/F) Gal(L/F) 1

ρ

pL/K ηL/K

The gerb E ′
iso(K/F) is defined to be the fiber product Eiso(K/F) ×Gal(K/F) Gal(L/F) via

the natural projection ρ : Gal(L/F) → Gal(K/F). We define E inf
iso (K/F) as the pushout of

E ′
iso(K/F) along the natural inclusion Gm(K ) ↪→ Gm(L). Finally, the map pL/K is given

by x �→ x [L:K ] and Kottwitz show it induces a map ηL/K as in the above diagram. To each

extension in the above diagram, we assign a set M and a set Y as in Definition 2.2. For the

top extension, we let Y1 = Y1 = HomK (Gm, G) and M1 = G(K ). For the second extension

we let M2 = G(K ) and Y2 = Y2 = HomK (Gm, G). We further set M3 = M4 = G(L)

and Y3 = Y3 = Y4 = Y4 = HomL(Gm, G). We have a natural map M2 → M3 given by

inclusion and a map Y2 → Y3 given by base change. The map Y3 → Y4 is pre-composition

with pL/K . Then we get the desired local inflation map

H1
alg(Eiso(K/F), G(K )) → H1

alg(Eiso(L/F), G(L))
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as a composition of a change of G map by ρ, a � map, and a � map.

We now consider global inflation. Suppose K/F and L/F are finite Galois extensions of

global fields and that K ⊂ L . Recall the objects Ai , X i , Di of Key Example 2.3. Because

we are changing the field extension, we use the notations Ai,K , X i,K , Di,K instead. Then we

have the following diagram of extensions

1 Hom(X i,K , Ai,K ) Ei (K/F) Gal(K/F) 1

1 Hom(X i,K , Ai,K ) E ′
i (K/F) Gal(L/F) 1

1 Hom(X i,K , Ai,L) E inf
i (K/F) Gal(L/F) 1

1 Hom(X i,L , Ai,L) Ei (L/F) Gal(L/F) 1

ρ

pi p̃i

The gerbe E ′
i (K/F) is defined via pullback along ρ. The map Hom(X i,K , Ai,K ) →

Hom(X i,K , Ai,L) is given by post-composition with the obvious isomorphism Ai,K =
A

Gal(L/K )

i,L . Then the gerbe E inf
i (K/F) is defined via pushout along this map. The map

pi : Hom(X i,L , Ai,L) → Hom(X i,K , Ai,L) is defined via pre-composition with maps

pi : X i,K → X i,L . We have X1,K = Z = X1,L and we define p1 to be multiplication

by [L : K ]. We recall that X2,K = Z[VK ] and hence we define p2 : X2,K → X2,L by

p2(v) =
∑
w|v

[Lw : Kv]w. The map p3 is defined via restriction of p2. Then Kottwitz shows

[5, Lemma 8.3] that p̃i exists and is unique up to conjugation by Hom(X i,K , Ai,L).

We now define sets Mi, j and Yi, j and Yi, j where i = 1, 2, 3 corresponds with the index i

in Ei (K/F) and j = 1, 2, 3, 4 indicates which extension in the above diagram we consider.

For Mi, j we have:

G(AK )/ZG(K ) G(AK )/ZG(K ) G(AL)/ZG(L) G(AL)/ZG(L)

G(AK ) G(AK ) G(AL) G(AL)

G(K ) G(K ) G(L) G(L)

For Yi, j we have:

HomK (D1,K , ZG) HomK (D1,K , ZG) HomK (D1,K , ZG) HomL(D1,L , ZG)

HomK (D2,K , G) HomK (D2,K , G) HomK (D2,K , G) HomL(D2,L , G)

HomK (D3,K , G) HomK (D3,K , G) HomK (D3,K , G) HomL(D3,L , G)

Finally Yi, j is:

HomK (D1, ZG ) HomK (D1, ZG ) HomK (D1, ZG ) HomL (D1, ZG )

G(AK ) · HomK (D2, G) G(AK ) · HomK (D2, G) G(AK ) · HomK (D2, G) G(AL ) · HomL (D2, G)

HomK (D3, G) HomK (D3, G) HomK (D3, G) HomL (D3, G)

In all cases, the maps ξi, j are obvious. Finally, the map Yi,3 → Yi,4 is given by pre-

composition with pi : Di,K → Di,L .
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Then the desired inflation maps

H1
bas(E1(K/F), G(AK )/ZG(K )) → H1

bas(E1(L/F), G(AL )/ZG(L))

H1
alg(E2(K/F), G(AK )) → H1

alg(E2(L/F), G(AL ))

H1
alg(E3(K/F), G(K )) → H1

alg(E3(L/F), G(L))

are given as a composition of a change of G map, a � map and a � map. Note that one can

also define inflation for basic sets when i = 2, 3 in analogy with the case when i = 1.

One must also check that inflation is compatible with localization when i = 2. Note that

since the inflation map is a composition of change of G and � and � maps, it is compatible

with these forms of functoriality. The localization map is also a composition of such maps and

so to prove functoriality it suffices to show that the local inflation map is the “localization”

of the global one for D2. This compatibility is stated for instance in [5, §10.9].

3 Normalizing transfer factors

In this section we define global transfer factors using the theory of global B(G) developed

in [5] as well as our modest additions in the previous section. In this section we use the bold

lettering to refer to algebraic groups defined over a number field.

Let G be a connected reductive group over a number field F . Fix a quasisplit inner form

G
∗ of G and an inner twist � : G

∗
F

→ GF (i.e. � is an isomorphism and �−1 ◦ σ(�) is

inner for all σ ∈ �F := Gal(F sep/F)).

An extended pure inner twist (�1, z1) consists of an inner twist �1 : G
∗
F

→ GF and a

cocycle z1 ∈ Z1
bas(E3(K/F), G

∗(K )) for some finite Galois extension K/F such that the

projection of z1 to Z1(�F , G
∗
ad(F)) equals σ �→ �−1

1 ◦ σ(�1). An isomorphism of two

extended pure inner twists (�1, z1) and (�2, z2) is a map f : G1 → G2 defined over F

and an element g ∈ G
∗(F sep) such that �−1

2 ◦ f ◦ �1 = Int(g) and z1
e = g−1z2

eσe(g) for

all e ∈ E3(K/F) projecting to σe ∈ Gal(K/F). One can easily check that if ( f , g) is an

automorphism of the extended pure inner twist (�, z) then f is given by Int(�(g)) : G → G

and �(g) ∈ G(F) so that f is given by conjugation by an element of G(F). The map

(�1, z1) �→ z1 induces a bijection between isomorphism classes of extended pure inner

twists and H1
bas(E3, G

∗(F)). An analogous construction works locally with the gerbe Eiso.

We now impose the following assumptions on G:

(1) � lifts to an extended pure inner twist (by [11, Cor. 3.13.13] this is true if G has connected

center).

(2) G satisfies the Hasse principle.

(3) Gder is simply connected.

3.1 Defining invariants

To begin we need to describe the construction of some invariants. Fix a semisimple element

γ ∗ ∈ G
∗(F). Let γ ∈ G(AF ) be stably conjugate to �(γ ∗). We choose g ∈ G

∗(AF ) such

that

�(gγ ∗g−1) = γ. (3.1)
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Denote the centralizer in G
∗ ofγ ∗ by I G

∗
γ ∗ . Note that this is connected since we are assuming

that Gder is simply connected. In [8, §6], Kottwitz describes an obstruction, obs(γ ) ∈ K(I G
∗

γ ∗ ),

constructed by Langlands in [12, CH VII] to the existence of an element of G(F) in the G(AF )

conjugacy class of γ . The construction proceeds by first describing the obstruction in the

case that G satisfies the Hasse principle and then reducing to that case by considering Gsc.

In our case we are actually assuming G satisfies the Hasse principle so this simplifies the

discussion. We now describe the construction in the present case where G satisfies the Hasse

principle. See also [11, §4.1] whose exposition we follow somewhat closely, generalizing to

the non-regular case.

Let σ �→ uσ be a set-theoretic lift of the cocycle σ �→ �−1 ◦ σ(�) ∈ Z1(�F , G
∗
ad(F))

to G
∗(F). Then we can easily check

g−1uσ σ(g) ∈ I G
∗

γ ∗ (AF ). (3.2)

Moreover, it is easy to see that the projection

σ �→ g−1uσ σ(g) ∈ I G
∗

γ ∗ (AF )/Z
I G∗
γ ∗

(F) (3.3)

is independent of the choice of our lift u and gives a 1-cocycle and hence a cohomology class

in H1(�F , I G
∗

γ ∗ (AF )/Z(I G
∗

γ ∗ )(F)).

Now, by [8, Theorem 2.2] we have a map

H1(�F , I G
∗

γ0
(AF )/Z(I G

∗
γ ∗ )(F)) → π0(Z(I G

∗
γ0

)�F )D . (3.4)

We denote the image of the above cohomology class in π0(Z(I G
∗

γ ∗ )�F )D by obs(γ ). It is easy

to see that this class is independent of our choice of g.

Given two semi-simple elements γ, γ ′ ∈ G(AF ) that are conjugate in G(AF ), we

find a g ∈ G(AF ) such that gγ g−1 = γ ′. Then we define the invariant inv(γ ′, γ ′) ∈
H1(�F , I G

γ (AF )) given as the cohomology class corresponding to the cocycle σ �→
g−1σ(g). Here we are thinking of I G

γ as a group defined over AF but not necessarily F .

It is easy to check that inv(γ, γ ′) is independent of g and is trivial precisely when γ and

γ ′ are conjugate in G(AF ). Finally, observe that at each place v of F we can define a local

invariant invv in the analogous way and that we have a natural isomorphism

H1(�F , I G

γ (AF )) =
⊕

v

H1(�F , I G

γ (Fv)), (3.5)

(where the right-hand side is a direct sum of pointed sets). Indeed, for each cohomology

class on the left there is a finite Galois extension K/F so that the cocycle comes from some

H1(Gal(K/F), I G
γ (AK )). Each cocycle in Z1(Gal(K/F), I G

γ (AK )) has finite image hence

factors through IG
γ (OKu ) for all but finitely many places u of K where IG

γ is a suitable

integral model of I G
γ away from finitely many places. The set H1(Gal(Ku/Fv), IG

γ (OKu ))

is then trivial at those v such that Ku/Fv is unramified by a standard application of Hensel’s

lemma and Lang’s theorem.

We now prove

Proposition 3.1 The invariant obs(γ ) satisfies the following properties

(1) The invariant obs(γ ) depends only on the G(AF )-conjugacy class of γ .
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(2) If γ, γ ′ ∈ G(AF ) are stably conjugate, then

obs(γ ′) = inv(γ, γ ′) · obs(γ ), (3.6)

where the product on the right is given as in [8, Lemma 2.4]

(3) The invariant obs(γ ) is trivial if and only if the G(AF )-conjugacy class of γ contains

an F-point.

Proof For the most part, the proofs in [11, 4.1.1, 4.1.2] go through unchanged.

For the first part, suppose that γ ′ ∈ G(AF ) is conjugate to γ . Then pick some x ∈ G(AF )

so that xγ x−1 = γ ′. Then obs(γ ′) is given by the class of

σ �→ g−1ψ−1(x−1)uσ σ(ψ−1(x))σ (g).

Then by definition of u(σ ),

Int(uσ )(σ (ψ−1(x))) = ψ−1(σ (x)),

so that the above becomes

σ �→ g−1ψ−1(x−1σ(x))uσ σ(g).

Finally, since x ∈ G(AF ), we have σ(x) = x so that the above equals obs(γ ) as desired.

For the second part, we choose x ∈ G(AF ) such that xγ x−1 = γ ′. Then we get by a

similar computation that obs(γ ′) is given by the class of

g−1ψ−1(x−1σ(x))uσ σ(g) = (Int(g−1) ◦ ψ−1)(x−1σ(x)) · g−1uσ σ(g).

We then note that we are precisely in the situation of [8, Lemma 2.4].

Lastly, we show the third and most important part of the proposition. If the G(AF )-

conjugacy class of γ has an F-point, then by the first part of the proposition, we can assume

that γ is that F-point. Then we can pick g ∈ G
∗(F) which implies that g−1uσ σ(g) ∈ I G

∗
γ ∗ (F).

Now we cite [8, Theorem 2.2] where it is proven that the kernel of the map

H1(�F , I G
∗

γ ∗ (AF )/Z(I G
∗

γ ∗ )(F)) �→ π0(Z(I G
∗

γ ∗ )�F )D,

is given by the image of the map

H1(�F , I G
∗

γ ∗ (F)/Z(I G
∗

γ ∗ )(F)) → H1(�F , I G
∗

γ ∗ (AF )/Z(I G
∗

γ ∗ )(F)).

This implies that obs(γ ) is trivial.

Conversely, suppose that obs(γ ) is trivial. Then by [8, Theorem 2.2] we have that the class

of g−1uσ σ(g) in H1(�F , I G
∗

γ ∗ (AF )/Z(I G
∗

γ ∗ )(F)) lies in the image of the map

H1(�F , I G
∗

γ ∗ (F)/Z(I G
∗

γ ∗ )(F)) → H1(�F , I G
∗

γ ∗ (AF )/Z(I G
∗

γ ∗ )(F)).

in particular, this means we can pick an x ∈ I G
∗

γ ∗ (AF ) such that the image of

x−1g−1uσ σ(g)σ (x) ∈ Z1(�F , I G
∗

γ ∗ (AF )/Z(I G
∗

γ ∗ )(F)) lies in I G
∗

γ ∗ (F)/Z(I G
∗

γ ∗ )(F). Hence

for each σ ∈ �F we can find an element c ∈ Z(I G
∗

γ ∗ )(F) such that

cx−1g−1uσ σ(g)σ (x) ∈ I G
∗

γ ∗ (F),

which implies that x−1g−1uσ σ(g)σ (x) ∈ I G
∗

γ ∗ (F).
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Therefore, we can assume without loss of generality that g−1uσ σ(g) ∈ I G
∗

γ ∗ (F) for all σ .

Now observe that

ψ(g−1uσ σ(g)u(σ )−1) = ψ(g)−1σ(ψ(g))

and hence

z := σ �→ ψ(g−1uσ σ(g)u−1
σ ),

gives an element of Z1(�F , G(F))whose image is cohomologically trivial in Z1(�F , G(AF )).

Hence by the Hasse principle for G, we have z ∈ Z1(�F , G(F)) is cohomologically trivial

and so there equals h ∈ G
∗(F) such that

1 = ψ(gh)−1σ(ψ(gh)) = ψ(g−1uσ σ(g)u−1
σ ).

Then ψ(gh) ∈ G(AF ) so that

γ ′ := ψ(gh)−1γψ(gh)

is in the G(AF )-conjugacy class of γ . On the other hand, by definition

ψ(γ ∗) = ψ(g)−1γψ(g),

so that

ψ(h−1γ ∗h) = γ ′

which implies γ ′ ∈ G(F) hence G(F) as desired. 
�

3.2 Refined invariants

Using Kottwitz’s theory of B(G) for local and global fields as well as our work in Sect. 2, we

construct, in the case that G satisfies the assumptions of the previous subsection, a refinement

of the invariant obs(γ ). We loosely follow [11, §4.1] and freely use the notation from Sect. 2.

Since we assume that � lifts to an extended pure inner twist, there exists a finite Galois

extension K of F and a cocycle (ν, ziso) ∈ Z1
bas(E3(K/F), G

∗(K )) that lifts the element

z ∈ Z1(�F , G
∗
ad(F)) corresponding to �. In particular, we have that

�−1 ◦ σe(�) = Int(ziso
e ) (3.7)

where g denotes the projection G
∗(F) → G

∗
ad(F), for any e ∈ E3 that projects to σe ∈ �F .

We now pick semisimple γ ∗ ∈ G
∗(F) and γ ∈ G(AF ) conjugate to γ ∗ in G(AF ) and

choose a g ∈ G
∗(AF ) such that

�(gγ ∗g−1) = γ.

We now use the maps constructed in Sect. 2.9 to produce a cocycle (ν2, ziso,2) ∈
Z1

bas(E2(K/F), G
∗(AK )) such that for each σ ∈ Gal(K/F), if e2, e3 are lifts of σ to

E2(K/F) and E3(K/F) respectively, then ziso
e3

= z
iso,2
e2

∈ G
∗
ad(F). In particular, starting

with (ν, ziso), we post-compose ziso with the map G(K ) → G(AK ), then pushforward to F ′

and pullback to E2(K/F) to get ziso,2. The desired property is then clear from the definitions

of the pullback and pushforward maps and the fact that the image of ν is central in G
∗.

We define an abstract E2(K/F)-cocycle valued in I G
∗

γ ∗ (AK ) by

e �→ g−1ziso,2
e σe(g). (3.8)
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It is easy to see that we indeed have g−1z
iso,2
e σe(g) ∈ I G

∗
γ ∗ (AK ) from the fact that ziso

e3
=

z
iso,2
e2

∈ G
∗
ad(F).

If we restrict this cocycle to D2(AK ) it equals ν2 and hence induces an element

inv[ziso](γ ∗, γ ) ∈ H1
bas(E2, I G

∗
γ ∗ (AF )). Via the localization maps, we get an element

inv[ziso](γ ∗, γ )(u) ∈ H1
bas(Eiso, I G

∗
γ ∗ (Fu)). Crucially, this class is trivial for all but finitely

many places u as shown in §2.7. Let ziso(u) be the localization of the cocycle ziso at the place

u. We record the following lemma.

Lemma 3.2 The class of e �→ g−1
v ziso(u)eσe(gv) in H1

bas(Eiso, I G
∗

γ ∗ (Fu)) equals that of

inv[ziso](γ ∗, γ )(u).

Proof We work at some fixed extension K such that ziso factors through H1
bas(E2(K/F),

G
∗(AK )) and g ∈ G

∗(AK ).

The localization map defined in Sect. 2.6 at u is a composition of maps

H1
alg(E2(K/F), G

∗(AK )) −→ H1
alg(E2(K/Ev), G

∗(AK ))

−→ H1
alg(E

v
2 (K/Ev), G

∗(Kv)) −→ H1
alg(Eiso(Kv/Fu), G(Kv)).

These maps are all defined on the level of cocycles and are induced from maps of extensions.

In particular, we have a natural map μ̃v : E iso(Kv/Fu) → Ev
2 (K/Ev) as in Sect. 2.6.

Pick some e ∈ E iso(Kv/Fu). Then μ̃v(e) ∈ Ev
2 (K/Ev) and we have μ̃v(e) = dl(e′) where

e′ ∈ E2(K/Ev) and d ∈ D2(Kv) and where l : E2(K/Ev) → Ev
2 (K/Ev).

Then by definition of the localization map, we have that the cocycle z giving

inv[ziso](γ ∗, γ )(u) that is induced by the above maps from g−1ziso,2σ(g) satisfies the fol-

lowing equality:

z(e) = [g−1z
iso,2
e′ σe(g)]vνv(d) = g−1

v [ziso,2
e′ νv(d)]σe(gv) = g−1

v ziso,2(v)eσe(gv).

This is the desired equality. 
�

Proposition 3.3 The image of inv[ziso](γ ∗, γ ) in H1
bas(E1, I G

∗
γ ∗ (AF )/Z

I G∗
γ ∗

(F)) lies in

H1(�F , I G
∗

γ ∗ (AF )/Z
I G∗
γ ∗

(F)) and agrees with obs(γ ) ∈ X∗(Z (̂I G∗
γ ∗ ))Gal(F/F).

Proof Suppose (ν1, ziso,1) is a cocycle representative of the image of inv[ziso](γ ∗, γ ) in

H1
bas(E1, I G

∗
γ ∗ (AF )/Z

I G∗
γ ∗

(F)). Then ν1 is trivial since it is equal to the pre-composition of ν

by D1 → D2 → D3 which is trivial. This implies the first claim.

For the second claim, we note that by definition, the projection of ziso to G
∗
ad is constant

on D3(K ) and descends to give the cocycle z ∈ Z1(�F , G
∗
ad(F)). By construction the same

will also be true ziso,2 if we quotient out by the image of ν2 and ziso
1 if we quotient by the

image of ν1. But ν1 is in fact trivial so this gives our desired result. 
�

We have now constructed inv[ziso](γ ∗, γ ) which is a refinement of obs(γ ).

3.3 Overview of transfer factors

In this subsection, we briefly review the theory of transfer factors. To that end, we consider

a connected reductive group G defined over a local field F of characteristic 0 and let Er (G)

denote the set of isomorphism classes of refined endoscopic data as in [16, §2.3]. A refined
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endoscopic datum is a tuple (H , s, η) where H is a quasisplit connected reductive group over

F , where s ∈ Z(Ĥ)�F , and η : Ĥ → Ĝ is such that I Ĝ
η(s) = η(Ĥ) and the Ĝ-conjugacy

class of η is �F -stable. We say that (H , s, η) and (H ′, s′, η′) are isomorphic if there exists

an F-isomorphism α : H ′ → H and a choice of α̂ : Ĥ → Ĥ ′ (̂α is determined by α up to

Ĥ -conjugacy) and g ∈ Ĝ such that the diagram

Ĥ Ĝ

Ĥ ′ Ĝ

α̂

η

Int(g)

η′

commutes and α̂(s) = s′.
Transfer factors arise in the comparison of orbital integrals over G and endoscopic groups

H . To describe them, we fix a refined endoscopic datum (H , s, η) and fix a lift of η to a

map Lη : L H → L G. Such a lift will always exist if Gder is simply connected but may

not exist in general. Langlands and Shelstad [13] construct a local transfer factor which is a

function � : H(F)G−sr ×G(F)sr → C, where G(F)sr denotes the subset of strongly regular

semisimple elements of G(F) and H(F)G−sr denote the subset of semisimple elements of

H(F) that transfer to strongly regular elements of G(F). The local transfer factor is canonical

up to multiplication by a scalar in C×.

Now suppose that F is a global field and fix G a reductive group over F and an inner

twist ψ : G
∗ → G between G and its quasi-split inner form G

∗. Then after fixing global

analogues of the data (H, s, Lη), Langlands and Shelstad construct a global transfer factor,

which is a function � : H(AF )G−sr × G(AF )sr → C. Following the construction in [10,

§7.3], this global factor is defined as a product over each place v of F of local transfer

factors of (Hv, Gv). We require that these local transfer factors are compatibly chosen in

the sense that they are constructed from fixed global Whittaker data, a-data and χ-data

by taking localizations at each place. Unlike the local factors, this global factor is made

completely canonical by observing that when γ H ∈ H(F)G−sr and transfers to γ ∗ ∈ G
∗(F)

and γ ∈ G(AF ), one has

�(γH, γ ) = 〈obs(γ ), ϕ̂−1

γ ∗,γ H
(s)〉, (3.9)

where ϕγ ∗,γ H : SH → S is an admissible isomorphism of the maximal tori SH ⊂ H and

S ⊂ G
∗ equal to the centralizers of γ H and γ ∗ in their respective groups.

In practice, one often uses transfer factors to relate the Langlands correspondences of

G(Fv) and H(Fv). To do so, one needs a canonical normalization of local transfer factors

that is compatible with analogous constructions in representation theory. When G is quasi-

split, a canonical normalization is given by fixing a Whittaker datum as described in [10,

§5.3]. When G is not quasi-split, the problem of finding a canonical normalization of transfer

factors at each place v of F compatible with the Langlands correspondence is quite subtle

and described extensively in [3]. There are two approaches to solving this problem. The first

uses B(F, G) and is described in [11] and the second uses the rigid gerbe of Kaletha [4].

However, in the context of the trace formula for Shimura varieties one needs to extend

transfer factors to the domain H(AF )(G,H)−reg × G(AF )ss, where H(AF )(G,H)−reg denotes

the locus of (G, H)-regular semisimple elements of H(AF ). These are the semisimple γ H ∈
H(AF ) such that if γ ∗ ∈ G

∗(F) is a transfer of γ H, then I G
∗

γ ∗ is an inner form of I H

γ H
. In

[14], Langlands and Shelstad show that one can extend local and global transfer factors by

continuity to H(F)(G,H)−reg × G(F)ss and H(AF )(G,H)−reg × G(AF )ss respectively. It will
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be useful to record explicit formulas for these transfer factors on the H(F)(G,H)−reg×G(F)ss

locus. This will be done in § 3.4.

It is asserted in [14, §2.4] (immediately before their §2.5) that the global transfer satisfies

(3.9) for γ H ∈ H(F)(G,H)−reg that transfers to γ ∗ ∈ G
∗(F) and γ ∈ G(AF ) but no proof of

this assertion is given. In [1, Lemma 4.1.(i)], Arthur proves a formula that implies this fact in

the case of elliptic endoscopy and elliptic semisimple elements. In Corollary 3.10 we record

a proof of this fact for all G arising from B(F, G
∗).

For applications (cf. [16, §4]), it is useful to describe the transfer factors on the (G, H)-

regular locus explicitly without using limits. In Sect. 3.4, we use the theory of B2(F, G) we

have developed to construct local and global transfer factors on the (G, H)-regular locus that

agree with Kaletha’s construction of B(F, G)-normalized transfer factors on the strongly

regular locus.

3.4 Construction of factors

We now construct our transfer factors. We return to the notation of Sect. 3.2. Fix an F-splitting

(B, T , {Xα}) of G
∗ and a nontrivial character χ : AF/F → C×. Following [10, §5.3] (see

also [3]), the F-splitting and χ induce a pair (B, ½χ ) where B has unipotent radical N and

½χ : N (AF )/N (F) → C× is a generic character (i.e. ½χ is non-trivial when restricted to

each simple relative root subgroup). The G
∗(F)-conjugacy class of (B, ½χ ) gives a global

Whittaker datum w of G
∗. For each place v of F , our splitting plus the restriction, χv , of

χ to Fv induce a local Whittaker datum wv . This is the same as the local Whittaker datum

induced by the inclusion N (Fv) → N (AF ). In this section we use the notation B(F, G) for

H1
alg(Eiso, G(F)), where F is a local field.

We now fix an isomorphism class in Er (G) and a representative (H, s, η) of this class.

Since Gder is simply connected, we can lift η to a map Lη : L
H → L

G. We fix �F equivariant

splittings of Ĝ and Ĝ∗. Then the map � : G
∗ → G induces an isomorphism L

G → L
G

∗

preserving the splittings and hence we can consider (H, s, η) to be a refined endoscopic

datum of G
∗.

At each place v of F , we get a refined endoscopic datum (HFv , s, η) of G
∗
Fv

. This combined

with our choice of Lη gives the “Whittaker normalized” transfer factor between Hv and G
∗
v

which we denote �[wv](γ H, γ ∗) for γ H ∈ H(Fv) a (G, H)-regular semisimple element and

γ ∗ a semisimple element of G
∗(Fv). As explained in [9, §5.5], there are two normalizations

of the factor which are compatible with twisted endoscopy and these are denoted by �′
½ and

�½
D . The first transfer factor is compatible with the arithmetic normalization of the local

Langlands correspondence while the second is compatible with the geometric normalization.

In this paper, we will use the second of these normalizations which notably differs from the

choice made in [11]. Our construction of the various obs and inv invariants is analogous to

[11] and hence differs from that of [10] (cf [11, Rem. 4.2.2]).

We now record explicit formulas for �[wv](γ H, γ ∗). Recall that these transfer factors are

defined in [14, §2.4] by taking a limit of �[wv](γ H
n , γ ∗

n ), such that (γ H
n , γ ∗

n ) ∈ H(Fv)G∗−sr ×
G

∗(Fv)sr and each γ H
n transfers to γ ∗

n . We assume further that all γ H
n (resp. γ ∗

n ) lie in a

fixed maximal torus SH ⊂ H (resp. S ⊂ G
∗) containing γ H (resp. γ ∗). We let ϕγ ∗,γH

:
SH → S be an admissible isomorphism of these tori satisfying ϕγ ∗,γH

(γ H) = γ ∗, and

we assume (γ H
n , γ ∗

n ) have been chosen such that ϕγ ∗,γ H (γ H
n ) = γ ∗

n . We also make use

of fixed Gal(F/F)-stable Borel pairs (B, T ), (B̂, T̂ ), (BH, TH), (B̂H, T̂H) and assume that

η(T̂H) = T̂ and η(B̂H) = B̂.
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The Whittaker-normalized transfer factor �[wv] is a product of a number of terms:

�[w] = εL(V , χv)�I �I I �I I I2,D
�I V ,

which we examine in turn. See also [3, §1.3] for a summary of these terms (though beware

that this source uses the �′
½ normalization).

The local ε-factor εL(V , χv) for the virtual representation V = X∗(T )C − X∗(TH)C does

not depend on (γ H
n , γ ∗

n ) and hence is the same as in the strongly regular case. Similarly, �I

depends only on S, T and s and so is constant over our limit.

The term �I I requires picking χ and a-data for the roots R(S, G
∗). Then it is given as a

product

�I I =
∏

α

χα

(
α(γ ∗

n ) − 1

aα

)
, (3.10)

where the product is over sets of representatives of Gal(Fv/Fv)-orbits in R(S, G
∗)\ϕγ ∗,γ H

R(SH, H). Note that this limit exists because by the (G∗, H)-regular assumption, γ ∗ does

not vanish on the roots α that appear formula (3.10). Moreover, the limit is clearly given by

replacing γ ∗
n with γ ∗ in formula (3.10).

The term �I I I2,D
equals a(γ ∗

n ), where a is a certain character of S(F) coming from

Langlands duality for tori. The character does not depend on (γ H
n , γ ∗

n ) and hence the limit is

simply a(γ ∗).
Finally, the term �I V is given by

�I V = | det(Ad(γ ∗
n ) − 1 | Lie(G∗) \ Lie(S))|

1
2
v

| det(Ad(γ H
n ) − 1 | Lie(H) \ Lie(SH))|

1
2
v

. (3.11)

As γ ∗
n → γ ∗ (resp. γ H

n → γ H), the map Ad(γ ∗
n ) − 1 : Lie(I G

∗
γ ∗ ) → Lie(G∗) (resp.

Ad(γ H
n ) − 1 : Lie(I H

γ H
) → Lie(H)) becomes trivial. Because of (G∗, H)-regularity, the Lie

algebras Lie(I H

γ H
) and Lie(I G

∗
γ ∗ ) are of the same dimension so formula (3.11) becomes in the

limit:

�I V =
| det(Ad(γ ∗) − 1 | Lie(G∗) \ Lie(I G

∗
γ ∗ ))|

1
2
v

| det(Ad(γ H) − 1 | Lie(H) \ Lie(I H

γ H
))|

1
2
v

. (3.12)

We now prove the following Lemma using the above computations.

Lemma 3.4 For the number field F and a pair (γ H, γ ∗) ∈ H(F)(G∗,H)−reg × G
∗(F)ss such

that γ H transfers to γ ∗, we have

�[w](γ H, γ ∗) = 1.

Proof We prove that for each term in the transfer factor, the product over all places equals 1.

The product of the local εL(V , χv) terms equals a global root number of a virtual Gal(F/F)

representation coming from base change from Z (and hence also R) and therefore equals 1.

The global �I term vanishes as in the proof of [13, Theorem 6.4A] since this term doesn’t

depend on (γ H, γ ∗) beyond the fixed isomorphism ϕγ ∗,γ H which is also used for each pair

(γ H
n , γ ∗

n ).

The global �I I also vanishes by the same argument as [13, Theorem 6.4A] once we

fix a global χ-datum and use the local χ-data coming via pullback from the global one. In
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particular, the point is that the global χ-datum gives functions from χα : A×
Fα

/F×
α → C×,

and these will vanish on
α(γ ∗)−1

aα
∈ F×

α .

A similar principle proves the vanishing of the global �I I I2,D
term. Namely, by fixing

global χ-data, we get that our local characters av : Fv → C× come from a global character

a : S(AF )/S(F) → C× which therefore vanishes on γ ∗.

Finally, the vanishing of �I V follows from the fact that the adelic absolute value on A×
F

vanishes on F×. 
�

Now, in analogy with the definition given in equation [11, (4.2)], we define a candidate

transfer factor as a function

�[wv, ziso(v)] : Hv(Fv)(G,H)−reg × Gv(Fv)ss → C

by

�[wv, ziso(v)](γ H, γ ) := �[wv](γ H, γ ∗) · 〈inv[ziso](γ ∗, γ )(v), ϕ̂−1

γ ∗,γ H
(s)〉−1, (3.13)

where γ H ∈ H(Fv) is (G, H)-regular semisimple, γ ∈ G(Fv) and γ ∗ ∈ G
∗(Fv) are semisim-

ple, and �v(γ
∗) and γ are stably conjugate.

Note that we have a natural pairing

B(Fv, I G
∗

γ ∗ ) × Z( Î G∗
γ ∗ )Gal(Fv/Fv) → C×, (3.14)

induced by the Kottwitz map

¼
I G∗
γ ∗

: B(Fv, I G
∗

γ ∗ ) → X∗(Z( Î G∗
γ ∗ )Gal(Fv/Fv)). (3.15)

Then the term

〈inv[ziso](γ ∗, γ )(v), ϕ̂−1

γ ∗,γ H (s)〉−1, (3.16)

is the above pairing with ϕγ ∗,γ H some admissible homomorphism transferring γ H to γ ∗.

We now fix place v of F and define H := HFv and similarly for G and G∗. Our main

result is as follows.

Theorem 3.5 The term �[wv, ziso(v)] is a local transfer factor as in [14, §2.4] and is the

continuous extension of the B(Fv, G)-normalized local transfer factors from H(Fv)G−sr ×
G(Fv)sr to H(Fv)(G,H)−reg × G(Fv)ss.

Before we give the proof of Theorem 3.5, we need to establish some lemmas.

Lemma 3.6 Let π : B(Fv, I G∗
γ ∗ ) → B(Fv, G∗) be the projection. There is a natural bijection

(�, z, [γ ])/ ∼ {b ∈ Bbas(Fv, I G∗
γ ∗ ) : π(b) ∈ Bbas(Fv, G∗)} (3.17)

where (�, z) is an extended pure inner twist of G∗ and [γ ] ⊂ G(Fv) is a conjugacy class such

that for one (and hence any) γ ∈ [γ ], there exists g ∈ G∗(Fv) such that �(gγ ∗g−1) = γ .

We say that (�1, z1, [γ ]1) ∼ (�2, z2, [γ ]2) if there exists an isomorphism of extended pure

inner twists ( f , δ) such that f ([γ1]) = [γ2].

Proof The map from left to right in Eq. (3.17) is defined as follows. We pick a γ ∈ [γ ] and

g ∈ G∗(Fv) as above and define an element of B(Fv, I G∗
γ ∗ ) via the cocycle e �→ g−1zeσe(g).

It is clear that the projection to B(Fv, G∗) recovers the cohomology class of z which is basic.
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We show the map is well-defined. Indeed if we choose a different γ1 ∈ [γ ], g1 ∈ G∗(Fv)

such that �(g1γ
∗g−1

1 ) = γ1, then we can pick h ∈ G(Fv) such that Int(h)(γ ) = γ1. Then

we get g−1
1 �−1(h)g ∈ I G∗

γ ∗ (Fv) and hence e �→ g−1zeσe(g) is in the same cohomology

class as

e �→ [g−1
1 �−1(h)g]g−1zeσe(g)[σe(g

−1�−1(h−1)g1)]
= g−1

1 �−1(h)zeσe(�
−1(h−1))σe(g1)

= g−1
1 �−1(h)ze[z−1

e �−1(h−1)ze]σe(g1)

= g−1
1 zeσe(g1).

If (�1, z1, [γ ]) ∼ (�2, z2, [γ ]) and ( f , δ) is an isomorphism then we can pick γi ∈ Gi (Fv)

so that f (γ1) = γ2 and gi ∈ G∗
i (Fv) so that g2 = δg1. Then we have

g−1
2 z2,eσe(g2) = g−1

1 z1,eσe(g1)

as desired. Hence, we indeed get a well defined map

(�, z, [γ ])/ ∼→ Bbas(Fv, I G∗
γ ∗ ).

Conversely, let b ∈ Bbas(Fv, I G∗
γ ∗ ) such that π(b) ∈ B(Fv, G∗) is basic. Then let zb :

E iso → I G∗
γ ∗ be a cocycle representing b and note that the composition with the inclusion

i : I G∗
γ ∗ ↪→ G∗ gives a cocycle ziso representing π(b). Let � : G∗ → G be an extend pure

inner twist associated to ziso. Now we consider �(γ ∗). We will be done if we can show that

this is an element of G(Fv). Pick σ ∈ �Fv and e ∈ E iso so that σe = σ . Then since we have

�−1 ◦ σ(�) = Int(ziso
e ), we get

σ(�(γ ∗)) = σ(�)(σ (γ ∗))

= �(ziso
e σ(γ ∗)ziso

e

−1
)

= �(σ(γ ∗))

= �(γ ∗),

as desired. We leave it to the reader to check that the two maps we have constructed are

inverses of each other. 
�

The next lemma is related to the analogous fact for Galois cohomology [8, Lemma 10.2].

We recall that for G a connected reductive group over Fv (where v is possibly infinite), a

fundamental torus is defined to be a maximal Fv-torus of minimal split rank. In the case

where v is p-adic, such a T will be elliptic.

Lemma 3.7 Suppose that G is a connected reductive group over Fv . Let T ⊂ G be a funda-

mental torus. Then the image of B(Fv, T ) in B(Fv, G) contains Bbas(Fv, G).

Proof When v is infinite, this follows from [5, Lemma 13.2].

When v is finite, T is elliptic maximal and we can essentially use [5, Remark 13.3]. In

particular, for each b ∈ B(Fv, T ), the Newton point of b must factor through Z(G) since T

is elliptic. Hence b has basic image in B(Fv, G). Then the desired result follows from the

fact that in the p-adic case, the Kottwitz map is an isomorphism on basic elements and the

map X∗(T̂ )�Fv
→ X∗(Z(Ĝ))�Fv

is surjective (since coinvariants are right exact). 
�
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Lemma 3.8 Suppose v is a place of F, that G∗ is a quasisplit group over Fv , and that

� : G∗ → G is an extended pure inner twist represented by a cocycle ziso. Suppose that

γ ∈ G(Fv) and γ ∗ ∈ G∗(Fv) are semisimple and there exists g ∈ G∗(Fv) such that

�(gγ ∗g−1) = γ . Then there exist maximal Fv tori T ∗ � γ ∗ and T � γ and an element

g1 ∈ G∗(Fv) such that �(g1γ
∗g−1

1 ) = γ and �(g1T ∗g−1
1 ) = T and � ◦ Int(g) gives an

isomorphism of Fv-tori.

Proof By Lemma 3.6 we can associate to the triple (�, ziso, [γ ]), an element b ∈
Bbas(Fv, I G∗

γ ∗ ). We now pick a fundamental torus T ∗ of I G∗
γ ∗ . Then by Lemma 3.7 we can

pick a lift b′ ∈ B(Fv, T ∗) that maps to b under the canonical map B(Fv, T ∗) → B(Fv, I G∗
γ ∗ ).

We now fix a strongly regular γ ∗
T ∗ ∈ T ∗(F) and by applying the construction in Lemma 3.6

to b′ and the projection π : T ∗ → G∗, we get a triple (�, ziso, [γT ]) corresponding to

b′. Note, that by construction, we can indeed pick (�, ziso) in this triple to be the (�, ziso)

we started with. We let T be the centralizer of γT in G. By the proof of loc. cit. we get a

cocycle zb′
representing b′ and a g1 ∈ G∗(Fv) so that zb′

is given by e �→ g−1
1 ziso

e σe(g1)

and �(g1γ
∗
T ∗ g−1

1 ) = γT . In particular, �(g1T ∗g−1
1 ) = T and induces an isomorphism of

Fv tori. Let γ ′ = �(g1γ
∗g−1

1 ) ∈ T . Then (�, ziso, [γ ′]) is another representative of the

equivalence class of triples corresponding to b under Lemma 3.6. Since any automorphism

of (�, ziso) will be given by conjugation by an element of G(Fv), it follows that γ ′ and γ

are conjugate in G(Fv). Thus by taking a G(Fv)-conjugate of T and similarly modifying g1

we can arrange that �(g1γ
∗g−1

1 ) = γ . 
�

Lemma 3.9 For a fixed choice of γ ∗ ∈ G∗(Fv) and γ ∈ G(Fv) such that there exists

g ∈ G∗(Fv) with �(gγ ∗g−1) = γ , we can find sequences of elements (γ ∗
i ) and (γi ) such

that each γi ∈ G(F)sr and γ ∗
i ∈ G∗

sr satisfying:

(1) lim
i→∞

γi = γ ,

(2) lim
i→∞

γ ∗
i = γ ∗,

(3) For each i , we have that γ ∗
i is a �-transfer of γi ,

(4) There are fixed maximal tori T ∗ ⊂ G∗ and T ⊂ G such that the centralizer of each γ ∗
i

is T ∗ and the centralizer of each γi is T ,

(5) For each i , we have that the cocycles defining inv[ziso](γ ∗
i , γi )(v) and inv[ziso](γ ∗, γ )(v)

are equal in Z1
bas(Eiso, I G∗

γ∗ (Fv)).

Proof By the previous lemma, we find g ∈ G∗(Fv) and maximal tori T ∗ ⊂ G and T ⊂ G

such that �(gT ∗g−1) = T and �(gγ ∗g−1) = γ . Pick a sequence of strongly regular

elements γ ∗
i in T ∗ and converging to γ ∗. Then define γi = �(gγ ∗

i g−1). The last point

then follows from the proof of Lemma 3.2 and the fact that we have �(gγ ∗
i g−1) = γi and

�(gγ ∗g−1) = γ for the same g. 
�

We now complete the proof of Theorem 3.5.

Proof To prove Theorem 3.5, it suffices to show that �[wv, ziso(v)] equals the unique con-

tinuous extension of the B(Fv, G)-normalized local transfer factor (as in [11, Prop. 4.3.1])

from the strongly regular to (G, H)-regular locus. Our transfer factor is identical to that

of Kaletha and Taibi on the strongly regular locus, so it suffices to show that we can find

sequences (γ H
i ), (γi ) of strongly regular elements converging to γ H , γ such that our factor

satisfies lim
i→∞

�[wv, ziso(v)](γ H
i , γi ) = �[wv, ziso(v)](γ H , γ ). The Whittaker-normalized

transfer factor, �[wv], for G
∗ is already known to have this property. Hence if we have found
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sequences as above, we need only choose a sequence (γ ∗
i ) for γ ∗

i ∈ G∗(Fv) and �v(γ
∗
i )

stably conjugate to γi such that

lim
i→∞

〈inv[ziso](γ ∗
i , γi )(v), ϕ̂−1

γ ∗
i ,γ H

i

(s)〉 = 〈inv[ziso](γ ∗, γ )(v), ϕ̂−1

γ ∗,γ H (s)〉.

This is the content of Lemma 3.9. 
�

We can now define the global transfer factor�[w, ziso] to be the product of the local factors.

Note that in order for such a product to make sense, we must have that �[wv, ziso(v)](γ H, γ )

is trivial at all but finitely many places v. This follows from the analogous statement for �[wv]
as well as the fact (derived in Sect. 3.2 from our work in Sect. 2.7) that inv[ziso](γ ∗, γ )(v)

is trivial for all but finitely many v. Because of our normalization choices, we now expect

�[w, ziso] to satisfy

�[w, ziso](γH, γ ) = 〈obs(γ )−1, ϕ̂−1

γ ∗,γ H
(s)〉. (3.18)

This turns out to be the case.

Corollary 3.10 The term �[w, ziso] is equal to the unique continuous extension to

H(AF )(G,H)−reg × G(AF )ss of the canonical global absolute transfer factor of [10, §7.3]

and satisfies Eq. (3.18) when restricted to H(F)(G,H)−reg × G(AF )ss.

Proof To prove the first claim, we note that �[w, ziso] is defined to be a product of local

factors that are continuous extensions of the B(Fv, G)-normalized transfer factors of [11,

Prop. 4.3.1]. The product of these local factors equals the canonical global factor on the

H(AF )G−reg × G(AF )sr locus since it satisfies Eq. (3.18) [11, Prop. 4.3.2]. This implies the

first claim.

To prove the second claim, we recall that by Lemma 3.4, we have
∏

v

�[wv](γ H, γ ∗) = 1,

for (γ H, γ ∗) ∈ H(F)(G∗,H)−reg × G
∗(F)ss Hence, it suffices to show that

〈inv[ziso](γ ∗, γ ), ϕ̂−1

γ ∗,γ H
(s)〉 = 〈obs(γ ), ϕ̂−1

γ ∗,γ H
(s)〉,

for (γ H, γ ) ∈ H(F)(G,H)−reg × G(AF )ss and γ ∗ ∈ G
∗(F). But this follows from Proposi-

tion 3.3 and Diagram (2.17). 
�
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