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Organizations rely on machine learning engineers (MLEs) to deploy models and maintain ML pipelines in
production. Due to models’ extensive reliance on fresh data, the operationalization of machine learning, or
MLOps, requires MLEs to have pro�ciency in data science and engineering. When considered holistically,
the job seems staggering—how do MLEs do MLOps, and what are their unaddressed challenges? To address
these questions, we conducted semi-structured ethnographic interviews with 18 MLEs working on various
applications, including chatbots, autonomous vehicles, and �nance. We �nd that MLEs engage in a work�ow
of (i) data preparation, (ii) experimentation, (iii) evaluation throughout a multi-staged deployment, and
(iv) continual monitoring and response. Throughout this work�ow, MLEs collaborate extensively with data
scientists, product stakeholders, and one another, supplementing routine verbal exchanges with communication
tools ranging from Slack to organization-wide ticketing and reporting systems. We introduce the 3Vs of MLOps:
velocity, visibility, and versioning—three virtues of successful ML deployments that MLEs learn to balance and
grow as they mature. Finally, we discuss design implications and opportunities for future work.
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1 INTRODUCTION
As machine learning (ML) models are increasingly incorporated into software, a nascent sub-�eld
called MLOps (short for ML Operations) has emerged to organize the “set of practices that aim
to deploy and maintain ML models in production reliably and e�ciently” [2, 104]. It is widely
recognized that MLOps issues pose challenges to organizations. Anecdotal reports claim that 90%
of ML models don’t make it to production [103]; others claim that 85% of ML projects fail to deliver
value [94]—signaling the fact that translating ML models to production is di�cult.
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Fig. 1. Core tasks in the MLOps workflow. Prior work discusses a production data science workflow of
preparation, modeling, and deployment [102]. Our work exposes (i) the scheduled and recurring nature
of data preparation (including automated ML tasks, such as model retraining), identifies (ii) a broader
experimentation step (which could include modeling or adding new features), and provides more insight
into human-centered (iii) evaluation & deployment, and (iv)monitoring & response.

At the same time, it is unclear why MLOps issues are di�cult to deal with. Our present-day
understanding of MLOps is limited to a fragmented landscape of white papers, anecdotes, and
thought pieces [18, 21, 24, 61], as well as a cottage industry of startups aiming to address MLOps
issues [34]. Early work by Sculley et al. [87] attributes MLOps challenges to technical debt, analogous
to that in software engineering but exacerbated in ML. Prior work has studied general practices of
data scientists working on ML [37, 66, 85, 110], but successful ML deployments seem to further
involve a “team of engineers who spend a signi�cant portion of their time on the less glamorous
aspects of ML like maintaining and monitoring ML pipelines” —that is, ML engineers (MLEs) [75].
It is well-known that MLEs typically need to have strong data science and engineering skills [3],
but it is unclear how those skills are used in their day-to-day work�ows.

There is thus a pressing need to bring clarity to MLOps—speci�cally in identifying what MLOps
typically involves—across organizations and ML applications. While papers on MLOps have de-
scribed speci�c case studies, prescribed best practices, and surveyed tools to help automate the
ML lifecycle, there is a pressing need to understand the human-centered work�ow required to
support and sustain the deployment of ML models in practice. A richer understanding of common
practices and challenges in MLOps can surface gaps in present-day processes and better inform
the development of next-generation ML engineering tools. To address this need, we conducted
a semi-structured interview study of ML engineers (MLEs), each of whom has been responsible
for a production ML model. With the intent of identifying common themes across organizations
and industries, we sourced 18 ML engineers from di�erent companies and applications, and asked
them open-ended questions to understand their work�ow and day-to-day challenges—both on an
individual and organizational level.
Prior work focusing on the earlier stages of data science has shown that it is a largely iterative

and manual process, requiring humans to perform several stages of data cleaning, exploration,
model building, and visualization [30, 46, 73, 85]. Before embarking on our study, we expected
that the subsequent deployment of ML models in production would instead be more amenable
to automation, with less need for human intervention and supervision. Our interviews, in fact,
revealed the opposite—much like the earlier stages of data science, deploying and maintaining
models in production is highly iterative, manually-intensive, and team-oriented. Our interviewees
emphasized organizational and collaborative strategies to sustain ML pipeline performance and
minimize pipeline downtime, mentioning on-call rotations, manual rules and guardrails, and teams
of practitioners inspecting data quality alerts.
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In this paper, we provide insight into human-centered aspects of MLOps practices and identify
opportunities for future MLOps tools. We conduct a semi-structured interview study solely focused
onML engineers, an increasingly important persona in the broader software development ecosystem
as more applications leverage ML. Our focus on MLEs, and uncovering their work�ows and
challenges as part of the MLOps process, addresses a gap in the literature. Through our interviews,
we characterize an ML engineer’s typical work�ow (on top of automated processes) into four
stages (Figure 1): (i) data preparation, (ii) experimentation, (iii) evaluation and deployment, and (iv)
monitoring and response, all centered around team-based, collaborative practices. Key takeaways
for each stage are as follows:
Data ingestion often runs automatically, but MLEs drive data preparation through data
selection, analysis, labeling, and validation (Section 4.1). We �nd that organizations typically
leverage teams of data engineers to manage recurring end-to-end executions of data pipelines,
allowing MLEs to focus on ML-speci�c steps such as de�ning features, a retraining cadence, and a
labeling cadence. If a problem can be automated away, engineers prefer to do so—e.g., retraining
models on a regular cadence to protect against changes in the distribution of features over time.
Thus, they can spend energy on tasks that require human input, such as supervising crowd workers
who provide input labels or resolve inconcistencies in these labels.
Even in production, experimentation is highly iterative and collaborative, despite the use
of model training tools and infrastructure (Section 4.2). As mentioned earlier, various articles
claim that it is a problem for 90% of models to never make it to production [103], but we �nd that
this statistic is misguided. The nature of constant experimentation is bound to create many versions
of models, a small fraction of which (i.e. “the best of the best”) will make it to production. MLEs
discussed exercising judgment when choosing next experiments to run, and expressed reservations
about AutoML tools, or “keeping GPUs warm,” given the vast search space. MLEs consult domain
experts and stakeholders in group meetings, and prefer to iterate on the data (e.g., to identify new
feature ideas) over innovating on model architectures.
Organizations employ a multi-stage model evaluation and deployment process, so MLEs
manually review and authorize deployment to subsequent stages (Section 4.3). Textbook
model evaluation “best practices” do not do justice to the rigor with which organizations think
about deployments: they generally focus on using one typically-static held-out dataset in an o�ine
manner to evaluate the model on [54] and a single ML metric choice (e.g., precision, recall) [68]. We
�nd that many MLEs carefully deploy changes to increasing fractions of the population in stages.
At each stage, MLEs seek feedback from other stakeholders (e.g., product managers and domain
experts) and invest signi�cant resources in maintaining multiple up-to-date evaluation datasets
and metrics over time—especially to ensure that data sub-populations of interest are adequately
covered.
MLEs closely monitor deployed models and stand by, ready to respond to failures in
production (Section 4.4). MLEs ensured that deployments were reliable via strategies such as on-
call rotations, data monitoring, and elaborate rule-based guardrails to avoid incorrect outputs. MLEs
discussed pain points such as alert fatigue from alerting systems and the headache of managing
pipeline jungles [87], or amalgamations of various �lters, checks, and data transformations added
to ML pipelines over time.

The rest of our paper is organized as follows: we cover background and work related to MLOps
from the CSCW, HCI, ML, software engineering, and data science communities (Section 2). Next,
we describe the methods used in our interview study (Section 3). Then, we present our results and
discuss our �ndings, including opportunities for new tooling (Section 4 and Section 5). Finally, we
conclude with possible areas for future work.
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2 RELATEDWORK
Our work builds on previous studies of data and ML practitioners in industry. We begin with the
goal of characterizing the role of an ML Engineer, starting with related data science roles in the
literature and drawing distinctions that make MLEs unique. We then review work that discusses
data science and ML work�ows, not speci�c to MLOps. Third, we cover challenges that arise from
productionizing ML. Fourth, we survey software engineering practices in the literature that tackle
such challenges. Finally, we review recent work that explicitly attempts to de�ne and discuss
MLOps practices.

2.1 Characterizing the ML Engineer
Data science roles span various engineering and research tasks [40], andmany data-related activities
are performed by people without “data” or “ML” in their job title [41], so it can be hard to clearly
de�ne job descriptions [66]. Nonetheless, since we focus on production ML pipelines, we discuss
personas related to data science, ML, and engineering—culminating in the description of the persona
we study.

The Data Scientist:Multiple studies have identi�ed subtypes of data scientists, some of whom
are more engineering-focused than others [40, 110]. Zhang et al. [110] describe the many roles
data scientists can take—communicator, manager/executive, domain expert, researcher/scientist,
and engineer/analyst/programmer. They found considerable overlap in skills and tasks performed
between the (i) engineer/analyst/programmer and (ii) researcher/scientist roles: both are highly
technical and collaborate extensively. Separately, Kim et al. taxonomized data scientists as: insight
providers, modeling specialists, platform builders, polymaths, and team leaders [40]. Modeling
specialists build predictive models using ML, and platform builders balance both engineering and
science as they produce reusable software across products.

The Data Engineer:While data scientists engage in activities like exploratory data analysis (EDA),
data wrangling, and insight generation [37, 106], data engineers are responsible for building robust
pipelines that regularly transform and prepare data [51]. Data engineers often have a software
engineering and data systems background [40]. In contrast, data scientists typically have modeling,
storytelling, and mathematics backgrounds [40, 51]. Since production ML systems involve data
pipelines and MLmodels in larger software services, they require a combination of data engineering,
data science, and software engineering skills.

The ML Engineer (MLE): Our interview study focuses on the distinctML Engineer (MLE) persona.
MLEs have a multifaceted skill set: they know how to transform data as inputs to ML pipelines,
train ML models, serve models, and wrap these pipelines in software repositories [35, 44, 81]. MLEs
need to regularly process data at scale (much like data engineers [44]), employing statistics and ML
techniques as do data scientists [74], and are responsible for production artifacts as are software
engineers [52]. Unlike typical data scientists and data engineers, MLEs are responsible for deploying
ML models and maintaining them in production.
We classify production ML into two modes. One, which we call single-use ML, is more client-

oriented, where the focus is to generate predictions once to make a speci�c data-informed business
decision [46]. Typically, this involves producing reports, primarily performed by data scientists [32,
41]. In the other mode, which we call repeated-use ML, predictions are repeatedly generated, often
as intermediate steps in data pipelines or as part of ML-powered products, such as voice assistants
and recommender systems [3, 40]. Continuously generating ML predictions over time requires
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more data and software engineering expertise [41, 99]. In our study, we focus on MLEs who work
on the latter mode of production ML.

2.2 Machine Learning Workflows
Here, we cover literature on ML practitioners’ work�ows. We discuss both technical and collabora-
tive work�ows, and then we describe the work�ow our study seeks to uncover.
Several studies have investigated aspects of the broader ML work�ow, mostly in single-use

production ML applications. Early studies on data science work�ows point to industry-originated
software development process models, such as the Agile framework [13] and the CRoss Industry
Standard Process for Data Mining (CRISP-DM) [10]. More recently, Studer et al. [96] introduce
CRISP-ML, a new process model that augments CRISP-DM with a �nal “monitoring and mainte-
nance” phase to support ML work�ows. Muller et al. [66] interview practitioners and focus on the
data practices of data science work�ows, breaking them down into discovery, capture, design, and
curation. Wongsuphasawat et al. [106]’s work�ow includes some ML: it consists of data acquisition,
wrangling, exploration, modeling, and reporting. Wang et al. [102] takes another step back and
includes productionization; they identify three high-level phases of preparation, modeling, and
deployment. Preparation includes activities ranging fromwrangling [36] to feature engineering [74].
Modeling includes selection, hyperparameter optimization, ensembling, and validation, and deploy-
ment includes monitoring and improvement [102, 110]. Of the three large stages, several studies
have identi�ed preparation as the most time-intensive stage of the work�ow [27, 66], where data
scientists commonly iterate on rules to help generate features [30, 72].

While the above stages of the data science work�ow comprise a loop of technical tasks, Kross and
Guo [46] identify an outer loop of data science, centered around collaborative practices. The outer
loop consists of groundwork (i.e., building trust), orienting, problem framing, magic (i.e., technical
loop), and counseling. While Kross and Guo [46]’s loop focuses on data science work that directly
interacts with clients, mostly in the form of single-use ML, similar themes emerge when performing
repeated-use ML engineering work, e.g., repeatedly generating ML predictions in an automated
fashion. In production settings, predictions must yield value for the business [74], requiring some
groundwork, orienting, and problem framing. In their paper on tensions around collaborative,
applied data science work, Passi and Jackson [73] discuss that it’s important to align di�erent
stakeholders on system performance metrics: for example, one of their interviewees mentioned
that accuracy is a “problematic” metric because di�erent users interpret it di�erently. In another
example, Holstein et al. [31] say that a single global metric doesn’t capture performance for certain
groups of users (e.g., accuracy for a subgroup might decrease when overall accuracy increases).
In our study, we characterize the work�ow from a repeated-use ML engineering perspective,

focusing on speci�c practices within deployment stages. Some related work de�nes steps in the
ML work�ow, such as model training and model monitoring, through both short papers [59] and
extensive literature reviews [48]. We take a di�erent but complementary approach: like Muller
et al. [66] who focus on data scientists, we conduct an interview study of MLEs, using grounded
theory to analyze our �ndings [95]. Further, our study seeks to uncover collaborative practices and
challenges, focusing on the ML engineering perspective, and how MLEs align all stakeholders such
that ML systems continually generate value.

2.3 Production ML Challenges
Sculley et al. [87] were early proponents that production ML systems raise special challenges and
can be hard to maintain over time, based on their experience at Google. They coined the “Changing
Anything Changes Everything” (CACE) principle: if one makes a seemingly innocuous change to
an ML system, such as changing the default value for a feature from 0 to -1, the entire system’s
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behavior can drastically change. CACE easily creates technical debt and is often exacerbated as
errors “cascade,” or compound, throughout an end-to-end pipeline [71, 75, 76, 85, 87]. We cover
three well-studied challenges in production ML: data quality, reproducibility, and speci�city.
First, ML predictions are only as good as their input data [75, 76], requiring active e�orts from

practitioners to ensure good data quality [8]. Xin et al. [107] observe that production ML pipelines
consist of models that are automatically retrained, and we �nd that this retraining procedure is a
pain point for practitioners because it requires constant monitoring of data. If a model is retrained
on bad data, all future predictions will be unreliable. Data distribution shift is another known
data-related challenge for production ML systems [63, 69, 78, 97, 105], and our work builds on top
of the literature by reporting on how practitioners tackle shift issues.
Next, reproducibility in data science work�ows is a well-understood challenge, with attempts

to partially address it [9, 16, 33, 43]. Recent work also indicates that reproducibility is an ongoing
issue in data science and ML pipelines [4, 39, 47, 84]. Kross and Guo [47] mention that data
science educators who come from industry speci�cally want students to learn how to write “robust
and reproducible scienti�c code.” In interview studies, Xin et al. [108] observe the importance of
reproducibility in AutoML work�ows, and Sambasivan et al. [85] mention that practitioners who
create reproducible data assets avoid some errors.
Finally, other related work has identi�ed that production ML challenges can be speci�c to the

ML application at hand. For example, Sambasivan et al. [85] discusses how, in high-stakes domains
like autonomous vehicles, data quality is extra important and explicitly requires collaboration with
domain experts. They explain how data errors compound and have disastrous impacts, especially
in resource-constrained settings. Unlike the present study, their focus is on data quality issues
as opposed to understanding typical MLE work�ows and challenges. Paleyes et al. [71] review
published reports of individual ML deployments and mention that not all ML applications can be
easily tested prior to deployment. While ad recommender systems might be easily tested online
with a small fraction of users, other applications require signi�cant simulation testing depending
on safety, security, and scale issues [49, 70]. Common applications of ML, such as medicine [77],
customer service [19], and interview processing [6] , have their own studies. Our work expands on
the literature by identifying common challenges across various applications and reporting on how
MLEs handle them.

2.4 So�ware Engineering for ML
Through interviews and practitioner surveys, some papers explore, at a high level, how ML engi-
neering practices di�er from traditional software engineering practices. Hill et al. [29] interview
ML application developers and report challenges related to building �rst versions of ML models,
especially around the early stages of exploration and experimentation (e.g., feature engineering,
model training). They describe the process of building models as “magic”—similarly echoed by Lee
et al. [50] when analyzing ML projects from Github—with unique practices of debugging data in
addition to code. Serban et al. [88] conduct a survey of practitioners and list 29 software engineer-
ing practices for ML, such as “Use Continuous Integration” and “Peer Review Training Scripts.”
Muiruri et al. [64] interview Finnish engineers and investigate technical challenges and ML-speci�c
tools in the ML lifecycle. Amershi et al. [3] identify challenges such as hidden feedback loops and
component entanglement through their interviews with scientists, engineers, and managers at
Microsoft. They broadly discuss strategies to integrate support for ML development into traditional
software infrastructure, such as end-to-end pipeline support from data engineers and educational
conferences for employees. Our work expands on the software engineering for ML ecosystem
by considering human-centered, operational requirements for ML deployments, e.g., over time,
as MLEs are introduced to ML pipelines that are unfamiliar to them, or as customer or product
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requirements change. Unlike Amershi et al., we focus on MLEs, who are responsible for maintaining
ML pipeline performance. We also interview practitioners across companies and applications: we
provide new and speci�c examples of ML engineering practices to sustain ML pipelines as software
and categorize these practices around a broader human-centered work�ow.
The data management, software engineering, and CSCW communities have proposed various

software tools for ML work�ows. For example, some tools manage data provenance and training
context for model debugging purposes [7, 20, 28, 67]. Others help ensure reproducibility while
iterating on di�erent ideas [30, 39, 90]. With regards to validating changes in production systems,
some researchers have studied CI (Continuous Integration) for ML and proposed preliminary
solutions—for example, ease.ml/ci streamlines data management and proposes unit tests for
over�tting [1], and some papers introduce tools to perform validation and monitoring in production
ML pipelines [8, 38, 86]. Our work is complementary to existing literature on this tooling; we do
not explicitly ask interviewees questions about tools, nor do we propose any tools. We focus on
behavioral practices of MLEs.

2.5 MLOps Practices and Challenges

The traditional software engineering literature describes the need for DevOps, a combination
of software developers and operations teams, to streamline the process of delivering software
in organizations [17, 52, 55, 56]. Similarly, the �eld of MLOps, or DevOps principles applied to
machine learning, has emerged from the rise of machine learning (ML) application development
in software organizations. MLOps is a nascent �eld, where most existing papers give de�nitions
and overviews of MLOps, as well as its relation to ML, software engineering, DevOps, and data
engineering [22, 35, 44, 58, 81, 89, 91, 98–100]. Some work in MLOps attempts to characterize
a production ML lifecycle; however, there is little consensus. Symeonidis et al. [98] discuss a
lifecycle of data preparation, model selection, and model productionization, but other literature
reviews [22, 53] and guides on best practices drawing from authors’ experiences [59] conclude that,
compared to software engineering, there is not yet a standard ML lifecycle, with consensus from
researchers and industry professionals. While standardizing an ML lifecycle across di�erent roles
(e.g., scientists, researchers, business leaders, engineers) might be challenging, characterizing a
work�ow speci�c to a certain role could be more tractable.

Several MLOps papers present case studies of productionizing ML within speci�c organizations
and the resulting challenges. For example, adhering to data governance standards and regulation
is di�cult, as model training is data-hungry by nature [5, 25]. Garg et al. [22] discuss issues in
continuous end-to-end testing (i.e., continuous integration) because ML development involves
changes to datasets and model parameters in addition to code. To address such challenges, other
MLOps papers have surveyed the proliferating number of industry-originated tools in MLOps [53,
80, 83, 98]. MLOps tools can help with general pipeline management, data management, and model
management [80]. The surveys on tools motivate understanding how MLEs use such tools, to see if
there are any gaps or opportunities for improvement.

Prior work in this area—primarily limited to literature reviews, surveys, case studies, and vision
papers—motivates research in understanding the human-centered work�ows and pain points in
MLOps. Some MLOps work has interviewed people involved in the production ML lifecycle:
for example, Kreuzberger et al. [44] conduct semi-structured interviews with 8 experts from
di�erent industries spanning di�erent roles, such as AI architect and Senior Data Platform Engineer,
and uncover a list of MLOps principles such as CI/CD automation, work�ow orchestration, and
reproducibility, as well as an organizational work�ow of product initiation, feature engineering,
experimentation, and automated ML work�ow pipeline. While Kreuzberger et al. [44] explicitly
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RR Id Role Org Size Application Yrs Xp Site Highlights

1 Lg1 MLE Mgr. Large Autonomous vehicles 5-10 US-West high velocity experimentation; scenario testing
1 Md1 MLE Medium Autonomous vehicles 5-10 US-West pipeline-on-a-schedule; copy-paste anomalies
1 Sm1 MLE Small Computer hardware 10-15 US-West exploratory data analysis; AB Testing; SLOs
1 Md2 MLE Medium Retail 5-10 US-East retraining cadence; adaptive test data; feedback delay
1 Lg2 MLE Mgr. Large Ads 5-10 US-West ad click count; model ownership; keeping GPUs warm
1 Lg3 MLE Large Cloud computing 10-15 US-West bucketing / binning; SLOs; hourly batched predictions
2 Sm2 MLE Small Finance 5-10 US-West F1-score ; retraining cadence; progressive validation
2 Sm3 MLE Small NLP 10-15 Intl triage queue; fallback models; false-positive rate
2 Sm4 MLE Small OCR + NLP 5-10 Intl human annotators; word2vec; air�ow
3 Md3 MLE Mgr. Medium Banking 10-15 US-West human annotators; institutional knowledge; revenue
3 Lg4 MLE Large Cloud computing 10-15 US-West online inference; pipeline-on-a-schedule; fallback models
3 Sm5 MLE Small Bioinformatics 5-10 US-West model �ne-tuning; someone else’s features
4 Md4 MLE Medium Cybersecurity 10-15 US-East model-per-customer; join predictions w/ ground truth
4 Md5 MLE Medium Fintech 10-15 US-West retraining cadence; dropped special characters
5 Sm6 MLE Small Marketing and analytics 5-10 US-East human annotators; label quality; adaptive test data
5 Md6 MLE Medium Website builder 5-10 US-East SLOs; poor documentation; data validation
6 Lg5 MLE Large Recommender systems 10-15 US-West pipeline-on-a-schedule; SLOs; progressive validation
6 Lg6 MLE Mgr. Large Ads 10-15 US-West fallback models; on-call rotations; scale

Table 1. The table provides an anonymized description of interviewees from di�erent sizes of companies, roles,
years of experience, application areas, and their code a�ributions. The interviewees hail from a diverse set of
backgrounds. Small companies have fewer than 100 employees; medium-sized companies have 100 - 1000
employees, and large companies have 1000 or more employees. RR denotes recruitment round. Highlights
refers to key codes (i.e. from the code system in Fig. 3) a�ached to that participant’s transcript.

interview professionals from di�erent roles to understand shared patterns between their work�ows—
in fact, only two of the eight interviewees have “machine learning engineer” or “deep learning
engineer” in their job titles, our work complements their �ndings by focusing only on self-declared
ML engineers responsible for repeated-use models in production and uncovering strategies they use
to sustain model performance. As such, we uncover and present a di�erent work�ow—one centered
around ML engineering. To the best of our knowledge, we are the �rst to study the human-centered
MLOps work�ow from ML engineers’ perspectives.

3 METHODS
Upon securing approval from our institution’s review board, we conducted an interview study of
18 ML Engineers (MLEs) across various sectors. Our approach mirrored a zigzag model common to
Grounded Theory, with alternating phases of �eldwork and in-depth coding and analysis, directing
further rounds of interviews [15]. The constant comparative method helped iterate and re�ne
our categories and overarching theory. Consistent with qualitative research standards, theoretical
saturation is generally recognized between 12 to 30 participants, particularly in more uniform
populations [26]. By our 16th interview, prevalent themes emerged, signaling that saturation was
attained. Later interviews con�rmed these themes.
Our goal in conducting this study was to develop better tools for ML deployment, broadly

targeting monitoring, debugging, and observability issues. Our study was an attempt at identifying
key challenges and open opportunities in the MLOps space. This study therefore stems from our
collective desire to enrich our understanding of our target community and o�er valuable insights
into best practices in ML engineering and data science. Subsequent sections delve into participant
recruitment (Subsection 3.1), our interview structure (Subsection 3.2), and our coding and analysis
techniques (Subsection 3.3).
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3.1 Participant Recruitment & Selection
We recruited individuals who were responsible for the development, regular retraining, monitoring
and deployment of ML models in production. A description of the 18 MLEs is shown in Table 1.
The MLEs interviewed varied in their educational backgrounds, years of experience, roles, team
size, and work sector. Recruitment was conducted in rounds over the course of an academic year
(2021-2022). Our recruitment strategy was underpinned by a deliberate, iterative process that built
upon the insights from each round. The primary goal was to cultivate a representative sample that
captured the rich diversity of Machine Learning Engineers (MLEs) across various dimensions.

3.1.1 Initial Recruitment: Relying on Professional Networks. In the initial recruitment round (RR=1),
we leaned heavily on the established professional networks of our faculty co-authors. This approach,
while convenient and e�cient, resulted in a sample that was geographically skewed towards the
US-West. It also led to a greater representation from larger organizations, as well as certain sectors
like Autonomous Vehicles and Cloud Computing. This initial cohort provided valuable insights but
also highlighted the potential biases and gaps in our sample.

3.1.2 Course Correction: Diversifying the Sample. Recognizing the need for a more representative
and diversi�ed sample, our strategy in subsequent rounds shifted. Speci�cally for RR=2, we made a
concerted e�ort to engage candidates outside our immediate professional networks and particu-
larly targeted those at smaller companies. This shift in approach was operationalized by posting
recruitment advertisements and �yers in various online communities. Prospective participants
who responded to our outreach underwent a screening process for the same inclusion criteria men-
tioned previously. Their professional backgrounds and a�liations were veri�ed through platforms
such as professional websites, LinkedIn, and online portfolios. As a result, we observed a stronger
representation from domains like NLP and Finance.

3.1.3 Building a Representative Sample: Iterative Refinement. Each recruitment round served as a
feedback loop, informing the strategy for the subsequent round. As patterns emerged from our data
analysis, we �ne-tuned our recruitment focus to �ll identi�ed gaps. This iterative process ensured
that, over time, our sample grew to be more balanced in terms of roles, experience, organization
sizes, sectors, and geographical locations. By employing this iterative recruitment strategy, we
believe our study encapsulates a comprehensive cross-section of the MLE community, o�ering
insights that are both deep and broad.

In each round, between three to �ve candidates were reached by email and invited to participate.
We relied on our professional networks and open calls posted on MLOps channels in Discord1,
Slack2, and Twitter to compile a roster of candidates. The roster was incrementally updated roughly
after every round of interviews, integrating information gained from the concurrent coding and
analysis of transcripts (Section 3.3). Recruitment rounds were repeated until we reached saturation
on our �ndings [65].

3.2 Interview Protocol
With each participant, we conducted semi-structured interviews over video call lasting 45 to
75 minutes each. Over the course of the interview, we asked descriptive, structural, and contrast
questions abiding by ethnographic interview guidelines [92]. The questions are listed in Appendix A.
Speci�cally, our questions spanned six categories: i) the type of ML tasks they work on, ii) the
approaches used for building or tuning models, iii) the transition from development to production,
iv) how they evaluate their models before deployment, v) how they monitor their deployed models,
1https://discord.com/invite/Mw77HPrgjF
2mlops-community.slack.com
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(a) Color-coded Overview of Transcripts (b) Color Legend

Fig. 2. Visual summary of coded transcripts. The x-axis of (a), the color-coded overview, corresponds to a
segment (or group) of transcript lines, and the number in each cell is the code’s frequency for that transcript
segment and for that participant. Segments are blank a�er the conclusion of each interview, and di�erent
interviews had di�erent time duration. Each color in (a) is associated with a top-level axial code from our
interview study, and presented in the color legend (b). The color legend also shows the frequency of each
code across all interviews.

and vi) how they respond to issues or bugs. Participants received and signed a consent form
before the interview, and agreed to participate free of compensation. As per our agreement, we
automatically transcribed the interviews using Zoom software. In the interest of privacy and
con�dentiality, we did not record audio or video of the interviews. Transcripts were redacted of
personally identi�able information before being uploaded to a secured drive in the cloud.

3.3 Transcript Coding & Analysis
We employed grounded theory to systematically analyze our interview transcripts. Grounded theory
is a robust methodology focused on iterative data collection and analysis for theory discovery [12,
95]. One of its key features is the seamless integration of data collection and analysis, aiming to
identify emerging themes and concepts through a constant review of transcripts. In employing
grounded theory, we followed its key processes: open, axial, and selective coding. During open
coding, the initial phase of categorizing data, we deconstructed our interview transcripts into
discrete ideas or phenomena and assigned codes to these ideas (e.g., A/B testing). Then, in axial
coding, where the goal is to identify patterns and relationships between di�erent concepts, we
merged duplicate codes and drew edges between similar codes. For example, we grouped the codes
scenario testing and A/B testing under the broader testing code. Finally, through selective coding, we
distilled our codes into �ve core themes that represent the essence of our transcripts. Figure 3 shows
our hierarchy of codes, with core themes such as Tasks, Operations, and Systems & Tools. As
illustrated in Figure 2, we allocated roughly equal time to each main theme, which correspondingly
informed our �ndings. The themes relate to our �ndings as follows:

(1) Tasks refers to activities that are routinely performed by ML engineers. The analysis of code
segments descended from tasks, and its decomposition into constituent parts, culminated
in the creation of the MLOps work�ow (Figure 1), and is instrumental in the structure and
presentation of Section 4 (Findings).
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(1) Tasks
(a) Data collection, cleaning & labeling: human annotators, exploratory data analysis
(b) Embeddings & feature engineering: normalization, bucketing / binning, word2vec
(c) Data modeling & experimentation: accuracy, F1-score, precision, recall
(d) Testing: scenario testing, AB testing, adaptive test-data

(2) Biz/Org Management
(a) Business focus: service level objectives, ad click count, revenue
(b) Teams & collaboration: institutional knowledge, on-call rotations, model ownership
(c) Process maturity indicators: pipeline-on-a-schedule, fallback models, model-per-customer

(3) Operations
(a) CI/CD: artifact versioning, multi-staged deployment, progressive validation
(b) Data ingestion & integration: automated featurization, data validation
(c) Model retraining: distributed training, retraining cadence, model �ne-tuning
(d) Prediction serving: hourly batched predictions, online inference
(e) Live monitoring: false-positive rate, join predictions w/ ground truth

(4) Bugs & Pain Points
(a) Bugs: data leakage, dropped special characters, copy-paste anomalies
(b) Pain points: big org red tape, performance regressions, label quality, scale
(c) Anti-patterns: muting alerts, keeping GPUs warm, waiting it out
(d) Known challenges: data drift, feedback delay, class imbalance, sensor divergence
(e) Missing context: someone else’s features, poor documentation, much time has passed

(5) Systems & Tools
(a) Metadata layer: Huggingface,Weights & Biases, MLFlow, TensorBoard, DVC
(b) Unit layer: PyTorch, TensorFlow, Jupyter, Spark
(c) Pipeline layer: Air�ow, Kube�ow, Papermill, DBT, Vertex AI
(d) Infrastructure layer: Slurm, S3, EC2, GCP, HDFS

Fig. 3. Abridged code system: A distilled representation of the evolved code system resulting from our
qualitative study, capturing the primary tasks, organizational aspects, operational methodologies, challenges,
and tools utilized by Machine Learning Engineers.

(2) Biz/Org (Business-Organizational) Management refers to modes of interaction between
MLEs and their co-workers or managers, and between MLEs and customers or other stake-
holders. Relevant sub-codes form the theoretical basis for Section 4.2.2 (Collaboration) and
Section 4.3.2 (Product Metrics).

(3) Operations refers to repeatable work that must be performed regularly and consistently
for the continued operation of the business. Operations is the “Ops” in MLOps. Relevant
sub-codes form the theoretical basis for Section 4.1.1 (Pipeline Automation).

(4) Bugs&Pain Points refers to failuremodes encountered at any stage in theMLOpswork�ows,
MLE complaints generally, and author-noted anti-patterns. These are discussed in Monitoring
and Response (Section 4.4).

(5) Systems & Tools refers to storage and compute infrastructure, programming languages,
ML training frameworks, experiment execution frameworks, and other tools or systems that
MLEs use in their MLOps work. We discuss implications for tool design in Section 5.2. We
include a table of common tools referenced by interviewees in Appendix A.
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4 SUMMARY OF FINDINGS
Going into the interview study, we assumed thework�ow of human-centered tasks in the production
ML lifecycle was similar to the production data science work�ow presented by Wang et al. [102],
which is a loop consisting of the following:

(1) Preparation, spanning data acquisition, data cleaning and labeling, and feature engineering,
(2) Modeling, spanning model selection, hyperparameter tuning, and model validation, and
(3) Deployment, spanning model deployment, runtime monitoring, and model improvement.
From our interviews, we found that the repeated-use production ML work�ow that ML engineers

engage in di�ers slightly from Wang et al. [102]. As preliminary research papers de�ning and
providing reference architectures for MLOps have pointed out, operationalizing ML brings new
requirements to the table, such as the need for teams, not just individual people, to understand,
sustain, and improve ML pipelines and systems over time [22, 44, 98]. In the pipelines that our
interviewees build and supervise, most technical components are automated—e.g., data preprocess-
ing jobs run on a schedule, and models are typically retrained regularly on fresh data. We found
the ML engineering work�ow to revolve around the following stages (Figure 1):
(1) Data Preparation, which includes scheduled data acquisition, cleaning, labeling, and trans-

formation,
(2) Experimentation, which includes both data-driven and model-driven changes to increase

overall ML performance, and is typically measured by metrics such as accuracy or mean-
squared-error,

(3) Evaluation & Deployment, which consists of a model retraining loop which periodically
rolls out a newmodel—or o�ine batched predictions, or another proposed change—to growing
fractions of the population, and

(4) Monitoring & Response, which supports the other stages via data and code instrumentation
(e.g., tracking available GPUs for experimentation or the fraction of null-valued data points)
and dispatches engineers and bug �xes to identi�ed problems in the pipeline.

For each stage, we identi�ed human-centered practices from the Tasks, Biz/Org Management, and
Bugs & Pain Points codes, and drew on Operations codes for automated practices (refer to Section 3.3
for a description of these codes). An overview of �ndings for each work�ow stage can be found in
Table 2.

The following subsections organize our �ndings around the four stages of MLOps. We begin
each subsection with a quote that stood out to us and conversation with prior work; then, in the
context of what is automated, we discuss common human-centered practices and pain points.

4.1 Data Preparation
“It takes exponentially more data to keep getting linear increases in performance.” –Lg1

Data preparation is the process of constructing “well-structured, complete datasets” for data
scientists [66]. Data preparation activities consist of collection, wrangling, and cleaning and are
known to be challenging, often taking up to 80% of practitioners’ time [36, 102]. This tedious
process encourages larger organizations to have dedicated teams of data engineers to manage data
preparation [37]. Like Amershi et al. [3], we observed that mature ML organizations automated data
preparation through dedicated teams as much as possible (Lg1, Lg2, Lg3, Sm3, Md3, Sm6, Md6, Lg5,
Lg6). As a result, the MLEs we interviewed spent a smaller fraction of their time on data preparation,
collaborating instead with data engineering teams. We �rst discuss pipeline automation to provide
key context for the work of MLEs. Then, we mention two key challenges MLEs face: ensuring
labeling quality at scale and coping with feedback delays.
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Stage Description Non-Automated Challenges

Data Preparation Collection, wrangling, and cleaning
pipelines run on a schedule

- Ensuring label quality at scale (Section 4.1.2)
- Handling feedback or ground-truth delays (Sec-
tion 4.1.3)

Experimentation
Prototyping ideas to improve
end-to-end ML pipeline
performance by iterating on
datasets, model architectures, or
both

- Managing the underlying software or code for
data-centric experiments (Section 4.2.1)
- Engaging in cross-team collaboration (Sec-
tion 4.2.2)
- Manually and thoughtfully identifying promis-
ing experiment con�gurations (Section 4.2.3)

Evaluation and
Deployment

Pushing experimental changes to
small, then large fractions of users,
evaluating at every step

- Continuously updating dynamic validation
datasets for future experiments (Section 4.3.1)
- Using product metrics for evaluation (Sec-
tion 4.3.2)

Monitoring and
Response

Supervising live ML pipeline
performance and minimizing
pipeline downtime

- Tracking and investigating data quality alerts
(Section 4.4.1)
- Managing pipeline "jungles" of models and
hard-coded rules (Section 4.4.2)
- Debugging a heavy-tailed distribution of errors
(Section 4.4.3)

Table 2. Overview of challenging activities that ML engineers engage in for each stage in their workflow.
While each stage relies on automated infrastructure and pipelines, ML engineers still have many di�icult
manual responsibilities.

4.1.1 Pipelines automatically run on a schedule. Unlike data science, where data preparation
is often ad-hoc and interactive [37, 66], we found that data preparation in production ML is batched
and more narrowly restricted, involving an organization-wide set of steps running at a prede�ned
cadence. In interviews, we found that preparation pipelines were de�ned by Directed Acyclic
Graphs, or DAGs, which ran on a schedule (e.g., daily). Each DAG node corresponded to a particular
task, such as ingesting data from a source or cleaning a newly ingested partition of data. Each DAG
edge corresponded to a data�ow dependency between tasks. While data engineers were primarily
responsible for the end-to-end execution of data preparation DAGs, MLEs interfaced with these
DAGs by loading select outputs (e.g., clean data) or by extending the DAG with additional tasks,
e.g. to compute new features (Md1, Lg2, Lg3, Sm4, Md6, Lg6).

In many cases, automated tasks relating to ML models, such as model inference (e.g., generating
predictions with a trainedmodel) and retraining, were executed in the same DAG as data preparation
tasks (Lg1, Md1, Sm2, Md4, Md5, Sm6, Md6, Lg5). ML engineers included retraining as a node in
the data preparation DAG for simplicity: as new data becomes available, a corresponding model is
automatically retrained. Md4 mentioned automatically retraining the model every day so model
performance would not su�er for longer than a day:

Why did we start training daily? As far as I’m aware, we wanted to start simple—we could
just have a single batch job that processes new data and we wouldn’t need to worry about
separate retraining schedules. You don’t really need to worry about if your model has gone
stale if you’re retraining it every day.

Retraining cadences ranged from hourly (Lg5) to every few months (Md6) and were di�erent for
di�erent models within the same organization (Lg1, Md4). None of the participants interviewed
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reported any scienti�c procedure for determining the pipeline execution cadence. For example, Md5
said that “the [model retraining] cadence was just like, �nger to the wind.” Cadences seemed to be
set in a way that streamlined operations for the organization in the easiest way. Lg5 mentioned
that “retraining took about 3 to 4 hours, so [they] matched the cadence with it such that as soon
as [they] �nished any one model, they kicked o� the next training [job].” Engineers reported an
inability to retrain unless they had fresh and labeled data, motivating their organizations to set up
dedicated teams of annotators, or hiring crowd workers, to operationalize labeling of live data (Lg1,
Sm3, Sm4, Md3, Sm6).

4.1.2 MLEs ensure label quality at scale. Although it is widely recognized that model per-
formance improves with more labels [82]—and there are tools built especially for data label-
ing [79, 111]—our interviewees cautioned that the quality of labels can degrade as they try to label
more and more data. Md3 said:

No matter how many labels you generate, you need to know what you’re actually labeling
and you need to have a very clear human de�nition of what they mean.

In many cases, ground truth must be created, i.e., the labels are what a practitioner “thinks
up” [66]. When operationalizing this practice, MLEs faced problems. For one, Sm3 spoke about how
expensive it was to outsource labeling. Moreover, labeling con�icts can erode trust in data quality,
and slow ML progress [73, 85]: When scaling up labeling—through labeling service providers or
analysts within the organization—MLEs frequently found disagreements between di�erent labelers,
which would negatively impact quality if unresolved (Sm3, Md3, Sm6). At their organization, Sm3
mentioned that there was a human-in-the-loop labeling pipeline that both outsourced large-scale
labeling and maintained an internal team of experts to verify the labels and resolve errors manually.
Sm6 described a label validation pipeline for outsourced labels that itself used ML models for
estimating label quality.

4.1.3 Feedback delays can disrupt pipeline cadences. In many applications, today’s predic-
tions are tomorrow’s training data, but many participants said that ground-truth labels for live
predictions often arrived after a delay, which could vary unpredictably (e.g., human-in-the-loop or
networking delays) and thus caused problems for knowing real-time performance or retraining
regularly (Md1, Sm2, Sm3, Md5, Md6, Lg5). This is in contrast to academic ML, where ground-truth
labels are readily available for ML practitioners to train models [71]. Participants noted that the
impact on models was hard to assess when the ground truth involved live data—for example, Sm2
felt strongly about the negative impact of feedback delays on their ML pipelines:

I have no idea how well [models] actually perform on live data. Feedback is always delayed
by at least 2 weeks. Sometimes we might not have feedback...so when we realize maybe
something went wrong, it could [have been] 2 weeks ago.

Feedback delays contribute to “data cascades,” or compounding errors in ML systems over
time [85]. Sm3 mentioned a 2-3 year e�ort to develop a human-in-the-loop pipeline to manually
label live data as frequently as possible to side-step feedback delays: “you want to come up with
the rate at which data is changing, and then assign people to manage this rate roughly”. Sm6 said
that their organization hired freelancers to label “20 or so” data points by hand daily. Labeling was
then considered a task in the broader preparation pipeline that ran on a schedule (Section 4.1.1).

4.2 Experimentation
“You want to see some degree of experimental thoroughness. People will have principled
stances or intuitions for why things should work. But the most important thing to do is

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. CSCW1, Article 206. Publication date: April 2024.



“We have no idea how models will behave in production until production”: How engineers operationalize ML 206:15

achieve scary high experimentation velocity...Number one [Key Performance Indicator] is
rate of experimentation.” (Lg1

While most prior work studying the data science and MLOps work�ows includes modeling as
an explicit step in the work�ow [96, 102, 106, 110], we found that iterating on model ideas and
architectures is only part of a broader “experimentation” step. This is because in many production
ML pipelines, MLEs can focus on tuning or improving existing models through data-centric de-
velopment, and modeling in a data science sense is only necessary when the company wishes to
expand its service o�erings or grow its ML capabilities. In fact, many of our interviewees did not
build the initial model in the pipeline that their organization assigned them to work on, so their
goal wasn’t necessarily to train more models. As an example, Md6 said, “some of our models have
been around for, like, 6 or 7 years.” Garg et al. [22] also call this work�ow step “experimentation”
instead of “modeling” in their MLOps lifecycle overview, and we expand on this �nding in our paper
by relating it to collaboration and data-driven exploration, as well as MLE reservations toward
experiment automation or AutoML.

4.2.1 MLEs find it be�er to innovate on the data than themodel. Holstein et al. [31] mention
that it is challenging for practitioners to determine where to focus experimentation e�orts—they
could try “switching to a di�erent model, augmenting the training data in some way, collecting more
or di�erent kinds of data, post-processing outputs, changing the objective function, or something
else.” Our interviewees recommended focusing on experiments that provided additional context to
the model, typically via new features, to get the biggest gains (Lg2, Lg3, Md3, Lg4, Md4, Sm6, Md6,
Lg5, Lg6). Lg5 said:

I’m focusing my energy these days on signals and feature engineering because even if you
keep your code static and the model static, it would de�nitely help you with getting better
model performance.

In a concurring view, Md3 adds:
I’m gonna start with a [�xed] model because it means faster iterations. And often—like
most of the time empirically—it’s going to be something in our data that we can use to
push the boundary [. . . ] obviously, it’s not a dogmatic “we will never touch the model” but
it shouldn’t be our �rst move.

Interestingly, older work claims that iterating on the model is often more fruitful than iterating
on the data [74], but this could be because ML modeling libraries weren’t as mature as they are now.
Recent work has also identi�ed the importance of data-centric experimentation in production ML
deployments [66, 71, 79, 85]. Md6 mentioned that most ML projects at their organization centered
around adding new features. Md4 mentioned that one of their current projects was to move feature
engineering pipelines from Scala to SparkSQL (a language more familiar to ML engineers and data
scientists), so experiment ideas could be coded and validated faster.
When asked how they managed the underlying software or code for data-centric experiments,

interviewees emphasized the importance of keeping their code changes as small as possible for
multiple reasons, including faster code review, easier validation, and fewer merge con�icts (Md1,
Lg2, Lg3, Sm4, Md3, Lg5, Lg6). This is in line with good software engineering practices [3].
Additionally, changes in large organizations were primarily made in con�guration (con�g) �les
instead of main application code (Lg1, Md1, Lg2, Sm4, Lg4, Lg6): instead of editing parameters
directly in a Python model training script, MLEs preferred to edit a con�g �le of parameters
(e.g., JSON or YAML), and would feed the con�g �le to the model training script. When larger
changes were necessary, especially changes touching the language layer (e.g. changing PyTorch or
TensorFlow architectures), MLEs would fork the code base and made their edits in-place (Md2, Lg3).

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. CSCW1, Article 206. Publication date: April 2024.



206:16 Shreya Shankar, Rolando Garcia, Joseph M. Hellerstein, & Aditya G. Parameswaran

Although forking repositories can be a high-velocity shortcut, absent streamlined merge procedures,
this can lead to a divergence in versions and accumulation of technical debt. Lg3 highlighted the
tension between experiment velocity and strict software engineering discipline:

I used to see a lot of people complaining that model developers don’t follow software
engineering. At this point, I’m feeling more convinced that it’s not because they’re lazy. It’s
because [software engineering is] contradictory to the agility of analysis and exploration.

4.2.2 Feature engineering is social and collaborative. Prior work has stressed the importance
of collaboration in data science projects, often lamenting that technical tasks happen in silos [46,
71, 85, 102]. Our interviewees similarly believed cross-team collaboration was critical for successful
experiments. Project ideas, such as new features, came from or were validated early by domain
experts: data scientists and analysts who had already performed a lot of exploratory data analysis.
Md4 and Md6 independently recounted successful project ideas that came from asynchronous
conversations on Slack: Md6 said, “I look for features from data scientists, [who have ideas of]
things that are correlated with what I’m trying to predict.” We found that organizations explicitly
prioritized cross-team collaboration as part of their ML culture. Md3 said:

We really think it’s important to bridge that gap between what’s often, you know, a [subject
matter expert] in one room annotating and then handing things over the wire to a data
scientist—a scene where you have no communication. So we make sure there’s both data
science and subject matter expertise representation [in our meetings].

To foster amore collaborative culture, Sm6 discussed the concept of “building goodwill” with other
teams through tedious tasks that weren’t always explicitly a part of company plans: “Sometimes
we’ll �x something [here and] there to like build some goodwill, so that we can call on them in the
future...I do this stu� [to build relationships], not because I’m really passionate about doing it.”

4.2.3 MLEs like having manual control over experiment selection. One challenge that
results from fast exploration is having to manage many experiment versions [44, 102]. MLEs are
happy to delegate experiment tracking and executionwork toML experiment execution frameworks,
such as Weights & Biases3, but prefer to choose subsequent experiments themselves. To be able
to make informed choices of subsequent experiments to run, MLEs must maintain awareness of
what they have tried and what they haven’t (Lg2 calls it the “exploration frontier”). As a result,
there are limits to how much automation MLEs are willing to rely on for experimentation, a �nding
consistent with results from Xin et al. [108]. Lg2 mentioned the phrase “keeping GPUs warm” to
characterize a perceived anti-pattern that wastes resources without a plan:

One thing that I’ve noticed is, especially when you have as many resources as [large
companies] do, that there’s a compulsive need to leverage all the resources that you have.
And just, you know, get all the experiments out there. Come up with a bunch of ideas; run
a bunch of stu�. I actually think that’s bad. You can be overly concerned with keeping your
GPUs warm, [so much] so that you don’t actually think deeply about what the highest
value experiment is.

In executing experiment ideas, we noticed a tradeo� between a guided search and random search.
Random searches were more suited to parallelization—e.g., hyperparameter searches or ideas that
didn’t depend on each other. Although computing infrastructure could support many di�erent
experiments in parallel, the cognitive load of managing such experiments was too cumbersome
for participants (Lg2, Sm4, Lg5, Lg6). Rather, participants noted more success when pipelining

3https://wandb.ai/
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learnings from one experiment into the next, like a guided search to �nd the best idea (Lg2, Sm4,
Lg5). Lg5 described their ideological shift from random search to guided search:

Previously, I tried to do a lot of parallelization. If I focus on one idea, a week at a time,
then it boosts my productivity a lot more.

By following a guided search, engineers are, essentially, signi�cantly pruning a large subset of
experiment ideas without executing them.While it may seem like there are unlimited computational
resources, the search space is much larger, and developer time and energy is limited. At the end of
the day, experiments are human-validated and deployed. Mature ML engineers know their personal
tradeo� between parallelizing disjoint experiment ideas and pipelining ideas that build on top of
each other, ultimately yielding successful deployments.

4.3 Evaluation and Deployment
“We don’t have a good idea of how the model is going to behave in production until
production.” (Lg3)

After the experimentation phase, when MLEs have identi�ed a change they want to make to
the ML pipeline (e.g., adding a new feature), they need to evaluate it and deploy it to production.
Prior work that prescribes frameworks for MLOps typically separates evaluation and deployment
into two di�erent stages [48, 96, 98], but we combine them into one step because they are tightly
intertwined, with deployments spanning long periods of time and evaluations happening multiple
times during deployment.

Prior work describes evaluation as an “o�ine,” automated process that happens at training time:
a small portion of the training dataset is held out, and the model should achieve high accuracy on
this held-out set [71, 106]. Recent related work in MLOps claims that evaluation and deployment are
highly amenable to automation [22, 59]. As such, we also originally hypothesized that evaluation
and deployment could be automated—once validated, an engineer could simply create a new task
in their DAG to retrain the model on a cadence (Section 4.1.1).

As expected, engineers did automatically validate and codify their changes into DAGs to retrain
models on a schedule. However, they also manually supervised the deployment over a long period
of time, evaluating throughout the time frame. Amershi et al. [3] state that software teams “�ight”
changes or updates to ML models, often by testing them on a few cases prior to live deployment.
Our work provides further context into the evaluation and deployment process for production ML
pipelines: we found that several organizations, particularly those with many customers, employed
a multi-stage deployment process for new models or model changes, progressively evaluating at
each stage (Sm1, Lg2, Lg3, Sm2, Sm3, Lg4, Md5, Md6, Lg5, Lg6). As such, we combine evaluation
and deployment into one step, rather than separating the process into evaluation followed by
deployment as other papers do [96, 98]. Lg3 described the multi-staged deployment process as
follows:

We have designated test clusters, [stage 1] clusters, [stage 2] clusters, then the global
deployment [to all users]. The idea here is you deploy increasingly along these clusters, so
that you catch problems before they’ve met customers.

Each organization had di�erent names for its stages (e.g., test, dev, canary, staging, shadow,
A/B) and di�erent numbers of stages in the deployment process (usually between one and four).
The stages helped invalidate models that might perform poorly in full production, especially for
brand-new or business-critical cases. Occasionally, organizations had an o�ine “sandbox” stage
preceding deployment to any fraction of customers—for example, Md5 described a sandbox where
they could stress-test their chatbot product:
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You can pretend to be a customer and say all sorts of o�ensive things, and see if the model
will say cuss words back at you, or other sorts of things like that.

Although the model retraining process was automated, we �nd that MLEs personally reviewed
validation metrics and manually supervised the promotion from one stage to the next. They
had oversight over every evaluation stage, taking great care to manage complexity and change
over time: speci�cally, changes in data, product and business requirements, users, and teams
within organizations. We discuss two human-centered practices: maintaining dynamic datasets
and evaluating performance in the context of the product or broader organizational value.

4.3.1 MLEs continuously update dynamic validation datasets. Many engineers reported
processes to analyze live failure modes and update the validation datasets to prevent similar failures
from happening again (Lg1, Md1, Lg2, Lg3, Sm3, Md3, Md5, Sm6, Md6, Lg5). Lg1 described this
process as a departure from what they had learned in school:

You have this classic issue where most researchers are evaluat[ing] against �xed data sets
[. . . but] most industry methods change their datasets.

We found that these dynamic validation sets served two purposes: (1) the obvious goal of making
sure the validation set stays current with live data as much as possible, given new knowledge
about the problem and general shifts in the data distribution, and (2) the more speci�c goal of
addressing localized shifts within sub-populations, such as low accuracy for minority groups.
The challenge with (2) is that many sub-populations are often overlooked, or they are discovered
post-deployment [31]. In response, Md3 discussed how they systematically bucketed their data
points based on the model’s error metrics and created validation sets for each under-performing
bucket:

Some [of the metrics in my tool] are standard, like a confusion matrix, but it’s not really
e�ective because it doesn’t drill things down [into speci�c subpopulations that users care
about]. Slices are user-de�ned, but sometimes it’s a little bit more automated. [During
o�ine evaluation, we] �nd the error bucket that [we] want to drill down, and then [we]
either improve the model in very systematic ways or improve [our] data in very systematic
ways.

Rather than follow a proactive approach of constructing di�erent failure modes in an o�ine
validation phase like Md3 did, Sm3 o�ered a reactive strategy of spawning a new dataset for each
observed live failure: “Every [failed prediction] gets into the same queue, and 3 of us sit down once
a week and go through the queue...then our [analysts] collect more [similar] data.” This dataset
update (or delta) was then merged into the validation dataset, and used for model validation in
subsequent rounds. While processes to dynamically update the validation datasets ranged from
human-in-the-loop to periodic synthetic data construction (Lg3), we found that higher-stakes
applications of ML (e.g., autonomous vehicles), created dedicated teams to manage the dynamic
evaluation process. Often, this involved creating synthetic data representative of live failures (Lg1,
Lg3, Md4). For example, Lg1 said:

What you need to be able to do in a mature MLOps pipeline is go very quickly from user
recorded bug, to not only are you going to �x it, but you also have to be able to drive
improvements to the stack by changing your data based on those bugs.

Notwithstanding, participants found it challenging to collect the various kinds of failure modes
and monitoring metrics for each mode. Lg6 added, “you have to look at so many di�erent metrics.
Even very experienced folks question this process like a dozen times.”
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4.3.2 MLEs use product metrics for validation. While prior work discusses how prediction
accuracy doesn’t always correlate with real-world outcomes [71, 102], it’s unclear how to articulate
clear and measurable ML goals. Patel et al. [74] discuss how practitioners trained in statistical
techniques “felt that they must often manage concerns outside the focus of traditional evaluation
metrics.” Srivastava et al. [93] note that an increase in accuracy might not improve overall system
“compatibility.” In our study, we found that successful ML deployments tied their performance to
product metrics. First, we found that prior to initial deployment, mature ML teams de�ned a product
metric in consultation with other stakeholders, such as business analysts, product managers, or
customers (Lg2, Sm2, Md5, Sm6, Md3, Md6, Lg5, Lg6). Examples of product metrics include click-
through rate and user churn rate. Md3 felt that a key reason many ML projects fail is that they
don’t measure metrics that will yield the organization value:

Tying [model performance] to the business’s KPIs (key performance indicators) is really
important. But it’s a process—you need to �gure out what [the KPIs] are, and frankly
I think that’s how people should be doing AI. It [shouldn’t be] like: hey, let’s do these
experiments and get cool numbers and show o� these nice precision-recall curves to our
bosses and call it a day. It should be like: hey, let’s actually show the same business metrics
that everyone else is held accountable to to our bosses at the end of the day.

Since product-speci�c metrics are, by de�nition, di�erent for di�erent ML models, it was impor-
tant for engineers to treat the choice of metrics as an explicit step in their work�ow and align with
other stakeholders to make sure the right metrics were chosen. After agreeing on a product metric,
engineers only promoted experiment ideas to later deployment stages if there was an improvement
in that metric. Md6 said that every model change in production was validated by the product
team: “if we can get a statistically signi�cant greater percentage [of] people to subscribe to [the
product], then [we can fully deploy].” Kim et al. [40] also highlight the importance of including
other stakeholders (or people in “decision-making seats”) in the evaluation process. At each stage
of deployment, some organizations placed additional emphasis on important customers during
evaluation (Lg3, Sm4). Lg3 mentioned that there were “hard-coded” rules for “mission-critical”
customers:

There’s an [ML] system to allocate resources for [our product]. We have hard-coded rules
for mission critical customers. Like at the start of COVID, there were hospital [customers]
that we had to save [resources] for.

Finally, participants who came from research or academia noted that tying evaluation to the
product metrics was a di�erent experience. Lg3 commented on their “mindset shift” after leaving
academia:

I think about where the business will bene�t from what we’re building. We’re not just
shipping fake wins, like we’re really in the value business. You’ve got to see value from
AI in your organization in order to feel like it was worth it to you, and I guess that’s a
mindset that we really ought to have [as a community].

4.4 Monitoring and Response
“This data is supposed to have 50 states, there’s only 40, what happened to the other 10?”
(Md6)

We found that organizations centered their monitoring and response practices around engineers,
much like in the DevOps agile framework, which organizes software development around teams [13].
Prior work has stated that monitoring is critical to MLOps [44, 59, 96, 98], and, broadly, that Agile
practices can be useful in supervising production ML [3]. We provide further insight by discussing
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two speci�c examples of Agile practices that our interviewees commonly adapted to the ML context.
First, Lg3, Lg4, Md4, Sm6, Lg5, and Lg6 described on-call processes for supervising production ML
models. For each model, at any point in time, some ML engineer would be on call, or primarily
responsible for it. Any bug or incident observed (e.g., user complaint, pipeline failure) would receive
a ticket, created by the on-call engineer. On-call rotations typically lasted one or two weeks. At the
end of a shift, an engineer would create an incident report—possibly one for each bug—detailing
major issues that occurred and how they were �xed. Additionally, Lg3, Sm2, Sm4, andMd5 discussed
having Service-Level Objectives (SLOs), or commitments to minimum standards of performance, for
pipelines in their organizations. For example, a pipeline to classify images could have an SLO of 95%
accuracy. A bene�t of using the SLO framework for ML pipelines is a clear indication of whether a
pipeline is performing well or not—if the SLO is not met, the pipeline is broken, by de�nition.
Our interviewees stressed the importance of logging data across all stages of the ML pipeline

(e.g., feature engineering, model training) to use for future debugging. Monitoring ML pipelines
and responding to bugs involved tracking live metrics (via queries or dashboards), slicing and
dicing sub-populations to investigate prediction quality, patching the model with non-ML heuristics
for known failure modes, and �nding in-the-wild failures that could be added to future dynamic
validation datasets. While MLEs tried to automate monitoring and response as much as possible,
we found that solutions were lacking and required signi�cant human-in-the-loop intervention.
Next, we discuss data quality alerts, pipeline jungles, and diagnostics.

4.4.1 On-call MLEs track data quality alerts and investigate a fraction of them. In data
science, data quality is of utmost importance [37, 73]. Prior work has stressed the importance of
monitoring data in production ML pipelines [40, 85, 87], and the data management literature has
proposed numerous data quality metrics [8, 76, 86]. But what metrics do practitioners actually use,
what data do practitioners monitor, and how do they manually engage with these metrics? We
found that engineers continuously monitored features for and predictions from production models
(Lg1, Md1, Lg3, Sm3, Md4, Sm6, Md6, Lg5, Lg6): Md1 discussed hard constraints for feature columns
(e.g., bounds on values), Lg3 talked about monitoring completeness (i.e., fraction of non-null values)
for features, Sm6 mentioned embedding their pipelines with "common sense checks," implemented
as hard constraints on columns, and Sm3 described schema checks—making sure each data item
adheres to an expected set of columns and their types. These checks were automated and executed
as part of the larger pipeline (Section 4.1.1).
While o�-the-shelf data validation was de�nitely useful for the participants, many of them

expressed pain points with existing techniques and solutions. Lg3 discussed that it was hard to
�gure out how to trigger alerts based on data quality:

Monitoring is both metrics and then a predicate over those metrics that triggers alerts.
That second piece doesn’t exist—not because the infrastructure is hard, but because no one
knows how to set those predicate values...for a lot of this stu� now, there’s engineering
headcount to support a team doing this stu�. This is people’s jobs now; this constant,
periodic evaluation of models.

We also found that employee turnover makes data validation unsustainable (Sm2, Md4, Sm6, Md6,
Lg5). If one engineer manually de�ned checks and bounds for each feature and then left the
team, another engineer would have trouble interpreting the prede�ned data validation criteria. To
circumvent this problem, some participants discussed using black-box data monitoring services but
lamented that their statistics weren’t interpretable or actionable (Sm2, Md4).

Another commonly discussed pain point was false-positive alerts, or alerts triggered even when
the ML performance is adequate. Engineers often monitored and placed data quality alerts on each
feature and prediction (Lg2, Lg3, Sm3, Md3, Md4, Sm6, Md6, Lg5, Lg6). If the number of metrics
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tracked grew too large, false-positive alerts could become a problem. An excess of false-positive
alerts led to fatigue and silencing of alerts, which could miss actual performance drops. Sm3 said
“people [were] getting bombed with these alerts.” Lg5 shared a similar sentiment, that there was
“nothing critical in most of the alerts.” The only time there was something critical was “way back
when [they] had to actually wake up in the middle of the night to solve it...the only time [in years].”
When we asked what they did about the noncritical alerts and how they acted on the alerts, Lg5
said:

You typically ignore most alerts...I guess on record I’d say 90% of them aren’t immediate.
You just have to acknowledge them [internally], like just be aware that there is something
happening.

Seasoned MLEs thus preferred to view and �lter alerts themselves, than to silence or lower the
alert reporting rate. In a sense, even false-positives can provide information about system health,
if the MLE knows how to read the alerts and is accustomed to the system’s reporting patterns.
When alert fatigue materialized, it was typically when engineers were on-call, or responsible for
ML pipelines during a 7 or 14-day shift. Lg6 recounted how on-call rotations were dreaded amongst
their team, particularly for new team members, due to the high rate of false-positive alerts. They
said:

On-call ML engineers freak out in the �rst 2 rotations. They don’t know where to look. So
we have them act as a shadow, until they know the patterns.

Lg6 also discussed an initiative at their company to reduce the alert fatigue, ironically with
another model, which would consider how many times an engineer historically acted on an alert of
a given type before determining whether to surface a new alert of that type.

4.4.2 Over time, ML pipelines may turn into “jungles” of rules and models. Sculley et al.
[87] introduce the phrase “pipeline jungles” (i.e., di�erent versions of data transformations and
models glued together), which was later adopted by participants in our study. While prior work
demonstrates their existence and maintenance challenges, we provide insight into why and how
these pipelines become jungles in the �rst place. Our interviewees noted that reacting to an ML-
related bug in production usually took a long time, motivating them to �nd strategies to quickly
restore performance (Lg1, Sm2, Sm3, Sm4, Md4, Md5, Md6, Lg6). These strategies primarily involved
adding non-ML rules and �lters to the pipeline. When Sm3 observed, for an entity recognition task,
that the model was misdetecting the Egyptian president due to the many ways of writing his name,
they thought it would be better to patch the predictions for the individual case than to �x or retrain
the model:

Suppose we deploy [a new model] in the place of the existing model. We’d have to go
through all the training data and then relabel it and [expletive], that’s so much work.

One way engineers reacted to ML bugs was by adding �lters for models. For the Egypt example,
Sm3 added a simple string similarity rule to identify the president’s name. Md4 and Md5 each
discussed how their models were augmented with a �nal, rule-based layer to keep live predictions
more stable. For example, Md4 mentioned working on an anomaly detection model and adding a
heuristics layer on top to �lter the set of anomalies that surface based on domain knowledge. Md5
discussed one of their language models for a customer support chatbot:

The model might not have enough con�dence in the suggested reply, so we don’t return [the
recommendation]. Also, language models can say all sorts of things you don’t necessarily
want it to—another reason that we don’t show some suggestions. For example, if somebody
asks when the business is open, the model might try to quote a time when it thinks the
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business is open. [It might say] “9 am,” but the model doesn’t know that. So if we detect
time, then we �lter that [reply]. We have a lot of �lters.

Constructing such �lters was an iterative process—Md5 mentioned constantly stress-testing the
model in a sandbox, as well as observing suggested replies in early stages of deployment, to come
up with �lter ideas. Creating �lters was a more e�ective strategy than trying to retrain the model
to say the right thing; the goal was to keep some version of a model working in production with
little downtime. As a result, �lters would accumulate in the pipeline over time, e�ectively creating
a pipeline jungle. Even when models were improved, Lg5 noted that it was too risky to remove
the �lters, since the �lters were already in production, and a removal might lead to cascading or
unforeseen failures.
Several engineers also maintained fallback models for reverting to: either older or simpler

versions (Lg2, Lg3, Md6, Lg5, Lg6). Lg5 mentioned that it was important to always keep some model
up and running, even if they “switched to a less economic model and had to just cut the losses.”
Similarly, when doing data science work, both Passi and Jackson [73] and Wang et al. [102] echo
the importance of having some solution to meet clients’ needs, even if it is not the best solution.
Another simple solution engineers discussed was serving a separate model for each customer (Lg1,
Lg3, Sm2, Sm4, Md3, Md4). We found that engineers preferred a per-customer model because it
minimized downtime: if the service wasn’t working for a particular customer, it could still work for
other customers. Patel et al. [74] also noted that per-customer models could yield higher overall
performance.

4.4.3 Bugs in production ML follow a heavy-tailed distribution. ML debugging is di�erent
from debugging during standard software engineering, where one can write test cases to cover the
space of potential bugs [3, 71]. Lg3, Sm2, Sm3, Sm4, Lg4, Md4, Md5, Sm6, Lg5, and Lg6 mentioned
having a central queue of production ML bugs that every engineer added tickets to and processed
tickets from. Often this queue was larger than what engineers could process in a timely manner, so
they assigned tags to tickets to prioritize what to debug.
Interviewees discussed ad-hoc approaches to debugging production ML issues, which could

require them to spend a lot of time diagnosing any given bug (Lg3, Lg2, Sm3, Sm4, Lg5). One
common issue was data leakage—i.e., assuming during training that there is access to data that does
not exist at serving time—an error typically discovered after the model was deployed and several
incorrect live predictions were made (Lg1, Md1, Md5, Lg5). Interviewees felt that anticipating all
possible forms of data leakage during experimentation was tedious; thus, sometimes leakage was
retroactively checked during code review in an evaluation stage (Lg1. There were other types of bugs
that were discussed by multiple participants, such as accidentally �ipping labels in classi�cation
models (Lg1, Sm1, Lg3, Md3) and forgetting to set random seeds in distributed training when
initializing workers in parallel (Lg1, Lg4, Sm5). However, the vast majority of bugs described to
us in the interviews were seemingly bespoke and not shared among participants. For example,
Sm3 forgot to drop special characters (e.g., apostrophes) for their language models. Lg3 found that
the imputation value for missing features was once corrupted. Lg5 mentioned that a feature of
unstructured data type (e.g., JSON) had half of the keys’ values missing for a “long time.”

When asked how they detect these one-o� bugs, interviewees mentioned that their bugs showed
similar symptoms of failure. One symptom was a large discrepancy between o�ine validation
accuracy and production accuracy immediately after deployment (Lg1, Lg3, Md4, Lg5). However,
if there were no ground-truth labels available immediately after deployment (as discussed in
Section 4.1.3), interviewees had to resort to other strategies. For example, some inspected the results
of data quality checks (Section 4.4.1). Lg1 discussed their struggle to debug without “ground-truth:”:
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Um, yeah, it’s really hard. Basically there’s no sure�re strategy. The closest that I’ve seen is
for people to integrate a very high degree of observability into every part of their pipeline.
It starts with having really good raw data, observability, and visualization tools. The
ability to query. I’ve noticed, you know, so much of this [ad-hoc bug exploration] is just—if
you make the friction [to debug] lower, people will do it more. So as an organization, you
need to make the friction very low for investigating what the data actually looks like,
[such as] looking at speci�c examples.

To diagnose bugs, interviewees typically sliced and diced data for di�erent groups of customers
or data points (Md1, Lg3, Md3, Md4, Md6, Lg6). Slicing and dicing is known to be useful for
identifying bias in models [31, 85], but we observed that our interviewees used this technique
beyond debugging bias and fairness; they sliced and diced to determine common failure modes and
data points similar to these failures. Md4 discussed annotating bugs and only drilling down into
their queue of bugs when they observed “systematic mistakes for a large number of customers.”
Interviewees mentioned that after several iterations of chasing bespoke ML-related bugs in

production, they had developed a sense of paranoia while evaluating models o�ine—possibly as a
coping mechanism (Lg1, Md1, Lg3, Md5, Md6, Lg6). Lg1 said:

ML [bugs] don’t get caught by tests or production systems and just silently cause errors.
This is why [you] need to be paranoid when you’re writing ML code, and then be paranoid
when you’re coding.

Lg1 then recounted a bug that was “impossible to discover” after a deployment to production: the
code for a change that added new data augmentation to the training procedure had two variables
�ipped, and this bug was miraculously caught during code review even though the training accuracy
was high. Lg1 claimed that there was “no mechanism by which [they] would have found this besides
someone just curiously reading the code.” Since ML bugs don’t cause systems to go down, sometimes
the only way to �nd them is to be cautious when inspecting code, data, and models.

5 DISCUSSION
Our �ndings suggest that automated production ML pipelines are enabled by MLEs working
through a continuous loop of i) data preparation, ii) experimentation, iii) evaluation & deployment,
and iv) monitoring and response (Figure 1). Although engineers leverage di�erent tools to help
with technical aspects of their work�ow, such as experiment tracking and data validation [8, 109],
patterns began to emerge when we studied how MLE practices varied across company sizes and
experience levels. We discuss these patterns as “the three Vs of MLOps” (Section 5.1), and follow
our discussion with implications for both production ML tooling (Section 5.2), and opportunities
for future work (Section 5.3).

5.1 Velocity, Visibility, Versioning: Three Vs of MLOps
Findings from our work and prior work suggest three broad themes of successful MLOps practices:
Velocity, Visibility, and Versioning. These themes have synergies and tensions across each stage of
MLEs’ work�ow, as we discuss next.

5.1.1 Velocity. Since ML is so experimental in nature, it’s important to be able to prototype
and iterate on ideas quickly (e.g., go from a new idea to a trained model in a day). Interviewees
attributed their productivity to development environments that prioritized high experimentation
velocity and debugging environments that allowed them to test hypotheses quickly. Prior work
has extensively documented the Agile tendencies of MLEs, describing how they iterate quickly
(i.e. with velocity) to explore a large ML or data science search space [3, 30, 50, 74, 110]. Amershi
et al. [3] describe how experimentation can be sped up when labels are annotated faster (i.e.,
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rapid data preparation). Garcia et al. [20] explore tooling to help MLEs correct logging oversights
from too much velocity in experimentation, and Paleyes et al. [71] mention the need to diagnose
production bugs quickly to prevent future similar issues from occurring. First, our study re-enforces
the view the MLEs are agile workers who value fast results. P1 said that people who achieve the best
outcomes from experimentation are people with “scary high experimentation velocity.” Similarly,
the multi-stage deployment strategy can be viewed as an optimistic or high-velocity solution to
deployment: deploy �rst, and validate gradually across stages. Moreover, our study provides deeper
insight into how practitioners rapidly debug deployments—we identify and describe practices such
as on-call rotations, human-interpretable �lters on model behavior, data quality alerts, and model
rollbacks.
At the same time, high velocity can lead to trouble if left unchecked. Sambasivan et al. [85]

observed that, for high-stakes customers, practitioners iterated too quickly, causing ML systems to
fail—practitioners “moved fast, hacked model performance (through hyperparameters rather than
data quality), and did not appear to be equipped to recognise upstream and downstream people
issues.” Our study exposed strategies that practitioners used to prevent themselves from iterating
too quickly: for example, in Section 4.3.1, we described how some applications (e.g., autonomous
vehicles) require separate teams to manage evaluation, making sure that bad models don’t get
promoted from development to production. Moreover, when measuring ML metrics outside of
accuracy, e.g., fairness [31] or product metrics (Section 4.3.2), it is challenging to make sure all
metrics improve for each change to the ML pipeline [71]. Understanding which metrics to prioritize
requires domain and business expertise [40], which could hinder velocity.

5.1.2 Visibility. In organizations, since many stakeholders and teams are impacted by ML-
powered applications and services, it is important for MLEs to have an end-to-end view of
ML pipelines. P1 explicitly mentioned integrating “very high degree of observability into ev-
ery part of [the] pipeline” (Section 4.4.3). Prior work describes the importance of visibility: for
example, telemetry data from ML pipelines (e.g., logs and traces) can help engineers know if the
pipeline is broken [40], model explainability methods can establish customers’ trust in ML predic-
tions [42, 71, 102], and dashboards on ML pipeline health can help align nontechnical stakeholders
with engineers [37, 46]. In our view, the popularity of Jupyter notebooks among MLEs, including
among the participants in our study, can be explained by Jupyter’s gains in velocity and visibility
for ML experimentation, as it e�ectively combines REPL (Read-Eval-Print-Loop)-style interaction
and visualization capabilities despite its versioning shortcomings. Our �ndings corroborate these
prior �ndings and provide further insight on how visibility is achieved in practice. For example,
engineers proactively monitor feedback delays (Section 4.1.3). They also document live failures
frequently to keep validation datasets current (Section 4.3.1), and they engage in on-call rotations
to investigate data quality alerts (Section 4.4).
Visibility also helps with velocity. If engineers can quickly identify the source of a bug, they

can �x it faster. Or, if other stakeholders, such as product managers or business analysts, can
understand how an experiment or multi-staged deployment is progressing, they can better use their
domain knowledge to assess models according to product metrics (see Section 4.3.2), and intervene
sooner if there’s evidence of a problem. One of the pain points we observed was that end-to-end
experimentation—from the conception of an idea to improve ML performance to validation of the
idea—took too long. The uncertainty of project success stems from the unpredictable, real-world
nature of experiments.

5.1.3 Versioning. Amershi et al. [3] mention that “fast-paced model iteration” requires careful
versioning of data and code. Other work identi�es a need to also manage model versions [101, 109].
Our work suggests that mananging all artifacts—data, code, models, data quality metrics, �lters,
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rules—in tandem is extremely challenging but vital to the success of ML deployments. Prior
work explains how these artifacts can be queried during debugging [7, 11, 87], and our �ndings
additionally show that versioning is particularly useful when teams of people work on ML pipelines.
For instance, during monitoring, on-call engineers may receive a �ood of false-positive alerts;
looking at old alerts might help them understand whether a speci�c type of alert actually requires
action. In another example, during experimentation, ML engineers often work on models and
pipelines they didn’t initially create. Versioning increases visibility: engineers can inspect old
versions of experiments to understand ideas that may or may not have worked.

Not only does versioning aid visibility, but it also enables work�ows to maintain high velocity.
In Section 4.4.2, we explained how pipeline jungles are created by quickly responding to ML bugs
by constructing various �lters and rules. If engineers had to �x the training dataset or model for
every bug, they would not be able to iterate quickly. Maintaining di�erent versions for di�erent
types of inputs (e.g., rules to auto-reject incomplete data or di�erent models for di�erent users)
also enables high velocity. However, there is also a tension between velocity and versioning: in
Section 4.2.3, we discussed how parallelizing experiment ideas produces many versions, and ML
engineers could not cognitively keep track of them. In other words, having high velocity can mean
drowning in a sea of versions.

5.2 Opportunities for ML Tooling
Our main takeaway is that production ML tooling needs to aid humans in their work�ows, not
just automate technical practices (e.g., generating a feature or training a model). Tools should help
improve at least one of the three Vs, and there are opportunities for tools in each stage of the
work�ow. We discuss each in turn.

5.2.1 Data Preparation. As mentioned in Section 4.1, separate teams of data engineers typically
manage pipelines to ingest, clean, and preprocess data on a schedule. While existing tools automate
scheduling these activities, there are unadressed ML needs around retraining and labeling. Prior
work and our interviews indicate that ML engineers retrain models on some arbitrary cadence [44,
71], without understanding the e�ect of the cadence on the quality of predictions. Models might
be stale if they are retrained only monthly, or they might retrain using invalid or corrupt data if
they are retrained faster than the data is validated and cleaned (e.g., hourly). Moreover, the optimal
retraining cadence depends on the data, ML task, and amount of organizational resources, such
as compute, training time, and number of engineers on the team. New tools can help with these
challenges and determine the best retraining cadence for ML pipelines. With respect to labeling,
existing tools help with either labeling at scale [79] or labeling with high quality [45], but it is
hard to achieve both. As a result, organizations have custom infrastructure and teams to resolve
label mismatches, apply domain knowledge, and reject incorrect labels. Labeling tools can leverage
ensembling and add postprocessing �lters to reject and resolve incorrect and inconsistent labels.
Moreover, they should track feedback delays and surface this information to users.

5.2.2 Experimentation. As discussed in Section 4.2.3, experiments are typically done in development
environments and then promoted to production clusters during deployment. The mismatch between
the two (or more!) environments can cause bugs, creating an opportunity for new tools. The
development cluster should maximize iteration speed (velocity), while the production cluster
should minimize end-user prediction latency [14]. Hardware and software can be di�erent in each
cluster, e.g., GPUs for training vs. CPUs for inference, and Python vs. C++, whichmakes this problem
challenging. New tools are prioritizing reproducibility—turning Jupyter notebooks into production
scripts [90], for instance—but should also standardize how engineers interact with experimentation
work�ows. For example, while experiment tracking tools can literally keep track of thousands
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of experiments, how can engineers sort through all these versions and actually understand what
the best experiments are doing? Our �ndings and prior work show that the experimental nature
of ML and data science leads to undocumented tribal knowledge within organizations [37, 41].
Documentation solutions for deployed models and datasets have been proposed [23, 60], but we see
an opportunity for tools to help document experiments—particularly, failed ones. Forcing engineers
to write down institutional knowledge about what ideas work or don’t work slows them down,
and automated documentation assistance would be quite useful.

5.2.3 Evaluation and Deployment. Prior work has identi�ed several opportunities in the evaluation
and deployment space. For example, there is a need to map ML metric gains to product or business
gains [40, 44, 57]. Additionally, tools could help de�ne and calculate subpopulation-speci�c perfor-
mance metrics [31]. From our study, we have observed a need for tooling around the multi-staged
deployment process. With multiple stages, the turnaround time from experiment idea to having
a full production deployment (i.e., deployed to all users) can take several months. Invalidating
ideas in earlier stages of deployment can increase overall, end-to-end velocity. Our interviewees
discussed how some feature ideas no longer make sense after a few months, given the nature of
how user behaviors change, which would cause an initially good idea to never fully and �nally
deploy to production. Additionally, an organization’s key product metrics—e.g., revenue or number
of clicks—might change in the middle of a multi-stage deployment, killing the deployment. This
negatively impacts the engineers responsible for the deployment. We see this as an opportunity for
new tools to streamline ML deployments in this multi-stage pattern, to minimize wasted work and
help practitioners predict the end-to-end gains for their ideas.

5.2.4 Monitoring and Response. Recent work in ML observability identi�es a need for tools to
give end-to-end visibility on ML pipeline behavior and debug ML issues faster [7, 91]. Basic data
quality statistics, such as missing data and type or schema checks, fail to capture anomalies in
the values of data [8, 62, 76]. Our interviewees complained that existing tools that attempt to �ag
anomalies in the values of data points produce too many false positives (Section 4.4.1). An excessive
number of false-positive alerts, i.e., data points �agged as invalid even if they are valid, leads to two
pain points: (1) unnecessarily maintaining many model versions or simple heuristics for invalid
data points, which can be hard to keep track of, and (2) a lower overall accuracy or ML metric,
as baseline models might not serve high-quality predictions for these invalid points. Moreover,
due to feedback delays, it may not be possible to track ML performance (e.g., accuracy) in real
time. What metrics can be reliably monitored in real time, and what criteria should trigger alerts to
maximize precision and recall when identifying model performance drops? How can these metrics
and alerting criteria automatically tune themselves over time, as the underlying data changes? We
envision this to be an opportunity for new data management tools.
Moreover, as discussed in Section 4.4.2, when engineers quickly respond to production bugs,

they create pipeline jungles. Such jungles typically consist of several versions of models, rules,
and �lters. Most of the ML pipelines that our interviewees discussed were pipeline jungles. This
combination of modern model-driven ML and old-fashioned rule-based AI indicates a need for
managing �lters (and versions of �lters) in addition to managing learned models. The engineers
we interviewed managed these artifacts themselves.

5.3 Limitations and Future Work
Since we wanted to �nd common themes in production ML work�ows across di�erent applications
and organizations, our interview study’s scope was quite broad: we set out on a quest to discover
shared patterns, rather than to predict or explain. We asked practitioners open-ended questions
about their MLOps work�ows and challenges, but did not probe them about questions of fairness,
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risk, and data governance: these questions could be studied in future interviews. Moreover, we
did not focus on the di�erences between practitioners’ work�ows based on their company sizes,
educational backgrounds, or industries. While there are interview studies for speci�c applications of
ML [6, 19, 77], we see further opportunities to study the e�ect of organizational focus and maturity
on the production ML work�ow. There are also questions for which interview studies are a poor �t.
Given our �ndings on the importance of collaborative and social dimensions of MLOps, we would
like to explore these ideas further through participant action research or contextual inquiry.

Moreover, our paper focuses on a human-centered work�ow surrounding productionML pipelines.
Focusing on the automated work�ows in ML pipelines—for example, continuous integration and
continuous deployment (CI/CD)—could prove a fruitful research direction. Finally, we only inter-
viewed ML engineers, not other stakeholders, such as software engineers or product managers.
Kreuzberger et al. [44] present a diagram of technical components of the ML pipeline (e.g., feature
engineering, model training) and interactions between ML engineers and other stakeholders. An-
other interview study could observe these interactions and provide further insight into practitioners’
work�ows.

6 CONCLUSION
In this paper, we presented results from a semi-structured interview study of 18 ML engineers
spanning di�erent organizations and applications to understand their work�ow, best practices,
and challenges. Engineers reported several strategies to sustain and improve the performance of
production ML pipelines, and we identi�ed four stages of their MLOps work�ow: i) data preparation,
ii) experimentation, iii) evaluation and deployment, and iv) monitoring and response. Throughout
these stages, we found that successfulMLOps practices center around having good velocity, visibility,
and versioning. Finally, we discussed opportunities for tool development and research.
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A SEMI-STRUCTURED INTERVIEW QUESTIONS
In the beginning of each interview, we explained the purpose of the interview—to better understand
processes within the organization for validating changes made to production ML models, ideally
through stories of ML deployments. We then kickstarted the information-gathering process with
a question to build rapport with the interviewee, such as tell us about a memorable previous ML
model deployment. This question helped us isolate an ML pipeline or product to discuss. We then
asked a series of open-ended questions:
(1) Nature of ML task

• What is the ML task you are trying to solve?
• Is it a classi�cation or regression task?
• Are the class representations balanced?

(2) Modeling and experimentation ideas
• How do you come up with experiment ideas?
• What models do you use?
• How do you know if an experiment idea is good?
• What fraction of your experiment ideas are good?

(3) Transition from development to production
• What processes do you follow for promoting a model from the development phase to
production?

• How many pull requests do you make or review?
• What do you look for in code reviews?
• What automated tests run at this time?

(4) Validation datasets
• How did you come up with the dataset to evaluate the model on?
• Do the validation datasets ever change?
• Does every engineer working on this ML task use the same validation datasets?

(5) Monitoring
• Do you track the performance of your model?
• If so, when and how do you refresh the metrics?
• What information do you log?
• Do you record provenance?
• How do you learn of an ML-related bug?

(6) Response
• What historical records (e.g., training code, training set) do you inspect in the debugging
process?

• What organizational processes do you have for responding to ML-related bugs?
• Do you make tickets (e.g., Jira) for these bugs?
• How do you react to these bugs?
• When do you decide to retrain the model?

B TOOLS REFERENCED IN INTERVIEWS
Table 3 lists several of the tools that were commonly referenced by the interviewees.
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Data Collection Experimentation Evaluation and Deployment Monitoring and Response

Metadata Data catalogs,
Amundsen, AWS
Glue, Hive metas-
tores

Weights & Biases, MLFlow,
train/test set parameter con�gs,
A/B test tracking tools

Dashboards, SQL,
metric functions
and window sizes

Unit Data cleaning
tools

Tensor�ow, ML-
lib, PyTorch,
Scikit-learn,
XGBoost

OctoML, TVM,
joblib, pickle

Scikit-learn
metric functions,
Great Expecta-
tions, Deequ

Python, Pandas, Spark, SQL, C++, ONNX

Pipeline In-house or
outsourced anno-
tators

AutoML Github Actions,
Travis CI, Predic-
tion serving tools,
Kafka, Flink

Prometheus,
AWS Cloud-
Watch

Air�ow, Kube�ow, Argo, Tensor�ow Extended (TFX), Vertex AI, DBT

Infrastructure Annotation
schema, cleaning
criteria con�gs

Jupyter notebook
setups, GPUs

Edge devices,
CPUs

Logging and
observability
services (e.g.,
DataDog)

Cloud (e.g., AWS, GCP), compute clusters, storage (e.g., AWS S3, Snow�ake), Docker, Kubernetes

Table 3. Common tools referenced in interview transcripts, segmented by stage in the MLOps workflow
and layer in the stack. The metadata layer is concerned with artifacts for component runs, like results of
a training script. The unit layer represents individual pieces or components of a pipeline, such as feature
engineering or model training. The pipeline layer connects components through orchestration frameworks,
and the lowest layer is the infrastructure (e.g., compute).
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