

pubs.acs.org/Orgl ett Letter

The Role of N-Substitution in Regio- and Stereoselective Vinylogous Imidonaphthoquinone (VINAquinone) [2 + 2] Photocycloadditions

Ian Merski, Jinya Yin, Ryan T. VanderLinden, and Jon D. Rainier*

ABSTRACT: Described in this manuscript are intramolecular [2 + 2] photocycloadditions of readily available vinylogous imidonaphthoquinones whose regio- and diastereoselectivity is dependent on the substitution on the vinylogous imide. When exposed to 419 nm light, 2° vinylogous imidonaphthoquinones give novel bridged tetracyclic aza-anthraquinones from a rare crossed [2+2] cycloaddition reaction. In contrast, exposure of the corresponding 3° substrates to white light leads to linear adducts. Also outlined here are auxiliary controlled diastereoselective reactions and cyclobutane fragmentations as a means of generating the spirofused γ -lactam moiety present in the ansalactam family of natural product.

INTRODUCTION

The ansalactam natural products were first isolated by Fenical, Moore, Nam, and co-workers from the fermentation broth of a Streptomyces sp. (strain CNH-189) that was found off the coast of Southern California (Figure 1).1,2 Following isolation,

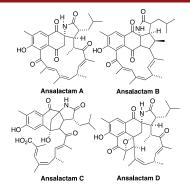


Figure 1. Ansamycin and ansalactam natural products.

single-crystal X-ray analysis was used to determine whether the isolates were members of the ansamycin family but with a distinct twist. In addition to the "normal" ansa-ring that was linked through the naphthoquinone, the new compounds contained a unique and intriguing spiro-fused γ -lactam. We considered the ansalactams to be important and worthy of study both because of their interesting architectures and because the ansamycin family has repeatedly demonstrated biological activity.^{3,4}

While the total syntheses of members of the ansalactam family have not been reported to date, they have received attention from the synthetic community. In 2014 Trauner and co-workers reported that the γ -lactam could not be synthesized using an intramolecular radical cyclization. In contrast to this, Pierce and co-workers described a successful [3 + 2] cycloaddition approach to a spiro-fused γ -lactam analog in 2021.⁶

Our fascination with the ansalactams came both from a general interest in aza-anthraquinones and our eagerness to build the spiro-fused γ -lactam moiety using a sequence that would begin with an intramolecular [2 + 2] cycloaddition.^{7,8} As highlighted in Scheme 1, we proposed that ansalactam precursor 3 would result from a chemoselective fragmentation reaction of a cyclobutane such as 2. In turn, 2 would be synthesized using an intramolecular [2 + 2] cycloaddition of an appropriately substituted Vinylogous ImidoNAphthoquinone

Although cyclobutane formation and fragmentation sequences have been employed previously,9 we were unaware of their use to generate spiro-fused quinones or naphthoquinones. 10,11 In addition to this, only a few examples of intramolecular [2 + 2] photocycloadditions of naphthoquinones have been reported. 12,13 The most relevant of these to our proposed sequence was communicated by Mori, Bach, and co-workers in 2022. 14,15 They described the intramolecular photocycloaddi-

April 18, 2024 Received: Revised: May 23, 2024 Accepted: May 29, 2024 Published: May 30, 2024

Scheme 1. Proposed Use of Cyclobutanes to Synthesize Spiro-Fused γ -Lactams and Ansalactam A

tions of naphthoquinones 4–6 having a three-carbon tether between a terminal alkene and the naphthoquinone (Scheme 2). Interestingly, while the reaction of 4 gave 7 as the major

Scheme 2. Mori, Bach, and Co-workers Intramolecular [2 + 2] Photocycloadditions of Naphthoquinones¹⁴

product, it also gave a small amount of crossed-cycloadduct 10. In contrast, the closely related substrates 5 and 6 only provided linear adducts 8 and 9, respectively. In related work, Nielsen and Wege and later Mori, Bach, and co-workers examined the corresponding intramolecular naphthoquinone enol ether [2 + 2] photocycloadditions as a means of generating the natural product elecanacin; both groups reported the exclusive formation of linear products from these studies. 16

■ RESULTS AND DISCUSSION

With the above precedent as the background, we were reasonably confident about our plan for the ansamycin skeleton. As models to develop the ideas expressed in Scheme 1, we synthesized VINAquinone cyclization precursors 13 and 14 (see the Supporting Information) and were pleased to find that they underwent the expected intramolecular cycloaddition reaction when exposed to 419 nm light (Scheme 3). After extensive spectroscopic analysis that initially had us convinced that the reaction had resulted in the desired linear adducts 17 and 18, single crystal X-ray analysis showed that our assignments had been incorrect. As depicted for 16a and

Scheme 3. Photocycloaddition of VINAquinones 13 and 14

16b, the reactions resulted in the corresponding crossed adducts **15** and **16**.

These results were surprising to us. As mentioned above, dienyl substrates having three-atom tethers between the alkenes generally give linear products. ^{17,18} In contrast, substrates having a two-atom tether between the reactive π -systems generally give crossed [2 + 2] photocycloaddition products. ¹⁹⁻²¹

We found that the cycloadditions of 13 and 14 were slow and required about 13 h for the starting material to be consumed. In an effort to increase the rate of the reaction, we explored the effect of substitution on the vinylogous imide N-atom on the photocycloaddition reaction. To this end, we synthesized 3° vinylogous imide 20 from the corresponding vinylogous amide 19 by slightly modifying our previously reported one-pot acylation strategy. (see Scheme 4 and Table

Scheme 4. Photocycloaddition Reactions of 3° VINAquinone 20

Table 1. 3° VINAquinone [2 + 2] Cycloaddition Reaction

Entry	Precursor	Products	Yield (3 steps) (%)	L:C	d.r.
1	20	21/22	45	1.4:1	
2	26	29/32	76	5.9:1	
3	27	30/33	62	22:1	4.5:1
4	28	31/3431/34	78	>22:1 ^a	>22:1ª

^a31 was only observed in the crude ¹H NMR as a single diastereomer.

1). ²² When **20** was exposed to light several interesting features of these reactions were uncovered: (1) As anticipated the cycloaddition proceeded more rapidly than the corresponding 2° VINAquinone derivatives (starting material was completely consumed after 4 h instead of the 13 h required for **13** and **14**). (2) Not anticipated was that the reaction could be carried out using longer wavelength light (white light ($\lambda = 400-700$ nm)). While advantageous, this discovery presented several challenges. 3° Vinyloguous naphthoquinones had to be protected from ambient light to avoid spontaneous [2 + 2] cycloaddition reactions. (3) We found it intriguing that the reaction could also occur in the absence of solvent. (4) Finally, and arguably most importantly for our ansalactam strategy, the reaction gave

a 1.4:1 mixture of linear and crossed products favoring the linear cycloadduct 21 in an overall yield of 45%.

With the surprising result from 20 in hand, we decided to further examine the effect of substitution on nitrogen on the ratio of crossed to linear products and synthesized N-isopropyl VINAquinone 26 from vinylogous amide 23 (Table 1, entry 2).^{23,24} We were pleased to find that **26** underwent the desired cycloaddition reaction when it was exposed to white light providing 29 and 32 in a 5.9:1 ratio favoring linear adduct 29. We next turned to phenethyl- and naphthethyl-substituted VINA quinones 27 and 28, respectively. In addition to examining the effect of sterics on the reaction, these substrates contain a chiral center and therefore offered opportunities for controlling the facial selectivity of the cycloaddition reaction. As precedent for their use, we had previously demonstrated that phenethyl and naphthethyl bis-aryl pyridones underwent diastereoselective photoelectrocyclization reactions.²⁵ The VINAquinone cycloaddition precursors were generated by combining Poulson's Michael addition technology to give 24 and 25 from naphthoquinone (see Supporting Information) with the same two-step reductive acylation chemistry that was used for the synthesis of 20 and 26.26 We initially examined the [2 + 2] cycloaddition of 27 and were pleased to find that it underwent a spontaneous cycloaddition reaction when exposed to ambient light giving cyclobutanes 30 and 33 in a 22:1 ratio and a 62% yield from 24 (entry 3). Equally satisfying was that 30 existed as a 5:1 mixture of diastereomers, demonstrating that the phenethyl amine moiety was not only controlling the regioselectivity but also helping to control the facial selectivity of the cycloaddition reaction. Interestingly, when the cycloaddition of 27 was carried out in the absence of solvent, the diastereomeric ratio was 2.2:1. Even more significant improvements were observed with naphthethyl derivative 28. When 28 was subjected to ambient light we isolated linear adduct 31 as a single regio- and stereoisomer (entry 4). These results clearly demonstrate that it is possible to flip the inherent tendency for crossed products in 2° VINAquinone cycloadditions with relatively simple modifications on the N-atom and that the absolute stereochemistry of the products can also be controlled. That the enantioselective [2 + 2] cycloaddition of 4 using chiral Lewis acids is complicated by the propensity of the Lewis acids to coordinate to both naphthoquinone carbonyl groups makes the results with 28 all the more impactful.

We were able to obtain a single-crystal X-ray structure of 31 (see Figure 2). The X-ray structure not only confirmed our structural assignment, but it also hinted at a reason for the reaction's diastereoselectivity. In the crystal, the naphthyl group is stacked underneath the quinone with the methyl group oriented into a less congested region. Assuming that similar phenomena are operative during the reaction of 28, we propose that conformer B having the naphthyl group stacked under the naphthoquinone directs the alkene to attack the quinone from the top face while conformer A having the naphthyl group stacked on top of the quinone positions the alkene on the bottom face. The difference between conformers B and A lies in the orientation of the methyl group relative to that of the alkene. As the alkene approaches the naphthoguinone, the methyl group in B is anti to the alkene and less sterically congested while the methyl group in A is syn to the alkene and presumably suffers from nonbonded interactions with the alkene and the naphthoquinone. While we propose that both the phenethyl and naphthethyl auxiliaries behave

Figure 2. X-ray crystal structure of linear adduct 31 and the proposed conformation for the cycloaddition.

similarly, the naphthethyl auxiliary's larger π -surface area makes it more selective.

Having had success with the cycloaddition of terminal alkenes, we next examined the effect of the 3° naphthethylimide on the cycloaddition reaction of internal alkenes beginning with chloro derivative 35 (Scheme 5). We utilized

Scheme 5. Photocycloaddition of Allyl Chloride 35

cross-metathesis to construct 35 from 28 (see the Supporting Information). In the event, by exposing 35 to ambient light we were able to affect the cycloaddition isolating 36 as a 3.4:1 mixture of diastereomers at the chloromethyl bearing stereocenter in 52% yield from vinylogous amide 25 (4 steps).

To determine whether the linear cyclobutanes would be susceptible to fragmentation and thus serve as an entry into spiro-fused γ -lactams, 27 we next examined the [2 + 2] photocycloaddition reaction of allyl silane 37 (Scheme 6). As

Scheme 6. Cyclobutane Formation and Fragmentation to the Spiro-Fused γ -Lactam 39

with 35, 37 was synthesized from 28 using cross metathesis (see Supporting Information). When exposed to white light, 37 underwent a [2 + 2] photocycloaddition to give linear adduct 38. Although our attempts to purify 38 were largely unsuccessful, by subjecting 38 to BF₃•Et₂O directly after its formation we were able to isolate spiro-fused γ -lactam 39 in 25% yield from 25 (5 steps). Although there remains a significant amount of work to be accomplished to synthesize the ansalactams, the generation of 39 bodes favorably for the

use of a cyclobutane degradation strategy to accomplish this goal.

CONCLUSIONS

To summarize our findings, while the [2+2] cycloaddition reactions of 2° VINAquinones provide bridged tetracyclic azaanthraquinone products, the use of the analogous 3° VINAquinones provides the corresponding linear adducts. Gaining a better understanding of this unique reactivity and the application of this chemistry to ansalactams and other interesting problems in organic chemistry will be the focus of future studies.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.4c01418.

Experimental protocols for the preparation and purification of 13–16, 20, 21, 25, 20–26, and 29–31 (PDF)

NMR data (PDF)

Accession Codes

CCDC 2257558–2257559 and 2305544 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Jon D. Rainier — Department of Chemistry, University of Utah, Salt Lake City, Utah 84108, United States; orcid.org/0000-0003-4386-2463; Email: rainier@chem.utah.edu

Authors

Ian Merski – Department of Chemistry, University of Utah, Salt Lake City, Utah 84108, United States

Jinya Yin − Department of Chemistry, University of Utah, Salt Lake City, Utah 84108, United States; orcid.org/0009-0003-4041-4283

Ryan T. VanderLinden — Department of Chemistry, University of Utah, Salt Lake City, Utah 84108, United States; oocid.org/0000-0002-0128-1284

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.4c01418

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Professor Matthew S. Sigman (University of Utah) and Ms. Veronica O'Connor from the Sigman group (University of Utah) for helpful discussions. We are grateful for financial support from the NIH (GM132531) and the NSF (CHE 2154353). Funds for the scXRD that was used to acquire the X-ray data came from the NIH (Office of The Director-S10OD030326). We would also like to thank Dr. Hsiaonung Chen (University of Utah) for assistance with mass spectrometry and Dr. Peter Flynn (University of Utah), Dr. Paul Oblad (University of Utah), and Dr. Dennis Edwards (University of Utah) for assistance with NMR experiments.

REFERENCES

- (1) Wilson, M. C.; Nam, S.-J.; Gulder, T. A. M.; Kauffman, C. A.; Jensen, P. R.; Fenical, W.; Moore, B. S. Structure and Biosynthesis of the Marine Streptomycete Ansamycin Ansalactam A and Its Distinctive Branched Chain Polyketide Extender Unit. *J. Am. Chem. Soc.* **2011**, *133*, 1971–1977.
- (2) Le, T. C.; Yang, I.; Yoon, Y. J.; Nam, S.-J.; Fenical, W. Ansalactams B-D Illustrate Further Biosynthetic Plasticity within the Ansamycin Pathway. *Org. Lett.* **2016**, *18*, 2256–2259.
- (3) For reviews on the use of the ansamycins as anticancer agents see: (a) Fukuyo, Y.; Hunt, C. R.; Horikoshi, N. Geldanamycin and its anti-cancer activities. *Cancer Lett.* **2010**, 290, 24–35. (b) Kitson, R. R. A.; Moody, C. J. Learning from Nature: Advances in Geldanamycinand Radicicol-Based Inhibitors of Hsp90. *J. Org. Chem.* **2013**, 78, 5117–5141.
- (4) For a recent review on the ansamycins as antibiotics see: Surette, M. D.; Spanogiannopoulos, P.; Wright, G. D. The Enzymes of the Rifamycin Antibiotic Resistome. *Acc. Chem. Res.* **2021**, *54*, 2065–2075
- (5) Hager, A.; Kuttruff, C. A.; Herrero-Gómez, E.; Trauner, D. Toward the total synthesis of ansalactam A. *Tetrahedron Lett.* **2014**, 55, 59–62.
- (6) Liang, Z.; Lin, Y.-C.; Pierce, J. G. Stereoselective Synthesis of the Spirocyclic γ -Lactam Core of the Ansalactams. *Org. Lett.* **2021**, 23, 9559–9562.
- (7) Yin, J.; Landward, M. B.; Rainier, J. D. Photoelectrocyclization Reactions of Amidonaphthoquinones. *J. Org. Chem.* **2020**, *85*, 4298–4311.
- (8) For a review on the use of photochemical methods to synthesize natural products see: Bach, T.; Hehn, J. P. Photochemical Reactions as Key Steps in Natural Product Synthesis. *Angew. Chem., Int. Ed.* **2011**, *50*, 1000–1045.
- (9) (a) Pattenden, G.; Teague, S. J. Synthesis of (\pm) -Pentalenene. Tetrahedron Lett. 1984, 25, 3021-3024. (b) Crimmins, M. T.; DeLoach, J. A. Intramolecular Photocycloadditions-Cyclobutane Fragmentation: Total Synthesis of (\pm) -Pentalenene, (\pm) -Pentalenic Acid, and (±)-Deoxypentalenic Acid. J. Am. Chem. Soc. 1986, 108, 800-806. (c) Crimmins, M. T.; Mascarella, S. W. Intramolecular Photocycloaddition-Cyclobutane Fragmentation: Total Synthesis of (±)-Silphinene. J. Am. Chem. Soc. 1986, 108, 3435-3438. (d) Cossy, J.; Aclinou, P.; Bellosta, V.; Furet, N.; Baranne-Lafont, J.; Sparfel, D.; Souchaud, C. Radical Anion Ring Opening Reactions via Photochemically Induced Electron Transfer. Tetrahedron Lett. 1991, 32, 1315-1316. (e) Bischof, E. W.; Mattay, J. Radical ions and photochemical charge transfer phenomena Part 32. Cyclobutane and cyclopropane ring opening reactions by photoinduced electron transfer-a new ring expansion method. J. Photochem. Photobiol. A: Chem. 1992, 63, 249-251. (f) Kakiuchi, K.; Minato, K.; Tsutsumi, K.; Morimoto, T.; Kurosawa, H. Regioselective radical ring-opening of bicyclo[4.2.0]octan-2-ones promoted by samarium(II) iodide. Tetrahedron Lett. 2003, 44, 1963-1966. (g) Grünenfelder, D. C.; Navarro, R.; Wang, H.; Fastuca, N. J.; Butler, J. R.; Reisman, S. E. Enantioselective Synthesis of (-)-10-Hydroxyacutuminine. *Angew*. Chem., Int. Ed. 2022, 61, No. e202117480.

- (10) Fujita and co-workers have coupled an intermolecular cycloaddition between naphthoquinone and olefins with fragmentation of the resulting cyclobutane. See: Ochiai, M.; Arimoto, M.; Fujita, E. Photocyclisation Between Allyltrimethylsilane and 1,4-Naphthoquinone and Ring Cleavage of the Resulting Cyclobutane Assisted by the Trimethylsilyl Group. *J. Chem. Soc., Chem. Commun.* 1981, 460–461
- (11) Reisman and co-worker's synthesized a [2 + 2] cycloaddition precursor from a quinone. See ref 9g.
- (12) For examples of intermolecular naphthoquinone [2 + 2] photocycloadditions see ref 10 and (a) Barltrop, J. A.; Hesp, B. Organic photochemistry Part V. The illumination of some quinones in the presence of conjugated dienes and other olefinic systems. J. Chem. Soc. (C) 1967, 1625-1635. (b) Pappas, S. P.; Pappas, B. C.; Portnoy, N. A. Alkyne-Quinone Photoaddition. Formation and Solvolytic Rearrangement of 1-Methoxybicyclo [4.2.0] octa-3,7-diene-2,5-diones. J. Org. Chem. 1969, 34, 520-525. (c) Maruyama, K.; Naruta, Y.; Otsuki, T. Photo-addition Reaction of 1,4-Naphthoquinone with Olefins. Formation of 2:1 Addition Compounds. Bull. Chem. Soc. Jpn. 1975, 48, 1553-1558. (d) Maruyama, K.; Narita, N. Photocycloaddition reaction of alkyl-substituted 1,4-naphthoquinones with olefins. Substituent effects on controlling the orientation of cycloaddition reaction. Bull. Chem. Soc. Jpn. 1980, 53, 757-763. (e) Crimmins, M. T.; Reinhold, T. L. Enone olefin [2 + 2] photochemical cycloadditions. In Organice Reactions; Organic Reactions, 1993; Vol. 44, p 297.
- (13) Albrecht, D.; Vogt, F.; Bach, T. Diastereo- and Enantioselective Intramolecular [2 + 2] Photocycloaddition Reactions of 3-(w'-Alkenyl)- and 3-(w'-Alkyenyloxy)-Substituted 5,6-Dihydro-1*H*-pyridin-2-ones. *Chem.—Eur. J.* **2010**, *16*, 4284–4296.
- (14) Shimizu, N.; Shigemitsu, H.; Kida, T.; Bach, T.; Mori, T. Visible Light-Induced Regio- and Enantiodifferentiating [2 + 2] Photocycloaddition of 1,4-Naphthoquinones Mediated by Oppositely Coordinating 1,3,2-Oxazaborolidine Chiral Lewis Acid. *J. Org. Chem.* 2022, 87, 8071–8083.
- (15) For examples of the use of enamides in intramolecular [2 + 2] photocycloadditions see: (a) Reuβ, F.; Heretsch, P. Synthesis of Aspidodispermine via Pericyclic Framework Reconstruction. *Org. Lett.* **2020**, 22, 3956–3959. (b) Zhang, Z.; Yi, D.; Zhang, M.; Wei, J.; Lu, J.; Yang, L.; Wang, J.; Hao, N.; Pan, X.; Zhang, S.; Wei, S.; Fu, Q. Photocatalytic Intramolecular [2 + 2] Cycloaddition of Indole Derivatives via Energy Transfer: A Method for Late-Stage Skeletal Transformation. *ACS Catal.* **2020**, *10*, 10149–10156.
- (16) (a) Nielsen, L. B.; Wege, D. The enantioselective synthesis of elecanacin through an intramolecular naphthoquinone-vinyl ether photochemical cycloaddition. *Org. Biomol. Chem.* **2006**, *4*, 868–876. (b) Ishikawa, H.; Chung, T. S.; Fukuhara, G.; Shigemitsu, H.; Kida, T.; Bach, T.; Mori, T. Diastereoselective Photocycloaddition Reaction of Vinyl Ether Tethered to 1,4-Naphthoquinone. *ChemPhotoChem.* **2019**, *3*, 243–250.
- (17) (a) Liu, R. S. H.; Hammond, G. S. Photosensitized Internal Addition of Dienes to Olefins. *J. Am. Chem. Soc.* **1967**, *89*, 4936–4944. (b) Maradyn, D. J.; Weedon, A. C. Trapping of Triplet 1,4-Biradicals with Hydrogen Selenide in the Intramolecular Photochemical Cycloaddition Reaction of 3-(4'-Pentenyl)cycloalk-2-enones: Verification of the Rule of Five. *J. Am. Chem. Soc.* **1995**, *117*, 5359–5360.
- (18) For examples of exceptions to the general rule see: (a) Crimmins, M. T.; Hauser, E. B. Synthesis of Crossed [2 + 2] Photocycloadducts: A Novel Approach to the Synthesis of Bridged Bicyclic Alkenes. *Org. Lett.* **2000**, *2*, 281–284. (b) Weixler, R.; Hehn, J. P.; Bach, T. On the Regioselectivity of the Intramolecular [2 + 2] Photocycloaddition of Alk-3-enyl Tetronates. *J. Org. Chem.* **2011**, 76, 5924–5935. (c) Zhao, J.; Brosmer, J. L.; Tang, Q.; Yang, Z.; Houk, K. N.; Diaconescu, P. L.; Kwon, O. Intramolecular Crossed [2 + 2] Photocycloaddition through Visible Light-Induced Energy Transfer. *J. Am. Chem. Soc.* **2017**, 139, 9807–9810.

- (19) Sivaguru, J.; Bach, T.; Ramamurthy, V. Keeping the name clean: [2 + 2] photocycloaddition. *Photochem. Photobiol. Sci.* **2022**, 21, 1333–1340.
- (20) For a recent example see: Rigotti, T.; Schwinger, D. P.; Graβl, R.; Jandl, C.; Bach, T. Enantioselective crossed intramolecular [2 + 2] photocycloaddition reactions mediated by a chiral chelating Lewis acid. *Chem. Sci.* **2022**, *13*, 2378–2384.
- (21) For examples see ref 20 and (a) LaLonde, R. T.; Aksentijevich, R. I. The Photolysis of N,N-Dimethylacrylylmethacrylamide. Tetrahedron Lett. 1965, 6, 23-27. (b) Begley, M. J.; Mellor, M.; Pattenden, G. A New Approach to Fused Carbocycles. Intramolecular Photocyclisations of 1,3-Dione Enol Acetates. J. Chem. Soc., Chem. Commun. 1979, 235-236. (c) Alder, A.; Bühler, N.; Bellus, D. Synthesis and reactivity of compounds with cyclobutane ring(s). Part 18. A note on intramolecular photochemical cycloaddition of N-Substituted dimethacrylimides. Helv. Chim. Acta 1982, 65, 2405-2412. (d) Matlin, A. R.; George, C. F.; Wolff, S.; Agosta, W. C. Regiochemical control of intramolecular photochemical reactions of 1,6-heptadienes. Carbonylsubstituted 1-(4-alkenyl)-1-cyclopentenes. J. Am. Chem. Soc. 1986, 108, 3385-3394. (e) Bach, T.; Kemmler, M.; Herdtweck, E. Complete Control of Regioselectivity in the Intramolecular [2 + 2] Photocycloaddition of 2-Alkenyl-3(2H)-furanones by the Length of the Side Chain. J. Org. Chem. 2003, 68, 1994-1997. (f) Kohmoto, S.; Hisamatsu, S.; Mitsuhashi, H.; Takahashi, M.; Masu, H.; Azumaya, I.; Yamaguchi, K.; Kishikawa, K. Reversal of regioselectivity (straight vs. cross ring closure) in the intramolecular [2 + 2] photocycloaddition of phenanthrene derivatives. Org. Biomol. Chem. 2010, 8, 2174-2179. (22) Yin, J.; Rainier, J. D. The one-pot synthesis of amidonaptho-
- (22) Yin, J.; Rainier, J. D. The one-pot synthesis of amidonapthoquinones from aminonaphthoquinones. *Tetrahedron Lett.* **2020**, *61*, No. 151800.
- (23) Couladouros, E. A.; Plyta, Z. F.; Papageorgiou, V. P. A General Procedure for the Efficient Synthesis of (Alkylamino)-naphthoquinones. *J. Org. Chem.* **1996**, *61*, 3031–3033.
- (24) Lisboa, C. d. S.; Santos, V. G.; Vaz, B. G.; de Lucas, N. C.; Eberlin, M. N.; Garden, S. J. C–H Functionalization of 1,4-Naphthoquinone by Oxidative Coupling with Anilines in the Presence of a Catalytic Quantity of Copper(II) Acetate. *J. Org. Chem.* **2011**, *76*, 5264–5273.
- (25) Zhao, X.; Rainier, J. D. Pyridone photoelectrocyclizations to pyridophenanthrenes. *Tetrahedron* **2017**, *73*, 4786–4789.
- (26) Yu, W.; Hjerrild, P.; Jacobsen, K. M.; Tobiesen, H. N.; Clemmensen, L.; Poulsen, T. B. A Catalytic Oxidative Quinone Heterofunctionalization Method: Synthesis of Strongylophorine-26. *Angew. Chem., Int. Ed.* **2018**, *57*, 9805–9809.
- (27) Faure, S.; Piva-Le Blanc, S.; Piva, O. Synthesis of vinyl spirolactones and lactams by sequential cross-coupling metathesis, [2 + 2] photocycloaddition and cyclobutane ring-opening. *Tetrahedron Lett.* **1999**, *40*, 6001–6004.