
Automatic and Precise Data Validation for Machine Learning
Shreya Shankar⇤

University of California,
Berkeley

shreyashankar@berkeley.edu

Labib Fawaz
Meta

labibfawaz@meta.com

Karl Gyllstrom
Meta

gylls@meta.com

Aditya Parameswaran
University of California,

Berkeley
adityagp@berkeley.edu

ABSTRACT
Machine learning (ML) models in production pipelines are fre-
quently retrained on the latest partitions of large, continually-
growing datasets. Due to engineering bugs, partitions in such
datasets almost always have some corrupted features; thus, it’s
critical to �nd data issues and block retraining before downstream
ML accuracy decreases. However, current ML data validation meth-
ods are di�cult to operationalize: they yield too many false positive
alerts, require manual tuning, or are infeasible at scale. In this pa-
per, we present an automatic, precise, and scalable data validation
system for ML pipelines, employing a simple idea that we call a
Partition Summarization (PS) approach to data validation: each
timestamp-based partition of data is summarized with data quality
metrics, and summaries are compared to detect corrupted partitions.
We demonstrate how to adapt PS for any data validation method
in a robust manner and evaluate several adaptations—which by
themselves provide limited precision. Finally, we present ����, our
data validation method that leverages these adaptations, giving a
2.1⇥ average improvement in precision over the baseline from prior
work on a case study within our large tech company.

CCS CONCEPTS
• Computing methodologies ! Machine learning.

KEYWORDS
machine learning; data validation
ACM Reference Format:
Shreya Shankar⇤, Labib Fawaz, Karl Gyllstrom, and Aditya Parameswaran.
2023. Automatic and Precise Data Validation for Machine Learning. In
Proceedings of the 32nd ACM International Conference on Information and
KnowledgeManagement (CIKM ’23), October 21–25, 2023, Birmingham, United
Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3583780.3614786

1 INTRODUCTION
Errors in input data can negatively impact machine learning (ML)
performance, motivating data validation for ML pipelines [6, 8,
25]. Breck et al. [8] state that “the importance of this problem is
hard to overstate, especially for production pipelines,” where ML
models are frequently retrained on the latest partitions of data—
including the underlying input features as well as the corresponding
predictions [49]. For instance, suppose the audio doesn’t work
for the newest release of a social media app. Since audio-related
∗Work performed during an internship at Meta

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0124-5/23/10.
https://doi.org/10.1145/3583780.3614786

Method No
Tuning
Needed

Handles
Correlated
Features

Tracks
Multiple
Metrics

High
Precision
and Recall

Schelter et al. [39] 7 7 3 7
Breck et al. [8] 7 7 3 7
Rabanser et al. [33] 3 7 7 7
Redyuk et al. [36] 3 7 3 7
���� 3 3 3 3

Table 1: Data Validation for ML Methods.

features for users who updated their apps would get corrupted, the
performance of a news feed ranking model might su�er. Not only
would the corrupted partition (i.e., day) of data result in low ML
accuracy, but any ML model retrained on this partition would also
be corrupted. It’s thus crucial to detect data issues before retraining
models, but on the �ip side, if we falsely alert that there is corrupted
data and prevent retraining, production model snapshots quickly
become stale. In this paper, we therefore focus on the problem of
automatically and precisely validating data to detect issues
in production ML pipelines, before models are retrained.

Detecting data errors in production ML pipelines before they
cause downstream accuracy drops is hard at our scale (i.e., a large
tech company with hundreds of ML pipelines; details omitted for
anonymity). Our data partitions are several petabytes, with tens of
thousands of features (i.e., input data to the model) and multiple
retraining jobs per model per week. Given so many features, it is
almost always the case that engineering bugs outside the model
developers’ control corrupt some of them—especiallywhen, atmany
organizations, feature pipelines are separated from calls to ML
models [42, 49]. Additionally, it’s unclear how much corruption
actually impacts model accuracy [32]. This corruption tolerance is
often di�erent for each pipeline, requiring pipelines to have on-call
engineers that investigate whether production model snapshots
are broken and should be rolled back to earlier versions [42]. A
data validation system should alert on-call engineers to gate, or
block, the promotion of a model snapshot to production, without
requiring constant pipeline babysitting.
Prior ML data validation techniques are too manual and
coarse-grained. Prior work on ML data validation either overly
relies on manual input or doesn’t �ag most errors. Schelter et al.
[39] propose a variety of general-purpose large-scale data valida-
tion techniques; however, these techniques aren’t operationally
scalable because they require engineers to enumerate and �ne-tune
constraints for each feature. Breck et al. [8] propose schema valida-
tion techniques for production ML pipelines, where each tuple is
checked against a schema, consisting of type and null value checks
and loosely-de�ned bounds (e.g., non-negativity for an age-related
feature) inferred from a training set. Schema validation is necessary
but not su�cient; our ML pipelines have schema validation but still
experience many data corruption issues.
Prior drift detection techniques are too imprecise and don’t
scale. Another approach is to employ drift detection techniques
from the ML literature. A method popularized by Rabanser et al.

2198

https://doi.org/10.1145/3583780.3614786
https://doi.org/10.1145/3583780.3614786
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3583780.3614786
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3614786&domain=pdf&date_stamp=2023-10-21

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Shreya Shankar⇤ , Labib Fawaz, Karl Gyllstrom, and Aditya Parameswaran

[33] computes the Kolmogorov-Smirnov test [26] for each feature
between their current and historical distributions, and other work
has tried di�erent statistical tests [2, 25], but triggering alerts based
on distributional di�erences at scale can be computationally infeasi-
ble, as historical data can be too large or blocked for privacy reasons.
A simple solution is to keep a rolling sample of historical data to
compare the current partition of data to, but prior work �nds that
this solution leads to too many false positive alerts [8, 14, 39, 40, 45].

Building an automatic, precise, and scalable data validation
system is hard. Our work composes a number of simple but pow-
erful insights to build a performant and useful data validation tool.

First, we note that false positive drift alerts are often tied to
expected temporal patterns—for example, day-vs-night or weekday-
vs-weekend—these, by themselves, are not true instances of ML data
errors, but are incorrectly identi�ed by prior approaches because
they simply compare the current batch of data with another batch
(either all of the prior data, or a rolling window). We propose a
new straightforward approach called Partition Summarization (PS),
where we compare a summary of the current partition of data
to a number of historical summaries. For example, the partition
corresponding to Monday is compared not just with Sunday, or
a coarse-grained aggregate for the last week, but (say) individual
partitions for each day of the week—which includes both weekends
and weekdays. Storing summaries of partitions for use in later
computation has been used in other data management contexts,
e.g., [24, 28], and we apply this idea to ML data validation.

Second, while the PS approach makes sense, it isn’t exactly clear
how to summarize a partition in an e�ective manner for validating
it relative to previous partitions. Prior literature o�ers a number of
statistical measures to place in the summaries (e.g., column mean,
max), but we �nd that naively adapting and normalizing (e.g., min-
max) these statistics, like Redyuk et al. [36] propose for general
anomaly detection in datasets, still leads to false positive alerts
for ML-related data validation. To solve this problem, we leverage
anomaly and change point detection techniques [3, 7] and adapt
them to be robust to slower, expected drift over time (e.g., age-
related features are monotonically increasing).

Finally, even if we can e�ectively summarize a partition, we still
have an issue of many false positive alerts, because ML datasets
can have many correlated features, often because of preprocessing
techniques like one-hot encoding. If each partition summary con-
sists of several measures for each feature column, simply applying
a dimensionality reduction technique (e.g., PCA [31]) doesn’t meet
operational requirements because alerts should be actionable. An
alert such as “Cluster No. 12 drifted” isn’t useful to an on-call engi-
neer. As a result, we propose a scalable, robust-to-noise strategy to
group features into disjoint clusters based on their correlations.

All together, we present ����, a data validation method that
improves upon adaptations of aforementioned methods (Table 1)
by employing the following steps: (i) clustering correlated features
based on partition summaries, (ii) computing statistical measures
of data quality for features in a robust manner, and (iii) monitoring
cluster-wide aggregate statistics over time.

Outline. To the best of our knowledge, we are the �rst to propose
an automatic, high-precision, and operationally feasible data vali-
dation system for ML pipelines. Our system focuses on validating
partitions of data for ML pipelines to detect issues before models
are retrained. Our contributions are the following:

• We give an overview of ourML pipelines and enumerate busi-
ness requirements for an automatic data validation system
(Section 2),

• We describe a general framework for adapting existing data
validationmethods to the Partition Summarization (PS) frame-
work, but these methods do not meet our requirements—
namely, they still result in too many false positive alerts
(Sections 3 and 4),

• We introduce ����, our new, high-precision and high-recall
automatic data validation technique that employs the PS
framework (Section 5), and

• We discuss takeaways from a case study on some of our
ML pipelines (Section 6). We compare our data validation
methods to prior work and discuss preferable techniques
for di�erent use cases. Finally, we mention an example of
using our system during an on-call rotation to debug an ML
pipeline performance drop.

2 BACKGROUND
In this section, we provide background on production ML pipelines,
requirements for a practical data validation solution, and a short
discussion of existing data validation methods.

2.1 ML Pipelines
A production ML pipeline consists of one or more ML models that
continuously produce predictions, and are periodically retrained
on the latest partition(s) of data. Figure 1 depicts an example produc-
tion ML pipeline. Tra�c to the pipeline is routed to either the main
model model A or one of many experimental models (e.g., model B).
Suppose an input tuple (1� in Figure 1) is routed to model A. Then,
2�Model A will compute a prediction (e.g., probability of user ac-
tion). This prediction is returned to an end user or application and
3� logged to a table with all features and predictions. Separately, ev-
ery several hours or days (the cadence di�ers for di�erent models),
4� retraining jobs are launched to retrain each model on the latest
partition(s) of tuples—with the exception of a small hold-out set
of tuples used for validation. Each retraining job veri�es that the
newly trained model snapshot achieves good performance (i.e., low
loss) on the hold-out set, and if 5� this model validation step passes,
the new model snapshot replaces its corresponding old produc-
tion snapshot. ML engineers can include additional model-speci�c
checks, like unit tests on speci�c tuples [22].

While model validation is necessary to prevent bad models from
going to production, it is not su�cient. Breck et al. [8] discuss how
bugs in code are a common source of production data errors and
that the quality of ML predictions drastically su�ers if features are
corrupted. Thus, it is imperative to also perform data validation,
in addition to model validation, especially in the continual setting
where data is constantly fed back to the model for retraining.

2.2 Data Validation Requirements
Our data validation goal is to determine whether there are enough
“invalid” tuples in the latest partitions of training datasets to cause
a downstream model performance drop if the retrained model snap-
shot is pushed to production. Trivially, we could gate, or block, all
retrained models being pushed to production, but then the model
snapshot in production would quickly get stale. Thus, it is important
to precisely identify when and how the data is corrupted.

2199

Automatic and Precise Data Validation for Machine Learning CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

1� Input tuple (viewer id, timestamp)

2� Model A

95%

Model B

2%

3� Table of all features

5� Validate A

4� Retrain A

Data validation module (automatic pro�ling and alerting)

Validate B

Retrain B

. . .

3%

timestamp model
id

model
version

data

2022-06-01T10:52 A 743866 {media_length: 19.2345, viewer_id:
1021344, time_active: . . .}

2022-06-01T10:53 B 234113 {media_length: 3.4434, viewer_id:
1048832, time_active: . . .}

.

: Tuple �ow
. : Batch �ow (e.g., scheduled hourly via cron)
Retrain M : Partitions latest snapshot of features (WHERE model_id=M) into training

and validation sets D) , D+ & retrains model M on D)
Validate M : Promotes retrained version of M if 1� its accuracy on D+ exceeds a

prede�ned threshold (i.e., data scientist-programmed logic) and 2� ����
veri�es data integrity

Figure 1: An ML pipeline for a single prediction task, consisting of a main model and many experimental models. If the latest
snapshot of features is corrupted, even with model-speci�c validation, the resulting model version will have poor performance.

For this purpose, prior work recommends employing schema val-
idation and other constraint checking techniques [8, 39]. However,
even though these techniques were implemented at our company,
they were insu�cient, since ML engineers had to enumerate fea-
tures and constraints for their pipelines, which was too hard to
sustain over time as data changed and teams experienced natural
turnover. To build a better data validation system, we �rst inter-
viewed ML engineers to collect the following requirements:
Support formany correlated features. Pipelines consist of datasets
that can have tens of thousands of features, many of which are
highly correlated and contribute unequally to overall ML model
performance. A data validation solution that treats features inde-
pendently and identically will trigger false positive alerts. While
some organizations may be able to weight alerts on features by
their importance scores [37], this approach is not generalizable and
computationally feasible at scale. Not all models have clearly de-
�ned feature importance scores (e.g., in deep learning), and because
models are frequently retrained, feature importances change often.
Automated alerts that don’t lead to fatigue. Engineers explicitly
require a minimum recall (otherwise the system will be useless)
and implicitly require a minimum precision (otherwise they will
not pay attention to system alerts). In previous e�orts to build a
data validation tool within the company, engineers had to manually
tune thresholds for �ring alerts, eventually abandoning the tool.
Moreover, ML engineers are often responsible for ML pipelines that
consist of features that they don’t create (due to organizational
turnover), and it’s impractical to enumerate and carefully tune
constraints for features they may not have context about.
Alert debugging assistance. Alerts should be interpretable for
engineers to act on. Since an engineering bug typically breaks a
single feature (e.g., a typo corrupts a string-valued feature), alerts
should map to a broken feature or set of features [43]. As such,
monitoring uninterpretable low-rank representations of features
(e.g., from PCA) is not useful.

2.3 Data Validation for ML: Existing Measures
A data validation method takes some data quality statistic(s) and
triggers an alert if some condition is satis�ed.

2.3.1 ML-Relevant Data �ality Statistics. For each feature and
prediction column, the following statistics are commonly measured
for data cleaning and validation: completeness, mean, standard
deviation, number of unique values, number of frequent values,
and the count of the most frequently-occurring value [17, 39]. For

ML, it’s also useful to track how the density of a column changes
over time, via histograms or empirical cumulative density functions
(eCDFs) [8, 25, 33].

2.3.2 Alert Mechanisms. Several data validation for ML tools sep-
arately monitor each column and alert whether the current par-
tition’s statistics are anomalous (i.e., outside several deviations
from the mean, fail a two-sample statistical test), which can be
computationally expensive, require manual tuning, and cause false
positive alerts at scale [5, 26, 33, 39]. Another alert mechanism
approach is to use anomaly detection models: data quality mea-
sures can be concatenated across all columns and fed into a model
(e.g., :-nearest neighbors) to predict whether an alert should be
triggered [7]. However, such anomaly detection models typically
treat features independently and identically [36]—which makes it
challenging to correctly trigger alerts without causing alert fatigue
in the ML setting, where certain features dominate importance.
Looking Ahead. The rest of the paper introduces our data valida-
tion problem setup, the Partition Summarization (PS) framework
that creates an automated alert mechanism out of any data quality
statistic that can run quickly and cheaply on data of our scale, and
����, an anomaly detection algorithm with an interpretable clus-
tering component that results in automatic, precise, and scalable
data validation.

3 PROBLEM
In this section, we introduce our problem statement and discuss
evaluation metrics for data validation methods.

3.1 Formalization
Consider a dataset D of timestamp-ordered partitions1 D = {⇡1,
⇡2, . . . ,⇡C } where D has features (i.e., columns) �1, �2, . . . , �= , and
� 89 represents the multiset of values for feature 9 in the 8th partition
of data, i.e., ⇡8 . At every timestamp C , an ML model—which we
may not know and therefore treat as a black box—is retrained on
the partitions until that point, i.e.,[8<C⇡8 . Although the absolute
performance of the model can be measured by di�erent metrics,
such as accuracy or loss, we generically de�ne an ML performance
drop as a degradation in the metric of choice compared to a rolling
baseline, e.g., 5% drop in accuracy compared to the 7-day rolling
average accuracy. Typically, an ML engineer sets this de�nition and

1In this paper, each partition represents a day (i.e., 24 hours) of data, but other break-
downs are possible (e.g., a partition per hour).

2200

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Shreya Shankar⇤ , Labib Fawaz, Karl Gyllstrom, and Aditya Parameswaran

threshold. A data partition ⇡8 is corrupted if a model retrained on
⇡8 experiences a performance drop at the following timestamp, i.e.,
8 + 1. We denote D’s corruptions with ~8 2 {0, 1}, where ~8 = 1 if
and only if ⇡8 is corrupted.

We then de�ne a data validation method to be a function that re-
turns a score indicating the likelihood of a corruption for ⇡C , given
historical partitions ⇡1, . . . ,⇡C�1. More formally, a data validation
method 5 is de�ned as 5

�
⇡C | ⇡1,⇡2, . . . ,⇡C�1� . If the arguments

are clear from the context, we will use the short notation 5 (C)
for a data validation method. Practically, 5 (C) should be inexpen-
sive to compute—especially at scale, but how do we evaluate its
performance, i.e., if 5 (C) ⇡ ~C ? We discuss evaluation metrics next.

3.2 Evaluation Metrics
Typically, data validation methods produce alerts, where an alert
is triggered when 5 (C) exceeds some threshold (e.g., 50%). Given
alert threshold g , we let 0Cg = [5 (C) � g]. We de�ne precision and
recall at C :

% (C, g) =
ÕC
8=1 ~

8 · 08gÕC
8=1 0

8
g

'(C, g) =
ÕC
8=1 ~

8 · 08gÕC
8=1 ~

8

A data validation method may generate at most C distinct scores,
one corresponding to each 5 (8) such that 8 2 {1, . . . , C}, giving us
at most C thresholds g1 . . . gC to choose from. Speci�cally, we are
interested in precision@0.9, or the precision at the threshold g
that gives 90% recall. This metric is of primary interest, since a
method that cannot recall most failures does not meet the bar for
deployment. We also consider another metric—average precision
(AP)—that takes into account the overall shape of the precision-
recall (P-R) curve across thresholds [35]. AP is the weighted mean
of precisions at each threshold, where the weight is the increase in
recall from the previous threshold. Equation (1) shows the de�nition
of AP at C , if % (C, g8) and '(C, g8) are the precision and recall at the
8th threshold g8 :

�% (C) =
C’
8=1

(' (C, g8) � ' (C, g8�1)) % (C, g8) (1)

AP captures the overall predictive power of a method, or how the
method performs when various thresholds of scores are chosen to
�re alerts. As such, AP gives us a holistic, unbiased estimate of a
method’s performance.

4 PARTITION SUMMARIZATION
Existing data validation setups [8, 25, 39] typically apply some sta-
tistical measure & (e.g., completeness, mean) to each feature � 9 at
time C and analyze how &

⇣
� C9

⌘
compares to &

⇣
� C�19

⌘
, the statistic

for the previous day. Or, they compare &
⇣
� C9

⌘
to &

⇣
[C�18=1 �

8
9

⌘
, i.e.,

the statistic computed on the union of all previous values2. Nei-
ther setup accounts for expected temporal patterns, e.g., weekends
behaving di�erently compared to weekdays.

The Partition Summarization (PS) approach to data validation
that we introduce, involves �rst computing one or more statistical
summaries, & , (e.g., mean) for each feature � 9 for each partition ⇡8

for 8  C , i.e., &
⇣
� 89

⌘
. Once these &’s are computed and stored per

2Here and elsewhere, when we use [, we are referring to the multiset union rather
than the set union.

partition, we then combine them in various ways to compute 5 (C).
Data validation methods can di�er in the choice of statistics for
partition summaries (i.e., &) and how to combine these statistics
to produce the overall data quality scores (i.e., 5). We describe a
general adaptation of existing data validation methods to the PS
setting in Section 4.1 and give speci�c adaptations in Section 4.2.
We place common notation in Table 2.

4.1 General Adaptation
As we described in Section 3, in the PS framework, we decompose
data validation into two steps: one, where we compute summaries
& for features �1, �2, . . . , �= across partitions ⇡1,⇡2, . . . ,⇡C ; and
second, we combine these summaries to get an overall measure of
data quality 5 (C) at each time step C . As a step towards computing
5 (C), we aggregate each feature’s di�erence between & and its
rolling average & . In practice, we need to normalize the di�erences
between & and & before aggregating them. Formally, given & and
�8 , we de�ne the rolling average & over the last : days as:

& (�8 , C) =
1
:

:’
9=1

&
⇣
� C� 9
8

⌘
(2)

Once we have rolling average & per feature, we can normalize the
&s per feature as e& . The normalized e&s can be computed using
di�erent normalization techniques, such as percent di�erence (PD)
or I-score:

e&%⇡ (�8 , C) =
&
⇣
� C8

⌘
�& (�8 , C)

& (�8 , C)
(3)

e&I (�8 , C) =
&
⇣
� C8

⌘
�& (�8 , C)

f
⇣ h
&
⇣
� C�18

⌘
, . . . ,&

⇣
� C�:8

⌘i ⌘ (4)

where f is a function that calculates the standard deviation. Fi-
nally, 5 can be computed by aggregating the e&’s for each feature,
producing a scalar score:

5 (C) = 1
=

=’
8=1

e& (�8 , C)

We can trigger an alert if 5 (C) exceeds a threshold—which can
be determined by keeping track of 5 for a few timestamps and
computing if the current value is an outlier. In practice, any scalar
outlier detection mechanism can be used (e.g., multiple standard
deviations � the mean, � than 95th percentile). An alert threshold
chosen this way is robust to temporal variation (i.e., a percentile
threshold will maintain its meaning and signi�cance over time). In
the following, we slightly abuse notation to adapt our approach to
various data quality metrics: brie�y, & indicates a rolling average
measure, e& indicates a normalized version (using&) for the current
time step relative to others, and 5 (C) aggregates e& across features.

4.2 Adaptations of Existing Approaches
We pick three categories of data quality measures to adapt to the
PS setting: (1) monitoring the percent drop of completeness for
each feature, (2) monitoring I-scores of any scalar statistic (e.g.,
completeness, mean) for each feature, and (3) monitoring ?-values
from two-sample statistical tests (e.g., Kolmogorov-Smirnov [26])
for each feature. For each of the methods, we set : = 7, or one week,

2201

Automatic and Precise Data Validation for Machine Learning CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Symbol Description
⇡C Partition of data at timestamp C

~
Binary labels representing whether partitions are corrupted, ~C = 1
if ⇡C is corrupted and 0 otherwise

� A feature (i.e., column) in the dataset; � 9 represents the 9 th feature

5 Data validation method, 5 : ⇡C ! R
& Data quality statistic (e.g., mean, completeness),& : � C ! R

& Average of the most recent statistical measures& for a feature,
de�ned in Equation (2)

e&%⇡
Percent di�erence between& and its rolling average& , de�ned in
Equation (3)

e&I
I-score di�erence (i.e., number of standard deviations) between&
and its rolling average& , de�ned in Equation (4)

⇠
Completeness of a feature for a partition (i.e., the fraction of
non-null values),⇠ : � C ! [0, 1]

⌧C ����’s clustering assignment at time C , where⌧C (�) represents � ’s
cluster and |⌧C | = E is the number of distinct clusters

Table 2: Notation Table

in computing& and e& . We chose : = 7 because of typical organiza-
tional considerations (e.g., on-call rotation lengths are based on the
week, meetings are often weekly), but this parameter can vary.

4.2.1 X-Completeness Drop. The completeness drop method cre-
ates a score at time C based on the number of features that have
experienced a completeness drop (i.e., e⇠) � X with respect to their
rolling 7-day average completeness. The score is weighted by each
feature’s rolling average completeness (i.e., ⇠). Equation (5) shows
the X-completeness drop score for time C :

e⇠%⇡ (�8 , C, X) =
(e⇠%⇡ (�8 , C) ⇥⇠ (�8 , C) if e⇠%⇡ (�8 , C) � X

0 otherwise

5⇠ (C, X) = 1
=

=’
8=1

���e⇠%⇡ (�8 , C, X)
��� (5)

We weight each feature exceeding X by its rolling average ⇠ be-
cause we only want features to contribute to 5⇠ when they deviate
signi�cantly and typically have large completeness values.

4.2.2 I-Score Anomaly Detection. In this method, we �x a scalar
statistic (e.g., completeness or mean) and create a score at time C
based on the fraction of features that have a I-score outside some
cuto� g . I-scores are computed using 7-day rolling means and
standard deviations of the statistic. Given statistic & , the anomaly
detection score for time C is shown in Equation (6):

e&I (�8 , C, g) =
(���e&I (�8 , C)

��� if
���e&I (�8 , C)

��� � g

0 otherwise

5I (C, g) =
1
=

=’
8=1

e&I (�8 , C, g) (6)

Intuitively, we zero the contributing I-score for features with small
I-scores (i.e., < g) because, given the tens of thousands of features
we must monitor, many features are likely to have normal I-scores
(i.e., less than 3). We want the “most anomalous” features to sig-
ni�cantly alter the resulting 5I score—for example, one feature’s
I-score being 15 is more alarm-worthy than 15 features each having
a I-score of 1. Before adding the intermediate e&I (�8 , C, g) step (i.e.,
the indicator for � g), this method performed very poorly.

4.2.3 Two-Sample Statistical Tests. To consider entire distributions
of each feature, we evaluated ?-values based on three di�erent sta-
tistical measures: Kolmogorov-Smirnov (KS), Wasserstein-1 (wass)
or Earth-Mover’s Distance, and DTS [13, 26, 46]. At a high level, the
KS measure computes the largest di�erence between two eCDFs at
a single value, the Wasserstein-1 measure computes the entire area
of di�erence between two eCDFs, and the DTS measure weights
the Wasserstein-1 measure by variance of the combined eCDFs
(denoted as ⇡̂ in Equation (9)). For our implementation, the eCDFs
consist of 99 percentiles, or the 1st percentile to 99th percentile. If
eCDF (�8 , C) 2 R99 represents an eCDF of feature �8 at time C , the
two-sample test statistics are shown in Equations (7) to (9):

di� (�8 , C) =

������eCDF (�8 , C) �
1
7
©≠
´

7’
9=1

eCDF (�8 , C � 9)™Æ
¨

������
⌘KS (�8 , C) = max di� (�8 , C) (7)

⌘wass (�8 , C) =
’

di� (�8 , C) (8)

⇡̂ (�8 , C) = f
©≠
´
eCDF (�8 , C) ,

1
7
©≠
´

7’
9=1

eCDF (�8 , C � 9)™Æ
¨
™Æ
¨
2

⌘DTS (�8 , C) =
Õ
di� (�8 , C)

⇡̂ (�8 , C) ⇥
⇣
1 � ⇡̂ (�8 , C)

⌘ (9)

Note that di� (�8 , C) 2 R99 represents an element-wise absolute
value di�erence between the eCDF at time C and the 7-day rolling
average eCDF. To convert a statistical measure to a ?-value, we
bootstrap estimates of the measure while randomly partitioning
the current and historical average eCDFs and compute the fraction
of bootstrapped values that don’t exceed the original measure.

To convert the ?-values to a scalar score for C , we compute the
fraction of features with a ?-value smaller than a signi�cance level
U , typically set to 0.05. If ? (�8 , C) is a ?-value from a two-sample
statistical test measure at time C for feature �8 , the resulting score
for this measure at time C is shown in Equation (10):

e&twosamp (�8 , C,U) = [? (�8 , C)  U]

5twosamp (C) =
1
=

=’
1=1

e&twosamp (�8 , C,U) (10)

5 GATE
In this section, we describe ����, our technique that results in fewer
false positives than the methods from Section 4.1, while being a bit
more involved to implement. ���� can be broken down into the
following components (as depicted in Figure 2):
Decorrelation.We apply spectral decomposition to correlations
between features. This allows us to map clusters back to original
features for debugging (unlike PCA). The decorrelation step accepts
input partitions ⇡8 where 8  C and outputs⌧C 2 R= , where each
feature is represented by only one cluster. We denote the number
of unique clusters |⌧C | = E . For speed and scalability, we apply
this clustering method to partition summaries instead of entire
underlying datasets. (Section 5.1)
Anomaly Matrix Creation. We compute 6 statistical measures
for each feature and derive their I-scores for normalization pur-
poses. We use ⌧C 2 R= to cluster and average the I-scores. This

2202

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Shreya Shankar⇤ , Labib Fawaz, Karl Gyllstrom, and Aditya Parameswaran

f1 f2 f3 . . .
...

...
...

...

feature ` f . . .

f1 ...
...

...f2
...

...
...

...

Partition
Summarization

⌧1 ⌧2

⌧3

⌧4

Decorrelation
(Inter-feature validation)

completeness 0.8
`: 0.12
f : 0.3

unique vals: 2.2
top frequency: -1.3

Wass-1: -1.3

Anomaly Matrix Creation
(Intra-feature validation)

©≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.4
...

�0.4
...
0.2
...
0.6
...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

C � 3

©≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.6
...

�0.7
...
0.3
...
0.2
...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

C � 2

©≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0.8
...

�0.9
...
3.3
...
0.4
...

™ÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

C � 1
Alert Generation

(Temporal validation)

feature completeness . . .

f1 0.1 ...f2 6.5
...

...
...

...
...

...

Feature Drill-Down
(Debugging)

Figure 2: Architecture of our Partition Summarization (PS) approach to data validation for ML. The red box represents a general
data validation technique. We found that existing techniques did not achieve high precision and recall in identifying our ML
performance drops—mainly, there were too many false positive alerts. Our technique, ����, clusters correlated features and
triggers an alert if an entire group’s summary statistics are anomalous.

step returns - (C) 2 RC⇥6E , where each row in - (C) represents a
measure of data quality for that timestamp. (Section 5.2)
Alert Generation.We compute the average distance from -C (C)
(the Cth row in -) to a fraction of the closest previous rows and
trigger an alert if the average distance exceeds some threshold. We
can �lter on recent timestamps if desired. This alert generation step
accepts - (C) 2 RC⇥6E from the previous step, or the concatenated
anomaly matrices from previous partitions, and outputs a corrup-
tion score. We normalize statistics to be I-scores, with respect to
recent partition summaries, before comparing them. (Section 5.3)
Optional Feature Drill-Down.While this step is not critical for
alerting, ML engineers want to understand why an alert was trig-
gered. We �nd the most anomalous clusters and “drill-down” into
their features and corresponding anomalous statistics. (Section 5.4)

5.1 Decorrelation
In this clustering step, we clustered information from the parti-
tion summaries, not the raw data itself, as it’s computationally
impractical to perform clustering on raw data. We leveraged a
graph theoretic approach: nodes were features, and edge distances
corresponded to the correlations between endpoint nodes (i.e., fea-
tures) [47]. First, for each of our 6 summary statistics (described
further in Section 5.2), we computed a covariance matrix across
features using our summary table. To determine the number of
clusters |⌧C |, we ran PCA on each covariance matrix to determine
the number of components E1, . . . , E6 that would explain 95% of vari-
ance. We set |⌧C | = max E1, . . . , E6. Then we summed the absolute
values of the covariance matrices to yield the graph edge matrix.
Finally, we ran a spectral clustering algorithm to partition the graph
into cluster assignments ⌧C , where each feature corresponded to
one cluster. We denote the cluster for a feature � as ⌧C (�).

There are a number of clustering methods in the literature [50];
here, we picked spectral clustering for its simplicity and appli-
cation to the graph setting. While spectral clustering has some
drawbacks—it doesn’t work with noisy data and has a high run-
time complexity [18]—our technique doesn’t face these problems
because our summaries are aggregations and are thus less likely to
be noisy, and the size of the covariance matrix (i.e., graph) is based
on the number of features, not the number of tuples in the dataset.

5.2 Anomaly Matrix Creation
The goal of this step is to turn ⇡C into a vector of statistics to
compare against previous partitions’ vectors. For our algorithm,

we used the following six statistics: (1) completeness, (2) mean,
(3) standard deviation, (4) number of unique values, approximated
via sketches (5) top frequency (i.e., count of the most frequently-
occurring value divided by total count) and (6) Wasserstein-1 (i.e.,
Earth-Mover’s) distance between consecutive partitions’ eCDFs. To
normalize statistics, we turn each statistic into a I-score. Then, we
reduce dimensionality by averaging I-scores across clusters. The
clustering step (Section 5.1) weights features unequally—based on
correlations—for the alert generation step (Section 5.3).

More formally, given clustering assignment ⌧C from Section 5.1,
|⌧C | = E distinct clusters, and statistics&1,&2, . . . ,&6, at time C , we
average the normalized statistics e&I within clusters to get Equa-
tion (11):

eQI (�8 , C) =
h���f&1I (�8 , C)

��� , . . . , ���f&6I (�8 , C)
���i 2 R6+

eQ⌧ (9, C) =
Õ=
8=1

⇥
⌧C (�8) = 9

⇤
· eQI (�8 , C)Õ=

8=1 [⌧C (�8) = 9] 2 R6+

x (C) =
heQ⌧ (1, C) eQ⌧ (2, C) . . . eQ⌧ (E, C)

i
2 R6E+ (11)

Note that
⇥
⌧C (�) = 9

⇤
is a binary function that returns 1 if �

is in the 9th cluster and 0 otherwise, as determined by ⌧C . Now,
we compute - (C), a matrix representing x for current and his-
torical partitions. Each row in - (C) corresponds to a partition,
and columns represent concatenated, normalized statistics vectors
(across features and time).

- (C) = [x (1) , x (2) , . . . , x (C � 1) , x (C)] 2 RC⇥6E+ (12)

Note that the same clustering, i.e., ⌧C , must be applied to each
partition, or it won’t make sense to compare rows in - (C).

5.3 Alert Generation
Given - (C) 2 RC⇥6E from the previous step, we compare rows
to determine whether the data at time C should trigger an alert.
Intuitively, each row, i.e., -8 (C), represents the quality of ⇡8 . We �x
some neighbor fraction 5 , and for each row 8 2 C , we compute the
average distance from -C (C) to the closest b5 ⇥ Cc non-anomalous

2203

Automatic and Precise Data Validation for Machine Learning CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

neighbors, or preceding rows, according to Equation (13):

~ (C) =
(
1 if ~C = 1
1 otherwise

d (C) =
h

~ (8) · k-C (C) � -8 (C)k? for 8 2 [1, . . . , C � 1]
i

2 RC�1+

5���� (C) =
1

b5 ⇥ Cc
’

min
b 5 ⇥C c

d (C) 2 R+
(13)

We experimented with setting ? = 1 (Manhattan distance) and
? = 2 (Euclidean distance) for ? in Equation (13). Similar to the
adapted methods described in Section 4.1, we trigger an alert if
5���� (C) exceeds a threshold, which can be determined by keeping
track of 5���� for a few timestamps and determining if the current
value of 5���� is an outlier. Our alert threshold is interpretable:
one can multiply a “maximum allowed” I-score by the number of
clusters (i.e., E) to get an estimate of how close two rows in - C can
be to each other.

5.4 Debugging: Feature Drill-Down
Although the drill-down component is not a step in our automated
data validation approach, ���� is designed to help practitioners
debug alerts by drilling into relevant clusters’ features. First, we
rank the clusters by their corresponding eQ⌧ in x (Equation (11)).
Then, for top clusters, we identify the features in each cluster using
⌧C and similarly rank features by the magnitude of their eQI . The
top-ranked features are the most anomalously behaving features,
by de�nition of I-score (i.e., larger absolute value I-scores are more
standard deviations away from the mean), and can be presented
to ML engineers. Another useful debugging strategy is to compare
-C (C) to anomalous partitions, or -8 (C) for 8 < C where ~8 = 1. If
-C (C) is a seasonal anomaly, such as Thanksgiving and Christmas,
the neighboring anomalous -8 (C) may also correspond to a holi-
day, since each partition is independently summarized. We give an
anecdote of the drill-down component in Section 6.3.2.

6 CASE STUDY
In this section, we report a case study on twoML pipelines powering
large and business-critical recommender systems in our company.
First, we present precision@0.9 and AP numbers for PS methods
described in Sections 4 and 5, as well as their runtimes. We choose
parameter values based on business considerations (e.g., normal-
izing statistics with respect to rolling 7-day aggregations of data).
Then, we discuss the usability of our techniques.

6.1 Setup
6.1.1 Dataset Descriptions. Each of the two datasets in our case
study included one month of partitions (i.e., ⇡1,⇡2, . . . ,⇡C where
C ⇡ 30) and tens of thousands of features (i.e., �1, �2, . . . , �= where
= � 20, 000). A month of data includes temporal shifts, like weekend
vs weekdays. We denote the speci�c datasets as D1 and D2 with
feature sets F1 and F2 respectively. D1’s minimum date partition
is June 5, 2022 and maximum date partition is July 5, 2022. D2’s
minimum date partition is July 15, 2022 andmaximum date partition
is August 15, 2022. Both datasets D1 and D2 share some (but not
all) features—concretely, F1 < F2 and F1 \ F2 < ;. For privacy and
legal reasons, we cannot disclose details of the features, but the
datasets include a mix of integer, �oat, and categorical features.

As discussed in Section 2.1, models in the ML pipelines are fre-
quently and automatically trained on fresh views of D and chained
together to make �nal �oat-valued predictions, which represent the
probability of a user clicking on a media recommendation (binary
classi�cation). We collaborated directly with on-call engineers to
identify the types of ML performance drops they want the data
validation system to �ag. We found three categories:

(1) Increased model loss: Whether the (normalized) cross-
entropy loss on live predictions for an ML model (trained on
D) increased by some prede�ned threshold from its rolling
7-day average cross-entropy loss

(2) Uncalibrated predictions: Whether the error for a calibra-
tion function (�t on ML predictions to align them with true
events) is larger than a prede�ned threshold

(3) Label shift: Whether the number of clicks (i.e., positive la-
bels) decreased by some prede�ned threshold from its rolling
7-day average click rate

For eachD, we unioned all occurrences of the three failure events
to get ground truth labels. D1 and D2 have signi�cantly di�erent
failure rates (i.e., fraction of positives), as shown in Table 3. D2 has
an unusually high failure rate, so it will be easier for a method to
achieve good precision and recall.

Finally, as mentioned in Section 2, ML teams at our organization
care about the tunability of data validation methods, or the ability
to adapt the method to di�erent magnitudes of failures (i.e., model
performance drops for the ML pipeline). As such, we came up with
three di�erent failure levels for each dataset or ML pipeline, as
shown in Table 3. Thresholds for each of the de�nitions increase
such that the number of failures in �!8 is � the number of failures
in �!8+1. These FLs were validated by an on-call ML engineer.

FL De�nition D1 D2

1 (" cross-entropy � 0.02) [(calibration error �
0.3) [(label shift � 0.3)

0.33 0.59

2 (" cross-entropy � 0.04) [(calibration error �
0.4) [(label shift � 0.4)

0.23 0.47

3 (" cross-entropy � 0.06) [(calibration error �
0.5) [(label shift � 0.5)

0.17 0.44

Table 3: Fraction of positive labels (i.e., failures) for each
failure level (FL) in D1 and D2.

6.1.2 Data Validation Methods. We evaluated a :-nearest neigh-
bor baseline against our adaptations described in Section 4 (X-
completeness drop, I-score anomaly detection, Wasserstein-1 two-
sample statistical tests) and ����. Our baseline comes from Redyuk
et al. [36], which targets validation for general data ingestion (as
opposed to ML data validation) by creating a vector of statistics
for each time step and performing a :-nearest neighbor algorithm
against historical vectors to label the current time step’s vector as
anomalous or acceptable. We use the 7 statistics from the paper:
completeness, approximate count of distinctive values, ratio of the
most frequent value, maximum, mean, minimum, and standard devi-
ation. For each feature, we compute these statistics and concatenate
the results to get the larger vector used in the :-nearest neighbors
algorithm. We call this method :NN (baseline) in Figure 3.

6.1.3 Architectural Setup. Due to privacy and legal considerations,
we discuss only high-level details. Raw data (i.e.,D) for each dataset
is stored in a data warehouse system. Upon arrival of a new parti-
tion, a PS job is launched: in this job, both ML model performance
(e.g., accuracy or loss) and summary statistics are computed for that

2204

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Shreya Shankar⇤ , Labib Fawaz, Karl Gyllstrom, and Aditya Parameswaran

1 2 3
Failure Level

0.0

0.2

0.4

0.6

0.8

Sc
or
e

Metric = Precision@0.9

1 2 3
Failure Level

Metric = Average Precision

X-completeness drop
I-score anomaly detection
Wasserstein-1 (two-sample)
:NN (baseline)
GATE

(a) Results for D1, where there are only a few failures. Most ML
pipelines we’ve observed have similarly low failure counts.

1 2 3
Failure Level

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or
e

Metric = Precision@0.9

1 2 3
Failure Level

Metric = Average Precision

(b) Results for D2, where there aremany failures (> 50%). Ourmethods
achieve higher precision@0.9 and comparable AP to the baseline [36].

Figure 3: Case study results across datasets and failure levels. The legend is shown in Figure 3a.

102 103 104

Number of Features

10�3

10�2

10�1

100

101

102

Ru
nt
im

e
(s
)

Method
X-completeness drop
I-score anomaly detection
Wasserstein-1 (two-sample)

:NN (baseline)
GATE

Figure 4: Runtimes of computing a single partition’s score,
using three trials. The X-completion drop and I-score anom-
aly detection methods have similar runtimes.
partition and logged to a summary store. The job’s queries are writ-
ten in PrestoSQL [41]. Each data validation method reads from the
same summary store to compare summaries and trigger alerts. The
data validation methods are implemented in Python, Pandas, and
scikit-learn. These jobs run for every partition summary, and
the evaluation metrics are computed with scikit-learn functions.

6.2 Performance Results
For D1, our best method gave a 2.9⇥ average improvement in pre-
cision@0.9 and 2.3⇥ average improvement in AP over the baseline.
For D2, where there were more failures, our best method gave a
1.3⇥ improvement in precision@0.9 while maintaining 0.9⇥ the AP
as the baseline. We observed a reasonable runtime of approximately
5 seconds (50 seconds with the o�ine clustering step). In Figure 3,
we present results for each method listed in Section 6.1. In Figure 4,
we show the runtimes to compute a single partition’s score for each
method. We discuss how to select between methods for di�erent
ML pipeline settings in Section 6.3.1.

6.2.1 Precision@0.9. InD1, ���� signi�cantly outperformed other
methods in precision@0.9. For FLs 1 and 2 in D1, ���� achieved
approximately 2⇥ the precision@0.9 as other methods. For FL
3, ����’s precision@0.9 was matched by the Wasserstein-1 two-
sample test. In D2, ���� achieved the highest precision@0.9 in
all three FLs. The Wasserstein-1 method tied ����’s performance
for FL 2 and came close for FL 3. In D2, where there were more
failures, ����’s improvement in precision@0.9 was not as pro-
nounced; still, it had the highest precision@0.9 across all failure
levels. ���� has high precision due to its clustering step, which
prevents correlated features from triggering many false positive
alarms. The Wasserstein-1 two-sample test achieves high precision
when there are fewer failures (i.e., higher FLs) because in the case

of a severe failure, a large fraction of records are corrupted, signi�-
cantly perturbing entire distributions of features. Density measures
(e.g., Wasserstein-1 distance) can capture this shift more precisely
than point statistics (e.g., mean), which aren’t robust to outliers.

6.2.2 Average Precision (AP). While AP is a less important metric
than precision@0.9 for us, we found that our methods’ APs were
better than the baseline in D1 and nearly matched the baseline
in D2. In D2, where there were signi�cantly more failures, the
baseline from Redyuk et al. [36] achieved the highest AP for all
FLs, but ���� achieved 90% of that, and the Wasserstein-1 two-
sample test achieved 97% of that. Still, we found our methods’ APs
acceptable in this setting, since most ML pipelines don’t experience
such a high failure rate (where it is easier to achieve good precision).

6.2.3 Runtime. The baseline is the fastest method because there is
no time-based normalization. The two-sample tests (highest AP)
have the highest runtime because they require bootstrapping to
yield ?-values. They are not practical for more than $ (10, 000)
features. ���� has the second-largest runtime, but its runtime is
only a few seconds for$ (10, 000) features. Although ���� includes
theWasserstein-1 distance measure, it is faster than the two-sample
tests because it does not bootstrap a ?-value.

6.3 Discussion
Here, we discuss methods to choose for di�erent ML pipeline set-
tings and ����’s feature drill-down component.

6.3.1 Best PS Methods for Di�erent Se�ings. If a data validation
system needs to have high precision@0.9, we learned that di�erent
settings have di�erent choices of best PS methods:
Low failure rates. When pipelines have frequently-corrupted
data, the corruptions are, by de�nition, less anomalous—rendering
anomaly detection techniques like I-score computation useless.
The Wasserstein-1 test (i.e., capturing the distribution of a feature)
alone is the best single metric to use, but it is computationally
expensive as it requires bootstrapping to get a ?-value. ���� has
higher precision, includes the Wasserstein-1 distance, and is orders
of magnitude less computationally expensive (Figure 4). Most of
our ML pipelines had relatively low failure rates, making ���� a
good overall choice. However, in pipelines with high failure rates,
especially if AP matters more than precision@0.9, Redyuk et al.
[36]’s method might be preferable.
Many correlated features. ���� signi�cantly outperforms other
methods in terms of mitigating false positives when ML pipelines
have many correlated features because of ����’s clustering com-
ponent (Section 5.1), which only triggers an alert when an entire

2205

Automatic and Precise Data Validation for Machine Learning CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

group of correlated features is anomalous. In our collaborations
with other teams, we observed that many ML pipelines had hun-
dreds, if not thousands, of correlated features. As it is the case in
many other organizations [42], data scientists frequently create
correlated features based on session data—for example, there might
be binary features for watching a video after 1 second, 2 seconds,
5 seconds, and more. However, in pipelines with a few features, a
simple, fast method like X-completion drop might be preferable.
First week of deployment. In the beginning of deployment,
nearest-neighbor methods generated alerts in a seemingly random
way because there wasn’t enough data for comparing partitions.
Since most pipelines’ failure rates are typically less than 1 in 7, it
took at least a week for ���� to start producing meaningful alerts.
In the �rst week, other methods (e.g., X-completeness drop) might
be more useful to trigger alerts, since the alert criteria is typically
more meaningful (e.g., drop of 30%, I-score � 3, ?-value < 0.05).
High-cardinality features. ���� worked well with features that
spanned a large distribution of values. In settings with only binary
or low-cardinality (i.e., spanning only a few distinct values) fea-
tures, data quality metrics like top-k values or number of unique
values might, on their own, precisely �ag anomalies. However, with
real-valued or other high-cardinality features, such metrics might
�uctuate even if the distribution remains similar. In practice, many
of our ML pipelines have several high-cardinality features, such as
user and content embeddings [10, 30].

6.3.2 On-Call Experiences. In this case study, ���� reduced alert
fatigue during on-call rotations by having fewer false positive alerts
while maintaining acceptable recall requirements. Although ����
was primarily used to anticipate ML performance drops before
they showed up in performance dashboards, the feature drill-down
component (Section 5.4) could also be used during on-call rotations
to diagnose why there was a performance drop. In one scenario, an
ML pipeline’s performance had signi�cantly dropped, and several
days had passedwithout identifying the root cause. Since there were
more than 10,000 features in this model, most of the features had at
least one anomalous data quality statistic, making it impossible to
�gure out the group of broken features. Upon looking at the feature
names in the most anomalous cluster identi�ed by ����, it was
clear that there was a sound-related bug, since many of the features
were related to audio and had anomalous Wasserstein-1 values.

7 RELATEDWORK
���� combines insights from anomaly detection, clustering, data
cleaning, and data validation.
Anomaly Detection and Clustering for Large Datasets. Chan-
dola et al. [9] enumerate challenges of adapting the notion of an
anomaly as the underlying distribution of data changes over time.
While estimation models (e.g., I-score, Median Absolute Deviation)
based on a threshold are commonly used to estimate point out-
liers [7, 27], our problem is more similar to �nding a subsequence
of outliers. We draw inspration from dissimilarity approaches like
:-nearest neighbors [4, 7, 34], but our challenge is to handle cor-
related features. Several papers discuss anomaly detection in the
light of high-dimensional data [19, 21, 38]. Methods like principal
component analysis (PCA) produce low-rank representations of
the data, which yield alerts interpretable at the tuple level, not
the feature or column level (a requirement given by our engineers
in Section 2.2). Zhang et al. [52] introduce clustering large datasets

using partitions of data, which we apply to data validation. We
summarize partitions and cluster the summaries.

Data Cleaning for ML.ML training sets require clean data [11, 16,
23, 48]. Most cleaning tools require manual input, such as verifying
tuples predicted to be outliers, limiting their scalability [12, 23, 44,
48, 51]. Abedjan et al. [1] discuss four categories of data errors when
cleaning large-scale datasets: outliers, duplicates, rule violations,
and pattern violations. The measures used in our algorithm span
these categories. Overall, data cleaning methods don’t apply to our
setting because we don’t want to clean all corrupted tuples (our
pipelines already have high-performing ML models). Rather, we
simply wish to block the retraining of models on corrupted data.
Moreover, at our scale, the challenge is in identifying corruptions
that actually cause model performance drops, not any corruption.

Data Validation for ML Pipelines. Data in ML pipelines must
be validated, otherwise model performance can su�er [8, 32, 39].
Several research projects and open-source software libraries try to
propose solutions or investigate the problem. Biessmann et al. [6]
discuss four dimensions of data validation (DV): correctness, consis-
tency, completeness, and statistical properties, and many DV meth-
ods monitor these statistics. Existing work—such as Deequ [40],
TFX [5], DataSentinel [45], and DaQL [14]—de�nes constraints for
pipeline inputs and outputs, however users must specify constraint
values (e.g., completeness bounds). Data “linting” tools typically
perform type checks, duplicate detection, and outlier detection
based on a �xed number of standard deviations away from the
mean but do not tie directly to downstream ML model perfor-
mance [14, 20]. A broader survey of DV tools [15] �nds that most
tools require a “gold standard” of data—which often doesn’t exist
in most production settings. Lwakatare et al. [25] �nd that, in
practice, most engineering teams ignore data validation alerts. For
instance, two-sample statistical tests based on di�erences between
distributions (e.g., Wasserstein) commonly trigger many false posi-
tive alerts [26, 29, 46]. Lwakatare et al. [25] say that the alerts did
not provide actionable feedback and required too much manual
maintenance . Redyuk et al. [36] introduce an automated :-nearest
neighbors approach to �nd anomalous partitions of data in a general
data ingestion context. Our method is speci�c to ML pipelines.

8 CONCLUSION
In this paper, we discussed automatically validating data before
downstream ML model performance drops occur. We described the
Partition Summarization (PS) approach to data validation, where
summaries of timestamped partitions are compared to determine
anomalous partitions. We introduced a general adaptation for exist-
ing data validation methods to the PS setting and ����, our method
that produces high-precision alerts without manual tuning from
engineers. Finally, we discussed our learnings from implementing
automatic data validation in production ML pipelines.

Acknowledgments. We thank the anonymous reviewers for their
valuable feedback. We acknowledge support from grants DGE-
2243822, IIS-2129008, IIS-1940759, and IIS-1940757 awarded by the
National Science Foundation, an NDSEG Fellowship, funds from
the Alfred P. Sloan Foundation, as well as EPIC lab sponsors: G-
Research, Adobe, Microsoft, Google, and Sigma Computing. The
content is solely the responsibility of the authors and does not
necessarily represent the o�cial views of the funding agencies and
organizations.

2206

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Shreya Shankar⇤ , Labib Fawaz, Karl Gyllstrom, and Aditya Parameswaran

REFERENCES
[1] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas,

Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016. De-
tecting Data Errors: Where Are We and What Needs to Be Done? Proc. VLDB
Endow. 9, 12 (aug 2016), 993–1004. https://doi.org/10.14778/2994509.2994518

[2] Samuel Ackerman, Eitan Farchi, Orna Raz, Marcel Zalmanovici, and Parijat Dube.
2020. Detection of data drift and outliers a�ecting machine learning model
performance over time. arXiv preprint arXiv:2012.09258 (2020).

[3] Samaneh Aminikhanghahi and Diane J Cook. 2017. A survey of methods for time
series change point detection. Knowledge and information systems 51, 2 (2017),
339–367.

[4] Fabrizio Angiulli and Clara Pizzuti. 2002. Fast Outlier Detection in High Dimen-
sional Spaces. In PKDD.

[5] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. 2017. Tfx: A
tensor�ow-based production-scale machine learning platform. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1387–1395.

[6] Felix Biessmann, Jacek R. Golebiowski, Tammo Rukat, Dustin Lange, and Philipp
Schmidt. 2021. Automated Data Validation in Machine Learning Systems. IEEE
Data Eng. Bull. 44 (2021), 51–65.

[7] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A Lozano. 2021. A
review on outlier/anomaly detection in time series data. ACM Computing Surveys
(CSUR) 54, 3 (2021), 1–33.

[8] Eric Breck, Marty Zinkevich, Neoklis Polyzotis, Steven Whang, and Sudip Roy.
2019. Data Validation for Machine Learning. In Proceedings of SysML. https:
//mlsys.org/Conferences/2019/doc/2019/167.pdf

[9] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly Detection:
A Survey. ACM Comput. Surv. 41, 3, Article 15 (jul 2009), 58 pages. https:
//doi.org/10.1145/1541880.1541882

[10] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[11] Xu Chu, Ihab F Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. Data clean-
ing: Overview and emerging challenges. In Proceedings of the 2016 international
conference on management of data. 2201–2206.

[12] Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,
and Yin Ye. 2015. KATARA: A Data Cleaning System Powered by Knowledge
Bases and Crowdsourcing. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (Melbourne, Victoria, Australia) (SIGMOD
’15). Association for Computing Machinery, New York, NY, USA, 1247–1261.
https://doi.org/10.1145/2723372.2749431

[13] Connor Dowd. 2020. A New ECDF Two-Sample Test Statistic. arXiv: Methodology
(2020).

[14] Lisa Ehrlinger, Verena Haunschmid, Davide Palazzini, and Christian Lettner. 2019.
A DaQL to Monitor Data Quality in Machine Learning Applications. In DEXA.

[15] Lisa Ehrlinger and Wolfram Wöß. 2022. A survey of data quality measurement
and monitoring tools. Frontiers in big data (2022), 28.

[16] Venkat Gudivada, Amy Apon, and Junhua Ding. 2017. Data quality consid-
erations for big data and machine learning: Going beyond data cleaning and
transformations. International Journal on Advances in Software 10, 1 (2017), 1–20.

[17] Joseph M. Hellerstein. 2008. Quantitative Data Cleaning for Large Databases.
[18] Ellen Hohma, Christian M. M. Frey, Anna Beer, and Thomas Seidl. 2022. SCAR:

Spectral Clustering Accelerated and Robusti�ed. Proc. VLDB Endow. 15, 11 (sep
2022), 3031–3044. https://doi.org/10.14778/3551793.3551850

[19] Ling Huang, XuanLong Nguyen, Minos Garofalakis, Michael Jordan, Anthony
Joseph, and Nina Taft. 2006. In-network PCA and anomaly detection. Advances
in neural information processing systems 19 (2006).

[20] Nick Hynes, D. Sculley, and Michael Terry. 2017. The Data Linter: Lightweight
Automated Sanity Checking for ML Data Sets. http://learningsys.org/nips17/
assets/papers/paper_19.pdf

[21] Firuz Kamalov and Ho Hon Leung. 2020. Outlier Detection in High Dimensional
Data. Journal of Information & Knowledge Management 19, 01 (mar 2020), 2040013.
https://doi.org/10.1142/s0219649220400134

[22] Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. 2020.
Model Assertions for Monitoring and Improving ML Models. In Proceed-
ings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and
V. Sze (Eds.), Vol. 2. 481–496. https://proceedings.mlsys.org/paper/2020/�le/
a2557a7b2e94197�767970b67041697-Paper.pdf

[23] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J Franklin, and Ken Gold-
berg. 2016. Activeclean: Interactive data cleaning for statistical modeling. Pro-
ceedings of the VLDB Endowment 9, 12 (2016), 948–959.

[24] Kaiyu Li and Guoliang Li. 2018. Approximate Query Processing: What is New
and Where to Go? Data Science and Engineering 3 (2018), 379 – 397.

[25] Lucy Ellen Lwakatare, Ellinor Rånge, Ivica Crnkovic, and Jan Bosch. 2021. On
the experiences of adopting automated data validation in an industrial machine
learning project. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 248–257.

[26] Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of �t. Journal
of the American statistical Association 46, 253 (1951), 68–78.

[27] Saeed Mehrang, Elina Helander, Misha Pavel, Angela Chieh, and Ilkka Korhonen.
2015. Outlier detection in weight time series of connected scales. In 2015 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 1489–
1496.

[28] Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In Very Large Data Bases Conference.

[29] Alfred Müller. 1997. Integral Probability Metrics and Their Generating Classes
of Functions. Advances in Applied Probability 29, 2 (1997), 429–443. http://www.
jstor.org/stable/1428011

[30] Shimei Pan and Tao Ding. 2019. Social media-based user embedding: A literature
review. arXiv preprint arXiv:1907.00725 (2019).

[31] Matthew Partridge and Rafael A Calvo. 1998. Fast dimensionality reduction and
simple PCA. Intelligent data analysis 2, 3 (1998), 203–214.

[32] Neoklis Polyzotis, Sudip Roy, Steven EuijongWhang, and Martin Zinkevich. 2018.
Data Lifecycle Challenges in Production Machine Learning: A Survey. SIGMOD
Rec. 47, 2 (dec 2018), 17–28. https://doi.org/10.1145/3299887.3299891

[33] Stephan Rabanser, Stephan Günnemann, and Zachary Lipton. 2019. Failing
loudly: An empirical study of methods for detecting dataset shift. Advances in
Neural Information Processing Systems 32 (2019).

[34] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. E�cient Algo-
rithms for Mining Outliers from Large Data Sets. SIGMOD Rec. 29, 2 (may 2000),
427–438. https://doi.org/10.1145/335191.335437

[35] Zhu M Recall. 2004. Precision and average precision. Department of Statistics
and Actuarial Science. University of Waterloo, Waterloo (2004).

[36] Sergey Redyuk, Zoi Kaoudi, Volker Markl, and Sebastian Schelter. 2021. Automat-
ing Data Quality Validation for Dynamic Data Ingestion. In EDBT.

[37] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Model-agnostic
interpretability of machine learning. arXiv preprint arXiv:1606.05386 (2016).

[38] Peter J Rousseeuw and Mia Hubert. 2011. Robust statistics for outlier detection.
Wiley interdisciplinary reviews: Data mining and knowledge discovery 1, 1 (2011),
73–79.

[39] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Biess-
mann, and Andreas Grafberger. 2018. Automating Large-Scale Data Qual-
ity Veri�cation. Proc. VLDB Endow. 11, 12 (aug 2018), 1781–1794. https:
//doi.org/10.14778/3229863.3229867

[40] Sebastian Schelter, Philipp Schmidt, Tammo Rukat, Mario Kiessling, Andrey
Taptunov, Felix Biessmann, and Dustin Lange. 2018. DEEQU - Data Quality
Validation for Machine Learning Pipelines.

[41] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, et al.
2019. Presto: SQL on everything. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE). IEEE, 1802–1813.

[42] Shreya Shankar, Rolando Garcia, Joseph M. Hellerstein, and Aditya G.
Parameswaran. 2022. Operationalizing Machine Learning: An Interview Study.
https://doi.org/10.48550/ARXIV.2209.09125

[43] Shreya Shankar and Aditya Parameswaran. 2021. Towards Observability for
Machine Learning Pipelines. arXiv preprint arXiv:2108.13557 (2021).

[44] Michael Stonebraker and Ihab F. Ilyas. 2018. Data Integration: The Current Status
and the Way Forward. IEEE Data Eng. Bull. 41 (2018), 3–9.

[45] Arun Swami, Sriram Vasudevan, and Joojay Huyn. 2020. Data Sentinel: A Declar-
ative Production-Scale Data Validation Platform. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 1579–1590. https://doi.org/10.1109/
ICDE48307.2020.00140

[46] SS Vallender. 1974. Calculation of the Wasserstein distance between probability
distributions on the line. Theory of Probability & Its Applications 18, 4 (1974),
784–786.

[47] Scott White and Padhraic Smyth. 2005. A spectral clustering approach to �nding
communities in graphs. In Proceedings of the 2005 SIAM international conference
on data mining. SIAM, 274–285.

[48] Weiyuan Wu, Lampros Flokas, Eugene Wu, and Jiannan Wang. 2020. Complaint-
driven training data debugging for query 2.0. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 1317–1334.

[49] Doris Xin, Hui Miao, Aditya Parameswaran, and Neoklis Polyzotis. 2021. Produc-
tion Machine Learning Pipelines: Empirical Analysis and Optimization Opportu-
nities. In Proceedings of the 2021 International Conference on Management of Data
(Virtual Event, China) (SIGMOD ’21). Association for Computing Machinery, New
York, NY, USA, 2639–2652. https://doi.org/10.1145/3448016.3457566

[50] Rui Xu and Donald Wunsch. 2005. Survey of clustering algorithms. IEEE Trans-
actions on neural networks 16, 3 (2005), 645–678.

[51] Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, Mourad Ouzzani,
and Ihab F. Ilyas. 2011. Guided Data Repair. Proc. VLDB Endow. 4, 5 (feb 2011),
279–289. https://doi.org/10.14778/1952376.1952378

[52] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. 1996. BIRCH: An E�cient
Data Clustering Method for Very Large Databases. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data (Montreal, Quebec,
Canada) (SIGMOD ’96). Association for Computing Machinery, New York, NY,
USA, 103–114. https://doi.org/10.1145/233269.233324

2207

https://doi.org/10.14778/2994509.2994518
https://mlsys.org/Conferences/2019/doc/2019/167.pdf
https://mlsys.org/Conferences/2019/doc/2019/167.pdf
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/2723372.2749431
https://doi.org/10.14778/3551793.3551850
http://learningsys.org/nips17/assets/papers/paper_19.pdf
http://learningsys.org/nips17/assets/papers/paper_19.pdf
https://doi.org/10.1142/s0219649220400134
https://proceedings.mlsys.org/paper/2020/file/a2557a7b2e94197ff767970b67041697-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/a2557a7b2e94197ff767970b67041697-Paper.pdf
http://www.jstor.org/stable/1428011
http://www.jstor.org/stable/1428011
https://doi.org/10.1145/3299887.3299891
https://doi.org/10.1145/335191.335437
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.48550/ARXIV.2209.09125
https://doi.org/10.1109/ICDE48307.2020.00140
https://doi.org/10.1109/ICDE48307.2020.00140
https://doi.org/10.1145/3448016.3457566
https://doi.org/10.14778/1952376.1952378
https://doi.org/10.1145/233269.233324

	Abstract
	1 Introduction
	2 Background
	2.1 ML Pipelines
	2.2 Data Validation Requirements
	2.3 Data Validation for ML: Existing Measures

	3 Problem
	3.1 Formalization
	3.2 Evaluation Metrics

	4 Partition Summarization
	4.1 General Adaptation
	4.2 Adaptations of Existing Approaches

	5 gate
	5.1 Decorrelation
	5.2 Anomaly Matrix Creation
	5.3 Alert Generation
	5.4 Debugging: Feature Drill-Down

	6 Case Study
	6.1 Setup
	6.2 Performance Results
	6.3 Discussion

	7 Related Work
	8 Conclusion
	References

