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Response to the reviewers

The authors sincerely thank the reviewer #1 for carefully reexamine the revised manuscript.
Hereafter, a point-by-point response is provided. The sections of the manuscript edited in

accordance with the reviewers’ comments are indicated with red fonts.

1. In line 30, “JPD” is not defined before this sentence.

Thanks for pointing it out. The JPD is now defined in line 30.

2. In line 173, Fig. 2(c) should be Fig. 2(b).
We thank the reviewer for catching this. It is now updated in line 173.

3. In line 203, F,Viscous and F,Ysous are not defined.

Thanks for reminding. F,"s<#s and Fs<°s are now defined in the text line 195-197.

4. The authors added an explanation of the Cundall's numerical dumping. However, the
description is too brief to understand it. Can the author explain the dumping by using equations?

Sure, the Cundall’s damping equation is now introduced in Section 2.3, Eq. (4).

5. In the sentence containing Eq. (5), Q is used as a scalar. However, I think dQ means sinfdfd¢
in the spherical coordinates, and € is not a scalar.

Thanks for pointing it out. In original manuscript, we intend to show that the integration is
conducted over the whole space in spherical coordinates (includes all polar angle and azimuth).
We agree with the reviewer that dQ = sinfdfdg, and the adoption of using Q (and hence dQQ) in
Eq. (5) in the original manuscript is purely for simplicity purpose. Now we have updated the
manuscript to use the polar angle and azimuth in equations. Please see Eqgs. (6) and (7) in the

revised manuscript.

6. In lines 342-347, the authors state that “the reliability of the obtained jamming threshold ¢z is
underscored based on the fitting of the data using Eq. (14) with ¢. = 0.5700. But, I'm not sure
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that this statement is correct because the fitting with different ¢. can be applied by choosing a,
b, and f, jam-

The ¢. is obtained using the fitting equation with the best-fit parameters that leads to the highest
R-squared value. The parameters a,, b, and ¢, are all determined in this procedure and remain
unchanged when the highest R-squared value is identified. Please see the paragraph after Eq.
(15), the highest R? = 0.9927 is achieved with a; = 0.3133, b, = 0.3215 and ¢. = 0.5700.

7. In line 460, something is grammatically wrong.

Thanks. It is corrected and updated, please see line 468-470.

8. In line 515, Fig. 10 should be Fig. 8.
Thank you. It has been updated, please see line 524.

9. In Fig. 3(b), the authors add the conceptual densest state line, but why does this line decrease
monotonically with increasing p? If there is any reason for this behavior, they need to mention it
in the text.

In Fig. 3(b), p represents the mean stress inside the granular packing with the expression
1 . . .
p= EO'kk. The conceptual densest state line in the e-p plane shall decrease monotonically with

the increasing p because of elastic deformation of the grains and contacts at higher stress levels
(without considering grain breakage). We have updated the main text to mention this, please see

the paragraph after Eq. (14).
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Fabric-based jamming phase diagram for frictional

granular materials

Yuxuan Wen!, Yida Zhang?*

Abstract

Jamming phase diagram maps the phase states of granular materials to its intensive properties
such as shear stress and density (or packing fraction). We investigate how different phases in
jamming phase diagram of granular materials are related to its fabric structure via three-
dimensional discrete element method simulations. Constant-volume quasi-static simple shear
tests ensuring uniform shear strain field are conducted on bi-disperse spherical frictional
particles. Specimens with different initial solid fractions are sheared until reaching steady
state at a large shear strain (200%). The jamming threshold in terms of stress, non-rattler
fraction, and coordination numbers (Z’s) of different contact networks are discussed. The
evolution of fabric anisotropy (F) of each contact network during shearing is also examined.
By plotting the fabric data in the F-Z space, a unique critical fabric surface (CFS) becomes
apparent across all specimens, irrespective of their initial phase states. Through the
correlation of this CFS with fabric signals corresponding to jamming transitions, we
introduce a novel jamming phase diagram in the fabric F-Z space, offering a convenient
approach to distinguish the various phases of granular materials solely through the direct
observation of geometrical arrangements of particles. This jamming phase diagram
underscores the importance of the microstructure underlying the conventional jamming
phenomenon and introduces a novel standpoint for interpreting the phase transitions of
granular materials that have been exposed to processes such as compaction, shearing, and

other complex loading histories.

I Ph.D. Candidate, Dept. of Civil, Environ. and Architect. Eng., University of Colorado Boulder, Boulder, CO, USA.
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1 Introduction

Jamming is a phenomenon where amorphous disordered materials such as granular soils,
colloidal suspensions, emulsions, and glasses transform from a fluid-like to a solid-like state
and has been widely observed in nature and engineering practice. This abrupt transition is
often described by a surface in the 3-dimentional (3D) space of temperature, load, and the
inverse of density.! For granular materials which are athermal (i.e., the thermal fluctuation is
insufficient to alter their packing configurations), the corresponding jamming phase diagram
(JPD) becomes a 2-dimentional (2D) plane of shear stress 7 vs. packing fraction ¢.> 3 O’Hern
and coworkers* 3 investigated the onset of jamming for frictionless granular packings by

increasing density at zero shear stress and found that the jamming point J has a packing

fraction ¢ almost identical to that of the random close packing, i.e., ¢, = @, =0.84 in 2D,

and @, = @y, = 0.64 in 3D cases.

Frictional granular systems, however, could jam over a finite range of ¢ with ¢, being
dependent on the sample preparation protocols and system parameters. For example, ¢,

decreases when particle-particle friction coefficient u increases or compression rate

decreases.®® The random close packing ¢,., is approximately the upper bound of ¢, for

frictional granular systems.® Song and coworkets!? analytically derived the minimum ¢ of 3D
random loose packings gp» ~0.536 and predicted it to be the theoretical lowest threshold of
¢ for isostatic jammed frictional granular materials if x is infinitely large. This is supported
by the observation that g#ps ~0.536 is close to the lowest stable ¢ ever reported for

min

monodisperse spheres.!! Therefore, a frictional granular packing with ¢, <@ < @,., can be

either jammed or unjammed depending on its preparation protocol,'? blurring the phase
transition boundary depicted in classical JPDs.

Bi and coworkers® conducted 2D pure shear tests on photoelastic disks isotropically

compressed to initially unjammed states ¢ < ¢,. In their experiments, ¢, is closer to the upper
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bound ¢, as their sample preparation involves gentle tapping which can break force chains,

release the friction buildups at contacts, and thus relax the system’s stress to the lower values.
When shearing is followed, the specimen may stay unjammed, exhibit weak resistance to
shear, or develop strong shear stress depending on the initial ¢. They have thus proposed two
more intermediate phases for frictional packings, namely the “fragile” and the “shear
jammed” phases, in addition to the unjammed and jammed phases depicted by the classical
JPD for frictionless systems. The fragile state is able to support loads only along the
compatible direction (i.e., the direction that strong force network percolates) without
undergoing plastic rearrangement.!3> The shear jammed phase can resist perturbance in all
directions and thus is a truly jammed state induced by shear. Recently, Zhao and coworkers!#
further enriched the generalized JPD? by locating the boundaries between the unjammed, the
shear jammed, and the fragile states on the mean stress p vs. packing fraction ¢ plane via a
series of multiring Couette shear experiments on photoelastic disks.

While JPD offers a unifying framework to discuss the phase transition of granular
materials in terms of macroscopic variables (p, 7, ¢), the underlying micro-mechanisms that
governs such transition can be only studied by tracking the microstructural evolution of the
granular assembly. Existing studies on JPD have extensively focused on the isotropic
measures of granular microstructure such as the coordination number Z,> 10 the non-ratter
fraction f,,.° and the contact-force statistics.!>!7 It has been found that frictional granular
materials will develop strong fabric anisotropy when subjected to shearing.'-20 A series of
true triaxial Discrete Element Method (DEM) simulations shows that steady-state granular
flow is always anisotropic, the degree of which depends on the confining pressure and shear
mode.?! Recent DEM simulations investigating the flow-arrest transition?> 23 that is similar to
the shear-jamming have also revealed that fabric anisotropy is a crucial variable influencing
the transition between solid-like and fluid-like state. X-ray microtomography (X-uCT)
observations of sheared sand specimens indicate that the macroscopic stress-strain behavior is
tightly related to the evolution of fabric anisotropy.?* 2> An important modification of the

classical critical state theory?S is hence proposed to consider fabric anisotropy?’ for modeling
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the quasi-static stress-strain response of granular soils.?8-3 The characteristics of fabric
anisotropy and its relationship with granular jamming have been explored in several previous
studies.> 4 3! However, they fall short of considering fabric anisotropy as an essential
variable in a JPD for distinguishing various phases including jammed, shear jammed, fragile,
and others. This might be due to the intuition that a granular assembly develops trivial
anisotropic microstructure at low mean stress levels, and a single scalar indicator such as Z
would suffice for phase characterizations.

Our recent DEM experiments®> 33 have challenged this picture. Specifically, as shown in
Fig. 1, we found unjammed (or “liquefied” in soil mechanics terminology) frictional granular
specimens exhibits clear fabric anisotropy F' with p =~ 0 maintained throughout under zero
gravity condition. The F value of unjammed specimens is strongly correlated with the Z for
the full range of 0 < Z < Z;,,,. This line smoothly joins the critical-state fabric data of jammed
specimens (£ > Zj,,) and forms a unique critical fabric surface (CFS) in the F-Z plane (Fig.
la). Similar results have also been identified** where the pressure-controlled simulations lead
to a CFS in the jammed region and a model is proposed for describing it. The CFS in Fig. la
can also be visualized in the principal space of the fabric tensor (Fig. 1b) substantiated by
data from true triaxial shear tests at different principal stress and strain ratios. Therefore, the
CFS can be thought of as a universal attractor for all fabric states upon shearing, regardless of
the shear mode and whether the sample is initially jammed or not. Moreover, on the fabric F-
Z plane, one can reasonably distinguish the fabric paths and the portion of the CFS that
belongs to samples that develop a finite shear stress at steady-state (jammed) and those do not
(unjammed). This preliminary observation suggests that there may exists a one-to-one
mapping between the conventional JPD in the z-¢> 33-38 (or p-¢ %) plane and that in the
fabric F-Z plane.

Motivated by the above, the objective of this paper is to: 1) systematically investigate the
fabric characteristics of frictional granular materials near jamming transition; 2) develop a
jamming phase diagram with fabric variables for the determination of phase state. Toward

this goal, 3D DEM simulations of constant volume simple shear on bi-disperse frictional
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spheres are conducted (Section 2). The stress-strain response and the jamming thresholds as
well as the conventional JPD are discussed in Section 3. In Section 4, the fabric
characteristics including Z and F' for the non-rattler, total, and strong contact networks are
explored and interpreted with reference to CFS, which leads to the development of a jamming
phase diagram in F-Z space. Section 5 discuss the relationship between the fabric tensor and
non-rattler fraction and Section 6 summarizes the main conclusions and discusses possible

future extensions of this work.

2 Methodology

2.1 Sample preparation

The open-source DEM code YADE? is adopted to conduct constant volume simple shear
numerical tests. In designing the simulation protocol, we have largely referred to the recent
multiring Couette shear setup'# and formulated the following objectives: 1) be able to
reproduce initially unjammed specimens with ¢ < ¢; = ¢rcp; 2) preserve the uniform shear
strain field across the specimen; 3) enforce the quasi-static condition; and 4) be able to shear
to infinite shear strain. With these goals in mind, the details of the DEM simulation are
reported below.

Each test consists of two stages namely sample preparation and simple shear. In the
preparation stage, N spheres are generated sparsely without any contact enclosed in a

rectangular prism with four periodic lateral boundaries and two rigid walls on the top and the

bottom. To avoid crystallization,*® binary mixture with particle diameter ratio d,:d, =1.4:1

and particle number ratio N, : N, =1:1 is adopted.* 4! A compression procedure similar to

Zhang and Maske’ is then applied, during which periodic boundaries and rigid walls moves
inward with a constant rate (volumetric strain rate & =0.05s™") and stops when the specified
¢ is reached, followed by a relaxation step until p becomes stable (i.e., equilibrium). The total
number of particles N is calculated such that the specimen reaches the specified ¢ with a

dimension of 16d, x16d, x12d,37-4? at the end of compression. Note that the spheres are set as
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frictionless (1« = 0) during the compression to mimic the tapping process adopted in the

preparation of photoelastic specimens,’ 4 where friction buildups are effectively removed

and the specimen is able to stay unjammed up to ~¢,.,. Using this protocol, we have

prepared a series of specimens with ¢ ranging from 0.45 to 0.64 at an increment of 0.01.
After the specified ¢ is reached at the end of compression, x is updated from 0 to 0.5, a
typical value for frictional granular materials like sand.** This u-adjusting technique is also
commonly used in the granular mechanics community for obtaining specimens with different

initial densities under the same confining pressure.*446

2.2 Shearing algorithm

Before shearing, we agglomerated the particles located at the very bottom (0 <z < 1.5d)
and top (10.5d, < z < 12d,) of the specimen to form particle walls, as shown in Fig. 2(a).
Shearing is performed through an athermal quasi-static (AQS) procedure*’> 48: first, a shear
strain increment Ay is affinely imposed on each particle and the particle walls (Fig. 2(a)).
This is followed by a relaxation stage where the system runs an additional N, timesteps with
shearing paused to allow dissipation of the kinetic energy (£)) and return to equilibrium. The
reason for adopting particle walls is to avoid slippage at the shear boundaries when the
assembly is being relaxed. In addition, it reduces the overall complexity of contact type such
that the contact within the whole granular system is consistent (i.e., particle-particle contact).
It is important to distinguish our shear procedure from the conventional wall-driven
mechanism, where shearing is induced solely by driving the walls, often resulting in non-
uniform velocity field and strain localization in the specimen.*%->!

We have surveyed a range of N, values and found that N, = 10 can ensure the maximum
E; of the whole granular system in all simulations at the end of relaxation is sufficiently

smaller than a kinetic energy threshold while offering a manageable simulation time to
achieve y = 200%. This kinetic energy threshold is set to be 3x10*m,gd, where m; equals to

the mass of a sphere with diameter d; and g = 9.81m/s?. The equivalent shear strain rate can

be calculated by = Ay / (N, Ar) and is set to 0.5% s™! (i.e., Ay = 0.05Az with At the value of a
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single timestep) in all the simulations presented hereafter. Gravity is not activated in our
simulation to maintain close analogy with the 2D multiring Couette experiments!4 where all
disks are placed horizontally.

The granular assembly sandwiched by the particle walls is the actual representative
volume element (RVE) where the stress, strain, and fabric data are extracted. The effective
height # of the sample is determined using the following procedure: the macroscopic shear

stress can be calculated by summing all contact forces in the y direction on the top particle-

wall divided by the cross-section area rzz £, /A where A4=16d,x16d,. The average

Cauchy stress can be also calculated according to the Love-Weber formula:3?

1 c)i(c
oy == 2 117 (1)
VceC

where the sum is over all contacts C; f the contact force; / the branch vector joining centers of
the two particles at contact ¢; V the volume of the specimen. For our simulations, the
calculation of ¢;;in Eq. (1) should exclude the clumped particles in the C set and use the true

specimen height / in calculating the specimen’s volume V=4 X h. The applied 7 is compared

with the corresponding stress component o), and it is determined that 4 =9d, +0.5d, to have
=0, (Fig. 2(b)).

Note that Zhao and coworkers'* have reversed the shear direction after reaching the
designated y level to probe the stability of the developed force chain network, which was used
to distinguish the fragile (F) and the shear jammed (SJ) states. Our study, however, is
constrained by the available computational capability and the long simulation time of 3D
assemblies. To avoid compromising the thoroughness of this simulation campaign (i.e.,
reducing the total number of tests or shortening the maximum shear strain), we have opted to
reserve the shear reversal tests for future studies, and focus the present analyses on the fabric
signals of apparent jamming induced by monotonic shear without distinguishing the F and SJ

states.

2.3 Contact model and parameters
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The Hertz-Mindlin contact law>? is adopted for our simulations. The normal force and

tangential force with the consideration of Coulomb friction of a contact between particles 1

and 2 are:
4 Inc,
F="E R§§ 2/ \/2mE R S v )
eff n n eff “eff 8}7
34??%6 43 W Eit244404208

FVIKCOHS

F, = min(§G,\[R, 55+2\f \/smeﬁ, ROV, . 1F,) 3)
m B

Felastw 244444448
vacouv

where E is the Young’s modulus; G is the shear modulus; R is the particle’s radius; m is the
particle’s mass; ¢, is the coefficient of restitution in the range of 0 to 1; x is the Coulomb
friction coefficient; J,, v, and o, v, are the overlap distances and the relative velocities

between the two contacting particles along the normal and tangential directions, respectively;

-1
1 1 1 1
subscript ‘eff’ represents effective variables, where m,, =[—+—j , Ry —[E+R—j ,
m, m, :

—1 -1

2— 2— 1-v: 1-v2

G, = M 2Th and E,, = Mo iTh with v being the Poisson’s ratio;
) G, G, ) E, E,

Fclastic and F,viscous represents the elastic and viscous term of the normal contact force

respectively; Felastic and F,viscous represents the elastic and viscous term of the tangential

contact force respectively. The critical time step A¢, —mln(R ,/ Py /E ) is an important

factor that influences the simulation stability and speed, where subscript ‘i’ represents the it

particle’®. A safety factor 0.3 is further adopted such that Az =0.34¢,, to ensure the stability

of simulation. Table 1 lists the parameters used in the DEM simulations of this study. A
relatively small value of E is adopted here to be able to use a relatively large time step.?!> >*
Our initial simulations have adopted the viscous term in this contact model. The
computational time required to dissipate kinetic energy during the relaxation, however, was
found to be excessively long. As a result, we adopted Cundall’s numerical damping>3, shown

in Eq. (4) and has already been implemented in YADE?3® 3¢, instead of the viscous damping

Page 12 of 44
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(i.e., setting F'"™ = F'* = () to accelerate the computation.
AF = -3 sign(F-v)F 4)

where F = total force vector on a particle, v = particle’s velocity vector, f = Cundall’s
damping coefficient, AF = damping force on a particle. The Cundall's numerical damping is
implemented by introducing an additional force that is directly proportional to the total force
exerted on a particle. This force aligns with the total force when the angle between the total
force and the particle's velocity exceeds 90 degrees, and opposes the total force when the
angle is smaller than 90 degrees. ¥

Table 1. Parameters in DEM simulations

Parameters Value
Grain density p, 2650 kg/m?
Particle diameter d, 1.4 cm

Young’s modulus £ 200 MPa

Poisson’s ratio v 0.2

Friction coefficientu 0.5

Cundall’s damping § 0.2

2.4 Fabric tensor definition

The fabric structure of a granular packing can be quantified by the statistics of particle
orientation,>’ void vector,’® or contact normals.’® For the spherical particles investigated in
this study, we focus the fabric characterizations based on the contact network statistics.

Consider the following directional distribution function of contact normals:*’

p(n)==25(n) ©

where n is the unit contact normal vector; p(n) is the directional distribution density of

contact normals; N and N, are the total number of particles and contacts, respectively. The

integration of p(m) over all direction immediately gives the coordination number, Z:

[p(n)dQ=[[ p(6.¢)sinod6dp = 2]]50 _

Z (6)

where Q is the solid angle; 6 is the polar angle; ¢ is the azimuth. The fabric tensor of the first
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kind can be defined as:>°
G, =[p(n)nndQ=[p(0,0)nn,sin0dodyp (7

where the trace of Gj; is exactly Z (i.e., Z = Gy). In practice, G;; can be calculated from the

discrete data of contact normals by:

o) N,
Gy =y 2 n” ®)

k=1
Alternatively, one can also approximate p(n) by a second-order fabric tensor E;;:>°
1
p(n)~ EEi/ninj ©)
One can show that the mean spherical part of Ej; is Z (i.e., Z = Ey / 3) by integrating Eq. (9)

over the whole spherical surface (i.e., 0€[0,n] and p<[0,2x]). It is also possible to express Ej;

in terms of G; by multiplying Eq. (9) with n,n, and integrating over the whole spherical

surface,
E, =%(G€7 —%Gkkél.jj (10)
The deviatoric part of Ej; follows:
Fy=E,~3E, (an
Substituting Eq. (11) into Eq. (9) gives:
p(n)zi(Z+Fyninj) (12)

which can be viewed as the spherical harmonic expansion of p(n) truncated to the second

order’. In all of our simulations, the mean fabric will be monitored by tracking the

coordination number (Z =E, /3) and the fabric anisotropy will be characterized by the

second invariant of Fy, i.e., F =,/(3/ Z)Eij . The normalized fabric anisotropy is defined as

the ratio between fabric anisotropy and the coordination number: F=F/Z .
Note that the contact-based fabric measures strongly depend on how one defines the
contact network. Past studies on granular jamming usually exclude “rattlers” which are

particles that do not participate in the load-bearing network and only inspect the contact
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statistics of non-rattler particles. While the physical definition of rattler is unique (i.e., relying
on constraint counting or inspecting if the central particle can move freely with neighboring
particles fixed), the practical implementations for identifying rattlers vary across different
studies. This variation includes considering particles with contact numbers less than one,*!> 60
6l two,” 14 62, 63 three,% and four,® reflecting different criteria adopted for the purpose of
simplicity. Here we adopt the implementation with the contact number less than 2 to be
consistent with that in simple/pure shear tests of photoelastic disks,” '* in calculating the
fabrics of the non-rattler contact network. An iterative method that was recently developed®
and closely aligned with the method originally proposed for jamming in hard sphere
packings®’, offers a notably more rigorous approach to identifying ratter and may be adopted
in future studies. Alternatively, fabric tensor defined based on the total contact network can
be useful for granular system at very loose packings near the granular gas state. In such
condition, most particles become rattler, and Eq. (5) becomes ill-defined for the non-rattler
contact network but is still valid for the total contact network. Finally, the total contact
network can be decomposed into two subnetworks of strong contacts and weak contacts.!”

The strong contacts carry a net force f larger than the average contact force of the whole

network (/) while f <(f) for weak contact network. In this study, fabric tensors of the

non-rattler, the total, and the strong contact networks are all investigated, and they are
marked with subscripts “nr”, “t”, and “s”, respectively. Note that the value of N is set as the
number of non-ratter particles (N,,) in calculating the non-rattler fabric tensor in Eq. (5),% 4
while N is the number of all particles for calculating the total- and the strong- contact fabric

tensors.32 33

3 Jamming thresholds

3.1 Stress space
When investigating the jamming phenomena, a crucial step is to ascertain the jamming
thresholds, which can be defined in relation to ¢, p, and f,,, etc. Fig. 3(a) presents the mean

stress p = ou/3 of all specimens during steady state (also known as the “critical state™)
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shearing. Notably, the relationship between critical state mean stress (p.) and ¢ exhibits an
opposite trend clearly distinguished at ¢ = 0.57, and the error bar in ¢ < 0.57 is higher than
that in ¢ > 0.57. When ¢ > 0.57, p. diminishes with ¢ in a power-law relationship as ¢

decreases, which can be described as:’

Pe —q(p-9,) 13
. a(¢-4.) (13)

a

where p, is the atmosphere pressure (101.3kPa), a;, b; and ¢, are the fitting parameters. The
best-fit results, yielding the highest R? value of 0.9943, indicate a; = 154.6031, b, = 1.1770,
and ¢. = 0.5700, are shown in the subplot of Fig. 3(a). Note that these parameters are system
and protocol dependent.'?> The calibrated ¢. serves as the threshold to distinguish between
shear jammed (including fragile) and unjammed specimens within our system. For
consistency with the Couette shear experiment we are simulating,'# this threshold will be
denoted as ¢r. At ¢ =0.57, p. = 3kPa, hence, a noise threshold p,,,;;. = 3 kPa is identified and
adopted as a criterion to determine whether a packing is shear jammed (including fragile)
during monotonic shearing.'* The implementation of p,;. represents a simplified approach to
determine jamming. It is important to note that the transition between jamming and
unjamming is notably intermittent and stochastic, characterized by pronounced finite size
effect.?> ¥ The shear strain needed for p to reach p,,,. (jamming) exhibits increasing
divergence as ¢ decreases and deviates from ¢,. When subjected to a larger shear strain, p
may attain the specified p,,;s. for specimen with a smaller ¢, indicating a shift in the onset of
shear jamming. This implies the assigned value of p,,;. might vary with changes in system
size. Understanding these statistical uncertainties is pivotal for precisely defining the
boundary between jammed and unjammed states, and these aspects need to be thoroughly
investigated in future studies.

Fig. 3(b) displays the so-called “critical state line” (CSL) on e-p plane, where e is the void
ratio defined as the void volume over the solid volume and is related to ¢ by e = (1—¢)/¢. In
critical state soil mechanics,% only the data in the jammed region is considered, and the

expression of CSL is:
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. :e,—/l(ﬁj (14)
b,

where e, A and ¢ are the fitting parameters. Their values are 0.7597, 0.0540 and 0.6644
respectively for the current system. Following the compression protocol in Section 2, the
isotropic jamming point is detected at ¢; = 0.638 = @rcp With an initial p slightly exceeds
Proise- We noted that it is impossible to generate an isotropic specimen passing this point (¢ >
¢y or e < e;) without maintaining a finite pressure (> p,,i.) on the boundary. Thus, on the
same e-p plane, there should be a densest state line (DSL) that no specimen’s (e, p) data can
exist below it. This conceptual line is sketched in Fig. 3(b). The DSL should be
monotonically decreasing, as the achievable densest state should have smaller void ratio e at
higher mean stress levels p due to elastic deformation of the grains and contacts. The (e, p)
state of the packing should always evolve above this DSL, influenced by particle attributes
such as stiffness and morphology (including shape and grain size distribution). A state falling
below the existing DSL should require changes in the geometrical characteristics of the
particles through processes like grain crushing and asperity breakage, etc. The concept of
DSL aligns closely with the notion of minimum void ratio e,,;,, which is an impact index for
defining granular soils’ relative density and compactness in geotechnical engineering. 7972
The precise determination of DSL and its correlation with particle stiffness and morphology
exceeds the scope of this paper.

Fig. 3(c) and (d) presents stress-strain evolution and stress paths in z-¢ and g-p plane of
shear jammed specimens with ¢ > ¢r. It shows that stress becomes stable around y = 1.6~2.0.
Consequently, the properties of the specimens at the steady/critical state are determined by
averaging their values within this y range, thereby mitigating the influence of data oscillation
in DEM simulations. Fig. 3(d) demonstrates that all shear jammed specimens converge to the

same critical state stress ratio 7. = 0.61.

3.2 Non-rattler fraction
Non-ratter fraction f,, is defined as the ratio between the number of non-rattler particles

(N,) and the number of total particles (V). Fig. 4(a) presents the evolution of f,, during
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shearing. It is observed that: 1) the specimen with ¢ = 0.64 is initially jammed and has a f,,
larger than a reference value 0.855 prior to shearing; 2) For initially unjammed specimens
with ¢ = 0.45~0.63, f,, increases as the shear strain accumulates, and only those shear
jammed (including fragile) with ¢ > ¢ = 0.57 has f,, reach or exceeds 0.855 at steady state (y
= 1.6 ~ 2.0). These findings suggest that the special value of f,,, ju, = 0.855 can serve as a
criterion to separate unjammed and (shear) jammed states, regardless of the initial phase of
the specimen. A similar threshold f,,. j.» = 0.83 is reported for 2D granular disk assemblies in
pure shear experiments.'* However, this does not imply that f,,, ;. is a universal value across
various system configurations. Instead, it is contingent on system parameters such as grain
size distribution, contact model, interparticle friction coefficients, preparation protocols,
system sizes, etc.

The steady-state values of non-rattler fraction f,,,, are plotted in Fig. 4(b) with the error
bar indicating the fluctuation of f,. in the range of y = 1.6 ~ 2.0. It is observed that f,,
fluctuates significantly for very loose specimens with ¢ = 0.45 ~ 0.50, a sign of highly
unstable fabric structure despite the specimen has undergone a long time of shearing. In
contrast, the error bar of £, ;; reduces considerably for medium loose specimens with ¢ = 0.51
~ 0.56 < ¢r, meaning that a relatively stable fabric structure is developed at steady state for
unjammed medium loose specimens. Specimens with ¢ > ¢ = 0.57 are all jammed during
shear and have negligible error bar associated with their f,,,, data. Similar to Fig. 3(a), the
evolution trend diverges at ¢, and f,,,. ., vanishes as ¢ decreases following a power law pattern

when ¢ > ¢z = 0.57. An equation similar to Eq. (13) with f,, ;. = 0.855 is proposed:

Sovoi = Fo o =2 (#=4.)" (15)
and the best-fit parameters yielding R?> = 0.9927 are a, = 0.3133 and b, = 0.3215 and ¢. =
0.5700, as shown in the subplot in Fig. 4(b). The minimal disparity observed in the calibrated
jamming-¢ values between Fig. 3(a) and Fig. 4(b) underscores the consistency and robustness

of the results, as well as the reliability of the obtained jamming threshold ¢r.

3.3 Classical jamming phase diagram

The JPD in the 7-¢ plane is presented in Fig. 5(a) by taking the steady state shear stress 1 as
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the yield stress for each ¢. The value of 7 at jamming-unjamming transition gradually
increases with ¢ as expected. The two previously identified special values for ¢ are marked,
namely ¢r = 0.57 where shear jamming occurs and ¢, = 0.638 where isotropic jamming
occurs.

It is worth noting that the original definition of fragile'> — “The inability to elastically
support some infinitesimal loads along the incompatible directions” — is a highly conceptual
one. Quantitative measures must be adopted to practically observe fragility and distinguish it
from shear jamming in experiments. In some studies’, a granular packing is defined as fragile
or shear jammed when the strong contact network percolates in only one direction or in all
directions, respectively. This visual-based criterion can be ambiguous depending on how one
perceives percolation. In other studies', the fragile and shear jammed states are defined by
whether p falls below or above p,,,;s., respectively, during the first loading reversal. This can
introduce arbitrariness as well, as medium-loose granular packings may still resist shear
during the first few cycles of stress reversal but have p drops to 0 in the subsequent cycles
under undrained (i.e., constant ¢) condition. This is a well-studied phenomenon called “cyclic
liquefaction” in the soil mechanics literatures.3> 33 73. 7 Therefore, the concept of fragile and
its boundary with respect to the shear jammed state in JPD remains somewhat ambiguous and
worth further investigation.

On the other hand, several studies® % 7> suggested that there is a curved boundary
between the jammed and shear jammed phases in 7-¢ plane at ¢ > ¢, regime. This may be
inherited from the unjammed-jammed boundary in the original JPD for frictionless particles,
35 and implies that an initially jammed specimen can transit to shear jammed state when

sheared under constant ¢. It is however not at all clear what macroscopic signals correspond

to this transition. To avoid ambiguity, a straight vertical line at ¢, is regarded as the

boundary between the jammed and the shear jammed phases in Fig. 5, since specimens with
dr < ¢ < ¢; in our simulation are initially unjammed but can be jammed under the
introduction of shear stress, and the packing with ¢ > ¢; is isotropically jammed before

shearing. To summarize, in z-¢ plane (Fig. 5(a)), we define: (1) specimens falling within the
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range of ¢ < ¢ < ¢, and 7 < 7,4 as belonging to the fragile or shear jammed state (F/SJ); (2)
region of ¢ > ¢, and 7 < 7,44 as jammed (J); (3) the rest as unjammed (UJ).

The JPD in the p-¢ plane is presented in Fig. 5(b). It exhibits a similar boundary between
the UJ and the F/SJ phases as the one identified in ref. 14. Here we have further enriched the
diagram by considering the ¢ > ¢, regime and adding the conceptual DSL discussed in Fig.
3(b) after axes transformation. The region beyond DSL cannot be accessed unless processes
such as particle breakage starting to alter the grain size distribution and the grain morphology
of the specimen.”6-7® Comparing Fig. 3(b) with Fig. 5(b), it is instructive to see that the well-
established CSL in soil mechanics literature is essentially the same as UJ to F/SJ phase
boundary in JPD. This equivalence permits the cross comparison between existing studies in
both communities, which may inspire new directions of granular mechanics/physics research.
In what follows, we inspect the fabric states of all tested specimens in an attempt to identify

the microstructural patterns that control the phase transition of granular materials.

4 Jamming phase diagram in fabric space

4.1 Fabric evolution

The non-ratter, total-, and strong- contact coordination numbers (i.e., Z, , Z, and Z ) and

nr?

fabric anisotropies (i.e., F

nr?

F, and F,) in the simulations are presented in Fig. 6. The left

figures show the evolution of Z’s with respect to y. It is observed that the Z’s of specimens
with ¢ = 0.45 ~ 0.63 (initially unjammed) gradually increase to steady state, while the Z’s of
initially jammed sample (¢ = 0.64) evolve to a steady state lower than the initial value. Just as
in the preceding section where we established the jamming threshold as p,,,;;c = 3 kPa and f,,
= 0.855, we now adopt the steady state Z value of specimens with ¢ = 0.57 as the jamming
threshold (Z,,) to distinguish between unjammed and jammed states.

The right figures show the evolution of F'’s with respect to y. Since the specimens are
initially isotropic, all F’s start at zero. The F), exhibits significant oscillations for unjammed
specimens during initial shearing, which is expected as only a few contacts present at that

stage and most particles are rattlers. The F),, eventually stabilizes and reaches a steady state,
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with value being lower for denser specimens. The steady-state F; decreases slightly with ¢
when specimen is jammed (¢ > ¢r) and increases moderately with ¢ when specimen is
unjammed (¢ < ¢r), while the steady-state F, is always higher for larger ¢ specimens,
consistent with our previous findings.3> 33 Note that the specimens of ¢ < 0.57 have never
been jammed at any stage of shearing but still has finite £, and F,. This reveals an important
but often neglected property of frictional granular materials: even loose quasi-static granular
flow exhibiting p = 0 can develop distinct fabric anisotropy amid the dynamic creation and
destruction of contact network after sufficient shearing. The fabric structure of unjammed
granular systems has only gained some attention recently. In soil mechanics research, non-
trivial fabric anisotropy in liquefied (p = 0) granular soils during continuous shearing has
been recently observed.’> 33 7 Studies on concentrated granular suspensions have also
reported the development of anisotropic microstructure when shear is applied.?® Augmented
by our present observation that all specimens (UJ, F/SJ, and J) demonstrate finite F,,. and F,
after undergoing adequate shearing, it is justifiable to conclude that a steady-state granular
flow consistently maintains microstructural anisotropy. This point will be further elaborated

in the next section.

4.2 Fabric path and critical fabric surface

Fig. 7 presents the evolution path of fabric data throughout shearing (y = 0.0 ~ 2.0) in the
left plots and the steady-state fabric data (after the sample reaching steady-state shearing, y =
1.6 ~ 2.0) in the right plots on the F-Z plane. It is observed from Figs. 7(a)(c)(e) that the
fabric paths of initially unjammed specimens (¢ < 0.63) always start at their minimum values
(2 for Z,,, 0 for Z, and Z; and F, and F;). The initial F,, is quite scattered since the specimens
near the extreme of f,, —0 do not have a stable non-rattler contact network yet, and the
occasional percolation of force chains along certain direction is registered as high initial F,,
values. Shearing drives their fabric paths towards higher Z value and eventually ceases
evolving around the steady state (Z, F\;) identified in Figs. 6. For the initially jammed
specimen (¢ = 0.64), its fabric paths start at a large coordination number (Z,, = 6.79 > Z,,. jum,

Z,=6.72> 7, jum, Zs = 2.18 > Z; jum) With negligible anisotropy due to the initial isotropic
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compression. During the course of shear, the values of its F’s ascend to their peak and
subsequently drops to reach the CFS defined later, a trend concurrent with the reduction
followed by an increase in the values of Z.

Figs. 7(b)(d)(f) presents only the steady-state fabric data (y = 1.6 ~ 2.0). All three types of
fabric measures clearly exhibit a steady-state fabric envelope on the F-Z plane. They are
referred to as the Critical Fabric Surface (CFS) hereafter to be consistent with Fig. 1 and our
previous works.3% 32 33 Different types of equations are tried to capture the steady state fabric
data. The power-law function (Eq. (16)) and the Gunary function®! (Eq. (17)) are adopted to
best fit the CFS of the non-rattler, total-, and strong- contact fabrics respectively for their

simplicity as well as the relatively high R? values achieved.
f(x)=ax" (16)
f(x)=x/(cl+czx/;+c3x) (17)

The parameters for the best-fit CFS expressions are a; = 12.18 and b3 = —0.8557 for non-
rattler CFS with R? = 0.9765; ¢; = 0.7674, ¢, = —0.8659 and c; = 0.584 for total contact CFS
with R? =0.9755; a3 = 1.845 and b3 = 0.6976 for strong contact CFS with R = 0.9960.

Fig. 7(d) indicates that the steady-state fabric anisotropy of total contact network F;
diminishes as Z; approach to zero. It is therefore conceivable that in extremely loose packings
(e.g., granular gas), particles will barely touch each other throughout quasi-static shearing,
and the contact based CFS will no longer be descriptive of the material’s fabric. To
investigate this, an additional set of tests are conducted on extremely loose samples (¢ < 0.45)
and observed that the fabric information was no longer reflected in CFS when ¢ = 0.40. For
is in the

the non-rattler CFS in Fig. 7(b), the data of ¢ = 0.40 is highly scattered with F,

t

range of 4 ~ 12 and Z lies near the minimum value 2. In this case, only a few local non-

nr, st

rattler fabric clusters exist, and the calculated fabric tensor will be no longer representative
for the whole packing. For the total- and the strong- contact CFS in Figs. 9(d) and (f), the
data of ¢ = 0.40 locates around the origin, meaning the fabric structure is hardly detectable

even if external energy is continuously supplied by shearing. From this purely geometrical
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standpoint, a @ that exists in the range of 0.40 < ¢ < 0.45 may be defined to separate the
granular gas (G) and the granular liquid (UJ) regimes, in analogues to ¢ = 0.57 and ¢, =
0.638 that respectively distinguishes the UJ to F/SJ and F/SJ to J transitions in the JPD in Fig.

5. Our earlier speculation in Section 4.1 can now be put in stricter terms: steady-state

granular flow with ¢ >¢, is always microstructurally anisotropic with non-zero Z’s,

regardless of whether it is initially jammed or unjammed.

It is worth noting that the present DEM simulations are drastically different from authors’
previous studies®? 33 in terms of the shear mode (simple shear vs. triaxial shear), contact
model (Hertz-Mindlin vs. linear), grain size distribution (bi-disperse vs. polydisperse), and
the control mechanism (athermal quasi-static shear vs. boundary-only control), yet the shapes
of the obtained CFS’s are surprisingly similar. Indeed, the total- and strong- contact CFS in
Figs. 7(d)(f) and previous works3? 33 are all satisfactorily described by Egs. (16) and (17)
with slightly different parameters, respectively. Therefore, the unifying power of CFS lies in
that it describes the steady-state fabric of all specimens regardless of their phase states, and is
also robust and insensitive to the shear mode. Different portions of CFS host the steady-state
fabric data of samples with different packing fractions denoted by different colors in Figs.
7(b)(d)(f). This hints that there exists a direct relation between the UJ — F/SJ phase boundary
on the JPD and the CFS in the F-Z plane, and possibly a one-to-one mapping between

different phases and the regions surrounding CFS. We shall explore this in the next section.

4.3 Jamming phase diagram in fabric space
By inspecting the fabric paths in Fig. 7, we map the granular phases defined in Fig. 5 to
the fabric F-Z plane for the non-rattler and the total contact networks in Fig. 8. The strong-
contact plot is omitted since its shape is qualitatively similar to that of the total-contact plot.
It features the following regions:
(1) The entire CFS and its immediate vicinity forms a narrow band collecting the steady-state
fabric data, thus it is denoted as the “Flow steady” region.
(2) Samples with Z smaller than Z,, and F' above CFS are macroscopically identified as

unjammed (i.e., p = 0). Their microstructures are still evolving with respect to y (see Figs.
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6(b) and (d), y = 0~0.8) and have not arrived at the CFS yet. Correspondingly, this region
is denoted as “Flow transient” marked by the light gray color in Fig. 8. In this stage, the
initial fabric induced by the preparation protocol is still being “remembered” by the
specimen, and the term “transient” here refers to the microstructure being in transition to
a new steady-state configuration driven by quasi-static shear y. This term therefore should

not be confused with the transient processes discussed in dynamic settings where time is

the driving variable. The fabric paths of all UJ specimens (¢ < ¢, ) evolves within the

Flow transient region and end at the Flow steady portion left to the Z;,,, line.

(3) For F/SJ specimens (¢7 < ¢ < ¢,), their fabric path will travel through the “flow transient”

region, pass the Z,, line, enter the “F/SJ” region marked by the red and green color, and
finally reach the joint area of the “Flow steady” and the “F/SJ” regions. Although the
fragile and shear jammed states are not distinguished in the present study, we hypothesize
that specimens jammed at low Z values are more likely to be fragile and those reach
relatively high Z are shear jammed. This is supported by the original definition of
fragile!3 that force chain inside the granular packing is percolated along one direction but
is disconnected along the other direction, which corresponds to high F but low Z values.
The exact boundary between the F and the SJ phases still needs to be systematically

investigated in the future.

(4) The possible fabric states of jammed specimens (¢ > @) are marked by the dark gray zone

based on the data in Fig. 7 and complemented by Fig. 1(a). The fabric states of jammed
specimens eventually reach the “Flow steady” region at very high Z values as y
accumulates. Some overlap between the jammed and the SJ phases appear. This suggests
that the same fabric state (Z, F) can be reached by specimens with different ¢ and phase
states. Such overlapping could be attributed to the inability of the second-order fabric
tensor Ej; in representing the full fabric information of a granular specimen. Comparing
the higher-order fabric components or directly the p(n) in the joint SJ-J regions may
reveal the differences between the fabric structures of the two specimens.>?

There are also some blank zones in Fig. 8 where no fabric data from the present
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simulation campaign are found. These zones are labeled as ‘A’, ‘B’ and ‘C’. Our previous
study3? 33 and new simulations not reported here suggest that fabric states can indeed exist in
region ‘B’ by stress reversals. For example, by performing unloading on a specimen in the
‘F/S)” or ‘Flow steady’ regions, the coordination number remains similar, but fabric
anisotropy drops, and the fabric path moves downward to ‘B’. When cyclic stress reversal is
applied on initially jammed specimens, Z will gradually decrease and the phase state moves

leftward to region B.33 We also found that preparing specimens at x > 0 permits an initially

jammed state at a relatively loose packing ¢, < @,.>> This puts the specimen’s initial fabric

state in region B directly, and shear drives the fabric path across region B and reaches CFS
(Fig. 1(a)).

Region ‘A’ represents the unjammed state since Z < Z,,. However, we didn’t find any
data exists in ‘A’ based on our present and previous simulations. The fabric state for jammed
specimens jumps from Z > Zj,, to the origin of coordinates upon unjamming (or liquefaction)
irrespective of whether it is induced by monotonic or cyclic shearing, and the fabric state of
liquefied specimens jumps from ‘Flow transient’ to the origin of coordinates upon loading
reversals.’ Further investigations are needed to determine whether region ‘A’ is truly
inaccessible for quasi-statically sheared granular materials.

In all of our simulations, region ‘C’ characterized by high F' values has never been
reached and is deemed to be inaccessible. For a fixed coordination number, large F means all
contacts are aligned along one direction but not supported laterally. This could result in the
buckling of the force chain and thus unstable contact network, providing an explanation for
the lack of fabric states in “C” for granular materials at the quasi-static limit. The
accessibility of fabric states due to local geometrical constraints has been also discussed in
analytical settings34.

Identifying the fabric characteristics underlying different phases creates the possibility to
determine the state of granular materials solely through kinematical measures such as optical
methods or X-ray tomography without the need to ascertain the stress state of the specimen.

In industrial applications, gaining access to the stress state within a granular flow undergoing
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complex boundary conditions is usually inpractical.®? Utilizing geometry-based methods to
identify phase states can provide valuable insights into the efficiency of granular system and
serve as a guide for future optimization efforts. Furthermore, the fabric-based phase diagram
(Fig. 8) can furnish insights into whether a granular packing is at a transient state or has
attained a final steady state, which serves as a valuable feature in geoscience studies in

determining the shear history of granular materials in certain regions (e.g., fault gauge).’3 84

5. Fabric — f,,, relation

Fig.9 investigates the relation between contact fabrics and the non-rattler fraction f,,. It
is observed from Fig. 9(a) that all the Z, — f,, data fall within a narrow band. Similar
observation has been reported from pure shear photoelastic experiments.” 8 This suggests
that Z,. and f,, maintain a robust relationship that presents in both 2D and 3D granular
specimens. The total coordination number Z, appears to correlate even better with f,,. as
shown in Fig. 9(c). All data effectively collapse into a curve, regardless of whether the
sample being UJ, F/SJ, or J throughout the shearing process. By plotting the Z — f,, data of
only unjammed specimens in the subplots of Figs. 9(a)(c), we confirm that the sample
remains unjammed when f,, < 0.855 but will enter F/SJ or J phases once f,, exceeds this

value.

Figs. 9(b)(d) show that the normalized fabric anisotropy F, =F /Z and F =F /Z,

decrease as f,, increases, confirming that denser and more jammed granular packings develop

less normalized fabric anisotropy.2!- 32 Similar to the Z — f;, plots, all the F, — f, and F, - f,,

data collapse into a narrow band. The correlation is improved for the steady-state data as

shown in the subplots of Figs. 9(b)(d). It shows that the steady-state 7 — f, and F —f,,

7i

lines are essentially identical. Furthermore, in Fig. 9(e), the correlation between the steady-

state normalized fabric anisotropy F,  and E ., data is striking similar, clustering around

nr, st

the around the 1:1 line with R? = 0.9985, although F , contains extra fabric data about the

, st

rattlers. This suggests that the contact network of rattlers in the steady state is not random or
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isotropic; instead, it aligns with the same major direction or anisotropy as that of the non-
rattler contact network. To demonstrate this, Fig.10 presents the polar histogram of non-
rattler- and rattler- contact normals’ probability distribution density in y-z plane of the
specimen with ¢ = 0.57 aty =0, 0.2, 1.0 and 2.0, respectively. In Fig. 10, the radius of each
bin represents the (number of contact normals in the bin) / (number of all contact normals) /
(width of each bin, i.e., 20° = 0.3491 rad). Fig. 10 (a)-(d) shows that the non-rattler contact
network initially does not exist, then begins to exhibit some degree of anisotropy at y = 0.2,
followed by a slight decrease as it stabilizes into a steady state. This pattern is consistent with
the observations in Fig. 6(b). On the other hand, Fig. 10 (e)-(h) shows that a random rattler-
contact network exists prior to shearing. As shearing proceeds, a distinct level of anisotropy
emerges within the rattler contact distribution, and this anisotropy aligns with a direction akin

to that observed in the non-rattler contact network.

6. Concluding remarks

This study investigates the fabric structure of frictional granular materials near jamming
transition though a series of constant-¢ quasi-static simple shear DEM tests. The fabric
structure characterized by three different contact networks is analyzed in terms of
coordination number (Z), fabric anisotropy (F), and non-rattler fraction (f,,). A unifying
Critical Fabric Surface (CFS) for both unjammed (UJ) and jammed (F/SJ, J) granular
packings is found in F-Z plane. In addition, a novel jamming phase diagram in the fabric F-Z
plane is proposed, and its potential applications are discussed. The main conclusions of this
study are summarized below:

(1) The boundary between the unjammed and jammed phases in the JPD within the p-¢
plane is equivalent to the critical state line frequently discussed in soil mechanics
literature within the e-p plane. In addition, the p-¢ JPD should incorporate a densest
state line at higher ¢ values. Beyond this line, states become inaccessible unless certain
processes, such as grain crushing, begin to modify the grain size distribution and the
grain morphology.

(2) By plotting the fabric paths of all samples on the F-Z plane, we identified a unique CFS
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that attracts the fabric state (including the non-rattler, total, and strong contact
networks) of granular assemblies upon shearing. This observation underscores that a
steady-state granular flow with ¢ > ¢ consistently exhibits microstructural anisotropy,
irrespective of whether it is jammed or unjammed.

(3) We proposed a conceptual JPD in the fabric F-Z space. The fabric JPD provides a
geometrical metric for assessing the phase state of granular materials, complementing
the conventional JPD in which information regarding the stress state of the assembly is
necessary. This approach offers a fresh perspective for understanding the jamming
phenomenon, potentially serving as a source of inspiration for researchers in both
granular physics and geomechanics.

(4) Our simulation shows a one-to-one relation between the non-rattler fraction £, and the
coordination numbers Z, and Z,. for all samples throughout shearing. The rattler
particles do not exhibit an isotropic distribution during shearing; instead, they tend to
align along the direction where the total fabric anisotropy emerges. A threshold non-
rattler fraction f,,, = 0.855 that separates jammed and unjammed packings is
identified. This value is close to 0.83 that was identified in prior 2D photoelastic
experiments.’

One limitation of the present study is that the fragile and shear jammed states are not
distinguished due to the absence of stress reversal in the loading program and also the lack of
a quantitative definition of fragile. The JPDs constructed in this study therefore do not
separate the fragile and the shear jammed phases in both the conventional 7-¢ space and the
fabric F-Z space. The clarification between different criterions for the determination of
fragile and precise determination of its region in the phase diagram worth a systematic study,
which is one of the primary goals in our follow up studies. An additional limitation is the
omission of highly stochastic characteristics in the unjamming-jamming transition within the
current simulation, which is known to be significantly influenced by finite size effects. The
statistical uncertainties in determining the jamming/unjamming boundary in the JPD requires

further refinement to clearly elucidate this aspect in future investigations.
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(a) 3.5

*  critical state
300 — CFS
Unjammed Z : U

Fig. 1. (a) Critical fabric surface (CFS) and fabric evolution in F-Z plane and (b) CFS in principal fabric space, adapted from ref.
30. Z is coordination number; F characterizes fabric anisotropy; E,, E, and E; are the major, intermediate, and minor principal
values of fabric tensor Ej;, which can be calculated using Eqs. (7) and (9). All data were obtained from DEM simulations of
constant-¢ triaxial test on three-dimensional (3D) spherical particles. Samples were first isotropically compressed to different
confining pressures, producing an initially jammed (Z’s > Z;,,,) and isotropic (F’s = 0) state. They are then subjected to constant-
¢, quasi-static true triaxial shearing. Fig. 1(a) shows all fabric paths evolve to a final CFS (red line). During shearing, several
specimens’ fabric state (Z, F) abruptly jumped to the origin (denoted by dashed lines), experiencing sudden unjamming. With
continuous application of shear strain, their fabric states evolve away from the origin following the CFS in the Z < Zj,,, range. Fig.

1(b) compiles the CFS for all true triaxial tests conducted at different Lode angles, giving a 3D CFS in the principal fabric space.
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Fig. 2. Constant volume simple shear test: (a) sample during shear, where orange particles are the clumped particle-walls to

impart non-trivial shear stress to the sheared particles while simultaneously preventing the escape of particles from the

simulation region. Note that the simulation does not employ a wall-driven shearing algorithm. Instead, the shear strain is applied

affinely to each individual particle and the two particle-walls. This is accomplished by assigning the displacement of each object

directly through the utilization of the vertical coordinate and the constant shear strain increment during each timestep, followed

by a subsequent relaxation stage; (b) Calibration of the effective height / of the specimen under shear.
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Fig. 4. Non-rattler fraction f,,: (a) evolution with respect to shear strain; (b) steady-state values.




Soft Matter

250 750
| —=— Yield curve —e— Yield curve -
w00k ¢, line ; 600 L " ¢, line [y
i ---------- Conceptual densest E
} state line ;
=150 | ; =450 | E
=) B =) R
100 F | 2300 | !
01 j 1 50 ; - o
o ! F\ E / accessible
) R R W - L ) J S RPN W ¥4 |
(a) 045 0350 055 060 0.685 070 (b) 045 050 055 060 0.65 0.70
¢ ¢

Fig. 5. Classical jamming phase diagram: (a) in 7-¢ plane and (b) in p-¢ plane.

Page 38 of 44



Page 39 of 44 Soft Matter

0 Lty 0 e
(c) 0.0 0.4 0.8 1.2 1.6 20 (0.0 0.4 0.8 1.2 1.6 2.0

f”*f‘m MO 7L s e LM dthadn. ) 0.52
A T B e AR, R :
[ e (%&.Wnﬂ% j ™

0.46
0.45

Fig. 6. Evolution of coordination numbers and fabric anisotropies: (a), (c) and (e) the evolution of Z,,, Z, and Z; with respect to y;
(b), (d) and (f) the evolution of F,,, F, and F with respect to y.



Soft Matter Page 40 of 44

14 14
[ - —— CFS calibrated in [ Best-fit curve
) 12+ .
Fig. 7(b) I . R>=0.9765 (¢ = 0.45~0.64)
————— Zor am = 4407 10

nF, Jam

AT T
innaov o
NoodD—RWR

Fnr, st
=)
T

L —— CFS calibrated in - 0.62
Fig. 7(d) Best-fit curve, R? = 0.9755 0.60
| e Z, om=3.838 i B2
sk & / 5| 0.58

Eq. (17) 0.56

(o))
T

~
p—

o
&y

~3.838 047

N
T

[\
T

0:63

| —— CFS calibrated in i 0.62
| i B 0.61
&0 Fig. 700 ar Best-fit curve, B2 = 0.9960 0.60

sk 7 Zv,jam =1.422 f 5F e
| 7 | | e
4k oL 4tk Eq. (16) 0.55

1 e
A

It /# Z 1422 L

S, jam

! 0.45

0 E 1 1 | 1 1 0K 1 1 | 1 1 -. ():4()
() 0.0 05 1.0 15 20 25 30 (Hoo 05 1.0 1.5 20 25 3.0

V4 Z

5 5, st

o B o o

Fig. 7. Fabric paths and critical fabric surface in the F-Z plane: non-rattler fabric (a) paths and (b) CFS; total fabric (c) paths (d)
CFS; strong fabric (e) paths and (f) CFS.



Page 41 of 44 Soft Matter

2,2
A A
I L
. ¢
%,
Flow steady Z‘;f“"'
LLE LY: - ‘;&y‘é@“‘ i
(a) ) Z,
(@ (b)

Fig. 8. Jamming phase diagram mapped to the fabric F-Z space: (a) non-rattler fabric; (b) total fabric.



Soft Matter

7 5 ; 8 3
.f]’?r,_;am = 0:85: i 7 L 7 r
6F 4f & 1 1 o
< 48 [ 6 - 5k
3 ¢<057/ I [ ] ]
[ N A | ] 4t
sk 37 5 | D 5@ 3t
L ! | s B 2"
N&‘ 2 el IV R R B :L” |LL<4 7'{% 1F
- 00 02 04,06 08 1077 0 P
HERR R o 3 G0, 00 02 04 05 08 10
e ! 7 | o "
B ,ﬁ“’f 1 [ m%@@m
: s =10.855 1 r=0~20
R L :ONQ..O Jiir,‘/am i
2 ﬁ?‘f‘M . 1 . 1 1 0 )- . 1 1 1 1 8]
(a) 0.0 0.2 0.4 0.6 0.8 1.0 (b)0.0 0.2 04 0.6 0.8 1.0
Sor p
7 | 5 - , ; 8 ; 8
6 B 4_ fm',jam:O':gss : 7 i_ 7 r
- 3 E | i 6r
5N ¢<0.57 i | 6 4‘- :Z:
gl T' - 5| S y=16~20
Nt 0 B :’;‘.u{ L L L i ;r I 4 k ?: “&m{i"”tﬁi‘
3F 0002040608 1.0 5 | G 0 ; ; ; g
: Lo i 3 20, 00 02 04 06 08 10
2 B L : 2 - 4%({’\ réﬁu% m% g
L /”,','/'/:'f /7 =0~2.0 fi;r,jam :30855 L F }/:0~20 h [ﬁ
0 Sl . 1 . L L 0 ] 1 1 1 i )
(¢) 0.0 0.2 04 06 0.8 1.0 (d)0.0 0.2 0.4 Y 0.6 0.8 1.0
3 0.64
I e 0.63
7 0.62
e 0.61
S 0.60
il
Zr # 0.57
0.56
5
" o2 | BB
I yo e 0,51
0.50
4 0.49
—1:1line, 2= 0.9985 | W52
0.46
0 . P B 0.45
0 1 2 3
e —
( ) Fnr, 5t

Page 42 of 44

Fig. 9. Evolution of fabrics with respect to f,,: (a) and (c) report the evolution of Z,,, Z,, where the subplots present the data of

unjammed specimens only; (b) and (d) report the evolution of IT‘W and Ft , where the subplots show the steady state data only; (e)

comparison between steady state non-rattler and total contact normalized fabric anisotropies.
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Fig. 10. Contact probability distribution density of ¢ = 0.57 in y-z plane: (a)-(d) non-rattler contacts at y =0, 0.2, 1.0 and 2.0,
respectively; (e)-(f) rattler contacts at y =0, 0.2, 1.0 and 2.0, respectively. The radius of each bin represents the (number of

contact normals in the bin) / (number of all contact normals) / (width of each bin, i.e., 20° = 0.3491 rad).
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Fabric-based jamming phase diagram for frictional granular materials, where F; and Z, are the
fabric anisotropy (deviatoric invariant of the 2" order fabric tensor) and the coordination number
(mean invariant of the 2" order fabric tensor) of the total-contact network, respectively.



