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ABSTRACT

Large language models (LLMs) rely on prompts with detailed and
informative context to produce high-quality responses at scale. One
way to develop such prompts is through reactive LLM pipelines,
which incorporate new information—e.g., end-user feedback and
summaries of historical inputs and outputs—back into prompts to
improve future response quality. We present MoTION, a Python
framework to build and execute reactive LLM pipelines. MoTION
uses a weak consistency model to maintain prompt versions, trad-
ing off freshness for end-user latency. We demonstrate MoTION
with an e-commerce application that suggests apparel to wear for
any event, allowing attendees to indirectly influence prompts with
their queries. Attendees can interact with the demo as end-users
or modify the application as developers, adding new information
sources for reactive prompts.
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1 INTRODUCTION

Large language models (LLMs) are increasingly used in intelli-
gent software and data pipelines. Essential to these pipelines is
the prompt, or a string input to an LLM. Due to in-context learning,
LLM responses for domain-specific tasks improve when prompts in-
clude external information, example inputs-and-outputs, and even
LLM-synthesized instructions [1, 4-6]. In production LLM pipelines,
any new information—be it user feedback, external data, or the ini-
tial input to the pipeline—should inform future prompts; as such,
we call them reactive prompts. For instance, Figure 1 shows an
e-commerce-focused pipeline that generates a personalized note
suggesting clothing to buy for an event. Its prompt could change
over time by including LLM-generated insights from user inter-
actions. For a concrete example of this, consider the following
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Figure 1: Example of a reactive prompt for an LLM pipeline
tailored for e-commerce, which recommends new products to
buy for an event query. Blue arrows represent LLM-enabled
data transformations. Dashed prompt sub-parts do not al-
ways have to be up-to-date—in fact, requiring these to be
fresh can have latencies of over half a minute when there
are multiple historical queries and feedbacks.

sequence of user interactions, where 1, 3, and 4 show prompts for
event styling queries and 2 corresponds to user feedback:

(1) “What apparel items should I buy for SIGMOD in Chile?”

(2) User disliked “purple blazer” and liked “wide-leg jeans.”

(3) “I work in tech. I dress casually. What apparel items should I
buy for hiking in the Bay Area?”

(4) “I work in tech and have an active lifestyle. I dress casually.
What apparel items should I buy for coffee with a friend?”

In the above sequence, blue phrases in the prompt are dynami-
cally generated based on previous user-generated activity. The new
context can improve the quality of responses.

Maintaining Reactive Prompts in Production is Hard. New
information to incorporate into the prompt is typically unstruc-
tured and grows in size over time. Thus, LLMs must summarize or
intelligently extract relevant data to include in prompt(s), which
can be too costly or time-consuming for production settings [3].
For example, in Figure 1, if there are a handful of historical queries
and feedbacks, GPT-4 can take more than thirty seconds to gen-
erate a summary [2]. Waiting on a reactive prompt to be fully
up-to-date with the latest information can be unacceptable. Second,
there are significant engineering efforts required to maintain reac-
tive prompts. Maintaining code to glue together online and offline
(cached) data for ML pipelines is a pain point for practitioners [8, 9].
Reactive Prompts are Views. To maintain reactive prompts, we
conceptualize prompts as views over unstructured information.
Each new piece of information creates a new version of the prompt,
so our problem is an instance of incremental view maintenance
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(IVM). While IVM techniques have been used to optimize ML
pipelines before, e.g., [7], new considerations arise when LLMs
generate view results. First, prompts need not include all new infor-
mation. The dashed boxes in Figure 1 represent context that could
be stale without impacting overall correctness, even if result quality
may be slightly diminished. For example, while the summary of
historical queries may improve future recommendations because it
provides more context on the end-user, it does not have to reflect
all queries. This motivates a weak consistency model for reactive
prompts: a system can maintain stale versions of prompt sub-parts
to quickly support LLM pipeline queries at scale. Second, even
in variants of IVM that admit staleness by batching updates [10],
materialized views are typically derived from a single snapshot of
the underlying data. However, here, prompt sub-parts may vary in
version: in our example, different end-users could experience vary-
ing staleness levels in query summaries based on when and how
they access the LLM pipeline. We might batch summarization re-
quests for different users around anticipated end-user visits, posing
a scheduling problem. Moreover, there is a tradeoff between sum-
marizing small batches of history and concatenating the summaries,
versus generating a summary based on the entire history. Overall,
updating and managing state across many interacting components
in the system is a huge challenge.

Supporting Reactive Prompts with MoTioN. We introduce Mo-
TION, a Python-based framework for creating and executing LLM
pipelines with reactive prompts, using a weak consistency model.
MortioN decouples the prompt from the end-to-end LLM pipeline,
maintaining versions of prompt sub-parts to be read anytime. De-
signed for flexibility, MoTION gives developers control over all LLM
prompts and allows them to define how to incrementally update
prompt sub-parts. Designed for scalability, MOTION operates in
serverless and cloud settings, with versions of prompt sub-parts
saved in a key-value store (Redis in our implementation).
Demonstration Scenario. In a real-world application, MOTION is
actively used in a fashion startup, powering various LLM pipelines
that require domain-specific knowledge (e.g., recommending cloth-
ing items to users based on their query history and feedback on
previous recommendations). In our demo, we will show a simplified
example of an e-commerce application to suggest apparel items to
buy. This pipeline maintains reactive prompts based on a user’s
query history. We describe the demo in Section 3, and the code for
the demo can be found on Github.! Motion is also open-source.?

2 SYSTEM

MoTIoN is written in Python. Developers define Python functions
for computing prompt sub-parts, distinguishing between those for
real-time computation and those processed in the background with
permissible staleness. MOTION manages execution of these UDFs,
reading and writing sub-parts to a key-value store.

2.1 MorTioN Primitives and Interface

In MoOTION, the primary abstraction is the Component, which in-
cludes state (prompt sub-parts) and operations for state manipula-
tion. State is a Python dictionary, initialized by a developer-defined
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default. Developers manage this state via flows, each consisting of
zero or one real-time serve operations (read-only) and zero or more
asynchronous update operations that write new values to the state.
Serve operations handle real-time LLM pipeline logic, combining
runtime arguments with potentially-stale state, while update op-
erations recompute values in the state. When a serve operation
finishes, the result is immediately returned, and any update oper-
ations run in the background. Components can support multiple
flows, triggered by various events like human feedback, and can be
serve-only or update-only. Flows only have one serve operation but
can include several update operations, which is useful when one
event (e.g., user feedback) needs to update multiple prompt sub-
parts. Serve and update operations are defined as Python functions,
instrumented with decorators.

Writing Figure 1 as a Motion Component. To write the pipeline
in Figure 1 as a MOTION component, we first identify the prompt
sub-parts to maintain and set up some initial values for them:

from motion import Component

FashionPrompt = Component("Fashion")
@FashionPrompt.init_state
def setup():
return {"query_summary": "No queries yet.",
< preference information yet."}

"preference_summary": "No

Next, we write the flow styling_query. The corresponding
serve operation assembles the LLM prompt (red rectangle in Fig-
ure 1) and calls the LLM, returning the LLM’s response:

@FashionPrompt.serve("styling_query")

def generate_recs(state, props):
# Props = properties to this specific flow's execution
# First retrieve products from the catalog
catalog_products = retrieve(props['event'])
prompt = f"Consider the following lifestyle and preference information
<> about me: {state['query_summary'l]}, {state['preference_summary']}.
< Suggest 3-5 apparel items for me to buy for {props['event']}, using
<> the catalog: {catalog_products}."
return llm(prompt)

Note that the props argument is a dictionary of key-value pairs
passed into the flow at runtime (e.g., the event to be styled for).
The styling_query flow would also have an update operation to
incrementally maintain the summary of recent queries:

@FashionPrompt.update("styling_query")
def query_summary(state, props):
# props.serve_result contains the result from the serve op
prompt = f"You recommended a user buy {props.serve_result} for {props['
<> event'l}. The information we currently have about them is: {state['
< query_summary']}. Based on their query history, give a new 3-
< sentence summary about their lifestyle."
query_summary = llm(prompt)
# Update state

return {"query_summary": query_summary}

In the above code snippet, the update operation runs in the
background after the serve result is returned to the end-user. We
can also define a flow, feedback, with only an update operation to
maintain the state’s preference_summary, but we omit this code
for brevity. To run the styling_query flow for a specific event, the
code would look like:

if __name__ == "__main__":
instance = FashionPrompt(user_id) # Some user_id
instance.run("styling_query", props={"event": "sightseeing in Santiago,
< Chile"})
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Figure 2: Diagram of MoTION’s execution model with 3
concurrently-running processes for the same component
instance. The instance corresponds to the pipeline in Fig-
ure 1. Blue serve operations run concurrently in real-time,
assembling prompts from potentially-stale state. Red dashed
operations run in the background and run one-at-a-time
(since update operations require an exclusive lock). States
and queues are shared across all processes.

States are stored in Redis, so even when the instance goes out of
scope, the state persists. Initial state is derived from the init_state
function. Persisting state like this for developers allows them to
easily run MoTION components in the cloud and even serverless
environments. The startup that uses MoTION executes flows in
serverless functions triggered by their web app, where the function
code looks like the following:

from my_components import FashionPrompt

with FashionPrompt(user_id, flush_on_exit=True) as instance:
# flush_on_exit will process user_id's ““styling_query'’
# on context manager teardown
yield instance.run("styling_query",
<> Santiago, Chile"})

update queue

props={"event": "sightseeing in

2.2 MoTtIioN’s Execution Model

For scalability, any number of Python processes can connect to
the same MoTION component instance and concurrently run flows.
MoTIoN ensures that in this distributed setting, component instance
states are weakly consistent.

Component Instance Creation. When a component instance
object is created (i.e., instance = FashionPrompt(id)), MoTION
creates a background thread (or process if preferred by the devel-
oper) to execute any update operations. Figure 2 shows that this
background task subscribes to a Redis-backed queue for each update
operation. Each component instance id has its own set of queues.

Executing Flows: Serve Operations. When a developer runs a
flow for the instance (i.e., instance.run(styling_query, props=
{k:v})), the serve operation corresponding to styling_query gets
executed, as shown in Figure 2. MoTION achieves weak consistency
by maintaining some version of the state, which may be stale, to
be read at any time. At a high level, executing a serve operation
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involves running the relevant Python function with a potentially-

stale state, sending the result to a queue to be processed in any

background operations, and returning the result to the end-user.

More concretely, executing a serve operation does the following:

(1) Identify the Python function f decorated with @C.serve(styl
ing_query)

(2) Execute f to get result r, using the latest state for this compo-
nent instance ID from Redis (or the developer-defined initial
state if no state exists) and {k: v} for props

(3) Add r and props to every queue linked to Python functions
decorated with @C.update(styling_query)

(4) Return r to the user

Since serve operations are not allowed to modify state, they can
be executed concurrently for minimal end-user latency.
Executing Flows: Update Operations. Since any number of
Python processes can create objects with the same component
instance id, and each process has its own background thread or
process to process update operations off update queues (Figure 2),
state updates can get lost or overwrite each other if we don’t isolate
them. As a simple solution, MOTION requires each update operation
to hold a lock exclusive to the component instance while executing
and updating state. However, the drawback is that updates cannot
execute concurrently, so if update operations finish slower than
the rate at which flows with update operations are executed, there
can be significant backpressure. The current solution to handle
backpressure discards unprocessed update operations older than
a developer-defined period of time (i.e., n seconds) or number of
subsequent new update operations (i.e., if there are n newer update
operations that haven’t been processed yet). We are exploring dif-
ferent solutions to process update operations in parallel, e.g., batch
processing with LLMs, an optimistic concurrency control approach,
which may relieve the backpressure as a side effect.

3 DEMONSTRATION SCENARIO

Our demonstration® will allow attendees to both interact with a
MoTION component as an end-user, by running LLM pipelines and
observing prompts “learn” from their interactions, as well as pre-
tend to be a developer, by adding a new flow to create new prompt
sub-parts. We demonstrate MoTION with an example e-commerce
application that generates personalized recommendations and notes
for what to wear to an event (e.g., ski trip, conference). The demo
will be presented via a Streamlit dashboard running on our laptop,
where the left half shows the MoTION application, and the right
half shows prompt internals. Attendees will interact with this appli-
cation by submitting event styling queries (e.g., “what should I wear
to a ski trip?”) and viewing the results, as well as watching prompt
sub-parts update independently from the event styling queries on
the right side of the dashboard.

Demo Component Architecture. The demo’s 250-line Python
code primarily consists of prompt string templates and LLM func-
tion calling. It features one component with two flows: styling_query
for outfit recommendations and note for personalized notes, both
using GPT-3.5-Turbo. The styling_query serve operation suggests
up to five apparel items items to buy for an event and retrieves im-
ages (using the Google Images API), while note creates a 3-sentence

Shttps://github.com/shreyashankar/motion-sigmod-demo
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Figure 3: Screenshot of our demonstration. The left-hand side shows an example e-commerce application to recommend
apparel to wear for a user-specified event, where the recommendations and personalized notes are generated in 1.5 seconds.
The right-hand side displays component state (i.e., prompt sub-parts) as they update in the background.

note for why the end-user should buy some apparel item. The com-
ponent state has some static prompt sub-parts like age, gender,
and occupation. Two dynamic sub-parts, updated using GPT-4, are
previous_recs (a dictionary of past queries and LLM-extracted
commonly-suggested apparel items to avoid recommending again)
and query_summary (LLM-generated user lifestyle and wardrobe
preference insights). Both sub-parts are reactively updated in the
background from update operations triggered by styling_query.

Interactive Demonstration. Attendees can play two roles in the
demonstration: the end-user and the LLM pipeline developer. As
an end-user, first, attendees will submit basic demographic infor-
mation to initialize static prompt sub-parts, like age and gender.
Then, in the Streamlit dashboard, attendees will submit several
event styling queries of their choice (e.g., “SIGMOD conference” or
“sightseeing in Santiago, Chile”). For every query, attendees will
observe apparel suggestions arrive within a couple of seconds, and
they will notice the notes become more personalized as they sub-
mit more queries (due to the query_summary prompt sub-part). If
they submit the same query, they will notice different suggestions
(due to the previous_recs prompt sub-part). Then, as a devel-
oper, in the Streamlit dashboard, attendees will observe prompt
sub-parts changing over time as the corresponding update opera-
tions finish executing. We guide the attendee to improve the LLM
pipeline in Motion by adding a new flow to learn from feedback
on apparel recommendations. We will add a new prompt sub-part:
item_feedback. We will write a new flow with only an update
operation, which uses an LLM to process the feedback (i.e., thumbs-
up or thumbs-down and optional text feedback) and generate the
item_feedback sub-part. Then, we will add item_feedback to the
string prompt submitted to the LLM in the real-time serve opera-
tions. Once we have finished modifying the code, we will redeploy
the Motion component and experiment with this new functionality
by liking and disliking several items and watching the recommen-
dations adapt to our feedback. Finally, we will show attendees our
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Component Visualization tool*, which helps LLM pipeline develop-
ers view the dataflows in complex MOTION components.
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