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1. Introduction

Let k be an algebraically closed field of positive characteristic p. Our goal is to study
the geometry of smooth extremal surfaces over k.

An extremal hypersurface is a projective hypersurface defined by a reduced degree d
polynomial whose F-pure-threshold achieves the lower bound ﬁ. This lower bound was
proved in [29, 1.1], where forms achieving it were classified and dubbed Frobenius forms;
these exist only when d — 1 is a power of the characteristic p. The F-pure threshold is a
measurement of singularities' with smaller thresholds representing “worse singularities,”
so the affine cone over an extremal hypersurface is “maximally singular” among cones of
the same degree. Thus, it is natural to expect the corresponding projective hypersurfaces
to exhibit some extremal geometric properties as well.

Unusually beautiful properties of extremal hypersurfaces have been discovered in sev-
eral different contexts. For example, they are closely related to Hermitian hypersurfaces
(§ 2.3) as defined by B. Segre [43] and the finite geometries studied by Hirschfeld [21].
Frobenius forms are given by “p-bilinear forms” analogously to how quadrics correspond
to bilinear forms (see § 2); their similarity with quadrics was emphasized in Shimada’s
and Cheng’s study of their geometry, where they are called p-quadrics [45], and g-bics
[9], [10], respectively.

The lowest degree extremal surfaces are the non-Frobenius split cubic surfaces of
characteristic two, which were studied in depth in [28]. Geometrically, extremal cubic
surfaces can be characterized among all cubic surfaces as those that admit no triangles.
To understand this statement, recall that each smooth cubic surface admits exactly forty-
five plane sections consisting of a union of three lines, typically forming a “triangle”. Some
special cubic surfaces admit one or more such tri-tangent plane sections in which the
three lines are concurrent; in this case, their common intersection point is called an
Eckardt point. An extremal cubic surface has the highly unusual property that each and
every one of the forty-five tri-tangent plane sections consists of three concurrent lines.
Such “triangle-free” cubic surfaces do not exist over C nor indeed over any field of odd
characteristic. Extremal cubic surfaces exist only in characteristic two, precisely when
the cubic form cutting out the surface is a Frobenius form, or equivalently, when the
cubic surface is not Frobenius split. These results are all worked out in [28]; see also [29],
[11], [18, 5.5], [24, 1.1] and [21, 20.2] for related work.

The main theme of this paper is that extremal surfaces of any degree exhibit fasci-
nating geometry reminiscent of the geometry of lines on cubic surfaces. Like extremal
cubics, extremal surfaces contain a large number of lines but no triangles. In particular,
there are a large number of “stars” (collections of concurrent lines) meeting at “star
points,” analogous to Eckardt points for cubics (Theorem 3.3.1(e)). Extremal surfaces

1 The F-pure threshold was first defined as a “characteristic p analog” of the log canonical threshold, a
well-known invariant of complex singularities, by Takagi and Watanabe [51], who were building on the work
of Hara and Yoshida [27]. See also [36], [5] or [4].
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also have a large number of lines—exactly d?(d? —3d+3) to be precise—which form many
interesting configurations beyond stars. For example, extremal surfaces admit quadric
configurations—collections of 2d lines on the surface all lying on the same quadric. While
a generic surface of degree at least four does not contain any line, we show that, like cubic
surfaces, a degree d extremal surface contains many quadric configurations—roughly %9
for large d (Corollary 4.0.8).

In the final section of the paper, we generalize the classical notion of a “double six”
on a cubic surface to any surface, and show that an extremal surface of degree d ad-
mits many configurations of “double 2d”’s—indeed the number of double 2d’s on an
extremal surface of degree d grows at least as fast as d'# as d gets large (Theorem 5.0.2,
Corollary 5.3.2). In Conjecture 5.0.3, we speculate that, as is classically known for cubic
surfaces, every double 2d on a smooth surface is a union of two quadric configurations.
In Theorem 5.0.4 we prove this conjecture for d > 10 and d < 5. Interestingly, our proof
is purely combinatorial using only the intersection theory of lines on surfaces, so applies
to any smooth surface admitting a double 2d. There are non-extremal surfaces admitting
double 2d’s as we point out in Remark 5.4.3.

The analogy between extremal and cubic hypersurfaces has also been explored recently
by Cheng in his PhD thesis, where he chose the eponymous name “g-bic” hypersurface
to emphasize this connection [9], [10]. For example, Cheng shows that, like cubic three-
folds, smooth extremal threefolds have a smooth Fano surface of lines and a certain
intermediate Jacobian closely related to the Albanese variety of its surface of lines [10].

Interestingly, the quartic growth rate for lines on extremal surfaces is a strictly positive
characteristic phenomenon: the number of lines on a smooth complex surface in P? is
bounded above by a quadratic function in the degree; see [40,42] or [7]. Bauer and Rams
recently showed that a quadratic bound holds even in characteristic p, provided p > d
[6]. Their quadratic bound can fail in non-zero characteristic when p < d (see e.g. [39]).
Theorem 3.3.1(e) confirms that it is wildly false in every positive characteristic, even for
d=p+1.

Extremal surfaces are highly symmetric. Indeed, we show that the automorphism
group of a smooth extremal surface X acts transitively on all of the following sets:

(1) the set of all line-star pairs on X (Theorem 3.2.1(i));
(2) the set of all star chords, that is, lines in P? spanned by star points but not on X
(Theorem 3.2.1(iii));
) the set of all triples of skew lines on X (Theorem 4.0.7(b))?;
) the set of all triples of concurrent lines on X (Theorem 3.2.1(iv));
5) the set of all quadric configurations on X (Theorem 4.0.7(a));
) the set of all pairs of star chords lying in opposite rulings of a quadric configuration
for X (Theorem 4.1.4).

2 This is the optimal result on transitivity of sets of skew lines as the action is not transitive on sets of
four skew lines.
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These results imply known transitivity results for the set of star points and for the set
of lines, but our proofs are independent of existing proofs, which use the machinery of
Hermitian or finite geometry. We also count various configurations of geometric objects
associated with extremal surfaces; see Theorem 3.3.1 for basic counts of point, line,
and star chord configurations, Corollary 4.0.8 for counts of quadric configurations, and
Proposition 4.1.2 for counts of star chords associated to quadric configurations. These
results are important in our proofs in Section 5 on the existence of double 2d’s on
extremal surfaces.

Extremal varieties are closely connected to finite Hermitian geometry, although our

approach is completely independent (see [1,21]). Indeed, a Hermitian form is a (very)
special type of Frobenius form defined over Fg 2, where ¢ is a power of p; see § 2.3. Our
work connects extremal varieties to a diverse array of active research groups throughout
pure and applied mathematics including in coding and design theory [13,15,50], rational
points on curves and varieties [22,23], graph theory [14], cryptology [32], group theory
[16,47], and the combinatorics of hyperspace arrangements and generalized quadrangles
[38]. Nearly all this research is written from a dramatically different perspective from
our paper. We hope to inspire algebraic geometers to investigate some of the many open
problems, for example, in [25], and conversely, help researchers in diverse fields gain
access to new techniques. A small sample of related literature includes [43], [26], [49],
[48], [52], [30, § 35], and the references therein.
Acknowledgments. This work is an offshoot of a project begun at a Banff workshop
called Women in Commutative Algebra, which produced the papers [28], [31], and [29].
We would like to acknowledge the valuable discussions with the other participants in
those earlier projects: Elofsa Grifo, Zhibek Kadyrsizova, Jennifer Kenkel, Jyoti Singh,
Adela Vraciu, and Emily Witt. We are also grateful to Janos Kollar for suggesting the
connection with Hermitian geometry and an anonymous referee who made many good
suggestions for better organization.

2. Basics of Frobenius forms

This section consolidates facts and terminology about Frobenius forms.

Fix an algebraically closed field & of positive characteristic p, and let ¢ denote p© for
some fixed positive integer e. A Frobenius form (in n variables, say) is a homogeneous
polynomial of degree p® + 1 in the “Frobenius power” <x117€, ZCIQ)E, . ,mfﬂ of the unique
homogenous maximal ideal of the polynomial ring. Put differently, a Frobenius form is
a polynomial h that can be written >, ?L;, where L; are linear forms. In particular,
every Frobenius form admits a matrix factorization

T1

g a4 || = (F)Taz
h=l[z] z3 ... «l]A| . | =) AZ (1)

Tn
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where A is the unique n X n matrix whose i-th row is made up of the coefficients of the
linear form L,. Here, for a matrix B of any size, the notation Bl? denotes the matrix
obtained by raising all entries to the p®-th power, and BT denotes the transpose of B.
The notation Z denotes a column vector with n entries.

2.1. Changes of coordinates
Frobenius forms are taken to Frobenius forms under arbitrary linear changes of coor-

dinates, since both degree and the ideal (z{, 21 ... x%) are preserved. Let g € GL, (k)
be a matrix representing some linear change of coordinates, meaning that

T gl(xl,...,xn)

T ga(x1, ... )
g : =

T gn(xlw~',1'n)

represents the change of coordinates taking z; to the linear form g;. This change of
coordinates takes the Frobenius form F' represented by the matrix A to the Frobenius
form represented by the matrix

[g[”e]] " ag. (2)

See [29, § 5] for details.

A change of coordinates may take a given form to a form in fewer variables; for
example, the form z%y?(w + z) in four variables is equivalent to 27y?z in three variables.
Such a form is said to be degenerate. Geometrically, a form is degenerate if and only if
the projective hypersurface it defines is a cone over some smaller dimensional projective
variety. The reader is cautioned that while the matrix of a degenerate Frobenius form is
never invertible, the converse is false.

The rank of a Frobenius form is the rank of the representing matrix. The rank is the
same as the codimension of the singular locus of the corresponding hypersurface [29,
5.3].

There is a unique smooth extremal hypersurface of each dimension and allowable
degree, a fact that has been discovered in various guises; see [33, Thm 1], [19, Thm 9.10],
[3], [45] or [29, 6.1]. More precisely:

Theorem 2.1.1. Fiz an algebraically closed field k, a degree d and number of variables n.
All rank n Frobenius forms of degree d are equivalent under linear change of variables.

More generally, Frobenius forms in n variables (not equivalent to one in fewer vari-
ables) are fully classified up to linear changes of coordinates by the partitions of n; see
[29, 7.1] for the precise statement.
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Example 2.1.2. Considering partitions of 3, there are three equivalence classes of Frobe-
nius forms in three (but no fewer) variables of fixed degree ¢ 4+ 1. These correspond to
the three matrices

1 00 1 00 010
01o0|, 001 |, and 001 |,
0 01 000 000

which determine, respectively, the forms x4t 4¢3+ 4 29+ 291 L 992 and 2%y +y9z.
See [29, 7.1].

Remark 2.1.3. Example 2.1.2 appears also as Theorem 3 in [20], where the classification
of Frobenius forms in n variables of rank n — 1 is worked out. See also [9] for a different
perspective.

2.2. Extremal hypersurfaces

The projective hypersurface defined by a Frobenius form is called an extremal hyper-
surface.?

Example 2.2.1. Let X be smooth extremal hypersurface of dimension zero—that is, a
reduced extremal configuration of points in P!. After an appropriate choice of homoge-
neous coordinates, X is defined by the form yx? — zy?, so that X is the collection of
points [p : 1] where p? = p, together with the “point at infinity” [1 : 0]. That is, the
points of X are precisely the F,-points of P

Smooth extremal surfaces have a large automorphism group:
Proposition 2.2.2. Let X be a smooth extremal hypersurface defined by a Frobenius form
of degree q+1 inn > 2 variables over an algebraically closed field k. The group Aut(X) of

projective linear automorphisms of X is isomorphic to the finite group PU,(F2), where
PU, (F,2) is the quotient of the finite unitary group

Un(Fp2) = {g € GL.(F) | (9")T g =1}
by its center,
{\, | X =1},
the cyclic group of scalar matrices of order q+ 1.

3 In other contexts, these are called p-quadric hypersurfaces [45] or g-bic hypersurfaces [9].
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Remark 2.2.3. An arbitrary automorphism of a projective hypersurface of degree d in
P71 is given by a projective linear change of coordinates, provided that d # n; see
e.g. [35, Thm 2]. Thus in most cases, Proposition 2.2.2 describes the full group of all
automorphisms of an extremal hypersurface. For surfaces, this is so except when d = 4
and p = 3.

Proof of Proposition 2.2.2. The proof follows straightforwardly from considering the ac-
tion of PGL,, (k) on the identity matrix (representing the Frobenius form ) , I as
described in Section 2.1. Alternatively, the reader may consult [44, p. 97], [11, § 5.1], and

[46, p. 102] to see proof of this statement in various generalities. O

In light of Example 2.2.1, the automorphism group of a reduced extremal collection of
points in P! is isomorphic to PGL2(F,). Thus Proposition 2.2.2 confirms the well-known
fact that PGLy(IFy) =2 PUy(F2).

Corollary 2.2.4. Let X C P! be a reduced extremal configuration of points. Then the
automorphism group of X acts three-transitively on the points of X.

Proof. This is immediate from Example 2.2.1, after identifying X with the set of all
F,-points of P! and Aut(X) with PGLy(F,;). O

2.83. Hermitian forms over finite fields

A Hermitian form is a special kind of Frobenius form in which the representing matrix
A satisfies (Al9)T = A. In this case, all entries of A satisfy agj = a;j, which means they
are in the finite field F;2. Thus, a Hermitian form is defined over the finite field Fj2. In
this case, the Frobenius map (x + x?) is an involution on the set of [ 2-points, so can
play a role analogous to complex conjugation. See [21, § 19.1] and [45].

Hermitian forms are taken to Hermitian forms under any change of coordinates de-
fined over Fg2, and conversely, any change of coordinates taking one Hermitian form to
another is defined over F,2; This is readily checked using Formula (2). In particular,
the group of projective linear transformations of a Hermitian hypersurface is contained
in PGL,,(F,2). The proof of Proposition 2.2.2 shows that the automorphism group of
the smooth extremal hypersurface of degree ¢ + 1 in IP’,?il defined by the Hermitian
form >°" x?“ is literally the subgroup of projective unitary matrices in PGLy,(F42) as
defined above in Proposition 2.2.2. In general, the automorphism group of an arbitrary
smooth extremal hypersurface is conjugate to PGL,, (F,2) by the appropriate coordinate
change.

The classification of Hermitian forms is well-known and simple: there is only one
invariant, rank [1, 4.1]. The classification of Frobenius forms is more subtle [29, 7.1].
On the other hand, every smooth projective hypersurface defined by a Frobenius form
is projectively equivalent (over the algebraically closed field k) to one defined by the
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Hermitian form >, x;ﬁl (Theorem 2.1.1); of course, the needed change of coordinates
is not usually defined over Fg2.

2.4. Stars and other plane sections of extremal surfaces

It is easy to see that hyperplane sections of extremal hypersurfaces are extremal [29,
8.1]. Throughout this paper, we will make frequent use of the following classification of
plane sections of smooth extremal surfaces:

Proposition 2.4.1. /28] A plane section of a smooth extremal surface is one of the follow-
ing types of divisors, all defined by Frobenius forms:

(1) A smooth extremal curve;

(2) A singular extremal curve with an isolated cuspidal singularity;

(3) The reduced sum of a line and an irreducible curve tangent at one point; or

(4) A star of lines on the surface, meaning a reduced configuration of lines meeting at
one point.

Proof of Proposition 2.4.1. Let X be a smooth extremal surface in P3 and let H be an
arbitrary plane in P3. The plane section X N H is given by a Frobenius form F in three
variables [29, 8.1]. If X N H is not given by a degenerate form,* then it must be one
of those described in Example 2.1.2; these three cases produce the first three types of
divisors listed above. Otherwise, the Frobenius form F defining X N H can be written
in two (or fewer) variables after changing coordinates. Now, invoking the classification
of Frobenius forms in two variables, we see F can be assumed to be xz9y + y%x, x%, or
2971, But since plane sections of smooth surfaces are reduced (by e.g. [53, 1.15]), F can
be assumed given by z%y + y%x, which means that X N H is a union of ¢ + 1 coplanar
lines meeting at one point—a star. O

Example 2.4.2. Consider the smooth extremal surface X defined by x%w +wiz +y971 4
29*! Intersecting with the plane H defined by w, we see a star X N H consisting of g+ 1
distinct lines

{V(w,y — vz) | patl = -1},

all intersecting in the point p = [1 : 0 : 0 : 0]. These lines are indistinguishable up to
projective transformation since, as p ranges through the ¢ 4+ 1-roots of unity in k, the
projective transformations [z : y : z : w| — [z : y : pz : w| stabilize the surface X and its
star plane H while transitively permuting around the lines in the star H N X.

4 meaning that we can not write F as a form in fewer than three variables.
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Terminology 2.4.3. Even outside the context of extremal surfaces, one can define a star
on a degree d surface X to be any configuration of d lines on X all meeting at one point
p called the center of the star, or a star point. If X is smooth, any set of d lines forming
a star on a degree d surface X are coplanar, because all lie in the tangent plane 7, X to
the center of the star. In this case, the plane section 7, X N X is the reduced union of the
d lines of the star. A plane containing a star of X is called a star plane. Star planes are
uniquely determined by their centers and vice versa, since each star plane is the tangent
plane to X at the center of its star. Stars are defined and studied for higher dimensional
hypersurfaces in [8].

Remark 2.4.4. Any important point gleaned from the proof of Proposition 2.4.1 is that a
plane section H N X of a smooth extremal surface X is a star if and only if the Frobenius
form F defining X N H in H is degenerate—that is, if and only if F' can be written as a
Frobenius form in two (of three) homogeneous coordinates for the projective plane H.

Proposition 2.4.1 has the following useful consequences.

Corollary 2.4.5. [29, 8.11] Let X be a smooth extremal surface.

(i) Any collection of coplanar lines on X is concurrent. In particular, X contains no
triangles;
(i) Every line on X is in some star.

Proof. Statement (i) follows immediately from Proposition 2.4.1, by considering the
plane section spanned by the lines. For (ii), fix a line L on X. Without loss of generality
X is as in Example 2.4.2 (Theorem 2.1.1); in particular, X admits a plane section HNX
that is a star. If L lies in H, then (ii) is proved. If L does not lie in H, then L meets H
at some point p’. The point p’ is in the star X N H, so p’ lies on some line L' ¢ X N H.
The two lines L and L’ on X intersect at p’, so the plane H' they span is a star plane
centered at p’ (Proposition 2.4.1). Clearly L is in the star X N H’', establishing (ii). O

2.5. Star points on Hermitian surfaces

A Hermitian surface is a smooth extremal surface defined by a Hermitian form (cf.
§ 2.3). These were studied by Segre [43], Hirschfeld [21], and many others, notably
Shimada [45]. We recall and give a brief proof of the following result.

Proposition 2.5.1. The star points on a Hermitian surface of degree g + 1 are precisely
its F g2 -points.

Proof of Proposition 2.5.1. Since the change of coordinates taking an arbitrary Hermi-
tian form to another is defined over F> (see § 2.3), it suffices to consider the Hermitian
surface X defined by z%w + wix + yiz + 29y.
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First, we show that the Fy2-points of X are star points. By symmetry, it suffices show
that any point p = [1 : a : b: ¢] € X where a,b,c € F,2 is a star point. The tangent
plane T, X at p is c?x 4 by + az + w, so the plane section 7, X N X is defined by the
Frobenius form in z,y, z

x4tz 4+ by + alz) — x(cx + bly + a?2)? + ylz + 2%y. (3)

Thus, p is a star point if and only if (3) is a degenerate Frobenius form (Remark 2.4.4).
Because the change of coordinates

r—x, y—y+ar, z+ 2+ bx

transforms the form (3) into the degenerate form y?z 4+ 2%y (remember that ¢ + ¢ +
a?b + bla = 0), we conclude that all F 2-points of X are star points.

For the converse, we use the fact that the automorphism group of any extremal surface
acts transitively on stars, to be proved in the next section (Theorem 3.2.1 (ii)), and that
all projective linear automorphisms of a Hermitian surface are defined over F2 (§ 2.3).
Since [0 : 0 : 0 : 1] is a star, we see that all other stars are the image of [0 : 0 : 0 : 1]
under some projective linear change of coordinates over F2. In particular, all stars are
defined over Fp=. O

Remark 2.5.2. Shimada defines special points on Hermitian surfaces and proves every
special point is a star point [45, Prop 2.20(1)]. He also proves that special points are
precisely the Fg2-rational points [45, Prop 2.12]. Thus by Proposition 2.5.1, the converse
is true: star points are the same as special points in the sense of Shimada.

3. Geometry of extremal surfaces
In this section, we study the basic projective geometry of extremal surfaces.
3.1. Star chords

Star chords are important auxiliary lines not on the extremal surface:

Definition 3.1.1. A star chord for a smooth extremal surface X is a line in P3 not on X
which passes through (at least) two star points of X.

Remark 3.1.2. In the special case where the extremal surface is defined by a Hermitian
form over [F,2, star chords are Baer sublines or hyperbolic lines in the terminology of
finite geometry (see e.g. [2, p. 4] or [34, p. 102]).

Remark 3.1.3. A star chord £ through star point p is never in the star plane 7, X centered
at p. For if £ C T, X, then there is another star point p’ € £ necessarily on some line L
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in the star 7, X N X. But then both lines L and ¢ contain the points p and p’, so £ = L,
contrary to the fact that £ ¢ X.

The next result tells us star chords come in pairs:
Theorem 3.1.4. Let ¢ be an arbitrary star chord for a smooth extremal surface X. Then

(i) The stars centered at points on £ share no lines.
(i) The intersection of all star planes centered along £ is a star chord ¢' for X skew to
L.
(iii) The intersection of all star planes centered along ¢’ is the star chord £.
(iv) The star chords ¢ and ¢' each intersect X in q+ 1 distinct star points.

Before proving Theorem 3.1.4, we observe that it ensures that the next definition
makes sense.

Definition 3.1.5. The dual chord of a star chord ¢ for an extremal surface is the unique
star chord ¢ contained in all star planes centered along ¢, or equivalently, the intersection
of all star planes centered along £.

Duality between star chords is a symmetric relationship by Theorem 3.1.4 (iii).

Example 3.1.6. The lines ¢/ = V(z,y) and ¢/ = V(z,w) are a pair of dual star chords on
the Fermat extremal surface X = V (29t + y9t1 + 2971 4 971 Indeed, ¢ is not on X
but contains the ¢+ 1 star points p, = [0: 0 : @ : 1], where a?T! = —1. To check that p,
is a star point, observe that the tangent plane to p, is T,,, X = V(a?z+w) = V(z — aw),
which intersects X in a star. These star planes V(z —aw) all obviously contain ¢, so ¢’ is
their common intersection. Dually, the star points on ¢ are the points p) = [b:1:0: 0]
where 9Tt = —1, and the corresponding star planes V(x — by) intersect in /.

Proof of Theorem 3.1.4. Since /¢ is a star chord, we can fix two star points p; and ps on
£. Since p; is on every line in the star centered at p;, and likewise for ps, any shared
line between these stars would contain both p; and p; and hence be £ itself. But by
definition, the star chord ¢ is not on X. So stars centered on ¢ can not share any lines,
proving (i).

Now, let ¢ = T, X NT,,X. Note that ¢/ ¢ X: otherwise, ¢ C T, X N X and
¢ C T,,X N X, making ¢ a shared line between these stars, which would contradict (i).

We claim that ¢ is skew to £. First note that £ # ¢/, for otherwise the star chord ¢
lies in the star plane T}, X, contradicting Remark 3.1.3. So at least one of p; or po—say
p1—is not on £'. Now, if £ and ¢’ are not skew, the unique plane they span is necessarily
the plane T, X, since both planes contain ¢’ and p; ¢ ¢'. But now the star chord ¢ is in
the star plane T}, X, again contradicting Remark 3.1.3.
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We now claim ¢’ is a star chord intersecting X in ¢ + 1 distinct star points. Observe
that because ¢/ C T, X, it meets each line in the star 7),, X N X. But since the center
p1 is not on ¢/, we know ¢’ must meet each of the ¢ + 1 lines in the star 7,, X N X in a
distinct point. These ¢+ 1 points make up the full intersection ¢/ N X, since X has degree
g+ 1. Similarly, since also ps & ¢/, the points of ¢/ N X are the g+ 1 distinct intersection
points of ¢ with the lines in the star T,,,X N X. Thus, each p’ in ' N X lies on at least
two lines of X so it is a star point. So £’ is a star chord and meets X in ¢ + 1 distinct
star points.

Next, we show that ¢ C Ty X for all p’ € ¢/ N X, which will establish (iii). As we
saw in the preceding paragraph, the star X N7,/ X contains a line in each of the two
stars T, X N X and 7T,,X N X. In particular, both p; and py are in 7,y X, so also
{=pip2 C Tp/X.

We now claim ¢ meets X in g 4+ 1 distinct star points, which will prove (iv). To see
this, take an arbitrary p’ € ¢’ N X. Since £ C T,y X (using (iii)) but p’ & £ (by skewness
of ¢ and ¢'), each line in the star T,y X N X meets ¢ in a distinct point. These are the
q+ 1 points of X N¢. They are star points because each lies on a line in every other star
T,y X NX with p” € 0.

To conclude (ii), it suffices to show that ¢ C T,X for each star point p on ¢ since
' =T, X NT,X. By (iv), we can fix two star points, ¢; and g2, on ¢'. By (iii), £ =
T,, X NTy, X, so pis contained in X N7, and X NT,,. Thus, p lies in one of the lines in
each of the stars centered at ¢; and go. Thus, the lines pgy and pgs are lines in the star
at pso qi,q2 € XNT,X and ¢/ C T, X as desired. O

3.2. Symmetry of extremal surfaces
Extremal surfaces are highly symmetric, as evidenced by the following result:

Theorem 3.2.1. The automorphism group of a smooth extremal surface X acts transitively
on each of the following sets:

i) the set of all pairs (H,L), where L is any line on X and H is any star plane
Y
containing L;
(ii) the set of all pairs (p, L), where L is any line on X and p is any star point on L;
1ii) the set of all ordered pairs (p1,p2) of (distinct) star points spanning a star chord;
g
(iv) the set of ordered triples of concurrent lines on X.

In particular, the automorphism group acts transitively on the set of star points, on
the set of lines, and on the set of star chords of any smooth extremal surface. Transitivity
on star points and on lines can also be deduced from the existing literature in light of
Proposition 2.5.1; see, in particular, [45, Thm 2.19].

The proof uses the following lemma.
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Lemma 3.2.2. Given an arbitrary star X N H with center p on a smooth extremal surface
X, we may choose coordinates for P2 so that

p=1[0:0:0:1], H=V(z), and X =V(@W+zw? +ylz + z%), (4)
for some linear form ¢ = ax + by 4+ cz + w.

Proof. Choose coordinates so that the star plane H is defined by x = 0. In this case, the
form F' defining X is

F=2G+G(y,z,w)
where G is some form of degree ¢ and G’ is a Frobenius form in the variables ¥, z, w. The
form G’ defines the star XN H in the plane H, and hence G’ is degenerate (Remark 2.4.4).
So by a change of coordinates involving only y, z, w, without loss of generality

F =G+ yz? 4 29,
in which case the star point p has coordinates [0:0:0: 1].

Observe that G € (x9,y?, 27, w?), which implies that G € (2971, 39, 29, w?). Because
deg G = ¢, we can write
G =z + (a1y + oz + azw)?

for some scalars «; and linear form ¢. That is,

F =2+ z(a1y + aoz + azw)? + zy? + y29,

where the star H N X is given by z = 0 and the star point is p = [0: 0: 0 : 1] in these
coordinates. The scalar a3 cannot be zero, for in that case F' would be rank 3, so would
not define a smooth surface [29, 5.3]. Therefore, we may replace the form ay+ sz +azw
by w (which changes ¢ but nothing else) to assume without loss of generality that

F =2 + zw? + zy? + yz1. (5)

The linear form ¢ = azx + by + cz + dw must satisfy d # 0, for otherwise F' would have
rank at most 3. Finally, the change of coordinates

T AL, y—y, 2z, w s A~ Yy
where A7 7! = - transforms F (formula (5)) into

(Az)?(az + by + cz + dA"Yw) + 2w + 2y + y21
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without changing p or H. This has the desired form since the coefficient of z%w is
dXTi=1. O

Proof of Theorem 3.2.1. The first two statements are equivalent via the bijection be-
tween star points and star planes given by the correspondence p <+ T, X (see § 2.4.3).

Fix an arbitrary pair (H, L). Let p be the center of the star HNX, so that H = T, X.
Use Lemma 3.2.2 to choose coordinates so that p=[0:0:0: 1], H is defined by 2 =0
and the Frobenius form defining X looks like

F =a2%ax 4+ by + cz + w) + wile + ylz + 2. (6)
Apply the change of coordinates
x>z, y—=y z—z+ Nz, wew-— Ay

where A € k satisfies A — A + b = 0. This transformation fixes p and H but replaces
form (6) by one in which b = 0 and ¢ is unchanged. Interchanging the roles of y and z,
without loss of generality b = ¢ = 0. Finally, if a # 0, fix v € k such that 49+~ +4+a =0,
and apply the transformation

r—=x, Yy, 22—z, WHWHYT

to transform (6) to x%w+wlzr+y9z+ 2% without changing the star point p =[0:0:0: 1]
or the star plane H. Likewise, we can change coordinates, fixing x and w but taking
the rank 2 Frobenius form 3%z + 2%y to y?T! + 297!, without changing the star point
p=1[0:0:0:1] or the star plane H.

The line L is taken to some other line I’ in the same star X N H. But we can then
compose with an automorphism of X preserving H while taking the image of L to any
line in the star H' N X (Example 2.4.2). This proves (i), and equivalently (ii).

For (iii), fix an arbitrary ordered pair (p1,p2) of star points spanning a star chord of
X. Since Aut(X) acts transitively on star points (by (a)), there is no loss of generality
in assuming

X = V(2w + wilzx + yiz + 2%) and  p;=[0:0:0:1].

The theorem will be proved if we show that, in addition, we can choose coordinates so
that py is the star point [1:0:0:0].

First note that we can assume that po =[1:a:b: ¢]. Indeed, otherwise ps € V(z) =
T,, X, so that p, would be in the star centered at p;. In this case, the line p1p; is in that
star and hence on X, contrary to the assumption that p; and ps span a star chord. Note
also that a,b,c € Fp2 (Proposition 2.5.1).

Consider the change of coordinates

r—x, y—y—ar, z+—z-—bxr, wrw+cdzr+bly+alz.
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Since a?’ = a, b = b, = ¢, and ¢? + ¢ = —(a% + bla), we easily verify that
this change of coordinates fixes 9w + wiz + y?z + 29y. It also fixes the ideal (x,y, 2)
of [0:0:0 : 1] and sends the ideal (y,z,w) to (y — ax,z — bx,w — cx), so that the
corresponding projective transformation of P? induces an automorphism of X that fixes
the point p1 =[0:0:0: 1] and sends the point po =[1:a:b:¢c] to[1:0:0:0].

For (iv): any three concurrent lines intersect in a star point, so by (i), we can assume
that X = V(29w +w?r +y?+! + 29+1) and move the three lines by an automorphism to
three lines in the star X N H where H = V(z) is the star plane centered at [0:0: 0 : 1].
These three lines can be moved to any other three lines in X N H by a change of
coordinates fixing z, w and y9t! + 29t! since this is equivalent to the three-transitivity
of the automorphism group of the points defined by y?*! + 29+ in P! (Corollary 2.2.4).
This completes the proof of Theorem 3.2.1. O

3.8. Counting stars and lines on an extremal surface

We gather together various counts of configurations on extremal surfaces for future
reference, some of which can be found or deduced from results scattered throughout
the existing literature (making use of Proposition 2.5.1); see especially [43], [21], and
[45]. To keep the paper self-contained, we provide straightforward projective-geometric
arguments proofs independent of the theory of ¢-rational points on Hermitian surfaces.

Theorem 3.3.1. Let X be a smooth extremal surface X of degree ¢+ 1. Then

(a) There are exactly q*>+1 star points on each line on X . Equivalently, there are exactly
q® + 1 stars on the surface X containing any given line. [21, Table 19.2], [}5, Cor
2.14]

(b) There are exactly q(¢> + 1) lines on X that intersect any fived line on X.

(c) There are exactly ¢* lines on X skew to any given line on X .

(d) Each star plane of X contains exvactly ¢ + q*> + 1 star points—that is, each star
contains > + ¢ star points other than its center. [21, 19.1.5]

(e) There are a total of ¢* +¢* +q+ 1 = (¢ + 1)(q + 1) distinct lines on X, each
containing exactly q> + 1 star points. [21, 19.1.5]

(f) There are a total of ¢® + ¢* +¢*> +1 = (¢* + 1)(¢® + 1) distinct stars on X, each
containing exactly ¢ + 1 lines. [43], [21, 19.1.5]

(9) There are q*(¢> — q+1)(¢®> + 1) star chords of X. [21, Table 19.2]

(h) For each pair of skew lines on X, there are exvactly q*> + 1 lines on X that meet both.
[21, 19.5.4]

Remark 3.3.2. The reader can compute that the order of PU, (F,2) is ¢°(¢* — 1)(¢* +
1)(¢? — 1) [12, pp. 131-144] using the orbit-stabilizer theorem applied to the actions in
Theorem 3.2.1 with the counts in Theorem 3.3.1.
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Proof. (a). Fixaline L on X. We know L belongs to some star HNX (Corollary 2.4.5(ii)).
Choose coordinates so that X is defined by F' = x%w + zw? 4+ y9z + 2%y, the plane H is
cut out by x, and the line L is cut out by = and y (Theorem 3.2.1(i)).

Consider the pencil of planes containing the line L. Each plane H) in the pencil is
defined by the vanishing of some linear form Az — y, with the star plane H itself the
case where A = co. Restricting F' to the plane H), we can set y = Az, so that the plane
section X N H) is defined by

F = 29w+ zw? + X292z + \zz9.

The plane section X N H) is a star if and only if the form F is degenerate (cf. Re-
mark 2.4.4). The change of coordinates

transforms F to
= 2% + z2w? + (A — )\q2)xzq =z(w? + 27w+ (A — )\qQ)Zq),

which is clearly degenerate if A — )\ = 0. Conversely, if PUANSIDY # 0, then F is not
degenerate because it defines the union of the line L and an irreducible curve of degree ¢
rather than a star. Thus, there are precisely ¢ planes Hy (besides H) whose intersection
with X is a star containing L.

(b). Fix a line L on X. A line M on X intersects L if and only if L and M appear
together in a star. There are ¢?+ 1 stars containing L and each of them contains ¢ distinct
lines (other than L). Of course, a pair L and M can not appear together in more than
one star, since the plane producing a star is uniquely determined by any two lines in it.
So there must be ¢(¢? + 1) distinct lines M which intersect L on our extremal surface.

(c). Fix aline L on X. Fix a star HN X containing L (Corollary 2.4.5 (ii)). Every line
on X intersects H, and hence some line in the star H N X. Thus it suffices to count the
lines skew to L that intersect lines in H N X. There are ¢ other lines in this star. Pick
one, M. Now M appears in exactly ¢* other stars besides X N H by (a). For each of these
stars, each of the other g lines in the star is a line L’ which does not meet L. Indeed, if
L’ meets L, then the lines L, L', M form a triangle, contradicting Corollary 2.4.5 (i). In
this way, we produce ¢° distinct lines L’ on X which meet M but not L. Now, varying
over each of the ¢ lines M in the star H N X (other than L), we produce ¢® new lines
for each of the ¢ choices of line M. In total, we found ¢* lines skew to L.

(d). Let p be the center of the star H N X. Each of the ¢ + 1 lines in this contains
exactly ¢? star points other than p by (a). So H contains exactly ¢?(g+1)+1 star points.

(e). Fix one line L on X. There are exactly ¢(g*> + 1) lines on X which intersect L
by (b). On the other hand, there are ¢* lines on X disjoint from L by (c). So the total
number of lines, counting L, is ¢* + ¢> + ¢ + 1.
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(f). By (e), there are a total of ¢* + ¢+ ¢+ 1 lines on X, and each line is contained in
exactly ¢? + 1 stars by (a). So there are (¢* + ¢ + ¢+ 1)(¢®> + 1) pairs (L, H) consisting
of a line L in a star H N X. On the other hand, each star contains exactly ¢+ 1 lines, so
the total number of stars is

'+ +q+1)(P+1)  (@+D@+1)(#+1)

3 2 5, 3, 2
=("+1)(¢“+1) =¢+¢" +q¢°+ 1.
g+ 1 g+ 1 (g )(q )=4¢"+q°+q

(g). A star chord is determined by any two star points on it, so we first count the
number of ordered pairs of star points spanning a star chord. There are ¢° + ¢ +¢? + 1
star points by (f). Fix a star point p. Any other star point spans a star chord with p
unless it lies on one of the ¢ 4+ 1 lines in the star centered at p; in particular, there are
¢ + q° + 1 star points that do not span a star chord with p by (d). In other words, there
are ¢° choices of star points p’ such that pp’ is a star chord, so ¢°(¢® +1)(¢? + 1) ordered
pairs of stars spanning star chords. Finally, since each star chord contains ¢ + 1 star
points (Theorem 3.1.4 (iv)), there are (¢ 4+ 1)g ordered pairs of star points determining
each star chord. Thus, there are % = q¢*(¢> — ¢+ 1)(¢*> + 1) star chords.

(h). Fix arbitrary skew lines L and L’ on X. Because there are exactly ¢? + 1 star
points on L and any intersection point of lines on X is a star point, it suffices to prove
that for each star point p on L, there is exactly one line through p meeting L’. To this
end, observe that L’ is not in the star plane H centered at p, since that would imply
L’ meets L. Thus, L’ meets H at a unique point p’; the point p’ is in the star X N H
and hence in (exactly) one of its lines, M. The line M meets both L and L’. There is no
other line through p meeting both L and L', for if M’ is another, then M, M’, L’ form a
triangle, contrary to Corollary 2.4.5 (i). O

4. Quadric configurations

Extremal surfaces contain interesting line configurations we call quadric configura-
tions:

Definition 4.0.1. A quadric configuration on a surface of degree d > 3 in projective three

space is a collection of 2d lines on the surface consisting of two sets of d skew lines with
the property that each line in either set meets every line of the other set.

d=4

The next proposition justifies the name:
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Proposition 4.0.2. A quadric configuration on an irreducible surface X is equal to X NQ
for some unique smooth quadric surface Q.

Proof. Let £ U M be a configuration of lines, where £ (respectively M) consists of d
skew lines intersecting every line in M (respectively £). Choose any three skew lines
Ly,Ly, L3 € L, and let @ be the unique smooth quadric they determine [17, 2.12]. The
lines of M intersect all lines in £, including L, Lo, and L3, which lie on Q. So each
line M € M intersects the quadric @ in at least three points, which means M C Q. But
now each line L € £ intersects all lines in M, so L intersects @ in at least three points.
Again, we conclude L C Q. So LUM C Q.

Now if LUM C X, then LUM C X N Q. So since X N Q and £ U M both have
degree 2d and X N Q is a complete intersection, we conclude that X N Q is precisely the
reduced union of the 2d lines in LU M. O

Example 4.0.3. Let @, be the quadric surface Q,, = V(uzw —yz), where p € k is a fixed
(g + 1)-st root of unity. The quadric @, defines a quadric configuration on the Fermat
extremal surface. Indeed, the lines in the sets

L, ={V(z—ay,z—pow) | a? =-1}
My ={V(z — fz,y — ppuw) | 1+ = -1}

all lie on the quadric @, (with the lines in £, and M, in opposite rulings), as well as
on the extremal surface X = V(247! 4 y2t 4 201 4 ¢T1) Thus, X NQ,, is the quadric
configuration £, U M,,.

Quadric configurations are rare on an arbitrary surface—for example, a generic surface
of degree greater than three admits no lines at all [17, 12.8]. Extremal surfaces, however,
contain many quadric configurations.

Theorem 4.0.4. Any triple of skew lines on a smooth extremal surface determines a unique
quadric configuration.

For the proof, we need the following lemma, which will be generalized to triples of
skew lines in the next section.

Lemma 4.0.5. The automorphism group of a smooth extremal surface X acts transitively
on the set of pairs of skew lines on X.

Proof of Lemma 4.0.5. Fix a pair of skew lines L and L’ on X. There are (¢? + 1)? lines
in P? connecting star points on L to star points on L’ (Theorem 3.3.1(a)) but only ¢?+1
of them lie on X (Theorem 3.3.1(h)). Thus we can pick star points p € L and p’ € L’
that span a star chord /.
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Choose coordinates so that X = V(29w + wiz 4yt + 2971 p=10:0:0 : 1],
and p’ = [1:0:0 : 0] (Theorem 3.2.1(iii)). In this case, the star chord £ = pp’ is
V(y, z) and the star planes at p and p’, respectively, are defined by z and w. The line
L is therefore in the star T,X N X = V(z,y?" + 29%1) and the line L’ is in the star

Ty X NX = V(w,y?* + 2971) In particular, L = V(z,y — v12) and L' = V(w,y — v22)

q+1 q+1
1

where v =v§" = —1. The assumption that L and L’ are skew means that v, # vs.

Finally, observe that the lines L and L’ can be taken to any other two lines in their
respective stars by an automorphism of X that fixes p and p’. Indeed, there is a linear
change of coordinates that fixes  and w but sends the factors {y — 112,y — 2z} of
yItL + 29%1 to any other two distinct factors {y — 12,y — pez} of y4™t + 2971 (Corol-
lary 2.2.4). O

Proof of Theorem 4.0.4. Fix three skew lines, L,L’, and L” on the extremal surface
X of degree d = ¢ + 1. Without loss of generality, assume X is defined by the form
2w+ wix +ylz+ 2%, Lby x =y =0, and L' by z = w = 0 (Lemma 4.0.5). In this
case, L” can be defined by linear equations of the form

r=az+bw and y = cz + dw,

where the matrix [Z Z] is full rank, and is parametrized as {[as + bt : ¢s +dt : s :
t] | [s:t] € P}. Furthermore, the condition that L” lies on X means that

(as+bt)t+t1(as+ bt) + (cs + dt)Is + sl (es +dt) =0
for all s,¢. This imposes the constraints
A4e=bl4+b=al4+d=a+d?i=0. (7)
The quadric @ defined by
crz + dxw — ayz — byw (8)
contains L, L', and L”. Note that @ is the image of the Segre map
P! xP' %P3 ([s1 : 82, [t1,t2]) — [(as1 + bs2)ty : (cs1 + dsa)ty @ sits : Satsa].
Now, consider an arbitrary line in one of the rulings on @, say
¢ ={[(a; +bA2)t1 : (A1 +dXo)ty = Aitg : Nata] | [ty : ta] € P1Y.
The line £ is on X if and only if, plugging into the Frobenius form defining X, the form

Aa(adr + bA2)Utdts + Ad(ad1 + DA2)t1td + A (eh1 + dA2)%tdts + N (A1 + dh2)titd, (9)
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is uniformly zero for all values of t1,ts. Equivalently, ¢ is on X precisely when the
coefficients of t{to and of ¢1t3 in expression (9) satisfy

A2(ad; +D0X2)?+ Ai(chy +dX2)? =0
)\g(a)\l + b)\g) + )\({(C)\l + d)\g) =0.

In light of the constraints (7), these equations simplify to

AT A g e A+ AT =0 (10)

Because the form in (10) is a Frobenius form in A1, Ay with the full rank matrix [Z Z{} ,

there are precisely ¢ + 1 distinct solutions to (10) in P!. We conclude that there are
precisely ¢ + 1 lines £ of the form o([A\; : Xo] x P!) lying on both X and Q. These are
q + 1 different skew lines on the extremal surface.

A similar argument shows that a line

m = {[(asy + bsa) A1 : (cs1 4+ dsa) A1 : 5102 @ s2Xa] | [s1: s2] € P}

in the other ruling of the quadric lies on X if and only if A{A\s — Ay Ad. These form a set
of ¢ + 1 skew lines, each of which meets every line in the other set of ¢+ 1 skew lines on
X. D

Remark 4.0.6. In the finite geometry setting, Hirschfeld proves an analog of Theo-
rem 4.0.4 for Hermitian geometries using different techniques and language [21, 19.3.1].

Theorem 4.0.7. The automorphism group of a smooth extremal surface X acts transitively

(a) on the set of all quadric configurations on X; and
(b) on the set of triples of skew lines on X.

Proof of Theorem 4.0.7. In light of Theorem 4.0.4, it is enough to prove (b). For this,
it suffices to show that Aut(X) acts transitively on the set S of all ordered sextuples
(L1, Lo, Lg, M1, Ms, M3) of lines on X, consisting of two triples of skew lines { L1, Lo, L3}
and {Ml,Mz,Mg} with Ll N Mj # @ for all Z,]

Fix an ordered sextuple (Li, Lo, L3, My, My, M3) € S. First note that its stabilizer,
even in PGL4(k), is trivial. Indeed, the intersection points p;; = L; N M; must be fixed
by any element in the stabilizer of (Ly, Lo, L3, M7, Ms, M3). These nine points contain
five points in general linear position (no three on a line, no four on a plane). But an
automorphism of P3 fixing five points in general linear position is trivial.

Next, we compute the cardinality of S. There are (¢> + 1)(q + 1) choices for L,
by Theorem 3.3.1(e), and fixing L;, there are ¢* choices for a skew line Ly on X by
Theorem 3.3.1(c). The number of choices for Ls is the total number of lines on X
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minus the number of lines meeting L1 or Lo. Accounting for the double-counting of lines
meeting both L, and Lo, the number of choices for L3 is

(@ +D(g+1)] -2[¢° +qg+1] + [¢° + 1]
=q(®+1)(q—1),

using Theorem 3.3.1 (b), (e), and (h). The choice of the triple Ly, Ly, L3 determines the
quadric, and hence ¢ + 1 lines in @ N X that all intersect Ly, Lo, Ly by Theorem 4.0.4.
There are (¢ + 1)g(q — 1) ways to choose the triple My, M, M3. In total, the number of
ordered sextuples is thus

[(¢® +1)(g+ D] [¢" - [a(¢® + (g —1)] - [(g+ Daleg — 1)] = ¢®(¢* = 1)(¢* + 1)(¢* — 1).

This is precisely the order of Aut(X) (Remark 3.3.2). So Aut(X) acts transitively on the
set S, and hence on the set of all triples of skew lines on X. 0O

For future reference, we record the following corollary of the proof of Theorem 4.0.7.
This is also in [21], using more complicated techniques:

Corollary 4.0.8. [21, 19.3.1(ii)] A smooth extremal surface X of degree ¢ + 1 contains
exactly 3(¢* +1)(¢® + 1)¢* quadric configurations.

Proof of Corollary. By Theorem 4.0.4, each quadric configuration on a smooth extremal
surface X is uniquely determined by an ordered triple of skew lines (L1, Lo, L3) on X.
The number of such ordered triples is

(@+1)(g+1)-¢"ql® +1)(g—1),

as we computed in the proof of Theorem 4.0.7. To determine the number of quadric
configurations, then, we must determine the number of ordered triples determining the
same quadric. To this end, first note that there are 2(q + 1) choices of a line L; in Q.
Once L, is fixed, the lines Ly and L3 are among the ¢ lines in same ruling of Q, so there
are q(q¢ — 1) choices for (Lg, L3). We conclude that there are

(¢ +1)

q+1)¢°(q — )( ‘41
(¢+1)

1
2T Dol = 5(613 +1)(¢* + 1)¢*

(
2
quadric configurations on a smooth extremal surface. 0O

4.1. Star chords in quadric configurations

We record some observations about star chords and quadric configurations that will
be useful in Section 5.
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Lemma 4.1.1. Let Q be a quadric defining a quadric configuration on a smooth extremal
surface X. Let £ be a line on Q but not on X. Then £ intersects X in q+ 1 distinct
points, and if any one of these intersection points is a star point of X, then they all are.

Proof. Because the automorphism group of X acts transitively on quadric configurations
(Theorem 4.0.7), we may assume that X is given by the Fermat Frobenius form and @
by zw = yz. The lines on @ have the following parametrizations

{As:s:Mt:t] | [s:t]€P'} and {[As:At:s:t] | [s:t] e P}

Without loss of generality, let £ = {[As:s: Xt :t] | [s:t] € P!} for some fixed . The
condition that a point [Asq : sg : Mg : to] of £ lies on X is that

(Aso) T 4 52T 4 (Mto)THE + 407 = (AL 1) (2T 1271 = 0. (11)

There are two ways this can happen. Either A1 = —1, which means (11) holds for all
values of [sg : to], so the line £ lies on X. Or \9t! # —1, and there are exactly ¢ + 1
points [sg : to] satisfying sg+1 + tg+1 = 0. In this case, there are exactly g + 1 distinct
points of £ N X, all of the form [Ap: v : A: 1] where pu ranges through the ¢ + 1 distinct
roots of —1. In particular, u € Fy2. Now if one of these points [Ap : g @ A : 1] is a star
point, then it is defined over F,2 (Proposition 2.5.1), so A € F,2 as well. Thus, all ¢ + 1

points of X N ¢ are defined over 2, and hence all are star points. O

Proposition 4.1.2. Let QQ be a smooth quadric defining a quadric configuration on a
smooth extremal surface X. Then there are exactly ¢> — q star chords in each ruling
of Q, and those in opposite rulings meet off X.

Proof. Consider a star chord ¢ on Q. Write Q N X = LU M where £ and M are the
two skew sets of lines on X in opposite rulings of Q.

Because £ must lie in one of the rulings of @, it intersects each of the ¢+ 1 lines in, say,
M. For each M € M, the intersection point £ N M is a star point (Theorem 3.1.4(iv)).
Conversely, through each star point on M, the unique line in the opposite ruling of @ is
either a line in £, or a star chord, depending on whether or not it is on X (Lemma 4.1.1).
Since there are ¢? + 1 total star points on M (Theorem 3.3.1(a)), this leaves ¢ — ¢
possible points of intersection of the star chord ¢ with M. Thus, there are exactly ¢> — ¢
possibilities for the star chord £ in this ruling of (). By symmetry, the same holds in the
other ruling.

Now suppose ¢ and m are star chords in opposite rulings on Q. If p = £ N'm lies on
X, then it must be one of the ¢ + 1 points on £ N X, and hence p is some star point on
some line M C QN X in the ruling opposite £. In this case, M is the unique line through
p on @ in the ruling opposite ¢, forcing m = M. This contradicts our assumption that
misnoton X. 0O
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Remark 4.1.3. Proposition 4.1.2 and Lemma 4.1.1 together say the complete set of lines
on @ passing through star points of X consists of two sets of ¢ + 1 skew lines (one on
each ruling); in each of these skew sets, there are ¢+ 1 lines on X and ¢ — ¢ star chords.

Theorem 4.1.4. The automorphism group of a smooth extremal surface acts transitively
on the set of triples (Q, £, m) consisting of a quadric Q defining a quadric configuration,
together with a choice star chords £ and m, one in each ruling of Q.

Proof. We may assume that the extremal surface X is defined by x9+! + y9+1 4 z9+1 4+
wit! and Q by 2w — yz (Theorem 4.0.7 (a)). Let £ and m be an arbitrary pair of star
chords on @, lying in opposite rulings. It suffices to show that there is an automorphism
of X which stabilizes @ and sends ¢ and m to the star chords V(z,z) and V(z,w),
respectively.

The lines in the two rulings of @ have the form

V(Az — py, Az — pw)  and V(ax — Bz, ay — pw);

the star chords among them are precisely those where [A : u] (respectively [« : f]) is an
F,2-point of P* not on V(s47! +¢471) (see Example 4.0.3 and the proof of Lemma 4.1.1).
Indeed, all such lines are on @, but not on X, and since there are ¢> — ¢ in each ruling,
we have found the complete list of star chords on @ (Proposition 4.1.2).

Suppose that £ = V(Ax — py, Az — pw). The change of coordinates given by the matrix
AT w00

9
g g\ )(\)q 2 scales the defining equation of both X and @ by a non-zero scalar

0 0 —p? A
(remember \9t1 + ;91 =£ 0), so the corresponding projective transformation g is in
Aut(X) N Aut(Q). In addition, g sends ¢ to V(z, 2), as

9(0) =V ANz + py) — p(—ptz + Ay), ATz + pw) — p(—p'z + Aw))
=V (AT 4 pt )z, AT 4 ptth)z) = V(z,2).

Of course, g sends m to some star chord on @ in the opposite ruling from g(¢). So
g(m) = V(az — Bz,ay — fw) for some F,2 point [a : B] € P! not on V(s?t! 4 ¢4t1).
8 0 af 0

q
Now observe that the change of coordinates given by the matrix 2 g _%q 06

0O a 0 —p4
preserves the Fermat Frobenius form and the quadric polynomial zw — yz deﬁning Q,
so that the corresponding projective transformation h is an automorphism of both X
and Q. In addition, h preserves the line V(z, z), since the matrix sends both  and z to
forms in only z and z. Finally, the line g(m) = V(az — 8z, ay — fw) is sent to

h(g(m)) = V(a(Bz + alz) — Blaz — B92), a(By + afw) — B(ay — flw))
= V((a® 4+ 812, (a4t 4 g1 Hw) = V(z,w).
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We conclude that the composition h o g is an automorphism of X which preserves @,
and takes £ and m to V(z, z) and V(z,w), respectively. This completes the proof. O

Corollary 4.1.5. Let X be a smooth extremal surface and suppose Q is a quadric defining
a quadric configuration on X.

(i) If € is star chord of X lying on Q, then its dual chord ¢ also lies on Q, in the same
ruling.

(ii) If £ and m are star chords in opposite rulings of Q, then there are exactly g+ 1
quadrics (including Q) containing £ and m that define quadric configurations on
X.

Proof. We can assume that the extremal surface is the Fermat surface, Q = V(zw —yz),
and ¢ and m are the star chords V(z,y) and m = V(z, z), respectively (Theorem 4.1.4).
For (i), recall that the dual chord of ¢ is ¢/ = V(z,w) (Example 3.1.6), which clearly
lies on @ as well. The lines ¢ and ¢ lie in the same ruling of Q because they are skew
(Theorem 3.1.4(ii)).

For (ii), note that the quadrics defining quadric configurations that contain £ and m
must also contain their dual star chords, ¢ = V(z,w) and m' = V(y,w), respectively,
by (i). The quadrics containing {¢,¢',m, m'} are defined by degree two polynomials in
the ideal

(x,2) N (Y, w) N {z,w) N{x,y) = (zw, yz).

But a quadratic form p zw—yz (where p is a non-zero scalar) defines a quadric containing
lines of X if and only if u9+! = 1. Indeed, the lines in one of the rulings are parametrized
by [a: b] € PL:

Lap = {[as : pubs : at : bt] | [s : t] € P},

which lies on the Fermat surface only if u9t! = 1 and a9t + b9*! = 0. Thus, there are

g + 1 quadrics that contain the four star chords {¢,¢',m,m’}. O
5. Double 2d configurations

One fascinating classical feature of the geometry of a cubic surface is the existence of
thirty six “double sixes” [41]. A double six consists of two collections of six skew lines on
the cubic, with the property that each line in one collection intersects exactly five lines
in the other. A choice of double six is equivalent to a labeling of the twenty-seven lines
on the cubic so that one of the collections of six skew lines is the set of six exceptional
divisors, thinking of the cubic surface as the blow up of the plane at six points, and the
other collection is the set of strict transforms of the six conics through five of the points.
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In this section, we present a generalization of a double six which exists on all extremal
surfaces.

Definition 5.0.1. For any d > 2, a double 2d is a collection of two sets, A and B, each
consisting of 2d lines in projective three space, such that

(1) Each line in A (resp. B) is skew to every other line in A (resp. B); and
(2) Each line in A (resp. B) intersects exactly d + 2 lines in B (resp. A).

Typically, we do not an expect a surface of degree d to contain any double 2d—for
example, a general surface in P3 of degree greater than three contains no line [17, 12.8].
The next result guarantees, however, that like cubic surfaces, extremal surfaces always
contain double 2d’s.

Theorem 5.0.2. Every smooth extremal surface of degree d contains double 2d configura-
tions of lines.

In fact, there are a great many double 2d’s on an extremal surface of degree d: we
show in Corollary 5.3.2 that their number grows asymptotically like %dl‘l as d grows
large.

We will prove Theorem 5.0.2 by constructing explicit pairs of quadric configurations
whose union is a double 2d. First, we speculate that every double 2d arises from pairs of

quadrics:

Conjecture 5.0.3. Every double 2d on a smooth surface X of degree d consists of 4d lines
that are the union of two quadric configurations on X.

Towards Conjecture 5.0.3, we have proven the following:

Theorem 5.0.4. Every double 2d on a degree d smooth surface is a union of two quadric
configurations when d > 10 or d < 5. Moreover, for d > 5, if two quadrics determine
some double 2d, then no other pair of quadrics determines the same double 2d.

Remark 5.0.5. Our proof of Theorem 5.0.4 is almost entirely combinatorial: given a
double 2d of lines (A, B) in P3, the corresponding (2d) x (2d) incidence matrix has the
property that every row and column contains exactly d + 2 ones and d — 2 zeros (see
Definition 5.0.1); we give a combinatorial argument that when d > 10, this forces the
matrix to contain a 5 x 3 block of ones, which in turn, forces the lines to come from a pair
of quadric configurations when they lie on a smooth surface (Lemma 5.4.1). Interestingly,
one can write down a 10 x 10 matrix with seven ones (and three zeros) in each row and
column, which does not contain a 5 x 3 block of ones; however, we have verified this is
not the incidence matrix of lines lying on any smooth extremal surface. Indeed, we show
by computer that Conjecture 5.0.3 is true when d = 5 for smooth extremal surfaces.
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Before proving Theorems 5.0.2 and 5.0.4, we review the motivating example of cubic
surfaces.

5.1. Double sizes on cubics

Every double six on a cubic surface—whether extremal or not—is a union of two
quadric configurations. For an arbitrary double six A U B on a cubic surface X, there is
a choice of coordinates making X the blowup of six points on P2 (no three on a line, not
all on a conic), and so that A consists of the six lines of exceptional divisors {E1, ..., Eg}
and B consists of the proper transforms {C’l, RN C‘G} of the six conics in P? through five
of the six points [37, Thm 8, p. 366]. Here, C; denotes the proper transform of the conic
that misses the point blown up to FE;.

Now, given any three lines in A, say {FE}, Es, F3}, there are three lines, {Cy, Cs, Cs},
in B that meet all of them. This says that the unique quadric surface () containing
{E\, By, B3} must also contain {Cy, Cs, Cs}. Likewise, the unique quadric Q' containing
{E,, Es, Eg} must contain {C;, Cy, C3}. So the quadrics @ and Q' both produce quadric
configurations on X:

QNX ={E, Ey, F3,C4,C5,C6} and Q' NX ={Ey,E5,Eg,C1,Cs,C5},
which together produce the double six

A={E\, Es, E3,Ey, E5, Eg} and B ={Cy,C2,Cs5,C4,C5,Ce}.
So every double six on a cubic surface is the union of two quadric configurations.

Remark 5.1.1. The quadric configurations ) and @’ determining the double six AU B
on a cubic surface are not unique: there is a quadric containing any three of the six
skew lines in A and another containing the remaining three, and the lines of B lie three
in each of these two quadrics. Thus, there are %(g) = 10 different pairs of quadrics
determining the double six A U B. This confirms that some restriction on d is necessary

in the uniqueness statement in Theorem 5.0.4 above.

Remark 5.1.2. The previous discussion applies to an arbitrary smooth cubic surface: each
of its thirty-six double sixes is a union of two quadric configurations. However, for an
extremal cubic surface, the double sixes come from two quadrics of a particular form.
Specifically, if @ and @’ are quadrics on an extremal cubic surface which together give
a double six, then Q N Q' is the union of four lines.

To see this, observe that Q@ NQ’' N X consists of twelve distinct points—otherwise, one
line of @ N X would intersect a line from both rulings of @' N X (or vice versa), violating
the skewness condition for a double six. These twelve points are star (Eckardt) points as
they lie at the intersection of a line in Q N X with a line in Q' N X. Now, each of these
twelve star points lies on only one line in X N @, again by skewness, so these twelve star
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points lie on star chords of @ N X. Since there are only two star chords in each ruling
(Remark 4.1.3), each containing exactly ¢ + 1 = 3 star points, these twelve points lie
three each on the four star chords on @. Likewise, the same argument replacing @ by
Q' shows that the twelve star points lie three each on the four star chords on Q’. We
conclude that @ N Q' consists of the four shared star chords for X.

5.2. The existence of double 2d’s on extremal surfaces

Proof of Theorem 5.0.2. Choose coordinates so that the extremal surface X is defined
by pat1 4 yq+1 4 291 gpatl,
Fix p, a (¢ + 1)-st root of unity. As we saw in Example 4.0.3, the lines

L, ={V(z—ay,z—paw) | ™ = -1}
and

My ={V(z — B2,y — ppw) | BT = -1}

form a quadric configuration cut out by the quadric Q, = V(pzw — yz).
We claim that if p1 and pg are distinct (¢ + 1) roots of unity, then the sets

A=L,, UM,, and B:=L,,UM,

together form a double 2(q + 1).

To see that A consists of skew lines, first observe that the lines of £, are mutually
skew, as they lie in the same ruling of a quadric. To see that each L € £, is skew to
every M € M,,,, we check that the ideal of their intersection, (z — ay, z — pmaw, = —
Bz, y— p2Pw), is generated by four linearly independent linear forms. For this, it suffices
to show that the matrix

1 —a 0 0

0 O 1 —ma

1 0 - 0 ’
0 1 0 —up

whose rows are the coefficients of the linear forms, has full rank. But this is clear, since
its determinant is af(u2 — p1). A symmetric argument shows that also B consists of
skew lines.

Now that we know A and B are skew sets, the proof of Theorem 5.0.2 will be complete
once we have proved the following general lemma.

Lemma 5.2.1. Let X be a smooth extremal surface of degree d. Let Q1 and Qs be two
quadric configurations on X that do not share a line (on X ). Write Q1 = £; UM; and
Qo = Lo U My for the decomposition of each quadric configuration into the lines of the
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two rulings. Then A = L1 UMy and B = L3 UM form a double 2d on X if (and only
if) both A and B are skew sets.

Proof of Lemma 5.2.1. Since Q; and Q> have no common line, there are 4d lines in
Q1 U Qo, and 2d lines in each of A and B. Because we are given that A and B are each
skew sets, we need only check condition (2) of Definition 5.0.1 to verify that AU B is a
double 2d.

To this end, take any N € A. Without loss of generality, assume N € £;. We need to
show that IV intersects exactly d + 2 lines in . Since N lies in one ruling of the quadric
@)1 determining Q;, the line N intersects the d lines of the opposite ruling M; C B.
Thus, we need to show that N intersects exactly two lines of Ls.

Since N does not lie on the quadric Q2 determining Qs (remember Q; N Qs = (), its
intersection multiplicity with @9 is two. If N meets Q)2 in two distinct points, we are
done: N must meet exactly two of the lines in the ruling £, since it does not meet any
line of the ruling My by our assumption that 4 is a skew set.

It remains to show that /N can not be tangent to Q5. If, on the contrary, N is tangent
to Q2 at some point p, then N C T,(Q)2. Because p € Q2 N X, and 2 N X is a union of
lines, the point p lies on some line M in Q2 N X. In particular, p is a star point since it
is the intersection of the two lines M and N on X. Furthermore, since both N and M
are in the tangent plane 7,(Q)2, as well as in the star plane 7, X, we have T, X = T,Q.
But now consider the unique line ¢ through the star point p on ()2 in the opposite ruling
from M. We know ¢ is not on X, for otherwise, p € £ C Q2 N X, which means p lies
on lines in both rulings of O, violating skewness. By Lemma 4.1.1, we conclude that ¢
is a star chord through p, and being on @2, also ¢ C 1,2 = 1, X. But no star chord
through a star point p can lie in the star plane T, X (Remark 3.1.3). This contradiction
ensures that N is not tangent to )2, and the proof is complete. O O

5.8. Pairs of quadrics containing a common line

The double 2d constructed in the proof of Theorem 5.0.2 is obtained from two quadric
configurations whose quadric surfaces intersect in four lines. These are an abundant type
of double 2d’s—encompassing all the double sixes in the case of extremal cubics.

Theorem 5.3.1. Let X be a smooth extremal surface of degree d, and let Q and Q' be
distinct quadrics defining quadric configurations on X.
Assume that @ and Q' share a common line, but share no line on X. Then

(i) The 4d lines of (QN X)U(Q' N X) can be split into two sets of 2d lines forming a
double 2d;

(i) The intersection QN Q' consists of four star chords {€,m,?',m’'}, where {£,¢'} and
{m,m’} are dual chord pairs in opposite rulings.
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Importantly, not all double 2d’s are of the type guaranteed by Theorem 5.3.1; see
Example 5.3.4.

Before proving Theorem 5.3.1, we deduce the following corollary bounding below the
total number of double 2ds on an extremal surface.

Corollary 5.3.2. An extremal surface of degree d = ¢+ 1 > 5 contains at least

@ D@+ D 1%

collections of double 2d’s.

Proof of Corollary. By Theorem 5.0.4, if two quadrics determine a double 2d on an
extremal surface of degree d > 5, then they are unique. So we can prove Corollary 5.3.2
by counting the pairs of quadrics {Q,Q’} determining quadric configurations whose

intersection consists of four star chords (Theorem 5.3.1).

2

Fix one quadric @ giving a quadric configuration on X. There are (¢> — ¢)? choices

of pairs of star chords {¢,m} on @, one in each ruling, by Proposition 4.1.2. Since the

2 2
dual of each star chord on @ is also on @, there are % choices for sets of star chords

{6,/;m,m’} on @, where £ and m are in opposite rulings and ¢, m’ are their duals.
There are exactly ¢ additional quadrics, besides @, that contain {¢,¢',m,m'} and

define a quadric configuration (Corollary 4.1.5(ii)). So there are exactly q3(q4_1)2 quadrics

Q' defining quadric configurations such that @ N Q' is the union of two star chords and
their duals.

Finally, multiplying by the total number of choices for @ (provided by Corollary 4.0.8),
we get

%(q3 +1)(¢* +1)¢* - %qi”(q -1 = é(q?’ +1)(¢* +1)(g—1)*¢

ordered pairs of quadric configurations whose intersection is four star chords. This counts
each pair twice so the result follows. O

Proof of Theorem 5.3.1. Suppose £ C QN Q' but £ ¢ X. Because £ is in some ruling on
each of @ and @', £ must intersect d lines on X NQ and d lines on X NQ’. By hypothesis,
these lines are distinct, so £ intersects 2d lines on X. Now because £ N X can be at most
d points, ¢ simultaneously intersects X at a line on X N @Q and a line on X N Q’, so ¢
intersects X at a star point. So ¢ passes through d star points and is a star chord.

Let ¢’ be the dual star chord to £. We know ¢/ C QN Q’, by Corollary 4.1.5(i). Since
¢ and ¢ are skew, they are in the same ruling on ) and also in the same ruling on ',
which means that ¢ U ¢’ is a curve of bi-degree (2,0) on each quadric. Since QN Q' is a
curve of bidegree (2, 2) on each quadric, the residual intersection curve has bidegree (0, 2)
in each quadric. Since homogeneous polynomials in two variables over an algebraically
closed field factor into linear terms, this residual curve is either two distinct lines, or a
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double line. In particular, it contains some line m, which, by the argument above, must
be a star chord. Now again by Corollary 4.1.5(i), the residual intersection must be two
dual star chords m and m’. This proves (ii).

To prove (i), we use Theorem 4.1.4 to chose coordinates so that X is the Fermat
extremal surface, () is the quadric defined by zw = yz, and ¢ and m are the lines
V(z,z) and V(w, z), respectively. In this case, we have already computed (in the proof
of Corollary 4.1.5(ii)) that the quadrics containing {¢,¢',m,m’} and defining quadric
configurations are all of the form V(uzrw — yz) where u¢ = 1, and that any two such
quadrics define a double 2d (in the proof of Theorem 5.0.2). 0O

Remark 5.3.3. The bound in Corollary 5.3.2 is not valid when d is less than 5 because in
this case, there can be multiple pairs of quadric configurations that determine the same
double 2d. For example, every double six on a cubic surface can be split into the union
of two quadric configurations in ten different ways (Remark 5.1.1). Note that dividing
the bound provided by Corollary 5.3.2 by ten, we get a lower bound of 36 double sixes
on a cubic surface, recovering the fact that all double sixes on an extremal cubic come
from quadrics sharing star chords (Remark 5.1.2).

Similarly, when d = 4, there are double eights that split into the union of two quadric
configurations in multiple ways. For example, the double eight on the Fermat quartic
defined by the two quadrics @1 = V(zw — yz) and Q2 = V(zw + yz) can also be given
by two different quadrics Q3 and )4, as one can check by examining the intersection
matrix for the sixteen lines of (Q1 NX) U (Q2N X) to find a different grouping into lines
in two quadrics.

Example 5.3.4. We now construct an example of a double eight on a quartic extremal
surface that can not be given by two quadrics sharing a line. This shows that not every
double 2d on an extremal surface is of the special type in Theorem 5.3.1.

We work on the Fermat quartic, X = V(z*+y*+ 2% +w?) in characteristic three. The
quadrics Q1 = V(zw —yz) and Q2 = V(22 + 2y + 12 —aw —y? +yz +yw + 2% — 2w — w?)
both give quadric configurations on X. The quadric configuration X N @; is the union
L UM where

L={V(z—ay,z—aw)|a*=-1} and M={V(z—az,y—aw)|a*=-1},

as we computed in Example 4.0.3. The quadric configuration X N Q5 is the union N UP
where

N ={V(z—aw,y—az),V(z—aw,y—az), V(—z—y+w,z—y—2), V(—z—y—w,x—y+2)}
and

P ={V(z+ay, z—aw), V(z+ay, z—aw), V(—z+y+w, —x—y+2), V(—z—y+w, z—y+2)},
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where a and @ are the roots in k of the polynomial 72 — T — 1 over F3. We leave it to
the reader to directly verify these eight lines all lie on both @5 and X.

The set AU B is a double eight, where A = L UN and B = M UP. To check this, it
suffices to check that the lines in £ and skew to those in A/, and similarly that the lines
in M are skew to those in P (Lemma 5.2.1), which can be directly verified.

It remains to check that Q; and Q2 do not share any line. If they did, then there are
two shared lines in each ruling (Theorem 5.3.1). So it suffices to show an arbitrary line
0={Xs:s:\t:t] [s:t] € P} in one of the rulings of Q; can not lie on Q2. If £ C Q2,
then the points [0: 0: A: 1], [A:1:0:0land [A:1:—=A: —1] in £ must all lie on Qs.
Plugging into the equation for Q2 produces the constraints

M-A=1=0, M4+X-1=0, and X2 =0.

Because these three equations are inconsistent, we conclude that £ does not lie on Q5.

Finally, we must show that the double eight AU B can not be given by any other pair
of quadrics that do share a line. To this end, assume on the contrary that AU B is given
by quadrics Q3 and @4, and that £ C Q3 N Q4 for some line ¢. Furthermore, since (1
and @2 share no line, we may assume that ¢ ¢ Q;; in particular, ¢ intersects two lines
in each ruling of @);. Because / lies in one ruling of each of Q3 and of @4, £ meets each
in a set of eight skew lines in the double eight (@5 N X) U (Q4 N X) = AU B. Since at
most two of these eight intersection points are on @1, we know ¢ intersects at least six
of the lines in @3, and so £ C Q2. But this is impossible: ¢ lies in one of the rulings of
Q2 (and is not on X), so it intersects exactly four of the lines on Q2 N X.

5.4. Progress towards Conjecture 5.0.53

We now prove Theorem 5.0.4. The proof uses the combinatorics of the intersection
matrix between the two skew sets of size 2d and the properties of quadrics.

Lemma 5.4.1. Let AU B be a double 2d on a smooth surface X of degree d > 5. If A
contains three lines A1, As, Az and B contains five lines that all meet each A; fori=1,2
and 3, then the double 2d is the union of two unique quadric configurations.

Proof. Let @ be the unique smooth quadric containing the three skew lines A;, Ao, As.
Let By, By, B3, By, and By € B be the five lines meeting each of A;, A, A3. Since each
B; meets @ in three points—namely B; N A1, B; N Ay, and B; N A3—DB; lies on @ for
i=1,2,...,5.

Label the lines in A so that A; lies on Q if and only if ¢ < ¢. We first show that ¢ > 5.
For any A € A, note that A meets all five {By,...,Bs} if A lies on @ and at most two
of {By,...,Bs} if A is not on Q. So
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5
S A (D B | <5t+2(2d—t) =3t +4d.
— =

On the other hand, each B; must intersect exactly d + 2 lines in A, so

2d
>4 ZB 5(d +2) = 5d + 10.

Thus, 3t +4d > 5d+10sot > 3 + %. Since d > 5, we get t > 5. Thus, the double 2d
must contain at least five lines of each ruling of Q.

Next we show that in fact each set A and B contains d lines on Q. If not, let k
be maximal such that Aq,..., A, and Bi,..., By lie on @, and assume without loss of
generality that Ay+1 ¢ Q. Since each B; intersects exactly d + 2 lines in A, k of which
are Ai,...,Ag, we have that

k 2d
> B (ZA>_kd+2) E* = k(d+2 — k). (12)

=1 i=k+1

Since A; lies on @ if and only if ¢ < k, each line A; for j > k can meet at most two of
{Bl, ey Bk} So

k 2d
> B;- <Z A><22d k) = 4d — 2k. (13)

j=1 i=k+1

Comparing (12) and (13), we have (4d — 2k) — k(d+2 — k) = (kK —d)(k —4) > 0,
which (since we’ve shown k > 5) is a contradiction unless & > d. We conclude that
L={A,...,A;} and M = {By,..., By} lie on the same quadric Q. That is, half the
lines of A, together with half the lines of B, form a quadric configuration £LU M on X.

It suffices to show that the remaining halves of A and B also form a quadric configu-
ration. Now fix B € B\ M. Because B intersects at most two of the lines of £, we know
B intersects every line in A\ L. So each line of the skew set B\ M meets every line of
the skew set A\ L—that is A\ £ and B\ M form a quadric configuration, as desired. O

Remark 5.4.2. Even if d is three or four, the final paragraph of the proof of Lemma 5.4.1
shows that if half the lines of a double 2d lie on some quadric @), then the complementary
half lies on some other quadric @’. The quadrics {Q, @'} may not be the only quadrics
determining the double 2d in this case, however. See Remark 5.1.1 and Remark 5.3.4.

Proof of Theorem 5.0.4. Let X be a smooth surface of degree d. The case where d = 3
is dealt with in § 5.1. We next handle the case d > 11.

Let A:={A1,...,Asq} and B := {Bj, ..., Bag} denote the two skew sets of the double
2d. By Lemma 5.4.1, it suffices to show that there are three skew lines in A all intersecting
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each of five skew lines in B. Let M denote the intersection matrix M;; = A; - B;. By
definition of a double 2d, M has exactly d + 2 ones and exactly d — 2 zeros in every row
and column.

For any subset S C A, let

IntersectionSet(S,B) := {B; € B| B;- A; =1 for all A; € S}.

We want to show that there exists some A;, A;, Ay such that |IntersectionSet({A;, A;,
A}, B)| > 5. After a possible relabeling of the B;, we may assume

IntersectionSet(Ay, B) = {Bi,... Bat2}.

Let
k= IntersectionSet({ Ay, 4;}, B)|}.
221%}5(1{' ntersectionSet({A1, A;}, B)|}
Then by assumption, the number of ones in rows 2,...,2d and columns 1,...,d 4+ 2 of

M is at most k(2d — 1) since there are at most k ones in each of these rows. However, by
looking at columns, we see that there are exactly (d + 1)(d + 2) ones in this submatrix
of M. Thus, we see

(d+1)(d+2)
T@d-1) =F

and since we may assume k is an integer, we have

By relabeling A, ..., Aaq, we may assume |IntersectionSet({A4;, A2}, B)| = k. By rela-
beling By, ..., Bgt+2, we may assume IntersectionSet({A;, As},B) = {B,..., Br}. Now
note that M has exactly kd ones in columns 1,..., % and rows 3,..., 2d.

Let

0= 32&2}&{|Intersect10nSet({A1, As, A}, B)|}.

Then the number of ones in columns 1,...,k and rows 3,...,2d is at most £(2d — 2),
so we have

kd d+1)(d+2)] d
EZQd—22{ (2d—1) -‘Qd—2

and since £ is an integer, we have
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QH(dH)(dH)W d ] (14)

(2d—1) |2d—2

From (14), it follows that when d > 11, we have ¢ > 5, as desired.

Finally, when d = 4, formula (14) implies that ¢ > 4, so that there exists a set of
three skew lines A1, As, and Az € A that all intersect four skew lines By, By, Bs, and
B4 € B. In particular, each of the four B; must lie on the unique quadric @) determined
by Ai, As, and As, since they each intersect this quadric in 3 points. We claim one more
line in A lies on @, in which case it follows that every double eight is the union of two
quadric configurations (Remark 5.4.2). To verify the claim, observe that if no A; lies on
Q for ¢ > 3, then these A; intersect at most two of By, Bs, Bs, and By € B. Thus,

4

4 3 4 8
=1 =1 i=1 i=4

=1 A,eA

contrary to the fact that Z?:l Bi-Ya,caAi = 24, since each line in B intersects exactly
six lines in A. O

Remark 5.4.3. It is worth emphasizing that Theorem 5.0.4 is valid for any smooth surface
of degree containing a double 2d. While a generic surface certainly contains none, there
always exist smooth surfaces, including non-extremal ones, that contain double 2d’s over
an algebraically closed field of characteristic p and of every degree d = p® + 1 > 6.

To see the existence of such non-extremal surfaces, we do a simple dimension count.
Fix a double 2d {A; U Az, B; U B2} on an extremal surface arising as the union of two
quadric configurations, Q1 = {A1,B1} and Qs = { Ay, B2}

We claim that the set X of all degree d surfaces in P? containing the lines in {A; U
Ay, By U By} forms a subvariety of P(Sym?(k*)*) of dimension exceeding the dimension
of the subvariety of extremal surfaces. That latter dimension is 15, since it is equal to
the dimension of PGL4(k). Since there is a smooth degree surface in X (our original
extremal surface), then provided dim X > 15, we can conclude that an open subset of X
consists of smooth non-extremal surfaces containing the given double 2d.

To see that the dimension of X’ exceeds 15, label the lines in A; (respectively B;) by
A;; (respectively B;;) for 1 < j < d. One can show that if a surface S contains every
intersection point Aj; N By for 1 < 4,5 < d, one additional point on each line of Qj,
and all points of the form Ag; N By; with 1 <4, < d—1, then S will contain the entire
double 2d. Let D be the linear space in P(Symd(k4)*) parametrizing surfaces of degree
d containing these d? 4+ 2d + (d — 1)? = 2d? + 1 points, and note that X D D. Since each
point imposes a linear condition, the dimension of D, and hence the dimension of X, is
at least (df) —1—(2d*+1) = §(d—1)(d — 2)(d — 3). This exceeds 15 whenever d > 6.

Data availability

No data was used for the research described in the article.
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