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1. Introduction

Let k be an algebraically closed field of positive characteristic p. Our goal is to study 

the geometry of smooth extremal surfaces over k.

An extremal hypersurface is a projective hypersurface defined by a reduced degree d

polynomial whose F-pure-threshold achieves the lower bound 1
d−1 . This lower bound was 

proved in [29, 1.1], where forms achieving it were classified and dubbed Frobenius forms; 

these exist only when d − 1 is a power of the characteristic p. The F-pure threshold is a 

measurement of singularities1 with smaller thresholds representing “worse singularities,” 

so the affine cone over an extremal hypersurface is “maximally singular” among cones of 

the same degree. Thus, it is natural to expect the corresponding projective hypersurfaces 

to exhibit some extremal geometric properties as well.

Unusually beautiful properties of extremal hypersurfaces have been discovered in sev-

eral different contexts. For example, they are closely related to Hermitian hypersurfaces 

(§ 2.3) as defined by B. Segre [43] and the finite geometries studied by Hirschfeld [21]. 

Frobenius forms are given by “p-bilinear forms” analogously to how quadrics correspond 

to bilinear forms (see § 2); their similarity with quadrics was emphasized in Shimada’s 

and Cheng’s study of their geometry, where they are called p-quadrics [45], and q-bics

[9], [10], respectively.

The lowest degree extremal surfaces are the non-Frobenius split cubic surfaces of 

characteristic two, which were studied in depth in [28]. Geometrically, extremal cubic 

surfaces can be characterized among all cubic surfaces as those that admit no triangles. 

To understand this statement, recall that each smooth cubic surface admits exactly forty-

five plane sections consisting of a union of three lines, typically forming a “triangle”. Some 

special cubic surfaces admit one or more such tri-tangent plane sections in which the 

three lines are concurrent; in this case, their common intersection point is called an 

Eckardt point. An extremal cubic surface has the highly unusual property that each and 

every one of the forty-five tri-tangent plane sections consists of three concurrent lines. 

Such “triangle-free” cubic surfaces do not exist over C nor indeed over any field of odd 

characteristic. Extremal cubic surfaces exist only in characteristic two, precisely when 

the cubic form cutting out the surface is a Frobenius form, or equivalently, when the 

cubic surface is not Frobenius split. These results are all worked out in [28]; see also [29], 

[11], [18, 5.5], [24, 1.1] and [21, 20.2] for related work.

The main theme of this paper is that extremal surfaces of any degree exhibit fasci-

nating geometry reminiscent of the geometry of lines on cubic surfaces. Like extremal 

cubics, extremal surfaces contain a large number of lines but no triangles. In particular, 

there are a large number of “stars” (collections of concurrent lines) meeting at “star 

points,” analogous to Eckardt points for cubics (Theorem 3.3.1(e)). Extremal surfaces 

1 The F-pure threshold was first defined as a “characteristic p analog” of the log canonical threshold, a 
well-known invariant of complex singularities, by Takagi and Watanabe [51], who were building on the work 
of Hara and Yoshida [27]. See also [36], [5] or [4].
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also have a large number of lines—exactly d2(d2−3d +3) to be precise—which form many 

interesting configurations beyond stars. For example, extremal surfaces admit quadric 

configurations—collections of 2d lines on the surface all lying on the same quadric. While 

a generic surface of degree at least four does not contain any line, we show that, like cubic 

surfaces, a degree d extremal surface contains many quadric configurations—roughly d9

2

for large d (Corollary 4.0.8).

In the final section of the paper, we generalize the classical notion of a “double six” 

on a cubic surface to any surface, and show that an extremal surface of degree d ad-

mits many configurations of “double 2d”’s—indeed the number of double 2d’s on an 

extremal surface of degree d grows at least as fast as d14 as d gets large (Theorem 5.0.2, 

Corollary 5.3.2). In Conjecture 5.0.3, we speculate that, as is classically known for cubic 

surfaces, every double 2d on a smooth surface is a union of two quadric configurations. 

In Theorem 5.0.4 we prove this conjecture for d > 10 and d < 5. Interestingly, our proof 

is purely combinatorial using only the intersection theory of lines on surfaces, so applies 

to any smooth surface admitting a double 2d. There are non-extremal surfaces admitting 

double 2d’s as we point out in Remark 5.4.3.

The analogy between extremal and cubic hypersurfaces has also been explored recently 

by Cheng in his PhD thesis, where he chose the eponymous name “q-bic” hypersurface 

to emphasize this connection [9], [10]. For example, Cheng shows that, like cubic three-

folds, smooth extremal threefolds have a smooth Fano surface of lines and a certain 

intermediate Jacobian closely related to the Albanese variety of its surface of lines [10].

Interestingly, the quartic growth rate for lines on extremal surfaces is a strictly positive 

characteristic phenomenon: the number of lines on a smooth complex surface in P 3 is 

bounded above by a quadratic function in the degree; see [40,42] or [7]. Bauer and Rams 

recently showed that a quadratic bound holds even in characteristic p, provided p > d

[6]. Their quadratic bound can fail in non-zero characteristic when p ≤ d (see e.g. [39]). 

Theorem 3.3.1(e) confirms that it is wildly false in every positive characteristic, even for 

d = p + 1.

Extremal surfaces are highly symmetric. Indeed, we show that the automorphism 

group of a smooth extremal surface X acts transitively on all of the following sets:

(1) the set of all line-star pairs on X (Theorem 3.2.1(i));

(2) the set of all star chords, that is, lines in P 3 spanned by star points but not on X

(Theorem 3.2.1(iii));

(3) the set of all triples of skew lines on X (Theorem 4.0.7(b))2;

(4) the set of all triples of concurrent lines on X (Theorem 3.2.1(iv));

(5) the set of all quadric configurations on X (Theorem 4.0.7(a));

(6) the set of all pairs of star chords lying in opposite rulings of a quadric configuration 

for X (Theorem 4.1.4).

2 This is the optimal result on transitivity of sets of skew lines as the action is not transitive on sets of 
four skew lines.
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These results imply known transitivity results for the set of star points and for the set 

of lines, but our proofs are independent of existing proofs, which use the machinery of 

Hermitian or finite geometry. We also count various configurations of geometric objects 

associated with extremal surfaces; see Theorem 3.3.1 for basic counts of point, line, 

and star chord configurations, Corollary 4.0.8 for counts of quadric configurations, and 

Proposition 4.1.2 for counts of star chords associated to quadric configurations. These 

results are important in our proofs in Section 5 on the existence of double 2d’s on 

extremal surfaces.

Extremal varieties are closely connected to finite Hermitian geometry, although our 

approach is completely independent (see [1,21]). Indeed, a Hermitian form is a (very) 

special type of Frobenius form defined over Fq2 , where q is a power of p; see § 2.3. Our 

work connects extremal varieties to a diverse array of active research groups throughout 

pure and applied mathematics including in coding and design theory [13,15,50], rational 

points on curves and varieties [22,23], graph theory [14], cryptology [32], group theory 

[16,47], and the combinatorics of hyperspace arrangements and generalized quadrangles 

[38]. Nearly all this research is written from a dramatically different perspective from 

our paper. We hope to inspire algebraic geometers to investigate some of the many open 

problems, for example, in [25], and conversely, help researchers in diverse fields gain 

access to new techniques. A small sample of related literature includes [43], [26], [49], 

[48], [52], [30, § 35], and the references therein.

Acknowledgments. This work is an offshoot of a project begun at a Banff workshop 

called Women in Commutative Algebra, which produced the papers [28], [31], and [29]. 

We would like to acknowledge the valuable discussions with the other participants in 

those earlier projects: Eloísa Grifo, Zhibek Kadyrsizova, Jennifer Kenkel, Jyoti Singh, 

Adela Vraciu, and Emily Witt. We are also grateful to János Kollár for suggesting the 

connection with Hermitian geometry and an anonymous referee who made many good 

suggestions for better organization.

2. Basics of Frobenius forms

This section consolidates facts and terminology about Frobenius forms.

Fix an algebraically closed field k of positive characteristic p, and let q denote pe for 

some fixed positive integer e. A Frobenius form (in n variables, say) is a homogeneous 

polynomial of degree pe + 1 in the “Frobenius power” 〈xpe

1 , xpe

2 , . . . , xpe

n 〉 of the unique 

homogenous maximal ideal of the polynomial ring. Put differently, a Frobenius form is 

a polynomial h that can be written 
∑n

i=1 x
q
i Li, where Li are linear forms. In particular, 

every Frobenius form admits a matrix factorization

h = [x
q
1 x

q
2 . . . xq

n ] A

£

¤

¤

¥

x1

x2

...
xn

¦

§

§

¨

= (�x[q])�A �x, (1)
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where A is the unique n × n matrix whose i-th row is made up of the coefficients of the 

linear form Li. Here, for a matrix B of any size, the notation B[q] denotes the matrix 

obtained by raising all entries to the pe-th power, and B� denotes the transpose of B. 

The notation �x denotes a column vector with n entries.

2.1. Changes of coordinates

Frobenius forms are taken to Frobenius forms under arbitrary linear changes of coor-

dinates, since both degree and the ideal 〈xq
1, xq

2, . . . , xq
n〉 are preserved. Let g ∈ GLn(k)

be a matrix representing some linear change of coordinates, meaning that

g

£

¤

¤

¥

x1

x2

...
xn

¦

§

§

¨

=

£

¤

¤

¥

g1(x1, . . . , xn)
g2(x1, . . . , xn)

...
gn(x1, . . . , xn)

¦

§

§

¨

represents the change of coordinates taking xi to the linear form gi. This change of 

coordinates takes the Frobenius form F represented by the matrix A to the Frobenius 

form represented by the matrix

[

g[pe]
]�

Ag. (2)

See [29, § 5] for details.

A change of coordinates may take a given form to a form in fewer variables; for 

example, the form xqyq(w + z) in four variables is equivalent to xqyqz in three variables. 

Such a form is said to be degenerate. Geometrically, a form is degenerate if and only if 

the projective hypersurface it defines is a cone over some smaller dimensional projective 

variety. The reader is cautioned that while the matrix of a degenerate Frobenius form is 

never invertible, the converse is false.

The rank of a Frobenius form is the rank of the representing matrix. The rank is the 

same as the codimension of the singular locus of the corresponding hypersurface [29, 

5.3].

There is a unique smooth extremal hypersurface of each dimension and allowable 

degree, a fact that has been discovered in various guises; see [33, Thm 1], [19, Thm 9.10], 

[3], [45] or [29, 6.1]. More precisely:

Theorem 2.1.1. Fix an algebraically closed field k, a degree d and number of variables n. 

All rank n Frobenius forms of degree d are equivalent under linear change of variables.

More generally, Frobenius forms in n variables (not equivalent to one in fewer vari-

ables) are fully classified up to linear changes of coordinates by the partitions of n; see 

[29, 7.1] for the precise statement.



A. Brosowsky et al. / Journal of Algebra 646 (2024) 376–411 381

Example 2.1.2. Considering partitions of 3, there are three equivalence classes of Frobe-

nius forms in three (but no fewer) variables of fixed degree q + 1. These correspond to 

the three matrices

£

¤

¥

1 0 0

0 1 0

0 0 1

¦

§

¨
,

£

¤

¥

1 0 0

0 0 1

0 0 0

¦

§

¨
, and

£

¤

¥

0 1 0

0 0 1

0 0 0

¦

§

¨
,

which determine, respectively, the forms xq+1 + yq+1 + zq+1, xq+1 + yqz, and xqy + yqz. 

See [29, 7.1].

Remark 2.1.3. Example 2.1.2 appears also as Theorem 3 in [20], where the classification 

of Frobenius forms in n variables of rank n − 1 is worked out. See also [9] for a different 

perspective.

2.2. Extremal hypersurfaces

The projective hypersurface defined by a Frobenius form is called an extremal hyper-

surface.3

Example 2.2.1. Let X be smooth extremal hypersurface of dimension zero—that is, a 

reduced extremal configuration of points in P 1. After an appropriate choice of homoge-

neous coordinates, X is defined by the form yxq − xyq, so that X is the collection of 

points [μ : 1] where μq = μ, together with the “point at infinity” [1 : 0]. That is, the 

points of X are precisely the Fq-points of P 1.

Smooth extremal surfaces have a large automorphism group:

Proposition 2.2.2. Let X be a smooth extremal hypersurface defined by a Frobenius form 

of degree q+1 in n ≥ 2 variables over an algebraically closed field k. The group Aut(X) of 

projective linear automorphisms of X is isomorphic to the finite group PUn(Fq2), where 

PUn(Fq2) is the quotient of the finite unitary group

Un(Fq2) =
{

g ∈ GLn(Fq2)
∣

∣ (g[q])� g = In

}

by its center,

{λIn | λq+1 = 1},

the cyclic group of scalar matrices of order q + 1.

3 In other contexts, these are called p-quadric hypersurfaces [45] or q-bic hypersurfaces [9].
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Remark 2.2.3. An arbitrary automorphism of a projective hypersurface of degree d in 

P
n−1 is given by a projective linear change of coordinates, provided that d �= n; see 

e.g. [35, Thm 2]. Thus in most cases, Proposition 2.2.2 describes the full group of all

automorphisms of an extremal hypersurface. For surfaces, this is so except when d = 4

and p = 3.

Proof of Proposition 2.2.2. The proof follows straightforwardly from considering the ac-

tion of PGLn(k) on the identity matrix (representing the Frobenius form 
∑n

i=1 x
q+1
i ) as 

described in Section 2.1. Alternatively, the reader may consult [44, p. 97], [11, § 5.1], and 

[46, p. 102] to see proof of this statement in various generalities. �

In light of Example 2.2.1, the automorphism group of a reduced extremal collection of 

points in P 1 is isomorphic to PGL2(Fq). Thus Proposition 2.2.2 confirms the well-known 

fact that PGL2(Fq) ∼= PU2(Fq2).

Corollary 2.2.4. Let X ⊂ P
1 be a reduced extremal configuration of points. Then the 

automorphism group of X acts three-transitively on the points of X.

Proof. This is immediate from Example 2.2.1, after identifying X with the set of all 

Fq-points of P 1 and Aut(X) with PGL2(Fq). �

2.3. Hermitian forms over finite fields

A Hermitian form is a special kind of Frobenius form in which the representing matrix 

A satisfies (A[q])� = A. In this case, all entries of A satisfy aq2

ij = aij , which means they 

are in the finite field Fq2 . Thus, a Hermitian form is defined over the finite field Fq2 . In 

this case, the Frobenius map (x 
→ xq) is an involution on the set of Fq2-points, so can 

play a role analogous to complex conjugation. See [21, § 19.1] and [45].

Hermitian forms are taken to Hermitian forms under any change of coordinates de-

fined over Fq2 , and conversely, any change of coordinates taking one Hermitian form to 

another is defined over Fq2 ; This is readily checked using Formula (2). In particular, 

the group of projective linear transformations of a Hermitian hypersurface is contained 

in PGLn(Fq2). The proof of Proposition 2.2.2 shows that the automorphism group of 

the smooth extremal hypersurface of degree q + 1 in P
n−1
k defined by the Hermitian

form 
∑n

i=1 x
q+1
i is literally the subgroup of projective unitary matrices in PGLn(Fq2) as 

defined above in Proposition 2.2.2. In general, the automorphism group of an arbitrary 

smooth extremal hypersurface is conjugate to PGLn(Fq2) by the appropriate coordinate 

change.

The classification of Hermitian forms is well-known and simple: there is only one 

invariant, rank [1, 4.1]. The classification of Frobenius forms is more subtle [29, 7.1]. 

On the other hand, every smooth projective hypersurface defined by a Frobenius form 

is projectively equivalent (over the algebraically closed field k) to one defined by the 
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Hermitian form 
∑n

i=1 x
q+1
i (Theorem 2.1.1); of course, the needed change of coordinates 

is not usually defined over Fq2 .

2.4. Stars and other plane sections of extremal surfaces

It is easy to see that hyperplane sections of extremal hypersurfaces are extremal [29, 

8.1]. Throughout this paper, we will make frequent use of the following classification of 

plane sections of smooth extremal surfaces:

Proposition 2.4.1. [28] A plane section of a smooth extremal surface is one of the follow-

ing types of divisors, all defined by Frobenius forms:

(1) A smooth extremal curve;

(2) A singular extremal curve with an isolated cuspidal singularity;

(3) The reduced sum of a line and an irreducible curve tangent at one point; or

(4) A star of lines on the surface, meaning a reduced configuration of lines meeting at 

one point.

Proof of Proposition 2.4.1. Let X be a smooth extremal surface in P 3 and let H be an 

arbitrary plane in P 3. The plane section X ∩ H is given by a Frobenius form F in three 

variables [29, 8.1]. If X ∩ H is not given by a degenerate form,4 then it must be one 

of those described in Example 2.1.2; these three cases produce the first three types of 

divisors listed above. Otherwise, the Frobenius form F defining X ∩ H can be written 

in two (or fewer) variables after changing coordinates. Now, invoking the classification 

of Frobenius forms in two variables, we see F can be assumed to be xqy + yqx, xqy, or 

xq+1. But since plane sections of smooth surfaces are reduced (by e.g. [53, 1.15]), F can 

be assumed given by xqy + yqx, which means that X ∩ H is a union of q + 1 coplanar 

lines meeting at one point—a star. �

Example 2.4.2. Consider the smooth extremal surface X defined by xqw +wqx +yq+1 +

zq+1. Intersecting with the plane H defined by w, we see a star X ∩H consisting of q +1

distinct lines

{V (w, y − νz) | νq+1 = −1},

all intersecting in the point p = [1 : 0 : 0 : 0]. These lines are indistinguishable up to 

projective transformation since, as μ ranges through the q + 1-roots of unity in k, the 

projective transformations [x : y : z : w] 
→ [x : y : μz : w] stabilize the surface X and its 

star plane H while transitively permuting around the lines in the star H ∩ X.

4 meaning that we can not write F as a form in fewer than three variables.
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Terminology 2.4.3. Even outside the context of extremal surfaces, one can define a star

on a degree d surface X to be any configuration of d lines on X all meeting at one point 

p called the center of the star, or a star point. If X is smooth, any set of d lines forming 

a star on a degree d surface X are coplanar, because all lie in the tangent plane TpX to 

the center of the star. In this case, the plane section TpX ∩X is the reduced union of the 

d lines of the star. A plane containing a star of X is called a star plane. Star planes are 

uniquely determined by their centers and vice versa, since each star plane is the tangent 

plane to X at the center of its star. Stars are defined and studied for higher dimensional 

hypersurfaces in [8].

Remark 2.4.4. Any important point gleaned from the proof of Proposition 2.4.1 is that a 

plane section H ∩X of a smooth extremal surface X is a star if and only if the Frobenius 

form F defining X ∩ H in H is degenerate—that is, if and only if F can be written as a 

Frobenius form in two (of three) homogeneous coordinates for the projective plane H.

Proposition 2.4.1 has the following useful consequences.

Corollary 2.4.5. [29, 8.11] Let X be a smooth extremal surface.

(i) Any collection of coplanar lines on X is concurrent. In particular, X contains no 

triangles;

(ii) Every line on X is in some star.

Proof. Statement (i) follows immediately from Proposition 2.4.1, by considering the 

plane section spanned by the lines. For (ii), fix a line L on X. Without loss of generality 

X is as in Example 2.4.2 (Theorem 2.1.1); in particular, X admits a plane section H ∩X

that is a star. If L lies in H, then (ii) is proved. If L does not lie in H, then L meets H

at some point p′. The point p′ is in the star X ∩ H, so p′ lies on some line L′ ⊂ X ∩ H. 

The two lines L and L′ on X intersect at p′, so the plane H ′ they span is a star plane 

centered at p′ (Proposition 2.4.1). Clearly L is in the star X ∩ H ′, establishing (ii). �

2.5. Star points on Hermitian surfaces

A Hermitian surface is a smooth extremal surface defined by a Hermitian form (cf.

§ 2.3). These were studied by Segre [43], Hirschfeld [21], and many others, notably 

Shimada [45]. We recall and give a brief proof of the following result.

Proposition 2.5.1. The star points on a Hermitian surface of degree q + 1 are precisely 

its Fq2-points.

Proof of Proposition 2.5.1. Since the change of coordinates taking an arbitrary Hermi-

tian form to another is defined over Fq2 (see § 2.3), it suffices to consider the Hermitian 

surface X defined by xqw + wqx + yqz + zqy.
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First, we show that the Fq2-points of X are star points. By symmetry, it suffices show 

that any point p = [1 : a : b : c] ∈ X where a, b, c ∈ Fq2 is a star point. The tangent 

plane TpX at p is cqx + bqy + aqz + w, so the plane section TpX ∩ X is defined by the 

Frobenius form in x, y, z

−xq(cqx + bqy + aqz) − x(cqx + bqy + aqz)q + yqz + zqy. (3)

Thus, p is a star point if and only if (3) is a degenerate Frobenius form (Remark 2.4.4). 

Because the change of coordinates

x 
→ x, y 
→ y + ax, z 
→ z + bx

transforms the form (3) into the degenerate form yqz + zqy (remember that c + cq +

aqb + bqa = 0), we conclude that all Fq2-points of X are star points.

For the converse, we use the fact that the automorphism group of any extremal surface 

acts transitively on stars, to be proved in the next section (Theorem 3.2.1 (ii)), and that 

all projective linear automorphisms of a Hermitian surface are defined over Fq2 (§ 2.3). 

Since [0 : 0 : 0 : 1] is a star, we see that all other stars are the image of [0 : 0 : 0 : 1]

under some projective linear change of coordinates over Fq2. In particular, all stars are 

defined over Fq2 . �

Remark 2.5.2. Shimada defines special points on Hermitian surfaces and proves every 

special point is a star point [45, Prop 2.20(1)]. He also proves that special points are 

precisely the Fq2-rational points [45, Prop 2.12]. Thus by Proposition 2.5.1, the converse 

is true: star points are the same as special points in the sense of Shimada.

3. Geometry of extremal surfaces

In this section, we study the basic projective geometry of extremal surfaces.

3.1. Star chords

Star chords are important auxiliary lines not on the extremal surface:

Definition 3.1.1. A star chord for a smooth extremal surface X is a line in P 3 not on X

which passes through (at least) two star points of X.

Remark 3.1.2. In the special case where the extremal surface is defined by a Hermitian 

form over Fq2 , star chords are Baer sublines or hyperbolic lines in the terminology of 

finite geometry (see e.g. [2, p. 4] or [34, p. 102]).

Remark 3.1.3. A star chord � through star point p is never in the star plane TpX centered 

at p. For if � ⊂ TpX, then there is another star point p′ ∈ � necessarily on some line L
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in the star TpX ∩ X. But then both lines L and � contain the points p and p′, so � = L, 

contrary to the fact that � �⊂ X.

The next result tells us star chords come in pairs:

Theorem 3.1.4. Let � be an arbitrary star chord for a smooth extremal surface X. Then

(i) The stars centered at points on � share no lines.

(ii) The intersection of all star planes centered along � is a star chord �′ for X skew to 

�.

(iii) The intersection of all star planes centered along �′ is the star chord �.

(iv) The star chords � and �′ each intersect X in q + 1 distinct star points.

Before proving Theorem 3.1.4, we observe that it ensures that the next definition 

makes sense.

Definition 3.1.5. The dual chord of a star chord � for an extremal surface is the unique 

star chord �′ contained in all star planes centered along �, or equivalently, the intersection 

of all star planes centered along �.

Duality between star chords is a symmetric relationship by Theorem 3.1.4 (iii).

Example 3.1.6. The lines � = V (x, y) and �′ = V (z, w) are a pair of dual star chords on 

the Fermat extremal surface X = V (xq+1 + yq+1 + zq+1 + wq+1). Indeed, � is not on X

but contains the q + 1 star points pa = [0 : 0 : a : 1], where aq+1 = −1. To check that pa

is a star point, observe that the tangent plane to pa is Tpa
X = V (aqz + w) = V (z − aw), 

which intersects X in a star. These star planes V (z −aw) all obviously contain �′, so �′ is 

their common intersection. Dually, the star points on �′ are the points p′
b = [b : 1 : 0 : 0]

where bq+1 = −1, and the corresponding star planes V (x − by) intersect in �.

Proof of Theorem 3.1.4. Since � is a star chord, we can fix two star points p1 and p2 on 

�. Since p1 is on every line in the star centered at p1, and likewise for p2, any shared 

line between these stars would contain both p1 and p2 and hence be � itself. But by 

definition, the star chord � is not on X. So stars centered on � can not share any lines, 

proving (i).

Now, let �′ = Tp1
X ∩ Tp2

X. Note that �′ �⊂ X: otherwise, �′ ⊂ Tp1
X ∩ X and 

�′ ⊂ Tp2
X ∩ X, making �′ a shared line between these stars, which would contradict (i).

We claim that �′ is skew to �. First note that � �= �′, for otherwise the star chord �

lies in the star plane Tp1
X, contradicting Remark 3.1.3. So at least one of p1 or p2—say 

p1—is not on �′. Now, if � and �′ are not skew, the unique plane they span is necessarily 

the plane Tp1
X, since both planes contain �′ and p1 �∈ �′. But now the star chord � is in 

the star plane Tp1
X, again contradicting Remark 3.1.3.
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We now claim �′ is a star chord intersecting X in q + 1 distinct star points. Observe 

that because �′ ⊂ Tp1
X, it meets each line in the star Tp1

X ∩ X. But since the center 

p1 is not on �′, we know �′ must meet each of the q + 1 lines in the star Tp1
X ∩ X in a 

distinct point. These q +1 points make up the full intersection �′ ∩X, since X has degree 

q + 1. Similarly, since also p2 �∈ �′, the points of �′ ∩ X are the q + 1 distinct intersection 

points of �′ with the lines in the star Tp2
X ∩ X. Thus, each p′ in �′ ∩ X lies on at least 

two lines of X so it is a star point. So �′ is a star chord and meets X in q + 1 distinct 

star points.

Next, we show that � ⊂ Tp′X for all p′ ∈ �′ ∩ X, which will establish (iii). As we 

saw in the preceding paragraph, the star X ∩ Tp′X contains a line in each of the two 

stars Tp1
X ∩ X and Tp2

X ∩ X. In particular, both p1 and p2 are in Tp′X, so also 

� = p1p2 ⊂ Tp′X.

We now claim � meets X in q + 1 distinct star points, which will prove (iv). To see 

this, take an arbitrary p′ ∈ �′ ∩ X. Since � ⊂ Tp′X (using (iii)) but p′ �∈ � (by skewness 

of � and �′), each line in the star Tp′X ∩ X meets � in a distinct point. These are the 

q + 1 points of X ∩ �. They are star points because each lies on a line in every other star 

Tp′′X ∩ X with p′′ ∈ �′.

To conclude (ii), it suffices to show that �′ ⊂ TpX for each star point p on � since 

�′ = Tp1
X ∩ Tp2

X. By (iv), we can fix two star points, q1 and q2, on �′. By (iii), � =

Tq1
X ∩ Tq2

X, so p is contained in X ∩ Tq1
and X ∩ Tq2

. Thus, p lies in one of the lines in 

each of the stars centered at q1 and q2. Thus, the lines pq1 and pq2 are lines in the star 

at p so q1, q2 ∈ X ∩ TpX and �′ ⊂ TpX as desired. �

3.2. Symmetry of extremal surfaces

Extremal surfaces are highly symmetric, as evidenced by the following result:

Theorem 3.2.1. The automorphism group of a smooth extremal surface X acts transitively 

on each of the following sets:

(i) the set of all pairs (H, L), where L is any line on X and H is any star plane 

containing L;

(ii) the set of all pairs (p, L), where L is any line on X and p is any star point on L;

(iii) the set of all ordered pairs (p1, p2) of (distinct) star points spanning a star chord;

(iv) the set of ordered triples of concurrent lines on X.

In particular, the automorphism group acts transitively on the set of star points, on 

the set of lines, and on the set of star chords of any smooth extremal surface. Transitivity 

on star points and on lines can also be deduced from the existing literature in light of 

Proposition 2.5.1; see, in particular, [45, Thm 2.19].

The proof uses the following lemma.
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Lemma 3.2.2. Given an arbitrary star X ∩H with center p on a smooth extremal surface 

X, we may choose coordinates for P 3 so that

p = [0 : 0 : 0 : 1], H = V (x), and X = V (xq� + xwq + yqz + zqy), (4)

for some linear form � = ax + by + cz + w.

Proof. Choose coordinates so that the star plane H is defined by x = 0. In this case, the 

form F defining X is

F = xG + G′(y, z, w)

where G is some form of degree q and G′ is a Frobenius form in the variables y, z, w. The 

form G′ defines the star X∩H in the plane H, and hence G′ is degenerate (Remark 2.4.4). 

So by a change of coordinates involving only y, z, w, without loss of generality

F = xG + yzq + zyq,

in which case the star point p has coordinates [0 : 0 : 0 : 1].

Observe that xG ∈ 〈xq, yq, zq, wq〉, which implies that G ∈ 〈xq−1, yq, zq, wq〉. Because 

deg G = q, we can write

G = xq−1� + (α1y + α2z + α3w)q

for some scalars αi and linear form �. That is,

F = xq� + x(α1y + α2z + α3w)q + zyq + yzq,

where the star H ∩ X is given by x = 0 and the star point is p = [0 : 0 : 0 : 1] in these 

coordinates. The scalar α3 cannot be zero, for in that case F would be rank 3, so would 

not define a smooth surface [29, 5.3]. Therefore, we may replace the form α1y+α2z+α3w

by w (which changes � but nothing else) to assume without loss of generality that

F = xq� + xwq + zyq + yzq. (5)

The linear form � = ax + by + cz + dw must satisfy d �= 0, for otherwise F would have 

rank at most 3. Finally, the change of coordinates

x 
→ λx, y 
→ y, z 
→ z, w 
→ λ−1/qw

where λq2−1 = 1
dq transforms F (formula (5)) into

(λx)q(aλx + by + cz + dλ−1/qw) + xwq + zyq + yzq
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without changing p or H. This has the desired form since the coefficient of xqw is 

dλq− 1

q = 1. �

Proof of Theorem 3.2.1. The first two statements are equivalent via the bijection be-

tween star points and star planes given by the correspondence p ↔ TpX (see § 2.4.3).

Fix an arbitrary pair (H, L). Let p be the center of the star H ∩ X, so that H = TpX. 

Use Lemma 3.2.2 to choose coordinates so that p = [0 : 0 : 0 : 1], H is defined by x = 0

and the Frobenius form defining X looks like

F = xq(ax + by + cz + w) + wqx + yqz + zqy. (6)

Apply the change of coordinates

x 
→ x, y 
→ y, z 
→ z + λqx, w 
→ w − λy

where λ ∈ k satisfies λq2

− λ + b = 0. This transformation fixes p and H but replaces 

form (6) by one in which b = 0 and c is unchanged. Interchanging the roles of y and z, 

without loss of generality b = c = 0. Finally, if a �= 0, fix γ ∈ k such that γq + γ + a = 0, 

and apply the transformation

x 
→ x, y 
→ y, z 
→ z, w 
→ w + γx

to transform (6) to xqw+wqx +yqz+zqy without changing the star point p = [0 : 0 : 0 : 1]

or the star plane H. Likewise, we can change coordinates, fixing x and w but taking 

the rank 2 Frobenius form yqz + zqy to yq+1 + zq+1, without changing the star point 

p = [0 : 0 : 0 : 1] or the star plane H.

The line L is taken to some other line L′ in the same star X ∩ H. But we can then 

compose with an automorphism of X preserving H while taking the image of L to any

line in the star H ′ ∩ X (Example 2.4.2). This proves (i), and equivalently (ii).

For (iii), fix an arbitrary ordered pair (p1, p2) of star points spanning a star chord of 

X. Since Aut(X) acts transitively on star points (by (a)), there is no loss of generality 

in assuming

X = V (xqw + wqx + yqz + zqy) and p1 = [0 : 0 : 0 : 1].

The theorem will be proved if we show that, in addition, we can choose coordinates so 

that p2 is the star point [1 : 0 : 0 : 0].

First note that we can assume that p2 = [1 : a : b : c]. Indeed, otherwise p2 ∈ V (x) =

Tp1
X, so that p2 would be in the star centered at p1. In this case, the line p1p2 is in that 

star and hence on X, contrary to the assumption that p1 and p2 span a star chord. Note 

also that a, b, c ∈ Fq2 (Proposition 2.5.1).

Consider the change of coordinates

x 
→ x, y 
→ y − ax, z 
→ z − bx, w 
→ w + cqx + bqy + aqz.
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Since aq2

= a, bq2

= b, cq2

= c, and cq + c = −(aqb + bqa), we easily verify that 

this change of coordinates fixes xqw + wqx + yqz + zqy. It also fixes the ideal (x, y, z)

of [0 : 0 : 0 : 1] and sends the ideal (y, z, w) to (y − ax, z − bx, w − cx), so that the 

corresponding projective transformation of P 3 induces an automorphism of X that fixes 

the point p1 = [0 : 0 : 0 : 1] and sends the point p2 = [1 : a : b : c] to [1 : 0 : 0 : 0].

For (iv): any three concurrent lines intersect in a star point, so by (i), we can assume 

that X = V (xqw + wqx + yq+1 + zq+1) and move the three lines by an automorphism to 

three lines in the star X ∩ H where H = V (x) is the star plane centered at [0 : 0 : 0 : 1]. 

These three lines can be moved to any other three lines in X ∩ H by a change of 

coordinates fixing x, w and yq+1 + zq+1 since this is equivalent to the three-transitivity 

of the automorphism group of the points defined by yq+1 + zq+1 in P 1 (Corollary 2.2.4). 

This completes the proof of Theorem 3.2.1. �

3.3. Counting stars and lines on an extremal surface

We gather together various counts of configurations on extremal surfaces for future 

reference, some of which can be found or deduced from results scattered throughout 

the existing literature (making use of Proposition 2.5.1); see especially [43], [21], and 

[45]. To keep the paper self-contained, we provide straightforward projective-geometric 

arguments proofs independent of the theory of q2-rational points on Hermitian surfaces.

Theorem 3.3.1. Let X be a smooth extremal surface X of degree q + 1. Then

(a) There are exactly q2 +1 star points on each line on X. Equivalently, there are exactly 

q2 + 1 stars on the surface X containing any given line. [21, Table 19.2], [45, Cor 

2.14]

(b) There are exactly q(q2 + 1) lines on X that intersect any fixed line on X.

(c) There are exactly q4 lines on X skew to any given line on X.

(d) Each star plane of X contains exactly q3 + q2 + 1 star points—that is, each star 

contains q3 + q2 star points other than its center. [21, 19.1.5]

(e) There are a total of q4 + q3 + q + 1 = (q3 + 1)(q + 1) distinct lines on X, each 

containing exactly q2 + 1 star points. [21, 19.1.5]

(f) There are a total of q5 + q3 + q2 + 1 = (q3 + 1)(q2 + 1) distinct stars on X, each 

containing exactly q + 1 lines. [43], [21, 19.1.5]

(g) There are q4(q2 − q + 1)(q2 + 1) star chords of X. [21, Table 19.2]

(h) For each pair of skew lines on X, there are exactly q2 + 1 lines on X that meet both. 

[21, 19.3.4]

Remark 3.3.2. The reader can compute that the order of PUn(Fq2) is q6(q4 − 1)(q3 +

1)(q2 − 1) [12, pp. 131–144] using the orbit-stabilizer theorem applied to the actions in 

Theorem 3.2.1 with the counts in Theorem 3.3.1.
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Proof. (a). Fix a line L on X. We know L belongs to some star H∩X (Corollary 2.4.5(ii)). 

Choose coordinates so that X is defined by F = xqw + xwq + yqz + zqy, the plane H is 

cut out by x, and the line L is cut out by x and y (Theorem 3.2.1(i)).

Consider the pencil of planes containing the line L. Each plane Hλ in the pencil is 

defined by the vanishing of some linear form λx − y, with the star plane H itself the 

case where λ = ∞. Restricting F to the plane Hλ, we can set y = λx, so that the plane 

section X ∩ Hλ is defined by

F = xqw + xwq + λqxqz + λxzq.

The plane section X ∩ Hλ is a star if and only if the form F is degenerate (cf. Re-

mark 2.4.4). The change of coordinates

x 
→ x, z 
→ z, w 
→ w − λqz

transforms F to

F1 = xqw + xwq + (λ − λq2

)xzq = x(wq + xq−1w + (λ − λq2

)zq),

which is clearly degenerate if λq2

− λ = 0. Conversely, if λq2

− λ �= 0, then F is not 

degenerate because it defines the union of the line L and an irreducible curve of degree q

rather than a star. Thus, there are precisely q2 planes Hλ (besides H) whose intersection 

with X is a star containing L.

(b). Fix a line L on X. A line M on X intersects L if and only if L and M appear 

together in a star. There are q2+1 stars containing L and each of them contains q distinct 

lines (other than L). Of course, a pair L and M can not appear together in more than 

one star, since the plane producing a star is uniquely determined by any two lines in it. 

So there must be q(q2 + 1) distinct lines M which intersect L on our extremal surface.

(c). Fix a line L on X. Fix a star H ∩X containing L (Corollary 2.4.5 (ii)). Every line 

on X intersects H, and hence some line in the star H ∩ X. Thus it suffices to count the 

lines skew to L that intersect lines in H ∩ X. There are q other lines in this star. Pick 

one, M . Now M appears in exactly q2 other stars besides X ∩H by (a). For each of these 

stars, each of the other q lines in the star is a line L′ which does not meet L. Indeed, if 

L′ meets L, then the lines L, L′, M form a triangle, contradicting Corollary 2.4.5 (i). In 

this way, we produce q3 distinct lines L′ on X which meet M but not L. Now, varying 

over each of the q lines M in the star H ∩ X (other than L), we produce q3 new lines 

for each of the q choices of line M . In total, we found q4 lines skew to L.

(d). Let p be the center of the star H ∩ X. Each of the q + 1 lines in this contains 

exactly q2 star points other than p by (a). So H contains exactly q2(q+1) +1 star points.

(e). Fix one line L on X. There are exactly q(q2 + 1) lines on X which intersect L

by (b). On the other hand, there are q4 lines on X disjoint from L by (c). So the total 

number of lines, counting L, is q4 + q3 + q + 1.
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(f). By (e), there are a total of q4 + q3 + q + 1 lines on X, and each line is contained in 

exactly q2 + 1 stars by (a). So there are (q4 + q3 + q + 1)(q2 + 1) pairs (L, H) consisting 

of a line L in a star H ∩ X. On the other hand, each star contains exactly q + 1 lines, so 

the total number of stars is

(q4 + q3 + q + 1)(q2 + 1)

q + 1
=

(q3 + 1)(q + 1)(q2 + 1)

q + 1
= (q3 +1)(q2 +1) = q5 +q3 +q2 +1.

(g). A star chord is determined by any two star points on it, so we first count the 

number of ordered pairs of star points spanning a star chord. There are q5 + q3 + q2 + 1

star points by (f). Fix a star point p. Any other star point spans a star chord with p

unless it lies on one of the q + 1 lines in the star centered at p; in particular, there are 

q3 + q2 + 1 star points that do not span a star chord with p by (d). In other words, there 

are q5 choices of star points p′ such that pp′ is a star chord, so q5(q3 + 1)(q2 + 1) ordered 

pairs of stars spanning star chords. Finally, since each star chord contains q + 1 star 

points (Theorem 3.1.4 (iv)), there are (q + 1)q ordered pairs of star points determining 

each star chord. Thus, there are q5(q3+1)(q2+1)
q(q+1) = q4(q2 − q + 1)(q2 + 1) star chords.

(h). Fix arbitrary skew lines L and L′ on X. Because there are exactly q2 + 1 star 

points on L and any intersection point of lines on X is a star point, it suffices to prove 

that for each star point p on L, there is exactly one line through p meeting L′. To this 

end, observe that L′ is not in the star plane H centered at p, since that would imply 

L′ meets L. Thus, L′ meets H at a unique point p′; the point p′ is in the star X ∩ H

and hence in (exactly) one of its lines, M . The line M meets both L and L′. There is no 

other line through p meeting both L and L′, for if M ′ is another, then M, M ′, L′ form a 

triangle, contrary to Corollary 2.4.5 (i). �

4. Quadric configurations

Extremal surfaces contain interesting line configurations we call quadric configura-

tions:

Definition 4.0.1. A quadric configuration on a surface of degree d ≥ 3 in projective three 

space is a collection of 2d lines on the surface consisting of two sets of d skew lines with 

the property that each line in either set meets every line of the other set.

The next proposition justifies the name:
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Proposition 4.0.2. A quadric configuration on an irreducible surface X is equal to X ∩ Q

for some unique smooth quadric surface Q.

Proof. Let L ∪ M be a configuration of lines, where L (respectively M) consists of d

skew lines intersecting every line in M (respectively L). Choose any three skew lines 

L1, L2, L3 ∈ L, and let Q be the unique smooth quadric they determine [17, 2.12]. The 

lines of M intersect all lines in L, including L1, L2, and L3, which lie on Q. So each 

line M ∈ M intersects the quadric Q in at least three points, which means M ⊂ Q. But 

now each line L ∈ L intersects all lines in M, so L intersects Q in at least three points. 

Again, we conclude L ⊂ Q. So L ∪ M ⊂ Q.

Now if L ∪ M ⊂ X, then L ∪ M ⊂ X ∩ Q. So since X ∩ Q and L ∪ M both have 

degree 2d and X ∩ Q is a complete intersection, we conclude that X ∩ Q is precisely the 

reduced union of the 2d lines in L ∪ M. �

Example 4.0.3. Let Qµ be the quadric surface Qµ = V (μxw − yz), where μ ∈ k is a fixed 

(q + 1)-st root of unity. The quadric Qµ defines a quadric configuration on the Fermat 

extremal surface. Indeed, the lines in the sets

Lµ = {V (x − αy, z − μαw) | αq+1 = −1}

Mµ = {V (x − βz, y − μβw) | βq+1 = −1}

all lie on the quadric Qµ (with the lines in Lµ and Mµ in opposite rulings), as well as 

on the extremal surface X = V (xq+1 +yq+1 +zq+1 +wq+1). Thus, X ∩Qµ is the quadric 

configuration Lµ ∪ Mµ.

Quadric configurations are rare on an arbitrary surface—for example, a generic surface 

of degree greater than three admits no lines at all [17, 12.8]. Extremal surfaces, however, 

contain many quadric configurations.

Theorem 4.0.4. Any triple of skew lines on a smooth extremal surface determines a unique 

quadric configuration.

For the proof, we need the following lemma, which will be generalized to triples of 

skew lines in the next section.

Lemma 4.0.5. The automorphism group of a smooth extremal surface X acts transitively 

on the set of pairs of skew lines on X.

Proof of Lemma 4.0.5. Fix a pair of skew lines L and L′ on X. There are (q2 + 1)2 lines 

in P 3 connecting star points on L to star points on L′ (Theorem 3.3.1(a)) but only q2 +1

of them lie on X (Theorem 3.3.1(h)). Thus we can pick star points p ∈ L and p′ ∈ L′

that span a star chord �.
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Choose coordinates so that X = V (xqw + wqx + yq+1 + zq+1), p = [0 : 0 : 0 : 1], 

and p′ = [1 : 0 : 0 : 0] (Theorem 3.2.1(iii)). In this case, the star chord � = pp′ is 

V (y, z) and the star planes at p and p′, respectively, are defined by x and w. The line 

L is therefore in the star TpX ∩ X = V (x, yq+1 + zq+1) and the line L′ is in the star 

Tp′X ∩ X = V (w, yq+1 + zq+1). In particular, L = V (x, y − ν1z) and L′ = V (w, y − ν2z)

where νq+1
1 = ν

q+1
2 = −1. The assumption that L and L′ are skew means that ν1 �= ν2.

Finally, observe that the lines L and L′ can be taken to any other two lines in their 

respective stars by an automorphism of X that fixes p and p′. Indeed, there is a linear 

change of coordinates that fixes x and w but sends the factors {y − ν1z, y − ν2z} of 

yq+1 + zq+1 to any other two distinct factors {y − μ1z, y − μ2z} of yq+1 + zq+1 (Corol-

lary 2.2.4). �

Proof of Theorem 4.0.4. Fix three skew lines, L, L′, and L′′ on the extremal surface 

X of degree d = q + 1. Without loss of generality, assume X is defined by the form 

xqw + wqx + yqz + zqy, L by x = y = 0, and L′ by z = w = 0 (Lemma 4.0.5). In this 

case, L′′ can be defined by linear equations of the form

x = az + bw and y = cz + dw,

where the matrix 

[

a b
c d

]

is full rank, and is parametrized as {[as + bt : cs + dt : s :

t] | [s : t] ∈ P
1}. Furthermore, the condition that L′′ lies on X means that

(as + bt)qt + tq(as + bt) + (cs + dt)qs + sq(cs + dt) = 0

for all s, t. This imposes the constraints

cq + c = bq + b = aq + d = a + dq = 0. (7)

The quadric Q defined by

cxz + dxw − ayz − byw (8)

contains L, L′, and L′′. Note that Q is the image of the Segre map

P
1 × P

1 σ
→ P

3 ([s1 : s2], [t1, t2]) 
→ [(as1 + bs2)t1 : (cs1 + ds2)t1 : s1t2 : s2t2].

Now, consider an arbitrary line in one of the rulings on Q, say

� = {[(aλ1 + bλ2)t1 : (cλ1 + dλ2)t1 : λ1t2 : λ2t2] | [t1 : t2] ∈ P
1}.

The line � is on X if and only if, plugging into the Frobenius form defining X, the form

λ2(aλ1 + bλ2)qt
q
1t2 + λ

q
2(aλ1 + bλ2)t1t

q
2 + λ1(cλ1 + dλ2)qt

q
1t2 + λ

q
1(cλ1 + dλ2)t1t

q
2, (9)
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is uniformly zero for all values of t1, t2. Equivalently, � is on X precisely when the 

coefficients of tq
1t2 and of t1t

q
2 in expression (9) satisfy

λ2(aλ1 + bλ2)q + λ1(cλ1 + dλ2)q = 0

λ
q
2(aλ1 + bλ2) + λ

q
1(cλ1 + dλ2) = 0.

In light of the constraints (7), these equations simplify to

cλ
q+1
1 + dλ

q
1λ2 + aλ1λ

q
2 + bλ

q+1
2 = 0 (10)

Because the form in (10) is a Frobenius form in λ1, λ2 with the full rank matrix 

[

c d
a b

]

, 

there are precisely q + 1 distinct solutions to (10) in P
1. We conclude that there are 

precisely q + 1 lines � of the form σ([λ1 : λ2] × P
1) lying on both X and Q. These are 

q + 1 different skew lines on the extremal surface.

A similar argument shows that a line

m = {[(as1 + bs2)λ1 : (cs1 + ds2)λ1 : s1λ2 : s2λ2] | [s1 : s2] ∈ P
1}

in the other ruling of the quadric lies on X if and only if λ
q
1λ2 − λ1λ

q
2. These form a set 

of q + 1 skew lines, each of which meets every line in the other set of q + 1 skew lines on 

X. �

Remark 4.0.6. In the finite geometry setting, Hirschfeld proves an analog of Theo-

rem 4.0.4 for Hermitian geometries using different techniques and language [21, 19.3.1].

Theorem 4.0.7. The automorphism group of a smooth extremal surface X acts transitively

(a) on the set of all quadric configurations on X; and

(b) on the set of triples of skew lines on X.

Proof of Theorem 4.0.7. In light of Theorem 4.0.4, it is enough to prove (b). For this, 

it suffices to show that Aut(X) acts transitively on the set S of all ordered sextuples 

(L1, L2, L3, M1, M2, M3) of lines on X, consisting of two triples of skew lines {L1, L2, L3}

and {M1, M2, M3} with Li ∩ Mj �= ∅ for all i, j.

Fix an ordered sextuple (L1, L2, L3, M1, M2, M3) ∈ S. First note that its stabilizer, 

even in PGL4(k), is trivial. Indeed, the intersection points pij = Li ∩ Mj must be fixed 

by any element in the stabilizer of (L1, L2, L3, M1, M2, M3). These nine points contain 

five points in general linear position (no three on a line, no four on a plane). But an 

automorphism of P 3 fixing five points in general linear position is trivial.

Next, we compute the cardinality of S. There are (q3 + 1)(q + 1) choices for L1

by Theorem 3.3.1(e), and fixing L1, there are q4 choices for a skew line L2 on X by 

Theorem 3.3.1(c). The number of choices for L3 is the total number of lines on X



396 A. Brosowsky et al. / Journal of Algebra 646 (2024) 376–411

minus the number of lines meeting L1 or L2. Accounting for the double-counting of lines 

meeting both L1 and L2, the number of choices for L3 is

[

(q3 + 1)(q + 1)
]

− 2
[

q3 + q + 1
]

+
[

q2 + 1
]

= q(q2 + 1)(q − 1),

using Theorem 3.3.1 (b), (e), and (h). The choice of the triple L1, L2, L3 determines the 

quadric, and hence q + 1 lines in Q ∩ X that all intersect L1, L2, L3 by Theorem 4.0.4. 

There are (q + 1)q(q − 1) ways to choose the triple M1, M2, M3. In total, the number of 

ordered sextuples is thus

[(q3 + 1)(q + 1)] · [q4] · [q(q2 + 1)(q − 1)] · [(q + 1)q(q − 1)] = q6(q4 − 1)(q3 + 1)(q2 − 1).

This is precisely the order of Aut(X) (Remark 3.3.2). So Aut(X) acts transitively on the 

set S, and hence on the set of all triples of skew lines on X. �

For future reference, we record the following corollary of the proof of Theorem 4.0.7. 

This is also in [21], using more complicated techniques:

Corollary 4.0.8. [21, 19.3.1(ii)] A smooth extremal surface X of degree q + 1 contains 

exactly 1
2(q3 + 1)(q2 + 1)q4 quadric configurations.

Proof of Corollary. By Theorem 4.0.4, each quadric configuration on a smooth extremal 

surface X is uniquely determined by an ordered triple of skew lines (L1, L2, L3) on X. 

The number of such ordered triples is

(q3 + 1)(q + 1) · q4 · q(q2 + 1)(q − 1),

as we computed in the proof of Theorem 4.0.7. To determine the number of quadric 

configurations, then, we must determine the number of ordered triples determining the 

same quadric. To this end, first note that there are 2(q + 1) choices of a line L1 in Q. 

Once L1 is fixed, the lines L2 and L3 are among the q lines in same ruling of Q, so there 

are q(q − 1) choices for (L2, L3). We conclude that there are

(q3 + 1)(q + 1)q5(q − 1)(q2 + 1)

2(q + 1)q(q − 1)
=

1

2
(q3 + 1)(q2 + 1)q4

quadric configurations on a smooth extremal surface. �

4.1. Star chords in quadric configurations

We record some observations about star chords and quadric configurations that will 

be useful in Section 5.
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Lemma 4.1.1. Let Q be a quadric defining a quadric configuration on a smooth extremal 

surface X. Let � be a line on Q but not on X. Then � intersects X in q + 1 distinct 

points, and if any one of these intersection points is a star point of X, then they all are.

Proof. Because the automorphism group of X acts transitively on quadric configurations 

(Theorem 4.0.7), we may assume that X is given by the Fermat Frobenius form and Q

by xw = yz. The lines on Q have the following parametrizations

{[λs : s : λt : t] | [s : t] ∈ P
1} and {[λs : λt : s : t] | [s : t] ∈ P

1}.

Without loss of generality, let � = {[λs : s : λt : t] | [s : t] ∈ P
1} for some fixed λ. The 

condition that a point [λs0 : s0 : λt0 : t0] of � lies on X is that

(λs0)q+1 + s
q+1
0 + (λt0)q+1 + t

q+1
0 = (λq+1 + 1)(sq+1

0 + t
q+1
0 ) = 0. (11)

There are two ways this can happen. Either λq+1 = −1, which means (11) holds for all 

values of [s0 : t0], so the line � lies on X. Or λq+1 �= −1, and there are exactly q + 1

points [s0 : t0] satisfying sq+1
0 + t

q+1
0 = 0. In this case, there are exactly q + 1 distinct 

points of � ∩ X, all of the form [λμ : μ : λ : 1] where μ ranges through the q + 1 distinct 

roots of −1. In particular, μ ∈ Fq2 . Now if one of these points [λμ : μ : λ : 1] is a star 

point, then it is defined over Fq2 (Proposition 2.5.1), so λ ∈ Fq2 as well. Thus, all q + 1

points of X ∩ � are defined over Fq2 , and hence all are star points. �

Proposition 4.1.2. Let Q be a smooth quadric defining a quadric configuration on a 

smooth extremal surface X. Then there are exactly q2 − q star chords in each ruling 

of Q, and those in opposite rulings meet off X.

Proof. Consider a star chord � on Q. Write Q ∩ X = L ∪ M where L and M are the 

two skew sets of lines on X in opposite rulings of Q.

Because � must lie in one of the rulings of Q, it intersects each of the q+1 lines in, say, 

M. For each M ∈ M, the intersection point � ∩ M is a star point (Theorem 3.1.4(iv)). 

Conversely, through each star point on M , the unique line in the opposite ruling of Q is 

either a line in L, or a star chord, depending on whether or not it is on X (Lemma 4.1.1). 

Since there are q2 + 1 total star points on M (Theorem 3.3.1(a)), this leaves q2 − q

possible points of intersection of the star chord � with M . Thus, there are exactly q2 − q

possibilities for the star chord � in this ruling of Q. By symmetry, the same holds in the 

other ruling.

Now suppose � and m are star chords in opposite rulings on Q. If p = � ∩ m lies on 

X, then it must be one of the q + 1 points on � ∩ X, and hence p is some star point on 

some line M ⊂ Q ∩ X in the ruling opposite �. In this case, M is the unique line through 

p on Q in the ruling opposite �, forcing m = M . This contradicts our assumption that 

m is not on X. �
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Remark 4.1.3. Proposition 4.1.2 and Lemma 4.1.1 together say the complete set of lines 

on Q passing through star points of X consists of two sets of q2 + 1 skew lines (one on 

each ruling); in each of these skew sets, there are q + 1 lines on X and q2 − q star chords.

Theorem 4.1.4. The automorphism group of a smooth extremal surface acts transitively 

on the set of triples (Q, �, m) consisting of a quadric Q defining a quadric configuration, 

together with a choice star chords � and m, one in each ruling of Q.

Proof. We may assume that the extremal surface X is defined by xq+1 + yq+1 + zq+1 +

wq+1 and Q by xw − yz (Theorem 4.0.7 (a)). Let � and m be an arbitrary pair of star 

chords on Q, lying in opposite rulings. It suffices to show that there is an automorphism 

of X which stabilizes Q and sends � and m to the star chords V (x, z) and V (z, w), 

respectively.

The lines in the two rulings of Q have the form

V (λx − μy, λz − μw) and V (αx − βz, αy − βw);

the star chords among them are precisely those where [λ : μ] (respectively [α : β]) is an 

Fq2-point of P 1 not on V (sq+1 +tq+1) (see Example 4.0.3 and the proof of Lemma 4.1.1). 

Indeed, all such lines are on Q, but not on X, and since there are q2 − q in each ruling, 

we have found the complete list of star chords on Q (Proposition 4.1.2).

Suppose that � = V (λx −μy, λz −μw). The change of coordinates given by the matrix 
£

¤

¥

λq μ 0 0
−μq λ 0 0

0 0 λq μ
0 0 −μq λ

¦

§

¨
scales the defining equation of both X and Q by a non-zero scalar 

(remember λq+1 + μq+1 �= 0), so the corresponding projective transformation g is in 

Aut(X) ∩ Aut(Q). In addition, g sends � to V (x, z), as

g(�) = V (λ(λqx + μy) − μ(−μqx + λy), λ(λqz + μw) − μ(−μqz + λw))

= V
(

(λq+1 + μq+1)x, (λq+1 + μq+1)z
)

= V (x, z).

Of course, g sends m to some star chord on Q in the opposite ruling from g(�). So 

g(m) = V (αx − βz, αy − βw) for some Fq2 point [α : β] ∈ P
1 not on V (sq+1 + tq+1). 

Now observe that the change of coordinates given by the matrix 

£

¤

¥

β 0 αq 0
0 β 0 αq

α 0 −βq 0
0 α 0 −βq

¦

§

¨

preserves the Fermat Frobenius form and the quadric polynomial xw − yz defining Q, 

so that the corresponding projective transformation h is an automorphism of both X

and Q. In addition, h preserves the line V (x, z), since the matrix sends both x and z to 

forms in only x and z. Finally, the line g(m) = V (αx − βz, αy − βw) is sent to

h(g(m)) = V (α(βx + αqz) − β(αx − βqz), α(βy + αqw) − β(αy − βqw))

= V ((αq+1 + βq+1)z, (αq+1 + βq+1)w) = V (z, w).
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We conclude that the composition h ◦ g is an automorphism of X which preserves Q, 

and takes � and m to V (x, z) and V (z, w), respectively. This completes the proof. �

Corollary 4.1.5. Let X be a smooth extremal surface and suppose Q is a quadric defining 

a quadric configuration on X.

(i) If � is star chord of X lying on Q, then its dual chord �′ also lies on Q, in the same 

ruling.

(ii) If � and m are star chords in opposite rulings of Q, then there are exactly q + 1

quadrics (including Q) containing � and m that define quadric configurations on 

X.

Proof. We can assume that the extremal surface is the Fermat surface, Q = V (xw −yz), 

and � and m are the star chords V (x, y) and m = V (x, z), respectively (Theorem 4.1.4). 

For (i), recall that the dual chord of � is �′ = V (z, w) (Example 3.1.6), which clearly 

lies on Q as well. The lines � and �′ lie in the same ruling of Q because they are skew 

(Theorem 3.1.4(ii)).

For (ii), note that the quadrics defining quadric configurations that contain � and m

must also contain their dual star chords, �′ = V (z, w) and m′ = V (y, w), respectively, 

by (i). The quadrics containing {�, �′, m, m′} are defined by degree two polynomials in 

the ideal

〈x, z〉 ∩ 〈y, w〉 ∩ 〈z, w〉 ∩ 〈x, y〉 = 〈xw, yz〉.

But a quadratic form μ xw−yz (where μ is a non-zero scalar) defines a quadric containing 

lines of X if and only if μq+1 = 1. Indeed, the lines in one of the rulings are parametrized 

by [a : b] ∈ P
1:

Lab = {[as : μbs : at : bt] | [s : t] ∈ P
1},

which lies on the Fermat surface only if μq+1 = 1 and aq+1 + bq+1 = 0. Thus, there are 

q + 1 quadrics that contain the four star chords {�, �′, m, m′}. �

5. Double 2d configurations

One fascinating classical feature of the geometry of a cubic surface is the existence of 

thirty six “double sixes” [41]. A double six consists of two collections of six skew lines on 

the cubic, with the property that each line in one collection intersects exactly five lines 

in the other. A choice of double six is equivalent to a labeling of the twenty-seven lines 

on the cubic so that one of the collections of six skew lines is the set of six exceptional 

divisors, thinking of the cubic surface as the blow up of the plane at six points, and the 

other collection is the set of strict transforms of the six conics through five of the points. 
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In this section, we present a generalization of a double six which exists on all extremal 

surfaces.

Definition 5.0.1. For any d ≥ 2, a double 2d is a collection of two sets, A and B, each 

consisting of 2d lines in projective three space, such that

(1) Each line in A (resp. B) is skew to every other line in A (resp. B); and

(2) Each line in A (resp. B) intersects exactly d + 2 lines in B (resp. A).

Typically, we do not an expect a surface of degree d to contain any double 2d—for 

example, a general surface in P 3 of degree greater than three contains no line [17, 12.8]. 

The next result guarantees, however, that like cubic surfaces, extremal surfaces always 

contain double 2d’s.

Theorem 5.0.2. Every smooth extremal surface of degree d contains double 2d configura-

tions of lines.

In fact, there are a great many double 2d’s on an extremal surface of degree d: we 

show in Corollary 5.3.2 that their number grows asymptotically like 1
16 d14 as d grows 

large.

We will prove Theorem 5.0.2 by constructing explicit pairs of quadric configurations 

whose union is a double 2d. First, we speculate that every double 2d arises from pairs of 

quadrics:

Conjecture 5.0.3. Every double 2d on a smooth surface X of degree d consists of 4d lines 

that are the union of two quadric configurations on X.

Towards Conjecture 5.0.3, we have proven the following:

Theorem 5.0.4. Every double 2d on a degree d smooth surface is a union of two quadric 

configurations when d > 10 or d < 5. Moreover, for d ≥ 5, if two quadrics determine 

some double 2d, then no other pair of quadrics determines the same double 2d.

Remark 5.0.5. Our proof of Theorem 5.0.4 is almost entirely combinatorial: given a 

double 2d of lines (A, B) in P 3, the corresponding (2d) × (2d) incidence matrix has the 

property that every row and column contains exactly d + 2 ones and d − 2 zeros (see 

Definition 5.0.1); we give a combinatorial argument that when d > 10, this forces the 

matrix to contain a 5 ×3 block of ones, which in turn, forces the lines to come from a pair 

of quadric configurations when they lie on a smooth surface (Lemma 5.4.1). Interestingly, 

one can write down a 10 × 10 matrix with seven ones (and three zeros) in each row and 

column, which does not contain a 5 × 3 block of ones; however, we have verified this is 

not the incidence matrix of lines lying on any smooth extremal surface. Indeed, we show 

by computer that Conjecture 5.0.3 is true when d = 5 for smooth extremal surfaces.
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Before proving Theorems 5.0.2 and 5.0.4, we review the motivating example of cubic 

surfaces.

5.1. Double sixes on cubics

Every double six on a cubic surface—whether extremal or not—is a union of two 

quadric configurations. For an arbitrary double six A ∪ B on a cubic surface X, there is 

a choice of coordinates making X the blowup of six points on P 2 (no three on a line, not 

all on a conic), and so that A consists of the six lines of exceptional divisors {E1, . . . , E6}

and B consists of the proper transforms {C̃1, . . . , C̃6} of the six conics in P 2 through five 

of the six points [37, Thm 8, p. 366]. Here, C̃i denotes the proper transform of the conic 

that misses the point blown up to Ei.

Now, given any three lines in A, say {E1, E2, E3}, there are three lines, {C̃4, C̃5, C̃6}, 

in B that meet all of them. This says that the unique quadric surface Q containing 

{E1, E2, E3} must also contain {C̃4, C̃5, C̃6}. Likewise, the unique quadric Q′ containing 

{E4, E5, E6} must contain {C̃1, C̃2, C̃3}. So the quadrics Q and Q′ both produce quadric 

configurations on X:

Q ∩ X = {E1, E2, E3, C̃4, C̃5, C̃6} and Q′ ∩ X = {E4, E5, E6, C̃1, C̃2, C̃3},

which together produce the double six

A = {E1, E2, E3, E4, E5, E6} and B = {C̃1, C̃2, C̃3, C̃4, C̃5, C̃6}.

So every double six on a cubic surface is the union of two quadric configurations.

Remark 5.1.1. The quadric configurations Q and Q′ determining the double six A ∪ B

on a cubic surface are not unique: there is a quadric containing any three of the six 

skew lines in A and another containing the remaining three, and the lines of B lie three 

in each of these two quadrics. Thus, there are 1
2

(

6
3

)

= 10 different pairs of quadrics 

determining the double six A ∪ B. This confirms that some restriction on d is necessary 

in the uniqueness statement in Theorem 5.0.4 above.

Remark 5.1.2. The previous discussion applies to an arbitrary smooth cubic surface: each 

of its thirty-six double sixes is a union of two quadric configurations. However, for an 

extremal cubic surface, the double sixes come from two quadrics of a particular form. 

Specifically, if Q and Q′ are quadrics on an extremal cubic surface which together give 

a double six, then Q ∩ Q′ is the union of four lines.

To see this, observe that Q ∩ Q′ ∩ X consists of twelve distinct points—otherwise, one 

line of Q ∩ X would intersect a line from both rulings of Q′ ∩ X (or vice versa), violating 

the skewness condition for a double six. These twelve points are star (Eckardt) points as 

they lie at the intersection of a line in Q ∩ X with a line in Q′ ∩ X. Now, each of these 

twelve star points lies on only one line in X ∩ Q, again by skewness, so these twelve star 
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points lie on star chords of Q ∩ X. Since there are only two star chords in each ruling 

(Remark 4.1.3), each containing exactly q + 1 = 3 star points, these twelve points lie 

three each on the four star chords on Q. Likewise, the same argument replacing Q by 

Q′ shows that the twelve star points lie three each on the four star chords on Q′. We 

conclude that Q ∩ Q′ consists of the four shared star chords for X.

5.2. The existence of double 2d’s on extremal surfaces

Proof of Theorem 5.0.2. Choose coordinates so that the extremal surface X is defined 

by xq+1 + yq+1 + zq+1 + wq+1.

Fix μ, a (q + 1)-st root of unity. As we saw in Example 4.0.3, the lines

Lµ := {V (x − αy, z − μαw) | αq+1 = −1}

and

Mµ = {V (x − βz, y − μβw) | βq+1 = −1}

form a quadric configuration cut out by the quadric Qµ = V (μxw − yz).

We claim that if μ1 and μ2 are distinct (q + 1) roots of unity, then the sets

A := Lµ1
∪ Mµ2

and B := Lµ2
∪ Mµ1

together form a double 2(q + 1).

To see that A consists of skew lines, first observe that the lines of Lµ1
are mutually 

skew, as they lie in the same ruling of a quadric. To see that each L ∈ Lµ1
is skew to 

every M ∈ Mµ2
, we check that the ideal of their intersection, 〈x − αy, z − μ1αw, x −

βz, y−μ2βw〉, is generated by four linearly independent linear forms. For this, it suffices 

to show that the matrix

£

¤

¥

1 −α 0 0
0 0 1 −μ1α
1 0 −β 0
0 1 0 −μ2β

¦

§

¨
,

whose rows are the coefficients of the linear forms, has full rank. But this is clear, since 

its determinant is αβ(μ2 − μ1). A symmetric argument shows that also B consists of 

skew lines.

Now that we know A and B are skew sets, the proof of Theorem 5.0.2 will be complete 

once we have proved the following general lemma.

Lemma 5.2.1. Let X be a smooth extremal surface of degree d. Let Q1 and Q2 be two 

quadric configurations on X that do not share a line (on X). Write Q1 = L1 ∪ M1 and 

Q2 = L2 ∪ M2 for the decomposition of each quadric configuration into the lines of the 
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two rulings. Then A = L1 ∪ M2 and B = L2 ∪ M1 form a double 2d on X if (and only 

if) both A and B are skew sets.

Proof of Lemma 5.2.1. Since Q1 and Q2 have no common line, there are 4d lines in 

Q1 ∪ Q2, and 2d lines in each of A and B. Because we are given that A and B are each 

skew sets, we need only check condition (2) of Definition 5.0.1 to verify that A ∪ B is a 

double 2d.

To this end, take any N ∈ A. Without loss of generality, assume N ∈ L1. We need to 

show that N intersects exactly d + 2 lines in B. Since N lies in one ruling of the quadric 

Q1 determining Q1, the line N intersects the d lines of the opposite ruling M1 ⊂ B. 

Thus, we need to show that N intersects exactly two lines of L2.

Since N does not lie on the quadric Q2 determining Q2 (remember Q1 ∩ Q2 = ∅), its 

intersection multiplicity with Q2 is two. If N meets Q2 in two distinct points, we are 

done: N must meet exactly two of the lines in the ruling L2 since it does not meet any 

line of the ruling M2 by our assumption that A is a skew set.

It remains to show that N can not be tangent to Q2. If, on the contrary, N is tangent 

to Q2 at some point p, then N ⊂ TpQ2. Because p ∈ Q2 ∩ X, and Q2 ∩ X is a union of 

lines, the point p lies on some line M in Q2 ∩ X. In particular, p is a star point since it 

is the intersection of the two lines M and N on X. Furthermore, since both N and M

are in the tangent plane TpQ2, as well as in the star plane TpX, we have TpX = TpQ. 

But now consider the unique line � through the star point p on Q2 in the opposite ruling 

from M . We know � is not on X, for otherwise, p ∈ � ⊂ Q2 ∩ X, which means p lies 

on lines in both rulings of Q2, violating skewness. By Lemma 4.1.1, we conclude that �

is a star chord through p, and being on Q2, also � ⊂ TpQ2 = TpX. But no star chord 

through a star point p can lie in the star plane TpX (Remark 3.1.3). This contradiction 

ensures that N is not tangent to Q2, and the proof is complete. � �

5.3. Pairs of quadrics containing a common line

The double 2d constructed in the proof of Theorem 5.0.2 is obtained from two quadric 

configurations whose quadric surfaces intersect in four lines. These are an abundant type 

of double 2d’s—encompassing all the double sixes in the case of extremal cubics.

Theorem 5.3.1. Let X be a smooth extremal surface of degree d, and let Q and Q′ be 

distinct quadrics defining quadric configurations on X.

Assume that Q and Q′ share a common line, but share no line on X. Then

(i) The 4d lines of (Q ∩ X) ∪ (Q′ ∩ X) can be split into two sets of 2d lines forming a 

double 2d;

(ii) The intersection Q ∩Q′ consists of four star chords {�, m, �′, m′}, where {�, �′} and 

{m, m′} are dual chord pairs in opposite rulings.
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Importantly, not all double 2d’s are of the type guaranteed by Theorem 5.3.1; see 

Example 5.3.4.

Before proving Theorem 5.3.1, we deduce the following corollary bounding below the 

total number of double 2ds on an extremal surface.

Corollary 5.3.2. An extremal surface of degree d = q + 1 ≥ 5 contains at least

1

16
(q3 + 1)(q2 + 1)(q − 1)2q7

collections of double 2d’s.

Proof of Corollary. By Theorem 5.0.4, if two quadrics determine a double 2d on an 

extremal surface of degree d ≥ 5, then they are unique. So we can prove Corollary 5.3.2

by counting the pairs of quadrics {Q, Q′} determining quadric configurations whose 

intersection consists of four star chords (Theorem 5.3.1).

Fix one quadric Q giving a quadric configuration on X. There are (q2 − q)2 choices 

of pairs of star chords {�, m} on Q, one in each ruling, by Proposition 4.1.2. Since the 

dual of each star chord on Q is also on Q, there are (q2−q)2

4 choices for sets of star chords 

{�, �′, m, m′} on Q, where � and m are in opposite rulings and �′, m′ are their duals.

There are exactly q additional quadrics, besides Q, that contain {�, �′, m, m′} and 

define a quadric configuration (Corollary 4.1.5(ii)). So there are exactly q3(q−1)2

4 quadrics 

Q′ defining quadric configurations such that Q ∩ Q′ is the union of two star chords and 

their duals.

Finally, multiplying by the total number of choices for Q (provided by Corollary 4.0.8), 

we get

1

2
(q3 + 1)(q2 + 1)q4 ·

1

4
q3(q − 1)2 =

1

8
(q3 + 1)(q2 + 1)(q − 1)2q7

ordered pairs of quadric configurations whose intersection is four star chords. This counts 

each pair twice so the result follows. �

Proof of Theorem 5.3.1. Suppose � ⊂ Q ∩ Q′ but � �⊂ X. Because � is in some ruling on 

each of Q and Q′, � must intersect d lines on X ∩Q and d lines on X ∩Q′. By hypothesis, 

these lines are distinct, so � intersects 2d lines on X. Now because � ∩ X can be at most 

d points, � simultaneously intersects X at a line on X ∩ Q and a line on X ∩ Q′, so �

intersects X at a star point. So � passes through d star points and is a star chord.

Let �′ be the dual star chord to �. We know �′ ⊂ Q ∩ Q′, by Corollary 4.1.5(i). Since 

� and �′ are skew, they are in the same ruling on Q and also in the same ruling on Q′, 

which means that � ∪ �′ is a curve of bi-degree (2, 0) on each quadric. Since Q ∩ Q′ is a 

curve of bidegree (2, 2) on each quadric, the residual intersection curve has bidegree (0, 2)

in each quadric. Since homogeneous polynomials in two variables over an algebraically 

closed field factor into linear terms, this residual curve is either two distinct lines, or a 
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double line. In particular, it contains some line m, which, by the argument above, must 

be a star chord. Now again by Corollary 4.1.5(i), the residual intersection must be two 

dual star chords m and m′. This proves (ii).

To prove (i), we use Theorem 4.1.4 to chose coordinates so that X is the Fermat 

extremal surface, Q is the quadric defined by xw = yz, and � and m are the lines 

V (x, z) and V (w, z), respectively. In this case, we have already computed (in the proof 

of Corollary 4.1.5(ii)) that the quadrics containing {�, �′, m, m′} and defining quadric 

configurations are all of the form V (μxw − yz) where μd = 1, and that any two such 

quadrics define a double 2d (in the proof of Theorem 5.0.2). �

Remark 5.3.3. The bound in Corollary 5.3.2 is not valid when d is less than 5 because in 

this case, there can be multiple pairs of quadric configurations that determine the same 

double 2d. For example, every double six on a cubic surface can be split into the union 

of two quadric configurations in ten different ways (Remark 5.1.1). Note that dividing 

the bound provided by Corollary 5.3.2 by ten, we get a lower bound of 36 double sixes 

on a cubic surface, recovering the fact that all double sixes on an extremal cubic come 

from quadrics sharing star chords (Remark 5.1.2).

Similarly, when d = 4, there are double eights that split into the union of two quadric 

configurations in multiple ways. For example, the double eight on the Fermat quartic 

defined by the two quadrics Q1 = V (xw − yz) and Q2 = V (xw + yz) can also be given 

by two different quadrics Q3 and Q4, as one can check by examining the intersection 

matrix for the sixteen lines of (Q1 ∩ X) ∪ (Q2 ∩ X) to find a different grouping into lines 

in two quadrics.

Example 5.3.4. We now construct an example of a double eight on a quartic extremal 

surface that can not be given by two quadrics sharing a line. This shows that not every 

double 2d on an extremal surface is of the special type in Theorem 5.3.1.

We work on the Fermat quartic, X = V (x4 +y4 +z4 +w4) in characteristic three. The 

quadrics Q1 = V (xw −yz) and Q2 = V (x2 +xy +xz −xw −y2 +yz +yw +z2 −zw −w2)

both give quadric configurations on X. The quadric configuration X ∩ Q1 is the union 

L ∪ M where

L = {V (x − αy, z − αw) | α4 = −1} and M = {V (x − αz, y − αw) | α4 = −1},

as we computed in Example 4.0.3. The quadric configuration X ∩ Q2 is the union N ∪ P

where

N = {V (x−aw, y−az), V (x−aw, y−az), V (−x−y+w, x−y−z), V (−x−y−w, x−y+z)}

and

P = {V (x+ay, z−aw), V (x+ay, z−aw), V (−x+y+w, −x−y+z), V (−x−y+w, x−y+z)},
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where a and a are the roots in k of the polynomial T 2 − T − 1 over F3. We leave it to 

the reader to directly verify these eight lines all lie on both Q2 and X.

The set A ∪ B is a double eight, where A = L ∪ N and B = M ∪ P. To check this, it 

suffices to check that the lines in L and skew to those in N , and similarly that the lines 

in M are skew to those in P (Lemma 5.2.1), which can be directly verified.

It remains to check that Q1 and Q2 do not share any line. If they did, then there are 

two shared lines in each ruling (Theorem 5.3.1). So it suffices to show an arbitrary line 

� = {λs : s : λt : t] [s : t] ∈ P
1} in one of the rulings of Q1 can not lie on Q2. If � ⊂ Q2, 

then the points [0 : 0 : λ : 1], [λ : 1 : 0 : 0] and [λ : 1 : −λ : −1] in � must all lie on Q2. 

Plugging into the equation for Q2 produces the constraints

λ2 − λ − 1 = 0, λ2 + λ − 1 = 0, and λ2 = 0.

Because these three equations are inconsistent, we conclude that � does not lie on Q2.

Finally, we must show that the double eight A ∪ B can not be given by any other pair 

of quadrics that do share a line. To this end, assume on the contrary that A ∪ B is given 

by quadrics Q3 and Q4, and that � ⊂ Q3 ∩ Q4 for some line �. Furthermore, since Q1

and Q2 share no line, we may assume that � �⊂ Q1; in particular, � intersects two lines 

in each ruling of Q1. Because � lies in one ruling of each of Q3 and of Q4, � meets each 

in a set of eight skew lines in the double eight (Q3 ∩ X) ∪ (Q4 ∩ X) = A ∪ B. Since at 

most two of these eight intersection points are on Q1, we know � intersects at least six 

of the lines in Q2, and so � ⊂ Q2. But this is impossible: � lies in one of the rulings of 

Q2 (and is not on X), so it intersects exactly four of the lines on Q2 ∩ X.

5.4. Progress towards Conjecture 5.0.3

We now prove Theorem 5.0.4. The proof uses the combinatorics of the intersection 

matrix between the two skew sets of size 2d and the properties of quadrics.

Lemma 5.4.1. Let A ∪ B be a double 2d on a smooth surface X of degree d ≥ 5. If A

contains three lines A1, A2, A3 and B contains five lines that all meet each Ai for i = 1, 2

and 3, then the double 2d is the union of two unique quadric configurations.

Proof. Let Q be the unique smooth quadric containing the three skew lines A1, A2, A3. 

Let B1, B2, B3, B4, and B5 ∈ B be the five lines meeting each of A1, A2, A3. Since each 

Bi meets Q in three points—namely Bi ∩ A1, Bi ∩ A2, and Bi ∩ A3—Bi lies on Q for 

i = 1, 2, . . . , 5.

Label the lines in A so that Ai lies on Q if and only if i ≤ t. We first show that t ≥ 5. 

For any A ∈ A, note that A meets all five {B1, . . . , B5} if A lies on Q and at most two 

of {B1, . . . , B5} if A is not on Q. So
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2d
∑

i=1

Ai ·

⎛

¿

5
∑

j=1

Bj

À

⎠ ≤ 5t + 2(2d − t) = 3t + 4d.

On the other hand, each Bj must intersect exactly d + 2 lines in A, so

2d
∑

i=1

Ai ·

⎛

¿

5
∑

j=1

Bj

À

⎠ = 5(d + 2) = 5d + 10.

Thus, 3t + 4d ≥ 5d + 10 so t ≥ 3 + d+1
3 . Since d ≥ 5, we get t ≥ 5. Thus, the double 2d

must contain at least five lines of each ruling of Q.

Next we show that in fact each set A and B contains d lines on Q. If not, let k

be maximal such that A1, . . . , Ak and B1, . . . , Bk lie on Q, and assume without loss of 

generality that Ak+1 �⊂ Q. Since each Bj intersects exactly d + 2 lines in A, k of which 

are A1, . . . , Ak, we have that

k
∑

j=1

Bj ·

(

2d
∑

i=k+1

Ai

)

= k(d + 2) − k2 = k(d + 2 − k). (12)

Since Ai lies on Q if and only if i ≤ k, each line Aj for j > k can meet at most two of 

{B1, . . . , Bk}. So

k
∑

j=1

Bj ·

(

2d
∑

i=k+1

Ai

)

≤ 2(2d − k) = 4d − 2k. (13)

Comparing (12) and (13), we have (4d − 2k) − k(d + 2 − k) = (k − d)(k − 4) ≥ 0, 

which (since we’ve shown k ≥ 5) is a contradiction unless k ≥ d. We conclude that 

L = {A1, . . . , Ad} and M = {B1, . . . , Bd} lie on the same quadric Q. That is, half the 

lines of A, together with half the lines of B, form a quadric configuration L ∪ M on X.

It suffices to show that the remaining halves of A and B also form a quadric configu-

ration. Now fix B ∈ B \ M. Because B intersects at most two of the lines of L, we know 

B intersects every line in A \ L. So each line of the skew set B \ M meets every line of 

the skew set A \L—that is A \L and B \M form a quadric configuration, as desired. �

Remark 5.4.2. Even if d is three or four, the final paragraph of the proof of Lemma 5.4.1

shows that if half the lines of a double 2d lie on some quadric Q, then the complementary 

half lies on some other quadric Q′. The quadrics {Q, Q′} may not be the only quadrics 

determining the double 2d in this case, however. See Remark 5.1.1 and Remark 5.3.4.

Proof of Theorem 5.0.4. Let X be a smooth surface of degree d. The case where d = 3

is dealt with in § 5.1. We next handle the case d ≥ 11.

Let A := {A1, . . . , A2d} and B := {B1, . . . , B2d} denote the two skew sets of the double 

2d. By Lemma 5.4.1, it suffices to show that there are three skew lines in A all intersecting 
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each of five skew lines in B. Let M denote the intersection matrix Mij = Ai · Bj . By 

definition of a double 2d, M has exactly d + 2 ones and exactly d − 2 zeros in every row 

and column.

For any subset S ⊂ A, let

IntersectionSet(S, B) := {Bi ∈ B | Bi · Aj = 1 for all Aj ∈ S}.

We want to show that there exists some Ai, Aj , Ak such that |IntersectionSet({Ai, Aj ,

Ak}, B)| ≥ 5. After a possible relabeling of the Bi, we may assume

IntersectionSet(A1, B) = {B1, . . . Bd+2}.

Let

k := max
2≤i≤2d

{|IntersectionSet({A1, Ai}, B)|}.

Then by assumption, the number of ones in rows 2, . . . , 2d and columns 1, . . . , d + 2 of 

M is at most k(2d − 1) since there are at most k ones in each of these rows. However, by 

looking at columns, we see that there are exactly (d + 1)(d + 2) ones in this submatrix 

of M . Thus, we see

(d + 1)(d + 2)

(2d − 1)
≤ k

and since we may assume k is an integer, we have

⌈

(d + 1)(d + 2)

(2d − 1)

⌉

≤ k.

By relabeling A2, . . . , A2d, we may assume |IntersectionSet({A1, A2}, B)| = k. By rela-

beling B1, . . . , Bd+2, we may assume IntersectionSet({A1, A2}, B) = {B1, . . . , Bk}. Now 

note that M has exactly kd ones in columns 1, . . . , k and rows 3, . . . , 2d.

Let

� := max
3≤i≤2d

{|IntersectionSet({A1, A2, Ai}, B)|}.

Then the number of ones in columns 1, . . . , k and rows 3, . . . , 2d is at most �(2d − 2), 

so we have

� ≥
kd

2d − 2
≥

⌈

(d + 1)(d + 2)

(2d − 1)

⌉

d

2d − 2

and since � is an integer, we have
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� ≥

⌈⌈

(d + 1)(d + 2)

(2d − 1)

⌉

d

2d − 2

⌉

(14)

From (14), it follows that when d ≥ 11, we have � ≥ 5, as desired.

Finally, when d = 4, formula (14) implies that � ≥ 4, so that there exists a set of 

three skew lines A1, A2, and A3 ∈ A that all intersect four skew lines B1, B2, B3, and 

B4 ∈ B. In particular, each of the four Bi must lie on the unique quadric Q determined 

by A1, A2, and A3, since they each intersect this quadric in 3 points. We claim one more 

line in A lies on Q, in which case it follows that every double eight is the union of two 

quadric configurations (Remark 5.4.2). To verify the claim, observe that if no Ai lies on 

Q for i > 3, then these Ai intersect at most two of B1, B2, B3, and B4 ∈ B. Thus,

4
∑

i=1

Bi ·
∑

Ai∈A

Ai =
4

∑

i=1

Bi ·
3

∑

i=1

Ai +
4

∑

i=1

Bi ·
8

∑

i=4

Ai ≤ 12 + 10 = 22,

contrary to the fact that 
∑4

i=1 Bi ·
∑

Ai∈A Ai = 24, since each line in B intersects exactly 

six lines in A. �

Remark 5.4.3. It is worth emphasizing that Theorem 5.0.4 is valid for any smooth surface 

of degree containing a double 2d. While a generic surface certainly contains none, there 

always exist smooth surfaces, including non-extremal ones, that contain double 2d’s over 

an algebraically closed field of characteristic p and of every degree d = pe + 1 > 6.

To see the existence of such non-extremal surfaces, we do a simple dimension count. 

Fix a double 2d {A1 ∪ A2, B1 ∪ B2} on an extremal surface arising as the union of two 

quadric configurations, Q1 = {A1, B1} and Q2 = {A2, B2}.

We claim that the set X of all degree d surfaces in P 3 containing the lines in {A1 ∪

A2, B1 ∪ B2} forms a subvariety of P (Symd(k4)∗) of dimension exceeding the dimension 

of the subvariety of extremal surfaces. That latter dimension is 15, since it is equal to 

the dimension of PGL4(k). Since there is a smooth degree surface in X (our original 

extremal surface), then provided dim X > 15, we can conclude that an open subset of X

consists of smooth non-extremal surfaces containing the given double 2d.

To see that the dimension of X exceeds 15, label the lines in Ai (respectively Bi) by 

Aij (respectively Bij) for 1 ≤ j ≤ d. One can show that if a surface S contains every 

intersection point A1i ∩ B1j for 1 ≤ i, j ≤ d, one additional point on each line of Q1, 

and all points of the form A2i ∩ B2j with 1 ≤ i, j ≤ d − 1, then S will contain the entire 

double 2d. Let D be the linear space in P (Symd(k4)∗) parametrizing surfaces of degree 

d containing these d2 + 2d + (d − 1)2 = 2d2 + 1 points, and note that X ⊃ D. Since each 

point imposes a linear condition, the dimension of D, and hence the dimension of X , is 

at least 
(

d+3
d

)

− 1 − (2d2 + 1) = 1
6 (d − 1)(d − 2)(d − 3). This exceeds 15 whenever d > 6.
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