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ABSTRACT The use of fast in silico prediction methods for protein-ligand binding free energies holds significant promise
for the initial phases of drug development. Numerous traditional physics-based models (e.g., implicit solvent models),
however, tend to either neglect or heavily approximate entropic contributions to binding due to their computational complexity.
Consequently, such methods often yield imprecise assessments of binding strength. Machine learning (ML) models provide
accurate predictions and can often outperform physics-based models. They, however, are often prone to overfitting, and the
interpretation of their results can be difficult. Physics-guided ML models combine the consistency of physics-based models
with the accuracy of modern data-driven algorithms. This work integrates physics-based model conformational entropies
into a graph convolutional network. We introduce a new neural network architecture (a rule-based graph convolutional
network) that generates molecular fingerprints according to predefined rules specifically optimized for binding free energy
calculations. Our results on 100 small host-guest systems demonstrate significant improvements in convergence and
preventing overfitting. We additionally demonstrate the transferability of our proposed hybrid model by training it on the
aforementioned host-guest systems and then testing it on six unrelated protein-ligand systems. Our new model shows
little difference in training set accuracy compared to a previous model, but an order of magnitude improvement in test set
accuracy. Finally, we show how the results of our hybrid model can be interpreted in a straightforward fashion.

SIGNIFICANCE The significance of this paper lies in the development of a novel hybrid model for predicting
protein-ligand binding entropies. Traditional physics-based models often struggle with accurate assessment of entropic
contributions due to computational complexity. Machine learning models offer accuracy but can be prone to overfitting
and lack interpretability. This work integrates physics-based conformational entropies into an architecture that includes
a rule-based graph convolutional layer that generates a new molecular fingerprint suitable for binding calculations. The
model demonstrates significant improvements in convergence and preventing overfitting, and it exhibits transferability
across different systems. Importantly, this research addresses a critical challenge in drug development, potentially
accelerating the initial stages of the process while maintaining accuracy and interpretability in predictions.

1 INTRODUCTION
The drug discovery and development process can span over 12 years and cost over $1 billion (1). The average cost is reported to
be $2.6 billion in 2016 (2). The drug search finds and evaluates candidate compounds capable of activating or deactivating
specific biological targets through conformational changes. The development process involves delivery, toxicity, testing, etc. (3).
High-throughput screening in the early stages of drug discovery uses quick computational methods favoring lower computation
time over accuracy (4). Later stages focus on accuracy at the expense of speed.

Binding entropy plays a major role in determining the change in Gibbs free energy (Δ𝐺) of binding. In larger systems,
the accurate calculation of entropy becomes critical for determining Δ𝐺 due to increased conformational flexibility and
solvent interactions (5). In the initial phases of computer-aided screening, implicit solvent free energy calculation methods
like Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) techniques are frequently employed (6–9). These
methods often ignore the contribution of binding entropy due to its computational complexity (5). Note that these implicit
solvent models capture solvent entropy contributions in their polar and non-polar terms and are reliant on parameters in their
model to estimate this important contribution (10–13).
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From an experimental perspective, the determination of binding entropy is challenging, as it requires accurately measuring
both the binding free energy and the binding enthalpy (14–16). Consequently, there is a scarcity of datasets containing reliable
and accurate experimental values of entropy in the context of binding free energy. For example, PDBBind (17), a reference
dataset for binding free energies, does not contain any experimental values for binding entropy. Likewise, binding entropy can
be difficult to calculate using computational simulation methods because it requires both complete and accurate sampling of
the conformational ensembles of the molecules in their unbound and bound states (14, 15, 18–20). For all of these reasons, it
would be valuable to have a fast and accurate computational method for predicting binding entropies that can be trained using
relatively sparse experimental data.

Molecular fingerprints are a way of encoding the structure of a molecule for machine learning (ML) methods (21). Due
to the varying number of atoms in different molecular systems, it is not feasible to represent atomic information using a
vector of fixed size for all molecules. Most ML methods, however, depend on the input data being of a fixed size. Molecular
fingerprints provide a solution to this problem by representing the many aspects of a molecular system in a vector of fixed size.
Accordingly, fingerprints are context-dependent, as their composition varies depending on their intended usage. For instance, a
fingerprint utilized for the prediction of binding free energy might encompass continuous molecular information (e.g., the
3D coordinates of atoms), while a similar fingerprint utilized for predicting toxicity might require only binary features (e.g.,
whether a given atom is hydrogen). In the nascent stages of molecule encoding, the prevailing methodologies involved the
hashing and identification of a distinct identifier for a given molecule based on its constituent atom types, bonds, and overall
molecular structure (4, 22). In contrast, more recent solutions utilize differentiable molecular fingerprints generated by ML
models (21, 23) that can be used in a wide range of ML algorithms.

Deep learning (DL) models have shown promising results in predicting physical quantities (21, 23). However, one primary
concern is the inherent uninterpretability of DL models, commonly referred to as the “black box” problem. Unlike classical
physics-based models that can provide explicit equations or rules to explain their predictions, DL models function by utilizing
multi-layer weights that are applied to the input data. Consequently, the task of interpreting these layers becomes progressively
more difficult when the model architecture comprises more than two layers. Additionally, DL models are prone to errors and
can overfit the training data, leading to poor generalization and unreliable predictions when applied to new, unseen examples.
Overfitting becomes much more critical for physical quantity prediction problems (e.g., binding entropies) in which the
distribution of training data is narrowly clustered about a certain value, resulting in models that return a narrow range of – or
even identical – predictions for different input data. These issues necessitate the development of physics-guided ML approaches
that can combine the strengths of DL algorithms with the robustness and interpretability of traditional physics-based models.
The current state-of-the-art DL models that have shown the highest performance on chemical and physical problems are graph
convolutional networks. They are inherently compatible with molecule structures (24), which contain an arbitrary number of
bonded atoms. In (21) a graph convolutional network for learning molecular fingerprints was introduced and has been tested on
three physical quantity prediction problems: solubility, drug efficacy, and photovoltaic efficiency, all of which are ratio-based
quantities. However, its results on regression problems, including entropy calculations, show room for improvement (25).

Physics-guided neural networks (PGNNs) (26–28) provide a systematic framework for combining the scientific knowledge of
physics-based models with neural networks to advance scientific discovery. The core idea is to feed the output of a physics-based
method into a DL model such that the error of the hybrid model compared to the reference (experiment) is minimized. In this
study, we improve the performance of an earlier PGNN model (25) by employing a new molecular fingerprint that is specifically
designed and optimized for binding free energy calculations. This paper is organized as follows: we first explain the DL models
used in this study, followed by an introduction of the physics-based hybrid model. Next, our novel neural network layer is
discussed in detail. The remainder of the paper focuses on the evaluation and interpretation of our model results.

2 MATERIALS AND METHODS
2.1 Deep Learning Models
This section introduces four DL models used in this study (Table 1). In our previous research (25, 27, 28), the goal was to create
a hybrid model that combined both atomic features (micro-scale) and other physics-based model outputs (macro-scale) into a
single coherent DL architecture. The results showed more robust and accurate models with a high degree of interpretability.
The core model that was integrated along with the physics-based model output is a graph convolutional network (GCN) (21).
We consider the GCN model as our reference, as it provides a state-of-the-art DL model that is able to transform a molecule
into a differentiable fixed-size vector. By feeding this fingerprint to a a simple feed-forward, fully connected network, it is
possible to predict physical quantities. All data-driven models take the atom feature matrix (𝐹) and adjacency list as input and
predict the entropy 𝑦. The physics-guided models, however, consider not only 𝐹 and the adjacency list, but also incorporate
physical parameters (𝑃).
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Model Name Model Description Featurizer
Graph Convolutional Network
(GCN)

This model is an implementation of (21) and is available in
DeepChem (29). This model is the reference of this study
and our previous studies (25, 27, 28).

Original Graph Con-
volution Featurizer

Physics-Guided Graph Convolu-
tional Network (PGCN)

This model integrates GCN with physical parameters in
the last layer. This model was previously introduced in
(27) and has been used in predicting binding free energy

Original Graph Con-
volution Featurizer

Rule-Based Graph Convolutional
Network (RGCN)

The novel model introduced in this paper that utilizes the
novel fingerprint to predict the entropy.

Updated Graph Con-
volution Featurizer

Physics-Guided Rule-Based Graph
Convolutional Network (PRGCN)

The novel model introduced in this paper integrated with
physical parameters in the last layer.

Updated Graph Con-
volution Featurizer

Table 1: Descriptions of the different DL models and featurizers used in this study.

2.2 Rule-based Graph Convolutional Layer
In 2015, (21) introduced a new molecular fingerprint created with a GCN. This improvement provided the opportunity to
employ DL models in biophysics and biochemistry challenges (30). The GCN model demonstrated accurate predictions in
classification problems (31). However, it was limited to applying only one mathematical operation to the features (summation).
On the other hand, neither bond types nor interatomic distances were considered in the GCN. These constraints created a barrier
for using the model in regression problems. The proposed molecular fingerprint addresses these constraints by using different
mathematical operations and considering bond type as a one-hot vector.

A featurizer is used initially to create an atom feature matrix (𝐹) for each molecular system as the input data for the DL
models. The original GCN featurizer (32), considers 74 binary features and one continuous. The RGCN featurizer omits 45
atom types to reduce the number of binary features and adds atom mass, atomic number, and 3D coordination of atoms as new
features. In this regard, 34 features are considered in the input atom feature matrix (𝐹). As the atom feature matrix (𝐹) is the
concatenation of all atom feature vectors ( 𝑓𝑖), its size is 𝑁 × 𝑀 , where 𝑁 is the number of atoms and 𝑀 indicates the number
of features we considered for each atom (and consequently the length of the atom feature vector ( 𝑓 )). The core part of the
molecular fingerprint is the layer that transforms the input feature matrix (𝐹) into a new continuous matrix. Then, the new
matrix is flattened by applying the sigmoid function to each atom feature vector ( 𝑓 ′) individually and then summing up all the
sigmoid output vectors. We call this layer the Rule-Based Graph Convolution Layer (RGCL) because the layer combines the
atom features based on different rules: summation over binary features (e.g., atom type) and multiplication for continuous
features (e.g., partial charge). As shown in Figure 1, there are two weights defined in this layer. The weight 𝑤𝑠𝑒𝑙 𝑓 is applied on
each atom feature vector ( 𝑓𝑖) individually. The shape of this weight depends on the output channel size; in this study, the output
channel size is 20. Accordingly, the shape of RGCL output matrix will be 𝑁 × 20, and the shape of 𝑤𝑠𝑒𝑙 𝑓 is 34 × 20. 𝑤𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

indicates the weight multiplied by the combination of the atom itself and each neighbor feature vector. RGCL transforms the
atom feature space into a continuous, differentiable and compact space so the model can train on 𝐹′. Next, in the sigmoid
transforming layer, each 𝑓 ′ is mapped to a vector of length 1024 that is the final fingerprint.

In addition to summation, which was originally used in (21), multiplication and Euclidean distance are used in this research.
Specifically, we multiply the partial atomic charges in the RGCL because the strength of the electrostatic interaction between two
charged particles depends on the product of their charges (as in Coulomb’s Law), rather than the sum. Likewise, the Euclidean
distance between two atoms is a more suitable physical feature for the RGCL than a summation of the atoms’ coordinates
because the sum depends on the origin and orientation of the coordinate axes (i.e., a sum of two coordinates is generally not
translationally or rotationally invariant). Table 2 lists all the features and the applied rules.

In (27, 28), we introduced a new DL methodology that considers both atom features (𝐹) and molecular physics parameters
(𝑃) together to compensate for physical methods error. The same architecture is applied in this network, and Figure 1 indicates
that the entropies calculated by VM2 (see next section) are concatenated to the model variable, which is derived from feeding
fingerprint to the stack of dense layers. In this context, the role of the RGCL and fingerprint can be viewed as filling the gap
between the experimental data and the (purely) physics-based model.
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Figure 1: Detailed view of the PRGCN model architecture. The figure depicts the entire physics-guided graph convolutional
network designed using the RGCL as the first layer to transform the atom feature matrix (𝐹).

2.3 VeraChem Mining Minima (VM2)
VM2 (33) uses normal mode-based approaches, both to drive conformational searches (mode-distort-minimize) and for the
computation of free energies (using a modified harmonic approximation). VM2 utilizes common molecular mechanics (MM)
potentials to provide molecular potential energy surfaces. In this work, the General Amber force field (GAFF) (34) was used
to parameterize host and guest structures, and the Amber ff99SB (35) force field was used to parameterize BRD4 protein.
VM2 uses an implicit solvent model to provide an estimate of the solvation free energy of a given conformation. Following
the parameterization, the partial atomic charges are neutralized using VM2’s vcharge program. Then, VM2 attempts to find
as many conformers as possible, keeping track of calculated energies. This search algorithm (Tork) is designed to be both
exhaustive and efficient in exploring the conformational space (36). In host-guest calculations, both the host and guest are fully
flexible, but in protein-ligand calculations only part of the protein is flexible (mobile or live atom set), a separate part is present
but rigid (fixed or real atom set), and the rest of the protein (beyond a distance cutoff from the ligand) is not included at all.
After every search step, a relaxation step is performed to allow the system to move toward the nearest local energy minimum.
Once a given iteration of this process has converged to an energy minimum, the resulting conformation is recorded and checked
for similarity in energy to others (and combined if similar). VM2 then calculates an approximate local configuration integral
that provides that conformation’s contribution to the binding free energy. The cumulative binding free energy prediction is
updated in an iterative fashion until the conformer search reveals no new energy minima or the search time has been exhausted.
The resulting free energy prediction is computationally inexpensive while maintaining reasonable accuracy and correlation with
experiment. However, for this work, we focus just on the entropies (i.e., host, guest, and host-guest complex) predicted by VM2.
It should be noted that the entropies reported by VM2 are conformational entropies of the solute molecules only and do not
include any solvent entropies due to the use of implicit solvation.

4 Manuscript submitted to Biophysical Journal



Biophysical Journal Template

Feature name Abbreviation Type Operand (rule)
Atom type C C Binary sum
Atom type N N Binary sum
Atom type O O Binary sum
Atom type S S Binary sum
Atom type F F Binary sum
Number of bonded Hydrogen H Integer sum
Atom type unknown Unk Binary sum
Number of atoms bonded Atom degree One-hot vector [0-3] sum
Implicit valence Implicit Valence One-hot vector [0-5] sum
Number of radical electrons Electrons Integer sum
Atom formal charge Formal charge Integer multiplication
Atom hybridization (𝑠𝑝, 𝑠𝑝2, ...) SP One-hot vector [0-4] sum
Is atom aromatic Aromatic Binary sum
Atom mass Mass Float sum
Atomic number Atomic number Integer sum
Atomic 3D position position 3 Integers Euclidean distance
Bond type (single, double, aromatic, other) Bond One-hot vector [0-3] N/A*

Table 2: Micro-scale features considered for each atom in the featurizer. Where applicable, the number of one-hot vector
elements is indicated to the right. The bond type feature is not considered an individual atomic feature, as it represents a shared
characteristic between two bonded atoms. Instead, it is concatenated with combined features and subsequently multiplied by
𝑊𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 .

2.4 Datasets
We collected experimental data on 100 host-guest systems from a variety of sources, including the SAMPL challenge exercises,
which are held periodically to assess community progress in the in silico prediction of binding affinities and related quantities
(37–47). The host molecules found in these studies are octa-acid (OA), cucurbituril (CBn), or cyclodextrin molecules (Figure
2), and the guest molecules are typically small organic molecules. Additionally, we used data obtained for the BRD4 protein
complexed with six different ligands (34, 48–59) to test the transferability of our models to larger structures. Binding entropies
are calculated from the experimental data using the equation −𝑇Δ𝑆 = Δ𝐺 − Δ𝐻, as entropy is not measured directly in
the experimental studies. The probability density of the entropy values and the corresponding kernel density estimation are
presented in Figure 3. The host-guest dataset is divided at the rate of 80:20 for training and testing the DL models, respectively.

Figure 2: SAMPL hosts used in this research (from left to right): OA, CB7, CB8, 𝛼-cyclodextrin, 𝛽-cyclodextrin.
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Figure 3: Distribution of the experimental binding entropies from the host-guest dataset.

3 RESULTS AND DISCUSSION
3.1 Model Training and Evaluation
We first compared the performance of the four models using a 5-fold cross-validation over the host-guest systems. Figure
4 depicts the convergence steps in the training process through monitoring of the training loss (RMSE). It is immediately
apparent that the data-driven models (GCN and RGCN) have smaller RMSEs than the physics-guided models (PGCN and
PRGCN). Moreover, the data-driven models demonstrate only small improvements in RMSE – suggestive of overfitting – while
the physics-guided models start with RMSEs that are comparable to the predictions made by the physics-based VM2 model
(13.83 kcal/mol RMSE over the entire host-guest dataset) and then subsequently converge to RMSEs that are comparable, albeit
slightly higher than those of the data-driven models. This suggests that the “guidance” from a physics-based model is able to
effectively regularize the DL models and reduce the potential for overfitting of the training data.

Figure 4: Training losses for each of the tested models on a 5-fold cross-validation set of the host-guest binding data.
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In order to gain a deeper understanding of the obstacles inherent in physical quantity prediction, it is instructive to examine
the predictive performance of these models on both the training and test sets (following the completion of the training process).
This post-training analysis can provide valuable insights into the efficacy and robustness of a given model. Figure 5 shows that
the data-driven models – regardless of fingerprint used – yield predictions that vary little, if at all, with different input data. The
likely reason for this behavior is that the models’ goal is to minimize the loss function, and an optimal RMSE can be obtained
by having the predictions close to the mean of the training data. Indeed, the predicted outputs of these models appear to be quite
close to the mean binding entropy of the full host-guest dataset (see the kernel density estimate in Figure 3). This provides
further evidence that these models are overfitting the training data. In contrast, the physics-guided models yield predictions that
are of approximately the same range as the experimental data, albeit with considerable scatter.

Figure 5: Comparison of experimental and predicted binding entropies for the 𝐾 = 1 test set. The red line (labeled Y) represents
perfect agreement with the experimental data.

The above observations are corroborated by examining the test set RMSEs and combined training and test set correlation
coefficients shown in Table 3. Indeed, we find that the RGCN model predicts the exact same binding entropy, regardless of the
input data, as both correlation coefficients are zero. The GCN model fares better, with the largest positive correlation coefficient
on average, but we again note that its predictions vary by only very small amounts from the training set means (Figure 5). Both
physics-guided models have correlation coefficients that are mildly positive (Table 3). Moreover, we find that the PRGCN
has a more consistent RMSE across the training and test sets compared to the PGCN, as well as a somewhat larger Pearson
correlation coefficient (Table 3). In contrast, VM2, the physics-based model that provides input for both the PRGCN and PGCN
models, yields binding entropy predictions that have an RMSE of 13.83 kcal/mol across the entire dataset, with a Pearson
correlation of -0.06 and a Kendall rank correlation of -0.06.

Model Training loss Test loss Pearson correlation Kendall rank correlation
PRGCN (physics+data) 3.80 ± 0.27 3.98 ± 0.93 0.18 ± 0.07 0.10 ± 0.07

RGCN (data-driven) 1.91 ± 0.09 1.88 ± 0.36 0.00 0.00
PGCN (physics+data) 3.14 ± 0.03 4.88 ± 0.12 0.11 ± 0.07 0.08 ± 0.08

GCN (data-driven) 1.89 ± 0.07 1.91 ± 0.35 0.33 ± 0.19 0.20 ± 0.07
Table 3: Training and test results from 5-fold cross-validation on 100 host-guest systems. The training and test losses are given
in kcal/mol. The correlation coefficients are computed for the combined training and test set of each fold and then averaged.

These results highlight the potential pitfall of overfitting the training data when using DL models in physical quantity
regression. There are many solutions to overcome the problem of overfitting (60, 61), but the solution we have presented here is
to feed predictions from a computationally inexpensive physics-based model to the DL model.
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3.2 Model Transferability
We next assessed the transferability of the physics-guided model using the new fingerprint (PRGCN) against that of the
physics-guided model using the previous fingerprint (PGCN). To do this, we trained it on all 100 host-guest structures and then
tested it on six structures of a large protein (BRD4) bound to different ligands. From these results (Table 4), we conclude that the
PRGCN model is more robust and can successfully learn how to predict physical quantities even with small and few structures.
The rationale behind this relies on two fundamental differences between the RGCN and the GCN. First, the RGCN has many
fewer (order of 1/100) weights compared to the GCN, and this should help prevent overfitting of the model. Second, the RGCN
utilizes different mathematical operations applied to the features, in contrast to the GCN, which only applies summation over
features. Therefore, the RGCN may be more able to find physical equations/relationships within the network weights. As
mentioned above, the RGCN is primarily designed for regression, and our goal is to make a model capable of learning physical
calculations in depth so it will be robust across different molecular systems.

Model Training loss Test loss

PRGCN 2.77 2.95
PGCN 2.12 24.66

Table 4: Results of training the physics-guided models on the full 100 host-guest systems and then testing on 6 protein-ligand
systems. The training and test losses are given in kcal/mol.

3.3 Model Interpretation
DL models are often referred to as “black boxes” because interpreting what the hidden layers are responding to within the input
data and how they are contributing to a given model’s predictions can be challenging. The ultimate goal of research such as the
current work is to use DL to discover promising candidate drug molecules for human health. Because an incorrect prediction
in this field would be costly – in terms of additional time spent on research, financial resources spent on development and
testing, and the like – there is considerable value in having some sense of how a given model arrives at its predictions. Here we
explore different ways of interpreting how our physics-guided models make their predictions, with a particular focus on the
more transferable PRGCN model.

As mentioned before, the core part of our model predictions relies on the graph convolution layer that transforms the input
feature matrix (𝐹) to a new space (𝐹′). Therefore, we focus specifically on the GCN and RGCN layers. The GCN layer (GCL)
proposed by (21) defines a weight per neighbor. Therefore, in our study when considering 10 nearby atoms and 64 as the output
channel, there are 10 × 75 × 64 weights defined in the GCL. In contrast, the RGCN layer (RGCL) assumes only one weight
matrix for an atom itself and one weight matrix for any bonded atoms. In this study, the output channel was 20, which results in
2 × 38 × 20 weights defined in the RGCL. Overall, there are 102144 weights in the GCL and just 1440 weights in the RGCL.
The comparison between number of weights in both layers outlines the importance of layer architecture. Although the RGCL
contains fewer weights, we find that it is more robust and accurate . This is in large part why we developed a new neural network
architecture instead of using an off-the-shelf architecture.

One basic interpretation of a neural network model can come from the magnitudes of the weights. Each atom feature is
multiplied by multiple weights, and the magnitudes of the weights implies the importance of the feature from the model’s point
of view. It is notable that this assumption is applicable in this study’s layers because they transform the feature matrix (𝐹)
using the multiplication of weights to features. The GCL (21) assumes a specific weight for different number of neighbors.
In this regard, it is not straightforward to extract the magnitude of overall weights applied to each feature, and therefore we
only considered the weight that is applied to the atom itself. In contrast, the RGCL has only two weights that are applied to
the atom itself and its neighbors’ features, respectively. This simplification not only improved the result considerably but also
enhanced the layer interpretation. Figure 6 shows the magnitude of each feature in each layer. Although both models have
slightly different trends among their feature weights, the variation of weights in the PRGCN model is substantially greater than
in the PGCN model. The precise meaning of these numbers is not explicit, but it suggests that the RGCL may be better able to
distinguish between different features than the GCL.
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Figure 6: Mean and standard deviation of weights applied to atom features individually. The numbers in chart show the absolute
mean value of weights applied to each feature.

To further expand our understanding of the model, we took an altogether different approach. We repeatedly trained the
PRGCN model for 25 epochs, but excluded a different input feature each time. Figure 7 demonstrates that all of the features are
important to the PRGCN’s model accuracy, as removing any of them yields an increase of RMSE (test loss) from 4.04 to ∼4.15
kcal/mol. Moreover, the differences in RMSE between removing any one of the features arfe relatively small (∼0.001 kcal/mol)
compared to the overall increase in RMSE (∼0.1 kcal/mol). We were unable to discern any strong correlation between the
results shown in Figures 6 and 7, however, as there are approximately as many instances of a larger feature weight corresponding
to a larger increase in RMSE when that feature is removed as there are of the converse.

Figure 7: Test set loss (in kcal/mol) of the PRGCN model after excluding each feature during training. Before removing any
features, the baseline test set loss is 4.04 kcal/mol.

Manuscript submitted to Biophysical Journal 9



A. Risheh and A. Rebel

4 CONCLUSION
Purely data-driven models can outperform physics-based models but are always at risk of overfitting the training data. Another
critique is that the results of data-driven models often lack meaningful interpretation due to the “black box” characteristics
of ML. When data-driven models are coupled with physics-based models, the resulting hybrid model inherits high accuracy
from the former and interpretability from the latter. Earlier works examined the application of such hybrid models to predict
binding enthalpies, the other primary component of binding free energies. This work differs by looking at the application of
hybrid models to binding entropy predictions, using a new molecular fingerprint and computationally inexpensive physics-based
entropy predictions. Our study suggests that our novel neural network layer could overcome the challenges concerning regression
problems in biochemistry and biophysics. The results of this model show two main areas of improvement relative to previous
models. First, the model’s interpretability is improved due to a smaller number of weights and also integration with physics-based
model output. Second, based on the results from testing the model on large molecular systems never used in training, the
model’s transferability is also improved.

There are many possible avenues for future development of this model. For example, the physics parameters that are
concatenated to the model variable could be optimized. One possible approach would be to add different physics parameters and
check the accuracy and parameter coefficients (model weights multiplied on the parameters) to see if they are used efficiently
and correctly in the prediction. In addition, the loss function plays a critical role in determining the weights of the model. In this
regard, providing more complex loss functions that consider physical consistency of the model could improve the model’s
results and interpretability significantly.

In conclusion, DL models hold promise for speeding up the drug discovery process by refining the accuracy of physics-based
models, especially those that are faster but less accurate than ab initio methods. Indeed, the network architecture introduced
here could be utilized on a large number of structures and predict different components of binding free energy or predict binding
free energy directly. Nonetheless, for these DL models to be considered a viable approach in this field, it is crucial to improve
both their accuracy and their ability to work seamlessly with existing methods with a high degree of interpretability.

Data Availability Statement: Both the data and model information can be found publicly available online at dataset in
GitHub and models in GitHub.
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