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ABSTRACT
Structure-based drug discovery aims to identify small molecules

that can attach to a specific target protein and change its function-

ality. Recently, deep learning has shown great promise in gener-

ating drug-like molecules with specific biochemical features and

conditioned with structural features. However, they usually fail

to incorporate an essential factor: the underlying physics which

guides molecular formation and binding in real-world scenarios.

In this work, we describe a physics-guided deep generative model

for new ligand discovery, conditioned not only on the binding site

but also on physics-based features that describe the binding mecha-

nism between a receptor and a ligand. The proposed hybrid model

has been tested on large protein-ligand complexes and small host-

guest systems. Using the top-𝑁 methodology, on average more

than 75% of the generated structures by our hybrid model were

stronger binders than the original reference ligand. All of them

had higher Δ𝐺𝑏𝑖𝑛𝑑 (affinity) values than the ones generated by

the previous state-of-the-art method by an average margin of 1.88

kcal/mol. The visualization of the top-5 ligands generated by the

proposed physics-guided model and the reference deep learning

model demonstrate more feasible conformations and orientations

by the former. The future directions include training and testing

the hybrid model on larger datasets, adding more relevant physics-

based features, and interpreting the deep learning outcomes from

biophysical perspectives.
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1 INTRODUCTION
Drug discovery plays a pivotal role in combating diseases, improv-

ing patient outcomes, and extending human life expectancy. How-

ever, the process of discovering effective drugs has traditionally

been a costly, time-consuming, and resource-intensive endeavor,

often characterized by a high rate of failure [24]. The interaction

between a protein and a ligand, the small molecule that binds to the

protein, is a fundamental event in drug action. It involves intricate

molecular recognition and dynamic interplay between the ligand

and the protein’s active site or binding pocket [15]. Traditional

experimental techniques such as X-ray crystallography and nuclear

magnetic resonance (NMR) spectroscopy have provided valuable

insights into the three-dimensional structures of protein-ligand

complexes. However, these methods are often laborious, expensive,

and challenging to apply to a wide range of proteins and ligands

[30]. The emergence of computer-aided drug design has revolution-

ized the landscape of pharmaceutical discovery, offering innovative

tools and methodologies that expedite the drug development pro-

cess while reducing costs and minimizing risks [13]. Through the

application of molecular docking, molecular dynamics simulations,

and quantitative structure-activity relationship (QSAR) modeling,

researchers can probe the energetics, dynamics, and binding affinity

of potential drug candidates within the target protein’s binding site.

These computational tools can enable the exploration of vast chem-

ical space, facilitating the identification of promising compounds

and the optimization of their binding properties [13].

The search space for possible molecular structures is enormous

and complex. It can be narrowed down by validating candidate

molecules based on their chemical constraints, such as bond orders,

molecular conformation, valences, etc. The space gets much smaller
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when searching for a valid molecule that fits into a specific bind-

ing pocket to fulfill particular purposes. e.g., receptor inhibition in

disease treatments and drug delivery mechanisms. Discovering a

new molecular structure breaks down into two tasks: (1) sampling

promising compounds from a constrained chemical space and (2)

validating them to see if they bind on the target site as hypothe-

sized. Step (1) expands over a timeline of 3-5 years. This shortfall

creates a need for computational systems that could traverse this

restricted chemical search space intelligently while also screening

those compounds virtually for the possibility of successful bind-

ing. This could result in significant cost savings and faster drug

development timelines.

The first work [20] to introduce deep learning in structure-based

drug discovery was able to score predefined molecular (ligands)

poses to dock into a protein (receptor) binding site using a pose scor-

ing function based on a convolutional neural network. The receptor

and the ligand were represented as atomic density grids using a

molecular grinding tool [27]. Deep learning approaches since then

have been applied to various tasks ranging from pose optimiza-

tions [20] to binding affinity predictions [8], all of which are being

used for optimal molecular docking. However, these works are only

helpful to screen or score structures when candidate structures are

available. For producing candidate structures, initial approaches [9,

3, 22] utilized SMILES string notations [29] to leverage generative

language models, which were improved via reinforcement learn-

ing to lead the generative process toward desired cheminformatic

characteristics [10, 18]. Despite all the successes, SMILES strings,

due to their non-permutation invariance, fail to capture the full

concept of chemical similarity. Additionally, their deficiency in

conveying conformational information restricts their usefulness in

the field of structure-based drug discovery. To overcome this issue,

graph-based molecular representations were used, which leveraged

Graph Neural Networks to assimilate features from the molecular

structures and produce new structures [23, 6]. Nonetheless, the

generated bonds were independent, which led to structures with

invalid valences. Also, the graph-matching loss functions are com-

putationally expensive unless approximations are made [23], which

leads to a sub-optimally trained model.

Molecular data representations are often handled in a 2D space,

which is counterintuitive to what exists in a reality where bonds can

rotate to a varied degree giving different conformations of the mol-

ecule that can affect its intermolecular interactions, such as binding

to a receptor. To overcome these challenges, a 3D representation of

a molecule was devised using atomic density grids [25]. Each voxel

corresponds to a specific location in space, i.e., they are coordinate

frame dependent. They are also permutation invariant, making

them computationally less expensive for comparisons. In [21], 3D

density grids are employed for training a conditional variational au-

toencoder with conditional protein receptor and input ligand pairs

in order to find novel structures. While this was a significant step

toward generating novel drug candidates, they failed to incorporate

fundamental physics-based characteristics of the binding, particu-

larly the protein-ligand binding free energy, including the enthalpic

(polar, non-polar, and Van der Waals energies) and entropic com-

ponents. While structural information, such as bond connectivity

and atom arrangements, forms the basis for molecular represen-

tations, they do not capture the intricate and dynamic nature of

chemical systems. Incorporating physics-based information is es-

sential because it provides insights into the energetics, stability, and

reactivity of molecules. Physics-based information encompasses

molecular forces, intermolecular interactions, and thermodynamic

considerations, which play a crucial role in determining the stability

and behavior of molecular structures. By integrating physics-based

principles, such as molecular mechanics, quantum mechanics, and

statistical thermodynamics, into molecular generation approaches,

researchers can better explore the vast chemical space and iden-

tify novel, energetically favorable configurations. We hypothesize

that along with structural data, physics-based features can improve

the conditional effect to improve the quality of the learned latent

chemical space and, in turn, generate novel structures with higher

binding affinity values, as per our knowledge making this the first

study to do so . Hence, our contribution is as follows:

• Aggregate experimental data from receptor-ligand binding

simulations to form physics-based features for each protein-

molecule pair in the PDBBind dataset.

• Create a hybrid conditional variational autoencoder that uti-

lizes both the structural grids and the physics-based features

to improve the quality of the learned chemical latent space.

• Compare and evaluate the generated molecules from the

hybrid model using Δ𝐺𝑏𝑖𝑛𝑑 (affinity) values.

2 MATERIALS AND METHODS
2.1 Physics-Based Features
Implicit solvent modeling is one of the most popular computational

methods that consider the solvent (usually water) as one contin-

uum component. Within this framework, the calculation of Δ𝐺𝑏𝑖𝑛𝑑
could be conducted more efficiently compared to other computa-

tional models, e.g., explicit solvents. Poisson-Boltzmann (PB) and

generalized Born (GB) models are the two main classes of implicit

solvent models that have been used widely in static and dynamic

simulations of protein-ligand interactions [19]. In this work, GB-

NSR6 [4, 5] and PBSA [12] in AmberTools20 [2] are used for fast

yet accurate calculation of binding free energy (see Table 1). By

integrating implicit solvents into the deep learning model, it is more

likely to generate feasible and strong binders.

2.2 Atom Type Vector
In order to train the deep neural network, molecular data is con-

verted into a vector such that each atom is a vector and each mol-

ecule is a vector of atom-type vectors. We follow the same atom

typing scheme as described in [21], where atom types are assigned

using a set of 𝑁𝑝 atomic property functions 𝑝 and value ranges for

those properties 𝑣 as shown in Table 2. The atomic properties used

here were element (different value ranges for ligands and receptors),

aromaticity, H bond donor and acceptor status, and formal charge.

For every atom 𝑎, a one-hot encoded vector 𝑝 is created for each

property, and then 𝑁𝑝 vectors are concatenated to create a final

atom type vector 𝑡 ∈ R𝑁𝑡
. Hence, we get a 1 x 18 sized type vector

for every atom.
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Figure 1: Physics Guided Generative Model Pipeline Overview. First, the input complex of docked protein and ligand are
converted to atom-type vectors and subsequently into atomic density grids. Then our physics-guided CVAE model’s encoder
branches take the input complex and the protein receptor’s density grids and the physics-based features as inputs. The input
encoder produces a probabilistic latent vector sampled from 𝑧 ∼ 𝑁 (𝜇, 𝜎), and the conditional encoder gives an encoded vector 𝑐,
which is then concatenated to 𝑧 and fed into the decoder to produce an output generated ligand density grid. This density grid
is then finally converted to a 3D molecular structure by atom fitting and bond inference algorithms.

Parameter Description Method Count
1-4-

EELEC

1-4 Electrostatic energy GB 3

VDWAALS Van der Waals energy PB 3

EELEC Electrostatic energy GB&PB 6

ESURF Non-polar solvation energy GB 3

EGB Polar solvation energy GB 3

ECAVITY Non-polar solvation free energy PB 3

EPB Reaction field energy PB 3

Etot Computational calculated ΔΔ𝐺 GB&PB 6

Enthalpy Total energy of a system GB 1

Entropy Entropy 𝐸∗ 1

Δ𝐺𝑏𝑖𝑛𝑑 Binding free energy GB 1

Table 1: Physics-based features calculated for complex, pro-
tein, and ligand structures using MM/PB(GB)SA tool. ∗ This
feature is calculated as the difference between the experi-
mental Δ𝐺𝑏𝑖𝑛𝑑 and computational Enthalpy values. See [1]
for details.

2.3 Molecule Density Grids
After atom-typing a molecule, it is essential to select a represen-

tation that embodies the molecular 3D spatial characteristics. We

utilized a molecular gridding library called libmolgrid [27] that

creates a molecular density grid where atoms are represented as

continuous densities with truncated Gaussian shapes. Libmolgrid

defines the density value of an atom at a grid point by a kernel

function 𝑓 : R × R→ R that takes as input the distance 𝑑 between

Atomic property Value range Num.
values

Ligand element B, C, N, O, F, P, S, Cl, Br, I, Fe 11

Receptor element C, N, O, Na, Mg, P, S, Cl, K, Ca, Zn 11

Aromatic False, True 2

H-bond acceptor True 1

H-bond donor True 1

Formal charge -1, 0, 1 3

Table 2: Atom typing property functions and their value
ranges.

the atom coordinate and the grid point and the atomic radius 𝑟 :

𝑓 (𝑑, 𝑟 ) =
{
𝑒−2(

𝑑
𝑟
)2 , 𝑑 ≤ 1.5 𝑟

0, 𝑑 > 1.5 𝑟
(1)

𝑟 was fixed to 1.0 Å for all atoms, and the dimension of the cubic

grid to 23.5 Å with 0.5 Å resolution to maintain consistency with

[21], which results in spatial dimensions of 𝑁𝑋 = 𝑁𝑌 = 𝑁𝑍 =

48. Also, 𝑁 is the total number of atoms. To save computational

resources, only the atoms that fit within the spatial extent of the

grid are represented.

2.4 Atom Fitting and Bond Inference
As our generative model is trained with density grid format data, its

predictive output is also a density grid. Now the problem remains

of converting a reference density grid 𝐺𝑟𝑒 𝑓 back into a discrete 3D

molecular structure, which does not have an analytical solution

[21] and is solved with the following optimization problem:



BCB ’23, September 3–6, 2023, Houston, TX, USA Sagar et al.

𝑇 ∗,𝐶∗ = arg min

𝑇,𝐶

| |𝐺𝑟𝑒 𝑓 − 𝑔(𝑇,𝐶) | |2 (2)

where 𝑔 is the function to convert a molecule’s atom type vector

𝑇 and atomic coordinate vector 𝐶 into density grid 𝐺 . The initial

locations of atoms can be found by selecting the grid points with

the largest density values. By using libmolgrid, we can compute

the grid representation of an atomic structure and backpropagate a

gradient from grid values to atomic coordinates. We used the algo-

rithm defined in [21] that combines iterative atom detection with

gradient descent to find the best set of atoms that fit that reference

density grid. Once the atoms and their coordinates are known, the

only thing left is to assign bonds between the atoms to form valid

molecules. This is achieved by a bond inference algorithm which

is based on customized bond perception routines implemented in

OpenBabel [17]. It uses a sequence of inference rules that add bond

information and hydrogens while trying to satisfy the constraints

defined by the atom types.

2.5 Deep Generative Model
The main reference [21] proposed a generative deep learning model

based on a conditional variational autoencoder (CVAE) [26], which

consisted of an input grid encoder, a conditional receptor grid en-

coder, and a ligand grid decoder. The objective was to learn a sample

from a distribution 𝑝 (𝑙𝑖𝑔 |𝑟𝑒𝑐), where 𝑟𝑒𝑐 is the binding site density

grid and 𝑙𝑖𝑔 is the density grid of the ligand that binds to it. Latent

sample z was drawn from a standard normal distribution under the

assumption that the binding interactions might follow it as a prior.

In the generative process, they first drew a sample 𝑧 ∼ 𝑝 (𝑧) and
then generated 𝑙𝑖𝑔𝑔𝑒𝑛 ∼ 𝑝𝜃 (𝑙𝑖𝑔 |𝑧, 𝑐), where 𝑝𝜃 is the decoder neural

network and, 𝑐 is the encoding of the receptor from the conditional

encoder.

2.6 Evaluation Metric
To compare the quality of the generated ligands by the original and

our hybridmethods, we employed ametric called theΔ𝐺𝑏𝑖𝑛𝑑 , which
is the binding affinity value between the receptor and ligand and

refers to the change in Gibbs free energy associatedwith the binding

of a ligand to a receptor or target molecule (See Fig.2). A negative

Δ𝐺𝑏𝑖𝑛𝑑 value indicates a favorable binding interaction, suggesting

a stronger affinity between the ligand and the receptor. Conversely,

a positive Δ𝐺𝑏𝑖𝑛𝑑 value indicates a weaker or unfavorable binding

interaction [7]. We utilized the GNINA package [14] to calculate

the affinity values for the receptor-ligand pairs generated by both

methods and then compared the values for the Top-N ligands. Top-

N refers to the top𝑁 generated ligands that have the highest affinity

values.

2.7 Dataset
PDBBind: The PDBBind database [28] is a free and widely used

resource in the field of computational biochemistry and drug dis-

covery. It serves as a comprehensive collection of experimentally

determined protein-ligand complexes obtained from the Protein

Data Bank (PDB). The dataset contains detailed structural informa-

tion about the interactions between proteins and small molecules,

ΔGbind

Figure 2: Visualizing the Δ𝐺𝑏𝑖𝑛𝑑 between a receptor (protein)
and a ligand (molecule).

including their three-dimensional coordinates, binding affinities,

and other relevant properties. The PDBBind dataset is valuable for

a range of research tasks, such as developing and validating scor-

ing functions for virtual screening, understanding protein-ligand

binding mechanisms, and training machine learning models for

structure-based drug design. In this work, we use a subset of the

PDBBind-v19 known as the refined set, which has undergone addi-

tional processing and filtering to improve its quality and reliability

for research purposes. Among the original 3,562 receptor-ligand

complexes, 2,728 pairs had all the required features and experimen-

tal values available. This dataset was split into training and testing

sets randomly with a ratio of 80:20, where the whole testing set

was used to negate the possibility of overfitting and evaluate the

model’s training performance in terms of Reconstruction Loss, KL

Divergence Loss, and Steric Loss (See Fig.4). Randomly selected

conditional receptors from the test set were also used to generate

candidate ligand structures from the predicted density grids, which

were evaluated using GNINA by calculating their Δ𝐺𝑏𝑖𝑛𝑑 values

with respect to the conditional receptors (See Fig.5).

Host-guest systems: The small and rigid host-guest systems [16]

introduce chemical hosts (size: ∼ 100 non-hydrogen atoms) with

pockets that enable strong binding to the corresponding compounds,

called guests. Hosts bind their guests via the same basic forces that

proteins used to bind their ligands, so they can serve as simple

test systems for computational models of non-covalent binding.

Moreover, their small size and, in many cases, their rigidity can

make it feasible to sample all relevant conformations. In this work,

structures named 𝛼-cyclodextrin and 𝛽-cyclodextrin are selected

from host-guest systems to test the transferability of the proposed

hybrid model by generating guest candidates for these two host

molecules.

3 RESULTS AND DISCUSSION
3.1 Hybrid Model
This paper demonstrates how physics-based features could improve

a deep generative model’s ability to create novel higher-affinity

ligands conditioned to a receptor protein. The rules of physics gov-

ern the universe, and they sure govern how molecules are formed

and how they interact with each other. With this hypothesis, we

created a hybrid model improving upon the work done by [21] to

include physics-based features in the conditional input to improve

the quality of the learned latent chemical space with the CVAE. To

achieve this, we created another branch conditional encoder (See

Fig.3) for the physics-based features described in Section 2.7. This

encoder maps the raw features concatenated with the output of
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the existing receptor conditional encoder to a dimension of 128.

This allows the model to learn how to fuse conditional receptor

encoding with the physics-based features through backpropagation

during training.
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Figure 3: Schematic Architecture of the Physics-Guided Gen-
erative Model

The final receptor and physics-based feature conditional encod-

ing concatenate with the input encoding in the same way as the

original work. Using this modified architecture design also enables

us to utilize previously trained weights for the rest of the seg-

ments of the model via transfer learning. Consequently, this gives

a great starting point for the weight initialization of our hybrid

model, helping us reach loss saturation and end training quickly.

Now, the objective becomes learning a sample from a distribu-

tion 𝑝 (𝑙𝑖𝑔|𝑟𝑒𝑐, 𝑓 𝑒𝑎𝑡) where lig, rec, and feat are the ligand density

grid, receptor density grid, and physics-based features, respectively.

Hence, we sample 𝑧 ∼ 𝑝 (𝑧) and then generate 𝑙𝑖𝑔𝑔𝑒𝑛 ∼ 𝑝𝜃 (𝑙𝑖𝑔 |𝑧, 𝑐),
where 𝑝𝜃 is the same decoder neural network, and 𝑐 is the new

fused conditional encoding of the receptor density grid and the

physics-based features given by 𝑐 ∼ 𝑝𝜃𝑐 (𝑐 |𝑟𝑒𝑐, 𝑓 𝑒𝑎𝑡) where 𝑝𝜃𝑐

is the new modified conditional encoder neural network parame-

terized by 𝜃𝑐 . The input encoder maps a protein-ligand (𝑟𝑒𝑐, 𝑙𝑖𝑔)
complex to a set of means and standard deviations (𝜇, 𝜎) defining
latent variables, which are sampled to produce a latent vector 𝑧. The

conditional encoder maps the same conditional receptor 𝑟𝑒𝑐 and the

physics-based features 𝑓 𝑒𝑎𝑡 to a conditional encoding vector 𝑐 . The

latent vector and conditional vector are concatenated and provided

to the decoder, which maps them to a generated ligand density

grid 𝑙𝑖𝑔𝑔𝑒𝑛 . The input encoder and conditional encoder consist of

3D convolutional blocks with leaky ReLU activation functions and

residual connections [11] (See Fig. 3).

Due to the difficult nature of estimating the naive maximum

likelihood to compute the latent posterior probability, 𝑝𝜃 (𝑧 |𝑟𝑒𝑐, 𝑙𝑖𝑔),
we followed the method as described in original work [21] to learn

an approximate input encoder model 𝑞𝜙 (𝑙𝑖𝑔|𝑧, 𝑐) of the posterior
distribution which can be trained by the following two objectives :

𝐿𝑟𝑒𝑐𝑜𝑛 = −𝑙𝑜𝑔 𝑝𝜃 (𝑙𝑖𝑔 |𝑧, 𝑐) ∝
1

2

| |𝑙𝑖𝑔 − 𝑙𝑖𝑔𝑔𝑒𝑛 | |2 (3)

𝐿𝐾𝐿 = 𝐷𝐾𝐿 (𝑞𝜙 (𝑧 |𝑙𝑖𝑔, 𝑐) | |𝑝 (𝑧)) (4)

𝐿𝑟𝑒𝑐𝑜𝑛 is the reconstruction loss term which maximizes the prob-

ability that the latent samples from the approximate posterior distri-

bution 𝑧 ∼ 𝑞𝜙 (𝑧 |𝑟𝑒𝑐, 𝑙𝑖𝑔, 𝑓 𝑒𝑎𝑡) are decoded as close to the original

ligand density 𝑙𝑖𝑔 that was provided during the forward pass. 𝐿𝐾𝐿
is the Kullback–Liebler (KL) divergence loss that forces the learned

latent space probability distribution to be as close as possible to a

standard normal distribution, i.e., 𝑝 (𝑧) = 𝑁 (0, 1). With the joint

optimization of both these terms, we are able to learn a latent space

that follows a normal distribution, and we end up training a de-

coder that can decode these latent vectors sampled from a normal

distribution into realistic ligand densities.

Following the original work [21], we also included another loss

term called the Steric Loss that minimized steric clash in terms of

the overlap between the generated ligand density and the receptor

density. The loss value is calculated by first summing across the

grid channels, then multiplying the receptor and ligand density at

each point:

𝐿𝑆𝑡𝑒𝑟𝑖𝑐 =

〈
𝑁𝑇∑︁
𝑖

𝑟𝑒𝑐𝑖 ,

𝑁𝑇∑︁
𝑖

𝑙𝑖𝑔𝑔𝑒𝑛,𝑖

〉
(5)

Hence, the final loss objective for the complete model becomes :

𝐿 = 𝜆𝑟𝑒𝑐𝑜𝑛𝐿𝑟𝑒𝑐𝑜𝑛 + 𝜆𝐾𝐿𝐿𝐾𝐿 + 𝜆𝑠𝑡𝑒𝑟𝑖𝑐𝐿𝑠𝑡𝑒𝑟𝑖𝑐 (6)

The loss weights were kept consistent with [21] at 𝜆𝑟𝑒𝑐𝑜𝑛 = 4.0,

𝜆𝐾𝐿 = 0.1, and 𝜆𝑠𝑡𝑒𝑟𝑖𝑐 = 1.0, with the KL divergence loss weight

increased to 1.6 after 20,000 iterations. The model was fine-tuned

using the RMSProp optimizer with a learning rate of 10
−5

for 50,000

iterations and a batch size of 4.

3.2 Protein-Ligand Complexes
To train and finetune the model to incorporate physics-based fea-

tures, a separate conditional feature encoder branch was designed
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into the model’s architecture (see Fig.3). We observed that finetun-

ing the hybrid model on the PDBBind dataset with the physics-

based feature encoder did not destabilize training, probably due

to the same domain of the PDBBind dataset (protein-ligand com-

plexes), which did not result in a drastic covariate shift in the

model’s initialized weights. Also, the new feature encoder rather

evidently improved the quality of the latent chemical space and its

closeness to a standard normal distribution as the KL divergence

loss was further reduced during finetuning. The test set losses sat-

urated in a similar fashion to the losses on the training set and

hence did not lead to overfitting (see Fig.4). The reconstruction loss

increases slightly after 20,000 iterations when we make the model

focus more on making the latent distribution closer to a standard

normal by increasing the KL Divergence loss weight.
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Figure 4: Hybrid-model’s reconstruction, KL divergence, and
steric loss values on the test set during finetuning.

To compare the training quality of the two models, from a ma-

chine learning engineer’s purview, the loss values paint a clear

picture. However, as molecular scientists, we are interested in the

generatedmolecule’s efficiency or its affinity to the binding receptor.

Therefore, to compare generated ligands from the two models, we

selected the top-5 ligands with the highest affinities. It is observed

that our hybrid model produced new ligands in which the top-5

generated molecules had higher binding affinities to the receptor

protein than the reference ligand (from PDBBind) as compared to

the original model [21] in which only, on average less than 5% of

the top-5 had binding affinities higher than the reference ligand

(See Fig.5). Also, this figure demonstrates that our physics-guided

hybrid model unfailingly generated ligands with more promising

Δ𝐺𝑏𝑖𝑛𝑑 values closer to (Fig. 5c) and higher than (Fig. 5a, 5b, and

5d) the reference ligand. Whereas the original model had an inferior

performance overall, with no generated ligand having a Δ𝐺𝑏𝑖𝑛𝑑
value higher than the reference ligand.

In Fig 6a, we plot the distribution of the affinity values for gen-

erated structures by both models for the same receptor sites, and it

clearly indicates that our model consistently generated structures

with higher binding affinity values than the original model. This ap-

proves our hypothesis and the effect of physics-based information

guiding the learning and generating process.

The top-5 generated ligands by the original and hybrid models

are demonstrated in Fig.7. It is observed that docked ligands found

by the hybrid model have more feasible conformation and orienta-

tion inside the protein binding pocket. The corresponding Δ𝐺𝑏𝑖𝑛𝑑
values confirm stronger binders introduced by the hybrid model.

3.3 Host-Guest Systems
The accuracy of the original and hybrid models to generate new lig-

ands is also tested on host-guest systems. Due to the unavailability

of a large dataset for host-guest molecule structures, we could not

finetune the model for this use case. Instead, we tested the model

trained on the PDBBind dataset. New structures are generated as

before for the host molecules, and the top-5 of them are compared.

Similar to the case in the previous subsection, Fig.6b visualizes the

distribution of the affinity values of the generated structures by the

two models for host-guest systems. It is observed that our model for

this use case also generated structures with higher affinity values on

average than the ones generated by the original model. Fig.8a plots

the binding affinity values of the top-5 generated ligands by the

two models for the 𝛼-cyclodextrin host molecule. We can observe

that, in this case, both generated guest molecule groups had binding

affinities higher than the reference ligand. However, the structures

from our hybrid model had overall higher binding affinities than

the ones generated from the original model. In Fig.8b, we observe a

similar trend in which we plot the same metrics for the structures

generated by both the models for the 𝛽-cyclodextrin host molecule

and the generated guest molecules from our hybrid model again

had higher binding affinities than the reference molecule, and the

structures generated by the original model.

4 CONCLUSION
In this paper, we demonstrated that physics-based information

could guide a deep generative model to predict higher-quality struc-

tures for a conditional receptor protein and that it has immense

potential and promise for revolutionizing the field. By combin-

ing the power of deep learning algorithms with the fundamen-

tal principles of physics, we have been able to improve previous

drug discovery techniques. Our hybrid model offers a unique ad-

vantage by leveraging the outcomes of implicit solvent models to

guide the learning process, enabling the generation of stronger

binders and reducing the need for extensive experimental data.

The incorporation of physical features, such as electrostatic energy

and Van der Waals force interactions, provides a more compre-

hensive understanding of the underlying mechanisms governing

drug-target interactions. Furthermore, the utilization of deep learn-

ing models allows for the analysis of large and complex datasets,

enabling the extraction of valuable insights from vast amounts of

information. By employing these hybrid models, researchers can

identify potential drug candidates more efficiently, saving time and

resources in the drug development process. It is important to note

that this physics-guided model is still in its infancy, and several

challenges remain, such as the availability of more extensive, high-

quality datasets and the designing of more generalizable models,
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Figure 5: Top-5 generated ligands by the original model and our physics-based hybrid model for PDBBind receptor proteins -
(a) 4hy1 [Topoisomerase IV, subunit B], (b) 1igb [beta-d-glucan glucohydrolase isoenzyme exo1], (c) 3lea [catalytic domain of
TACE], (d) 1bju [BETA-TRYPSIN] and their respective binding affinities (Kcal/mol).
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Figure 6: Box plots visualizing the distribution of binding affinities of the generated structures on (a) 4hy1, 1igb, 3lea and 1bju
protein receptors from PDBBind and (b) 𝛼-cyclodextrin and 𝛽-cyclodextrin host-guest systems by the original and the hybrid
model.
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Figure 8: Top-5 generated guest molecules (ligands) by the original model and our physics-based hybrid model for Host system
molecule (receptor) - (a) 𝛼-cyclodextrin, (b) 𝛽-cyclodextrin, and their respective binding affinities (Kcal/mol).

which we hope to tackle in future works. The code and trained

weights for our physics-guided deep generative model are available

at https://github.com/dikshantsagar/PhyMolCVAE.
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