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ABSTRACT

Structure-based drug discovery aims to identify small molecules
that can attach to a specific target protein and change its function-
ality. Recently, deep learning has shown great promise in gener-
ating drug-like molecules with specific biochemical features and
conditioned with structural features. However, they usually fail
to incorporate an essential factor: the underlying physics which
guides molecular formation and binding in real-world scenarios.
In this work, we describe a physics-guided deep generative model
for new ligand discovery, conditioned not only on the binding site
but also on physics-based features that describe the binding mecha-
nism between a receptor and a ligand. The proposed hybrid model
has been tested on large protein-ligand complexes and small host-
guest systems. Using the top-N methodology, on average more
than 75% of the generated structures by our hybrid model were
stronger binders than the original reference ligand. All of them
had higher AGy,;, 4 (affinity) values than the ones generated by
the previous state-of-the-art method by an average margin of 1.88
kcal/mol. The visualization of the top-5 ligands generated by the
proposed physics-guided model and the reference deep learning
model demonstrate more feasible conformations and orientations
by the former. The future directions include training and testing
the hybrid model on larger datasets, adding more relevant physics-
based features, and interpreting the deep learning outcomes from
biophysical perspectives.

CCS CONCEPTS

« Computing methodologies — Neural networks; Artificial
intelligence; « Applied computing — Physics; Chemistry.
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1 INTRODUCTION

Drug discovery plays a pivotal role in combating diseases, improv-
ing patient outcomes, and extending human life expectancy. How-
ever, the process of discovering effective drugs has traditionally
been a costly, time-consuming, and resource-intensive endeavor,
often characterized by a high rate of failure [24]. The interaction
between a protein and a ligand, the small molecule that binds to the
protein, is a fundamental event in drug action. It involves intricate
molecular recognition and dynamic interplay between the ligand
and the protein’s active site or binding pocket [15]. Traditional
experimental techniques such as X-ray crystallography and nuclear
magnetic resonance (NMR) spectroscopy have provided valuable
insights into the three-dimensional structures of protein-ligand
complexes. However, these methods are often laborious, expensive,
and challenging to apply to a wide range of proteins and ligands
[30]. The emergence of computer-aided drug design has revolution-
ized the landscape of pharmaceutical discovery, offering innovative
tools and methodologies that expedite the drug development pro-
cess while reducing costs and minimizing risks [13]. Through the
application of molecular docking, molecular dynamics simulations,
and quantitative structure-activity relationship (QSAR) modeling,
researchers can probe the energetics, dynamics, and binding affinity
of potential drug candidates within the target protein’s binding site.
These computational tools can enable the exploration of vast chem-
ical space, facilitating the identification of promising compounds
and the optimization of their binding properties [13].

The search space for possible molecular structures is enormous
and complex. It can be narrowed down by validating candidate
molecules based on their chemical constraints, such as bond orders,
molecular conformation, valences, etc. The space gets much smaller
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when searching for a valid molecule that fits into a specific bind-
ing pocket to fulfill particular purposes. e.g., receptor inhibition in
disease treatments and drug delivery mechanisms. Discovering a
new molecular structure breaks down into two tasks: (1) sampling
promising compounds from a constrained chemical space and (2)
validating them to see if they bind on the target site as hypothe-
sized. Step (1) expands over a timeline of 3-5 years. This shortfall
creates a need for computational systems that could traverse this
restricted chemical search space intelligently while also screening
those compounds virtually for the possibility of successful bind-
ing. This could result in significant cost savings and faster drug
development timelines.

The first work [20] to introduce deep learning in structure-based
drug discovery was able to score predefined molecular (ligands)
poses to dock into a protein (receptor) binding site using a pose scor-
ing function based on a convolutional neural network. The receptor
and the ligand were represented as atomic density grids using a
molecular grinding tool [27]. Deep learning approaches since then
have been applied to various tasks ranging from pose optimiza-
tions [20] to binding affinity predictions [8], all of which are being
used for optimal molecular docking. However, these works are only
helpful to screen or score structures when candidate structures are
available. For producing candidate structures, initial approaches [9,
3, 22] utilized SMILES string notations [29] to leverage generative
language models, which were improved via reinforcement learn-
ing to lead the generative process toward desired cheminformatic
characteristics [10, 18]. Despite all the successes, SMILES strings,
due to their non-permutation invariance, fail to capture the full
concept of chemical similarity. Additionally, their deficiency in
conveying conformational information restricts their usefulness in
the field of structure-based drug discovery. To overcome this issue,
graph-based molecular representations were used, which leveraged
Graph Neural Networks to assimilate features from the molecular
structures and produce new structures [23, 6]. Nonetheless, the
generated bonds were independent, which led to structures with
invalid valences. Also, the graph-matching loss functions are com-
putationally expensive unless approximations are made [23], which
leads to a sub-optimally trained model.

Molecular data representations are often handled in a 2D space,
which is counterintuitive to what exists in a reality where bonds can
rotate to a varied degree giving different conformations of the mol-
ecule that can affect its intermolecular interactions, such as binding
to a receptor. To overcome these challenges, a 3D representation of
a molecule was devised using atomic density grids [25]. Each voxel
corresponds to a specific location in space, i.e., they are coordinate
frame dependent. They are also permutation invariant, making
them computationally less expensive for comparisons. In [21], 3D
density grids are employed for training a conditional variational au-
toencoder with conditional protein receptor and input ligand pairs
in order to find novel structures. While this was a significant step
toward generating novel drug candidates, they failed to incorporate
fundamental physics-based characteristics of the binding, particu-
larly the protein-ligand binding free energy, including the enthalpic
(polar, non-polar, and Van der Waals energies) and entropic com-
ponents. While structural information, such as bond connectivity
and atom arrangements, forms the basis for molecular represen-
tations, they do not capture the intricate and dynamic nature of
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chemical systems. Incorporating physics-based information is es-
sential because it provides insights into the energetics, stability, and
reactivity of molecules. Physics-based information encompasses
molecular forces, intermolecular interactions, and thermodynamic
considerations, which play a crucial role in determining the stability
and behavior of molecular structures. By integrating physics-based
principles, such as molecular mechanics, quantum mechanics, and
statistical thermodynamics, into molecular generation approaches,
researchers can better explore the vast chemical space and iden-
tify novel, energetically favorable configurations. We hypothesize
that along with structural data, physics-based features can improve
the conditional effect to improve the quality of the learned latent
chemical space and, in turn, generate novel structures with higher
binding affinity values, as per our knowledge making this the first
study to do so . Hence, our contribution is as follows:

o Aggregate experimental data from receptor-ligand binding
simulations to form physics-based features for each protein-
molecule pair in the PDBBind dataset.

o Create a hybrid conditional variational autoencoder that uti-
lizes both the structural grids and the physics-based features
to improve the quality of the learned chemical latent space.

e Compare and evaluate the generated molecules from the
hybrid model using AGy,;,,4 (affinity) values.

2 MATERIALS AND METHODS
2.1 Physics-Based Features

Implicit solvent modeling is one of the most popular computational
methods that consider the solvent (usually water) as one contin-
uum component. Within this framework, the calculation of AGp;pgq
could be conducted more efficiently compared to other computa-
tional models, e.g., explicit solvents. Poisson-Boltzmann (PB) and
generalized Born (GB) models are the two main classes of implicit
solvent models that have been used widely in static and dynamic
simulations of protein-ligand interactions [19]. In this work, GB-
NSR6 [4, 5] and PBSA [12] in AmberTools20 [2] are used for fast
yet accurate calculation of binding free energy (see Table 1). By
integrating implicit solvents into the deep learning model, it is more
likely to generate feasible and strong binders.

2.2 Atom Type Vector

In order to train the deep neural network, molecular data is con-
verted into a vector such that each atom is a vector and each mol-
ecule is a vector of atom-type vectors. We follow the same atom
typing scheme as described in [21], where atom types are assigned
using a set of N atomic property functions p and value ranges for
those properties v as shown in Table 2. The atomic properties used
here were element (different value ranges for ligands and receptors),
aromaticity, H bond donor and acceptor status, and formal charge.
For every atom a, a one-hot encoded vector p is created for each
property, and then N, vectors are concatenated to create a final
atom type vector ¢t € RN:_ Hence, we get a 1 x 18 sized type vector
for every atom.
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Figure 1: Physics Guided Generative Model Pipeline Overview. First, the input complex of docked protein and ligand are
converted to atom-type vectors and subsequently into atomic density grids. Then our physics-guided CVAE model’s encoder
branches take the input complex and the protein receptor’s density grids and the physics-based features as inputs. The input
encoder produces a probabilistic latent vector sampled from z ~ N(y, o), and the conditional encoder gives an encoded vector c,
which is then concatenated to z and fed into the decoder to produce an output generated ligand density grid. This density grid
is then finally converted to a 3D molecular structure by atom fitting and bond inference algorithms.

l Parameter [ Description [ Method [ Count ‘ Atomi Num.
omic property | Value range

1-4- 1-4 Electrostatic energy GB 3 values
EELEC Ligand element B,C,N,O,FP,S,Cl Br,1 Fe 11
VDWAALS | Van der Waals energy PB 3 Receptor element | C,N, O, Na, Mg, P, S, CLLK, Ca, Zn | 11
EELEC Electrostatic energy GB&PB | 6 Aromatic False, True 2
ESURF Non-polar solvation energy GB 3 H-bond acceptor | True 1
EGB Polar solvation energy GB 3 H-bond donor True 1
ECAVITY | Non-polar solvation free energy | PB 3 Formal charge -1,0,1 3
EPB Reaction field energy PB 3 Table 2: Atom typing property functions and their value
Etot Computational calculated AAG | GB&PB | 6 ranges.
Enthalpy | Total energy of a system GB 1
Entropy Entropy E* 1
AGping Binding free energy GB 1

Table 1: Physics-based features calculated for complex, pro-
tein, and ligand structures using MM/PB(GB)SA tool. * This
feature is calculated as the difference between the experi-
mental AGy;,; and computational Enthalpy values. See [1]
for details.

2.3 Molecule Density Grids

After atom-typing a molecule, it is essential to select a represen-
tation that embodies the molecular 3D spatial characteristics. We
utilized a molecular gridding library called libmolgrid [27] that
creates a molecular density grid where atoms are represented as
continuous densities with truncated Gaussian shapes. Libmolgrid
defines the density value of an atom at a grid point by a kernel
function f : R X R — R that takes as input the distance d between

the atom coordinate and the grid point and the atomic radius r:

e_z(%)z, d<15r

1
0, d>15r W

f(d,r)={

r was fixed to 1.0 A for all atoms, and the dimension of the cubic
grid to 23.5 A with 0.5 A resolution to maintain consistency with
[21], which results in spatial dimensions of Ny = Ny = Nz =
48. Also, N is the total number of atoms. To save computational
resources, only the atoms that fit within the spatial extent of the
grid are represented.

2.4 Atom Fitting and Bond Inference

As our generative model is trained with density grid format data, its
predictive output is also a density grid. Now the problem remains
of converting a reference density grid G,y back into a discrete 3D
molecular structure, which does not have an analytical solution
[21] and is solved with the following optimization problem:
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T*,C* = arg rénnllcref -9(T,0)|)? ()

where g is the function to convert a molecule’s atom type vector
T and atomic coordinate vector C into density grid G. The initial
locations of atoms can be found by selecting the grid points with
the largest density values. By using libmolgrid, we can compute
the grid representation of an atomic structure and backpropagate a
gradient from grid values to atomic coordinates. We used the algo-
rithm defined in [21] that combines iterative atom detection with
gradient descent to find the best set of atoms that fit that reference
density grid. Once the atoms and their coordinates are known, the
only thing left is to assign bonds between the atoms to form valid
molecules. This is achieved by a bond inference algorithm which
is based on customized bond perception routines implemented in
OpenBabel [17]. It uses a sequence of inference rules that add bond
information and hydrogens while trying to satisfy the constraints
defined by the atom types.

2.5 Deep Generative Model

The main reference [21] proposed a generative deep learning model
based on a conditional variational autoencoder (CVAE) [26], which
consisted of an input grid encoder, a conditional receptor grid en-
coder, and a ligand grid decoder. The objective was to learn a sample
from a distribution p(lig|rec), where rec is the binding site density
grid and lig is the density grid of the ligand that binds to it. Latent
sample z was drawn from a standard normal distribution under the
assumption that the binding interactions might follow it as a prior.
In the generative process, they first drew a sample z ~ p(z) and
then generated liggen ~ pg(ligl|z, c), where pg is the decoder neural
network and, c is the encoding of the receptor from the conditional
encoder.

2.6 Evaluation Metric

To compare the quality of the generated ligands by the original and
our hybrid methods, we employed a metric called the AGy;,,4, which
is the binding affinity value between the receptor and ligand and
refers to the change in Gibbs free energy associated with the binding
of a ligand to a receptor or target molecule (See Fig.2). A negative
AGypinq value indicates a favorable binding interaction, suggesting
a stronger affinity between the ligand and the receptor. Conversely,
a positive AGp;pq value indicates a weaker or unfavorable binding
interaction [7]. We utilized the GNINA package [14] to calculate
the affinity values for the receptor-ligand pairs generated by both
methods and then compared the values for the Top-N ligands. Top-
N refers to the top N generated ligands that have the highest affinity
values.

2.7 Dataset

PDBBind: The PDBBind database [28] is a free and widely used
resource in the field of computational biochemistry and drug dis-
covery. It serves as a comprehensive collection of experimentally
determined protein-ligand complexes obtained from the Protein
Data Bank (PDB). The dataset contains detailed structural informa-
tion about the interactions between proteins and small molecules,
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Figure 2: Visualizing the AGy,;,,; between a receptor (protein)
and a ligand (molecule).
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including their three-dimensional coordinates, binding affinities,
and other relevant properties. The PDBBind dataset is valuable for
a range of research tasks, such as developing and validating scor-
ing functions for virtual screening, understanding protein-ligand
binding mechanisms, and training machine learning models for
structure-based drug design. In this work, we use a subset of the
PDBBind-v19 known as the refined set, which has undergone addi-
tional processing and filtering to improve its quality and reliability
for research purposes. Among the original 3,562 receptor-ligand
complexes, 2,728 pairs had all the required features and experimen-
tal values available. This dataset was split into training and testing
sets randomly with a ratio of 80:20, where the whole testing set
was used to negate the possibility of overfitting and evaluate the
model’s training performance in terms of Reconstruction Loss, KL
Divergence Loss, and Steric Loss (See Fig.4). Randomly selected
conditional receptors from the test set were also used to generate
candidate ligand structures from the predicted density grids, which
were evaluated using GNINA by calculating their AGy;, 4 values
with respect to the conditional receptors (See Fig.5).

Host-guest systems: The small and rigid host-guest systems [16]
introduce chemical hosts (size: ~ 100 non-hydrogen atoms) with
pockets that enable strong binding to the corresponding compounds,
called guests. Hosts bind their guests via the same basic forces that
proteins used to bind their ligands, so they can serve as simple
test systems for computational models of non-covalent binding.
Moreover, their small size and, in many cases, their rigidity can
make it feasible to sample all relevant conformations. In this work,
structures named a-cyclodextrin and S-cyclodextrin are selected
from host-guest systems to test the transferability of the proposed
hybrid model by generating guest candidates for these two host
molecules.

3 RESULTS AND DISCUSSION
3.1 Hybrid Model

This paper demonstrates how physics-based features could improve
a deep generative model’s ability to create novel higher-affinity
ligands conditioned to a receptor protein. The rules of physics gov-
ern the universe, and they sure govern how molecules are formed
and how they interact with each other. With this hypothesis, we
created a hybrid model improving upon the work done by [21] to
include physics-based features in the conditional input to improve
the quality of the learned latent chemical space with the CVAE. To
achieve this, we created another branch conditional encoder (See
Fig.3) for the physics-based features described in Section 2.7. This
encoder maps the raw features concatenated with the output of
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the existing receptor conditional encoder to a dimension of 128.
This allows the model to learn how to fuse conditional receptor
encoding with the physics-based features through backpropagation
during training.

Physics-Based
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Figure 3: Schematic Architecture of the Physics-Guided Gen-
erative Model

The final receptor and physics-based feature conditional encod-
ing concatenate with the input encoding in the same way as the
original work. Using this modified architecture design also enables
us to utilize previously trained weights for the rest of the seg-
ments of the model via transfer learning. Consequently, this gives
a great starting point for the weight initialization of our hybrid
model, helping us reach loss saturation and end training quickly.
Now, the objective becomes learning a sample from a distribu-
tion p(lig|rec, feat) where lig, rec, and feat are the ligand density
grid, receptor density grid, and physics-based features, respectively.
Hence, we sample z ~ p(z) and then generate liggen ~ pg(liglz, c),
where py is the same decoder neural network, and c is the new
fused conditional encoding of the receptor density grid and the
physics-based features given by ¢ ~ pg_(c|rec, feat) where pg,
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is the new modified conditional encoder neural network parame-
terized by 6. The input encoder maps a protein-ligand (rec, lig)
complex to a set of means and standard deviations (g, o) defining
latent variables, which are sampled to produce a latent vector z. The
conditional encoder maps the same conditional receptor rec and the
physics-based features feat to a conditional encoding vector c. The
latent vector and conditional vector are concatenated and provided
to the decoder, which maps them to a generated ligand density
grid liggen. The input encoder and conditional encoder consist of
3D convolutional blocks with leaky ReLU activation functions and
residual connections [11] (See Fig. 3).

Due to the difficult nature of estimating the naive maximum
likelihood to compute the latent posterior probability, pg(z|rec, lig),
we followed the method as described in original work [21] to learn
an approximate input encoder model g (lig|z, c) of the posterior
distribution which can be trained by the following two objectives :

1
Lrecon = —log pg(lig|z,c) o EH“g - ll._9g6r1||2 (3)

Lgr = Dr1(q¢(zllig, c)|Ip(2)) 4)

Lrecon is the reconstruction loss term which maximizes the prob-
ability that the latent samples from the approximate posterior distri-
bution z ~ gy (z|rec, lig, feat) are decoded as close to the original
ligand density lig that was provided during the forward pass. Lx1
is the Kullback-Liebler (KL) divergence loss that forces the learned
latent space probability distribution to be as close as possible to a
standard normal distribution, i.e., p(z) = N(0,1). With the joint
optimization of both these terms, we are able to learn a latent space
that follows a normal distribution, and we end up training a de-
coder that can decode these latent vectors sampled from a normal
distribution into realistic ligand densities.

Following the original work [21], we also included another loss
term called the Steric Loss that minimized steric clash in terms of
the overlap between the generated ligand density and the receptor
density. The loss value is calculated by first summing across the
grid channels, then multiplying the receptor and ligand density at
each point:

Nt Nt
Lsteric = < Z reci, Z liggen,i > (5)
i i

Hence, the final loss objective for the complete model becomes :

L = AreconLrecon + AKLLKL + AstericLsteric (6)

The loss weights were kept consistent with [21] at Aecon = 4.0,
Akr = 0.1, and Agseric = 1.0, with the KL divergence loss weight
increased to 1.6 after 20,000 iterations. The model was fine-tuned
using the RMSProp optimizer with a learning rate of 10~> for 50,000
iterations and a batch size of 4.

3.2 Protein-Ligand Complexes

To train and finetune the model to incorporate physics-based fea-
tures, a separate conditional feature encoder branch was designed
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into the model’s architecture (see Fig.3). We observed that finetun-
ing the hybrid model on the PDBBind dataset with the physics-
based feature encoder did not destabilize training, probably due
to the same domain of the PDBBind dataset (protein-ligand com-
plexes), which did not result in a drastic covariate shift in the
model’s initialized weights. Also, the new feature encoder rather
evidently improved the quality of the latent chemical space and its
closeness to a standard normal distribution as the KL divergence
loss was further reduced during finetuning. The test set losses sat-
urated in a similar fashion to the losses on the training set and
hence did not lead to overfitting (see Fig.4). The reconstruction loss
increases slightly after 20,000 iterations when we make the model
focus more on making the latent distribution closer to a standard
normal by increasing the KL Divergence loss weight.

—— Reconstruction Loss
350 KL Divergence Loss
—— Steric Loss

300

250

Loss

150

100

0 10000 20000 30000 40000
Iterations

Figure 4: Hybrid-model’s reconstruction, KL divergence, and
steric loss values on the test set during finetuning,.

To compare the training quality of the two models, from a ma-
chine learning engineer’s purview, the loss values paint a clear
picture. However, as molecular scientists, we are interested in the
generated molecule’s efficiency or its affinity to the binding receptor.
Therefore, to compare generated ligands from the two models, we
selected the top-5 ligands with the highest affinities. It is observed
that our hybrid model produced new ligands in which the top-5
generated molecules had higher binding affinities to the receptor
protein than the reference ligand (from PDBBind) as compared to
the original model [21] in which only, on average less than 5% of
the top-5 had binding affinities higher than the reference ligand
(See Fig.5). Also, this figure demonstrates that our physics-guided
hybrid model unfailingly generated ligands with more promising
AGp;nq values closer to (Fig. 5¢) and higher than (Fig. 5a, 5b, and
5d) the reference ligand. Whereas the original model had an inferior
performance overall, with no generated ligand having a AGp;,4
value higher than the reference ligand.

In Fig 6a, we plot the distribution of the affinity values for gen-
erated structures by both models for the same receptor sites, and it
clearly indicates that our model consistently generated structures
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with higher binding affinity values than the original model. This ap-
proves our hypothesis and the effect of physics-based information
guiding the learning and generating process.

The top-5 generated ligands by the original and hybrid models
are demonstrated in Fig.7. It is observed that docked ligands found
by the hybrid model have more feasible conformation and orienta-
tion inside the protein binding pocket. The corresponding AGp;png
values confirm stronger binders introduced by the hybrid model.

3.3 Host-Guest Systems

The accuracy of the original and hybrid models to generate new lig-
ands is also tested on host-guest systems. Due to the unavailability
of a large dataset for host-guest molecule structures, we could not
finetune the model for this use case. Instead, we tested the model
trained on the PDBBind dataset. New structures are generated as
before for the host molecules, and the top-5 of them are compared.
Similar to the case in the previous subsection, Fig.6b visualizes the
distribution of the affinity values of the generated structures by the
two models for host-guest systems. It is observed that our model for
this use case also generated structures with higher affinity values on
average than the ones generated by the original model. Fig.8a plots
the binding affinity values of the top-5 generated ligands by the
two models for the a-cyclodextrin host molecule. We can observe
that, in this case, both generated guest molecule groups had binding
affinities higher than the reference ligand. However, the structures
from our hybrid model had overall higher binding affinities than
the ones generated from the original model. In Fig.8b, we observe a
similar trend in which we plot the same metrics for the structures
generated by both the models for the -cyclodextrin host molecule
and the generated guest molecules from our hybrid model again
had higher binding affinities than the reference molecule, and the
structures generated by the original model.

4 CONCLUSION

In this paper, we demonstrated that physics-based information
could guide a deep generative model to predict higher-quality struc-
tures for a conditional receptor protein and that it has immense
potential and promise for revolutionizing the field. By combin-
ing the power of deep learning algorithms with the fundamen-
tal principles of physics, we have been able to improve previous
drug discovery techniques. Our hybrid model offers a unique ad-
vantage by leveraging the outcomes of implicit solvent models to
guide the learning process, enabling the generation of stronger
binders and reducing the need for extensive experimental data.
The incorporation of physical features, such as electrostatic energy
and Van der Waals force interactions, provides a more compre-
hensive understanding of the underlying mechanisms governing
drug-target interactions. Furthermore, the utilization of deep learn-
ing models allows for the analysis of large and complex datasets,
enabling the extraction of valuable insights from vast amounts of
information. By employing these hybrid models, researchers can
identify potential drug candidates more efficiently, saving time and
resources in the drug development process. It is important to note
that this physics-guided model is still in its infancy, and several
challenges remain, such as the availability of more extensive, high-
quality datasets and the designing of more generalizable models,
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Figure 5: Top-5 generated ligands by the original model and our physics-based hybrid model for PDBBind receptor proteins -
(a) 4hy1 [Topoisomerase IV, subunit B], (b) 1igb [beta-d-glucan glucohydrolase isoenzyme exo1], (c) 3lea [catalytic domain of
TACE], (d) 1bju [BETA-TRYPSIN] and their respective binding affinities (Kcal/mol).
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Figure 6: Box plots visualizing the distribution of binding affinities of the generated structures on (a) 4hy1, 1igh, 3lea and 1bju

protein receptors from PDBBind and (b) a-cyclodextrin and f-cyclodextrin host-guest systems by the original and the hybrid
model.
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