
Neuromorphic Visual Scene Understanding with Resonator Networks

Alpha Renner,1, 2, ∗ Lazar Supic,3 Andreea Danielescu,3 Giacomo Indiveri,1 Bruno A.

Olshausen,4 Yulia Sandamirskaya,5, 6, Friedrich T. Sommer,4, 7, ! and E. Paxon Frady7, §

1Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
2Forschungszentrum Jülich, Germany

3Accenture Labs, San Francisco, CA, USA
4Redwood Center for Theoretical Neuroscience, UC Berkeley, CA, USA

5Intel Labs, Zürich, Switzerland
6ZHAW Zurich University of Applied Sciences, Wädenswil, Switzerland
7Intel Neuromorphic Computing Lab, Intel Labs, Santa Clara, CA, USA

Analyzing a visual scene by inferring the configuration of a generative model is widely
considered the most flexible and generalizable approach to scene understanding. Yet, one major
problem is the computational challenge of the inference procedure, involving a combinatorial
search across object identities and poses. Here we propose a neuromorphic solution exploiting
three key concepts: (1) a computational framework based on Vector Symbolic Architectures
(VSA) with complex-valued vectors; (2) the design of Hierarchical Resonator Networks (HRN)
to factorize the non-commutative transforms translation and rotation in visual scenes; (3)
the design of a multi-compartment spiking phasor neuron model for implementing complex-
valued resonator networks on neuromorphic hardware. The VSA framework uses vector
binding operations to form a generative image model in which binding acts as the equivariant
operation for geometric transformations. A scene can, therefore, be described as a sum of
vector products, which can then be efficiently factorized by a resonator network to infer
objects and their poses. The HRN features a partitioned architecture in which vector binding
is equivariant for horizontal and vertical translation within one partition and for rotation
and scaling within the other partition. The spiking neuron model allows mapping the
resonator network onto efficient and low-power neuromorphic hardware. Our approach is
demonstrated on synthetic scenes composed of simple 2D shapes undergoing rigid geometric
transformations and color changes. A companion paper demonstrates the same approach in
real-world application scenarios for machine vision and robotics.

Visual scene understanding is a long-standing problem of machine vision and artificial intelligence.
The disentanglement of scene objects into their individual properties is promising but also a
notoriously hard –and largely unsolved– computational problem because it requires searching over
a very large space of possible configurations of how objects can be combined with variations in
pose, color, lighting, and other features [1–3]. The use of convolutional neural networks (CNN) has
been proposed, an approach that typically requires large amounts of training data and additional
augmentations to handle variations in pose or style. The resulting performance is often brittle [4, 5]
and easily fooled [6, 7]. Further, the operation of CNNs is opaque with the scene information
entangled in their parameters, which makes it difficult to trace information flow and to fix the
failure modes.

It has long been proposed that the brain solves visual scene understanding via “analysis-by-
synthesis” whereby a generative model is used to infer the components of a scene that best explain
the visual input [8–10]. However, this type of inference incurs a high computational cost, which has
prevented the widespread deployment of this strategy. Recent work has shown that for workloads
that require recurrent iterative computations, like inference in generative models, neuromorphic

computing can vastly outperform CPU and GPU-based approaches [11]. Specifically, custom

∗ alpren@ini.uzh.ch
† yulia.sandamirskaya@zhaw.ch
‡ fsommer@berkeley.edu
§ e.paxon.frady@intel.com

a
rX

iv
:2

2
0
8
.1

2
8
8
0
v
4

[c

s.
C

V
]

 2
6
 J

u
n
 2

0
2
4

2

spike-based neuromorphic chips [11–15] accelerate computing times and reduce power consumption
thanks to their parallelism, in-memory processing [16], sparsity, and event-based [17] nature.

Our neuromorphic approach to scene analysis employs a programming framework from Cognitive
Science that represents information as high-dimensional vectors and then computes on these repre-
sentations via an explicit algebra [18–20]. The framework, known as Vector Symbolic Architectures
(VSAs) [21], or Hyperdimensional Computing (HC) [22], offers an explicit binding operation that
addresses the so-called feature binding problem in conventional artificial neural networks [23–25].
Here, we leverage recent developments in VSA for designing a neuromorphic algorithm [26] for scene
analysis: 1) a mathematical framework that extends VSAs to represent continuous variables and
functions [27], and 2) a resonator network that efficiently solves multi-factor vector factorization
in VSAs [28, 29]. The first development enables us to encode an image in a VSA representation
such that binding acts as the equivariant operation for specific geometric transformations [27],
while the second one makes it tractable to infer objects and their transformations via vector
factorization [28, 29].

The proposed approach falls within the larger family of multilinear models for inferring object
shapes and their transformations in the context of a generative image model. These include early
proposals by Pitts & McCulloch (1947)[30] and Hinton (1981)[31] for remapping sensory information
into a canonical reference frame, neurobiological models such as dynamic routing [32], map-seeking
circuits [33, 34], as well as bilinear models that learn to disentangle form vs. motion (or ‘style’ vs.
‘content’) [35–39].

Here, we first describe how an image can be encoded in a VSA representation so that the
binding operation is the equivariant operation for translation. With the same encoding scheme, we
then formulate a generative model of a scene composed of translated template shapes and show
how resonator networks [28] can infer translations and object templates that generated a given
image. Extending this approach, we develop an algorithm employing a new hierarchical resonator

network for analyzing scenes composed of arbitrary rigid transforms of shape templates. Finally, we
demonstrate how to implement the essential components of the hierarchical resonator network on
Intel’s neuromorphic research chip, Loihi [40], utilizing an efficient spike-timing code.

REPRESENTING IMAGES WITH HYPERVECTORS

High-dimensional random vectors are approximately orthogonal; that is, pairs of vectors are
very likely to have a small inner product. VSAs leverage this separation by representing individual
symbols with random vectors (a,b, etc.) in an N -dimensional space [18, 22]. VSAs typically offer
two complementary dyadic vector operations to form composite data structures, preserving the
vector dimension: superposition and binding. The N -dimensional vectors representing atomic and
composite data structures during a computation are called hypervectors. Recently, VSAs have been
generalized to Vector Function Architectures (VFAs) [27] that can represent in hypervectors not only
data structures of discrete symbols but also real-valued quantities [41, 42] and functions [27]. During
computation in VFAs, the execution of vector operations is interleaved with parsing/decoding and
error correction, exploiting similarity-based access of the interpretable hypervectors stored in the so-
called codebook, for example, through nearest-neighbor search or auto-associative content-addressable
memory [43, 44].

Here, we use a VFA built on Fourier Holographic Reduced Representations (FHRR) [18, 45],
a VSA whose atomic hypervectors are composed of phasors, i.e., complex-valued variables with
unit amplitude. Similarity between two FHRR hypervectors is measured by the real part of the
normalized inner product, 1

N
ℜ(a b), where a is the complex conjugate vector transpose. The

binding operation in FHRR is the Hadamard product or element-wise multiplication », with a» b

3

for binding, and a » b∗ for unbinding, where b∗ is the complex conjugate. The superposition

operation is vector summation, a+ b.
To encode an image as a hypervector, VFA index vectors are created to encode pixel location.

We choose two fixed complex-valued FHRR vectors h and v, for horizontal and vertical position
respectively, whose elements are complex phasors of unit amplitude (i.e., hj = eıϕj) and randomly
assigned phase (ϕj ∼ U [0, 2π], with U [0, 2π] the uniform distribution). A pixel at the Cartesian
image coordinates x, y is then represented by the index vector hx » vy. Exponentiating vectors h
and v essentially spins the phase of each element j proportional to the value of ϕj .

Following [27], the image Im(x, y) is encoded as a function over the pixel space via the superposi-
tion of index vectors weighted by their corresponding image pixel values s =

∑

x,y Im(x, y) ·hx»vy.
This encoding is similar to the Discrete Fourier transform but with frequencies chosen randomly [46]
instead of regular spacing. Interestingly, important properties of the Fourier transform, such as the
convolution theorem, remain valid even with the frequencies randomized. Repeated binding (hx) is
currently also commonly used for position encoding in transformers [47]. Further, three random
vectors index the color channels red, green, and blue, G = [r,g,b] ∈ C

N×3. The hypervector
representation of a color image is then given as:

s =
∑

x,y,c

Im(x, y, c) ·Gc » hx » vy =: Φ I, (1)

where Gc indicates the vector representing a color channel. The definition on the right of (1) makes
it explicit that hypervector encoding of an image is a linear projection, with I ∈ R

(3PxPy) the image
reshaped as a vector, and Φ ∈ C

N×(3PxPy) the codebook matrix of hypervectors for each index
configuration {x, y, c}, where Px, Py are the dimensions of the image in pixels. Conversely, decoding
the image from the hypervector uses the conjugate transpose as the linear transform, I = 1

N
ℜ(Φ s).

Since the codebook entries are only approximately orthogonal, decoding introduces small amounts
of noise in the image reconstruction, which can be quantified and mitigated [48]. In this context,
these noise effects are minimal.

Importantly, image encoding with (1) enables binding to act as the equivariant vector operation

for image translation:

s» h∆x » v∆y =
∑

x,y

Im(x, y) · hx+∆x » vy+∆y =
∑

x,y

Im(x−∆x, y −∆y) · hx » vy. (2)

Also, note that image translation is well-defined for continuous values of ∆x, ∆y, allowing the
recognition of shapes shifted by fractions of a pixel.

To facilitate understanding of the notation and symbols here and in the following sections, we
provide Supplementary Table I as a reference.

A GENERATIVE MODEL OF SCENES USING VSA VECTOR OPERATIONS

We demonstrate scene understanding on simple synthetic images composed of object templates,
in our case, letters, that are translated and given one of 7 colors. The scene understanding task is
to extract the identities, colors, and locations of objects from an input image.

In the VFA framework, the generative model for the synthetic images can be formulated as
follows. The set of the image templates of the letters are aligned (see Methods) and written as
the matrix P ∈ R

(PxPy)×D, where D = 26 is the number of different templates. As in (1), a letter
template is represented by the hypervector

da =
∑

x,y

Pa(x, y) · h
x » vy. (3)

4

with Pa(x, y) the pixel intensity value of a template image indexed by a at position (x, y). Each
hypervector for the templates is stored in the matrix D = ΦPP, with ΦP containing the vectors
for each pixel as described in (3).

The equivariant vector binding operation is used to represent shape templates with specific
positions and colors. Vector superposition is used to compose scenes from multiple objects. All
told, the VFA representation of a generated scene composed of L objects is:

s =
L
∑

i=1

dpi » hxi » vyi » cci . (4)

In the generative model of artificial scenes based on (4), each factor of variation (pi, xi, yi, ci) is
sampled uniformly. One of 7 colors is chosen, given by a matrix B ∈ R

3×7 with, for instance,
Bcyan = [0, 1, 1]. The VSA codebook for colors is C = GB. For an example scene and its
corresponding hypervector (4), see Fig. 1A.

To enable inference in the generative model (4), each generative factor has to be represented by
sufficiently dissimilar hypervectors, including elements with correlations in the image domain, like
“c” versus “o”. Decorrelated hypervectors for overlapping shape templates are produced by whitening
the generative factors using singular value decomposition [49], P = UΣV. The whitened templates
Ṕ = UV are encoded into hypervectors similar to (3) and stored in the codebook D́ = ΦPṔ. A
similar whitening procedure is used to generate the codebook for color, Ć ∈ C

N×7.

INFERENCE WITH THE RESONATOR NETWORK

A generative model (4) enables, in principle, understanding of a given input image by inferring the
causal factors that best explain the data. However, inference in generative models is computationally
expensive [50] as it involves a potentially exhaustive search across all templates in all possible poses.
The VSA formulation (4) permits fast parallel implementations of this search. A given image to be
analyzed is first transformed via equation (1) into a hypervector s. Inference of the image content
then involves fitting the input vector s by the best matching templates and transforms contained
in the model. In particular, each term of the sum in (4) represents one image component, and
inferring its properties requires factorizing the corresponding term into specific hypervectors.

The problem of vector factorization is common in VSA algorithms, and resonator networks can
solve it efficiently [28, 29]. A resonator network is composed of modules, one for each factor of
variation in the generative model, that are recurrently interconnected.

A resonator network module contains three stages: a VSA binding stage, a linear auto-associative
memory for code vectors [51] representing one factor, and an element-wise saturation function
or normalization (Fig. 1B). The resonator network (5) solves the inference problem dynamically.
Starting from random seeds, in each iteration, a module decodes the estimate of its own factor from
s by unbinding the estimates from all other modules. The decoded vector is then compared to the
module’s codebook. Based on vector similarity, the auto-associative memory cleans up the decoded
vector to resemble one or a superposition of valid codebook vectors. After applying the transfer
function f , this new estimate is sent to the other modules. The complete dynamic equations of the

5

Explain	Away
and	Reset

^

d

^

h

^

h

A

B

E

F

^

d

C

Φ ^v

^c

^c

s

^v
s

Predicted	Label

a

m

q

1.00.0

e

i

a e i

T
ru
e
	Label

Accuracy

Accuracy:	98	%

u

y

m q u y

D

FIG. 1. Resonator network for inferring shape, color, and translation. A. A synthetic scene and the generative
VSA representation. B. A resonator module. C. Encoding and communication in the resonator network.
D. Confusion matrix on translation benchmark task with a single object. The overall performance of the
network is 98.4%. E. The weighted factor estimates in each resonator module. The maximum value is taken
as the output. F. The four dynamic estimates in the resonator network are each visualized as a heatmap,
with time represented vertically and each component represented horizontally. After several iterations, the
resonator network converges to a solution and remains stable (first row corresponds to panel E). The decoded
output is visualized to the right of each row. The object is then ‘explained away’. The resonator network is
reset and converges to another solution, which describes a different object in the scene (rows 2 and 3).

resonator network for inference in (4) are:

ĉ(t+ 1) = f
(

ĆĆ
(

s» d̂∗(t)» v̂∗(t)» ĥ∗(t)
))

,

d̂(t+ 1) = f
(

D́D́
(

s» ĉ∗(t)» v̂∗(t)» ĥ∗(t)
))

,

v̂(t+ 1) = f
(

VV
(

s» d̂∗(t)» ĉ∗(t)» ĥ∗(t)
))

,

ĥ(t+ 1) = f
(

HH
(

s» d̂∗(t)» v̂∗(t)» ĉ∗(t)
))

,

(5)

with f(x)i = xi/|xi| (phasor projection) or, alternatively, f(x)i = xi/||x||2 (normalization) (see
Methods). V, H are codebooks representing vertical and horizontal pixel coordinates, and Ć, D́
are codebooks representing color and object shape as described above.

The dynamics of equation (5) successively improve the joint estimate of all factors (Fig. 1C).
Importantly, individual modules do not settle immediately at a single estimate for their factor. In
early iteration steps, they produce a superposition of many possible factors, which enables parallel
search through the combinatorics of solutions. In later iterations, the interaction between modules
narrows the search down to a single estimate of the identity, pose, and color of one scene component,
and the network converges (Fig. 1D, E).

For parsing scenes with multiple components, the analysis process is repeated after previously
identified image components are subtracted from s as part of an outer loop. This subtraction is

6

akin to “explaining away” or “deflation” [52]. Alternatively, analysis of multiple objects can also be
done with several instances of the resonator running in parallel, the multi-headed resonator (see
Supplementary Information and Supplementary Fig. 8).

To evaluate the model performance, we designed benchmark tasks for invariant letter recognition
in composed scenes. Fig. 1F shows accuracy results for classifying a single letter in a scene (see
Methods). For the recognition task with all 26 letters, the network was 98% accurate at identifying
letter templates regardless of color or translation (N = 10, 000); see Supplementary Information
and Supplementary Fig. 7 for the analysis of scenes with multiple letters.

SCENES WITH ROTATED AND SCALED OBJECTS

The approach can also be applied to scenes where a centered object is transformed by rotation
and scaling. We use the fact that rotation and scaling in Cartesian space becomes translation in
log-polar space (Fig. 2 A), with L ∈ R

LmLr×PxPy the log-polar transform matrix and Lm, Lr the
pixel dimensions in log-polar space. Thus, in log-polar coordinates, the binding operation becomes
the equivariant transform for rotation and scaling. From a generative model of rotated and scaled
object templates in log-polar coordinates, we can construct the following resonator network (Fig. 2
B):

d̂(t+ 1) = f
(

D́LD́

L
(sL » r̂∗(t)» m̂∗(t))

)

,

r̂(t+ 1) = f
(

RR
(

sL » d̂∗(t)» m̂∗(t)
))

,

m̂(t+ 1) = f
(

MM
(

sL » d̂∗(t)» r̂∗(t)
))

.

(6)

Here, the codebooks R and M contain the vector symbols for each log-polar coordinate, e.g.
R = [r1, r2, ..., rLr], M = [m1,m2, ...,mLm]. The index vector r is designed to obey periodic
boundary conditions, such that translated pixels wrap around the image [27]. The codebook
ΦL ∈ C

N×LmLr contains the binding products of rotation and scale hypervectors, similar to Φ (3).
Further, the codebook D́L = ΦLLṔ contains the whitened letter patterns in the log-polar space.

The example of rotation and scale invariant inference with the resonator network (6) in Figure 2
highlights the general problem that image components can have more than one valid explanation
because of symmetries, for example, ‘b’ versus ‘q.’ For such ambiguous inputs, the resonator network
offers one interpretation, depending on the random initialization and other noise sources (Fig. 2D),
but will not indicate the existence of alternative interpretations.

SCENES WITH RIGID, NON-COMMUTATIVE TRANSFORMS

The next step toward analyzing realistic scenes is the ability to identify object templates
transformed by arbitrary rigid transforms, composed of translation, rotation, scale, and color.
Building on the two previous models, the corresponding generative model of scenes has to include a
log-polar transform matrix in the high-dimensional VSA space Λ = ΦLLΦ

 . The generative model
of an image synthesized from rigid transforms of shape templates can then be written as:

s =
∑

i

cci » hxi » vyi »Λ−1(rri »mmi » dpi), (7)

The inference in this generative model can be performed in an adequately designed resonator
network. Corresponding to the factors in (7), the network consists of six fully connected factor

7

modules that all require coordinate transforms, Λ or Λ−1, in their binding stages, for full equations
see Methods (10). As depicted in Figure 3A, the network is bisected into two partitions: one using
Cartesian and one log-polar coordinates. Each partition has one additional module that serves as
the communication bridge to the other partition. Conveniently, the bridge modules have the same
internal stages as other resonator modules:

l̂(t+ 1) = Λ−1
(

r̂(t)» m̂(t)» d̂(t)
)

, (8)

p̂(t+ 1) = Λ
(

s» ĉ∗(t)» ĥ∗(t)» v̂∗(t)
)

. (9)

A successful example of inference with the hierarchical resonator network is shown in Figure 3B.
The upper row shows a factorization process, revealing the letter “k”, and the lower row shows a
second factorization process, revealing the letter “m”. Note how the estimates of all factors are
undecided and blurry in early iteration steps and become sharp quite suddenly during iteration.
Conversely, Figure 4 shows an unsuccessful inference example. In this case, the first factorization
falsely explains the arched portion of the “m” with a rotated “s”. After subtracting the “s”, there
are still parts of the “m” left, which the second factorization run falsely explains as an “a”.

We performed another set of benchmark experiments for rigid transforms. The task was reduced
to a subset of 10 letters and about half (±89◦) of the rotations in order to reduce the complexity and
the number of ambiguous scenes, as many of the ambiguities are due to 180◦ rotational symmetry.
In our benchmark experiment, the system identifies the correct letter with an accuracy of 84% (Fig.
4D).

When the network fails, it often converges to a spurious solution composed of a complex mixture
of generative factors. Even though these examples did not recover the true generative factors, the
spurious solutions still have notable correlations with the input (Fig. 4E). In the Methods, we
describe some modifications to the resonator network dynamics that mitigate these errors, such as
non-linearities that encourage sparse solutions. However, these modifications cannot completely
eliminate this issue, which has also been reported in other generative model approaches for scene
analysis [33].

NEUROMORPHIC IMPLEMENTATION USING SPIKE TIMES

Finally, we implement the Resonator model for visual scene analysis with an efficient spike-timing
code running on Intel’s Loihi neuromorphic research chip [40]. In this proof-of-concept, the resonator
modules for translation (ĥ, v̂) and pattern shape (d̂) are mapped to a spiking neural network (SNN;
Fig. 5A). Specifically, in reference to a background oscillation, the spike times of integrate and fire
(I&F) neurons represent the phases of complex numbers in the VFA hypervectors [53] (Fig. 5B).
The Loihi chip has discrete-time dynamics, and the predefined cycle window is of length T = 16
timesteps.

The spiking neural network resonator network on Loihi consists of three factor modules that are
connected recurrently. The spike generator converts the input vector s into spikes and transmits
these spikes to the binding stage of each module (Fig. 5B). Each binding stage performs a neuron-wise
complex phase shift based on its inputs (Fig. 5C), implementing the FHRR binding operation. This
is computed using a multi-compartment neuron model available on Loihi that allows input spikes
to the dendritic compartment to shift the output spike-timing by their own phase (see Methods).
The cleanup module (Fig. 5D) performs a matrix multiplication with the auto-associative matrix,
e.g., HH . This is computed using synaptic delay mechanisms and post-synaptic potentials that
are configured to approximate a cycle of a sine wave, as described in [53] (Fig. 5E; see Methods).
An additional gate stage in each module controls the flow of spikes through the network, ensuring
the network maintains the correct timing.

8

Pixel Log-Polar

scale

ro
ta
ti
o
n

LΦL

sL

A B D

C

^

d

^r

^m

Rotation	()Pattern	()^d Scale	()^m^r

Rotation	()Pattern	()^d Scale	()^m^r

FIG. 2. Resonator network for rotation and scale. A. Translation in log-polar space results in rotation
and scaling in Cartesian space. B. Diagram of resonator network for inferring shape, rotation, and scaling
of input images. C. Example of network dynamics. D. Symmetries of the template lead to ambiguous
factorizations. Two examples are shown with different random initializations. The resonator network will
converge to one of the ambiguous factorizations (letters ‘b’ or ‘q’).

Pattern Rotation Scale Vertical Horizontal ColorA B
Input

Φ

^c

^

l

^v

^

h

s

^

d

^r

^m

^p

FIG. 3. The hierarchical resonator network for inferring rigid transforms. A. Schematic diagram of the
hierarchical resonator network. B. The dynamics of the resonator network identifying objects in the input
scene.

Figure 6 shows a comparison between Loihi and a CPU in terms of energy and latency. While
Loihi is slower, it is orders of magnitude more energy efficient (Fig. 6A and B). For the largest
network size, Loihi is 171 times more efficient in terms of energy-delay-product (EDP) (Fig. 6C)
and scales better than the CPU for increasing network size, likely due to sparse, event-based matrix
multiplication [54].

DISCUSSION

We have described a new network architecture for inference in generative models and its neuro-
morphic implementation with an efficient spike-timing code [53] on modern spiking neuromorphic
hardware [40]. This network architecture is validated on the problem of analyzing synthetic visual

9

Pattern Rotation Scale Vertical Horizontal Color

Input

Predicted	Label

a
1.0

0.0

e

i

a e i

T
ru
e
	Label

A
cc
u
ra
cy

Accuracy:	84	%A B D

C E

FIG. 4. Local minima in the hierarchical resonator network. A. Input image. B, C. Two incorrect runs of
the network are visualized. D. Confusion matrix of object classes. E. Correlations between the incorrect
explanations and the input are on par with the correct explanations (right panel).

scenes, and our companion paper demonstrates an application to a real-world task, visual odometry
in robotics [55].

Inference in generative models – also known as “analysis by synthesis” – is a powerful method
for invariant pattern analysis, but it is infamously computationally expensive [50]. Our proposal
to make it tractable hinges on four key ideas. The first idea is to develop data encoding schemes
and generative models that make binding the equivariant operator for a factor of variation, such as
image translation. The second idea is to compute inference in the generative model by a resonator
network that searches the solution space efficiently by computing in superposition [28]. The third
idea addresses the existence of multiple non-commutative factors of variation, like translation
versus image rotation and scaling. Following a classical method for image registration, the Fourier-
Mellin transform [56–58], we propose a novel hierarchical resonator network, where binding is the
equivariant operation for translation in one partition and for rotation and scaling in the other.
The fourth idea is to use multi-compartment neuron models for implementing the network in a
spike-timing code on neuromorphic hardware.

Avoiding the inefficiency of neuromorphic computing with rate-codes [59], our neuromorphic
implementation employs a spike phase code, which outperforms an implementation on a CPU in
efficiency. However, the implementation demonstrated here is rather a proof of concept. The model
formulation is flexible and can be further optimized for a specific neuromorphic and other edge AI
hardware implementation.

In artificial intelligence, there has been interest in interpretable factorized or “disentangled”
representations [60, 61], with a particular focus on learning factorized representations from data
[39, 61–63]. However, existing approaches rely upon generic neural network architectures without
explicitly accommodating the computations necessary for factorization. It has also been noted that
fully equivariant generalization in such learned representations is limited and “brittle” [64], leading
even to the conjecture that unsupervised learning of true disentangled representations is “impossible”
[65, 66] without an inductive bias, i.e., mechanisms for generalization that are engineered into the
network (or into the “augmentation” of training data sets [67]) rather than being learned.

Here, we focus on the fundamental computational principles of scene analysis – i.e., factorization
and inference – rather than on learning per se. By approaching perception as a problem of inference in
a generative model, we avoid the shortcomings of models that rely purely on learned representations,
such as short-cut learning [68, 69], as well as lack of out-of-distribution generalization [70–72]
and extrapolation [73, 74]. In addition, we also provide a meaningful definition of disentangled

10

V
m
e
m

cu
rr
e
n
t

aux

soma

dend

trig

pass

add

si

d� i
hi

vi

+1

+1

h h

t

uthr

HH†

cleanup
time	step	t

Vmem
(soma)

Vthr

-2u

+2t

phase	shift
=DD†

gate

a

h

v

s

d

VV†

HH†

cleanup
binding

´ ´

FIG. 5. The resonator network on the Loihi neuromorphic hardware. A. Schematic of the resonator
architecture implemented on Loihi. B. Implementation of the (un-)binding module as a 4-compartment
neuron on Loihi. C. Mechanism of the phase shift. Here, the soma membrane potential is inhibited by
2, so it will reach the threshold two timesteps later. The inset at the top shows the equation of complex
multiplication, its phasor representation, and the corresponding spike timing in phasor I&F neurons. D.

Mechanism of the cleanup module. Top: Phasor representation of the complex matrix multiplication of h
with the cleanup matrix HH†. Bottom: The same mechanism with I&F phasor neurons. E. Mechanism of
the complex adder with I&F phasor neurons. The neuron receives two inputs at different phases (orange and
green). The current gets integrated into the membrane potential, which approximates a sine wave (red). In
blue, the membrane potential and input current of the Loihi neuron are shown. F. States of the resonator on
Loihi over 40 iterations and reconstructed image from resonator states.

representations by directly linking disentanglement to vector factorization [75], an understanding
that has been lacking so far [64].

When evaluated on the analysis of simple synthetic scenes, the model succeeds most of the time
but can also fail for several reasons, most of them common to other generative model approaches.
The primary reason for mistakes is spurious matches involving ambiguity through symmetries, e.g.,
‘p’ versus a rotated ‘d’, or complex mixtures of generative factors. The spurious matches reconstruct
the input with high quality, correctly capturing location and color but using shape primitives of
the wrong class. To prevent the explanation of an object by a complex mixture of objects, we
explored the addition of sparsity mechanisms to the resonator dynamics that encourage simple
scene explanations, as well as further alignment and annealing procedures and observed improved
performance (see Methods and Supplementary Table II). A better option in the future would be the
concise inclusion of factor priors in the model. Another cause for spurious matches that is harder
to fix is mutual correlations between shape templates. While we do eliminate correlations between
shape templates in their default pose, strong correlations between templates can still arise if their
relative poses differ. The earlier analysis of resonator networks [29] assumed the total absence
of correlations between code vectors and, therefore, provided an upper bound on the complexity
of a scene that a resonator of a given size can handle. According to the theory, the number of
combinations that can be searched scales with the square of network size, i.e., Mmax ∝ N2. For

11

512 1024 2048Number of neurons
100
101
102

Energy
 (mJ)

0.21
0.58 1.3

22
112

463A Dynamic energy per iterationLoihiCPU

512 1024 2048Number of neurons0
2
4
6
8

10

Latenc
y (ms)

1.2

5.3

9.9

1.1

4.74

0.21

B Latency per iteration

512 1024 2048Number of neurons0255075100125150175

edp CPU edp Loih
i

18
40

171C EDP ratio (advantage of Loihi)

FIG. 6. Delay and energy comparison. A. Logarithmic plot of the dynamic energy on Loihi and CPU. B.

Time per iteration. C. EDP ratio.

scenes with small objects that extend just a few pixels, the theory in [29] predicts that the dimension
of the hypervectors has to grow roughly with the square root of the number of pixels. Further, the
number of hypervectors to be stored is only Px + Py since the network architecture divides each
pixel dimension into separate modules.

The presented results demonstrate that the combination of neuromorphic hardware and recent
developments in VSA offers a tractable approach to scene analysis through a generative model.
The approach with hierarchical resonator networks may extend beyond synthetic scenes used in our
benchmark. For instance, one direction we are currently investigating is describing a larger variety
of visual objects in the generative model using sparse features rather than full-letter templates.
The path towards neuromorphic analysis of naturalistic scenes, useful for embodied agents, will
require further revising the generative model (7), such as adding priors, 3D shape models with 3D
transforms [76], and effects of occlusion [77].

Last but not least, the work also has implications for neuroscience. The feature binding problem
in neuroscience [78] is solved seamlessly by vector binding, which is at the core of this scene
understanding model. Our neuromorphic implementation of scene understanding makes predictions
on the function of oscillations and spike phase locking that differ entirely from earlier proposals on
how binding information might be represented by synchrony [79] or asynchrony [80] in rhythmic
spike codes.

METHODS

Details of simulation experiments

Simulation experiments using the resonator network were implemented in Python using Numpy
and PyTorch. The vector dimensions used for the benchmarking experiments are N = 10, 000 for
the translation task, N = 16, 384 for the Cartesian module, and N = 22, 680 for the log-polar
module of the hierarchical resonator in the rigid transform task.

The resonator network is initialized to either a random state or each factor is initialized to the
mean of all its codebook vectors (leading to slightly more reliable performance).

12

The full dynamic equations for the hierarchical resonator network:

ĉ(t+ 1) = f
(

ĆĆ†
(

s» ĥ∗(t)» v̂∗(t)»
[

Λ−1
(

r̂(t)» m̂(t)» d̂(t)
)]∗

))

,

ĥ(t+ 1) = f
(

HH†
(

s» ĉ∗(t)» v̂∗(t)»
[

Λ−1
(

r̂(t)» m̂(t)» d̂(t)
)]∗

))

,

v̂(t+ 1) = f
(

VV†
(

s» ĉ∗(t)» ĥ∗(t)»
[

Λ−1
(

r̂(t)» m̂(t)» d̂(t)
)]∗

))

,

d̂(t+ 1) = f
(

D́LD́
†
L

(

[

Λ
(

s» ĉ∗(t)» ĥ∗(t)» v̂∗(t)
)]

» r̂∗(t)» m̂∗(t)
))

,

r̂(t+ 1) = f
(

RR†
(

[

Λ
(

s» ĉ∗(t)» ĥ∗(t)» v̂∗(t)
)]

» d̂∗(t)» m̂∗(t)
))

,

m̂(t+ 1) = f
(

MM†
(

[

Λ
(

s» ĉ∗(t)» ĥ∗(t)» v̂∗(t)
)]

» d̂∗(t)» r̂∗(t)
))

.

(10)

Note that the repeated terms, Λ
(

s» ĉ∗(t)»ĥ∗(t)»v̂∗(t)
)

and Λ−1
(

r̂(t)»m̂(t)»d̂(t)
)

, are simplified

into resonator bridge modules l̂ (8) and p̂ (9).

The hierarchical resonator network is a combination of the resonator network for translation
(5) and the network for rotation/scaling (6). The log-polar partition, the right column of modules
in Fig. 3A, contains the “top-down” bridge module (8) and the modules from (6). The top-down
bridge module (8) produces l̂, the estimate of a rotated and scaled shape transformed to Cartesian
coordinates. The Cartesian partition, the left column of modules in Fig. 3A, contains the modules
from (5), but the module with output d̂ replaced by the “bottom-up” bridge module (9). The
previous input from d̂ is replaced by the top-down signal l̂. The bottom-up bridge unit (9) produces
p̂, which transforms a centered version of the input into log-polar coordinates. This, in effect,
replaces the input for (6).

We call the architecture in Fig. 3A the hierarchical resonator network because the bidirectionally
connected partitions assume different hierarchy levels by the definition of Felleman and Van Essen
[81]. The Cartesian partition receives direct input according to a lower level, while the log-polar
partition is one removed from the sensory input according to a higher level. The log-polar partition
also holds the discrete shape templates in memory, the arguably most abstract aspect of the image
components.

The codebooks D́L ∈ C
N×26 and Ć ∈ C

N×7 are formed from whitened templates projected
into the high-dimensional vector space. Specifically, the templates are transformed into log-polar
coordinates and decomposed by the singular value decomposition, i.e., PL = LP = ULΣLVL. The
whitened templates are given by ṔL = ULVL, which is then projected into the high-dimensional
space by D́L = ΦLṔ. A similar whitening procedure is applied for the colors to produce Ć, but not
for the other codebooks. In the resonator for the translation task, the letter template images are
aligned for the whitening procedure to ensure the whitening removes the correlation at the most
relevant shift of the letters. For instance, for the whitening of each letter image, all other letters
are aligned (pairwise to the respective letter) by finding the best overlap using image registration
by phase correlation in the 2d Fourier domain [56–58]. Then, whitening is performed over the
letter image and all pairwise aligned other images. The respective whitened image is added to
the codebook, and all other images are discarded. This is repeated for all letter images. For the
hierarchical resonator networks, this alignment-whitening procedure is omitted as it is impossible to
capture all relevant correlations and therefore, performance would not improve. For the hierarchical
resonator network, letters are just aligned before adding them to the codebook.

In the hierarchical resonator network, rotation as an operation must have the correct topology
for its representation – i.e., rotation by 360o results in the same image. This is done by ensuring
that the representation vector r also has circular topology. The circular topology is encoded by
defining a periodic kernel for the representation r, where the random phases of the elements of r are

13

sampled from a discrete probability distribution [27]. Specifically, the phase circle is divided into
Lr discrete samples and each element of r is one of these samples, ri ∈ {ei2πk/Lr ∀k ∈ {1, ..., Lr}}.

Note that our definition of binding acting as the equivariant operation to image translation
(2) requires some leniency when considering the edges of the image. The definition strictly holds
if we assume that the image has a toroidal topology, and the position vectors h and v also have
the correct topological structure as described above. Also note that the complex exponential is
multi-valued, i.e. (eiϕj)x = ex(iϕj+2πn) ∀n ∈ Z, but we define the operation as returning only the
principal value with n = 0.

Beyond the dynamics described in equation (10), we include some modifications to improve
performance. One modification is hysteresis in the update dynamics, where some fraction of the
past state is included in the next update, i.e.:

d̂(t+ 1) = (1− γ)d̂(t) + γf(D́D́†(s» ĥ∗(t)» v̂∗(t)), (11)

with γ controlling the rate of the hysteresis.
Another modification is adding a non-linearity, such as a ReLU, polynomial exponent, or softmax

function, to encourage sparsity. Additionally, we incorporated external noise (η) to reduce the
stability of spurious local minima:

d̂(t+ 1) = f(D́p(D́†(s» ĥ∗(t)» v̂∗(t))) + η. (12)

Our experiments show that a combination of a ReLU and polynomial exponent p(x) = ReLU(x)k

performs best. The ReLU serves two purposes: It avoids negative factor pairs and acts as a threshold
to improve the cleanup. Note that without ReLU, the resonator network can converge to a solution
where an even number of factors are negative, a problem that can be fixed by taking absolute values
as the final outputs. The k parameter controls the amount of superposition of different possible
solutions, i.e., the sparsity. It can be set to values below 1 to weaken the cleanup or to values well
above 1 to achieve a stricter cleanup (like an argmax or winner-take-all for high ks). In the case of
the translation resonator, k = 1 proved to be sufficient, while in the hierarchical resonator, at least
one factor (we chose the angle factor) needs a larger k, typically above 3. Furthermore, after each
iteration, the resonator states (with the exception of the pattern state (d)) are phasor projected
(f), i.e., magnitudes of all vector elements are set to 1. Additionally, complex Gaussian distributed
noise is added to the state (η ∈ C

N ∼ N (0, σ)) with σ = 1 in the resonator for the translation task
and σ = 0 in the hierarchical resonator’s log-polar module. In the last 2 iterations of each pass,
however, the noise is turned off to get a cleaner readout.

Details of performance benchmarking

To benchmark the model, images with a given number of letters are created. Letters, locations,
and rotations are chosen randomly. For the translation task, letters are chosen randomly from all 26
letters of the English alphabet; for the rotation task, from the first 10 letters of the alphabet. We
use the font ‘TlwgTypewriter-Oblique’ at a font size of 26 in an image of 64x64 pixels. The letters
are shifted using scipy.ndimage.shift by a random floating point number uniformly distributed
between -19 and +19, i.e., with a margin of 13 pixels from the border to avoid cropping of letters.
To avoid overlaps between letters, after adding a letter to an image, the new image is compared
with the old image. If at least one pixel overlaps, the random choice of vertical and horizontal
translation of the newly added letter is repeated. If no non-overlapping image has been found after
20 repetitions of this process, the image is used as it is in the 20th repetition (with the overlap).
Note that letters can still look like they overlap if they have colors that are non-overlapping, such
as red and green.

14

The complexity of the scene analysis problem can be quantified by the total combinations that
the system must search over. In the benchmark, there are 26 letters and 7 colors and a range of
translations covering 39x39 pixels, giving a combination space of 276,822. This amount is much less
than the operational capacity (which for N = 12, 000 is about 100 million) [28] where the resonator
network is expected to have nearly 100% accuracy. Note that with 6 factors of variation, the
combinatorial space has expanded to over 100 million combinations the network must search through,
meaning the problem is much more challenging. Importantly, note that the operational capacity
in a resonator was measured for uncorrelated vectors, and performance on scene analysis will be
different due to correlations between the generative objects. The whitening removes correlations
when letters are in their default position but not when they are in arbitrary relative positions.

To benchmark the different model variants, we report an accuracy measure based on the percent-
age of correct classifications of the letter identity. We chose this measure as it is straightforward to
calculate and compare and because getting the letter identity correct usually also means that the
other factors are estimated well (the opposite is not true). The letter output of the resonator is the
argmax of the state readout (product of the letter factor codebook and the factor state).

For the tasks with several letters in the input image, a classification is counted as correct if the
letter output corresponds to any of the letters in the image. One instance of the correctly guessed
letter is then removed from the list so that the next pass has to guess one of the remaining letters
correctly to count as a correct classification.

To find the best parameters for the different model variants, we perform a hyperparameter
search. Starting from a manually tuned network, we perform a sweep for each parameter separately.
Parameters that are optimized in this manner are the noise variance (σ), the state update ratios for
each set of states separately (γ), and the polynomial exponents (k). The hyperparameter search is
performed with a different random seed, i.e., a different dataset and a different random codebook
than the test seed that is only used to test the network on a given number of samples.

Details of hardware implementation

We implement a smaller model that solves a 28x28x3 factorization task on Intel’s neuromorphic
research chip Loihi [40]. The smaller version is implemented on the USB form factor system
“Kapoho Bay,” which features two Loihi chips with a total of 256 neuro cores in which a total of
262,144 neurons and up to 260 million synapses can be implemented. The embedded x86 processors
are used for monitoring and sending input spikes.

Using phasors in a spiking network makes multiplication and addition of complex vectors available
on the hardware. Phasors can be implemented with resonate and fire neurons or, by adding certain
constraints, with common integrate and fire neurons [53]. In this work, we use I&F neurons with a
single spike per cycle of T=16 timesteps, which allows us to represent complex numbers of unit
magnitude and discrete (4-bit) phase. Each complex element of a hyperdimensional vector is
implemented on the hardware as a neuron.

The binding operation in FHRR is the Hadamard product (elementwise multiplication) between
complex vectors. The multiplication of unit complex numbers is just the addition of their phases.
We represent the phases of complex numbers as spike timing, and thus, binding is a shift of spike
times. To achieve the correct shift of spike-timing, we designed a 4-compartment I&F neuron
compatible with Loihi 1. The structure of this neuron is shown in Figure 5B and the mechanism is
illustrated in Figure 5C.

Two of the compartments, “aux” and “soma”, act like clocks with a cycle time of T by simply
integrating a constant value (e.g., 1) and resetting when they reach a threshold (e.g., 16 to achieve
a cycle of T=16 timesteps). The first input (s) to the soma compartment resets the soma’s clock.

15

The second input spike to the “trig” compartment opens a gate from the “aux” to the “dend”
compartment. When the gate is opened, the aux state, which corresponds to the (negative) phase
of the second input spike, is added to the soma state, delaying the soma from reaching the spike
threshold and thus shifting the timing of the output spike (as illustrated in Fig. 5C). Note that
this multi-compartment implementation of phase addition is specific to the Loihi 1 hardware; the
following equations describe the binding module using a discrete-time I&F mechanism independent
of the hardware for a single neuron (vector element):

v(t+ 1) = v(t) + 1− v(t)s0(t)− c(t)s1(t)

c(t+ 1) = c(t) + 1
(13)

The membrane potential v(t) corresponds to the state of the “soma” compartment, and the clock
c(t) corresponds to the state of the “aux” compartment. Both states are reset to 0 when they reach
a threshold vThr = T , and the “soma” compartment sends an output spike. The s0(t) and s1(t)
represent input spike trains, with a value of 1 at the spike times and 0 everywhere else. The s0
signal determines each neuron’s reference phase and the s1 signal represents the inputs that shift
the phase for binding. This mechanism takes maximally one cycle per additional input spike (which
becomes relevant when more than two vectors are bound together) before the neuron settles to
the correct output phase. The output spike time can be converted to the corresponding complex

number by ei2π
tsout mod T

T .

Note that there are two versions of the binding circuit, one for binding and one for unbinding.
Unbinding in FHRR is elementwise multiplication with the complex conjugate (denoted by ∗
in the equations), i.e., phases are subtracted instead of added. In the binding circuit, the ‘aux’
compartment counts down from 0 to -T; in the unbinding circuit, it counts up from -T to 0.

After the binding module, spikes are sent through a cleanup module, which performs a matrix
multiplication with the auto-associative matrix, e.g., HH†. As described in Fig. 5, each spike
through the clean-up matrix elicits a negative and positive current impulse. The impulse is delayed
using Loihi’s synaptic delay settings, and the delay is based on the phase of the complex weight as
described in [53]. This results in an approximation of sine-wave oscillations that occur in each I&F
neuron’s membrane potential, which, when summed together, implement the complex dot product.

To coordinate the timing of the network, there is a gate after the cleanup module. The gate
module consists of an array of I&F neurons of length N that are connected in a 1:1 manner from
the cleanup module to the binding module. The neurons are inhibited by default and only allow
spikes to relay when also depolarized by control input. The synaptic delays of the gate are adjusted
to ensure that the binding module and the cleanup module remain synchronized. Further, the gate
allows for the cleanup module to iterate for three cycles before forwarding spikes to the binding
module. The gate also ensures that only one spike per cycle is routed to the binding module.

In order to reach better convergence, the cleanup module has a recurrent 1:1 connectivity, i.e.,
each neuron is connected back to itself with a delay of one cycle T. This leads to slower evolution
of the resonator state over iterations, akin to the hysteresis procedure (11).

Because fanout (the number of connections allowed to leave a neuron) on the chip is limited
per core, we distributed neurons on several cores over the chip and pruned half of the synapses
with the lowest weights from the cleanup matrix. The dense cleanup matrix is the most limiting
component of the architecture. An alternative would be to split the cleanup matrix into its two
components, greatly reducing the number of synapses in most cases. However, the layer connecting
the two matrix multiplications cannot be represented with a spiking phasor with unit magnitude.
Graded spikes on the next version of Loihi could be used to enable phasors with a magnitude.

Power measurements for the Loihi 1 chip were obtained remotely using NxSDK version 0.9.9 on
the Nahuku32 board ncl-ghrd-01. The Loihi board is interfaced to a system with an Intel Xeon

16

CPU E5-2670 @ 2.60GHz and 128GiB of RAM running Ubuntu 20.04.4 LTS. Intel Labs provided
both software API and hardware. All probes, including the output probes, except the energy
probes, were deactivated. Energy was averaged over 20 resonator iterations. Measurements for the
CPU are obtained with Intel SoC Watch on a system with an Intel Core i9-7920X CPU @ 2.9GHz
and 128GiB of RAM running Ubuntu 20.04 LTS. Simulations were run with Python 3.8.10 and
NumPy 1.23.1. The process was constrained to use 12 threads since we found this to provide the
best energy-delay-product measurement. The energy of the DRAM was not included. The latency
and energy were averaged over 10000 iterations. Dynamic energy was measured by subtracting the
static energy that is used when running the system without the load for the same amount of time.
So, dynamic energy is the energy associated with the computation and excludes leakage energy. The
comparison uses cleanup with a full NxN auto-associative matrix on both Loihi and the CPU. For
small numbers of symbols, it is computationally advantageous to first multiply with the decoding
matrix (e.g., H†) and then with the encoding matrix (H). The intermediate result can, however,
not be represented in a phasor encoding without amplitudes. We are working on an encoding that
can represent amplitudes on Loihi 2, the next generation of the Loihi chip, which will improve the
scalability of the architecture.

DATA AVAILABILITY

The synthetic images of letters used in the experiments can be recreated with the provided code
on CodeOcean [82].

CODE AVAILABILITY

A notebook to demonstrate the resonator [83] is available at https://doi.org/10.5281/zenodo.10810900.
The source code of the hierarchical resonator in PyTorch for benchmarking [82] is available on

CodeOcean at https://doi.org/10.24433/CO.1543398.v1.

ACKNOWLEDGMENTS

A.R. discloses support for the research of this work from Accenture Labs, the University of Zurich
postdoc grant [FK-21-136], and the VolkswagenStiftung [CLAM 9C854]. Y.S. and A.R. disclose
support for the research of this work from the Swiss National Science Foundation (SNSF) [ELMA
PZOOP2 168183]. F.T.S. discloses support for the research of this work from NIH [1R01EB026955-
01] and NSF [IIS2211386]. We thank Intel Neuromorphic Computing Lab for providing access to
the Loihi hardware and related software. The authors thank Elvin Hajizada for running the CPU
power measurements.

AUTHOR CONTRIBUTIONS STATEMENT

A.R., L.S., A.D., G.I., B.A.O., Y.S., F.T.S., and E.P.F. contributed to the writing and editing
of the manuscript. A.R., E.P.F., and F.T.S. conceptualized the project. A.R. and E.P.F. developed
the model and performed the simulation experiments and analysis. L.S. carried out the control
experiments with YOLO (supplementary).

17

[1] T. Poggio, V. Torre, C. Koch, Computational vision and regularization theory. Readings in computer
vision, pp. 638–643 (1987) doi:10.1016/B978-0-08-051581-6.50061-1

[2] I. Yildirim, M. Belledonne, W. Freiwald, J. Tenenbaum, Efficient inverse graphics in biological face
processing. Science Advances 6(10), eaax5979 (2020). doi:10.1126/sciadv.aax5979

[3] C.K. Williams, Structured generative models for scene understanding. arXiv preprint arXiv:2302.03531
(2023). https://arxiv.org/abs/2302.03531

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing properties
of neural networks. In Proc. International Conference on Learning Representations (ICLR) (2014).
https://arxiv.org/abs/1312.6199

[5] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep learning models resistant to
adversarial attacks. In Proc. International Conference on Learning Representations (2018). https:

//arxiv.org/abs/1706.06083

[6] A. Nguyen, J. Yosinski, J. Clune, Deep neural networks are easily fooled: high confidence predictions
for unrecognizable images. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(2015), pp. 427–436. doi:10.1109/CVPR.2015.7298640

[7] A. Kurakin, I.J. Goodfellow, S. Bengio, Adversarial examples in the physical world. In Artificial
Intelligence Safety and Security, Ch. 8 (Chapman and Hall/CRC, 2018), pp. 99–112. https://arxiv.
org/abs/1607.02533

[8] D.M. MacKay, Towards an information-flow model of human behaviour. British Journal of Psychology
47(1), 30–43 (1956).

[9] U. Neisser, Cognitive Psychology (Appleton-Century-Crofts, 1966).
[10] A. Yuille, D. Kersten, Vision as Bayesian inference: analysis by synthesis? Trends in Cognitive Sciences

10(7), 301–308 (2006). doi:10.1016/j.tics.2006.05.002
[11] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G.A.F. Guerra, P. Joshi, P. Plank, S.R. Risbud,

Advancing neuromorphic computing with Loihi: A survey of results and outlook. Proceedings of the
IEEE pp. 1–24 (2021). doi:10.1109/JPROC.2021.3067593

[12] P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, et al., A million spiking-neuron integrated cir-
cuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014).
doi:10.1126/science.1254642

[13] S. Furber, F. Galluppi, S. Temple, L. Plana, The SpiNNaker project. Proceedings of the IEEE 102(5),
652–665 (2014). doi:10.1109/JPROC.2014.2304638

[14] S. Moradi, N. Qiao, F. Stefanini, G. Indiveri, A scalable multicore architecture with heterogeneous
memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Transactions
on Biomedical Circuits and Systems 12(1), 106–122 (2018). doi:10.1109/TBCAS.2017.2759700

[15] J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu, G. Wang, Z. Zou, Z. Wu, W. He, F. Chen, N. Deng,
S. Wu, Y. Wang, Y. Wu, Z. Yang, C. Ma, G. Li, W. Han, H. Li, H. Wu, R. Zhao, Y. Xie, L. Shi,
Towards artificial general intelligence with hybrid tianjic chip architecture. Nature 572, 106–124 (2019).
doi:10.1038/s41586-019-1424-8

[16] G. Indiveri, S.C. Liu, Memory and information processing in neuromorphic systems. Proceedings of the
IEEE 103(8), 1379–1397 (2015). doi:10.1109/JPROC.2015.2444094

[17] G. Gallego, T. Delbruck, G.M. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leutenegger, A. Davison,
J. Conradt, K. Daniilidis, D. Scaramuzza, Event-based vision: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020). doi:10.1109/TPAMI.2020.3008413

[18] T.A. Plate, Holographic reduced representations. IEEE Transactions on Neural Networks 6(3), 623–641
(1995). doi:10.1109/72.377968

[19] P. Kanerva, Binary spatter-coding of ordered K-tuples. In Artificial Neural Networks —ICANN 96,
Lecture Notes in Computer Science, vol. 1112 (Springer, 1996), pp. 869–873. doi:10.1007/3-540-61510-
5 146

[20] R.W. Gayler, R. Wales, in Advances in Analogy Research: Integration of Theory and Data from the
Cognitive, Computational, and Neural Sciences (1998), pp. 1–11

[21] R.W. Gayler, Vector Symbolic Architectures answer Jackendoff’s challenges for cognitive neuroscience.
In Joint International Conference on Cognitive Science (ICCS/ASCS) (2003), pp. 133–138.

18

[22] P. Kanerva, Hyperdimensional computing: An introduction to computing in distributed representation
with high-dimensional random vectors. Cognitive Computation 1(2), 139–159 (2009). doi:10.1007/s12559-
009-9009-8

[23] C. Von der Malsburg, The correlation theory of brain function. Tech. Rep. 81-2, Max-Planck-Institute
for Biophysical Chemistry, Göttingen, Germany (1981).

[24] C. Von der Malsburg, Binding in models of perception and brain function. Current Opinion in
Neurobiology 5(4), 520–526 (1995). doi:10.1016/0959-4388(95)80014-X

[25] D.E. Feldman, The spike-timing dependence of plasticity. Neuron 75(4), 556–571 (2012).
doi:10.1016/j.neuron.2012.08.001

[26] D. Kleyko, M. Davies, E.P. Frady, et al., Vector Symbolic Architectures as a computing framework for
nanoscale hardware. arXiv preprint arXiv:2106.05268 (2021). https://arxiv.org/abs/2106.05268

[27] E. Frady, D. Kleyko, C. Kymn, B. Olshausen, F. Sommer, Computing on functions using randomized
vector representations. arXiv preprint arXiv:2109.03429 (2021). https://arxiv.org/abs/2109.03429

[28] E.P. Frady, S.J. Kent, B.A. Olshausen, F.T. Sommer, Resonator networks, 1: An efficient solution for
factoring high-dimensional, distributed representations of data structures. Neural Computation pp. 1–21
(2020). doi:10.1162/neco a 01331

[29] S.J. Kent, E.P. Frady, F.T. Sommer, B.A. Olshausen, Resonator networks, 2: Factorization performance
and capacity compared to optimization-based methods. Neural Computation 32(12), 2332–2388 (2020).
doi:10.1162/neco a 01329

[30] W. Pitts, W.S. McCulloch, How we know universals the perception of auditory and visual forms. Bulletin
of Mathematical Biophysics 9(3), 127–147 (1947). doi:10.1007/BF02478291

[31] G.F. Hinton, A parallel computation that assigns canonical object-based frames of reference. In
Proceedings of the 7th International Joint Conference on Artificial Intelligence (1981), pp. 683–685.

[32] B.A. Olshausen, C.H. Anderson, D.C. Van Essen, A neurobiological model of visual attention and
invariant pattern recognition based on dynamic routing of information. Journal of Neuroscience 13(11),
4700–4719 (1993). doi:10.1523/JNEUROSCI.13-11-04700.1993

[33] D.W. Arathorn, Map-seeking circuits in visual cognition: A computational mechanism for biological and
machine vision (Stanford University Press, 2002).

[34] D. Arathorn, Computation in the higher visual cortices: map-seeking circuit theory and application to
machine vision. In 33rd Applied Imagery Pattern Recognition Workshop (AIPR’04) (IEEE, 2004), pp.
73–78. doi:10.1109/AIPR.2004.20

[35] J. Tenenbaum, W. Freeman, Separating style and content. Advances in Neural Information Processing
Systems 9 (1996).

[36] W.T. Freeman, J.B. Tenenbaum, Learning bilinear models for two-factor problems in vision. In
Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE,
1997), pp. 554–560. doi:10.1109/CVPR.1997.609380

[37] M.A.O. Vasilescu, D. Terzopoulos, Multilinear analysis of image ensembles: TensorFaces. In European
Conference on Computer Vision (Springer, 2002), pp. 447–460.

[38] B.A. Olshausen, C. Cadieu, J. Culpepper, D.K. Warland, Bilinear models of natural images. In Human
Vision and Electronic Imaging XII, vol. 6492 (SPIE, 2007), pp. 67–76.

[39] H.Y. Chau, F. Qiu, Y. Chen, B. Olshausen, Disentangling images with Lie group transformations and
sparse coding. arXiv preprint arXiv:2012.12071 (2020). https://arxiv.org/abs/2012.12071

[40] M. Davies, N. Srinivasa, T.H. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Dimou, P. Joshi, N. Imam,
S. Jain, et al., Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1),
82–99 (2018). doi:10.1109/MM.2018.112130359

[41] P. Frady, P. Kanerva, F. Sommer, A framework for linking computations and rhythm-based timing
patterns in neural firing, such as phase precession in hippocampal place cells. Conference on Cognitive
Computational Neuroscience (2019).

[42] B. Komer, T. Stewart, A. Voelker, C. Eliasmith, A neural representation of continuous space using
fractional binding. In Annual Meeting of the Cognitive Science Society (CogSci) (Cognitive Science
Society, 2019), pp. 2038–2043.

[43] D. Kleyko, D.A. Rachkovskij, E. Osipov, A. Rahimi, A survey on Hyperdimensional Computing aka
Vector Symbolic Architectures, Part I: Models and data transformations. ACM Computing Surveys 55,
130 (2022).

19

[44] D. Kleyko, D.A. Rachkovskij, E. Osipov, A. Rahimi, A survey on Hyperdimensional Computing aka
Vector Symbolic Architectures, Part II: Applications, cognitive models, and challenges. ACM Computing
Surveys 55, 175 (2023).

[45] T.A. Plate, Distributed Representations and Nested Compositional Structure (University of Toronto,
PhD Thesis, 1994).

[46] A. Rahimi, B. Recht, Random features for large-scale kernel machines. In Advances in Neural Information
Processing Systems (NIPS), vol. 20 (2007), pp. 1–8.

[47] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, Y. Liu, Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing 568, 127063 (2024).

[48] E.P. Frady, D. Kleyko, F.T. Sommer, A theory of sequence indexing and working memory in recurrent
neural networks. Neural Computation 30(6), 1449–1513 (2018). doi:10.1162/neco a 01084

[49] J.B. Tenenbaum, W.T. Freeman, Separating style and content with bilinear models. Neural Computation
12(6), 1247–1283 (2000).

[50] Y.W. Teh, M. Welling, S. Osindero, G.E. Hinton, Energy-based models for sparse overcomplete
representations. Journal of Machine Learning Research 4(Dec), 1235–1260 (2003).

[51] T. Kohonen, An adaptive associative memory principle. IEEE Transactions on Computers 100(4),
444–445 (1974).

[52] R.L. Burden, J.D. Faires, A.M. Burden, Numerical Analysis (Cengage Learning, 2015).
[53] E.P. Frady, F.T. Sommer, Robust computation with rhythmic spike patterns. Proceedings of

the National Academy of Sciences of the United States of America 116(36), 18050–18059 (2019).
doi:10.1073/pnas.1902653116

[54] M. Davies, A. Wild, G. Orchard, et al., Advancing neuromorphic computing with Loihi: A survey of
results and outlook. Proceedings of the IEEE 109(5), 911–934 (2021). doi:10.1109/JPROC.2021.3067593

[55] A. Renner, L. Supic, A. Danielescu, G. Indiveri, F.T. Sommer, E.P. Frady, Y. Sandamirskaya,
Visual odometry with neuromorphic resonator networks. Nature Machine Intelligence 6 (2024).
doi:10.1038/s42256-024-00846-2 https://arxiv.org/abs/2209.02000

[56] D. Casasent, D. Psaltis, Position, rotation, and scale invariant optical correlation. Applied Optics 15(7),
1795–1799 (1976). doi:10.1364/AO.15.001795

[57] Q.S. Chen, M. Defrise, F. Deconinck, Symmetric phase-only matched filtering of Fourier-Mellin transforms
for image registration and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
16(12), 1156–1168 (1994).

[58] B.S. Reddy, B.N. Chatterji, An FFT-based technique for translation, rotation, and scale-invariant image
registration. IEEE Transactions on Image Processing 5(8), 1266–1271 (1996). doi:10.1109/83.506761

[59] M. Davies, N. Srinivasa, T.H. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain,
Y. Liao, C.K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan,
Y.H. Weng, A. Wild, Y. Yang, H. Wang, Loihi: A neuromorphic manycore processor with on-chip
learning. IEEE Micro 38(1), 82–99 (2018). doi:10.1109/MM.2018.112130359

[60] Y. Bengio, A. Courville, P. Vincent, Representation learning: A review and new perspec-
tives. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8), 1798–1828 (2013).
doi:10.1109/TPAMI.2013.50

[61] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, A. Lerchner, beta-VAE:
Learning basic visual concepts with a constrained variational framework. In International Conference
on Learning Representations (2017). https://openreview.net/forum?id=Sy2fzU9gl

[62] D.P. Kingma, M. Welling, Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).
https://arxiv.org/abs/1312.6114

[63] L. Tran, X. Yin, X. Liu, Disentangled representation learning GAN for pose-invariant face recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017).

[64] M. Fil, M. Mesinovic, M. Morris, J. Wildberger, beta-VAE reproducibility: Challenges and extensions.
arXiv preprint arXiv:2112.14278 (2021). https://arxiv.org/abs/2112.14278

[65] F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf, O. Bachem, Challenging common
assumptions in the unsupervised learning of disentangled representations. In International Confer-
ence on Machine Learning (PMLR, 2019), pp. 4114–4124. http://proceedings.mlr.press/v97/

locatello19a.html

[66] I. Khemakhem, D. Kingma, R. Monti, A. Hyvarinen, Variational autoencoders and nonlinear ICA: A
unifying framework. In International Conference on Artificial Intelligence and Statistics (PMLR, 2020),

20

pp. 2207–2217. http://proceedings.mlr.press/v108/khemakhem20a.html
[67] Z. Li, Y. Chen, Y. LeCun, F.T. Sommer, Neural manifold clustering and embedding. arXiv preprint

arXiv:2201.10000 (2022). https://arxiv.org/abs/2201.10000
[68] R. Geirhos, J.H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, F.A. Wichmann, Shortcut

learning in deep neural networks. Nature Machine Intelligence 2(11), 665–673 (2020). doi:10.1038/s42256-
020-00257-z

[69] E. Eulig, P. Saranrittichai, C.K. Mummadi, K. Rambach, W. Beluch, X. Shi, V. Fischer, DiagViB-6: A
diagnostic benchmark suite for vision models in the presence of shortcut and generalization opportunities.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (2021), pp. 10655–10664.

[70] M.A. Alcorn, Q. Li, Z. Gong, C. Wang, L. Mai, W.S. Ku, A. Nguyen, Strike (with) a pose: Neural net-
works are easily fooled by strange poses of familiar objects. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2019), pp. 4845–4854. doi:10.1109/CVPR.2019.00498

[71] F. Wenzel, A. Dittadi, P. Gehler, C.J. Simon-Gabriel, M. Horn, D. Zietlow, D. Kernert, C. Russell,
T. Brox, B. Schiele, et al., Assaying out-of-distribution generalization in transfer learning. Advances in
Neural Information Processing Systems 35, 7181–7198 (2022).

[72] E.P. Frady, S. Kent, Q. Tran, P. Kanerva, B.A. Olshausen, F.T. Sommer, Learning and generalization
of compositional representations of visual scenes. arXiv preprint arXiv:2303.13691 (2023). https:

//arxiv.org/abs/2303.13691

[73] M.L. Montero, C.J. Ludwig, R.P. Costa, G. Malhotra, J. Bowers, The role of disentanglement in
generalisation. In International Conference on Learning Representations (2020).

[74] L. Schott, J. Von Kügelgen, F. Träuble, P. Gehler, C. Russell, M. Bethge, B. Schölkopf, F. Locatello,
W. Brendel, Visual representation learning does not generalize strongly within the same domain. In
International Conference on Learning Representations (2021).

[75] H. Kim, A. Mnih, Disentangling by factorising. In Proceedings of the 35th International Conference on
Machine Learning (PMLR, 2018), pp. 2649–2658. http://proceedings.mlr.press/v80/kim18b.html

[76] S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, H. Zhang, Learning generative models of 3D structures. In
Computer Graphics Forum, vol. 39 (Wiley Online Library, 2020), pp. 643–666.

[77] J. Huang, K. Murphy, Efficient inference in occlusion-aware generative models of images. arXiv preprint
arXiv:1511.06362 (2015). https://arxiv.org/abs/1511.06362

[78] J. Feldman, The neural binding problem(s). Cognitive Neurodynamics 7(1), 1–11 (2013).
[79] C. Gray, W. Singer, Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex.

Proceedings of the National Academy of Sciences 86, 1698–1702 (1989). doi:10.1073/pnas.86.5.1698
[80] Z. Nadasdy, Binding by asynchrony: The neuronal phase code. Frontiers in Neuroscience 4, 51 (2010).

doi:10.3389/fnins.2010.00051
[81] D.J. Felleman, D.C. Van Essen, Distributed hierarchical processing in the primate cerebral cortex.

Cerebral Cortex 1(1), 1–47 (1991). doi:10.1093/cercor/1.1.1-a
[82] A. Renner, E.P. Frady, Code for neuromorphic visual scene understanding with resonator networks.

doi:10.24433/CO.1543398.v1
[83] E.P. Frady, Resonator network for scene understanding. doi:10.5281/zenodo.10810900
[84] A. Azulay, Y. Weiss, Why do deep convolutional networks generalize so poorly to small image transfor-

mations? arXiv preprint arXiv:1805.12177 (2018). https://arxiv.org/abs/1805.12177
[85] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 779–788.
doi:10.1109/CVPR.2016.91

21

SUPPLEMENTARY MATERIAL

Notation and symbols reference

Notation Factors Transforms

Á Whitened codebook c / Ć Color Φ, ΦP, ΦL, G VSA codebooks
â Factor estimate h / H Horizontal position L (Λ) Log-pol transf. (VSA space)
A† Complex conjugate transpose v / V Vertical position s = ΦI Input image
a∗ Complex conjugate r / R Rotation D = ΦPP Template images
a» b Binding (Hadamard Product) m / M Scale factor DL = ΛD = ΦLLP Log-polar templates

a+ b Summation or superposition d / D́ / D́L Centered template C = GB Generative Colors
a−1 Inverse
ℜ(a) Real part of complex number

TABLE I. Notation and symbols reference

Analysis of multiple objects

Supplementary Fig. 7 shows results for the resonator solving the letter translation task with
five letters. The performance in the first pass is almost the same as for the translation task with a
single letter. Performance for the following passes decreases slightly.

FIG. 7. Benchmarking of the resonator network for the letter translation task with 5 random letters, and
1000 random samples. A. Letter classification accuracy for each of the 5 passes. B. Two random example
input images (left) and the reconstruction from the final resonator states (right), by adding all final states
together. All letters were reconstructed correctly, apart from the red ’z’ in the second image.

Multi-headed resonator

Instead of running several passes of the resonator and explaining-away the result after each
pass, we propose the multi-headed resonator. The multi-headed resonator explains several letters in
parallel. It consists of several identical copies of the resonator that run in parallel and compete to
explain parts of the input image. The same explaining-away procedure is utilized but after each
iteration instead of at the end of the pass. Whenever one head has found and is close to converging
to one of the letters, this letter is subtracted from the input and, therefore, becomes invisible to
the other heads. Supplementary Fig. 8 shows the results for the 3-headed resonator solving the
translation task with three letters.

22

FIG. 8. Benchmarking of the multi-headed resonator network for the letter translation task with 3 random
letters, 500 random samples. A. Letter classification accuracy for each of the 3 heads. B. Four random
example input images and the reconstruction from the final resonator states. Bottom-right shows a mistake
example that misses the red ‘o’.

model version accuracy (%)

full model 98.4
without noise 96.0
without aligned whitening 93.8
without ReLU (k = 1, N = 30K) 92.6
without ReLU (k = 2, N = 10K) 92.1

TABLE II. Testing of different model variants of the resonator on the letter translation task.

Explaining away procedures

We explore explaining away both in the image space and in the latent (VSA) space. In the VSA
space, the product of all resonator states (i.e., all factors bound together) is subtracted from the
encoded input before it is sent to the next pass or used by the other heads. For explaining-away
in the image space, the resonator network state is used to reconstruct the image. This image
is then max normalized and all values below a threshold (0.1) are set to 0. The reconstruction
image is rescaled and then subtracted from the input image to remove all correlation. The result is
thresholded again to get rid of values below 0. The resulting residual image is then encoded into a
VSA vector and used as input.

The subtraction in the latent VSA space is computationally cheaper as the image does not have
to be reconstructed, but so far comes with a drop in performance (of 10-15%) as the states are less
clean and additionally cannot fully explain away the input image due to the whitening. One could
experiment with additional, stronger (higher k) cleanup with the non-whitened codebook for this
purpose.

Ablation experiments

We test different variants of the resonator model to determine the importance of the algorithmic
components, see Supplementary Table II.

23

Comparison with supervised learning approaches

We explored the use of deep neural network architectures trained with supervised learning
on our task in additional experiments. As described in our previous experiments [72] and from
several other studies [65], systems trained to learn the factors of variation from data fall short of
“out-of-distribution” generalization. This means that if particular combinations of generative factors
are not present in the training data, then the system will fail to recognize this factor conjunction
during testing. However, network architectures with a built-in inductive bias can overcome this.

To verify these results, we performed additional experiments testing out-of-distribution gener-
alization in different types of neural networks. In our previous work [72], we showed that deep
learning networks without any inductive bias fail to generalize to a combination of shape and
translation that was not present in the training data, such as a 7 being shown in the bottom left
corner of the image.

Convolutional neural networks, through their architecture, include an inductive bias towards
translation invariance, but surprisingly often do not achieve translation invariance [84]. In our
experiments, we see that a shallow 3-layer CNN fails in out-of-distribution generalization (acc.
< 25%). However, we tested a much larger CNN architecture, ResNet18, as well as YOLO (v3)
[85], which can indeed perform out-of-distribution generalization with high accuracy (> 90%). We
tested this by excluding 30% of the letter translation in one direction from the training data.

The YOLO (v3) architecture includes an inductive bias for translation by generating bounding
boxes around objects before classification. However, there is not an inductive bias for object rotation,
and we again tested YOLO’s out-of-distribution generalization for object rotations. When trained
with a dataset that leaves out 30% (the first 54°) of the rotations, YOLO classification accuracy
drops below 50% on the out-of-distribution samples.

In conclusion, our approach may inspire novel solutions to the following challenges: 1. Gener-
alization over new factors of variation: In CNNs, the factor over which generalization is possible
(i.e., translation) is baked into the system as an inductive bias. In the resonator, factors can be
added by the binding operation if the data embedding is constructed or learned accordingly. 2. To
achieve invariance or equivariance, through supervised or unsupervised methods, a large amount of
training data is required due to the mentioned lack of generalization. 3. Catastrophic forgetting
and continual learning: New classes cannot easily be added without retraining. In the case of
the resonator, only the respective factor where a class is added needs to be adjusted. 4. Data
representations in many forms of deep networks require slot-based or space-based feature binding.
Thus, they cannot easily represent several compositional objects in a single memory slot without
running into a binding problem (mixing up features of the stored objects).

	Neuromorphic Visual Scene Understanding with Resonator Networks
	Abstract
	Representing images with hypervectors
	A generative model of scenes using VSA vector operations
	Inference with the resonator network
	Scenes with rotated and scaled objects
	Scenes with rigid, non-commutative transforms
	Neuromorphic implementation using spike times
	Discussion
	Methods
	Details of simulation experiments
	Details of performance benchmarking
	Details of hardware implementation

	Data availability
	Code availability
	Acknowledgments
	Author Contributions Statement
	References
	Supplementary Material
	Notation and symbols reference
	Analysis of multiple objects
	Multi-headed resonator
	Explaining away procedures
	Ablation experiments
	Comparison with supervised learning approaches

