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Map-Driven mmWave Link Quality Prediction with

Spatial-Temporal Mobility Awareness
Zhizhen Li, Mingzhe Chen, Gaolei Li, Xi Lin, Yuchen Liu

Abstract—The susceptibility of millimeter-wave (mmWave)
links to blockages poses challenges for maintaining consistent
high-rate performance. By predicting link quality in advance
at specific locations or times of interest, proactive resource
allocation techniques, such as link-quality-aware scheduling, can
be employed to optimize the utilization of network resources. In
this paper, we introduce a map-driven link quality prediction
framework that divides the problem into long-term and short-
term link quality predictions to cater to the needs of mobile
computing. The first stage aims to predict a long-term radio
map considering static network characteristics. We propose to
separate LoS and NLoS scenarios, and build an analytical model
and a regression-based approach to construct a complete link
quality map in the spatial domain. Next, short-term link quality
prediction is explored to anticipate future variations in link
quality through a spatial-temporal attention-based prediction
framework. The essence of this approach lies in capturing
the spatial correlation and temporal dependency of mmWave
wireless characteristics, followed by an attention mechanism to
complement the dynamic link quality prediction task. On top
of that, we also design a regional training mechanism with a
weighted loss function to address the classical data imbalance
problem of map-driven prediction. Extensive experimental and
simulation results show that our integrated framework effectively
captures comprehensive spatial-temporal knowledge and achieves
significantly higher accuracy than other baseline prediction meth-
ods, making it a promising solution for a wide range proactive
configuration tasks in mobile mmWave networks.

Index Terms—Millimeter wave, link quality, machine learning,
spatial-temporal awareness, dynamic prediction.

I. INTRODUCTION

The development of millimeter-wave (mmWave) technology

has garnered considerable interest owing to its capability to

deliver high-bandwidth and low-latency wireless communi-

cation, effectively meeting the growing demands of mobile

applications in 5G/6G cellular networks [1], [2], wireless

backhaul [3], [4], Wi-Fi networks [5], [6]. Spanning the

frequency range from 30 GHz to 300 GHz, the mmWave bands

offer a wealth of available spectrum, enabling the transmission

of data at significantly higher rates compared to traditional

frequency bands. Particularly, the research community has

been actively addressing the technical challenges associated

with indoor mmWave communication, aiming to facilitate its
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seamless integration into practical mobile wireless scenarios.

On the industry front, standardization efforts such as IEEE

802.11ay [7] and Wireless Gigabit Alliance (WiGig) [8] have

been instrumental in defining protocols and specifications for

wireless local-area networks (WLANs).

However, the full realization of ubiquitous mmWave com-

munication faces a significant challenge due to its high sensi-

tivity to both static and dynamic blockages. This is attributed

to the limited propagation distance and poor penetration

capabilities of mmWave signals. Such a problem is exacer-

bated in obstacle-rich environments, where radio propagation

phenomena can be more complex and unpredictable. For

instance, in the context of an indoor environment, various

factors can affect the quality of mmWave links, including fixed

objects and moving humans, leading to prominent multi-path

effects, shadowing, and blockages. In this regard, a significant

challenge lies in maintaining consistently high link quality

amidst the presence of potential blockages and environment

dynamics, which necessitates the accurate prediction of link

quality at specific locations and times of interest for effective

network management. For example, when a mobile user is

moving in an indoor environment, the quality of service

experienced by mobile users may be significantly enhanced

if information about future link quality along the users’ routes

is used for proactive resource allocation. Furthermore, by

leveraging predictive models that incorporate geographical

and temporal information of link quality, network operators

can make informed decisions enabling the implementation

of targeted strategies to ensure reliable communication and

improve overall network performance. This motivates the use

of map-based link quality prediction, which involves utilizing

environmental information to estimate the quality of mmWave

wireless links across any location and time, thereby empow-

ering proactive mobile configuration and computation.

While some predictive technologies have been explored in

link forecasting [9], they often face limitations due to their

inability to comprehensively predict both spatial and temporal

aspects. Specifically, existing works tend to focus on predicting

link quality between a transmitter and specific receivers, with

only a few able to generate link quality maps across desired

locations. However, these efforts typically operate under static

environmental conditions, lacking exploration into the varia-

tions caused by temporary blockages at a map scale, which is

the subject of our work. Predicting the mmWave link quality

map poses unique challenges in joint spatial-temporal domain,

particularly when considering the distinct properties of Line-

of-Sight (LoS) and Non-Line-of-Sight (NLoS) scenarios, as

well as the impact of dynamic obstacles. To fill this gap, this

work proposes a two-stage predictive framework that provides

map-driven link quality prediction with contextual awareness,



2

consisting of a long-term prediction mechanism that leverages

basic environment information and a short-term predictive

model that incorporates spatial and temporal knowledge to

handle environment dynamics.

In essence, a high-quality mmWave link always uses a LoS

path between the sender and the receiver [10], [11]. When

objects made of highly reflective materials such as metal

are present in the environment, reflected paths can be also

found to maintain high link quality even when no LoS path

exists between the two endpoints. As a result, even a minor

change in the environmental layout can significantly impact

the distribution of LoS and NLoS paths, leading to variations

in the quality a mmWave link. This highly environment-

dependent nature makes it challenging to achieve accurate

predictions, even in static network scenarios. Besides, the

dynamic blockages due to moving humans may frequently

break this steady state by disrupting the well-established links

at different locations, resulting in fluctuations of received

signal strength and further making it challenging to estimate

the link quality in space and time. Therefore, for accurate

prediction of a complete link quality map, it is critical to

jointly consider the location of fixed obstacles as well as the

effects brought by moving blockers simultaneously.

In this work, we build upon our previous work in [12]

focused on long-term link quality prediction by integrating

it with a short-term link quality prediction model. As a

comprehensive work, in the first stage, we focus on deriving

a long-term radio (LTR) map that takes into account the static

network characteristics. This map serves as a foundation for

a subsequent dynamic short-term prediction, which captures

the future variations in link quality within the LTR map.

Specifically, for the long term link quality prediction, we

leverage a geometric method to separate the LoS and NLoS

areas in a given network scenario based on the knowledge of

fixed obstacles’ sizes and locations. Then, we propose LoS and

NLoS link quality predictors using an analytical model and a

regression-based deep learning approach, respectively. For the

more challenging short-term prediction, a Spatial- Temporal

Attention-based Prediction (STAP) framework is developed

to capture spatial correlation and learn temporal dependency

for predictions in both space and time. We also add a soft

attention mechanism to improve the prediction accuracy by

learning the importance of the link quality variance at every

moment. Specifically, we apply a regional learning method

to investigate and tackle the data imbalance problem that

exists in the map-driven prediction. We conduct extensive

experiments with high quality data covering a wide range of

fine-grained mmWave network scenarios, which is generated

by elaborated ray-tracing analysis. The results validate the sta-

bility, effectiveness, generalization capability, and stretchable

time-window prediction ability of our integrated map-driven

prediction models. The proposed scheme is also shown to

outperform the baseline prediction approaches by up to 61%

on the prediction accuracy. It is worth noting that our work

is particularly well-suited for semi-dynamic scenarios, such

as laboratory or office environments, where some deployed

objects are stationary, and human movement represents the

primary dynamic blockage to the network.

The specific contributions of this work are as follows.

• We develop for the first time a method to synthetically

generate high-quality training data covering a wide range

of fine-grained mmWave network scenarios, which is then

used to develop a machine learning and regression-based

framework, enabling the prediction of link quality at any

location, including those that have not been previously

visited or measured. Additionally, we investigate a ray-

tracing based approach to collect a substantial amount

of training data that captures the dynamic environmental

changes caused by moving obstacles. This allows for

accurate and dynamic prediction of link quality in real-

time scenarios.

• We tackle the map-driven link quality prediction problem

by dividing it into two sub-problems: long-term radio

map prediction and short-term link quality prediction.

The long-term prediction framework focuses on capturing

the characteristics of the static network environment,

allowing for the efficient construction of a complete

link quality map. This mainly addresses the impact of

static obstacles and permits link quality prediction several

seconds into the future to facilitate proactive resource

allocation.

• To handle link quality variations under dynamic block-

ages, we then introduce a spatial-temporal attention-based

learning framework for short-term link quality prediction.

To our knowledge, this is the first work that attempts

to integrate temporal dependency and spatial correlation

into the map-based mmWave link quality prediction. Such

spatial-temporal module enables the predictions over a

stretchable time window, providing flexible time ahead

for preparedness to proactive countermeasures.

• We perform both simulations and real-world experiments

to evaluate our link quality prediction schemes, which

show a very good agreement with the ground truths.

This demonstrates that mmWave link quality under static

and/or dynamic conditions can be accurately predicted

through the use of detailed environment information

and spatial-temporal characteristics of mobile wireless

networks.

II. RELATED WORKS

Most recent studies have adopted machine learning methods

to predict when and where the blockage will happen in

mmWave wireless networks [13]. For instance, [14] proposed a

recurrent neural network (RNN) architecture based on Gated-

recurrent unit (GRU). The basic idea behind the algorithm is to

recognize the pre-blockage signature and predict the incoming

blockages. In [13], [15], a vision-aided approach was used

to construct a bimodal deep learning algorithm and combine

images with mmWave beam for blockage prediction. One main

limitation of these approaches is that the blockage does not

necessarily cause significant link quality drop as sometimes

opportunistic NLoS paths can be found to maintain a high

link quality, e.g. when highly reflective obstacles are present

nearby. By contrast, our work herein focuses on link quality

prediction since that is what drives network management deci-

sions, e.g. AP association, handover, and resource allocation.
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Prior works that have addressed the problem considered

herein, i.e. link quality predictions in mmWave settings are

[9], [12], [16]. [16] adopted a conventional approach to

measure the channel state information (CSI) of neighbouring

APs to estimate link quality. However, CSI-based link quality

prediction is not suitable for mmWave networks since the

instantaneous CSI is not always attainable and applicable to

predict the link quality at new locations. In our prior work

[12], a link quality prediction scheme based on knowledge

of the environment is proposed using a deep neural network

based predictor. However, this work is limited to estimate the

invariant link quality in the static scenario. Particularly, [9],

[17] designed long short-term memory (LSTM) models to

predict multi-link quality under dynamic blockages. However,

these works focused on link quality prediction at a few

dedicated locations with considering only temporal-domain

information. Recent studies have also tried to utilize generative

models to forecast link quality maps [18]. However, these

models are limited to predicting link quality maps under

static environments. In contrast, our approach jointly considers

spatial and temporal domains to predict link quality maps

under environment dynamics.

Specifically, spatial-temporal based learning models have

been widely applied in the area of traffic flow prediction

[19]–[21]. Particularly, [21] built a geographical relation graph

according to time series similarity of traffic demand and

utilized a graphic recurrent neural network (RNN) and an

edge RNN to predict traffic flow data. [20] implemented a

convolutional LSTM model to predict travel demand. [22] pre-

sented a spatial-temporal learning model and applied transfer

learning to tackle data scarcity issue. Nevertheless, spatial-

temporal models have not been used for map-based link

quality prediction to capture the dependencies between spatial

locations and the evolution of the channel over time, which is

the subject of our work herein.

The primary challenge we consider in this work is to predict

link quality for mmWave networks under NLoS conditions and

dynamic blockages. The most relevant works we are aware

of that address this problem were [23], [24]. To be specific,

[23] adopts a measurement-based approach where link quality

measurements are taken as clients move around to different

locations and then those measurements are used as predictions

for future transmissions at the same locations. While even a

very small change in the locations could cause a big difference

on the quality of mmWave link, it is impractical to measure

every location of a scenario beforehand, thus this approach

suffers from not being able to predict link quality at unknown

locations or within a entire map. Also, it requires a period of

preparation time to collect current measurement data for future

prediction. By contrast, our approach can predict link quality

at any location by capturing the details of the environment

such as locations of obstacles and their reflectivities as well as

scenario configurations. To handle dynamic blockage effects,

[24] developed a temporal-domain based model to predict

the link quality at several fixed location spots in an indoor

environment, while our STAP framework in this work captures

both spatial correlation and temporal dependency of mmWave

wireless characteristics, making it possible to dynamically

construct full link quality maps over time.

III. SYSTEM OVERVIEW

In this section, we first formulate the problem into two

tractable sub-problems: long-term radio map prediction and

short-term link quality prediction, followed by an explanation

of the technical challenges involved. Then, we present an

introduction to the overarching framework.

A. Problem Statement

To facilitate map-driven link quality prediction in space and

time, the geographical area of the environment is partitioned

into M = N × N grids, in which each grid represents a

spatial region rn(1 ≤ n ≤ M). As previously mentioned,

our approach to addressing such a problem involves a two-

step process, where we first perform long-term radio map

prediction that only considers the static environment charac-

teristics with LoS and NLoS division, and then short-term link

quality prediction will be augmented to capture the link quality

fluctuation caused by potential environment dynamics such as

human blockages.

In the first stage, let X represents the predicted radio map.⋃N1

i=1 r
L
i and

⋃N2

i=1 r
N
i (N1 +N2 = M ) denote the LoS areas

and the NLoS areas, respectively. Formally, the long-term

prediction problem can be formulated as:

X = F1(
⋃N1

i=1
rLi )

⋃
F2(

⋃N2

i=1
rNi ), (1)

where F1 and F2 are two different predictors for radio map

in LoS areas (L) and NLoS areas (N ), respectively.

Second, for the short-term prediction problem, at time step

t, we propose to predict Xt+1 based on previous T predicted

link quality maps X t−T :t = (Xt−T , · · · , Xt), where T
represents the length of previous time steps. Since we consider

the information from both spatial and temporal domains, the

prediction problem can be formulated as

X̂t+1 = F3(X t−T :t,Gt−T :t), (2)

where F3 is a spatial-temporal predictor and Gt−T :t denotes

the spatial information during the same time period.

B. Technical Challenges

The major challenges involved in solving the above formu-

lated problem and achieving F1 – F3 are as follows: 1) The

significant disparity between LoS and NLoS link quality in

mmWave bands highlights the importance of environmental

knowledge for accurate prediction. However, it is analytically

challenging to derive link quality based on a variety of

complex environmental factors. Specifically, different indoor

environments feature various objects composed of different

materials, each inducing distinct characteristics of reflections

and diffractions on mmWave links. Moreover, the inherent

variability in human behavior and movement introduces further

unpredictability. Consequently, the compounded effects of

both static and dynamic environmental factors render simplis-

tic analytical approaches inadequate for accurately modeling
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Fig. 1. Architectural overview of map-driven link quality prediction.

this complex phenomenon [25]; 2) Given the substantial influ-

ence that minor alterations in transmitter or receiver placement

can have on link performance, accurately predicting link qual-

ity at new locations without prior measurements is challenging.

This becomes particularly difficult when trying to efficiently

construct a comprehensive map of link quality that includes

unexplored locations; 3) While machine learning techniques

can be employed for link quality predictions, obtaining an

adequate volume of training data in real-world environments

that cover a wide range of complex network scenarios poses

a challenge. Collecting large labeled datasets in real-world

settings is often prohibitively expensive and impractical due

to the significant human effort and complex infrastructure

required to accurately capture environmental features and link

quality information; 4) In the context of short-term dynamic

link quality prediction, a data imbalance problem always arises

that adversely affects prediction accuracy. This issue occurs

due to the sparse availability of data from areas affected by

environment dynamics such as moving objects, while the pre-

diction model receives redundant information from unaffected

areas that overshadows the essential information regarding the

impact of dynamic changes on link quality.

C. Solution Overview

Fig. 1 provides a glimpse of our overall map-driven predic-

tion framework that addresses the above challenges. First, a 3-

dimensional shadowing-region search (SRS) approach is pro-

posed to determine the LoS and NLoS areas of a given network

scenario. Second, the region of the entire environment space is

partitioned into groups of LoS and NLoS grid locations, which

are then fed into the analytical model and trained deep neural

network (DNN), respectively. After obtaining the predicted

link quality at each location, the complete set of link-quality

maps are generated for deployed APs and all possible device

heights. Next, to address short-term effects such as moving

obstacles that may occasionally “pollute” the derived long-

term radio map, we first design a region selection method that

learns the impacted area caused by dynamic blockages, and

then a spatial-temporal attention-based learning framework is

developed to capture spatial correlation and learn temporal

dependency for dynamic predictions. In what follows, we

discuss the details of technical components in this overall

framework.

IV. LONG-TERM LINK QUALITY MAP PREDICTION

In this section, we present the long-term link quality

prediction scheme aimed at constructing a complete radio

map based on environment details. These derived maps serve

as the foundation for the subsequent short-term prediction

augmentation as discussed in Sec. V.

A. LoS/NLoS Area Determination

The fundamental difference between link quality in the

mmWave bands compared to lower frequencies is the sharp

difference between the LoS and NLoS cases. We use geometric

analysis to identify the shadowed regions in an area that

correspond to definite LoS/NLoS cases. Based on knowledge

of the sizes and locations of obstacles (i.e., furniture items) in

the indoor environment, we propose a 3D shadowing-region

search (3D-SRS) approach to efficiently determine the LoS

and NLoS areas in a given scenario.

Algorithm 1 summarizes the steps of 3D-SRS algorithm.

First, a floor plan of room S at each device height basis hi is

partitioned into Ng equal-sized grids with the gridding length

of lc, where
⋃Ng

i=1 gi = S and
⋂Ng

i=1 gi = ∅. The algorithm

also incorporates obstacle information Obs, including their

sizes and locations, and AP locations ap as part of its input.

Considering all gi in S at the considered device height range

H (Lines 1-5), the 2D grid set G and the shadowing-region

(SR) map matrix Map are initialized. Next, the virtual heights

of obstacles and AP are calculated with respect to different

device height bases (Lines 7-8), and then we use the geometric

analysis to determine the shadowing-grid set SGi given the

information of obstacles and AP (Line 9). This geometric

algorithm is based on a grid-based shadowing search (GSS)

method [10], where the main idea is to check if the center point

of a grid element exists in a shadowing polygon formed by an

AP and known obstacles. To find all non-overlapped shadowed

grids caused by different obstacles, the shadowed-grid set

of each obstacle is first derived, and then the intersected

grids over different shadowed-grid sets are eliminated. After

traversing all known obstacles, the union of SG is obtained.

Finally, we add these shadowed (i.e., NLoS) grids into SR-

Map for each height basis hi (Lines 10-13). The algorithm is

terminated after all height bases are traversed.

B. Data Collection

As mentioned in Sec. III.B, it is not trivial to generate a large

training data set with synthetically generated APs of varying
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Algorithm 1: 3D-SRS: 3D Shadowing-Region Search

Input: Obs, lc, Ng , H , ap

Output: SR-Map

1 for each height (hi = Hmin + i ∗ lc) & (hi <= Hmax) do

2 G(i, :) = [all zeros in floor plan at height hi];

3 init 3D map with all LoS grids

4 SR-Map(i,:) = v⃗(all zeros, size = Ng);

5 end

6 for each height hi do

7 Obs.height = max{Obs.height - hi, 0}; ▷ change the

device height basis

8 ap.height = ap.height - hi; ▷ get the virtual height of

AP w.r.t device height basis

9 SGi = FindSGset(Obs, ap,G, lc); ▷
⋃

m∈obs

SGi,m

10 for each j ∈ SGi do

11 k = SGi(j);

12 SR-Map(i, k) = 1; ▷ NLoS grid location

13 end

14 end

15 return SR-Map;

locations, obstacles of varying sizes, locations, and material

properties in arbitrary scenarios. To acquire the large amount

of high-quality training data, we introduce the fine-grained

dataset generation (FDG) framework as shown in Fig. 2.

Specifically, we first randomly generate various scenario

cases with the following features: 1) the lengths, widths, and

heights of rectangular room follow uniform distributions Lr

∼ U (10.0, 20.0), Wr ∼ U (5.0, 10.0), and Hr ∼ U (2.4, 4.5);

2) Objects deployed in the room are modeled as cuboids

and placed on the floor, where the center of each obstacle

follows a Poisson point process with a specific density ¼
∼ U (0.04, 0.3), the widths, and lengths follow the truncated

normal distributions W∼ T N (0.56, Ãw, 0.25, 1.25) and L∼
T N (1.08, Ãl, 0.5, 1.75), where Ãw ∼ U (0.01, 0.38) and Ãl ∼
U (0.08, 0.58). Their heights and orientations follow uniform

distributions Θ ∼ U (0, Ã) and H ∼ U (0.3, 2.3)); 3) each

scenario case includes around 50 NLoS user locations, where

each randomly-located client (i.e. wireless device) is viewed as

a random point, and its height follows the uniform distribution

U (0.1, 2.0). These parameters are derived by using a real-life

office/lab environment as a guiding example, and all length

units of parameters are in meters.

Then, we feed all generated scenario cases into our quasi-

deterministic (Q-D) mmWave ray tracer [26], and do the

following procedures. First, we assign the reflectivity values

for obstacles, walls and floor in each scenario, where every

obstacle material’s reflection loss (dB) Ro follows the uniform

distribution U (0.5, 30.0), the reflection loss (dB) of wall or

floor is randomly chosen from the set {5.0, 15.0, 25.0}. The

reflectivity parameters are derived based on the actual exper-

iment measurements at 60 GHz from [27]–[29]. Next, these

assigned reflectivity values are integrated with the environment

information generated from the first step, thus all environment

features of each scenario is obtained. In parallel, Q-D ray

tracer is used to capture the geometrical properties of the

channel for each transceiver and generate the profile of delay

Ä , path gain, angle of departure (AoD) ¹t, angle of arrival

(AOA) ¹r, etc, for the path components in each NLoS case.

Any small change in the location of a node translates into

changes in these captured profiles.

Lastly, the output results from the ray tracer are directly

used as input to a Q-D mmWave channel. Specifically, the Q-

D mmWave channel [30] can be characterized using a set of

strong reflections and scattering rays, and the channel impulse

response is defined as:

h(t) =
∑
τ

∑
θt

∑
θr

Ytx(¹t) · Yrx(¹r) · h(t, Ä, ¹t, ¹r)

=
N−1∑
i=0

10−PLi/20ejφi · (Yrxi
· Ytxi

) · e−j2πfτi
,

(3)

where N is the number of generated rays from ray tracer,

PLi (dB) and ϕi are the path loss and phase shift of ray i,
and Ytxi

and Yrxi
are the radiation pattern of the transmitter

and receiver array at ray i, respectively. To be specific, a power

spectral representation of the 60 GHz signal is implemented,

where the entire channel is divided into a number of equally

spaced sub-bands, and each of them has the size of 5.156

MHz corresponding to the sub-carrier spacing for an orthog-

onal frequency division multiplexing (OFDM) PHY, while in

single-carrier (SC) PHY mode, the power is divided equally

across all the sub-bands over the entire bandwidth. With the

input of the Q-D trace files from mmWave ray tracer, we parse

these path profiles to obtain the spatial matrix between every

transceiver pair. Specifically, the received power per sub-band

Rxi is computed and turned into a scalar value to represent the

total energy apparent to the receiver by applying RF filtering

as in [30], thus the overall received power is obtained by

accumulating Rxi over all sub-bands, and signal-to-noise ratio

(SNR) value is further derived for each NLoS case.

By utilizing this FDG framework, we can effectively gener-

ate a large amount of training data including both detailed en-
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vironment characteristics and SNR values, paving the way for

developing the following regression-based prediction model.

Rather than directly employing the ray tracer to predict the

target link quality map, we leverage it to generate a large

dataset for training a DNN model, which offers several key

advantages. First, once the DNN model is trained offline, it

achieves higher computational efficiency. In complex environ-

ments, utilizing a ray tracer demands significant computational

resources and time. Conversely, a trained DNN can swiftly

produce predicted maps in an online manner, enabling real-

time applications. Second, employing a DNN allows for the

integration of diverse data sources, including environmental

factors and link-level characteristics, making the model adapt-

able for temporal-based predictions at any time instance. This

adaptability is challenging to achieve with a ray tracer, which

relies on underlying analytical or statistical models. We also

present quantitative comparisons in Section VI-A.3.

C. Environment-aware Prediction

Here we introduce separate prediction schemes for LoS and

NLoS areas. For LoS cases, an analytical model is utilized to

estimate the link quality. On the other hand, a more advanced

regression-based approach is developed to predict link quality

in NLoS locations by capturing intricate environmental details.

1) LoS link-quality predictor: As we know, LoS path com-

ponent contributes to the majority of link quality at mmWave

frequencies (e.g., 60 GHz), which is predominant over NLoS

components in the presence of obstacles. Therefore, the link

performance under these scenarios is not highly dependent

on surrounding obstacles, but instead, depends more on the

distance between sender and receiver. Thus, we perform LoS

link-quality predictions based on a 3GPP mmWave channel

model with parameters chosen for indoor LoS scenarios [31].

To be specific, the path-loss model is derived as:

PL = 32.4 + 17.3 · log10(d3D) + 20 · log10(fc) + Sf , (4)

where d3D is the separation distance between the transceiver,

fc is the center frequency normalized by the unit of GHz, and

Sf is the shadowing factor that follows the normal distribution

N (0, ÃSF = 3.0 dB). In this way, signal-to-noise ratio (S) can

be further derived to quantify the link quality as:

S = Pt ·Gt ·Gr · (10PL/10 ·NT )
−1, (5)

where Pt is the transmit power, Gt and Gr are directional

antenna gains at transmitter and receiver, respectively. To be

specific, Gt, Gr changes depending on the selected beam

and the transmission angle. We set up multiple antenna

beam patterns for transmitter, while a single beam pattern

for receiver covering a relatively wide range, which aligns

with the practical implementation as in [32] as well as our

experimental evaluations in Sec. VI. PL is the path loss in

Eq. (4), and NT is the power of thermal noise. For any given

LoS scenarios, we use this log-distance based LoS predictor

to estimate the link quality in mmWave WLANs. We also

validate the prediction performance of such simple analytical

model with both simulations and actual measurements in Sec.

VI.

2) NLoS link-quality predictor: When no LoS path exists,

the quality of a mmWave is highly dependent on the node

placements, locations of surrounding obstacles and their re-

flectivity properties. Treating these environmental parameters

as independent variables and long-term link quality as the

dependent variable, a regression-based prediction approach

naturally fits this situation. Accordingly, we develop and

evaluate a machine learning and regression-based approach to

prediction for these cases. By using the FDG data generation

framework, we generate large amount of WLAN scenarios and

use a mmWave ray tracer to produce ground-truth values of

link quality at different locations of each scenario. We use

these data to train a DNN to predict link quality under NLoS

scenarios.

a) Input feature and output label: We consider the avail-

ability of environment information including scenario con-

figuration, obstacle sizes and locations, reflectivity informa-

tion, the location of AP and client. The input data of DNN

model is presented in the format of a concatenated vector Ve

including all environment details. As shown in Eq. (6), for

each sample case, the 3D Cartesian coordinates are used to

indicate the client position U , AP position A, and room size

R. No represents the number of obstacles and O includes the

locations, sizes, as well as reflectivities of obstacles. We use

the zero-padding method to flatten the obstacle information O
in different scenario cases. Note that the maximum number of

generated obstacles Nm is equal to (¼m·Rlm ·Rwm
), where ¼m,

Rlm , and Rwm
are the maximum obstacle density and room’s

length and width as defined in Sec. IV-B. By factoring in

all environment details, the input feature vector Ve is obtained

by concatenating above environment information with the size

of (6Nm + 12). On the other hand, the output label (ground

truth) Sr used in DNN model is represented in the format of

a SNR value. Finally, we post-process the input features and

output values through a max-min normalization, which aims

to eliminate the impact of scale differences among different

features on the regression model.

Ve = { U(x,y,z), A(x,y,z), R(x,y,z), No, O1(x,y,w,l,h,ref), ...,

On−1(x,y,w,l,h,ref), On(x,y,w,l,h,ref), Wref , Fref}.
(6)

b) Network configuration: We use a deep neural network

with the number of hidden layers and neurons configured to

work across different network scenarios. The flattened input

feature vector Ve of size nin (Nm = 60 from Eq. (6)) is fed

to a fully connected network with 4 hidden layers as shown

in Fig. 3. The lth hidden layer has a total of nk neurons. The

kth neuron in (l−1)th layer is connected to jth neuron in lth

layer with a weight of wl
jk. blj represents the bias of the jth

neuron in the lth layer. The activation of the jth neuron in the

lth layer, i.e. alj , is calculated through the forward propagation

rule as:

alj = max{
∑

k

wl
jka

l−1
k + blj , 0}, (7)

Next, we use a sigmoid layer before the output layer to

transform the output logits to normalized values. The model

is trained through the backpropagation rule using a mean-

squared error loss function. With the available training data
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Fig. 3. Model overview with data inputs (green), neural network model (blue), and output (red).

bank, DB = {(Ve1 ,Sr1), (Ve2 ,Sr2), . . . (VeN ,SrN )}, of N
samples, the loss function is minimized using adaptive moment

estimation optimization algorithm. In particular, a batch of B
training samples is randomly selected out of N training NLoS

sample cases, and the weights wj and biases bj are updated

through the following backpropagation rule:

¹t+1 := ¹t −
³ ·mt√
vt + ε

(8)

mt =
´1mt−1 + (1− ´1)d¹

1− ´1
t , vt =

´2vt−1 + (1− ´2)d¹
2

1− ´2
t

(9)

where a fraction of the gradient in the previous iteration t
is retained with the coefficient of momentum, and the hyper-

parameters ´1, ´2 and ϵ are tuned as 0.9, 0.999 and 10−8,

respectively. The learning rate ³ is initialized as 0.05 and

decreased over time with decay factor of 0.9 for each 2,000

iterations, which aims to optimize prediction performance and

increasing the convergence rate of the algorithm.

In summary, based on the proposed link-quality predictors

that separate LoS and NLoS scenarios, all predicted values

at arbitrary locations and device heights can be eventually

integrated into a combination of 2-dimensional link-quality

maps (as shown in Fig. 1). Note that, although the offline

training process for the DNN model is time consuming due

to the large amount of data needed to achieve good prediction

accuracy, the online prediction process is fairly fast for both

the analytical LoS model and trained NLoS regression model,

thereby making our long-term prediction solution less time-

demanding. Furthermore, the trained model is adaptable to

various scenarios, as the DNN can predict the link quality

map based on room information. In the event of a room

layout change, updating the input to the model allows for the

generation of new link quality maps, as illustrated in Fig. 3.

V. SHORT-TERM LINK QUALITY PREDICTION

Built upon the previously predicted long-term radio map,

which encompasses a comprehensive link quality information

in the spatial domain, the second step involves forecasting the

short-term variations in link quality amid dynamic blockages.

In this regard, we introduce a Spatial-Temporal Attention-

based Prediction (STAP) framework that seamlessly combines

the spatial correlation and temporal dependency of mmWave

wireless characteristics within an integrated module, followed

by an attention mechanism to complement the overall link

quality prediction task. On top of that, we also design a novel

regional training approach with a weighted loss function to

address the data imbalance problem of map-driven prediction.

A. Data Collection with Environment Dynamics

While the FDG framework has been specifically designed to

collect a substantial volume of training data encompassing a

wide range of complex network scenarios, there are challenges

in synthetically generating dataset with environment dynamics.

This is primarily due to the absence of interfaces that allow

for the incorporation of dynamic blockages in the temporal

domain. To address this challenge, we employ a commercial

ray tracer known as Wireless Insite® to introduce moving

obstacles and generate dynamic changes in mmWave signal

profiles. This tool allows for the accurate simulation of moving

obstacles, thereby enabling the realistic generation of dynamic

changes in mmWave signal profiles. The tool and data can be

found in [33], [34].

Fig. 4. (a) 3-D scenario layout; (b) The corresponding link quality map.

As an example depicted in Fig. 4 (a), we generate the 3-D

layout of an office scenario with a size of 25m×25m×3m,

consisting of wooden tables, wooden chairs, metal cabinets,

and several moving humans to simulate the dynamic obstacles.

The transmitter (i.e., a mmWave access point) is placed at the

center of the room with a height of 2.9m, and the receivers are

evenly distributed with a spacing of 0.4m and at a height of

1m. Specifically, we choose the 3-D ray-tracing model which

has no restrictions on geometry shape or transceiver’s height.

For a cost-effective ray tracing analysis, the maximum order of

reflection paths between a transmitter and a receiver is set to

4, which is a reasonable number in mmWave wireless contexts

as the large-order reflection rays have negligible impacts

on the overall link quality due to the cumulative reflection

loss. Similarly, considering the significant signal strength drop

after the first-order diffraction, we set the maximum order of

diffraction to reach the receiver as 1. The corresponding link

quality map is shown in Fig. 4 (b).

B. Data Imbalance Problem in Short-term Prediction

Typically, to predict the link quality variance of the entire

space, the input of short-term prediction model should be
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the link quality values at any locations across the previous

time steps. However, this straightforward method causes a data

imbalance problem, making the prediction model fail to learn

useful knowledge brought by the dynamic blockages. Fig. 5

visualizes the difference between the ground truth and the

predicted link quality map when the input involves the entire

link quality map. While the model accurately predicts link

quality in most unaffected areas, we have observed limitations

in predicting link quality in blocked areas. This discrepancy

can be attributed to the fact that link quality in the majority

of areas is generally unaffected by the presence of moving

objects.

Typically, common loss functions utilized in deep learn-

ing models, such as mean squared error or mean absolute

error, assess the global accuracy of the model rather than

focusing on local accuracy. Consequently, these models may

perform inadequately when dealing with small training sam-

ples. For instance, consider two error samples of size 1000:

{50, . . . , 50, 10, . . . , 10} and {10, . . . , 10}, where the first set

includes 100 error samples of 50. The mean absolute errors for

these two samples are 14 and 10, respectively. Despite sharing

similar mean absolute errors, these two sets of errors exhibit

significant differences [35].

Fig. 5. Comparison between the predicted result with the ground truth using
the entire link quality map as the input.

In our considered network scenarios, the size of the unaf-

fected areas often significantly outweighs the affected areas

from the temporal perspective. Therefore, even if the model

performs poorly in predicting the affected areas, the global

error can still be minimal as in [24]. This is due to the fact

the amount of valid information obtained from the blocked

areas is considerably less than the redundant information

retrieved from the unaffected areas. This disparity poses a

challenge for the data training model in effectively capturing

critical information about the dynamics of the environment.

Consequently, it becomes necessary to shift attention towards

the link quality variance in the areas surrounding dynamic

obstacles.

To address this problem, we propose a regional learning

mechanism that strategically considers the link quality status

of adjacent regions of the moving obstacles as input to the

prediction model during the training process. This can be

viewed as a data under-sampling method that reduces the

samples from those unaffected areas. As shown in Fig. 6,

the selected area can be a rectangle region of arbitrary size,

covering the neighboring area of the potential obstacles. It is

worth noting that the size of the selected region is a tunable

Fig. 6. Regions selected for short-term link quality prediction.

parameter and we evaluate the impact of the region selection

on the prediction performance in Sec. VI-B. Besides, during

the back propagation process, a weighted loss function is de-

signed to further address this data imbalance issue. Traditional

loss functions using basic mean absolute error (MAE) are

inappropriate for our problem since the error is always small

as long as the link quality is well predicted in those unblocked

areas. To resolve this problem, we use the loss function with

a penalty parameter µ as follow:

Lδ =

∑n1

i=1 |yi − ŷi|+
∑n2

j=1 µ|yj − ŷj |
n1 + n2

, (10)

where yi (yj) and ŷi (ŷj) represent the ground-truth value and

the predicted value of link quality in the unblocked (blocked)

areas, respectively. Hyper-parameter µ is set as 10 during

training.

C. STAP Framework

In this part, we present the proposed STAP framework for

link quality predictions. As shown in Fig. 7, we first design

a graph convolutional network (GCN) to extract the spatial-

domain features of mmWave wireless environment from the

long-term radio map, and then a long short-term memory

(LSTM) based module is used to capture the temporal depen-

dency for predicting link quality variance in future time steps.

We also add a soft attention mechanism by assigning weights

to the past time-series data to further improve the prediction

accuracy.

1) Spatial-domain Correlation: In a dynamic mmWave

wireless environment, the presence of moving obstacles can

easily affect the link quality between transceivers at arbitrary

locations. Thus, it is necessary to capture the spatial correlation

between link quality variance and environment details. To

this end, we first partition the space (as shown in Fig. 4

(a)) into many grids and place a receiver at each grid to

record the received signal strength during our ray tracing

analysis. That way, each receiver can be regarded as a vertex

and assuming that the neighboring vertices of the receiver

are highly correlated, we then add the edges between these

neighbouring vertices to further construct a connected graph

which contains detailed spatial information.

Next, we use two layers of GCN model to extract spatial-

domain features, taking into account the graph node and the

adjacent links of the node to capture the correlation between
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Fig. 7. Overview of the spatial-temporal attention-based prediction framework.

link quality and environment details. A multi-layer GCN can

be expressed as:

H(l+1) = Ã(D̃−
1

2 ÂD̃−
1

2H(l)¹(l)), (11)

where Â = A+I , A is the adjacency matrix of the constructed

graph, and I is the identity matrix. D̃ is the degree matrix with

D̃ii =
∑

j Âij . H(l) is the output of the layer l. ¹(l) is the

parameter of the layer l, and Ã is the activation function.

In the stage of graph convolution, each node will combine

the information received from its neighbouring nodes and then

share the learned knowledge with each other. In this way, our

GCN model encodes the topological structure of the graph and

captures the spatial correlations among all nodes and links.

2) Temporal-domain Dependency: To learn the temporal

dependency of link quality variances caused by blockages

and multi-path effects along the timeline, we use a LSTM

layer in the framework to predict the received signal strength

at any locations of a future time step. The rational behind

selecting LSTM model lies in its architecture’s ability to

sequentially process data, making it well-suited for time-series

analysis of link quality over time. This is especially relevant in

dynamic scenarios where link quality at each location exhibits

both long-term and short-term dependencies. For instance,

values at distant locations to the moving obstacles may remain

relatively stable, whereas those closer points are subject to

frequent fluctuations. The LSTM model’s capability to capture

and learn from these temporal dependencies ensures accurate

prediction and analysis of link quality in the face of changing

network conditions. Particularly, as a variant of recurrent

neural network, LSTM is further designed to circumvent

the vanishing gradient problem that prevents the network to

learn time dependency in long sequence data. This feature is

especially pertinent to our study, where discerning the impact

of short-term disturbances on the long-term link quality map

is crucial. In essence, the model includes the forget gate,

input gate and output gate, where the memory cell combines

the previous cell states, current input and previous output, to

update hidden states. The forget gate determines whether the

link quality information in the previous memory should be

discarded or not. The output gate learns how the memory cell

should affect the hidden states. As such, this LSTM layer can

well predict the link quality of the future time step based on the

previous hidden state information and the input at the current

time step, which captures the dynamic temporal variations with

such a gated mechanism.

3) Attention-based Enhancement: As the last component in

Fig. 7, we add a soft attention layer in the STAP framework to

learn the importance of the link quality at every moment. Since

each past data in both space and time will have a different

degree of impact on the link quality in future time steps, it

is critical to strategically assign different weights to those

historical data pieces for a more accurate prediction.

To be specific, suppose that the input time series is X =
{x1, x2, . . . , xn}, then for every single time step xk in X ,

there is a corresponding hidden state hk from the LSTM

output. Typically, the hidden state hn of the last input time step

is used as the output for prediction. However, the information

from much earlier time steps might not be totally ignored or

addressed as it may also contain some important knowledge

that contributes to the prediction at next time steps. In this way,

the output of the attention layer is calculated in a weighted

average way as:

ĥ =

n∑

i=n

³ihi, (12)

where ³i is the weight of each hidden layer. To calculate the

weights, we train a fully connected layer on the hidden states

to get a score for each state as follow:

si = sigmoid(wThi + bi), (13)

where si is the calculated score. Then, we use a softmax

function in Eq. (14) to normalize this score and get the weight

for each hidden state.

³i =
exp(si)∑n

k=1 exp(sk)
, (14)

In summary, the integrated framework comprising the long-

term radio map prediction (Sec. IV) and short-term link quality

prediction (Sec. V) effectively captures the characteristics of

the static network environment in the spatial domain and the

dynamic impacts on link quality in the temporal domain,

allowing for the efficient construction of a complete link

quality map with spatial-temporal awareness. In practice, the

network designer only needs to train the long-term prediction

model for one time, then the pre-trained model can be easily

transferred whenever the placement of object changes or the

input is a new scenario. What’s more, an online learning

method can also be adopted for our short-term link quality

prediction model whenever new link quality data is received.

In all, this framework paves the way to design anticipatory
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networking approaches for future wireless systems, e.g., per-

forming proactive AP association/handover combining the link

quality prediction with the user mobility information, and/or

allowing the scheduler to adaptively schedule links when their

quality is expected to be high. We will leave these promising

directions as the future work.

VI. EVALUATION RESULTS

In this section, we evaluate the performance of our map-

driven link quality prediction framework, which comprises

both the long-term radio map prediction and the short-term

STAP mechanism through a combination of simulations and

actual experiments.

A. Long-term Link Quality Prediction

1) Performance of LoS link quality predictor: First, we

evaluate the performance of our analytical LoS prediction

model. We generate various LoS cases and obtain the ground-

truth SNR values by using the FDG framework. Then, we use

the approach derived in Sec. IV to estimate the link quality

for each LoS case, and the results are reported in Fig. 8.

Fig. 8 shows the comparison between the predicted SNR

and ground truth at different user locations. As expected, we

observe that link quality values are fairly high under LoS

conditions, falling within a narrow range of 40–50 dB. On

the other hand, it is noted that the gap between the predicted

results and ground truths is quite small – the average SNR

results are 45.54 dB and 46.12 dB, respectively (power of

thermal noise is 7.04 × 10−12 Watts). This result demonstrates

the feasibility of the log-distance based model to estimate link

quality in LoS scenarios of mmWave WLAN, because the

LoS path dominates the link quality at mmWave frequencies,

which makes it mainly dependent on the separation distance

between the sender and receiver rather than on the surrounding

obstacles.
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Fig. 8. Link quality prediction comparison for LoS cases.

2) Performance of NLoS link quality predictor: Here, we

evaluate our link quality prediction approach for the challeng-

ing NLoS cases, which are highly dependent on environment

characteristics. We spend several months generating 600,000

data samples using our dataset generator (see Sec. IV-B )1,

split the data into two sets, and conducte cross validation,

1Note that this data generation time is not a serious issue, because it only
has to be done once to generate the model and then it can be used as many
times as needed for different room and obstacle environments.

where the training set is comprised of 90% of the data to

learn the neural network parameters, and the remaining 10%

of the dataset is used for validation and testing. We use

TensorFlow and an NVIDIA P100 GPU to implement our

DNN-based regression model, which is then used to predict the

link quality in new instances, and we calculate the performance

difference ratio (PDR) to measure the difference between

the predicted values and ground truths. The PDR is defined

as |Spred − Struth|/(Smax − Smin), where the denominator

represents the difference between the maximum SNR and

minimum SNR observed across all test data samples.
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Fig. 9. Prediction accuracy vs. number of training epochs.

First, we evaluate the prediction accuracy with varying error

tolerance rate (ETR), where the predicted link quality Spred

is accepted as an accurate result when the PDR is less than

the given ETR. Fig. 9 shows the prediction accuracy vs. the

number of training epochs for different ETRs. As expected,

the accuracy becomes higher as the number of epochs used to

train the DNN model increases, where the prediction accuracy

can achieve 93.86%, 97.89% and 98.54% for different ETRs

with a sufficiently large number of epochs. On the other

hand, a larger ETR provides a higher prediction accuracy

and converges faster, which indicates that most predicted

values can efficiently approximate the ground truth during the

regression process.
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Fig. 10. Link quality prediction comparison.

Second, we evaluate the performance of our predictor for

discrete instances within a mmWave WLAN. Here, we also

report results for the log-distance based (LD) model from

3GPP Release 16 [31] as a comparison point. Fig. 10 shows the

link quality results at different user locations. As compared to

the results of LoS cases in Fig. 8, we observe that link quality

fluctuates within a wider range due to its high environment

dependency. When we examine the results of 3GPP LD model,

the estimated link quality typically falls within a relatively

narrower range of 15–35 dB, and over 70% of data instances



11

underestimate the link quality in evaluated cases. However,

the predicted link quality from our predictor matches the

ground-truth data well since it accounts for the environment

characteristics.

3) Link-quality map construction: In this part, we evaluate

the performance of our combined LoS and NLoS predictors

to produce link-quality maps for a given network scenario.

Fig. 11(a) shows a WLAN scenario with several obstacles and

two APs deployed. We run our ELP framework to generate 2-

dimensional link-quality maps for each AP and each possible

device height. Fig. 11(b) and Fig. 11(c) show the two corre-

sponding link-quality maps for a device height of 0.8m. With

the maps of link quality, one can easily find the link quality

at any location of a given scenario.

(b) (c)

(a)

AP1

AP2

Fig. 11. (a) Scenario example; (b)-(c) Link-quality maps for AP1 and AP2

(device height is 0.8m).

It is worth noting that, using our ELP framework, only

10.58 minutes are needed to generate the complete set of

link-quality maps for two APs and all possible device heights

(with gridding length of 0.1m) in the evaluated scenario.2 In

contrast, to generate one 2-D map, i.e. for one AP and one

device height, a full ray-tracing calculation took more than

two weeks. Therefore, constructing all maps using ray tracing

is not practical since this would require more than 3 years of

computation time for the given scenario.

4) Discussion of required environment information: Our

link quality predictor requires the input of some environment

details, including locations, sizes, and material reflectivities of

surrounding objects in a given scenario. In practice, objects’

locations, sizes, and material types could be obtained in a

variety of ways, e.g., through camera-based sensing, but it

is non-trivial to get the exact reflectivity values of differ-

ent objects. The reflectivity index can be estimated based

on the knowledge of object material types from reported

measurements, e.g. [27]–[29]. Because these values will not

always match the actual reflectivities of objects in a given

environment, in this subsection, we evaluate the robustness

of our prediction framework to deviations of the reflectivity

values.

2The running time is evaluated on an Intel(R) Core(TM) i5-6200U 2.3GHz
CPU workstation with 2 cores and 4 logical processors.

Here, we add random noise to the reflectivity values of

obstacles, walls, and the floor. The noise, which follows a

normal distribution N∼(0, var) in dB units, is added to

the actual reflectivity loss chosen as described in Sec. IV.

The disturbed reflectivity values combined with other required

information are fed into our predictor while the undisturbed

values are used for the ground truth calculation. We re-ran the

accuracy evaluations from Sec. VI-A to see how the variation

of reflectivity values affects the link quality predictions.

Fig. 12 shows the prediction accuracy vs. different variances

for the reflectivity noise values. Compared to the baseline with

0 dB variance, we observe that there is almost no impact on

the accuracy performance with 1 dB of noise variance. When

increasing var to 3 dB and 5 dB, the accuracy performance

only degrades 1.6%–3% for ETR of 0.01 and 0.5%–2.5% for

ETR of 0.03, respectively, which validates the robustness of

our prediction method to the reflectivity inaccuracies. Thus we

conclude that our proposed approach can tolerate reasonable

deviations on the estimated reflectivity values, and maintain a

good prediction accuracy without the need for exact reflectivity

information.
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Fig. 12. Prediction accuracy vs. reflectivity variance.

5) Experimental validation: To further validate the perfor-

mance of our link quality prediction, we performe real-world

measurements of link quality in an actual network environment

and compare them to the predicted values.

Fig. 13(a) and (b) give an overview of the laboratory setup.

Specifically, we conducte the experimental measurements in

a 10m×6m×3m laboratory environment, and a TP-link Talon

ad7200 router mounted on the ceiling is used as the AP. The

Talon router contains the Qualcomm QCA9500 chipset, which

implements the IEEE 802.11ad standard. Then, we use an Acer

Travelmate P648 laptop as a client device to communicate

with the AP. We measure the PHY-layer link quality (SNR) at

different locations using the Linux iperf3 and iwconfig

tools. The entire laboratory scenario is precisely modeled with

a number of cuboid-based obstacles as shown in Fig. 13(c),

and we extract the required environment features as the

inputs to our link-quality predictor, which then generates the

predicted values. We consider 20 user locations that consisted

of 5 LoS cases and 15 NLoS cases. The performance compar-

isons between the prediction and measurement are reported in

Fig. 14 and Fig. 15.

Fig. 14 shows the results of LoS scenarios, and it is

observed that the predicted values are very close to the actual

measurements at different LoS locations, with differences of

only around 0.5–2 dB. This result is not surprising since the
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Fig. 13. (a) Network scenario; (b) 802.11ad AP and client laptop; (c) Modeled scenario and measured users.

link quality is consistently high when there is a LoS path

between the AP and the client.
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Fig. 14. Link quality validation of LoS locations.

For the NLoS cases in Fig. 15, we observe that the link

quality is typically different at each location due to the changes

in surrounding obstacles, but our predicted results can still

achieve a good agreement with the measurement data. For

instance, at locations #1, #5 and #12, high link quality is

predicted since the client is located near a metal cabinet in

the scenario. While extremely low link quality is predicted and

observed at locations #2, #8 and #9 due to the long distance

and lack of highly reflective objects nearby. Here the predicted

values fairly consistently overestimate the link quality by about

3–5 dB, and we think this is due to the lack of a precise

transmission power given in the specifications of the Talon AP

used in the measurement. For prediction purposes, we chose a

middle value within the specified transmission power range to

train our predictor. However, with a calibration of around 4 dB,

the differences can be reduced to achieve very close agreement

with the actual measurement results. In summary, due to

the significant alignment observed between the predictions

obtained from simulations and the actual measurements, in

what follows, we choose to primarily focus on performance

validation in our simulation environment for the sake of

simplicity.
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Fig. 15. Link quality validation of NLoS locations.

B. Short-term Link Quality Prediction

1) Impact of region selection: As described in the Sec. V-

B, we exploit a regional learning mechanism to overcome

the data imbalance issue in short-term link quality prediction.

Intuitively, considering a large region size in the model may

compromise the prediction personalization, resulting in the

increase of the local MAE, while a small region size will

fail to capture the sufficient spatial information for prediction

due to the high environment dependency of mmWave links.

Therefore, it is utmost of importance to choose an appropriate

region size in our STAP framework.

In this part, we evaluate the performance of STAP model

with different region sizes and the results are reported in

Fig. 16. First, it is expected to see that the global MAE

increases with the larger region size due to the data imbalance

issue. Then, it is interesting to observe that the local MAE

decreases at first, but then starts to increase as the considered

region size becomes larger. The initial decrease is due to more

spatial information being considered as the selected area is

expanded. However, as the region size keeps increasing, the

data imbalance begins to dominate and overwhelm the benefits

brought by spatial information, resulting in higher local MAE.

In what follows, we select the 11% of the space size for

regional learning because it strikes a good balance between

the local MAE and the global MAE.

Fig. 16. Area percentage of selected region vs. MAE.

2) Model comparison: Next, to validate the performance of

our proposed STAP model, we compare with several baseline

models including LSTM based model from [24], CNN-LSTM

model from [20], GCN-LSTM model from [36], and the STAP

model using the standard MSE based loss function (termed as

STAP-STD), while our proposed STAP herein is trained with

a modified loss function Lδ in Eq. (10).

Table. I shows the performance comparisons among all con-

sidered models. Obviously, the proposed STAP outperforms

other baseline models in terms of both global MAE and local

MAE. By capturing the spatial dependency information, our

STAP, CNN-LSTM and GCN-LSTM can improve the predic-

tion accuracy by up to 61%, 24%, and 39% compared to the
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TABLE I
PERFORMANCE COMPARISONS.

Method
MAE

Local MAE Global MAE

LSTM [24] 41.7542 0.2652

CNN-LSTM [20] 31.7453 0.2781

GCN-LSTM [36] 25.1281 0.2548

STAP-STD 18.1567 0.1922

STAP 16.1409 0.1902

pure LSTM, respectively, which demonstrates the importance

of spatial correlations in mmWave link quality prediction. In

addition, our STAP is superior to GCN-LSTM and CNN-

LSTM by adding a soft attention mechanism, which considers

the correlation between links in both space and time. We also

find that the STAP shows the better performance than STAP-

STD, and this validates the effectiveness of the modified loss

function that well addresses the data imbalance issue.

Fig. 17. Visualization of prediction results. (a) is the predicted link quality
map of STAP; (b)-(d) are the error maps between predicted and ground-truth
link quality maps from LSTM, GCN-LSTM, and our STAP models.

Besides the quantitative results presented in Table. I, Fig. 17

depicts the visualized map-driven prediction results. Specifi-

cally, we showcase the prediction error map (i.e., ∀i ∈ L,

|x̂i−xi|/xi) for each model, where x̂n and xi are the predicted

and ground-truth link quality at any location i ∈ L. The

brighter pixel in the map indicates the larger prediction error,

so the superiority of STAP model can be easily observed,

which is consistent with the quantitative results in Table. I.

Additionally, as discussed in Sec. III-C, we only predict the

future link quality of the neighbouring area of obstacles. The

link quality of the remaining area is the same as that of

the last time step. As what we find from the error maps in

Fig. 17(b)-(d), the majority of the error in those areas are

around zero, which means the link quality from last time step

is almost the same as the next time step. This result validates

the effectiveness of our regional learning mechanism, namely

achieving high prediction accuracy with less computational

overhead.

Additionally, we evaluate the response time across different

models, and the results are shown in Fig. 183. As expected, the

system response time of all three models increases with human

density due to the need to process more positional information

when multiple objects are included. We observe that the pure

LSTM model achieves the fastest response time because it

does not consider spatial information, resulting in lower link

quality prediction accuracy as shown in Tab. I. In contrast,

our STAP model, which integrates both spatial and temporal

information, exhibits only a marginal increase in response time

compared to the LSTM model – approximately 1 ms. Given

the superior accuracy performance of our STAP model, this

minor increase in response time is a worthwhile trade-off. As

a comparison point, the CNN-LSTM scheme demonstrates the

longest response time, attributable to the intrinsic structure of

the CNN model, where each node must aggregate information

from a fixed number of neighboring nodes. In our STAP frame-

work, nodes only receive information from useful connected

nodes, thereby reducing processing delay.

Fig. 18. System response time of different models.

3) Prediction on stretchable time windows: In addition to

predicting the link quality at only the next time step, our STAP

model is capable of making predictions on a stretchable time

window, i.e., generating link quality maps for next several time

steps, where each time step is set as 30ms in this evaluated

case. Here we first investigate the performance of our STAP

model vs. the future time steps in Fig. 19(a). As expected,

Fig. 19. (a) The length of future time window vs. MAE; (b) The length of
past time window vs. MAE.

the prediction error increases when the model becomes more

farsighted. Additionally, we observe a significant increase of

local MAE at first, but then it becomes marginal as the

time step increases. Notably, both local and global MAE stay

almost unchanged when the window length is larger than 4,

where the global prediction error is maintained at around only

3The running time is evaluated on an Intel(R) Core(TM) i9-13900 5.6GHz
CPU workstation with 24 cores and Nvidia(R) RTX(TM) 4090 GPU.
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0.22. This result demonstrates the capability of our STAP

model to predict link quality within a stretchable time window,

exhibiting the potential use to allow for proactive network

configurations in different delay-sensitive applications.

Besides the study on the “lookahead” capability, here we

use the term “lookback” to depict length of past time step

needed for predicting the future link quality. Intuitively, a

longer lookback period can encode more temporal information

during the learning process, thus improving the prediction

accuracy. This hypothesis is proved in Fig. 19(b), where we

can see a decreasing trend in both local MAE and global

MAE when more lookbacks are considered. Specifically, the

prediction error becomes relatively small when the lookback

period is more than 3 in the evaluated scenario. As a result,

we conclude that the information from a few past time period

might be sufficient to make an accurate link quality prediction.
4) Impact of dynamic blockage density and model gen-

eralizability: In this part, we evaluate the performance of

our STAP model with varying moving human density in the

network scenario. Fig. 20 shows the PDR metric vs. the

moving human density. We adopt different ETRs to evaluate

the performance of the proposed prediction model, where the

predicted link quality is accepted as an accurate result when

the PDR is less than the given ETR. As expected, the increase

of human density will cause a decrease in the percentage

of accepted prediction results across all receiver locations in

the scenario. However, our STAP model can still maintain

around 85% and 97% prediction accuracy with a large dynamic

blockage density when ETR is 0.01 and 0.03, respectively,

which corresponds to the average link quality prediction error

of just 1–3 dB across the entire scenario map. The results

validate the stability of our proposed model, i.e., being able to

predict the link quality variance within an acceptable accuracy

as the density of dynamic blockages increases.

Fig. 20. (a) Prediction accuracy vs. moving obstacle densities; (b) Loss
comparison on original model and pre-trained model.

Lastly, we investigate whether our STAP model is general-

ized to arbitrary mobility patterns of temporary obstacles. We

evaluate the model performance in the case of humans moving

in random directions, and the results are reported in Fig. 20.

Specifically, the red line in Fig. 20 represents the learning loss

vs. the used epochs when training a new model, while the

blue line shows the convergence when new dataset consisting

of a different moving pattern is used as input to a pre-trained

model. In particular, it is observed that the initial loss on the

pre-trained model is significantly lower than that of the newly

trained model. Also, adding the new data to our pre-trained

model converges faster and achieves the lower loss. This result

shows the generalizability of our model to mobility pattern of

obstacles, which can be applied in various dynamic mmWave

network scenarios, since only a few epochs are needed to train

a link quality predictor based on the pre-trained model.

VII. CONCLUSION

This paper focused on addressing the map-driven mmWave

link quality prediction problem. We presented a comprehensive

approach that involves dividing the problem into long-term

and short-term link quality prediction. For the long-term link

quality prediction, we separate the LoS and NLoS cases and

design two corresponding predictors to construct a complete

radio map based on the environment details. In terms of

short-term link quality prediction under dynamic blockages,

we tackle the challenge of data imbalance by introducing

a regional learning mechanism. This mechanism enables ef-

fective training of a spatial-temporal attention-based model

using a synthetically generated dataset. Extensive evaluation

and experimental results demonstrated that our approach can

achieve fairly promising prediction accuracy and is robust to

multiple dynamic obstacles with arbitrary mobility patterns.
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