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Abstract—The susceptibility of millimeter-wave (mmWave)
links to blockages poses challenges for maintaining consistent
high-rate performance. By predicting link quality in advance
at specific locations or times of interest, proactive resource
allocation techniques, such as link-quality-aware scheduling, can
be employed to optimize the utilization of network resources. In
this paper, we introduce a map-driven link quality prediction
framework that divides the problem into long-term and short-
term link quality predictions to cater to the needs of mobile
computing. The first stage aims to predict a long-term radio
map considering static network characteristics. We propose to
separate LoS and NLoS scenarios, and build an analytical model
and a regression-based approach to construct a complete link
quality map in the spatial domain. Next, short-term link quality
prediction is explored to anticipate future variations in link
quality through a spatial-temporal attention-based prediction
framework. The essence of this approach lies in capturing
the spatial correlation and temporal dependency of mmWave
wireless characteristics, followed by an attention mechanism to
complement the dynamic link quality prediction task. On top
of that, we also design a regional training mechanism with a
weighted loss function to address the classical data imbalance
problem of map-driven prediction. Extensive experimental and
simulation results show that our integrated framework effectively
captures comprehensive spatial-temporal knowledge and achieves
significantly higher accuracy than other baseline prediction meth-
ods, making it a promising solution for a wide range proactive
configuration tasks in mobile mmWave networks.

Index Terms—Millimeter wave, link quality, machine learning,
spatial-temporal awareness, dynamic prediction.

I. INTRODUCTION

The development of millimeter-wave (mmWave) technology
has garnered considerable interest owing to its capability to
deliver high-bandwidth and low-latency wireless communi-
cation, effectively meeting the growing demands of mobile
applications in 5G/6G cellular networks [1], [2], wireless
backhaul [3], [4], Wi-Fi networks [5], [6]. Spanning the
frequency range from 30 GHz to 300 GHz, the mmWave bands
offer a wealth of available spectrum, enabling the transmission
of data at significantly higher rates compared to traditional
frequency bands. Particularly, the research community has
been actively addressing the technical challenges associated
with indoor mmWave communication, aiming to facilitate its
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seamless integration into practical mobile wireless scenarios.
On the industry front, standardization efforts such as IEEE
802.11ay [7] and Wireless Gigabit Alliance (WiGig) [8] have
been instrumental in defining protocols and specifications for
wireless local-area networks (WLANS).

However, the full realization of ubiquitous mmWave com-
munication faces a significant challenge due to its high sensi-
tivity to both static and dynamic blockages. This is attributed
to the limited propagation distance and poor penetration
capabilities of mmWave signals. Such a problem is exacer-
bated in obstacle-rich environments, where radio propagation
phenomena can be more complex and unpredictable. For
instance, in the context of an indoor environment, various
factors can affect the quality of mmWave links, including fixed
objects and moving humans, leading to prominent multi-path
effects, shadowing, and blockages. In this regard, a significant
challenge lies in maintaining consistently high link quality
amidst the presence of potential blockages and environment
dynamics, which necessitates the accurate prediction of link
quality at specific locations and times of interest for effective
network management. For example, when a mobile user is
moving in an indoor environment, the quality of service
experienced by mobile users may be significantly enhanced
if information about future link quality along the users’ routes
is used for proactive resource allocation. Furthermore, by
leveraging predictive models that incorporate geographical
and temporal information of link quality, network operators
can make informed decisions enabling the implementation
of targeted strategies to ensure reliable communication and
improve overall network performance. This motivates the use
of map-based link quality prediction, which involves utilizing
environmental information to estimate the quality of mmWave
wireless links across any location and time, thereby empow-
ering proactive mobile configuration and computation.

While some predictive technologies have been explored in
link forecasting [9], they often face limitations due to their
inability to comprehensively predict both spatial and temporal
aspects. Specifically, existing works tend to focus on predicting
link quality between a transmitter and specific receivers, with
only a few able to generate link quality maps across desired
locations. However, these efforts typically operate under static
environmental conditions, lacking exploration into the varia-
tions caused by temporary blockages at a map scale, which is
the subject of our work. Predicting the mmWave link quality
map poses unique challenges in joint spatial-temporal domain,
particularly when considering the distinct properties of Line-
of-Sight (LoS) and Non-Line-of-Sight (NLoS) scenarios, as
well as the impact of dynamic obstacles. To fill this gap, this
work proposes a two-stage predictive framework that provides
map-driven link quality prediction with contextual awareness,



consisting of a long-term prediction mechanism that leverages
basic environment information and a short-term predictive
model that incorporates spatial and temporal knowledge to
handle environment dynamics.

In essence, a high-quality mmWave link always uses a LoS
path between the sender and the receiver [10], [11]. When
objects made of highly reflective materials such as metal
are present in the environment, reflected paths can be also
found to maintain high link quality even when no LoS path
exists between the two endpoints. As a result, even a minor
change in the environmental layout can significantly impact
the distribution of LoS and NLoS paths, leading to variations
in the quality a mmWave link. This highly environment-
dependent nature makes it challenging to achieve accurate
predictions, even in static network scenarios. Besides, the
dynamic blockages due to moving humans may frequently
break this steady state by disrupting the well-established links
at different locations, resulting in fluctuations of received
signal strength and further making it challenging to estimate
the link quality in space and time. Therefore, for accurate
prediction of a complete link quality map, it is critical to
jointly consider the location of fixed obstacles as well as the
effects brought by moving blockers simultaneously.

In this work, we build upon our previous work in [12]
focused on long-term link quality prediction by integrating
it with a short-term link quality prediction model. As a
comprehensive work, in the first stage, we focus on deriving
a long-term radio (LTR) map that takes into account the static
network characteristics. This map serves as a foundation for
a subsequent dynamic short-term prediction, which captures
the future variations in link quality within the LTR map.
Specifically, for the long term link quality prediction, we
leverage a geometric method to separate the LoS and NLoS
areas in a given network scenario based on the knowledge of
fixed obstacles’ sizes and locations. Then, we propose LoS and
NLoS link quality predictors using an analytical model and a
regression-based deep learning approach, respectively. For the
more challenging short-term prediction, a Spatial- Temporal
Attention-based Prediction (STAP) framework is developed
to capture spatial correlation and learn temporal dependency
for predictions in both space and time. We also add a soft
attention mechanism to improve the prediction accuracy by
learning the importance of the link quality variance at every
moment. Specifically, we apply a regional learning method
to investigate and tackle the data imbalance problem that
exists in the map-driven prediction. We conduct extensive
experiments with high quality data covering a wide range of
fine-grained mmWave network scenarios, which is generated
by elaborated ray-tracing analysis. The results validate the sta-
bility, effectiveness, generalization capability, and stretchable
time-window prediction ability of our integrated map-driven
prediction models. The proposed scheme is also shown to
outperform the baseline prediction approaches by up to 61%
on the prediction accuracy. It is worth noting that our work
is particularly well-suited for semi-dynamic scenarios, such
as laboratory or office environments, where some deployed
objects are stationary, and human movement represents the
primary dynamic blockage to the network.

The specific contributions of this work are as follows.

e We develop for the first time a method to synthetically
generate high-quality training data covering a wide range
of fine-grained mmWave network scenarios, which is then
used to develop a machine learning and regression-based
framework, enabling the prediction of link quality at any
location, including those that have not been previously
visited or measured. Additionally, we investigate a ray-
tracing based approach to collect a substantial amount
of training data that captures the dynamic environmental
changes caused by moving obstacles. This allows for
accurate and dynamic prediction of link quality in real-
time scenarios.

« We tackle the map-driven link quality prediction problem
by dividing it into two sub-problems: long-term radio
map prediction and short-term link quality prediction.
The long-term prediction framework focuses on capturing
the characteristics of the static network environment,
allowing for the efficient construction of a complete
link quality map. This mainly addresses the impact of
static obstacles and permits link quality prediction several
seconds into the future to facilitate proactive resource
allocation.

o To handle link quality variations under dynamic block-
ages, we then introduce a spatial-temporal attention-based
learning framework for short-term link quality prediction.
To our knowledge, this is the first work that attempts
to integrate temporal dependency and spatial correlation
into the map-based mmWave link quality prediction. Such
spatial-temporal module enables the predictions over a
stretchable time window, providing flexible time ahead
for preparedness to proactive countermeasures.

e We perform both simulations and real-world experiments
to evaluate our link quality prediction schemes, which
show a very good agreement with the ground truths.
This demonstrates that mmWave link quality under static
and/or dynamic conditions can be accurately predicted
through the use of detailed environment information
and spatial-temporal characteristics of mobile wireless
networks.

II. RELATED WORKS

Most recent studies have adopted machine learning methods
to predict when and where the blockage will happen in
mmWave wireless networks [13]. For instance, [14] proposed a
recurrent neural network (RNN) architecture based on Gated-
recurrent unit (GRU). The basic idea behind the algorithm is to
recognize the pre-blockage signature and predict the incoming
blockages. In [13], [15], a vision-aided approach was used
to construct a bimodal deep learning algorithm and combine
images with mmWave beam for blockage prediction. One main
limitation of these approaches is that the blockage does not
necessarily cause significant link quality drop as sometimes
opportunistic NLoS paths can be found to maintain a high
link quality, e.g. when highly reflective obstacles are present
nearby. By contrast, our work herein focuses on link quality
prediction since that is what drives network management deci-
sions, e.g. AP association, handover, and resource allocation.



Prior works that have addressed the problem considered
herein, i.e. link quality predictions in mmWave settings are
[9], [12], [16]. [16] adopted a conventional approach to
measure the channel state information (CSI) of neighbouring
APs to estimate link quality. However, CSI-based link quality
prediction is not suitable for mmWave networks since the
instantaneous CSI is not always attainable and applicable to
predict the link quality at new locations. In our prior work
[12], a link quality prediction scheme based on knowledge
of the environment is proposed using a deep neural network
based predictor. However, this work is limited to estimate the
invariant link quality in the static scenario. Particularly, [9],
[17] designed long short-term memory (LSTM) models to
predict multi-link quality under dynamic blockages. However,
these works focused on link quality prediction at a few
dedicated locations with considering only temporal-domain
information. Recent studies have also tried to utilize generative
models to forecast link quality maps [18]. However, these
models are limited to predicting link quality maps under
static environments. In contrast, our approach jointly considers
spatial and temporal domains to predict link quality maps
under environment dynamics.

Specifically, spatial-temporal based learning models have
been widely applied in the area of traffic flow prediction
[19]-[21]. Particularly, [21] built a geographical relation graph
according to time series similarity of traffic demand and
utilized a graphic recurrent neural network (RNN) and an
edge RNN to predict traffic flow data. [20] implemented a
convolutional LSTM model to predict travel demand. [22] pre-
sented a spatial-temporal learning model and applied transfer
learning to tackle data scarcity issue. Nevertheless, spatial-
temporal models have not been used for map-based link
quality prediction to capture the dependencies between spatial
locations and the evolution of the channel over time, which is
the subject of our work herein.

The primary challenge we consider in this work is to predict
link quality for mmWave networks under NLoS conditions and
dynamic blockages. The most relevant works we are aware
of that address this problem were [23], [24]. To be specific,
[23] adopts a measurement-based approach where link quality
measurements are taken as clients move around to different
locations and then those measurements are used as predictions
for future transmissions at the same locations. While even a
very small change in the locations could cause a big difference
on the quality of mmWave link, it is impractical to measure
every location of a scenario beforehand, thus this approach
suffers from not being able to predict link quality at unknown
locations or within a entire map. Also, it requires a period of
preparation time to collect current measurement data for future
prediction. By contrast, our approach can predict link quality
at any location by capturing the details of the environment
such as locations of obstacles and their reflectivities as well as
scenario configurations. To handle dynamic blockage effects,
[24] developed a temporal-domain based model to predict
the link quality at several fixed location spots in an indoor
environment, while our STAP framework in this work captures
both spatial correlation and temporal dependency of mmWave
wireless characteristics, making it possible to dynamically

construct full link quality maps over time.

III. SYSTEM OVERVIEW

In this section, we first formulate the problem into two
tractable sub-problems: long-term radio map prediction and
short-term link quality prediction, followed by an explanation
of the technical challenges involved. Then, we present an
introduction to the overarching framework.

A. Problem Statement

To facilitate map-driven link quality prediction in space and
time, the geographical area of the environment is partitioned
into M = N x N grids, in which each grid represents a
spatial region r,(1 < n < M). As previously mentioned,
our approach to addressing such a problem involves a two-
step process, where we first perform long-term radio map
prediction that only considers the static environment charac-
teristics with LoS and NLoS division, and then short-term link
quality prediction will be augmented to capture the link quality
fluctuation caused by potential environment dynamics such as
human blockages.

In the first ste}\%e, let X represents the predicted radio map.
UM, rE and U2, 7N (Ny + Na = M) denote the LoS areas
and the NLoS areas, respectively. Formally, the long-term
prediction problem can be formulated as:

Ny

x=rlJ_ HUr

where F; and Fy are two different predictors for radio map
in LoS areas (L) and NLoS areas (IV), respectively.

Second, for the short-term prediction problem, at time step
t, we propose to predict X! based on previous T predicted
link quality maps X*‘~7% (Xt=T ... X"), where T
represents the length of previous time steps. Since we consider
the information from both spatial and temporal domains, the
prediction problem can be formulated as

N2

U_ (1)
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where F3 is a spatial-temporal predictor and G!~7*! denotes
the spatial information during the same time period.

B. Technical Challenges

The major challenges involved in solving the above formu-
lated problem and achieving F; — F3 are as follows: 1) The
significant disparity between LoS and NLoS link quality in
mmWave bands highlights the importance of environmental
knowledge for accurate prediction. However, it is analytically
challenging to derive link quality based on a variety of
complex environmental factors. Specifically, different indoor
environments feature various objects composed of different
materials, each inducing distinct characteristics of reflections
and diffractions on mmWave links. Moreover, the inherent
variability in human behavior and movement introduces further
unpredictability. Consequently, the compounded effects of
both static and dynamic environmental factors render simplis-
tic analytical approaches inadequate for accurately modeling
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Fig. 1. Architectural overview of map-driven link quality prediction.

this complex phenomenon [25]; 2) Given the substantial influ-
ence that minor alterations in transmitter or receiver placement
can have on link performance, accurately predicting link qual-
ity at new locations without prior measurements is challenging.
This becomes particularly difficult when trying to efficiently
construct a comprehensive map of link quality that includes
unexplored locations; 3) While machine learning techniques
can be employed for link quality predictions, obtaining an
adequate volume of training data in real-world environments
that cover a wide range of complex network scenarios poses
a challenge. Collecting large labeled datasets in real-world
settings is often prohibitively expensive and impractical due
to the significant human effort and complex infrastructure
required to accurately capture environmental features and link
quality information; 4) In the context of short-term dynamic
link quality prediction, a data imbalance problem always arises
that adversely affects prediction accuracy. This issue occurs
due to the sparse availability of data from areas affected by
environment dynamics such as moving objects, while the pre-
diction model receives redundant information from unaffected
areas that overshadows the essential information regarding the
impact of dynamic changes on link quality.

C. Solution Overview

Fig. 1 provides a glimpse of our overall map-driven predic-
tion framework that addresses the above challenges. First, a 3-
dimensional shadowing-region search (SRS) approach is pro-
posed to determine the LoS and NLoS areas of a given network
scenario. Second, the region of the entire environment space is
partitioned into groups of LoS and NLoS grid locations, which
are then fed into the analytical model and trained deep neural
network (DNN), respectively. After obtaining the predicted
link quality at each location, the complete set of link-quality
maps are generated for deployed APs and all possible device
heights. Next, to address short-term effects such as moving
obstacles that may occasionally “pollute” the derived long-
term radio map, we first design a region selection method that
learns the impacted area caused by dynamic blockages, and
then a spatial-temporal attention-based learning framework is
developed to capture spatial correlation and learn temporal
dependency for dynamic predictions. In what follows, we
discuss the details of technical components in this overall
framework.

Link-quality

—a

Spatial-temporal
attenetion-based
model

Region
Selection

Predicted short-term

Predicted long-term link link quality map

quality map over time

IV. LONG-TERM LINK QUALITY MAP PREDICTION

In this section, we present the long-term link quality
prediction scheme aimed at constructing a complete radio
map based on environment details. These derived maps serve
as the foundation for the subsequent short-term prediction
augmentation as discussed in Sec. V.

A. LoS/NLoS Area Determination

The fundamental difference between link quality in the
mmWave bands compared to lower frequencies is the sharp
difference between the LoS and NLoS cases. We use geometric
analysis to identify the shadowed regions in an area that
correspond to definite LoS/NLoS cases. Based on knowledge
of the sizes and locations of obstacles (i.e., furniture items) in
the indoor environment, we propose a 3D shadowing-region
search (3D-SRS) approach to efficiently determine the LoS
and NLoS areas in a given scenario.

Algorithm 1 summarizes the steps of 3D-SRS algorithm.
First, a floor plan of room S at each device height basis h; is
partitioned into N, equal-sized grids with the gridding length
of I., where Uf\gl gi = S and ﬂfvz"l g; = . The algorithm
also incorporates obstacle information Obs, including their
sizes and locations, and AP locations ap as part of its input.
Considering all g; in S at the considered device height range
H (Lines 1-5), the 2D grid set G and the shadowing-region
(SR) map matrix Map are initialized. Next, the virtual heights
of obstacles and AP are calculated with respect to different
device height bases (Lines 7-8), and then we use the geometric
analysis to determine the shadowing-grid set SG; given the
information of obstacles and AP (Line 9). This geometric
algorithm is based on a grid-based shadowing search (GSS)
method [10], where the main idea is to check if the center point
of a grid element exists in a shadowing polygon formed by an
AP and known obstacles. To find all non-overlapped shadowed
grids caused by different obstacles, the shadowed-grid set
of each obstacle is first derived, and then the intersected
grids over different shadowed-grid sets are eliminated. After
traversing all known obstacles, the union of SG is obtained.
Finally, we add these shadowed (i.e., NLoS) grids into SR-
Map for each height basis h; (Lines 10-13). The algorithm is
terminated after all height bases are traversed.

B. Data Collection

As mentioned in Sec. II1.B, it is not trivial to generate a large
training data set with synthetically generated APs of varying
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Algorithm 1: 3D-SRS: 3D Shadowing-Region Search
Input: Obs, lc, Ng, H, ap
Output: SR-Map

1 for each height (h; = Hypin + i % lc) & (hy <= Hmaz) do

2 G(i,:) = [all zeros in floor plan at height h;];

3 init 3D map with all LoS grids

4 SR-Map(i,:) = U(all zeros, size = Ny);

5

6

7

end

for each height h; do

Obs.height = max{Obs.height - h;, 0}; >> change the
device height basis

8 ap.height = ap.height - h;; > get the virtual height of

AP w.r.t device height basis

9 SG; =FindSGset(Obs, ap, G, lc); > |J SGim

meEobs
10 for each j € SG; do
1 k= SGi(j);
12 SR-Map(i, k) = 1; > NLoS grid location
13 end
14 end

15 return SR-Map;

locations, obstacles of varying sizes, locations, and material
properties in arbitrary scenarios. To acquire the large amount
of high-quality training data, we introduce the fine-grained
dataset generation (FDG) framework as shown in Fig. 2.

Specifically, we first randomly generate various scenario
cases with the following features: 1) the lengths, widths, and
heights of rectangular room follow uniform distributions L,
~ U(10.0, 20.0), W, ~ U(5.0, 10.0), and H, ~ U2.4, 4.5);
2) Objects deployed in the room are modeled as cuboids
and placed on the floor, where the center of each obstacle
follows a Poisson point process with a specific density A
~ U(0.04, 0.3), the widths, and lengths follow the truncated
normal distributions W~ TN (0.56, o,,, 0.25, 1.25) and L~
TN(1.08, a1, 0.5, 1.75), where o, ~ U(0.01, 0.38) and o; ~
U(0.08, 0.58). Their heights and orientations follow uniform
distributions © ~ U(0, w) and H ~ (0.3, 2.3)); 3) each
scenario case includes around 50 NLoS user locations, where
each randomly-located client (i.e. wireless device) is viewed as
a random point, and its height follows the uniform distribution
U(0.1, 2.0). These parameters are derived by using a real-life
office/lab environment as a guiding example, and all length
units of parameters are in meters.

Then, we feed all generated scenario cases into our quasi-
deterministic (Q-D) mmWave ray tracer [26], and do the

Append reflectivity values for I.np LS
environment
obstacles, walls, and floors
features
Output:
Q-D channel model SNR values

following procedures. First, we assign the reflectivity values
for obstacles, walls and floor in each scenario, where every
obstacle material’s reflection loss (dB) R, follows the uniform
distribution £(0.5, 30.0), the reflection loss (dB) of wall or
floor is randomly chosen from the set {5.0, 15.0, 25.0}. The
reflectivity parameters are derived based on the actual exper-
iment measurements at 60 GHz from [27]-[29]. Next, these
assigned reflectivity values are integrated with the environment
information generated from the first step, thus all environment
features of each scenario is obtained. In parallel, Q-D ray
tracer is used to capture the geometrical properties of the
channel for each transceiver and generate the profile of delay
7, path gain, angle of departure (AoD) 6;, angle of arrival
(AOA) 0,., etc, for the path components in each NLoS case.
Any small change in the location of a node translates into
changes in these captured profiles.

Lastly, the output results from the ray tracer are directly
used as input to a Q-D mmWave channel. Specifically, the Q-
D mmWave channel [30] can be characterized using a set of
strong reflections and scattering rays, and the channel impulse
response is defined as:

h(t) = Z Z Zyvt:r(et) : }/;x(er) : h(tha 9t>6r)

T 60 0,

N-1 , N )
Z 10~ PLi/20¢i¢: . (ymi ym) e a2 f 17
i=0

where N is the number of generated rays from ray tracer,
PL; (dB) and ¢; are the path loss and phase shift of ray ¢,
and Y;,, and Y., are the radiation pattern of the transmitter
and receiver array at ray ¢, respectively. To be specific, a power
spectral representation of the 60 GHz signal is implemented,
where the entire channel is divided into a number of equally
spaced sub-bands, and each of them has the size of 5.156
MHz corresponding to the sub-carrier spacing for an orthog-
onal frequency division multiplexing (OFDM) PHY, while in
single-carrier (SC) PHY mode, the power is divided equally
across all the sub-bands over the entire bandwidth. With the
input of the Q-D trace files from mmWave ray tracer, we parse
these path profiles to obtain the spatial matrix between every
transceiver pair. Specifically, the received power per sub-band
Rz; is computed and turned into a scalar value to represent the
total energy apparent to the receiver by applying RF filtering
as in [30], thus the overall received power is obtained by
accumulating Rx; over all sub-bands, and signal-to-noise ratio
(SNR) value is further derived for each NLoS case.

By utilizing this FDG framework, we can effectively gener-
ate a large amount of training data including both detailed en-



vironment characteristics and SNR values, paving the way for
developing the following regression-based prediction model.

Rather than directly employing the ray tracer to predict the
target link quality map, we leverage it to generate a large
dataset for training a DNN model, which offers several key
advantages. First, once the DNN model is trained offline, it
achieves higher computational efficiency. In complex environ-
ments, utilizing a ray tracer demands significant computational
resources and time. Conversely, a trained DNN can swiftly
produce predicted maps in an online manner, enabling real-
time applications. Second, employing a DNN allows for the
integration of diverse data sources, including environmental
factors and link-level characteristics, making the model adapt-
able for temporal-based predictions at any time instance. This
adaptability is challenging to achieve with a ray tracer, which
relies on underlying analytical or statistical models. We also
present quantitative comparisons in Section VI-A.3.

C. Environment-aware Prediction

Here we introduce separate prediction schemes for LoS and
NLoS areas. For LoS cases, an analytical model is utilized to
estimate the link quality. On the other hand, a more advanced
regression-based approach is developed to predict link quality
in NLoS locations by capturing intricate environmental details.

1) LoS link-quality predictor: As we know, LoS path com-
ponent contributes to the majority of link quality at mmWave
frequencies (e.g., 60 GHz), which is predominant over NLoS
components in the presence of obstacles. Therefore, the link
performance under these scenarios is not highly dependent
on surrounding obstacles, but instead, depends more on the
distance between sender and receiver. Thus, we perform LoS
link-quality predictions based on a 3GPP mmWave channel
model with parameters chosen for indoor LoS scenarios [31].
To be specific, the path-loss model is derived as:

PL =324+417.3-log,o(dsp) + 20 -log,o(fc) + Sf, (4)

where d3p is the separation distance between the transceiver,
fc is the center frequency normalized by the unit of GHz, and
S is the shadowing factor that follows the normal distribution
N(0, osr = 3.0 dB). In this way, signal-to-noise ratio (S) can
be further derived to quantify the link quality as:

S:Pt~Gt~GT~(1OPL/1O-NT)_l, (5)

where P, is the transmit power, G; and G, are directional
antenna gains at transmitter and receiver, respectively. To be
specific, GG;, G, changes depending on the selected beam
and the transmission angle. We set up multiple antenna
beam patterns for transmitter, while a single beam pattern
for receiver covering a relatively wide range, which aligns
with the practical implementation as in [32] as well as our
experimental evaluations in Sec. VI. PL is the path loss in
Eq. (4), and N7 is the power of thermal noise. For any given
LoS scenarios, we use this log-distance based LoS predictor
to estimate the link quality in mmWave WLANs. We also
validate the prediction performance of such simple analytical
model with both simulations and actual measurements in Sec.
VI

2) NLoS link-quality predictor: When no LoS path exists,
the quality of a mmWave is highly dependent on the node
placements, locations of surrounding obstacles and their re-
flectivity properties. Treating these environmental parameters
as independent variables and long-term link quality as the
dependent variable, a regression-based prediction approach
naturally fits this situation. Accordingly, we develop and
evaluate a machine learning and regression-based approach to
prediction for these cases. By using the FDG data generation
framework, we generate large amount of WLAN scenarios and
use a mmWave ray tracer to produce ground-truth values of
link quality at different locations of each scenario. We use
these data to train a DNN to predict link quality under NLoS
scenarios.

a) Input feature and output label: We consider the avail-
ability of environment information including scenario con-
figuration, obstacle sizes and locations, reflectivity informa-
tion, the location of AP and client. The input data of DNN
model is presented in the format of a concatenated vector V,
including all environment details. As shown in Eq. (6), for
each sample case, the 3D Cartesian coordinates are used to
indicate the client position I/, AP position .4, and room size
R. N, represents the number of obstacles and O includes the
locations, sizes, as well as reflectivities of obstacles. We use
the zero-padding method to flatten the obstacle information O
in different scenario cases. Note that the maximum number of
generated obstacles IV, is equal to (A\,,,- Ry, - R,,,,), where A,
Ry, , and R,,  are the maximum obstacle density and room’s
length and width as defined in Sec. IV-B. By factoring in
all environment details, the input feature vector V. is obtained
by concatenating above environment information with the size
of (6N,,, + 12). On the other hand, the output label (ground
truth) S, used in DNN model is represented in the format of
a SNR value. Finally, we post-process the input features and
output values through a max-min normalization, which aims
to eliminate the impact of scale differences among different
features on the regression model.

Ve = { u(m,y,z)v A(z,y,z)7 R(m,y7z)7 NO; Ol(x,y,w,l,h,ref)a ey
On—l(m,y,w,l,h,ref)> On(m,y,w,l,h,raf)7 WT€f7 ]:ref(}é)

b) Network configuration: We use a deep neural network
with the number of hidden layers and neurons configured to
work across different network scenarios. The flattened input
feature vector V. of size n;, (N,, = 60 from Eq. (6)) is fed
to a fully connected network with 4 hidden layers as shown
in Fig. 3. The [** hidden layer has a total of nj, neurons. The
Kkt neuron in (I — 1) layer is connected to 5 neuron in [*"
layer with a weight of wé o bé» represents the bias of the ;%"
neuron in the [ layer. The activation of the j** neuron in the
Ith layer, i.e. aé-, is calculated through the forward propagation
rule as:

al = max{z wha”t + b5, 0}, (7)
k

Next, we use a sigmoid layer before the output layer to
transform the output logits to normalized values. The model
is trained through the backpropagation rule using a mean-
squared error loss function. With the available training data
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Fig. 3. Model overview with data inputs (green), neural network model (blue), and output (red).

bank, DB = {(Ver,S,)s Ve Sia)s- - (Ve 1Sy )} of N
samples, the loss function is minimized using adaptive moment
estimation optimization algorithm. In particular, a batch of B
training samples is randomly selected out of N training NLoS
sample cases, and the weights w; and biases b; are updated
through the following backpropagation rule:
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where a fraction of the gradient in the previous iteration ¢
is retained with the coefficient of momentum, and the hyper-
parameters (31, S2 and € are tuned as 0.9, 0.999 and 108,
respectively. The learning rate « is initialized as 0.05 and
decreased over time with decay factor of 0.9 for each 2,000
iterations, which aims to optimize prediction performance and
increasing the convergence rate of the algorithm.

In summary, based on the proposed link-quality predictors
that separate LoS and NLoS scenarios, all predicted values
at arbitrary locations and device heights can be eventually
integrated into a combination of 2-dimensional link-quality
maps (as shown in Fig. 1). Note that, although the offline
training process for the DNN model is time consuming due
to the large amount of data needed to achieve good prediction
accuracy, the online prediction process is fairly fast for both
the analytical LoS model and trained NLoS regression model,
thereby making our long-term prediction solution less time-
demanding. Furthermore, the trained model is adaptable to
various scenarios, as the DNN can predict the link quality
map based on room information. In the event of a room
layout change, updating the input to the model allows for the
generation of new link quality maps, as illustrated in Fig. 3.
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V. SHORT-TERM LINK QUALITY PREDICTION

Built upon the previously predicted long-term radio map,
which encompasses a comprehensive link quality information
in the spatial domain, the second step involves forecasting the
short-term variations in link quality amid dynamic blockages.
In this regard, we introduce a Spatial-Temporal Attention-
based Prediction (STAP) framework that seamlessly combines
the spatial correlation and temporal dependency of mmWave
wireless characteristics within an integrated module, followed
by an attention mechanism to complement the overall link
quality prediction task. On top of that, we also design a novel
regional training approach with a weighted loss function to
address the data imbalance problem of map-driven prediction.

A. Data Collection with Environment Dynamics

While the FDG framework has been specifically designed to
collect a substantial volume of training data encompassing a
wide range of complex network scenarios, there are challenges
in synthetically generating dataset with environment dynamics.
This is primarily due to the absence of interfaces that allow
for the incorporation of dynamic blockages in the temporal
domain. To address this challenge, we employ a commercial
ray tracer known as Wireless Insite® to introduce moving
obstacles and generate dynamic changes in mmWave signal
profiles. This tool allows for the accurate simulation of moving
obstacles, thereby enabling the realistic generation of dynamic
changes in mmWave signal profiles. The tool and data can be
found in [33], [34].

Fig. 4. (a) 3-D scenario layout; (b) The corresponding link quality map.

As an example depicted in Fig. 4 (a), we generate the 3-D
layout of an office scenario with a size of 25mx25mx3m,
consisting of wooden tables, wooden chairs, metal cabinets,
and several moving humans to simulate the dynamic obstacles.
The transmitter (i.e., a mmWave access point) is placed at the
center of the room with a height of 2.9m, and the receivers are
evenly distributed with a spacing of 0.4m and at a height of
Im. Specifically, we choose the 3-D ray-tracing model which
has no restrictions on geometry shape or transceiver’s height.
For a cost-effective ray tracing analysis, the maximum order of
reflection paths between a transmitter and a receiver is set to
4, which is a reasonable number in mmWave wireless contexts
as the large-order reflection rays have negligible impacts
on the overall link quality due to the cumulative reflection
loss. Similarly, considering the significant signal strength drop
after the first-order diffraction, we set the maximum order of
diffraction to reach the receiver as 1. The corresponding link
quality map is shown in Fig. 4 (b).

B. Data Imbalance Problem in Short-term Prediction

Typically, to predict the link quality variance of the entire
space, the input of short-term prediction model should be



the link quality values at any locations across the previous
time steps. However, this straightforward method causes a data
imbalance problem, making the prediction model fail to learn
useful knowledge brought by the dynamic blockages. Fig. 5
visualizes the difference between the ground truth and the
predicted link quality map when the input involves the entire
link quality map. While the model accurately predicts link
quality in most unaffected areas, we have observed limitations
in predicting link quality in blocked areas. This discrepancy
can be attributed to the fact that link quality in the majority
of areas is generally unaffected by the presence of moving
objects.

Typically, common loss functions utilized in deep learn-
ing models, such as mean squared error or mean absolute
error, assess the global accuracy of the model rather than
focusing on local accuracy. Consequently, these models may
perform inadequately when dealing with small training sam-
ples. For instance, consider two error samples of size 1000:
{50,...,50,10,...,10} and {10,...,10}, where the first set
includes 100 error samples of 50. The mean absolute errors for
these two samples are 14 and 10, respectively. Despite sharing
similar mean absolute errors, these two sets of errors exhibit
significant differences [35].

Ground truth Predicted result

Blocked Area

Fig. 5. Comparison between the predicted result with the ground truth using
the entire link quality map as the input.

In our considered network scenarios, the size of the unaf-
fected areas often significantly outweighs the affected areas
from the temporal perspective. Therefore, even if the model
performs poorly in predicting the affected areas, the global
error can still be minimal as in [24]. This is due to the fact
the amount of valid information obtained from the blocked
areas is considerably less than the redundant information
retrieved from the unaffected areas. This disparity poses a
challenge for the data training model in effectively capturing
critical information about the dynamics of the environment.
Consequently, it becomes necessary to shift attention towards
the link quality variance in the areas surrounding dynamic
obstacles.

To address this problem, we propose a regional learning
mechanism that strategically considers the link quality status
of adjacent regions of the moving obstacles as input to the
prediction model during the training process. This can be
viewed as a data under-sampling method that reduces the
samples from those unaffected areas. As shown in Fig. 6,
the selected area can be a rectangle region of arbitrary size,
covering the neighboring area of the potential obstacles. It is
worth noting that the size of the selected region is a tunable

Regions chosen
for moving
obstacle A

Regions chosen
for moving
obstacle B

Fig. 6. Regions selected for short-term link quality prediction.

parameter and we evaluate the impact of the region selection
on the prediction performance in Sec. VI-B. Besides, during
the back propagation process, a weighted loss function is de-
signed to further address this data imbalance issue. Traditional
loss functions using basic mean absolute error (MAE) are
inappropriate for our problem since the error is always small
as long as the link quality is well predicted in those unblocked
areas. To resolve this problem, we use the loss function with
a penalty parameter 7y as follow:

oy lyi — Gl + 2721 YNy; — 95l
ni + no

E(; == 9 (10)
where y; (y;) and ¥j; (y;) represent the ground-truth value and
the predicted value of link quality in the unblocked (blocked)
areas, respectively. Hyper-parameter v is set as 10 during
training.

C. STAP Framework

In this part, we present the proposed STAP framework for
link quality predictions. As shown in Fig. 7, we first design
a graph convolutional network (GCN) to extract the spatial-
domain features of mmWave wireless environment from the
long-term radio map, and then a long short-term memory
(LSTM) based module is used to capture the temporal depen-
dency for predicting link quality variance in future time steps.
We also add a soft attention mechanism by assigning weights
to the past time-series data to further improve the prediction
accuracy.

1) Spatial-domain Correlation: In a dynamic mmWave
wireless environment, the presence of moving obstacles can
easily affect the link quality between transceivers at arbitrary
locations. Thus, it is necessary to capture the spatial correlation
between link quality variance and environment details. To
this end, we first partition the space (as shown in Fig. 4
(a)) into many grids and place a receiver at each grid to
record the received signal strength during our ray tracing
analysis. That way, each receiver can be regarded as a vertex
and assuming that the neighboring vertices of the receiver
are highly correlated, we then add the edges between these
neighbouring vertices to further construct a connected graph
which contains detailed spatial information.

Next, we use two layers of GCN model to extract spatial-
domain features, taking into account the graph node and the
adjacent links of the node to capture the correlation between
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Fig. 7. Overview of the spatial-temporal attention-based prediction framework.

link quality and environment details. A multi-layer GCN can
be expressed as:

HWY = o(D~2AD~2 HVg®), (11)

where A = A+1, Ais the adjacency matrix of the constructed
graph, and I is the identity matrix. D is the degree matrix with
D;; = > A;j. HO is the output of the layer I. #%) is the
parameter of the layer [, and o is the activation function.

In the stage of graph convolution, each node will combine
the information received from its neighbouring nodes and then
share the learned knowledge with each other. In this way, our
GCN model encodes the topological structure of the graph and
captures the spatial correlations among all nodes and links.

2) Temporal-domain Dependency: To learn the temporal
dependency of link quality variances caused by blockages
and multi-path effects along the timeline, we use a LSTM
layer in the framework to predict the received signal strength
at any locations of a future time step. The rational behind
selecting LSTM model lies in its architecture’s ability to
sequentially process data, making it well-suited for time-series
analysis of link quality over time. This is especially relevant in
dynamic scenarios where link quality at each location exhibits
both long-term and short-term dependencies. For instance,
values at distant locations to the moving obstacles may remain
relatively stable, whereas those closer points are subject to
frequent fluctuations. The LSTM model’s capability to capture
and learn from these temporal dependencies ensures accurate
prediction and analysis of link quality in the face of changing
network conditions. Particularly, as a variant of recurrent
neural network, LSTM is further designed to circumvent
the vanishing gradient problem that prevents the network to
learn time dependency in long sequence data. This feature is
especially pertinent to our study, where discerning the impact
of short-term disturbances on the long-term link quality map
is crucial. In essence, the model includes the forget gate,
input gate and output gate, where the memory cell combines
the previous cell states, current input and previous output, to
update hidden states. The forget gate determines whether the
link quality information in the previous memory should be
discarded or not. The output gate learns how the memory cell
should affect the hidden states. As such, this LSTM layer can
well predict the link quality of the future time step based on the
previous hidden state information and the input at the current
time step, which captures the dynamic temporal variations with
such a gated mechanism.
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3) Attention-based Enhancement: As the last component in
Fig. 7, we add a soft attention layer in the STAP framework to
learn the importance of the link quality at every moment. Since
each past data in both space and time will have a different
degree of impact on the link quality in future time steps, it
is critical to strategically assign different weights to those
historical data pieces for a more accurate prediction.

To be specific, suppose that the input time series is X =
{x1,29,...,2n}, then for every single time step xj in X,
there is a corresponding hidden state hj; from the LSTM
output. Typically, the hidden state h,, of the last input time step
is used as the output for prediction. However, the information
from much earlier time steps might not be totally ignored or
addressed as it may also contain some important knowledge
that contributes to the prediction at next time steps. In this way,
the output of the attention layer is calculated in a weighted

average way as:
n
h= E aihg,
i=n

where «; is the weight of each hidden layer. To calculate the
weights, we train a fully connected layer on the hidden states
to get a score for each state as follow:

12)

s; = sigmoid(w” h; + b;), (13)

where s; is the calculated score. Then, we use a softmax
function in Eq. (14) to normalize this score and get the weight
for each hidden state.

_ eap(si)
Y= =n
2 k=1 €xp(sk)

In summary, the integrated framework comprising the long-
term radio map prediction (Sec. IV) and short-term link quality
prediction (Sec. V) effectively captures the characteristics of
the static network environment in the spatial domain and the
dynamic impacts on link quality in the temporal domain,
allowing for the efficient construction of a complete link
quality map with spatial-temporal awareness. In practice, the
network designer only needs to train the long-term prediction
model for one time, then the pre-trained model can be easily
transferred whenever the placement of object changes or the
input is a new scenario. What’s more, an online learning
method can also be adopted for our short-term link quality
prediction model whenever new link quality data is received.
In all, this framework paves the way to design anticipatory

(14)



networking approaches for future wireless systems, e.g., per-
forming proactive AP association/handover combining the link
quality prediction with the user mobility information, and/or
allowing the scheduler to adaptively schedule links when their
quality is expected to be high. We will leave these promising
directions as the future work.

VI. EVALUATION RESULTS

In this section, we evaluate the performance of our map-
driven link quality prediction framework, which comprises
both the long-term radio map prediction and the short-term
STAP mechanism through a combination of simulations and
actual experiments.

A. Long-term Link Quality Prediction

1) Performance of LoS link quality predictor: First, we
evaluate the performance of our analytical LoS prediction
model. We generate various LoS cases and obtain the ground-
truth SNR values by using the FDG framework. Then, we use
the approach derived in Sec. IV to estimate the link quality
for each LoS case, and the results are reported in Fig. 8.

Fig. 8 shows the comparison between the predicted SNR
and ground truth at different user locations. As expected, we
observe that link quality values are fairly high under LoS
conditions, falling within a narrow range of 40-50 dB. On
the other hand, it is noted that the gap between the predicted
results and ground truths is quite small — the average SNR
results are 45.54 dB and 46.12 dB, respectively (power of
thermal noise is 7.04 x 10712 Watts). This result demonstrates
the feasibility of the log-distance based model to estimate link
quality in LoS scenarios of mmWave WLAN, because the
LoS path dominates the link quality at mmWave frequencies,
which makes it mainly dependent on the separation distance
between the sender and receiver rather than on the surrounding
obstacles.
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Fig. 8. Link quality prediction comparison for LoS cases.

2) Performance of NLoS link quality predictor: Here, we
evaluate our link quality prediction approach for the challeng-
ing NLoS cases, which are highly dependent on environment
characteristics. We spend several months generating 600,000
data samples using our dataset generator (see Sec. IV-B )!,
split the data into two sets, and conducte cross validation,

Note that this data generation time is not a serious issue, because it only
has to be done once to generate the model and then it can be used as many
times as needed for different room and obstacle environments.

where the training set is comprised of 90% of the data to
learn the neural network parameters, and the remaining 10%
of the dataset is used for validation and testing. We use
TensorFlow and an NVIDIA P100 GPU to implement our
DNN-based regression model, which is then used to predict the
link quality in new instances, and we calculate the performance
difference ratio (PDR) to measure the difference between
the predicted values and ground truths. The PDR is defined
as |Spred — Struth|/(Smax — Smin), Where the denominator
represents the difference between the maximum SNR and
minimum SNR observed across all test data samples.
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Fig. 9. Prediction accuracy vs. number of training epochs.

First, we evaluate the prediction accuracy with varying error
tolerance rate (ETR), where the predicted link quality Spreq
is accepted as an accurate result when the PDR is less than
the given ETR. Fig. 9 shows the prediction accuracy vs. the
number of training epochs for different ETRs. As expected,
the accuracy becomes higher as the number of epochs used to
train the DNN model increases, where the prediction accuracy
can achieve 93.86%, 97.89% and 98.54% for different ETRs
with a sufficiently large number of epochs. On the other
hand, a larger ETR provides a higher prediction accuracy
and converges faster, which indicates that most predicted
values can efficiently approximate the ground truth during the
regression process.
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Fig. 10. Link quality prediction comparison.

Second, we evaluate the performance of our predictor for
discrete instances within a mmWave WLAN. Here, we also
report results for the log-distance based (LD) model from
3GPP Release 16 [31] as a comparison point. Fig. 10 shows the
link quality results at different user locations. As compared to
the results of LoS cases in Fig. 8, we observe that link quality
fluctuates within a wider range due to its high environment
dependency. When we examine the results of 3GPP LD model,
the estimated link quality typically falls within a relatively
narrower range of 15-35 dB, and over 70% of data instances



underestimate the link quality in evaluated cases. However,
the predicted link quality from our predictor matches the
ground-truth data well since it accounts for the environment
characteristics.

3) Link-quality map construction: In this part, we evaluate
the performance of our combined LoS and NLoS predictors
to produce link-quality maps for a given network scenario.
Fig. 11(a) shows a WLAN scenario with several obstacles and
two APs deployed. We run our ELP framework to generate 2-
dimensional link-quality maps for each AP and each possible
device height. Fig. 11(b) and Fig. 11(c) show the two corre-
sponding link-quality maps for a device height of 0.8m. With
the maps of link quality, one can easily find the link quality
at any location of a given scenario.
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Fig. 11. (a) Scenario example; (b)-(c) Link-quality maps for AP; and AP2
(device height is 0.8m).

It is worth noting that, using our ELP framework, only
10.58 minutes are needed to generate the complete set of
link-quality maps for two APs and all possible device heights
(with gridding length of 0.1m) in the evaluated scenario.’ In
contrast, to generate one 2-D map, i.e. for one AP and one
device height, a full ray-tracing calculation took more than
two weeks. Therefore, constructing all maps using ray tracing
is not practical since this would require more than 3 years of
computation time for the given scenario.

4) Discussion of required environment information: Our
link quality predictor requires the input of some environment
details, including locations, sizes, and material reflectivities of
surrounding objects in a given scenario. In practice, objects’
locations, sizes, and material types could be obtained in a
variety of ways, e.g., through camera-based sensing, but it
is non-trivial to get the exact reflectivity values of differ-
ent objects. The reflectivity index can be estimated based
on the knowledge of object material types from reported
measurements, e.g. [27]-[29]. Because these values will not
always match the actual reflectivities of objects in a given
environment, in this subsection, we evaluate the robustness
of our prediction framework to deviations of the reflectivity
values.

2The running time is evaluated on an Intel(R) Core(TM) i5-6200U 2.3GHz
CPU workstation with 2 cores and 4 logical processors.

Here, we add random noise to the reflectivity values of
obstacles, walls, and the floor. The noise, which follows a
normal distribution AN'~(0, var) in dB units, is added to
the actual reflectivity loss chosen as described in Sec. IV.
The disturbed reflectivity values combined with other required
information are fed into our predictor while the undisturbed
values are used for the ground truth calculation. We re-ran the
accuracy evaluations from Sec. VI-A to see how the variation
of reflectivity values affects the link quality predictions.

Fig. 12 shows the prediction accuracy vs. different variances
for the reflectivity noise values. Compared to the baseline with
0 dB variance, we observe that there is almost no impact on
the accuracy performance with 1 dB of noise variance. When
increasing var to 3 dB and 5 dB, the accuracy performance
only degrades 1.6%—-3% for ETR of 0.01 and 0.5%-2.5% for
ETR of 0.03, respectively, which validates the robustness of
our prediction method to the reflectivity inaccuracies. Thus we
conclude that our proposed approach can tolerate reasonable
deviations on the estimated reflectivity values, and maintain a
good prediction accuracy without the need for exact reflectivity
information.
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Fig. 12. Prediction accuracy vs. reflectivity variance.

5) Experimental validation: To further validate the perfor-
mance of our link quality prediction, we performe real-world
measurements of link quality in an actual network environment
and compare them to the predicted values.

Fig. 13(a) and (b) give an overview of the laboratory setup.
Specifically, we conducte the experimental measurements in
a 10mx6mx3m laboratory environment, and a TP-link Talon
ad7200 router mounted on the ceiling is used as the AP. The
Talon router contains the Qualcomm QCA9500 chipset, which
implements the IEEE 802.11ad standard. Then, we use an Acer
Travelmate P648 laptop as a client device to communicate
with the AP. We measure the PHY-layer link quality (SNR) at
different locations using the Linux iperf3 and iwconfig
tools. The entire laboratory scenario is precisely modeled with
a number of cuboid-based obstacles as shown in Fig. 13(c),
and we extract the required environment features as the
inputs to our link-quality predictor, which then generates the
predicted values. We consider 20 user locations that consisted
of 5 LoS cases and 15 NLoS cases. The performance compar-
isons between the prediction and measurement are reported in
Fig. 14 and Fig. 15.

Fig. 14 shows the results of LoS scenarios, and it is
observed that the predicted values are very close to the actual
measurements at different LoS locations, with differences of
only around 0.5-2 dB. This result is not surprising since the
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Fig. 13. (a) Network scenario; (b) 802.11ad AP and client laptop; (c) Modeled scenario and measured users.

link quality is consistently high when there is a LoS path
between the AP and the client.
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Fig. 14. Link quality validation of LoS locations.

For the NLoS cases in Fig. 15, we observe that the link
quality is typically different at each location due to the changes
in surrounding obstacles, but our predicted results can still
achieve a good agreement with the measurement data. For
instance, at locations #1, #5 and #12, high link quality is
predicted since the client is located near a metal cabinet in
the scenario. While extremely low link quality is predicted and
observed at locations #2, #8 and #9 due to the long distance
and lack of highly reflective objects nearby. Here the predicted
values fairly consistently overestimate the link quality by about
3-5 dB, and we think this is due to the lack of a precise
transmission power given in the specifications of the Talon AP
used in the measurement. For prediction purposes, we chose a
middle value within the specified transmission power range to
train our predictor. However, with a calibration of around 4 dB,
the differences can be reduced to achieve very close agreement
with the actual measurement results. In summary, due to
the significant alignment observed between the predictions
obtained from simulations and the actual measurements, in
what follows, we choose to primarily focus on performance
validation in our simulation environment for the sake of
simplicity.
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Fig. 15. Link quality validation of NLoS locations.

B. Short-term Link Quality Prediction

1) Impact of region selection: As described in the Sec. V-
B, we exploit a regional learning mechanism to overcome

the data imbalance issue in short-term link quality prediction.
Intuitively, considering a large region size in the model may
compromise the prediction personalization, resulting in the
increase of the local MAE, while a small region size will
fail to capture the sufficient spatial information for prediction
due to the high environment dependency of mmWave links.
Therefore, it is utmost of importance to choose an appropriate
region size in our STAP framework.

In this part, we evaluate the performance of STAP model
with different region sizes and the results are reported in
Fig. 16. First, it is expected to see that the global MAE
increases with the larger region size due to the data imbalance
issue. Then, it is interesting to observe that the local MAE
decreases at first, but then starts to increase as the considered
region size becomes larger. The initial decrease is due to more
spatial information being considered as the selected area is
expanded. However, as the region size keeps increasing, the
data imbalance begins to dominate and overwhelm the benefits
brought by spatial information, resulting in higher local MAE.
In what follows, we select the 11% of the space size for
regional learning because it strikes a good balance between
the local MAE and the global MAE.

Local MAE
Global MAE

14% 17%

o i
Selected Region Area
Fig. 16. Area percentage of selected region vs. MAE.

2) Model comparison: Next, to validate the performance of
our proposed STAP model, we compare with several baseline
models including LSTM based model from [24], CNN-LSTM
model from [20], GCN-LSTM model from [36], and the STAP
model using the standard MSE based loss function (termed as
STAP-STD), while our proposed STAP herein is trained with
a modified loss function L5 in Eq. (10).

Table. I shows the performance comparisons among all con-
sidered models. Obviously, the proposed STAP outperforms
other baseline models in terms of both global MAE and local
MAE. By capturing the spatial dependency information, our
STAP, CNN-LSTM and GCN-LSTM can improve the predic-
tion accuracy by up to 61%, 24%, and 39% compared to the



TABLE 1
PERFORMANCE COMPARISONS.
MAE
Method Tocal MAE | Global MAE

LSTM [24] 417542 02652
CNN-LSTM [20] | 31.7453 02781
GCN-LSTM [36] | 25.1281 02548
STAP-STD 18.1567 0.1922
STAP 16.1409 0.1902

pure LSTM, respectively, which demonstrates the importance
of spatial correlations in mmWave link quality prediction. In
addition, our STAP is superior to GCN-LSTM and CNN-
LSTM by adding a soft attention mechanism, which considers
the correlation between links in both space and time. We also
find that the STAP shows the better performance than STAP-
STD, and this validates the effectiveness of the modified loss
function that well addresses the data imbalance issue.
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Fig. 17. Visualization of prediction results. (a) is the predicted link quality
map of STAP; (b)-(d) are the error maps between predicted and ground-truth
link quality maps from LSTM, GCN-LSTM, and our STAP models.

Besides the quantitative results presented in Table. I, Fig. 17
depicts the visualized map-driven prediction results. Specifi-
cally, we showcase the prediction error map (i.e., Vi € L,
|#;—a;|/x;) for each model, where 2/, and z; are the predicted
and ground-truth link quality at any location ¢+ € L. The
brighter pixel in the map indicates the larger prediction error,
so the superiority of STAP model can be easily observed,
which is consistent with the quantitative results in Table. I.
Additionally, as discussed in Sec. III-C, we only predict the
future link quality of the neighbouring area of obstacles. The
link quality of the remaining area is the same as that of
the last time step. As what we find from the error maps in
Fig. 17(b)-(d), the majority of the error in those areas are
around zero, which means the link quality from last time step
is almost the same as the next time step. This result validates
the effectiveness of our regional learning mechanism, namely
achieving high prediction accuracy with less computational
overhead.

Additionally, we evaluate the response time across different
models, and the results are shown in Fig. 183. As expected, the
system response time of all three models increases with human
density due to the need to process more positional information
when multiple objects are included. We observe that the pure
LSTM model achieves the fastest response time because it
does not consider spatial information, resulting in lower link
quality prediction accuracy as shown in Tab. I. In contrast,
our STAP model, which integrates both spatial and temporal
information, exhibits only a marginal increase in response time
compared to the LSTM model — approximately 1 ms. Given
the superior accuracy performance of our STAP model, this
minor increase in response time is a worthwhile trade-off. As
a comparison point, the CNN-LSTM scheme demonstrates the
longest response time, attributable to the intrinsic structure of
the CNN model, where each node must aggregate information
from a fixed number of neighboring nodes. In our STAP frame-
work, nodes only receive information from useful connected
nodes, thereby reducing processing delay.

10 - LSTM(24)
- sTap
- CNN-LSTMI20]

Response Time (ms)

2

3
Human Density (1073/m?)

Fig. 18. System response time of different models.

3) Prediction on stretchable time windows: In addition to
predicting the link quality at only the next time step, our STAP
model is capable of making predictions on a stretchable time
window, i.e., generating link quality maps for next several time
steps, where each time step is set as 30ms in this evaluated
case. Here we first investigate the performance of our STAP
model vs. the future time steps in Fig. 19(a). As expected,

Local MAE
Global MAE
Local MAE
Global MAE

2 3 . s 3
Time Window Length

’ Pa;t T\mde Stesp Lenﬁgth ’
(@) (b)

Fig. 19. (a) The length of future time window vs. MAE; (b) The length of
past time window vs. MAE.

the prediction error increases when the model becomes more
farsighted. Additionally, we observe a significant increase of
local MAE at first, but then it becomes marginal as the
time step increases. Notably, both local and global MAE stay
almost unchanged when the window length is larger than 4,
where the global prediction error is maintained at around only

3The running time is evaluated on an Intel(R) Core(TM) i9-13900 5.6GHz
CPU workstation with 24 cores and Nvidia(R) RTX(TM) 4090 GPU.



0.22. This result demonstrates the capability of our STAP
model to predict link quality within a stretchable time window,
exhibiting the potential use to allow for proactive network
configurations in different delay-sensitive applications.

Besides the study on the “lookahead” capability, here we
use the term “lookback” to depict length of past time step
needed for predicting the future link quality. Intuitively, a
longer lookback period can encode more temporal information
during the learning process, thus improving the prediction
accuracy. This hypothesis is proved in Fig. 19(b), where we
can see a decreasing trend in both local MAE and global
MAE when more lookbacks are considered. Specifically, the
prediction error becomes relatively small when the lookback
period is more than 3 in the evaluated scenario. As a result,
we conclude that the information from a few past time period
might be sufficient to make an accurate link quality prediction.

4) Impact of dynamic blockage density and model gen-
eralizability: In this part, we evaluate the performance of
our STAP model with varying moving human density in the
network scenario. Fig. 20 shows the PDR metric vs. the
moving human density. We adopt different ETRs to evaluate
the performance of the proposed prediction model, where the
predicted link quality is accepted as an accurate result when
the PDR is less than the given ETR. As expected, the increase
of human density will cause a decrease in the percentage
of accepted prediction results across all receiver locations in
the scenario. However, our STAP model can still maintain
around 85% and 97% prediction accuracy with a large dynamic
blockage density when ETR is 0.01 and 0.03, respectively,
which corresponds to the average link quality prediction error
of just 1-3 dB across the entire scenario map. The results
validate the stability of our proposed model, i.e., being able to
predict the link quality variance within an acceptable accuracy
as the density of dynamic blockages increases.

1000 1000
e ETR=0.01 Wem ETR=0.02 WM ETR=0.03

—— training loss on original model
0030 —— training loss on pre-trained model
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Fig. 20. (a) Prediction accuracy vs. moving obstacle densities; (b) Loss
comparison on original model and pre-trained model.

Lastly, we investigate whether our STAP model is general-
ized to arbitrary mobility patterns of temporary obstacles. We
evaluate the model performance in the case of humans moving
in random directions, and the results are reported in Fig. 20.
Specifically, the red line in Fig. 20 represents the learning loss
vs. the used epochs when training a new model, while the
blue line shows the convergence when new dataset consisting
of a different moving pattern is used as input to a pre-trained
model. In particular, it is observed that the initial loss on the
pre-trained model is significantly lower than that of the newly
trained model. Also, adding the new data to our pre-trained
model converges faster and achieves the lower loss. This result

shows the generalizability of our model to mobility pattern of
obstacles, which can be applied in various dynamic mmWave
network scenarios, since only a few epochs are needed to train
a link quality predictor based on the pre-trained model.

VII. CONCLUSION

This paper focused on addressing the map-driven mmWave
link quality prediction problem. We presented a comprehensive
approach that involves dividing the problem into long-term
and short-term link quality prediction. For the long-term link
quality prediction, we separate the LoS and NLoS cases and
design two corresponding predictors to construct a complete
radio map based on the environment details. In terms of
short-term link quality prediction under dynamic blockages,
we tackle the challenge of data imbalance by introducing
a regional learning mechanism. This mechanism enables ef-
fective training of a spatial-temporal attention-based model
using a synthetically generated dataset. Extensive evaluation
and experimental results demonstrated that our approach can
achieve fairly promising prediction accuracy and is robust to
multiple dynamic obstacles with arbitrary mobility patterns.
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