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Abstract—In this paper, the use of channel state information
(CSI) for indoor positioning is investigated. In the considered
model, a base station (BS) equipped with several antennas sends
pilot signals to a user that transmits the received pilot signals
back to the BS. The BS will use the received CSI data to estimate
the position of the user. To this end, we formulate this positioning
problem as an optimization problem aiming to minimize the
mean square error between the estimated position and the actual
position of the user. To solve this problem, we design a complex-
valued neural network (CVNN) based positioning algorithm.
Compared to real-valued neural networks (RVNNs) that need
to convert complex-valued CSI data into real-valued data, the
proposed method uses original CSI data to train the CVNN model
for user positioning. Since the output of our proposed algorithm is
complex-valued and it consists of the real and imaginary parts,
we can use it to implement two learning tasks. Based on this
property, two use cases of the proposed algorithm are proposed:
1) the algorithm directly outputs the estimated position of the
user. Here, the real and imaginary parts of an output neuron
represent the 2D coordinates of the user, 2) the algorithm outputs
two CSI features (i.e., line-of-sight/non-line-of-sight transmission
link classification and time of arrival (TOA) prediction) which
can be used in traditional positioning algorithms. Simulation
results demonstrate that our designed CVNN based algorithm
can reduce the mean positioning error between the estimated
position and the actual position by up to 11.1%, compared to
a RVNN based method which has to transform CSI data into
real-valued data.

Index Terms—Indoor positioning, complex-valued CSI,
complex-valued neural network.

I. INTRODUCTION

Device positioning plays an important role for many

emergent applications, such as virtual reality, autonomous

vehicles, and shared mobility (e.g., e-scooter rental on Uber)

[1]. In particular, global navigation satellite system (GNSS)

based localization methods particularly global positioning

system (GPS) based methods are widely used for these

emergent applications. However, GNSS based methods may

not be applied for indoor positioning since the signals that

are transmitted from satellites to a target user and used

for positioning have a higher probability of being blocked

by obstacles such as walls, furniture, and human bodies

This work was supported by the U.S. National Science Foundation under
Grants CNS-2312139 and CNS-2312138.

compared to the use of GNSS based methods for outdoor

positioning [2]. To address this challenge, radio frequency

such as WiFi and visible light based indoor positioning

methods is a promising technology due to their ability to

capture signal variances in complex indoor environment [3].

However, the use of radio frequency for indoor positioning

still faces several challenges. First, the accuracy of radio

frequency based methods depend on line-of-sight (LOS)

pilot signal transmission. Non-line-of-sight (NLOS) pilot

signal transmission may have high attenuation and signal

scattering thus reducing positioning accuracy. Second, radio

frequency used for positioning suffer from interference

caused by devices that use the same frequency [4]. Third,

machine learning (ML) based positioning methods require

to collect channel state information (CSI) data and construct

corresponding labels which is time consuming [5].

Recently, a number of existing works [6]–[9] have studied

the use of radio frequency and ML tools [10] for indoor

positioning. In particular, the authors in [6] proposed a

k-nearest neighbor based positioning method which uses the

magnitude component of CSI to estimate the position of

a user. In [7], the authors developed a Bolzmann machine

based positioning scheme that uses CSI signal amplitudes to

estimate the position of a user. The authors in [8] designed

a convolutional neural network (CNN) based positioning

method that uses CSI signals from polar domain to estimate

the position of a user. In [9], the authors proposed a CNN

based positioning method and considered CSI amplitudes

from three antennas as an image. However, all of these

existing works [6]–[9] need to transform complex-valued

CSI data into real-valued data so as to feed into real-valued

ML models by: 1) separating the real and imaginary part, 2)

using the power of the real and imaginary parts, 3) converting

the complex number into polar domain values. These

transformation methods may lose the features in original CSI

data thus decreasing the accuracy of the positioning algorithm.

The main contribution of this work is to design a novel

indoor positioning framework that uses complex-valued CSI

data to estimate the position of a user. Our key contributions

include:
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• We consider an indoor positioning system where the base

station (BS) equipped with several antennas sends pilot

signals to the user. The user transmits the received pilot

signals back to the BS which uses the received CSI data

to estimate the position of the user. The goal of our

designed system is to train a ML model which uses the

collected CSI data to estimate the position of the user. To

this end, we formulate an optimization problem aiming

to minimize the mean square error between the user’s

estimated position and actual position.

• To solve the formulated problem, we propose a novel

complex-valued neural network (CVNN) model based po-

sitioning algorithm which is trained by original complex-

valued CSI samples without any data preprocessing

[11]. Hence, compared to real-valued neural network

(RVNN) based positioning methods which must trans-

form complex-valued CSI samples into real-valued sam-

ples, our proposed algorithm can extract more CSI fea-

tures thus improving positioning accuracy.

• We propose to use our designed CVNN model based

algorithm for two use cases: 1) the output of our de-

signed algorithm is the estimated position of the user,

thus the real and imaginary parts of the output neuron

separately represents the x-coordinate and y-coordinate

of the user, and 2) the output of our designed algorithm

extracts two CSI features such as time of arrival (TOA)

and LOS/NLOS transmission link classification that can

be used for traditional positioning algorithms. Hence,

the real and imaginary parts of the output neuron can

represent two CSI features.

Simulation results show that our proposed CVNN-based

positioning method can reduce the mean positioning error

between the estimated position and the actual position by

up to 11.1% compared to a RVNN model based positioning

algorithm.

The remainder of this paper is organized as follows. The

system model and problem formulation are introduced in Sec-

tion II. The design of our proposed CVNN model to estimate

the position of the user will be introduced in Section III. In

Section IV, simulation results are presented and discussed.

Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an indoor positioning system where one BS uses

CSI to estimate the position of one user. The BS equipped

with M antennas sends the pilot signals to the user which uses

the received signals to estimate channel status and sends CSI

back to the BS. The BS uses the received CSI to estimate the

position of the user. In our considered system, several obstacles

exist such that the transmission links between the BS and the

user may not be LOS. Next, we first introduce the process of

CSI collection. Then, we introduce our considered positioning

problem.

A. CSI Data Collection

We assume that the pilot symbol that the BS sends to the

user on subcarrier c is xc ∈ C
1×1. Then, the signal received

by the user on subcarrier c is

yc = hc f c xc + oc, (1)

where hc ∈ C
M×1 is the channel vector between the BS and

the user, f c is the beamforming vector, and oc is the additive

white Gaussian noise over subcarrier c. The channel vector hc

can be estimated by the user and will be sent back to the BS.

The CSI matrix received by the BS over C subcarriers is

H = [h1,h2, ...,hC ] ∈ C
M×C . (2)

B. Problem Formulation

Given the defined model, next, we introduce our positioning

problem. Our goal is to design a ML algorithm which uses

collected CSI to estimate the position of the user. We assume

that the BS collects K CSI samples, each of which consists of

CSI matrix H and the user position p = [a, b], where a and b

are the two-dimensional coordinates of the user position. Let

f(w, Hk) be the position estimated by the ML algorithm and

hence it is the output of the considered ML model, where Hk

is the CSI matrix in sample k, and w is the parameters of the

ML model. Then, the positioning problem can be formulated

as an optimization problem whose goal is to minimize the gap

between the estimated position and the actual position of the

user, which is given by

min
w

1

K

K
∑

k=1

∥f(w, Hk)− pk∥
2
2, (3)

where pk is the ground truth position of the user in sample

k. From (3), we can see that our purpose is to design an ML

algorithm to minimize the gap between the estimated and the

ground truth position of the user. However, this problem is

hard to solve due to the following reasons.

Problem (3) has been solved by several existing RVNN

based methods [8], [9], [12]. However, these methods need

to transform original complex-valued CSI data to real-valued

CSI data, by 1) separating the real and imaginary part, 2) using

the power of the real and imaginary part, or 3) converting the

complex number into polar domain values. These complex-

valued to real-valued data transformation methods will lose

features in original CSI data thus decreasing ML prediction

accuracy. Instead, we propose a positioning algorithm based

on CVNN that can directly process complex-valued CSI data

without any data transformation thus obtaining more CSI

features compared to RVNN.

III. MINIMIZATION OF PREDICTION ERROR

In this section, we introduce a novel CVNN model to

solve problem (3). Compared to traditional real-valued ML

algorithms [8], the proposed method uses complex-valued

CSI data without any data transformation for training thus
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Fig. 1. The CVNN network structure of use case I and use case II.

obtaining more CSI features. Next, we first introduce the

components of our designed algorithm. Then, we explain the

training method for the designed algorithm.

A. Components of Complex-valued Neural Network

Here, we introduce the components of the designed CVNN

algorithm for solving problem (3). The designed CVNN based

algorithm consists of four components: a) input layer, b)

hidden layer I, c) hidden layer II, and d) output layer, as shown

in Fig. 1. Note that, we consider a basic CVNN architecture to

verify its effectiveness. This CVNN architecture can be easily

extended to other CVNN architectures such as CNNs [13] and

residual neural networks. The components of our considered

CVNN are specified as follows:

• Input layer: To estimate the position of the user, the

input of the designed algorithm is the complex-valued

CSI matrix H , which is collected by the BS. The process

of CSI collection is introduced in Section II-A. Here,

we do not transform original complex-valued CSI data to

real-valued CSI data, as done in previous works [6]–[9].

Since different CSI samples are collected from the user

at different positions, we propose a normalization method

to process complex-valued CSI samples, as follows:

Ĥ
(j)

=
R

(

H(j)
)

max
(
∣

∣

∣
H(j)

∣

∣

∣

) + i
I

(

H(j)
)

max
(
∣

∣

∣
H(j)

∣

∣

∣

) , (4)

where H(j) is column or row j of H , R (z) is the real

part of the complex number z, and I (z) is the imaginary

part of the complex number z. If H(j) is row j of H ,

we are normalizing H over each antenna. In contrast,

when H(j) represents column j of H , we normalize H

over each CSI feature. The use of feature normalization

or antenna normalization depends on specific dataset.

• Hidden layer I: The hidden layer I is used to extract the

features of CSI samples. The relationship between the

normalized CSI samples and the output of hidden layer

I is given by

yI = φ1

(

ĤW I + bI
)

, (5)

where Ĥ is the normalized CSI matrix of H , W I ∈
C

C×N I

is the weight matrix, with N I being the number

of neurons at hidden layer I, bI ∈ C
1×N I

is the bias

vector, and φ1 (z) is a complex-valued activation function

with respect to a complex number z and it is defined as

follows:

φ1 (z) = max (0,R (z)) + imax (0, I (z)) . (6)

From (6), we can see that φ1 (z) is a complex-valued

ReLU activation function that separately processes the

real and imaginary part of complex number z. Here, we

can also consider other types of complex-valued ReLU

activation functions. Such as modReLU, which is defined

as

ψ (z) =







(|z|+ q)
z

|z|
if |z|+ q g 0,

0 otherwise.

(7)

where |z| is the absolute value (or modulus or magnitude)

of the complex number z, and q ∈ R is a learnable

parameter.

• Hidden layer II: The hidden layer II is also used to

extract CSI features. The input of this layer is the output

of the first layer yI. The relationship between input yI

and the output of hidden layer II is

yII = φ2
(

yIW II + bII
)

, (8)

where W II ∈ C
N I

×N II

and bII ∈ C
1×N II

are respectively

the weight matrix and the bias vector of the hidden layer

II with N II being the number of the hidden neurons at this

layer, and φ2 (z) is a complex-valued activation function

with respect to a complex number z and it is defined as

follows:

φ2 (z) = Φ (R (z)) + iΦ (I (z)) , (9)

where Φ (x) with x being a real-valued number is defined

as:

Φ (x) =

{

x x > 0,

ex − 1 x f 0.
(10)

From (9), we can see that φ2 (z) is a complex-valued

ELU activation function.

• Output layer: The output of the designed scheme is

y = yIIwIII + bIII, (11)

where wIII ∈ C
N II

×1 and bIII ∈ C are respectively the

weight vector and the bias value. y ∈ C is the output

of the designed method. From (11), we can see that the

output layer does not have an activation function since

we may use the real and imaginary parts of the output y

for different learning purposes. To introduce the use of

output y for user positioning, we first rewrite it as

y = â+ ib̂, (12)

where â ∈ R is the real part and b̂ ∈ R is the imaginary

part of y. Given (12), we consider the use of our designed

algorithm for two cases, as shown in Fig. 1:
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I. The designed algorithm can directly output the esti-

mated position coordinate of the user. Therefore, output

y is the estimated position of the user. To this end, â, b̂

are the coordinates of the estimated user position.

II. The designed algorithm can be used to extract CSI

features. These CSI features can be used in traditional

positioning algorithms, such as a TOA positioning

method in [14]. Here, â ∈ {0, 1} is used to identify

whether transmission link is LOS. In particular, â = 1
represents that the link is LOS and â = 0 represents

that the link is NLOS. b̂ is the estimated TOA of the

signal. In this use case, â and b̂ are used in different

learning tasks. Therefore, one can use the designed

algorithm to perform two learning tasks which is one

of the unique advantages of our designed algorithm.

B. Training Procedure of Complex-valued Neural Networks

Given the components defined in Section III-A, we next

introduce the procedure of training our designed CVNN

model. First, we define the loss functions used to capture

the performance of the CVNN model for two use cases:

I. user position estimation, II. LOS/NLOS transmission link

classification and signal TOA estimation. Then, we describe

the training procedure of the CVNN model.

1) Loss Function for Use Case I: In use case I, the real and

imaginary parts of the output of our designed algorithm are

estimated position coordinates of the user. Hence, we can use

the same loss function to measure the training loss of the real

and imaginary parts. We assume that N CSI samples are used

to train the designed CVNN model, and the corresponding

output is y ∈ C
N×1 .Then, the total loss function of the

CVNN model used for case I is given by

J (W ,H,a, b) = αL1 (â,a) + (1− α)L1

(

b̂, b
)

, (13)

where W is the CVNN model parameters including the weight

matrices and bias vectors of hidden layers I and II, and the

output layer, α ∈ (0, 1) is a weight parameter that determines

the importance of the training loss at real and imaginary parts

since the real and imaginary parts represent different learning

tasks [15], â, b̂ ∈ R
N×1 are the real part and the imaginary

part vectors of the CVNN output (i.e., y = â + ib̂), a, b ∈
R

N×1 are the vectors of the user’s actual positions (i.e., P =
[a, b]), and L1 (â,a) is the mean squared error (MSE) loss

function that measures the difference between the predicted

result â and the actual result a. MSE is defined as

L1 (â,a) =
1

N

N
∑

i=1

(âi − ai)
2
, (14)

where âi is element i of â, and ai is element i of a. From

(13), we see that, for a complex-valued output of the designed

CVNN model, we actually use two real-valued loss functions

to separately evaluate the training performance of real and

imaginary parts.

2) Loss Function for Use Case II: In use case II, the output

of our designed algorithm is two CSI features. For example,

the real part â is LOS/NLOS classification results and the

imaginary part b̂ is the predictions of the TOA of the signal. To

this end, we use different loss functions to measure the training

performance of real and imaginary parts. In particular, we

use binary cross entropy (BCE) loss function to measure the

LOS/NLOS classification accuracy, and use MSE to measure

signal TOA prediction accuracy. The total loss function of the

CVNN model used for case II is given by

J (W ,H,a, b) = βL2 (â,a) + (1− β)L1

(

b̂, b
)

, (15)

where β ∈ (0, 1) is a weight parameter to adjust the impor-

tance of the loss at real and imaginary parts, a is a vector

of the LOS/NLOS link labels, b is the vector of ground truth

TOA of the signal, and L2 (â,a) is the BCE with respect

to the LOS/NLOS classification result â and the LOS/NLOS

label a, which is defined as

L2 (â,a) = −
1

N

N
∑

i=1

ai log (δ (âi))+(1− ai) log (1− δ (âi)) ,

(16)

where δ (·) is the sigmoid function. From (15) and (16), we

see that the CVNN model can process two different types of

learning tasks simultaneously. Therefore, compared to RVNNs

that can process only one learning task per training, a CVNN

model can use less neurons to implement more learning tasks

thus reducing ML model training complexity and saving ML

model training time.

3) Training Procedure: Given the defined loss functions,

next, we introduce the training process of the designed CVNN

model so as to find optimal W to minimize the training

loss. Here, the back-propagation algorithm with mini-batch

stochastic gradient descent (SGD) approach is used [16]. The

update policy of the designed CVNN model at iteration s of

epoch e is given by

W e,s+1 = W e,s − h (η, e)
∂J (W e,s,Be,s)

∂W ∗

e,s

, (17)

where Be,s is a batch of data samples at iteration s of epoch e,

h (η, e) is a function of the learning rate that is determined by

the base learning rate η and epoch e, W e,s is the CVNN model

parameters at iteration s of epoch e, and W ∗

e,s is the conjugate

of W e,s. From (17), we see that, for a CVNN model update,

the direction of the gradient descent at W e,s is the derivative

with respect to W ∗

e,s instead of W e,s. Since the input of the

loss function J (·) is complex-value CSI H and the output of

the loss function is real-valued, and hence, according to [17],

we have

∇J (W e,s,He,s) =
∂J (W e,s,He,s)

∂W ∗

e,s

. (18)

The entire training procedure is described in Algorithm 1.
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Algorithm 1 The Training Procedure of the CVNN-based

Algorithm

Input: Training dataset D;

Init: W ;

for e = 1 → E do

for each Be,s ¢ D do

Use Be,s to train the CVNN model and obtain the

prediction ye,s;

Calculate the loss J (W e,s,Be,s) based on (13) for

case I or (15) for case II;

Update W e,s based on (17)

end for

end for

IV. SIMULATION RESULTS

In this section, we perform extensive simulations to evaluate

the performance of our designed CVNN algorithm in specific

scenarios. Next, we first introduce the CSI dataset used to train

the designed CVNN model. Then, we explain the parameters

of our proposed CVNN model and a RVNN model based

baseline. Finally, we analyze the simulation results of our

designed CVNN model.

A. Dataset Introduction

The CSI dataset in [18] is used to train our designed CVNN

model. The position of the BS and the moving areas of the

user are shown in Fig. 2. In [18], the BS equipped with

64 antennas collects CSI data using three different antenna

array topologies: 1) a uniform linear array (ULA) of 1 ×
64 antennas, 2) a uniform rectangular array (URA) of 8 ×
8 antennas, and 3) eight distributed ULAs of 1 × 8 antennas.

In our simulations, we use the data collected by the antennas

with URA topology. For simplicity, we use only the CSI data

collected by the Antenna 1 (i.e., M = 1) and its position

coordinate is [−175, 0]. Each CSI signal is collected over

100 sampling intervals and hence T = 100. Each antenna

collects 264001 data samples and each data sample consists

of CSI, position coordinate of the user, and the label of

LOS/NLOS signal transmission link. Since the time slots of

two successive data samples are very close, we only take one

sample from every 14 samples. Hence, in our simulations,

we use 16801 data samples collected by the Antenna 1 for

training and testing the CVNN model. For different use cases,

we use the same CSI matrix as the input of the CVNN

model. However, we use different labels for the output of the

CVNN model. In particular, for use case I, the output is the

user’s position coordinate p. For use case II, the output is the

distance between the user and the BS, and LOS/NLOS link

classification result.

B. CVNN Model Parameter Introduction

The parameters of the designed CVNN model are summa-

rized in Table I. The function of learning rate described in

Fig. 2. The CSI data collection environment. The blue squares are the areas
where the user can move. The orange squares are the positions of antennas.
The orange mark is the position of the Antenna 1.

TABLE I
SYSTEM PARAMETERS

Parameter Value Parameter Value

E 250 |Be.s| 32

η 5× 10
−4 N I 60

N II 30

Section III-B h (η, e) is defined as

h (η, e) =



















η e f 150,

1

5
η 150 < e f 225,

1

2
η e > 225.

(19)

For comparison purposes, we use a RVNN that consists of

four layers: 1) input layer, 2) hidden layer I, 3) hidden layer

II, and 4) output layer. The size of the hidden layers of the

baseline is similar to that of the CVNN model. However, the

input layer and the output layer of the RVNN is double of the

CVNN model. We separate the real part and the imaginary part

of each CSI sample of the dataset into two matrices R (H)
and I (H). Then, the input of the RVNN is [R (H) , I (H)],
and the output is [R (ŷ) , I (ŷ)]. Here, the weight matrices and

bias of the RVNN are all real-valued.

C. Simulation Results

In Fig. 3, we show the value of the mean positioning error

defined in (3) changes as the number of training epochs varies.

This figure is simulated for case I where the CVNN model

directly outputs the estimated position coordinates of the user.

Fig. 3 shows that as the number epochs increases, the mean

positioning errors of both considered algorithms decreases.

This is because we use the CSI dataset described in Section

IV-A to update our proposed CVNN model so as to reduce

the training loss per epoch. From Fig. 3, we also see that

our designed CVNN model can achieve up to 11.1% gain in

terms of mean positioning error compared to the RVNN for

the test dataset. This is due to the fact that the CVNN model
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Fig. 3. The training loss as the number of training iterations varies for use
case I.

Fig. 4. The training loss of TOA as the number of training iterations varies
for use case II.

can directly process complex-valued CSI data without any data

transformation thus obtaining more CSI features.

In Fig. 4, we show how the value of the mean square error of

the TOA and the accuracy of the LOS/NLOS transmission link

classification change as the number of training epochs varies.

This figure is simulated for case II. From Fig. 4, we can see

that our designed CVNN model can achieve up to 2.67% gain

in terms of mean square error of TOA compared to the RVNN

for the test dataset. This is because our designed CVNN model

does not need to preprocess complex-valued CSI data, thus it

can obtain more CSI features compared to the RVNN. We can

also see that both of our considered algorithms can accurately

classify LOS/NLOS transmission links. This is because both

of our considered algorithms can extract the key CSI features

for LOS/NLOS classification.

V. CONCLUSION

In this paper, we have proposed a novel indoor positioning

system. We have formulated this indoor positioning problem

as an optimization problem whose goal is to minimize the

gap between the estimated position and the actual position.

To solve this problem, we have proposed a CVNN-based

algorithm that can directly use complex-valued CSI data to

estimate the position of the user. We have proposed two use

cases for our designed CVNN model based on the fact that

the output of our proposed CVNN model is complex-valued,

and it can implement two learning tasks. Simulation results

have shown that the proposed CVNN-based algorithm can

achieve significant reduction in terms of mean positioning

error, compared to a RVNN based algorithm which has to

transform the CSI data into real-valued data.
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