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Abstract—In this paper, the use of channel state information
(CSD for indoor positioning is investigated. In the considered
model, a base station (BS) equipped with several antennas sends
pilot signals to a user that transmits the received pilot signals
back to the BS. The BS will use the received CSI data to estimate
the position of the user. To this end, we formulate this positioning
problem as an optimization problem aiming to minimize the
mean square error between the estimated position and the actual
position of the user. To solve this problem, we design a complex-
valued neural network (CVNN) based positioning algorithm.
Compared to real-valued neural networks (RVNNSs) that need
to convert complex-valued CSI data into real-valued data, the
proposed method uses original CSI data to train the CYNN model
for user positioning. Since the output of our proposed algorithm is
complex-valued and it consists of the real and imaginary parts,
we can use it to implement two learning tasks. Based on this
property, two use cases of the proposed algorithm are proposed:
1) the algorithm directly outputs the estimated position of the
user. Here, the real and imaginary parts of an output neuron
represent the 2D coordinates of the user, 2) the algorithm outputs
two CSI features (i.e., line-of-sight/non-line-of-sight transmission
link classification and time of arrival (TOA) prediction) which
can be used in traditional positioning algorithms. Simulation
results demonstrate that our designed CVNN based algorithm
can reduce the mean positioning error between the estimated
position and the actual position by up to 11.1%, compared to
a RVNN based method which has to transform CSI data into
real-valued data.

Index Terms—Indoor positioning, complex-valued CSI,
complex-valued neural network.

I. INTRODUCTION

Device positioning plays an important role for many
emergent applications, such as virtual reality, autonomous
vehicles, and shared mobility (e.g., e-scooter rental on Uber)
[1]. In particular, global navigation satellite system (GNSS)
based localization methods particularly global positioning
system (GPS) based methods are widely used for these
emergent applications. However, GNSS based methods may
not be applied for indoor positioning since the signals that
are transmitted from satellites to a target user and used
for positioning have a higher probability of being blocked
by obstacles such as walls, furniture, and human bodies
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compared to the use of GNSS based methods for outdoor
positioning [2]. To address this challenge, radio frequency
such as WiFi and visible light based indoor positioning
methods is a promising technology due to their ability to
capture signal variances in complex indoor environment [3].
However, the use of radio frequency for indoor positioning
still faces several challenges. First, the accuracy of radio
frequency based methods depend on line-of-sight (LOS)
pilot signal transmission. Non-line-of-sight (NLOS) pilot
signal transmission may have high attenuation and signal
scattering thus reducing positioning accuracy. Second, radio
frequency used for positioning suffer from interference
caused by devices that use the same frequency [4]. Third,
machine learning (ML) based positioning methods require
to collect channel state information (CSI) data and construct
corresponding labels which is time consuming [5].

Recently, a number of existing works [6]-[9] have studied
the use of radio frequency and ML tools [10] for indoor
positioning. In particular, the authors in [6] proposed a
k-nearest neighbor based positioning method which uses the
magnitude component of CSI to estimate the position of
a user. In [7], the authors developed a Bolzmann machine
based positioning scheme that uses CSI signal amplitudes to
estimate the position of a user. The authors in [8] designed
a convolutional neural network (CNN) based positioning
method that uses CSI signals from polar domain to estimate
the position of a user. In [9], the authors proposed a CNN
based positioning method and considered CSI amplitudes
from three antennas as an image. However, all of these
existing works [6]-[9] need to transform complex-valued
CSI data into real-valued data so as to feed into real-valued
ML models by: 1) separating the real and imaginary part, 2)
using the power of the real and imaginary parts, 3) converting
the complex number into polar domain values. These
transformation methods may lose the features in original CSI
data thus decreasing the accuracy of the positioning algorithm.

The main contribution of this work is to design a novel
indoor positioning framework that uses complex-valued CSI
data to estimate the position of a user. Our key contributions
include:
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o We consider an indoor positioning system where the base
station (BS) equipped with several antennas sends pilot
signals to the user. The user transmits the received pilot
signals back to the BS which uses the received CSI data
to estimate the position of the user. The goal of our
designed system is to train a ML model which uses the
collected CSI data to estimate the position of the user. To
this end, we formulate an optimization problem aiming
to minimize the mean square error between the user’s
estimated position and actual position.

o To solve the formulated problem, we propose a novel
complex-valued neural network (CVNN) model based po-
sitioning algorithm which is trained by original complex-
valued CSI samples without any data preprocessing
[11]. Hence, compared to real-valued neural network
(RVNN) based positioning methods which must trans-
form complex-valued CSI samples into real-valued sam-
ples, our proposed algorithm can extract more CSI fea-
tures thus improving positioning accuracy.

e We propose to use our designed CVNN model based
algorithm for two use cases: 1) the output of our de-
signed algorithm is the estimated position of the user,
thus the real and imaginary parts of the output neuron
separately represents the x-coordinate and y-coordinate
of the user, and 2) the output of our designed algorithm
extracts two CSI features such as time of arrival (TOA)
and LOS/NLOS transmission link classification that can
be used for traditional positioning algorithms. Hence,
the real and imaginary parts of the output neuron can
represent two CSI features.

Simulation results show that our proposed CVNN-based
positioning method can reduce the mean positioning error
between the estimated position and the actual position by
up to 11.1% compared to a RVNN model based positioning
algorithm.

The remainder of this paper is organized as follows. The
system model and problem formulation are introduced in Sec-
tion II. The design of our proposed CVNN model to estimate
the position of the user will be introduced in Section III. In
Section IV, simulation results are presented and discussed.
Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an indoor positioning system where one BS uses
CSI to estimate the position of one user. The BS equipped
with M antennas sends the pilot signals to the user which uses
the received signals to estimate channel status and sends CSI
back to the BS. The BS uses the received CSI to estimate the
position of the user. In our considered system, several obstacles
exist such that the transmission links between the BS and the
user may not be LOS. Next, we first introduce the process of
CSI collection. Then, we introduce our considered positioning
problem.

A. CSI Data Collection

We assume that the pilot symbol that the BS sends to the
user on subcarrier ¢ is ., € C'*!. Then, the signal received
by the user on subcarrier c is

yC:thch+OC7 (1)

where h, € CM*1 ig the channel vector between the BS and
the user, f, is the beamforming vector, and o, is the additive
white Gaussian noise over subcarrier c. The channel vector h,
can be estimated by the user and will be sent back to the BS.
The CSI matrix received by the BS over C' subcarriers is

H = [hy, ho,...,ho] € CM*C, )

B. Problem Formulation

Given the defined model, next, we introduce our positioning
problem. Our goal is to design a ML algorithm which uses
collected CSI to estimate the position of the user. We assume
that the BS collects K CSI samples, each of which consists of
CSI matrix H and the user position p = [a, b], where a and b
are the two-dimensional coordinates of the user position. Let
f(w, Hy) be the position estimated by the ML algorithm and
hence it is the output of the considered ML model, where H j,
is the CSI matrix in sample k, and w is the parameters of the
ML model. Then, the positioning problem can be formulated
as an optimization problem whose goal is to minimize the gap
between the estimated position and the actual position of the
user, which is given by

K
1
min - 3| f(w, Hy) — i3, 3
k=1

where p,, is the ground truth position of the user in sample
k. From (3), we can see that our purpose is to design an ML
algorithm to minimize the gap between the estimated and the
ground truth position of the user. However, this problem is
hard to solve due to the following reasons.

Problem (3) has been solved by several existing RVNN
based methods [8], [9], [12]. However, these methods need
to transform original complex-valued CSI data to real-valued
CSI data, by 1) separating the real and imaginary part, 2) using
the power of the real and imaginary part, or 3) converting the
complex number into polar domain values. These complex-
valued to real-valued data transformation methods will lose
features in original CSI data thus decreasing ML prediction
accuracy. Instead, we propose a positioning algorithm based
on CVNN that can directly process complex-valued CSI data
without any data transformation thus obtaining more CSI
features compared to RVNN.

III. MINIMIZATION OF PREDICTION ERROR

In this section, we introduce a novel CVNN model to
solve problem (3). Compared to traditional real-valued ML
algorithms [8], the proposed method uses complex-valued
CSI data without any data transformation for training thus
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Fig. 1. The CVNN network structure of use case I and use case II.

obtaining more CSI features. Next, we first introduce the
components of our designed algorithm. Then, we explain the
training method for the designed algorithm.

A. Components of Complex-valued Neural Network

Here, we introduce the components of the designed CVNN
algorithm for solving problem (3). The designed CVNN based
algorithm consists of four components: a) input layer, b)
hidden layer I, ¢) hidden layer II, and d) output layer, as shown
in Fig. 1. Note that, we consider a basic CVNN architecture to
verify its effectiveness. This CVNN architecture can be easily
extended to other CVNN architectures such as CNNs [13] and
residual neural networks. The components of our considered
CVNN are specified as follows:

o Input layer: To estimate the position of the user, the
input of the designed algorithm is the complex-valued
CSI matrix H, which is collected by the BS. The process
of CSI collection is introduced in Section II-A. Here,
we do not transform original complex-valued CSI data to
real-valued CSI data, as done in previous works [6]-[9].
Since different CSI samples are collected from the user
at different positions, we propose a normalization method
to process complex-valued CSI samples, as follows:

m(ng j(va

o (5) )
= ’ +1 —,
max(‘H(J)D max(‘H(J)D

“4)

where HY) is column or row j of H, R (z) is the real
part of the complex number z, and J (z) is the imaginary
part of the complex number z. If H G) is row jof H,
we are normalizing H over each antenna. In contrast,
when H) represents column j of H, we normalize H
over each CSI feature. The use of feature normalization
or antenna normalization depends on specific dataset.

o Hidden layer I: The hidden layer I is used to extract the
features of CSI samples. The relationship between the
normalized CSI samples and the output of hidden layer
I is given by

y' = o1 (AW +1'), 5)

Wherelﬂ is the normalized CSI matrix of H, W' €
CE*N" is the weight matrix, with N' being the number
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of neurons at hidden layer I, b' € C'*V " is the bias
vector, and ¢ (z) is a complex-valued activation function
with respect to a complex number z and it is defined as
follows:

¢1 () = max (0, (z)) +imax (0,T(z)). (6)

From (6), we can see that ¢ (z) is a complex-valued
ReLU activation function that separately processes the
real and imaginary part of complex number z. Here, we
can also consider other types of complex-valued ReL.U
activation functions. Such as modReLLU, which is defined
as .
(lzl+q) — if [z2[+¢ =0,
v (2) = 17l @)

0 otherwise.

where |z| is the absolute value (or modulus or magnitude)
of the complex number z, and ¢ € R is a learnable
parameter.

Hidden layer II: The hidden layer II is also used to
extract CSI features. The input of this layer is the output
of the first layer y'. The relationship between input '
and the output of hidden layer II is

y" =02 (yW+0), ®)

where W' € CN>N" and b € C1*N" are respectively
the weight matrix and the bias vector of the hidden layer
I with N being the number of the hidden neurons at this
layer, and ¢ (z) is a complex-valued activation function
with respect to a complex number z and it is defined as
follows:

¢2(2) = @ (R(2) +iP (3 (2)), ©)
where @ (x) with z being a real-valued number is defined
as:
& (z) = x x>0, (10)
= e -1 z<0.

From (9), we can see that ¢, (z) is a complex-valued
ELU activation function.
Output layer: The output of the designed scheme is

Y= yIIwHI + bIH7 (11)

where w'l € CN"*1 and B! € C are respectively the
weight vector and the bias value. y € C is the output
of the designed method. From (11), we can see that the
output layer does not have an activation function since
we may use the real and imaginary parts of the output y
for different learning purposes. To introduce the use of
output y for user positioning, we first rewrite it as

y =+ ib, (12)

where a € R is the real part and b e R is the imaginary
part of y. Given (12), we consider the use of our designed
algorithm for two cases, as shown in Fig. 1:
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I. The designed algorithm can directly output the esti-
mated position coordinate of the user. Therefore, output
y is the estimated position of the user. To this end, a,b
are the coordinates of the estimated user position.

II. The designed algorithm can be used to extract CSI
features. These CSI features can be used in traditional
positioning algorithms, such as a TOA positioning
method in [14]. Here, @ € {0,1} is used to identify
whether transmission link is LOS. In particular, ¢ = 1
represents that the link is LOS and a = 0 represents
that the link is NLOS. b is the estimated TOA of the
signal. In this use case, a and b are used in different
learning tasks. Therefore, one can use the designed
algorithm to perform two learning tasks which is one
of the unique advantages of our designed algorithm.

B. Training Procedure of Complex-valued Neural Networks

Given the components defined in Section III-A, we next
introduce the procedure of training our designed CVNN
model. First, we define the loss functions used to capture
the performance of the CVNN model for two use cases:
I. user position estimation, II. LOS/NLOS transmission link
classification and signal TOA estimation. Then, we describe
the training procedure of the CVNN model.

1) Loss Function for Use Case I: In use case I, the real and
imaginary parts of the output of our designed algorithm are
estimated position coordinates of the user. Hence, we can use
the same loss function to measure the training loss of the real
and imaginary parts. We assume that N CSI samples are used
to train the designed CVNN model, and the corresponding
output is y € CN*! Then, the total loss function of the
CVNN model used for case I is given by

J(W,H,a,b) = aly (a,a) + (1 - a) Ly (13, b) , (13)
where W is the CVNN model parameters including the weight
matrices and bias vectors of hidden layers I and II, and the
output layer, « € (0, 1) is a weight parameter that determines
the importance of the training loss at real and imaginary parts
since the real and imaginary parts represent different learning
tasks [15], a,b € RVN*! are the real part and the imaginary
part vectors of the CVNN output (i.e., y = a + ib), a,b €
RN *1 are the vectors of the user’s actual positions (i.e., P =
[a,b]), and L, (@, a) is the mean squared error (MSE) loss
function that measures the difference between the predicted
result @ and the actual result a. MSE is defined as

(14)

where a; is element 7 of a, and q; is element ¢ of a. From
(13), we see that, for a complex-valued output of the designed
CVNN model, we actually use two real-valued loss functions
to separately evaluate the training performance of real and
imaginary parts.

2) Loss Function for Use Case II: In use case II, the output
of our designed algorithm is two CSI features. For example,
the real part a is LOS/NLOS classification results and the
imaginary part b is the predictions of the TOA of the signal. To
this end, we use different loss functions to measure the training
performance of real and imaginary parts. In particular, we
use binary cross entropy (BCE) loss function to measure the
LOS/NLOS classification accuracy, and use MSE to measure
signal TOA prediction accuracy. The total loss function of the
CVNN model used for case II is given by

J(W,H,a,b) = Lo (a,a) + (1 — ) L1 (i), b) . (15)
where 8 € (0,1) is a weight parameter to adjust the impor-
tance of the loss at real and imaginary parts, a is a vector
of the LOS/NLOS link labels, b is the vector of ground truth
TOA of the signal, and L3 (a,a) is the BCE with respect
to the LOS/NLOS classification result a and the LOS/NLOS
label a, which is defined as

N
L2 (@,0) =~ > ailog (3. +(1 — ai)log (15 (@)
i=1

(16)
where 0 (-) is the sigmoid function. From (15) and (16), we
see that the CVNN model can process two different types of
learning tasks simultaneously. Therefore, compared to RVNNs
that can process only one learning task per training, a CVNN
model can use less neurons to implement more learning tasks
thus reducing ML model training complexity and saving ML
model training time.

3) Training Procedure: Given the defined loss functions,
next, we introduce the training process of the designed CVNN
model so as to find optimal W to minimize the training
loss. Here, the back-propagation algorithm with mini-batch
stochastic gradient descent (SGD) approach is used [16]. The
update policy of the designed CVNN model at iteration s of
epoch e is given by

9J (Wes, Be,s)

We,s-‘rl = We,s - OW* 5
e,s

h(n,e) A7)

where B, ; is a batch of data samples at iteration s of epoch e,
h(n,e) is a function of the learning rate that is determined by
the base learning rate 77 and epoch e, W, is the CVNN model
parameters at iteration s of epoch e, and W _ is the conjugate
of W 5. From (17), we see that, for a CVNN model update,
the direction of the gradient descent at W  is the derivative
with respect to W7 _ instead of W ,. Since the input of the
loss function J () is complex-value CSI H and the output of
the loss function is real-valued, and hence, according to [17],
we have

oJ (W€,87 He,s)

vJ (W6,57H6,S) = oW ™

(18)

The entire training procedure is described in Algorithm 1.
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Algorithm 1 The Training Procedure of the CVNN-based
Algorithm

Input: Training dataset D;
Init: W;
fore=1— E do
for each B, ; C D do
Use B, to train the CVNN model and obtain the
prediction y,
Calculate the loss J (W, 5, B, s) based on (13) for
case I or (15) for case II;
Update W , based on (17)
end for
end for

IV. SIMULATION RESULTS

In this section, we perform extensive simulations to evaluate
the performance of our designed CVNN algorithm in specific
scenarios. Next, we first introduce the CSI dataset used to train
the designed CVNN model. Then, we explain the parameters
of our proposed CVNN model and a RVNN model based
baseline. Finally, we analyze the simulation results of our
designed CVNN model.

A. Dataset Introduction

The CSI dataset in [18] is used to train our designed CVNN
model. The position of the BS and the moving areas of the
user are shown in Fig. 2. In [18], the BS equipped with
64 antennas collects CSI data using three different antenna
array topologies: 1) a uniform linear array (ULA) of 1 X
64 antennas, 2) a uniform rectangular array (URA) of 8 X
8 antennas, and 3) eight distributed ULAs of 1 x 8§ antennas.
In our simulations, we use the data collected by the antennas
with URA topology. For simplicity, we use only the CSI data
collected by the Antenna 1 (i.e., M = 1) and its position
coordinate is [—175,0]. Each CSI signal is collected over
100 sampling intervals and hence 7' = 100. Each antenna
collects 264001 data samples and each data sample consists
of CSI, position coordinate of the user, and the label of
LOS/NLOS signal transmission link. Since the time slots of
two successive data samples are very close, we only take one
sample from every 14 samples. Hence, in our simulations,
we use 16801 data samples collected by the Antenna 1 for
training and testing the CVNN model. For different use cases,
we use the same CSI matrix as the input of the CVNN
model. However, we use different labels for the output of the
CVNN model. In particular, for use case I, the output is the
user’s position coordinate p. For use case II, the output is the
distance between the user and the BS, and LOS/NLOS link
classification result.

B. CVNN Model Parameter Introduction

The parameters of the designed CVNN model are summa-
rized in Table I. The function of learning rate described in

4.5cm

Ill.-lcm

0

.
8

Im

1.25m 1.5m 56

Fig. 2. The CSI data collection environment. The blue squares are the areas
where the user can move. The orange squares are the positions of antennas.
The orange mark is the position of the Antenna 1.

TABLE 1
SYSTEM PARAMETERS
Parameter Value Parameter | Value
E 250 [Be.s] 32
n 5x 10~% NT 60
NI 30

Section III-B % (1), €) is defined as
n e < 150,

1
1 150 < e <225,

h(n,e) = (19)

1
2n e > 225.

For comparison purposes, we use a RVNN that consists of
four layers: 1) input layer, 2) hidden layer I, 3) hidden layer
II, and 4) output layer. The size of the hidden layers of the
baseline is similar to that of the CVNN model. However, the
input layer and the output layer of the RVNN is double of the
CVNN model. We separate the real part and the imaginary part
of each CSI sample of the dataset into two matrices R (H)
and J (H). Then, the input of the RVNN is [R (H),J (H)],
and the output is [R (§) , T (§)]. Here, the weight matrices and
bias of the RVNN are all real-valued.

C. Simulation Results

In Fig. 3, we show the value of the mean positioning error
defined in (3) changes as the number of training epochs varies.
This figure is simulated for case I where the CVNN model
directly outputs the estimated position coordinates of the user.
Fig. 3 shows that as the number epochs increases, the mean
positioning errors of both considered algorithms decreases.
This is because we use the CSI dataset described in Section
IV-A to update our proposed CVNN model so as to reduce
the training loss per epoch. From Fig. 3, we also see that
our designed CVNN model can achieve up to 11.1% gain in
terms of mean positioning error compared to the RVNN for
the test dataset. This is due to the fact that the CVNN model
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Fig. 4. The training loss of TOA as the number of training iterations varies
for use case II.

can directly process complex-valued CSI data without any data
transformation thus obtaining more CSI features.

In Fig. 4, we show how the value of the mean square error of
the TOA and the accuracy of the LOS/NLOS transmission link
classification change as the number of training epochs varies.
This figure is simulated for case II. From Fig. 4, we can see
that our designed CVNN model can achieve up to 2.67% gain
in terms of mean square error of TOA compared to the RVNN
for the test dataset. This is because our designed CVNN model

as an optimization problem whose goal is to minimize the
gap between the estimated position and the actual position.
To solve this problem, we have proposed a CVNN-based
algorithm that can directly use complex-valued CSI data to
estimate the position of the user. We have proposed two use
cases for our designed CVNN model based on the fact that
the output of our proposed CVNN model is complex-valued,
and it can implement two learning tasks. Simulation results
have shown that the proposed CVNN-based algorithm can
achieve significant reduction in terms of mean positioning
error, compared to a RVNN based algorithm which has to
transform the CSI data into real-valued data.

REFERENCES

[1] A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen,
R. Raulefs, and E. Aboutanios, “Recent advances in indoor localization:
A survey on theoretical approaches and applications,” IEEE Communica-
tions Surveys & Tutorials, vol. 19, no. 2, pp. 1327-1346, Secondquarter
2017.

[2] B. Jang and H. Kim, “Indoor positioning technologies without offline
fingerprinting map: A survey,” [EEE Communications Surveys &
Tutorials, vol. 21, no. 1, pp. 508-525, Firstquarter 2019.

[3] H. Zou, M. Jin, H. Jiang, L. Xie, and C. J. Spanos, “WinlIPS:
WiFi-based non-intrusive indoor positioning system with online radio
map construction and adaptation,” [EEE Transactions on Wireless
Communications, vol. 16, no. 12, pp. 8118-8130, December 2017.

[4] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization
systems and technologies,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 3, pp. 2568-2599, Thirdquarter 2019.

[5]1 S. He and S.-H.G. Chan, “Wi-Fi fingerprint-based indoor positioning:
Recent advances and comparisons,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 466—490, Firstquarter 2016.

[6] A. Sobehy, E. Renault, and P. Muhlethaler, “CSI-MIMO: K-nearest
neighbor applied to indoor localization,” in Proc. IEEE International
Conference on Communications (ICC), Dublin, Ireland, June 2020.

[71 X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-based fingerprinting for
indoor localization: A deep learning approach,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 1, pp. 763-776, January 2017.

[8] S. Bast, A.P. Guevara, and S. Pollin, “CSI-based positioning in massive
MIMO systems using convolutional neural networks,” in Proc. IEEE
Vehicular Technology Conference, Antwerp, Belgium, May 2020.

[91 H. Chen, Y. Zhang, W. Li, X. Tao, and P. Zhang, “ConFi: Convolutional

neural networks based indoor Wi-Fi localization using channel state

information,” IEEE Access, vol. 5, pp. 18066—18074, September 2017.

M. Chen, D. Gunduz, K. Huang, W. Saad, M. Bennis, A. V. Feljan,

and H. V. Poor, ‘“Distributed learning in wireless networks: Recent

progress and future challenges,” IEEE Journal on Selected Areas in

Communications, vol. 39, no. 12, pp. 3579-3605, December 2021.

C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, Joao F.

Santos, S. Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal, “Deep

complex networks,” in Proc. International Conference on Learning

Representations, Vancouver, BC, Canada, April 2018.

A. Sobehy, E. Renault, and P. Muhlethaler, “NDR: Noise and dimen-

sionality reduction of CSI for indoor positioning using deep learning,”

in Proc. IEEE Global Communications Conference (GLOBECOM),

Waikoloa, HI, USA, December 2019.

Z.Li, E Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional

neural networks: Analysis, applications, and prospects,” IEEE Transac-

tions on Neural Networks and Learning Systems, vol. 33, no. 12, pp.

6999-7019, December 2022.

Y. Qi, H. Kobayashi, and H. Suda, “On time-of-arrival positioning in

a multipath environment,” IEEE Transactions on Vehicular Technology,

vol. 55, no. 5, pp. 1516-1526, September 2006.

[10]

(1]

[12]

[13]

[14]

does not need to preprocess complex-valued CSI data, thus it  [15] A. Kendall, 3{1 ]Gal, aIfld R. Cipolla, “Multi(itask learning using uncer-
. tainty to weigh losses for scene geometry and semantics,” in Proc. [IEEE
can obtain more CSI features .compared tO. the RVNN. We can Conference on Computer Vision and Pattern Recognition, Salt Lake City,
also see that both of our considered algorithms can accurately 6] gT,KIkJISA, tjurflfRzOIF& ahdavi 4 M. Joh “Mini-batch
. .. . .. . irirat, H.R. Feyzmahdavian, an . Johansson, ini-batc
classify LOS/NLOS transmission links. This is because both gradient descent: Faster convergence under data sparsity,” in Proc. IEEE
of our considered algorithms can extract the key CSI features Annual.Conference on Decision and Control (CDC), Melbourne, VIC,
R R Australia, December 2017.
for LOS/NLOS classification. [17] S. Javidi, D. P. Mandic, and A. Cichocki, “Complex blind source
extraction from noisy mixtures using second-order statistics,” [EEE
Transactions on Circuits and Systems I: Regular Papers, vol. 57, no.
7, pp. 1404-1416, July 2010.
V. CONCLUSION [18] C. Li, S. De Bast, E. Tanghe, S. Pollin, and W. Joseph, “Toward fine-
: : see s grained indoor localization based on massive MIMO-OFDM system:
In this paper, we have propos.ed‘ a novel m.d.oor. positioning Experiment and analysis,” IEEE Sensors Journal, vol. 22, no. 6, pp.
system. We have formulated this indoor positioning problem 5318-5328, March 2022.
5616

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 08,2024 at 00:21:04 UTC from IEEE Xplore. Restrictions apply.



