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Background: Early-life pain is associated with adverse neurodevelopmental consequences; and current pain assessment
practices are discontinuous, inconsistent, and highly dependent on nurses’ availability. Furthermore, facial expressions in
commonly used pain assessment tools are not associated with brain-based evidence of pain.
Purpose: To develop and validate a machine learning (ML) model to classify pain.
Methods: In this retrospective validation study, using a human-centered design for Embedded Machine Learning
Solutions approach and the Neonatal Facial Coding System (NFCS), 6 experienced neonatal intensive care unit (NICU)
nurses labeled data from randomly assigned iCOPEvid (infant Classification Of Pain Expression video) sequences of 49
neonates undergoing heel lance. NFCS is the only observational pain assessment tool associated with brain-based
evidence of pain. A standard 70% training and 30% testing split of the data was used to train and test several ML
models. NICU nurses’ interrater reliability was evaluated, and NICU nurses’ area under the receiver operating character-
istic curve (AUC) was compared with the ML models’” AUC.
Results: Nurses weighted mean interrater reliability was 68% (63%-79%) for NFCS tasks, 77.7% (74%-83%) for pain
intensity, and 48.6% (15%-59%) for frame and 78.4% (64%-100%) for video pain classification, with AUC of 0.68. The
best performing ML model had 97.7% precision, 98% accuracy, 98.5% recall, and AUC of 0.98.
Implications for Practice and Research: The pain classification ML model AUC far exceeded that of NICU nurses for
identifying neonatal pain. These findings will inform the development of a continuous, unbiased, brain-based, nurse-in-
the-loop Pain Recognition Automated Monitoring System (PRAMS) for neonates and infants.
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BACKGROUND AND SIGNIFICANCE

on nurses’ availability and methods used to alert
nurses to the presence of pain.'** Inability to self-
report pain makes neonates vulnerable to under-
recognition and both under- and overtreatment of
pain.™* In neonatal intensive care units (NICUs),
vulnerable neonates have a median of 16 painful
procedures per day; only 21% are treated in
anticipation of pain.®® Because of their underde-
veloped pain inhibitory pathways, neonates are
30% to 50% more sensitive to pain than adults
and have reduced pain tolerance as compared with
children.'®'! Early-life pain is associated with
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Current pain assessment practices are discontinu-
ous, inconsistent, highly variable, and dependent
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abnormal structural and functional brain develop-
ment and results in adverse neurodevelopmental
consequences, including cognitive and memory
impairments, altered emotional functioning, psy-
chopathologies, and global pain sensitivity.*!%13
Observational tools are the primary technique
nurses use for assessing neonatal pain; however,
popular observational tools used to assess neonatal
pain include facial expressions that are not asso-
ciated with brain-based evidence of pain.%'#18
Advances in computer software solutions can assist
in identifying facial indicators of pain, but lack of
standardized reporting has limited comparison of
these computer techniques, such as machine learn-
ing (ML) and deep learning (DL) artificial intelli-
gence (AI) models, and their reproducibility.'”

1
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The purpose of this study was to engage experienced
NICU nurses in the development and validation of
a ML model that would classify neonatal pain based
on facial expressions associated with brain-based
evidence of pain.

LITERATURE REVIEW

The only validated observational pain assessment
tool that codes facial actions associated with brain-
based evidence of pain is the Neonatal Facial Coding
System (NFCS).!%15:20-22 NFCS facial actions of neo-
natal acute pain include: (1) eyebrows lowered and
drawn together to form a vertical furrow; (2) tightly
closed eyes; (3) deepened nasolabial furrow; (4)
open, (5) vertical, and (6) horizontal mouth stretch;
(7) taut tongue; (8) chin quiver; (9) lip pursing; and
(10) in preterm infants, tongue protrusion (in full-
term infants, this is a no pain response). Coded as
occurring or not occurring, NFCS is a 0 to 10 scale
in preterm neonates and a 0 to 9 scale in term
neonates.>*'?21 Construct validity of NFCS had
been established previously by the scale’s ability
to discriminate needle pain from touch,?!»*?> pharma-
cologic treatments,?*?’ and postoperative pain
assessments.?® Despite the sensitivity and specificity
of these facial actions as indicators of pain, NFCS
has poor clinical utility with less than ideal (0.67)
interrater reliability for real-time bedside NFCS
assessments. 22

Facial landmark detection is a foundational task
for computer vision facial action unit detection.
Objective facial action coding is time and labor-
intensive.? In their neonatal pain detection work,
Brahnam et al?’?° used the Gaussian of Local
Descriptors approach to extract facial features.
This is a mathematically complicated and time-con-
suming 4-step process that involves Scale-Invariant
Feature Transform descriptors and is computed
based on the histogram of the gradient, making it
computationally heavy.

Different ML models have been used for pain
classification; for example, K-Nearest Neighbors
was used to classify pain®®3! and Support Vector
Machines (SVM) was used to perform pain classifica-
tion on Brahnam’s iCOPEvid (infant Classification
Of Pain Expression video) Database.?”>?® Salekin
et al*® used a DL method, Recurrent Neural
Network (RNN), to model the temporal pattern of
acute postoperative pain. RNNs can capture sequen-
tial information as they perform the same task for
every element of a sequence, with the output being
dependent on the previous outputs. Nonetheless,
RNN suffers from the vanishing gradient and explod-
ing gradient problem and cannot process consider-
ably long sequences. Long Short-Term Memory,
a variant of RNN, can address this issuc by passing

information through a mechanism known as
cell states.

In a sequence of frames, not all frames corre-
sponded to pain. Brahnam et al?® validated their
neonatal pain detection model based on assessments
by 185 college students with no appreciable experi-
ence in neonatal pain assessment or management.
We determined that having a frame-level, nurses-in-
the-loop, ground truth to train a neonatal pain detec-
tion model would improve model performance. This
level of expertise and granularity in data labeling is
necessary to ensure clinician trust in automated clin-
ical decision support solutions for pain detection.3234

The goal of this study was to capture and transform
NICU nurses’ labeling of pain assessment data to train
a supervised, accurate, unbiased, and precise pain
classification ML model. Although NICU nurses’
expertise in pain assessment was leveraged to develop
the supervised ML model, we predict that accuracy
and precision of the ideal ML model will exceed the
abilities of these same nurses. The resulting ML model
will inform future development of a continuous, auto-
mated Al-empowered, nurse-in-the-loop, computa-
tional Pain Recognition Automated Monitoring
System (PRAMS) as an efficient clinical decision sup-
port software solution for neonatal pain assessment,
pain treatment stratification, and pain treatment
evaluation.

What This Study Adds \

e A machine learning (ML) model based on frame-level, nurse-
informed, ground truth data exceed that of neonatal intensive
care unit (NICU) nurses for the classification of neonatal pain
with 98% accuracy, 97.7% precision, and 98.5% recall.

¢ Nurses have a high interrater variability using current obser-
vational pain assessment tools; however, as subject matter
experts, NICU nurses can label training data to improve pain
classification with ML models.

e ML models using NICU nurse-labeled data can be used to
develop a supervised, continuous, automated Pain Recognition
Automated Monitoring System (PRAMS) to support nurse eva-
luation of neonatal pain in the NICU.

o PRAMS will alert healthcare professionals to neonatal pain
\with greater precision for more timely management.

METHODS

In this retrospective validation study, a human-
centered design for Embedded Machine Learning
Solution approach and NFCS were used. A key
evaluation metric for a trustworthy AI model of
pain assessment is the model’s ability to both
reflect nurses’ expertise and exceed nurses’ ability
to consistently identify neonatal pain experiences.
In our effort to develop an automated system to
continuously monitor neonates’ facial actions for
pain, the human-centered design for Embedded
Machine Learning Solution approach addressed 2
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methodological challenges: the extensive time
required for labeling of data with the NFCS*2° and
the need to evaluate the model against nurses’ expert
assessment of neonatal pain.

Sample: iCOPEvid Neonatal Pain Video
Database

The iCOPEvid database was obtained with permis-
sion and used for this study.?” The iCOPEvid data set
contains 20-second video sequences of neonatal facial
expressions of 49 healthy term neonates (26 male, 23
female; 41 White, 1 African American, 1 Korean, 2
Hispanic, 4 interracial; 34-70 hours of age) under-
going a heel lance procedure. Videos were obtained in
the following sequence: Movement I: transport from
one crib to another, the state of the neonate was
noted as either crying or resting; Resting I: the neo-
nate was left undisturbed; Movement II: physically
disturbing the neonate; Resting II: the neonate was
again left undisturbed; Friction Stimulus: vigorous
friction with an alcohol swab was applied to the
external lateral surface of the heel; Resting III: the
neonate was again left undisturbed; Pain Stimulus:
the heel was punctured for a routine blood test and
the heel was squeezed. This sequence resulted in 49
pain videos and 185 no pain videos; of these, we
received a total of 175 videos, 49 pain and 126 no
pain videos, for our study. Videos collected during
rest periods included neonates who were crying,
awake, or asleep. The iCOPEvid database included
neonates who were swaddled (n = 16) and not
swaddled (n = 33), as flailing hands and legs might
occlude facial expressions.

Frames were extracted from every half second of
the pain videos and from every second of the no pain
videos to account for sample imbalance. Of the
extracted image frames, 70% were used in the
study, as the remaining 30% were blurry from
rapid neonatal movement. The final sample included
1918 frames from 120 videos, with 762 frames from
34 pain videos and 1156 frames from 86 no pain
videos.

To develop the ML classification model, the final
sample of pain and no pain video sequences were
split into training and testing (validation) data sets at
a 7:3 frame ratio. This is a standard procedure for
randomly selecting data from a common data set for
training and testing. The training data set was used
to train the ML models, while the testing data set
was used to evaluate ML model performance.
Testing the ML models on new data provides
a more accurate assessment of the ML classification
model performance.

Instrument

Good reliability (>0.80) had been demonstrated
when NFCS was used to code slow motion and
stop frame video in previous studies,?®?32¢ but

Advances in Neonatal Care @ Vol. 00, No. 0

coding took 60 minutes for every 20 seconds of
video.2%2¢ In this study, nurses coded each NFCS
facial action as occurring or not occurring. Because
chin quiver cannot be assessed using a frame-by-
frame approach, this item was removed, bringing
the number of NFCS items to 8 for term neonates
in this study. All 8 facial actions were coded by
nurses for all video frames in this study.

Participants

Six nurse volunteers, with a mean of 18.7 years of
NICU nursing experience (ranging from 5 to 42
years) labeled data for this study. These nurses
worked in a 64-bed level IV NICU, part of a 364-
bed, free-standing, university-affiliated, not-for-
profit urban children’s hospital in Illinois that cares
for neonates with complex medical needs. The neo-
natal pain assessment standard at this hospital had
recently changed from the Neonatal Infant Pain
Scale to the Neonatal Pain, Agitation, and Sedation
Scale through the efforts of these same NICU
nurses.>’ Thus, these nurses had demonstrated sus-
tained interrater reliability and a commitment to
advancing assessment and management strategies
that are sensitive to neonates’ pain care needs.

ML Pain Classification Model Development
Human to artificial intelligence (H2AI), an intuitive
software solution developed by our research team to
maximize nconatal nurses’ experience, engagement,
and productivity, was applied to PRAMS develop-
ment. H2AI facilitates nurses’ labeling of ML model
training data and captures labels at the lowest level
of granularity. A pretrained model, MobileFaceNet,
was integrated into H2AI for facial detection and
landmarking, foundational tasks for NFCS
detection.?®

To optimize the 6 experienced NICU nurses’
interrater reliability in this study, the nurses were
trained in the 4 H2AI workflows. First, the practice
workflow allows nurses to become familiar with
H2AI features and tasks. With a neonatal nurse
scientist, NICU nurses scored 5 fixed frames to prac-
tice before starting the training workflow. The same
neonatal nurse scientist then labeled an additional 5
random frames in parallel with each study nurse
during the training workflow. The neonatal nurse
scientist and study nurse then met to reconcile any
labeling differences. If 88% agreement on NFCS (7
of 8 NFCS) and agreement on binary pain classifica-
tion were achieved, and agreement on pain intensity
scores were =10 points before meeting, the nurse
was “passed” to the next workflow; however, if
these thresholds were not attained, parallel labeling
continued until the interrater reliability threshold
was reached. Labeling, the third workflow, was
identical to the training workflow, except the data
labels for NFCS generated by the study nurses were
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stored and used to train the pain classification ML
models. To ensure the study nurses met interrater
reliability thresholds throughout labeling, nurse
scientists randomly labeled up to 10% of videos
labeled by each study nurse. The final review work-
flow gave nurse scientists a real-time dashboard of
each study nurses’ time labeling, labeling progress
(Figure 1), and interrater reliability (Figure 2).

Each video was randomly assigned to the 6 study
nurses, and each video frame was labeled by at least 2
study nurses. Nurses were blinded to whether the
frames were from pain (heel lance) or no pain (rest,
movement, or friction) videos; nurses were also
blinded to data labeling by other nurses. The data
labeling workflow included 6 tasks. First, nurses
labeled each video frame to indicate if the 8 indivi-
dual NFCS items occurred or did not occur. Second,
nurses rated their perception of the neonate’s pain
intensity on a Visual Analog Scale of 0 to 100 (0 = no
pain, 100 = worst possible pain). Third, nurses iden-
tified facial landmarks, and fourth, nurses identified
when facial landmarks were occluded by neonates’
hands or blankets. Fifth, nurses classified images as
pain or no pain at the frame level, and sixth, they
classified images as pain or no pain at the video level.

Data generated in H2AI for labeling NFCS, facial
landmarks and occlusions, and pain classification at
the frame and video levels were then used to train
supervised computer vision models to classify pain.
Features extracted from H2AI were fed into following
3 ML models: Logistic Regression, Random Forest,

and SVM, to determine the best performing model. All
data labeled by nurses, including pain intensity, were
stored and interrater reliability was calculated
Figure 2).

—

Statistical Analysis

Nurses’ interrater reliability was calculated using 2
methods. During training, interrater reliability was cal-
culated by dividing the number of instances of agree-
ment by the total number of ratings, then multiplying
by 100 to provide interrater reliability as a percentage.
During data labeling, Cohen « was calculated as the
measure of agreement. Cohen « is an estimate of the
proportion of agreement between raters that is better
than would occur by chance. Kappa values above 0.8
are considered very good agreement.>”

NICU nurses’ NFCS coding and pain correlations
were plotted to identify key model features
Figure 3); these were compared with feature impor-
tance plots, which are provided by the model output,
and features were ranked by their significance in
model classification (Figure 4). Then, results of
pain classification using the ML models were cval-
uated for accuracy (correct classifications/total clas-
sifications), precision (true positives/true and false
positives), and recall (true positives/true positives
and false negatives). Finally, the area under the recei-
ver operating characteristic curve was calculated
and compared for nurses and the ML models. The
receiver operating characteristic curve is a graph of
model recall versus the false positive rate at all

—

FIGURE 1
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FIGURE 2

Labeling Summary
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IRR dashboard for the labeling process. IRR indicates interrater reliability; NFCS, Neonatal Facial

classification thresholds; the area under the receiver
operating characteristic curve is therefore an aggre-
gate measure of performance for a binary classifica-
tion system. Area under the receiver operating
characteristic curve values above 0.9 are considered
outstanding, 0.8 to 0.89 is excellent, 0.7 to 0.79 is
acceptable, and less than 0.69 is considered poor.

RESULTS

With 71.5% of the frames of 51.7% of the videos
labeled, nurses weighted mean interrater reliability
was 68% (63%-79%) for NFCS tasks, 77.7%
(74%-83%) for video pain intensity, 48.6% (15%-
59%) for frame pain classification, and 78.4%

FIGURE 3
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Nurses labeling of Neonatal Facial Coding System feature correlation plot.

Advances in Neonatal Care @ Vol. 00, No. 0

Copyright © 2024 National Association of Neonatal Nurses. Unauthorized reproduction of this article is prohibited.



DIGLGHIBA+ZH8EAAIAYO/FOAEIOPIASALLIAIPO0AEIEAHIDI/ADAUMY | XOMADUOIAIXZOHIS

673U +BYNION L WNOTZ L ABY HOGHINQYS A]Q 21B0|)BUOSUUISSOUBAPE/LWLOD MM|'S|euInol//:diy Wolj peapeojumoq

¥202/22/S0 Uo

6 Manworren et al

FIGURE 4

RANDOM FOREST FEATURE IMPORTANCE
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Supervised machine learning champion model: random forest feature plot.

(64%-100%) for video pain classification (Figure 2),
with an area under the receiver operating character-
istic curve of 0.68. Of 563 frames from 16 pain
videos, nurses agreed and classified 463 frames
(82%) as pain and 68 frames (12%) as no pain;
nurses disagreed in their classification of 32 pain
frames (6%). All nurses classified all videos depict-
ing the “pain” condition as pain except for one
classification of one pain video.

Of the 46 no pain videcos, 9 were collected during
movement, 10 during friction, and 27 during rest
periods. Of 809 frames from these 46 no pain videos,
nurses agreed and classified 254 of 462 (55%) rest
frames, 84 of 177 (47%) movement frames, and 65
of 170 (38%) friction frames correctly as no pain.
Nurses agreed but incorrectly classified 161 (35%)
rest frames, 72 (41%) movement frames, and 84
(50%) friction frames as pain. Nurses disagreed in
their classification of 47 rest frames (10%), 21 (12%)
movement frames, and 21 (12%) friction frames.

Consistent with previous research, all NFCS items
except “lips pursing” were highly correlated with
nurses’ classification of pain (Figure 3).2' Thus,
using the 7 remaining NFCS features, 3 ML models
(Logistic Regression, Random Forest, and SVM)
were trained on the nurse-labeled data to classify
pain. The best performing model was a tree-based
Random Forest model; “brows lowered” was the
most important feature for pain classification
(Figure 4). This initial minimal viable product ML
model proved to be reliable, with 95.5% accuracy,

95.4% precision, and 97.8% recall (Table 1). When
we included all data labeled during the nurse training
and practice workflows, the results of pain classifica-
tion for all ML models improved. The Random
Forest model again had the best classification results,
with 98% accuracy, 97.7% precision, 98.5% recall,
and area under the receiver operating characteristic
curve of 0.98 (Table 1). The supervised ML model
provided outstanding discrimination and the ML
model area under the receiver operating characteris-
tic curve far exceeded that of the NICU nurses.

DISCUSSION

The goal of developing a supervised ML model to
classify neonatal acute pain with high accuracy, preci-
sion, and recall was achieved. The model was trained
using NICU nurse labeling data, and nurses’ interrater
reliability was fair at the frame level but very good at
the video level. Nurses weighted mean interrater relia-
bility for labeling was lower than the interrater relia-
bility required during training. This was expected
since, unlike kappa, the percent agreement calculated
during training did not take chance agreement into
account.’”

Despite efforts to maximize NICU nurses’ interrater
reliability, nurses assessed NFCS and pain differently,
demonstrating the interrater variability in pain assess-
ment of nurses in clinical practice.?*35 Nurses agreed
and classified 94% of videos of pain and more frames
depicting pain (82%) than they did frames of no pain

www.advancesinneonatalcare.org
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TABLE 1. Pain Classification Results Using the Machine Learning Models

Model Logistic Regression

Including only data from videos blindly labeled by at least 2 nurses

Accuracy 0.930 0.875 0.955
Precision 0.912 0.865 0.954
Recall 0.982 0.956 0.978
AUC 0.904 0.842 0.946
Including data from practice and training frames and videos blindly labeled by at least 2 nurses

Accuracy 0.972 0.976 0.98
Precision 0.970 0.970 0.977
Recall 0.977 0.985 0.985
AUC 0.972 0.976 0.98

Abbreviations: AUC, area under the receiver operating characteristic curve; SVM, Support Vector Machine.

SVM Random Forest

activities (50%). Yet, the nurses’ area under the recei-
ver operating characteristic curve of 0.68 (0.59-0.74)
suggests poor to acceptable discrimination and was
only slightly better than a previous study using this
same data set and college students’ classifications area
under the receiver operating characteristic curve (95%
confidence interval, 0.665-0.677).3°

Although other pain scales that include facial
actions have been validated against nurses’ diagnosis
of pain, nurses’ interrater reliability, and area under
the receiver operating characteristic curve in this
study provides additional evidence of the variability
and inconsistency of diagnosing pain, even among
experienced NICU nurses.'*2%3 Notably, the facial
expressions included in other popular neonatal pain
assessment scales are not associated with brain-
based evidence of pain.'® In addition, several of
these commonly used multidimensional pain scales
include physiological measures.>>31¥ Despite exten-
sive research investigating changes in heart rate,
heart rate variability, and other physiological mea-
sures, none have been found to be sensitive or spe-
cific for pain.*!’

Nurses’ area under the receiver operating charac-
teristic curves for each no pain stimulus was poor, at
0.62 for movement, 0.49 for rest, and 0.44 for fric-
tion videos. This may reflect nurses’ heightened vig-
ilance for identifying pain given this data labeling
task. These classification data also support the data
set developers’ conclusion that this is a challenging
data set to assess for pain.?’ Based on the neonates’
age, the video was not of their first heel stick.
Therefore, it is also possible that our experienced
NICU nurses identified the neonates’ anticipation of
needle pain from facial expression changes during
the friction stimulus.

In contrast to nurses, the best performing super-
vised ML model identified at the frame level more
frames in pain videos as pain and more frames in no
pain videos as not depicting pain. These data will be

Advances in Neonatal Care @ Vol. 00, No. 0

important for determining the time from when the
model identifies pain until the PRAMS software
alerts the nurse to the neonates’ pain. This latency
is critical to ensuring alerts are not discounted by
nurses as false alarms.? The challenge, ultimately, is
to continuously monitor hospitalized neonates for
acute pain, such as surgical pain, and to evaluate the
need to treat and the duration and effectiveness of
pain treatments.2:11:3%:3% To date, only Salekin
et al®! have developed a novel multimodal spatio-
temporal approach for assessing neonatal post-
operative pain using visual and vocal signals to
achieve 79% accuracy.

Because still frames were used, chin quivering was
not labeled, and since neonates in the data set were
full-term, tongue protrusion was not identified as
a pain classifier. In addition, we found that lips
pursing did not correlate with nurses’ classification
of pain. This finding is consistent with previous
research that has discounted the value of lip pursing
for pain classification.?®

The association of eyes closed, horizontal mouth,
vertical mouth, and open lips with pain was
expected and was reflected in the feature correlation
plot (Figure 3) and feature importance in the super-
vised ML model (Figure 4). However, brows low-
ered, eyes closed, and nasolabial furrow deepened
had higher feature importance in the supervised ML
model than horizontal mouth, vertical mouth, tense
tongue, or opened lips. This was surprising because
brow lowering and nasolabial furrow deepening is
difficult to observe in real time. The feature impor-
tance of brows lowered and nasolabial furrow dee-
pened is significant because it suggests that we can
extend this supervised ML solution to earlier gesta-
tional ages, since microfacial expressions such as
subtle brow changes require less energy expenditure.
These feature importance findings also suggest that
the supervised ML solution can be extended to the
intubated neonate, whose mouth is occluded in
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continuous video surveillance by respiratory sup-
port equipment.

LIMITATIONS

The iCOPEvid neonatal pain database is small and
lacks racial/ethnic, postconceptual age, and illness
severity diversity.'®282%40 There is tremendous
variability in expression of pain across painful con-
ditions and gestational ages.?>!%2%:21 Therefore,
algorithms and models based on the homogenous
iCOPEvid data set will be inaccurate when used in
real-world samples of hospitalized neonates with
pain.

The iCOPEvid database contained video; like
other researchers, we converted these data to frames
for data labeling granularity.?®° However, by using
frame-level data, the resulting supervised ML model
may fail to capture the dynamic patterns of facial
expressions, which may provide important features
for discriminating pain. Furthermore, pain in this
video data set came from predictable needle
procedures.?’

Nurses’ interrater reliability of 77.7% (74%-
83%) for video pain intensity was very good; we
gathered these data to replicate the work of others.
Nevertheless, NFCS and other observational pain
assessment methods are not measures of pain
intensity.’ Simply counting number of behaviors,
responses, or robustness of responses does not
imply pain severity or guide treatment. Nurses’
interrater reliability for video pain intensity may
instead reflect their knowledge that the videos were
uniform in their inclusion of a heel lance procedure,
a single source of pain with little variability in inten-
sity, unlike surgical or disease-related pain. Nurses’
pain intensity ratings did not help distinguish pain
videos from videos depicting neonates experiencing
friction, movement, or crying during periods of rest.
An efficient clinical decision support software solu-
tion for neonatal pain assessment from a variety of
painful conditions, pain treatment stratification,
and pain treatment cvaluation is still needed.

CLINICAL IMPLICATIONS

Trustworthy Al models of pain assessment must
reflect nurses’ expertise and exceed nurses’ interrater
reliability and area under the receiver operating
characteristic curve for consistent identification of
neonatal pain experiences. In this study, H2AI facili-
tated data labeling by NICU nurses as subject matter
experts in neonatal care, and the 6 experienced
NICU nurses demonstrated good to very good inter-
rater reliability. Interrater reliability was calculated
to ensure reliability and consistency of H2AI labeled
data. These data were then used to train a super-
vised, accurate, and precise ML pain classification

model. Our high-quality nurse-labeled data in the
training data set are reflected in the superior perfor-
mance of our model with the testing data set.

With 98% accuracy, 97.7% precision, 98.5%
recall, and area under the receiver operating charac-
teristic curve of 0.98, the supervised ML pain classi-
fication model far exceeded NICU nurses’ area
under the receiver operating characteristic curve.
Of course, when providing direct patient care,
NICU nurses’ decisions to assess pain are based on
context, including patients’ conditions and the
nurses’ availability. When taken out of context, as
demonstrated by nurses’ variability with the friction
stimulus video interrater reliability, nurses may
under- or overdiagnose pain.

We are the only scientific group led by nurses that
is working to develop a continuous, automated Al-
empowered, nurse-in-the-loop, computational
PRAMS as an efficient clinical decision support soft-
ware solution for neonatal pain assessment, pain
treatment stratification, and pain treatment evalua-
tion. Despite our ML models’ superior arca under
the receiver operating characteristic curve compared
with that of our expert nurses and our use of brain-
based facial actions of pain, nurses remain impor-
tant for evaluating the context of neonates’ facial
actions, with the PRAMS as a tool to support nurses’
decision making. We also believe the advantage of
this ML model is yet to be realized.

FUTURE RESEARCH

This supervised ML model will inform future devel-
opment of a continuous, automated Al-empowered,
nurse-in-the-loop, computational PRAMS. This par-
ticular ML model provides the potential for contin-
uous assessment of brain-based facial actions
associated with pain. However, a gestational-, gen-
der-, racial-, ethnic-, and condition-diverse data set
is needed for further PRAMS development and test-
ing. Recent federal data sharing requirements may
facilitate access to robust and diverse video and
clinical data sets that will accelerate further devel-
opment of models like ours to promote equity in
neonatal pain care.

We are moving forward with a clinical trial of
continuous monitoring of perioperative neonates
with our ML model. We will explore if there is
added value to including physiologic features in the
model, such as heart rate, heart rate variability, or
pupillometry. An important specific aim of our clin-
ical trial is to determine the latency of alert, specifi-
cally, how many frames of sustained brow lowering,
eyes closed, and deepened nasal labial furrowing
(the 3 most important features in the current ML
model) should occur before the nurse is alerted to
assess the neonate for pain. Direct care NICU nurses

www.advancesinneonatalcare.org
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What we know:

What needs to be studied:

What we can do today:

Performance Evaluation of a Supervised ML Pain Classification Mode/ 9

Summary of Recommendations for Practice and Researc

e Current pain assessment practices are discontinuous, inconsistent, and highly dependent on

nurses’ availability.

* The Neonatal Facial Coding System (NFCS) is the only validated observational pain assessment
tool that codes facial actions associated with brain-based evidence of pain, but is associated with

high clinical variability.

¢ Frame-level, nurse-informed, ground truth data are needed to train a neonatal pain detection
machine learning (ML) model and ensure nurses’ trust in automated decision support solutions

for pain detection.

precision.

* Nurses’ involvement in clinical decision software development is critical for ensuring optimal and
unbiased patient-centered care from artificial intelligence.

¢ Inability to self-report pain makes neonates vulnerable to underrecognition and both undertreat-
ment and overtreatment of pain.

* Advances in computer software solutions can assist in identifying NFCS indicators of pain.

* As subject matter experts, neonatal intensive care unit (NICU) nurses’ expertise in pain assess-
ment can be leveraged to develop supervised ML models that perform with high accuracy and

will be critical for evaluating the feasibility of
PRAMS and innovating neonatal pain care.
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