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Abstract—Convolutional neural networks (CNNs) have
achieved significant success in various applications. Numerous
hardware accelerators are introduced to accelerate CNN exe-
cution with improved energy efficiency compared to traditional
software implementations. Despite the achieved success, deploy-
ing traditional hardware accelerators for bulky CNNs on current
and emerging smart devices is impeded by limited resources,
including memory, power, area, and computational capabilities.
Recent works introduced processing-in-memory (PIM), a non-
Von-Neumann architecture, which is a promising approach to
tackle the problem of data movement between logic and memory
blocks. However, as observed from the literature, the existing PIM
architectures cannot congregate all the computational operations
due to limited programmability and flexibility. Furthermore, the
capabilities of the PIM are challenged by the limited available
on-chip memory. To enable faster computations and address
the limited on-chip memory constraints, this work introduces a
novel reconfigurable approximate computing-based PIM, termed
ReApprox-PIM. The proposed ReApprox-PIM is capable of
addressing the two challenges mentioned above in the following
manner: (i) it utilizes a programmable look-up-table (LUT)-based
processing architecture that can support different approximate
computing techniques via programmability, and (ii) followed by
resource-efficient, fast CNN computing via the implementation
of highly-optimized approximate computing techniques. This
results in improved computing footprint, operational parallelism,
and reduced computational latency and power consumption
compared to prior PIMs relying on exact computations for
CNN inference acceleration at a minimal sacrifice of accuracy.
We have evaluated the proposed ReApprox-PIM on various
CNN architectures, for inference applications including standard
LeNet, AlexNet, ResNet-18, -34, and -50. Our experimental
results show that the ReApprox-PIM achieves a speedup of 1.63×
with 1.66 × lower area for the processing components compared
to the existing PIM architectures. Furthermore, the proposed
ReApprox-PIM achieves 2.5× higher energy efficiency and 1.3×
higher throughput compared to the state-of-the-art LUT-based
PIM architectures.
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I. INTRODUCTION

Recent technological advancements in the field of Machine
learning (ML) and Deep learning (DL) to solve complex tasks
and are seen to achieve revolutionary outcomes [1]. Convolu-
tional Neural Networks (CNNs) and Deep Neural Networks
(DNNs) are widely used ML techniques for applications such
as image detection, speech recognition, and various other
computer vision-related applications [1]. DNNs and CNNs are
data-intensive architectures with billions of hyperparameters,
requiring billions of multiply-and-accumulate (MAC) opera-
tions [1]. Processing such huge CNN/DNNs in systems with
conventional Von Neumann architectures incurs enormous
energy consumption and significant execution latency due to
the vast data movement between the memory and compute
units. To tackle this, non-von Neumann computing paradigms
such as In-memory Computing (IMC) a.k.a. Processing-in-
memory (PIM) have proven to be a potential hardware solution
for implementing DNNs and CNNs [2], [3]. PIM architec-
tures alleviate the data movement bottleneck by performing
computations locally within the memory. Given that the PIM
architectures do not require communication between the main
memory and the processing cores, it has proven to improve
the data communication efficiency [4], [5].

The PIM paradigms can be classified as Processing using
Memory (PuM) architectures that repurpose memory cells/bit-
sensing circuitry to implement logic [2], [6] and Processing
near Memory (PnM) architectures that incorporate additional
processing logic within the memory [7]–[10]. The PuMs
execute simple logic across the memory bitline with very
high parallel processing bandwidth but are unsuitable for
complex tasks [11] as the circuit overheads and the execution
latency compound with operational complexity. On the other
hand, the PnMs incorporate dedicated computing logic within
the memory die for computing but often come with a large
processing footprint. This essentially limits the maximum
number of parallel PEs and also increases data movement
inefficiencies as the datapath becomes lengthier [8].

Performing computations using look-up-tables (LUTs), ei-
ther in a PuM [3], [12] or PnM [13] layout, offers higher op-
erational flexibility at minimal incremental overheads than the
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logic-based computing approach [14]. However, LUT-based
computing has its own challenges, including an exponentially
increasing footprint with data precision for computations. We
observe that this limitation of LUTs, however, can largely be
avoided by adopting operation decomposition techniques that
allow a large LUT to be replaced with a group of smaller (i.e.
lower data-precision) LUTs with a notably lower aggregated
footprint of the PEs. This acts as a central concept for design-
ing the proposed PE architecture that consists of a group of
interconnected, tiny LUTs that can be programmed collectively
to execute multiple complex logic/arithmetic operations with
larger precisions. The compactness of the PE architecture, in
turn, enables more units to be integrated within the memory,
resulting in higher operational parallelism.

Additionally, extensive research endeavors in the domain of
Approximate Computing (Section II-B) indicate that discard-
ing or simplifying some of the computing workloads results
in an improved operational cycle, reduced power consump-
tion, latency, and computing footprint at a minimal sacrifice
accuracy at CNN inferences. Further, by developing a pro-
grammable in-memory processing architecture, it is possible
to facilitate multiple approximate computing techniques for
improved CNN inference performances without adding incre-
mental computing overhead for each technique. Specifically,
we explore two different forms of approximation computing
techniques, each with its own unique advantages and strengths.
At the same time, both capitalize on a programmable LUT-
based in-memory processing architecture for improved perfor-
mance, energy, and computing overheads. Our contributions
include an efficient implementation of these computing al-
gorithms via a) a reduced precision computing dataflow, and
b) computational approximations dataflow, as demonstrated in
Section III.

To this end, we introduce a novel DRAM-based recon-
figurable approximate PIM (ReApprox-PIM). The proposed
ReApprox-PIM utilizes LUTs to perform CNN inferences
using multiple approximate computation techniques with the
lowest possible operational steps and can be programmed at
run time to switch among different approximate computing
modes. These computations are distributed across a group of
LUTs within the PE, each of which are assigned arithmetic
or logical sub-operations, allowing the LUTs to cooperatively
implement novel optimized dataflow schemes for executing
these computations. We specifically rely on approximate com-
puting techniques that incur minimal CNN inference accuracy
losses compared to baseline exact computation techniques
while also allow us to achieve significant gains in performance
and computational efficiency.

Based on the accuracy of CNN [1] inferences with various
bit-precisions of computations on the MNIST dataset shown
in Figure 1, the accuracy degradation for downscaling bit-
precision from 32-bit to 8-bit is < 2 %, and from 32-bit
to 4-bit is < 5 %. However, at the same time, the latter
reduces the computing overhead of CNN computations by
up to 89%. This leads us to extrapolate 6-bit precision as an
ideal midpoint for achieve a balance of inference accuracy and
significant performance gains, prompting the implementation
of 6-bit precision approximate computation.
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Fig. 1. Top-5 accuracies for different bit precision implemented on LeNet,
AlexNet, ResNet-18, 34, and 50

The cardinal contributions of this work could be outlined in
a three-fold manner, as presented below:

• We propose a programmable and reconfigurable Look-
up-table (LUT)-based processing-in-memory (PIM) ar-
chitecture that can be reprogrammed in-situ for different
quality modes. These unique features make our proposed
approximation technique input-adaptive, enabling it to
adapt the approximations based on the nature of the inputs
and the application.

• We introduce a novel datapath design for the approxi-
mate computational strategy for efficient core utilization
and faster inference. This also enables a lower memory
footprint.

• We evaluate the proposed ReApprox-PIM architecture on
various CNN architectures, including LeNet, AlexNet,
ResNet-18, -34, and -50, for inference applications and
show that it outperforms the state-of-the-art techniques
using throughput, energy efficiency, and accuracy.

II. BACKGROUND AND RELATED WORKS

We first review some of the existing works on PIM architec-
tures in this section. State-of-the-art approximate computing
techniques and their applicability to PIM architectures are
discussed in the later part of this section.

A. PIM Architectures

Various PIM architectures have been proposed for ML
acceleration [2], [6], [15]. PIM architectures that perform
bitwise logical operations are exploited for CNN acceleration
and have been built on DRAM (Dynamic Random Access
Memory), SRAM (Static Random Access Memory), as well as
non-volatile memory technologies such as STT-MRAM (Spin-
Transfer Torque Magnetic Random Access Memory) in [16]
and MRIMA [17], SOT-MRAM (Spin-Orbit Torque Magnetic
Random Access Memory) in [18], and IMCE [19]. The bulk
bit-wise PIM architectures have only been able to facilitate
fixed-point low data-precision inferences, albeit with overall
better performance and efficiency.

Some other works make use of the emerging non-volatile
memory elements such as resistive RAM (ReRAM) archi-
tectures [4], [20] and leverage crossbar arrays to implement
parallel analog computations and are capable of processing
floating-point precision data. The analog crossbar arrays are
also implemented on other memory platforms such as SRAM-
based XNOR-SRAM [21], IMAC [22] and STT-MRAM based
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Fig. 2. Overview of the proposed ReApprox-PIM architecture with in-DRAM data-mapping scheme

MRAM-DIMA [23] for CNN acceleration. Despite accelerat-
ing the CNNs, they suffer from area and latency overheads due
to the analog-to-digital (ADC) and digital-to-analog (DAC)
conversions.

Another class of PIM architectures are investigated which
uses LUT-based CNN accelerators such as LAcc [3], pluto
[12], DLUX [7], BFree [14], pPIM [13] mainly in order
to tackle the computational loads of MAC operation. These
works leverage modified memory architecture to perform
single-stage high-precision matrix multiplications in memory
for CNN inferences and achieve high throughput and lower
power consumption than the aforementioned PIM architec-
tures.

B. Approximate Computing in PIMs

Several prior works have explored incorporating approxima-
tion strategies into memory-centric computing. For example,
NeuralPIM [24] utilized neural approximated peripheral cir-
cuits in a resistive RAM-based accelerator to minimize energy-
intensive ADC/DAC conversions. Tulipa [25], a DRAM-based
PIM for image processing applications in particular. Their
methodology involves constraining the approximation strategy
by setting a lower bound on the Peak Signal-to-Noise Ratio
(PSNR) of the processed image frame. Another approach
involved generating and mapping approximate reduced ordered
binary decision diagrams (ROBDDs) to memristor crossbars
for in-memory execution [26] of neural network applications.
Various methods [27], [28] were introduced, including system-
level and circuit-level approximation through bit trimming
and mem-resistance scaling. A hybrid approximate PIM [28]
approach allowed dynamic approximation with tunable bit-
trimming.

In the realm of non-volatile memory, Pj-AxMTJ [29] em-
ployed approximate full adders in MRAM to facilitate efficient
magnetization switching in magnetic tunnel junctions. This
approach can extend to other bitwise operations, particularly
in low-precision computational memory and error-tolerant
applications. Another work, ApproxPIM [30], applied approxi-
mation techniques from the algorithmic to architectural level in
off-the-shelf 3D-stacked DRAM-based PIM. This architecture
enabled bitwise logic and substitution operations on tunable

precision data, offering potential solutions for memory-wall
challenges and energy-efficient system designs. Additionally,
another error-resilient approximate hardware accelerators like
QLUT [31] focused on accelerating neural networks using
approximation MAC units, which may be suitable for compu-
tationally expensive applications. This work presents a generic
input-aware approximation technique that enables energy-
efficient meta-function implementations in error-resilient ap-
plications by replacing the constituent complex arithmetic
functions with a quantized lookup table (qLUT).

Despite achieving better latency performance, these de-
signs have limited reconfigurability, limiting their applicability
across various applications. In contrast, this work introduces
a low-latency reconfigurable LUT-based PIM that minimizes
data communication overhead and memory bottlenecks. The
proposed ReApprox-PIM allows the programming and re-
programming of processing elements (PEs) to handle various
computations required for neural network layer operations
at different bit widths. Additionally, it incorporates different
approximation strategies, offering flexibility in precision and
performance. As a result, it supports a broad spectrum of
machine learning applications.

III. PROPOSED REAPPROX-PIM ACCELERATOR

The proposed ReApprox-PIM architecture also leverages
an approximate multiplier design to substantially enhance
the performance. Figure 2 gives the hierarchical architecture
view of the ReApprox-PIM with the data mapping scheme,
showing the Processing elements in the DRAM chip in (a),
LUT cores inside the cluster in (b), router design in (c), and
finally the core architecture inside the cluster in (d), This PIM
core facilitates logic/arithmetic operations on a pair of data
inputs. A router interconnects the cores together to form a
cluster, each of these clusters acts as a complete processing
element (PE) that can support a wide range of operations such
as Multiplication and Accumulation (MAC) to support ML
algorithms such as CNNs and DNNs.

A. ReApprox-PIM Architecture Overview
In order to offer a larger degree of functional flexibility,

adaptability, and programmability, a LUT-based design is
adopted for the PIM core instead of a pre-defined logic
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circuit. Moreover, it has been shown in recent works such
as [3] and [13], that a LUT-based in-memory arithmetic unit
can perform multiplications with a significantly lower delay
compared to bitwise computing [2], [6] without any trade-off
in the accuracy.

Our proposed ReApprox-PIM consists of processing ele-
ments (PEs) called clusters that can support various arithmetic
operations, including multiplication, addition, comparison, and
encoding multiple bits. These clusters are arranged in rows
along the subarrays within DRAM banks, as shown in Figure
2(a), to facilitate data access with low latency. Contrary to
off-the-shelf DRAMs, the banks in the proposed architecture
are enhanced with subarray interlinks [32] that allow rows of
clusters placed along adjacent subarrays to directly communi-
cate at a granularity of one DRAM page at a time. This allows
the ReApprox-PIM architecture to easily distribute a particular
task among multiple clusters arranged in the columns. At
the same time, different columns of the clusters inside the
DRAM bank execute parallel and independent tasks in a single
instruction multiple data (SIMD) fashion.

Each of these clusters comprises multiple LUT cores as
illustrated in Figure 2(b). The LUT cores are interconnected
via a crossbar wiring called the router, as shown in Figure
2(c) to facilitate internal communication within the cores
and perform complex operations in multiple stages. During
an operation, the router establishes parallel communication
among the LUT cores and routes the outputs of the cores as
inputs for the next operational cycle, if required. This allows
the clusters to perform complex operations in multiple steps
by establishing direct and parallel communication among the
cores.

The LUT cores in the ReApprox-PIM are implemented to
perform arithmetic or logical operations on different data width
operands with 6-bit precision, on a pair of 3-bit inputs or a
single 6-bit input. The LUT-based processing technique relies
on pre-computed outputs. A set of six 64-bit ‘function-words’
are required for reprogramming any LUT.

B. Baseline 8-bit (Exact) computations using LUTs
In this subsection, we present our previously developed

LUT-based processing architecture [33]–[40] for supporting 8-
bit exact computations using a group of 8-bit LUTs, as shown
in Figure 3. To execute this operation, we rely on operation
decomposition techniques. The 8-bit multiplicands, A and B
are split into 4-bit sections AH , AL, BH , and BL, respectively.
These A and B operands are cross-multiplied in the cores to
generate four partial products V0-V3:

V0 = AL ∗BL (1)
V1 = AL ∗BH (2)
V2 = AH ∗BL (3)
V3 = AH ∗BH (4)

Figure 3(b) shows the routing mechanism of the LUT-cores
in a PE to perform multiplication by programming three LUT-
cores as 4-bit multipliers and four LUT-cores as 4-bit adders.
Finally, the step-wise implementation of the whole process
inside a PE is presented in Figure 3(c). The partial products
from equation (1)-(4) are added in several stages in order to
generate the product of A and B.
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Fig. 3. Overview of 8-bit exact multiplication operation in ReApproxPIM.

C. Novel Approximate Computing on ReApprox-PIM

With the advancement in the ML algorithms, there is an
increase in the CNN network size requiring more resources.
As a result, the hardware acceleration of ML algorithms is
challenging. This necessitates the tuning of the ML algorithms
for hardware acceleration in order to attain high performance.
However, most modern ML applications can tolerate imprecise
computations and do not require maximum accuracy. This
realization has motivated the introduction of the Approximate
Computing (AC) paradigm, where an inaccurate solution is
sufficient in tackling complex problems while enabling high-
performance gains for hardware acceleration.

PIM architecture, which modifies the sense amplifier, can-
not support multiple processing functionalities simultaneously.
Accelerating CNNs or DNNs involves significant data com-
putations, and increasing PIM operations can lead to higher
memory costs in terms of area, energy, and overall perfor-
mance. To address the data movement issue for large data,
the proposed ReApprox-PIM architecture utilizes LUTs for
addition and multiplication operations in-memory. To further
enhance the performance of CNN implementation on the PIM
platform, an approximate module is introduced to perform
approximate multiplication. This improves the latency and
energy efficiency, reduces the overall power consumption and
reduces the resource utilization of the convolution operations
by significantly reducing the processing workload.

Given that a wide range of weight data and activation maps
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need to be moved back and forth between PEs and memory
units, such data movement represents a key bottleneck in the
reduction of CNN’s power consumption. Therefore, from an
architectural design and datapath perspective, we introduce
two approximate computation techniques on PIM to reduce the
in-memory computational load: (i) Reduced-Precision Com-
puting datapath, and (ii) Computational Approximation data-
path. These approximate computing techniques implemented
on PIM architecture are discussed in detail in the next sub-
sections. Specifically, the focus is on MAC operations which
are the most frequently used and computationally expensive
operations, we demonstrate the use-case where the cluster can
be efficiently used in order to perform MAC operations using
both approximate computation techniques. We also present the
approximation pooling and activation operations in subsection
III-D.

1) Approximation 1 Strategy (Reduced Precision Comput-
ing datapath): Emerging intelligent applications such as neu-
ral networks require a plethora of MAC operations to be per-
formed. Though the proposed PIM architecture supports MAC
operations, the amount of memory needed to store the 8-bit
data and the computational latency to perform these operations
are higher. The data presented in Figure 1 shows that reducing
the number of bits i.e., disregarding the LSBs leads to a

negligible loss of accuracy when executing CNNs/DNNs [41].
In addition to maintaining accuracy, a reduced-precision ap-
proach also reduces the computational steps required for MAC
operations thereby reducing the operational latency. Thus, we
design a reduced-precision computing-based approximation
dataflow for LUT-based PIM in this work. This approximation
strategy is outlined in Algorithm 1 where the 6-bit operations
are performed by disregarding the 2 LSBs from an 8-bit
operand requiring fewer cycles of operations for both read
and write operations. Therefore a significant improvement in
terms of memory access is observed when the bit width of
the LUT cores decreases from 8-bit to 6-bit operations when
performing computational operations such as MAC operations.

Algorithm 1: Approximation 1 Strategy
Data: A (3 bit data), B (3-bit data)
Result: Approximate 6-bit multiplier outcome (P)
if A > 0, B > 0 then

P = A ∗B
end
return P

The step-wise implementation of the proposed datapath
for the Approximate algorithm 1 design is shown in Figure
4. This datapath is crafted for the reconfigurable PEs using
LUT cores. It divides the operation into distinct modules,
involving multipliers and adders, both implemented through
the reprogrammability of LUTs.

Initially, the partial products are generated for the input A
& B which are passed to the 6-bit multiplier cores. These
products are subsequently added at several stages with the
help of 6-bit adder cores as shown in Figure 4. Interestingly,
implementing a multiplication operation reveals a similar
datapath for both exact operation and Approximate 1 operation
as demonstrated in Figure 4, Figure 3. Consequently, the same
number of cores are required for implementing multiplication
operations, whether for an 8-bit or Approximate 1 operation.
However, disregarding 2 LSBs in an 8-bit LUT core does not
improve the operation datapath nor reduces the number of
computational steps as shown in Figure 4. This architectural
approach allows sacrifices of accuracy while not sacrificing
performance and energy efficiency and is useful for low-power
applications. Furthermore, using 8-bit LUT cores for 6-bit data
results in performance overheads in terms of area, power, and
latency without any improvement in terms of performance.
Therefore, in order to further optimize hardware utilization,
we replaced the exact operation (8-bit LUT cores) with the
Approximate operation (6-bit LUT cores).

While performing an array of multiplication operations
on an 8-bit exact operation, the proposed PIM architecture
requires seven cores and eight function words containing eight
256-bit latches read by 256-to-1 MUX. On the other hand,
replacing the LUT core to perform a 6-bit Approximate 1
operation on the proposed PIM architecture requires seven
cores and eight function words containing eight 64-bit latches
which are read by 64-to-1 MUX. This significantly improves
the area and power utilization by 4×.

2) Approximation 2 Strategy (Computational Approxima-
tion datapath: Reducing the bit precision through a hard-
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approximation strategy such as Least Signification Bits (LSBs)
truncation leads to low cost for in-memory operations. How-
ever, internal data movement is carried out with very low
latency when opting for low-precision data, as seen in the
Approximation 1 technique. This leads to lower latency and
higher energy efficiency. To further improve the speedup
and energy-efficiency, and resource utilization of 6-bit LUT
cores, we introduce an Approximation 2 technique here. This
approximation technique leverages an approximate multiplier
design to implement inexact computations and/or approximate
computation operations.

To address the issues of delay failures in MSB noted in
approximation techniques such as SDC, VOS, ANT [42],
[43], we developed simplified approximate units which pro-
vide substantial power savings over conventional low-power
design techniques. In contrast to these designs which re-
quire additional circuitry for implementing approximate array
multipliers, leading to area overhead, we have pursued an
alternative strategy. To address area overhead concerns and
to eliminate the need for specialized additional circuitry, we
have introduced a LUT-based approximate design.

CNNs consist of MAC operations that mainly constitute
addition and multiplication operations (which in turn, can be
built using the adders). Therefore to reduce the computational
load in the array architecture, the multiplication is imple-
mented through the addition of partial products generated by
multiplying the multiplicand with each bit of multiplier using
AND gates. In order to further optimize the computational
datapath and resource utilization compared to the Approxima-
tion 1 strategy we design a datapath for the Approximation 2
strategy. The goal of the Approximation 2 strategy is to further
improve the speed up and energy efficiency of the system.
Therefore, for the Approximation 2 strategy, we replace the

exact multiplication process with the approximate multiplier
as elaborated in Algorithm 2, adopted from the approximate
minor adder 5 [44].

Algorithm 2: Approximation 2 Strategy
Data: A (3 bit data), B (3-bit data)
Result: Approximate 2 6-bit multiplier outcome (P)
if A == 0 or B == 0 then

P = 0
end
if A == 1 then

P = B
end
if A = even then

if B < 8 then
P = 0

else
P = A

end
else

if B < 8 then
P = B

else
P = B +A

end
end
return P

The proposed datapath design of the multiplication process
is performed with approximate operations as shown in Figure
5. This datapath is crafted for the reconfigurable PEs using
LUT cores by splitting the operation into modular com-
putations, comparisons, encoding, and selections supported
by the LUTs using their programmability. The LUT cores
programmed to perform addition, comparison, and encoding
are used to perform the approximate multiplication operation.
In order to perform a 6-bit multiplication operation, both the
inputs A&B are split into four 3-bit operands. The set of 3-bit
operands AH , AL & BH , BL are passed to the comparators
cores C1, C2 respectively, based on the inputs the single-
bit comparison output is obtained for each comparison by
the ‘comparator core’. The results of these two comparators
are combined together by the ’encoder core’. The encoder
output is used as selection bits to the 5:1 Selector. Based on
the selection bits, the 5:1 Selector provides the approximated
multiplication outcome. To perform this complete approxi-
mate multiplication operation, the proposed PIM architecture
requires 5 cores and 3 clock cycles, as shown in Figure 5.
Therefore, adapting the approximate multiplication strategy 2
approach on the 6-bit LUT cores increases the speed-up by
2×.

D. Approximate Pooling and Activation operations

The pooling layer mainly consists of max-pooling or aver-
age pooling operations. These operations can be implemented
with a chain of comparison operations. Similarly, Activation
operations like Rectified Linear Unit (ReLU) which is, the
most dominant filter and computationally efficient activation
function, can also be performed by a series of comparison
operations. Therefore, both pooling and activation operations
are analogous to performing logical AND or OR operations.
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For these operations to be carried out efficiently, we utilize
LUT cores to store pre-calculated results that facilitate the
efficient execution of these logical operations. In the case of
pooling, approximation is achieved by comparing values to
find the maximum or average. In the case of ReLU activation,
approximation is achieved by applying the ReLU function by
checking if a value is greater than zero (AND operation) or
not (OR operation). In order to perform these two approximate
operations, we require 2 LUT cores. Consequently, achieving
hardware efficiency in implementing these operations and
making them well suited for accelerating neural network
computations.

On the other hand, to support activation functions such
as Sigmoid, Tanh the proposed ReApprox PIM utilizes the
reprogrammable LUTs to implement piecewise linear approx-
imation without requiring additional hardware support as in
[45], [46]. These activation functions are implemented as
substitution operations where each input value is replaced
by the closest 8-bit/6-bit approximation of the output of the
desired activation function (Sigmoid, Tanh).

E. Reconfigurable and Input-Aware Approximation

Reconfigurability of the ReApprox architecture enables the
approximate mechanisms to support various precision mode
operations (8-bit, 6-bit) by modulating the degree of approxi-
mation (exact, Approx1, Approx2 mode) required for the CNN
application. The key strength of our ReApprox approximation
technique is its input-adaptability, enabling it to adapt to the
different quality modes of operations such as exact operation
or approximate operation based on the nature of the inputs and
the specified application. This adaptability is realized by the
Input-adaptive Selector, which during the runtime, selects the
approximation degree (Approx1, Approx2 mode) as shown in
Figure 2. In the proposed system we size the I/O buffer of
the Input-adaptive Selector, ensuring that each core can be
programmed with the lowest possible programming latency.
The latency overhead for reconfiguring the ReApprox PIM
cluster is discussed in Section IV-E.

In order to enhance the flexibility and adaptability of the
ReApprox architecture, making it better suited for handling
a wide range of tasks and efficiently utilizing available re-
sources. We adapt the integration of in-situ reprogramming on
the proposed PIM accelerator. In-situ reprogramming allows
the proposed ReApprox architecture to switch between differ-
ent processing modes (exact, Approx1, Approx2) seamlessly.
This capability is particularly advantageous for the proposed
architecture in scenarios where workloads are diverse and
change in real-time. By leveraging in-situ reprogramming,
ReApprox PIM can efficiently allocate resources, optimize
energy consumption, and simplify implementation, making
it a preferred choice for enhancing adaptability to emerging
computational requirements.

IV. EVALUATION AND RESULTS
The proposed architecture is designed to be integrated

within the memory banks of a DRAM, which makes it highly
modular and adaptable to various DRAM memory configu-
rations such as the Dual Inline Memory Module (DIMM)

(DDR4, GDDR6), the 3-D stacked memories (Wide I/O,
HMC, HBM/HBM2/HBM2E) all of which share the same
bank-level architecture and data management protocol. For
simplicity, we have presented the performance evaluation for a
configuration with only a single DIMM DRAM chip (DDR4)
in the 28nm technology node. However, this design can be
scaled up for adoption into larger-scale integration such as
8Hi HBM2E stacks.

In this section, we evaluate the proposed ReApprox-PIM
in terms of performance, energy consumption, and area for
ML applications. We also compare the ReApprox-PIM with
state-of-the-art existing PIM architectures and evaluate them.

A. Overhead comparison analysis

TABLE I
CHARACTERISTICS OF REAPPROX-PIM COMPONENTS IN 28 NM NODE
Component Delay (ns) Power

(mW)
Active Area
(µm2)

ReApprox-PIM (approx1)
Core

0.8 2.7 3317

ReApprox-PIM (approx1)
Cluster (MAC Operation)

5.6 9.466 23219

ReApprox-PIM (approx2)
Core

0.65 0.2924 3317

ReApprox-PIM (approx2)
Cluster (MAC Operation)

3.25 0.7875 16585

ReApprox-PIM Core (ex-
act)

0.8 2.7 4196.64

ReApprox-PIM Cluster
(MAC Operation for exact
computation)

5.6 10.11 29376.48

Intra-Subarray Communi-
cation [47]*

63.0 0.028
µJ/comm

N/A

Inter-Subarray Communi-
cation [32] for subarrays
1/7/15 hops away*

148.5/
196.5/
260.5

0.09/
0.12/ 0.17
µJ/comm

N/A

*Represented in 28nm technology node

As a proof of concept, we evaluate AlexNet and implement
it on ReApprox-PIM for both the approximation strategies
and presented an overhead comparison analysis with the exact
computation PIM framework without approximation imple-
mentation. We verified the architecture using AISC via Verilog
HDL implementation. We evaluate the performance using dif-
ferent metrics (such as operational latency, power consumption
and active area) from HDL synthesis on Synopsys Design
Compiler synthesis tools.To make our synthesis compatible
with the DRAM technology, we matched the technology node
of our Design Compiler synthesis with that of the base DRAM
technology node. We also restricted the number of metal layers
used in the synthesis to three to make it compliant with the
DRAM process technology. The synthesis results are presented
in Table I. From Table I, it is observed that the core area
for ReApprox PIM with approx 1, approx 2 strategies and
PIM core with exact computation is 3317 µm2, 3317 µm2,
4196.64 µm2 respectively. In terms of power, our processing
architecture, including the proposed parallel PE count, meets
the power rating of existing off-the-shelf memory [48].

Although the approx1 strategy, exact computation imple-
mentation has the same dataflow for MAC operation, as
discussed in Section III-C, approx1 technique is 1.2 × area
efficient than the exact computation PIM implementation be-
cause of the difference in the bit precision of the LUT cores.
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From the system-level perspective, the PIM requires 256
PIM clusters in order to perform computational operations
for exact 8-bit data precision. Therefore, the estimated area
overhead for PIM with exact computation is 7.52 µm2 across
the DRAM chip for placing 256 PIM clusters. Whereas the
ReApprox PIM requires 64 clusters and the area overhead
across DRAM chip for approx 1, approx 2 strategies are 1.48
µm2 and 1.06 µm2, respectively. Therefore, it is observed that
adapting the approximation strategy instead of the exact com-
putation of 8-bit fixed point precision significantly improves
resource consumption by providing 3.98× area efficiency.

In the case of an 8-bit LUT, a pair of 4-bit operands are
utilized to choose one out of 28 (=256) 8-bit pre-computed
results of an operation. We store these 256 8-bit entries in
eight 256-bit arrays of latches, which we term as eight 256-
bit function words in the LUT-core latches, and utilize an 8-bit
256-to-1 multiplexer that allows us to read one entry out of
that table. Therefore, each core can be programmed in 8 clock
cycles, and the programming latency for the cluster is 64 clock
cycles in the case of 8-bit LUTs Similarly, a pair of 3-bit inputs
can choose one out of 64 entries in a 6-bit LUT. Therefore,
in our Approximate 1 and 2 modes, the function words are
sized 64-bit wide, and only 6 of those are required to program
the LUT to perform any desired logic/arithmetic operation.
Therefore, each core can be programmed in 6 clock cycles, 3
clock cycles, and the programming latency for the cluster is
36 clock cycles, 15 clock cycles in the case of Approximate
1 and 2 modes.

The delay of a single 6-bit or 8-bit MAC performed within
a cluster involves computations inside the PIM cores as well
as communication among the cores. Due to the optimized
data flow for approx 2 strategy, it is observed from the Table
I that the ReApprox PIM with approx 2 strategy achieved
low power, and low latency when compared to approx 1.
The power consumption of the cluster is that of all the cores
and the core-to-core communication. The power and delay for
intra and inter-subarray data transfers are obtained [32] and
[47] due to the low power consumption and the area efficacy
observed by the ReApproxPIM architecture. Due to the area
efficiency of the ReApprox-PIM, we consider infusing one
Re-ApproxPIM bank with 64 PIM clusters per DRAM chip
in the entire rank of the DRAM chips for a DIMM (dual in-
line memory module).

We also compare the microarchitectural properties of a
DRAM-based near-bank accelerator called DLUX [7] that uses
LUT-based implementation. The area of a single LUT core
in DLUX is 0.0095 mm2 and a single PE to perform MAC
operation is 0.4146 mm2. It is observed that the proposed
ReApprox cores and the cluster area for approx 1, approx 2
strategies are 2.86×, 24.9×, 17.8× respectively. The DLUX
used a 1:1 ratio for bank-to-PE and energy-wise, each PE
of DLUX costs 279.8pJ/access. In comparison, the baseline
operation of ReApprox PIM PE with 8-bit LUT and 1:64
ratio for bank-to-PE costs only 0.084 J/access. Although
DLUX performs LUT-based computations for DL acceleration,
there is a significant difference in the architectures. DLUX
is programmed to perform full-precision floating point opera-
tions for high-performance acceleration and is mainly used

for training purposes. Whereas the proposed 2-D DRAM-
based architecture performs convolutional operations on low-
precision fixed operations to optimize the performance.

B. Accuracy Comparison

We evaluate the accuracies for KNN, K-means algorithms
along with various CNN models such as LeNet, AlexNet,
and ResNet-18,34,50 on the MNIST dataset (28x28x1 image
dimensions) and CIFAR-10 dataset (32x32x3 image dimen-
sions). Both datasets consist of about 60,000 training and
10,000 testing images belonging to 10 classes. The goal is
to classify the given input image into the correct class. The
baseline accuracy of the networks with the 8-bit precision data
in comparison with exact, approx1, approx 2 strategies are
as shown in Figure 6(a), and Figure 6(b), respectively. The
accuracies for KNN, K-means algorithms with exact, approx1,
approx2 are 95.2%, 92%, 92.10% and 89.6%, 86.16%, 86%
respectively on the MNIST dataset and 85.5%, 82%, 82% and
82.2%, 80.1%, 79.8% for CIFAR-10 dataset, as demonstrated
in Figure 6(a), and Figure 6(b), respectively. Similarly, the
accuracies for AlexNet with exact, approx1, approx2 are
99.17%, 99.11%, 99.10% respectively on the MNIST dataset
and 82.57%, 82.52%, 82.52% for CIFAR-10 dataset is ob-
served from the Figures 6(a), and 6(b), respectively. Although
it is observed that inference of the CIFAR-10 dataset is lower
than the MNIST dataset it is also observed that the accuracies
of both approximation strategies are similar to the exact
computation inference for both datasets. The performance
degradation between the exact computation, approx 1 strategy
is around 0.02%-0.05% for all the CNNs deployed. Similarly,
the performance difference between the approx 1 and approx
2 strategies is between 0.01%-0.03%. Therefore, Figure 6(a),
and Figure 6(b) suggests that adapting ReApprox-PIM for low-
precision application can guarantee good performance results
in terms of accuracy.

Approximation strategies implemented on the FPGA-based
accelerators such as MBM and [49] SIMDive [50] for ML
applications have shown significant results. MBM [49], and
SIMDive [50] have implemented 3-layered ANN consisting
of three fully connected layers on the MNIST dataset with 8-
bit fixed point precision and achieved an accuracy of 96.22%,
96.17% respectively. From Figure 6 (a), it is observed that
ReApproxPIM is capable of accelerating deep neural networks
ranging from LeNet with 5 layers, AlexNet with 8 layers
to ResNet-50 with 50 layered and achieved an accuracy of
98.80%, 99.1%, and 92.42% on the MNIST dataset with
6-bit approximated data. Therefore, considering approximate
computing accelerators for ML applications such as [49], [50]
ReApproxPIM is capable of implementing image classification
tasks efficiently.

Since other approximate PIM approaches [27], [28], [30]
are capable of deploying ML algorithms such as KNN, K-
means whereas the ReApprox-PIM is capable of deploying
more compute-intensive networks such as CNN/DNNs. There-
fore, it is also evident that ReApproxPIM is more efficient
for data-intensive machine learning applications like image
classification.
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Fig. 6. Accuracy comparison of LeNet, AlexNet, Resnet-18, -34, -50 on
MNIST and CIFAR-10 datasets for exact, approx1, approx2 stratergies.

C. Efficiency Evaluation
In this section, we present the performance of ReApprox-

PIM for these ML algorithms in terms of processing latency
(s), energy consumption per frame of an image (Joules/frame),
and energy density product (Joules second). Performance of
the ReApprox-PIM is evaluated on CNNs when implemented
for various inputs such as exact 8-bit, and 6-bit precision with
approx 1, approx 2 strategies. The benchmark algorithms are
LeNet, AlexNet, ResNet-18, -34, and -50. The ReApprox-
PIM requires 64 clusters to implement approx 1, approx
2 strategies, for 8-bit implementation 256 PIM clusters are
required. As mentioned in Section IV-A, due to the low power
consumption and the area efficacy observed in the ReApprox
PIM we consider using a ReApprox PIM bank with 64 PIM
clusters per DRAM chip in the complete rank of DRAM chips
for a DIMM. Therefore, for evaluation purposes in this section,
we consider one ReApprox PIM implementation for a DIMM.
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Fig. 7. Performance evaluation in terms of latency of the CNNs implemented
on the ReApproxPIM with exact, approx 1, approx 2 strategies

Figure 7 shows the performance comparison plot in terms
of latency for the CNNs implemented on ReApproxPIM
architecture with input data of exact 8-bit, 6-bit precision with
approx 1, approx 2 strategies. When deploying the CNNs with
the 6-bit approx 1 input and 8-bit input requires almost the

same amount of time to implement on ReApproxPIM and
the approx 2 strategy performs at relatively lower latency as
demonstrated in Figure 7.

Figure 8 (a) shows the performance comparison plot of
the CNNs implemented on ReApproxPIM architecture with
approx 1, approx 2 and exact computation strategies in terms
of energy efficiency. Similarly, for the same input Figure 8(b)
shows the energy-delay product plot of CNNs deployed on the
ReApprox PIM. The PIM architecture with exact computation
(8-bit precision) requires larger computations than approxi-
mate computation operations. Therefore, exact computation
implementation requires more energy consumption than ap-
proximate strategy implementations as shown in Figure 8 (a),
Figure 8(b). As discussed in Section III, the approx 2 strategy
requires a few number of cores, and a few operational cycles
to implement computational operations compared to approx 1
strategy. Therefore, it is also observed that the approx2 strategy
is a more energy-efficient approach when compared to the
approx1 approach.

It is observed from Figure 8 (a), (b), Figure 7 that the
ReApprox-PIM is capable of performing at low latency and
high energy efficiency. Figure 7 shows that it requires a
few milliseconds to process the computations required for
any CNN. For example, the ResNet-50 with 50 layers and
26 billion computations is processed under 10 ms. Simi-
larly, in Figure 8(a), (b), high energy efficiency is observed
for 6-bit approx 1, approx 2 strategies compared to 8-bit
implementation due to the lower computations adopted by
approximation strategies. Considering other approximate PIM
architectures [30], that requires about a second to two of
execution time for implementing K-means or KNN algorithm,
whereas ReApprox-PIM can implement deep neural networks
at impressively low latency.
D. Comparative Performance Evaluation with State-of-the-Art

Based on data garnered from published literature [3], [13],
[15], we present a comparative analysis of ReApprox-PIM
with four other state-of-the-art PIM architectures: Neural PIM
[24], DRISA [2], LACC [3], and pPIM [13] in Figure 9
in terms of area (mm2) and energy efficiency per unit area
(Frames/Joule/mm2) for AlexNet inference with a batch size
of 64. The evaluations of DRISA and LACC are scaled to 8-bit
data implementation. All the PIMs in comparison are based
on a DRAM platform.

The core area for the ReApprox-PIM with approx 2 strategy
obtained from 28nm technology as mentioned in Table I is
3317 µm2, which is more area-efficient than the approx 1
strategy. Therefore, we consider ReApprox-PIM with approx2
strategy for the comparative analysis in this Section. Since the
memory cells in the PIM do not participate in the computing
process, we compute the area efficiency using the aggregated
area of the PIM clusters. This provides the area overhead of
1.06 mm2 for 64 ReApproxPIM clusters across the DRAM.

From the Figure 9, the increased area efficiency observed in
LACC and pPIM with respect to DRISA is due to the LUT-
based multipliers. LACC reserves 4K lines per bank (of size
16K) for the LUTs and DRISA occupies roughly 40% chip
area for implementing the logic, leading to inefficient memory
space utilization. The LUT-based PIMs [3], [13], in general,
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Fig. 8. Performance evaluation in Energy efficiency and Energy delay product of the CNNs implemented on the ReApproxPIM with approx1, approx1 and
exact computation strategies.
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Fig. 9. Comparative performance analysis in terms of Area and Effi-
ciency/Area of ReApproxPIM with respect to state-of-the-art PIM architec-
tures

have higher energy efficiency per unit area as they leverage
memory to implement their functionalities.

On the other hand,in comparison to other approximate PIM
designs such as Neural PIM [24] with an active area of 86.4
mm2 and an area-efficiency of 34 µJ/ mm2, ReApprox-PIM
achieves almost 1.8 mJ/mm2 efficiency per area with an active
area of only 16.06 mm2.

When performing bit trimming operations for CNN appli-
cation hybrid approximation, PIM accelerators such as [27],
[28] have energy consumption of 4.06 J, 73.31 J and speed
up as 2.74s, 3.91s for SRAM-based processor, ReRAM based
processor respectively. Whereas ReApprox-PIM achieves 4.65
mJ energy efficiency and latency of 0.092 s for AlexNet
implementation.
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Fig. 10. Comparative performance analysis in terms of Power Consumption of
ReApproxPIM with respect to previous Approximate Computing based PIM
architectures

Figure 10 shows a performance comparison of Power Con-

sumption (mWatts) for ReApprox-PIM and other Approximate
Computing based PIM accelerators such as Neural PIM [24],
QLUT [31]. It is observed that the ReApprox-PIM had 14×
and 13× better performance in terms of power consumption
than Neural PIM and QLUT, respectively.

Figure 11 shows a performance comparison of throughput
(frames/second) for ReApprox-PIM and other PIM accelera-
tors. The PIM architectures under comparison include DRAM-
based bulk bit-wise processing devices DRISA [2], and DrAcc
[6], SRAM-implemented Neural Cache [51], another LUT-
based PIM implemented on the DRAM platforms such as
LAcc [3], and pPIM architecture [13].

Neural Cache [51] is the slowest among the PIMs studied
here due to its smaller processing capabilities as well as its
comparatively slower bit-serial computing mechanism. On the
other hand, a relatively higher throughput is observed for
DRISA [2] due to its ability to parallelize operations across
multiple banks. Whereas DrAcc [6] implements 8-bit ternary
precision inferences through very minimal circuit modifica-
tions which allows it to obtain high performance similar to
that of pPIM [13]. The benefits of adopting LUTs in order to
utilize pre-calculated results instead of performing in-memory
logic operations are convincingly demonstrated by LAcc [3]
which achieves impressive inference performances. ReApprox
PIM in both the approximation modes has higher AlexNet
throughput than all the other PIMs under comparison. The
LUTs in the ReApprox-PIM are capable of reprogramming
at run-time to perform approximate computational operations
and provide flexibility on adapting to different bit-widths,
whereas the PIM architectures such as DRISA are not run-
time programmable. It is also observed that ReApprox-PIM
with approx 2 strategy outperforms the DRISA by 1.26 × and
LAcc and pPIM by almost 2.1 × for AlexNet inference.

E. Overhead of Reprograming the ReApprox PIM Clusters

In the proposed system for exact 8-bit operation, we require
22n × 2n function words. The I/O buffer is designed with a
width of 22n bits and connected to a 22n bit width bus. This
configuration allows each LUT core to be reconfigured and
programmed in only 2 ∗n steps through 2 ∗n function writes.

In this approach, the proposed Cluster requires to access
memory once for re-writing each function-word, the program-



11

TABLE II
OVERHEAD OF RECONFIGURABLE PIM CLUSTERS IN THE REAPPROX PIM

Exact (8-bit) to
Approx1

Exact (8-bit) to
Approx2

Approx 1 to
Exact(8-bit)

Approx 1 to Ap-
prox2

Approx 2 to
Exact(8-bit)

Approx 2 to Ap-
prox1

Latency 2906.88 ns 2849.28 ns 17441.28 ns 2849.28 ns 17441.28 ns 2906.88 ns
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Fig. 11. Comparative performance analysis in terms of Throughput of
ReApproxPIM with respect to state-of-the-art PIM architectures

ming latency is dependent on the memory access latency, as
well as, the number of memory accesses. Since the data are
directly accessed from the subarray’s local row buffer, the data
access latency is same as the tRCD [52] value of DRAM (e.g.
6.77 ns for DDR4 DRAM). Additionally, rewriting a function
word in a core can be performed in a single clock cycle, thanks
to the internal bus of the same width as the buffer. This gives
us an estimated optimum programming latency of a Cluster,
which is reported in the Table II.

V. CONCLUSION

In this paper, we introduce reconfigurable approximate
computing-based processing in-memory architecture called
ReApprox PIM, consisting of look-up-tables to perform in-
memory computations. The LUTs in the PIM are capable of
reprogramming the processing elements to support multiple
precision with both approximate and exact computation during
the run-time. The proposed LUT-based ReApprox-PIM pro-
vides the ability to reconfigure its functionality to any arbitrary
operation. Therefore it is capable of performing computational
and logical operations required for convolutional, pooling,
activation, and fully-connected layers for CNN inference appli-
cations. ReApprox-PIM leverages two types of approximation
strategies (i) Reduced-Precision Computing, and (ii) Com-
putational Approximation, to reduce the computational load
and enable a low memory footprint. ReApprox-PIM allows
sacrificing of accuracy without allowing any performance
degradation in terms of energy efficiency, and throughput
which makes it ideal for low-power applications. The major
benefit of the proposed ReApprox-PIM reducing data move-
ment and lowering storage needs for bulky DNNs and CNNs.
Performance evaluation and comparison with respect to state-
of-the-art GPU, and other PIM architectures, as well as across
operating modes with different bit-precisions of inputs and
weights. ReApprox-PIM in both the approximation modes has
higher throughput, and energy efficiency when compared to
other state-of-the-art PIMs. Our experimental results show that
the ReApprox-PIM achieves a speedup of 1.63× with 1.66 ×
lower area for the processing components compared to the
existing PIM architectures. Furthermore, the experiments also
show that compared to recent LUT-based PIM accelerators

ReApprox-PIM can gain a speedup of 1.3× and energy-
efficiency of 2.5× while maintaining the comparable trade-off
in terms of accuracy.
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