Reconfigurable Processing-in-Memory Architecture
for Data Intensive Applications

Sathwika Bavikadi*, Purab Ranjan Sutradhar!, Amlan Ganguly, Sai Manoj Pudukotai Dinakarrao*
*Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA
tDepartment of Computer Engineering, Rochester Institute of Technology, Rochester, USA.
*{sbavikad, spudukot}@gmu.edu; T{ps9525,axgeec} @rit.edu

Abstract—Emerging applications reliant on deep neural net-
works (DNNs) and convolutional neural networks (CNNs) de-
mand substantial data for computation and analysis. Deploying
DNNs and CNNs often leads to resource constraints, data
movement overheads between memory and compute units. Ar-
chitectural paradigms like Processing-in-Memory (PIM) have
emerged to mitigate these challenges. However, existing PIM
architectures necessitate trade-offs involving power, performance,
area, energy efficiency, and programmability. Our proposed
solution focuses on achieving higher energy efficiency while
preserving programmability and flexibility. We introduce a
novel multi-core reconfigurable architecture with fine-grained
integration within DRAM sub-arrays, resulting in superior
performance and energy-efficiency compared to conventional
PIM architectures. Each core in our design comprises multiple
processing elements (PEs), standalone processors equipped with
programmable functional units constructed using high-speed
reconfigurable multi-functional look-up-tables (M-LUTs). These
M-LUTs enable multiple functional outputs, such as convolution,
pooling, and activation functions, in a time-multiplexed manner,
eliminating the need for different LUTs for each function.
Special function LUTs provide simultaneous outputs, enabling
ultra-low latency parallel processing for tasks like multiplication
and accumulation, along with functions like activation, pooling,
and batch-normalization required for CNN acceleration. This
comprehensive approach enhances efficiency and performance,
rendering our reconfigurable architecture suitable for demanding
Big Data and Al acceleration applications.

I. INTRODUCTION

Rapid advancements in computer architecture, hardware
fabrication, and integration, along with software applications,
led to the development of various fields, including computer
vision, image processing, artificial intelligence (AI), and nat-
ural language processing (NLP). These innovations have led
to an eventual increase in demand for enhanced performance,
efficiency, and data processing capabilities.

To tackle the inefficiencies of traditional computing meth-
ods, machine learning (ML) and deep learning (DL) emerged
as powerful solutions for handling large datasets [1], [15]. In-
novative architectural paradigms, such as 'non-von Neumann’
designs like processing-in-memory (PIM) or In-Memory Com-
puting (IMC), are introduced to alleviate data transfer bot-
tlenecks [12], [15]. IMC architectures perform computations
inside memory chips, delivering superior energy efficiency due
to intra-memory communication and computations.

Numerous PIM designs are implemented on a wide range
of emerging memory technologies. such as traditional volatile
static random access memory (SRAM) [10], dynamic random
access memory (DRAM) [7]-[9], [14], [19], as well as non-
volatile memory technologies like Resistive RAM (ReRAM)

[17], and Magnetic RAM (STT/SOT-MRAM) [2]. A recent
approach to PIM design leverages memory look-up-tables
(LUT) for arithmetic and logical operations within memory
chips [9], [18], [19].

However, these existing architectures are specialized for
specific applications and operations, lacking adaptability to
diverse data-intensive tasks with minimal or no programmabil-
ity [3]. Furthermore, current LUT-based designs are limited to
supporting only one type of functionality, necessitating differ-
ent LUTs for different functions. While offering performance
benefits, this architectural approach suffers from inefficiency
in terms of area and latency. Current PIM architectures excel in
compute- or memory-intensive applications but fall short when
handling other types of tasks [6]. Therefore, there’s a need for
a versatile hardware platform capable of supporting various
CNN/DNN operations to achieve superior energy efficiency,
area efficiency, and performance.

To address these challenges and offer a larger degree
of functional flexibility and programmability, we propose a
heterogeneously programmed multi-functional look-up-table-
based (M-LUT) reconfigurable PIM architecture that supports
existing and emerging applications with low overheads and
high programmability. We define the LUT multi-functionality
as the capability of the LUT to provide output for multiple
functions without the requirement of reprogramming. Further-
more, multiple LUTSs can be combined to formulate a different
function, i.e., two LUTs that perform shift and add operations
(say) can be connected by programming the interconnects
to realize a different function, i.e., multiply operation (say),
instead of designing a separate LUT for add, shift, and
multiply operations. Such an architectural approach not only
provides a reduced number of LUTs but also increases the
utilization efficiency and functional support offered by LUTs.

From the system perspective, the proposed architecture
consists of multiple clusters, as shown in Figure 1. Each cluster
comprises Processing Elements (PEs) that encompass three
types of M-LUT cores: ALU LUT core, special ALU (S-ALU)
LUT core, and special function (SF) LUT core. Each of these
cores facilitates multiple functional programmable operations
on a pair of 4-bit or a single 8-bit input data. An array of these
PEs forms a cluster that can be utilized to implement different
layers of CNNs and DNNs for various CNN inference applica-
tions. Additionally, three different cluster design exploration
is adapted to provide inherent computing support for MAC
operations, activation, pooling, and normalization operations.

To summarize, the cardinal contributions of this work are:

o We introduce a novel and flexible in-memory comput-
ing architecture by introducing reconfigurable and re-
programmable M-LUTs capable of performing multi-
functional operations required to process different neural
network layers for CNN acceleration.

o We propose three different kinds of M-LUT cores with
different functionality: ALU LUT core, S-ALU LUT
core, and SF-ALU LUT core, which are specially de-
signed to tackle multi-functional operations required for
diverse CNN acceleration tasks.

o We design three distinct cluster architectures with het-
erogenous core alignment, supporting a wide range of
operations performed across different layers of the CNN
for multiple ML applications.

II. BACKGROUND AND RELATED WORKS

Processing in Memory, also known as in-memory com-
puting devices, are memory-centric architectures [8], [14]
entirely implemented on a memory chip. There exist multiple
PIM designs implemented on a wide range of emerging
memory technologies, such as traditional volatile static ran-
dom access memory (SRAM) [10], dynamic random access
memory (DRAM) [4], [5], [7]-[9], [14], [19]-[21]. And non-
volatile memory such as ReRAM [17], Phase-Change Memory
(PCM), Spin-Transfer Torque (STT)-MRAM [2], and Spin-
Orbit Torque (SOT)-MRAM [23] technologies.

Numerous IMC hardware accelerators that support ML
applications are introduced in the literature [6]. A majority
of these IMC works [7]-[9], [14] focus on performing faster
computations and do not consider the reconfigurability and
networking concerns of the accelerators. However, the func-
tionality of these architectures is almost exclusively limited
by their application, reconfigurability, overheads, latency, and
inference of CNN/DNNS.

Although there have been several PIM architectures that
leverage LUTs for supporting in-memory computations for Al
acceleration [9], [11], [13], to the best of our knowledge, these
architectures do not offer in-situ reconfigurability through
LUT programming. Further, these works leverage relatively
larger LUTSs, occupying a large computing footprint and
thereby diminishing operational parallelism. This motivates
us to develop a novel LUT-based in-situ reconfigurable PIM
architecture that can support multi-functionality within a rel-
atively smaller computing footprint via LUT reprogramming
for accelerating diverse ML algorithms.

I1I. PROPOSED MULTI-FUNCTIONAL LUT-BASED
RECONFIGURABLE ARCHITECTURE

The hierarchical view of the proposed reconfigurable PIM
architecture equipped with M-LUTs is illustrated in Figure 1.
The proposed architecture includes the arrangement of clusters
inside a DRAM bank, the architecture of a single cluster, space
exploration of cores and the router interconnect inside each
PE, and the M-LUT core architecture.

This architecture is composed of multiple clusters. Each
cluster encompasses Processing Elements (PEs) that contain
reconfigurable M-LUT cores, facilitating multi-functional pro-
grammable operations on a pair of 4-bit or a single 8-bit

input data. We chose this precision as most computer vision
applications perform reliably at this precision with minimal
accuracy loss compared to higher precision [22].

A. Cluster Architecture

The primary goal of the proposed architecture is to im-
plement complex operations while incurring the least amount
of complexity to the hardware design. This is carried out by
executing multi-stage operations inside the PE consisting of
M-LUT cores coupled together with a router mechanism. Each
PE can be programmed to perform a wide range of operations
such as multiply and accumulate, substitution, comparison,
bit-wise logic operations, hyperbolics, sigmoid, and ReLU
activation and pooling operations. Therefore, we propose an
architecture supporting an array of these PEs to form a cluster
that can be utilized to implement different layers of CNNs such
as convolutional, fully-connected, activation, and pooling.

To support various CNNs and DNN layers, our architecture
allows for the integration of diverse PEs within a cluster. To
address the needs of convolutional and fully-connected layers
that perform convolution operations that fundamentally involve
matrix multiplications, implemented as a chain of Multiplica-
tion and Accumulation (MAC) operations, we introduce Mul-
tiply and Accumulate Processing Element (MAC PE). On the
other hand, to support a wide variety of operations performed
in the Activation, Pooling, and Normalization layers, we
introduce the Special Function Processing Element (SF PE).
Therefore, the proposed architecture supports an array of these
PEs (MAC PE, SF PE) to form a cluster that can be utilized to
implement different layers of CNNs and DNNs. These PEs are
interconnected by the router, forming a 2-D array inside the
memory bank, as shown in Figure 1. The close proximity to
the memory bank allows quick memory access and the ability
to perform various in-memory operations. These operations
are carried out by executing multi-stage operations on the PEs
inside a cluster, with the help of the router.

Different cluster designs are proposed for the proposed ar-
chitectures to support diverse operations performed in different
layers of the CNN. Its functionality is discussed below:

Cluster Architecture 1: This cluster supports the design
exploration of the 9 PEs in a 3x3 manner, demonstrated in
Figure 1. This cluster architecture comprises 8 MAC PEs
and one SF PE and can support 8 MAC operations and a
special function operation at the same time. This arrangement
of clusters is adapted to support smaller-scale MAC operations,
which can be implemented mainly in Fully Connected layers.

Cluster Architecture 2: In order to scale up the size of the
operands, we aggregate 25 PEs, arranged in a 5x5 formation,
to form a cluster. Therefore, this cluster supports the design
exploration of the 25 PEs in a 5x5 grid manner. This cluster
architecture comprises 24 MAC PEs and one SF PE and can
support 24 MAC operations and a special function operation
at the same time. This arrangement of clusters is adapted to
support wider, smaller-scale MAC operations, which can be
implemented in the latter convolutional operation layers and
fully connected layers.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

CNN algorithm
Activation layer Pooling layer

Convolutional Iay

MAC operations

Sub-array

Sub-array

Global Row buffer
Controller

L2 RV

3
3
o
8
a8
=
2
°
[c]

Cluster

i il

o

Weight matrix

Input matrix

Application Domain
Fig. 1.
Cluster Architecture 3: To further scale up the size of
the operands, we combine 49 PEs into a cluster placed in
a 7x7 arrangement. As a result, this cluster facilitates the
7x7 grid-based design exploration of the 49 PEs. This cluster
architecture comprises 48 MAC PEs and one SF PE and can
support 48 MAC operations and a special function operation
at the same time. This arrangement of clusters is adapted
to support wider large-scale MAC operations, which can be
implemented in the compute-intensive convolutional layers.

B. Processing Element Architecture
The Processing Element in the proposed architecture is an

independent processing unit capable of performing complex
operations with 8-bit fixed point precision by organizing a
series of micro-operations across the M-LUT cores in several
operational stages (discussed in detail in Section IV). The M-
LUT core design explorations in a PE aim to facilitate intrinsic
computational support to perform MAC operations, activation,
and pooling operations for ML acceleration within different
neural network layers.

The proposed architecture comprises two different PEs, a
MAC PE and SF PE, comprising different sets of recon-
figurable M-LUTSs cores (ALU-LUT, S-ALU-LUT, SF-LUT).
Unlike the LUT cores in existing works, the proposed M-
LUT cores are capable of performing distinct operations from
each other and can provide multiple outputs corresponding
to multiple functionalities in a multiplexed manner, thereby
called multi-functional LUTs. This approach not only provides
a reduced number of LUTs but also increases the utilization

efficiency and functional support offered by LUTs.
C. Core Programming Inside the Processing Elements
This section discusses the functionalities of the cores, re-

ferring to corresponding color codes in Figure 1.

1) MAC Processing Element (MAC PE): We propose a
single PE called Multiply and Accumulate Processing Element
to mainly support multiplication and accumulation operations
by utilizing the multi-functionality of M-LUT cores. The
MAC PE comprises two different reconfigurable M-LUT cores
(ALU-LUT, S-ALU-LUT) that are grouped together and in-
terconnected by a router. The MAC PE consists of a total of
six M-LUT cores (4 ALU-LUT cores, 2 SALU-LUT cores).

ALU-LUT core (Core 1 to 4): The ALU-LUT cores are
specifically programmed to implement the MAC operations in
the PIM. The blue squares in Figure 1 represent the multi-
functional LUT cores that are programmed to perform 4-bit
AND or XOR operations on a pair of 4-bit data inputs and

|

I

M Data I/O !

I

emory ‘

AW AW L AW |

LT LT LT I

MAC MAC MAC !
<| pr PE PE, AW | |JSALDY | JSALD |
G LuT - LUT wr }
I

\ !

MAC AC IMAC }
=l <1 |PE PE, }
g / Data I/ |
I

AC AC SF o] 1 |

I

\ 4 PE PE PE e e }
I

I

I

I

|

I

Cluster

Hardware Domain

Hierarchical Architecture showing the cluster arrangement and M-LUT core organization inside the processing elements

generate a 4-bit output. A multiplexer is used to select the
functionality required for the different operations of the CNN
algorithm to perform either XOR or AND operation on the
inputs, as shown in Figure 2 (a).

S-ALU LUT core (Core 5 and 6): The second kind of
M-LUT core used in the MAC PE, represented in red squares
in Figure 1, called the special-ALU LUT core. The MAC PE
contains two of these cores that are programmed such that the
output consists of two entirely different operations (XOR and
AND) on the same pair of inputs. Despite the fact that the S-
ALU-LUT core supports the same operations (XOR and AND)
as the ALU-LUT core, its functionality is entirely different.
This core is used in a special scenario when we need both XOR
and AND operations for the same input data, mainly used for
the accumulation process. This core is programmed to produce
8-bit output data for a pair of 4-bit inputs. The upper half of
the core output represents the 4-bit XOR operation of the input
data while the lower half represents the 4-bit AND operation of
the same input data as shown in Figure 2 (b). Thus, without the
need to create separate LUT cores for various purposes, this
unique M-LUT called S-ALU LUT core may deliver several
outputs pertaining to dlfferent functlonahtles concurrently

(a)

(b)
Fig. 2. Microarchitectures of Reconfigurable M-LUT-based PIM cores (a)
ALU-LUT core and SF-LUT core (b) S-ALU-LUT core

2) SF Processing Element (SF PE): We propose a single

PE called a special function PE that is capable of performing
a wide range of special function operations such as activation,
pooling, and batch normalization operations by utilizing the
M-LUT cores. Due to the considerably lesser complexity of
these operations, they are all carried out in the same SF PE.
The cluster contains only one of these SF PE, consisting of 3
special function LUT cores called SF-LUT cores.

SF-LUT core (Core 1 to 3): The third kind of M-LUT core
used in the proposed architecture is a special function LUT
core, represented in the green square in Figure 1. SF-LUT is
programmed to perform 8-bit special-function operations such
as pooling, batch normalization, and activation operations,
including different activations such as sigmoid, hyperbolic, and

ReLU operations.In Figure 2 (a) SF LUT core is implemented
using 8-bit 256-to-1 multiplexers. For example, in order to
perform an activation operation with an 8-bit operand, the 8-bit
MUX in the PIM core is used to perform a look-up operation

and provide 8-bit output.
IV. OPERATIONS SUPPORTED BY THE PROPOSED

RECONFIGURABLE ARCHITECTURE
Majority of the operations performed for ML acceleration

are essentially translated into a large set of vector or matrix
multiplications (known as GEMV or GEMM). Furthermore,
matrix multiplication can be performed in the form of repeated
MAC operations in the MAC PEs. Similarly, the Convolutional
operations and Fully Connected operations can be executed in
the MAC PE. Whereas the SF PEs are designed to implement
special function operations such as non-linear activation, pool-
ing, and normalization operations using the memory look-up
approach. These operations are carried out within the cluster
by executing a multi-stage pipeline of the M-LUT cores inside
the PEs coupled together with a routing mechanism.
A]BD AB1 A182 AB3

T T R T
t=1 |1 12 13 14
(Nt I | |

127 1237 o

ALU-LUT t=2
Core

P1

S-ALU
~ LUT Core

SF-LUT
Core t=5

MAC
Operation

P4-P7

Special
Function
Operation

Fig. 3. Overview of the dataflow for MAC operation in the proposed

Reconfigurable PIM architecture

A. MAC Operations Supported by the proposed architecture
Each M-LUT core is capable of performing operations on a

pair of 4-bit, or a single 8-bit operand. For MAC operations,
we process a pair of 4-bit data in parallel to produce 8-bit
output using the ALU-LUT and S-ALU LUT cores.

To execute the MAC operation on two 4-bit data operands,
initially, both the input data, A and B are split into sections
As, Ag, Aj, Ag, and Bs, Ba, By, By respectively. The 4-bit
multiplication is performed similarly to decimal multiplication.
As demonstrated in Figure 3, a routing mechanism is used to
perform the MAC operation in a multi-stage pipeline.

Figure 3 also illustrates how each process in the dataflow
has been assigned a special tag consisting of a letter and a
number for ease of implementation and testing. Numbers 0, 1,
2, and 3 denote various parallel operations carried by the cores
in each clock cycle, whereas letters I, J, K, L, M, N, O, Q,
R, and S denote the clock steps of M-LUT operations, PO-P7
represent the MAC operation output of the MAC PE. During
the runtime, PO-P7 of the MAC operation is accumulated using

the S-ALU LUT core. This accumulated output is later passed
to the SF-LUT core in SF PE to perform either activation,
pooling, or normalization operations, which can be carried out
in a single clock cycle.

B. Special Function Operations Supported by the proposed

architecture
The output of the MAC operation from the MAC PE is

passed to the multi-functional SF LUT core in SF PE to
implement either of the special function operations such as ac-
tivation, pooling, and normalization operations. A multiplexer
is used to select the different special function operations to
be implemented in the SF LUT. Based on the input from
the multiplexer, the multi-functional M-LUT core performs
either sigmoid, hyperbolic, or ReLU activation operations or
max pooling, average pooling operations, or normalization
operations on the input data. This operation can be performed
in a single clock cycle during the execution. The router is
used to enable the chain of operations required for MAC and
activation operations inside the cluster.

The key advantage of the proposed architecture is that it en-
ables a routing scheme and parallelization process to efficiently
utilize the cores inside the cluster. Moreover, it can be said
that the M-LUTSs in the proposed architecture are capable of
reprogramming at run-time to perform complex computational
operations to implement CNN at ultra-low latency. The cluster
is capable of executing complicated arithmetic or logical tasks
over a single or multiple stages by combining the capability
of multiple PE functionalities.

V. EVALUATION
A. Design Verification

We verified the architecture using AISC via Verilog HDL
implementation. We evaluate the performance using different
metrics (such as operational latency, power consumption,
and active area) from HDL synthesis on Synopsys Design
Compiler using 28 nm standard cell library from TSMC and

are presented in Table 1.
TABLE I
CHARACTERISTICS OF RECONFIGURABLE MULTI-FUNCTIONAL
HARDWARE ACCELERATOR AND ITS COMPONENTS IN 28 NM
TECHNOLOGY NODE

Component Delay (ns) Power (mW) Active Area(pmr")
ALU-LUT Core 0.10 0.00177 8010
S-ALU-LUT Core 0.26 0.00497 13210
SF-LUT Core 0.7 0.01853 141304
MAC PE 0.92 0.01702 58460
SF PE 0.7 0.05559 1461500
Proposed PIM Cluster 1 1.62 0.19175 526140
Proposed PIM Cluster 2 1.62 0.46407 1461500
Proposed PIM Cluster 3 1.62 0.87255 2864540
LUT Core [19] 0.8 2.7 4196.64
LUT Cluster (MAC Opera- | 6.4 8.2-11 37769.81
tion) [19]

Intra-Subarray Communica- | 63.0 0.028 N/A
tion [16]* pJ/comm

Inter-Subarray Communica- 148.5/ 0.09/ N/A
tion [7] for subarrays 1/7/15 196.5/ 0.12/ 0.17

hops away* 260.5 pJ/comm

*Represented in 28nm technology node . .
irstly, it is observed that due to the different operational

support provided by MLUT cores, they have different delay,
area, and power metrics. SF-LUTs, which process 8-bit data
on 8-bit memory LUTSs, have the highest delay, area, and
power consumption. In contrast, ALU LUT cores, designed

for processing a pair of 4-bit data on 4-bit memory LUTs,
exhibit the least delay, area, and power consumption. Due to
the same reason, MAC PE shows lower delay, area, and power
consumption than SF PE. However, compared to the LUT
core [19], the proposed cores have lower delay and power
consumption, but the active area is 2x greater.

Table I also presents the cluster characteristics for different
design explorations discussed in Section III-A. As the cluster
size (Cluster 1, 2, 3) increases in terms of the number of
PEs (9, 25, 49), both area and power consumption increase.
Clusters 1, 2, and 3 can simultaneously perform 8-bit MAC
and activation operations, resulting in similar delay values.
Specifically, when performing an 8-bit MAC operation and
activation operation on the proposed architecture, the delay is
1.62 ns, whereas the LUT core [19]] requires 6.4 ns for MAC
operation alone, making the proposed architecture nearly 4 x
faster. Therefore, it is observed that the proposed architecture
is highly suitable for ultra-low latency, low-power applications
such as real-time IoT devices and edge devices.

In order to perform an 8-bit MAC operation on a prior
LUT-based PIM architecture such as LACC [9], it requires
1048576 (2'6 x 16) pre-computed results of an operation.
In comparison, the proposed architecture requires 18432 (6
x 28 x 8) pre-computed results of an operation by using
the six 4-bit M-LUT cores in the MAC PE. This leads to
86 area efficiency than LACC [9]. Despite requiring 9 clock
cycles compared to a single clock cycle in LACC PIM, the
proposed architecture’s parallel processing capability allows it
to perform multiple tasks simultaneously, contributing to lower
dynamic power consumption.

B. Performance Evaluation

In this subsection, we perform a comparative performance
analysis of the proposed architecture in terms of throughput
(Frames per second) and energy efficiency (Frames per Joule)
on LeNet, AlexNet, ResNet-18, -34, and -50.

1.4 3.50E+03
-] - —_
5’\1.2 Clyster1 Cluster2 Cluster3 Throuhgput 300E403 o
2 8 1 250E403 = §
‘G 208 2.00E+03 2 @
5 306 1.50E+03 22
=204 1.00E+03 2 @
< £ < £
] Usio.z 5.00E+02 = &
w= 0 —— - 0.00E+00 L
LeNet AlexNet ResNet-18 ResNet-34 ResNet-50

Fig. 4. Comparison of Energy efficiency (Frames/Joules) and Throughput
(Frames/second) for LeNet, AlexNet, ResNet18, ResNet34, and ResNet50 on
the proposed architecture.

Figure 4 illustrates the relationship between energy effi-
ciency and the depth of CNN algorithms. As the number of
layers in the CNN increases, more MAC, activation opera-
tions are required, leading to increased parallelization. Conse-
quently, CNNs with a higher number of layers achieve higher
energy efficiency. It is observed that LeNet, AlexNet, and
ResNet 18 achieved the inference energy efficiency of 0.0011
Frames/Joule, 0.024 Frames/Joule, and 0.038 Frames/Joule
respectively.

The proposed architecture achieves better performance for
CNN algorithms with comparatively lower computational
workloads such as LeNet, shown in Figure 4. However,

for 8-layered AlexNet, the proposed architecture achieves an
inference throughput of 150.3 Frames/s, while the 50-layered
ResNet algorithm attains an inference throughput of 45.9
Frames/s. Therefore, it can be said that the proposed architec-
ture can achieve impressive performance while implementing
complex CNN/DNNs, operations due to its robust parallel
processing ability. For instance, ResNet-50, the largest network
implemented on the proposed architecture consists of 50 layers
with thirty-eight billion computations that can be processed
within 10 ms on the proposed architecture.

Due to the similar design exploration and distribution of
the tasks in the clusters, a similar trend in terms of energy
efficiency is observed for all three cluster implementations
for all the CNNs. However, due to the simultaneous parallel
operational support of all the PEs in the cluster, the throughput
remains the same for all three cluster implementations.

C. Inference Accuracy

We evaluate our proposed architecture (Cluster 1) for var-
ious state-of-the-art deep neural networks such as LeNet,
AlexNet [1], ResNet -18,-34,-50, on MNIST and CIFAR-
10 datasets. Figure 5 shows the Top-5 accuracy comparison
plots for 16-bit floating-point (FP), and 8-bit fixed-point data
precision (both inputs and weights).

100 EMNIST-16bit EMNIST-8bit ECIFARL0- 16 bit [@CIFARLO - 8 bit

90

» N N

o N I iz Nz Bz
LeNet AlexNet ResNet 18 ResNet 34 ResNet 50

Fig. 5. Comparison of Top-5 accuracies of LeNet, AlexNet, ResNet-18, -34
and -50 on MNIST, CIFAR-10 dataset for 16-bit, 8-bit data precision

It is observed that the accuracies obtained on the evaluated
networks are very similar for 16-bit and 8-bit precision data.
The Top-1 accuracy obtained for the MNIST dataset when
implemented on AlexNet is 98.89% and 99.43% for 16-bit and
8-bit precision, respectively. On the other hand, the Top-1 ac-
curacy obtained for the CIFAR-10 dataset when implemented
on AlexNet is 83.5% and 82% for 16-bit and 8-bit precision,
respectively. It is also observed that the CNN accuracies for
the CIFAR-10 dataset are noticeably lower when compared
to the MNIST dataset, with a performance degradation of
around 10%-15% for all the CNNs deployed. This difference
in accuracy can be attributed to the higher complexity of
the CIFAR-10. It’s important to mention that while higher
accuracy with CIFAR-10 has been reported in the literature,
those results typically employ higher data precision than what
we adopted in this paper [22].

D. Performance Comparison with State-of-the-Art Hardware

Accelerators for CNN Implementation
Performance is evaluated by comparing the proposed

architecture with state-of-the-art PIM accelerator architec-
tures in terms of power consumption (Watt) and throughput
(Frames/second), as shown in Figure 6.

As a proof of concept, we evaluate and implement AlexNet
[1] on the proposed architecture with 8-bit precision.We com-
pared our architecture with several PIM architectures, includ-
ing DRAM-based bulk bit-wise processing devices DRISA

s Throughput -=Power consymption 120
956

128 N 9.5 110, 110)1 11028
g 32 \ N\ 80
£ \ \ 20
£ 2 N\ \ 2
_é' 3 S 8 s = ~ -
¥ z z 3 g s3 S3 S5
g ° ° §g £ £3
F S S S

Fig. 6. Comparative performance analysis of proposed architecture with
respect to previous PIM architectures in terms of throughput (Frames/second)
and power consumption (Watt).

[14], DrAcc [8], LUT-based PIM implemented on the DRAM
platforms such as LAcc [9], and pPIM architecture [19].

Among the PIMs studied here, a relatively higher through-
put is observed for DRISA [14] due to its ability to parallelize
operations across multiple banks. DrAcc [8] achieves higher
performance with 8-bit ternary precision inferences, similar to
pPIM [19]. LAcc [9], pPIM [19] demonstrate the advantages
of using LUTs for utilizing pre-calculated results, achieving
impressive inference performances.

It can be observed that the throughput stays constant for all
three cluster implementations due to the simultaneous parallel
operational support provided by all of the PEs in the clus-
ter. However, our architecture, utilizing reconfigurable multi-
functional M-LUTs for CNN algorithms, achieves notably
higher AlexNet throughput compared to the LUT-based PIMs
in the comparison. Furthermore, it boasts significantly higher
throughput than other PIM architectures like DRISA, Dracc,
and Neural cache, as shown in Figure 6. A similar trend is
observed in for power consumption comparison, the proposed
architecture demonstrates lower power consumption compared
to the PIM architectures. It also outperforms LAcc and pPIM
by approximately 1.14 x for AlexNet inference throughput.
Additionally, for Cluster architectures 1, 2, and 3, our ar-
chitecture achieves 2.4 x, 10 x, and 101 x higher energy
efficiency than LAcc and pPIM implementations, respectively,

for AlexNet inference.
VI. CONCLUSION
In order to address the energy efficiency and flexibility

requirements for computer architectures, we present a novel
multi-functional LUT-based reconfigurable PIM architecture
in this work. The architecture is tailored for CNN/DNN
inference applications, supporting existing and emerging ap-
plications with minimal overheads and high programmability.
In performance evaluations compared to state-of-the-art PIM
architectures, our design significantly outperforms a DRAM-
based LUT-based PIM architecture., with 101 x higher energy
efficiency and 1.14 X higher throughput when implementing
AlexNet. Although the proposed architecture is primarily
designed for CNN acceleration, its multi-functionality, re-
configuration, and ultra-low latency implementation make it
suitable for a wider range of application domains, such as real-
time IoT, edge devices, mobile applications, and automated

systems.
VII. ACKNOWLEDGEMENTS

This work was supported in part by the US National Science
Foundation (NSF) Grant CNS-2228239. The views, opinions,
and/or findings contained in this article are those of the
author(s) and should not be interpreted as representing the
official views or policies, either expressed or implied, of the
US NSE

Power Consumption (Watts

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

M. Z. Alom et al., “The history began from alexnet: A comprehensive
survey on deep learning approaches,” arXiv, 2018.

S. Angizi et al., “Mrima: An mram-based in-memory accelerator,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 5, pp. 1123-1136, 2020.

S. Bavikadi ef al., “A survey on machine learning accelerators and
evolutionary hardware platforms,” IEEE Design & Test, vol. 39, no. 3,
pp. 91-116, 2022.

S. Bavikadi e al., “Heterogeneous multi-functional look-up-table-based
processing-in-memory architecture for deep learning acceleration,” in
2023 24th International Symposium on Quality Electronic Design
(ISQED), 2023, pp. 1-8.

S. Bavikadi et al., “Polar: Performance-aware on-device learning capable
programmable processing-in-memory architecture for low-power ml
applications,” in 2022 25th Euromicro Conference on Digital System
Design (DSD), 2022, pp. 889-898.

S. Bavikadi et al., “A review of in-memory computing architectures for
machine learning applications,” ser. GLSVLSI ’20, 2020.

K. K. Chang et al., “Low-cost inter-linked subarrays (lisa): Enabling
fast inter-subarray data movement in dram,” in /IEEE Int. Symp. on High
Performance Computer Arch (HPCA), March 2016, pp. 568-580.

Q. Deng et al., “Dracc: a dram based accelerator for accurate cnn infer-
ence,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), 2018, pp. 1-6.

Q. Deng et al., “Lacc: Exploiting lookup table-based fast and accu-
rate vector multiplication in dram-based cnn accelerator,” 2019 56th
ACM/IEEE Design Automation Conference (DAC), pp. 1-6, 2019.

C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of
deep neural networks,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), 2018, pp. 383-396.

J. D. Ferreira et al., “pluto: In-dram lookup tables to enable massively
parallel general-purpose computation,” CoRR, vol. abs/2104.07699,
2021.

A. Ganguly, R. Muralidhar, and V. Singh, “Towards energy efficient non-
von neumann architectures for deep learning,” in Int. Symp. on Quality
Electronic Design (ISQED), 2019.

P. Gu et al., “Dlux: a lut-based near-bank accelerator for data center
deep learning training workloads,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 1-1, 2020.

S. Li et al., “Drisa: A dram-based reconfigurable in-situ accelerator,” in
2017 50th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2017, pp. 288-301.

S.-L. Lu et al., “Scaling the “memory wall”: Designer track,” in
2012 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2012, pp. 271-272.

V. Seshadri et al., “Rowclone: Fast and energy-efficient in-dram bulk
data copy and initialization,” in 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Dec 2013, pp. 185-197.
L. Song et al., “Pipelayer: A pipelined reram-based accelerator for deep
learning,” in 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017, pp. 541-552.

P. R. Sutradhar et al., “Look-up-table based processing-in-
memoryarchitecture with programmable precision-scalingfor deep
learning applications,” IEEE TPDS, 2021.

P. R. Sutradhar et al., “pPIM: A programmable processor-in-memory
architecture with precision-scaling for deep learning,” IEEE Computer
Architecture Letters, vol. 19, no. 2, pp. 118-121, 2020.

P. R. Sutradhar et al., “3dl-pim: A look-up table oriented programmable
processing in memory architecture based on the 3-d stacked memory
for data-intensive applications,” IEEE Transactions on Emerging Topics
in Computing, pp. 1-13, 2023.

P. R. Sutradhar et al., “Flutpim: A look-up table-based processing in
memory architecture with floating-point computation support for deep
learning applications,” in Proceedings of the Great Lakes Symposium on
VLSI 2023, ser. GLSVLSI "23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 207-211.

K. Vasquez et al., “Activation Density based Mixed-Precision Quan-
tization for Energy Efficient Neural Networks,” arXiv e-prints, p.
arXiv:2101.04354, Jan. 2021.

G. Yuan et al., “A sot-mram-based processing-in-memory engine for
highly compressed dnn implementation,” ArXiv, vol. abs/1912.05416,
2019.

	Introduction
	Background and Related Works
	Proposed Multi-functional LUT-based Reconfigurable Architecture
	Cluster Architecture
	Processing Element Architecture
	Core Programming Inside the Processing Elements
	MAC Processing Element (MAC PE)
	SF Processing Element (SF PE)

	Operations Supported by the Proposed Reconfigurable Architecture
	MAC Operations Supported by the proposed architecture
	Special Function Operations Supported by the proposed architecture

	Evaluation
	Design Verification
	Performance Evaluation
	Inference Accuracy
	Performance Comparison with State-of-the-Art Hardware Accelerators for CNN Implementation

	Conclusion
	Acknowledgements
	References

