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ABSTRACT

The proliferation of Internet of Things (IoT) and edge comput-
ing devices has become an essential aspect of our daily routines.
Particularly, the rise of wearable technology like smartwatches,
health trackers, and smart glasses has contributed significantly
to their popularity. These gadgets are equipped with diverse sen-
sors that enable researchers and manufacturers to collect user data.
Subsequently, this data undergoes processing through on-device
Machine Learning (ML) algorithms, enhancing user interactions.
However, implementing ML algorithms on these compact IoTs and
edge devices consumes substantial power and energy. It’s crucial
to recognize that these devices operate within strict energy and
power constraints. Thus, optimizing battery usage is paramount for
prolonging a device's lifespan. Therefore, we propose a Processing-
In-Memory (PIM) architecture utilizing Look-up-Table (LUT) based
processing for improved performance and energy efficiency. To
further enhance energy efficiency in this work we introduce a
framework that efficiently utilizes kinetic energy harvesting to in-
termittently support ML computations/tasks, thereby alleviating
the load on the device’s built-in battery. By offloading ML compu-
tations to the PIM architecture, the framework reduces the reliance
on the device’s internal battery power, optimizing the use of har-
vested kinetic energy and extending battery life. Furthermore, PIM
architecture facilitates seamless integration of harvested kinetic
energy, ensuring efficient ML computations with minimal energy
consumption. This integrated approach presents a compelling solu-
tion for energy management in IoT and edge-based applications, as
evidenced by experiments and analysis showing significant reduc-
tions in overall energy usage. We evaluated the proposed Energy
Harvesting-assisted PIM architecture on various CNN architectures,
such as LeNet, AlexNet, ResNet -18, -34, -50.
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1 INTRODUCTION

The rapid expansion of Internet of Things (IoT) and edge devices has
led to a surge in interconnected devices generating vast amounts
of data [13]. This data can either be processed on the device itself
or sent to the cloud or a data center for analysis [22], but data
transmission incurs significant power and communication over-
heads. On-device processing is beneficial but requires substantial
power and resources, posing challenges due to battery limitations
in conventional processing architectures [16]. These state-of-the-
art computational devices are limited by on-chip memory, which
makes them inefficient when processing large amounts of data. The
inefficiency comes from the data movement of the large amounts
of data between the main memory and the processing cores.

Recent research has increasingly focused on ‘non-von Neumann’
computing architectures [11] aiming to bridge the gap between the
processor and the memory performance. Processing in memory
(PIM) is a branch of non-von Neumann architectures where pro-
cessing elements are integrated onto the memory chip itself. This
architecture is gaining traction in real-time application domains,
particularly those utilizing Convolutional and the Deep Neural
Network (CNNs & DNNs) due to their ability to execute massively
parallel processing with minimal latency and energy consumption.

Several recent studies have demonstrated the superior perfor-
mance of PIM architectures over GPU and CPU designs for training
deep neural networks and combinational optimization problems,
especially in terms of throughput and energy efficiency [4]. While
traditional PIM architectures like bitline-wise architecture [10] and
analog crossbar array architecture [7, 9] have been considered as
better alternatives to conventional computing hardware for han-
dling the heavy computational load of DNNS, they often suffer from
complexity and overhead associated with digital-to-analog (DAC)
and analog-to-digital (ADC) conversions. In contrast, the recently
developed Look-up-table (LUT) based PIMs have emerged as more
flexible, offering superior energy efficiency for comparable perfor-
mance levels [4], as seen in architectures like LAcc [8] and pPIM
[1, 25]. This characteristic makes the LUT-based PIM architecture
particularly suitable for implementing different operations required
by DL applications such as linear algebraic operations, activation,
and pooling.

To further enhance energy efficiency, in this work, we introduce
energy harvesting, particularly kinetic energy harvesting (KEH)
[17, 19] as a suitable solution for these devices. KEH leverages
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vibrations and mechanical disturbances experienced by the compu-
tational devices to generate electrical energy [19]. Optimizing ML
architectures for energy efliciency without sacrificing performance
is thus crucial [21].

In the context of energy harvesting, PIM architecture efficiently
uses harvested energy for computational tasks, minimizing data
movement and reducing energy consumption associated with mem-
ory access. PIM architecture’s parallel processing capability accel-
erates computations while consuming less energy compared to
traditional architectures. It enables fine-grained control over mem-
ory operations, reducing computational complexity and improving
power efficiency. PIM architecture’s adaptability to varying energy
levels allows for dynamic task scheduling, ensuring efficient com-
putation during periods of low energy availability. By offloading
tasks to PIM architecture, reliance on the device’s primary power
source can be reduced, maximizing the use of harvested energy.

Our work integrates an Energy Harvesting-assisted intermittent
machine learning on-device, enhanced by Processing-In-Memory
(PIM) architecture. This approach efficiently utilizes harvested ki-
netic energy, minimizing data movement between processor and
memory. PIM architecture’s parallel processing capability acceler-
ates computation tasks, reduces energy consumption, and optimizes
power footprint. By adapting computation to varying energy levels,
PIM architecture extends the lifespan of the device and enables
sustainable operation in resource-constrained environments.

Key aspects of the paper include:

o Energy Harvesting-assisted intermittent computation for
efficient machine learning.

e Leveraging PIM architecture’s in-memory computation tech-
niques enhances energy efficiency and facilitates energy
harvesting in IoT and edge devices.

e We evaluate the proposed Energy Harvesting-assisted PIM
architecture on various CNN architectures, including LeNet,
AlexNet, ResNet-18, -34, and -50, for inference applications.

By integrating these techniques, our framework offers a sustain-
able solution that utilizes harvested kinetic energy and enhances
performance for on-device ML tasks on resource-constrained IoT
and edge devices. By executing computations within memory, it
reduces energy consumption associated with data movement. This
capability also enables efficient utilization of harvested energy, pro-
longing device lifespan and supporting sustainable operation in
resource-constrained environments.

2 RELATED WORK

Among multiple energy harvesting sources, kinetic energy har-
vesting (KEH) [17, 19] is considered relatively apt and efficient for
edge and IoT devices, as these devices undergo vibrations, motion,
or mechanical disturbances due to different factors such as device
movement and other physical activities, which offers an intriguing
opportunity to harvest the energy [19]. By capturing and convert-
ing ambient kinetic energy into usable electrical energy, it becomes
possible to achieve self-sustainability and overcome the limitations
of On-device battery sources.

On-device machine learning in embedded systems is a rapidly
growing research area [6, 23]. IoT and edge devices face challenges
due to limited memory and compute resources, making it difficult
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to implement Deep Neural Network (DNN) algorithms efficiently
[22]. Even small DNN models like LeNet can take several minutes to
execute due to millions of operations [12], highlighting the need for
optimized algorithms without compromising accuracy or runtime
performance [27]. These devices often rely on harvested energy,
but power failures are frequent due to quickly depleting energy lev-
els. Existing intermittent computing approaches, such as CapBand
[26] and [15], focus on on-device inference using offline-trained
classifiers. However, they lack efficient energy utilization strategies
before powering IoT/Edge devices. To address these challenges, we
propose an Energy Harvesting-assisted ultra-low-power processing-
in-memory accelerator framework. This framework considers the
dynamics of machine learning tasks, enhancing energy and learn-
ing efficiency systematically, and ensuring seamless operation and
resource management on IoT and edge devices.

Processing-in-Memory (PIM)

For IoT and edge applications, hardware-based ML accelerators
are favored for implementing ML/AI tasks due to their ability to
optimize latency and throughput more effectively than software-
based solutions. ML algorithms such as CNNs & DNNs typically re-
quire high-end processing support from hardware platforms. While
Field-Programmable Gate Arrays (FPGAs) are commonly used for
low-end real-time image processing tasks in parallel, their limited
resources in terms of area, memory, and processing capabilities re-
strict their performance in advanced ML applications, particularly
in complex and large-scale Al algorithms required for IoT appli-
cations. These applications demand ultra-low latency and high
accuracy, which pose challenges for low-cost FPGA hardware ac-
celerators.

The PIM architecture is emerging as a promising platform for
implementing advanced ML algorithms, offering an alternative
to traditional von Neumann computing systems. By performing
computational tasks within a computational memory unit, PIMs
address the ‘memory wall’ bottleneck inherent in traditional com-
puting hardware, enabling massively parallel and ultra-low latency
operations. While PIM devices typically excel in performing sim-
pler operations[10] with lower data precision, such as binarized or
ternarized weights, they demonstrate superior performance and
efficiency compared to traditional computing devices.

Recent advancements in PIM architecture explore innovative
approaches like Look-Up-Table (LUT) based processing for CNN
acceleration, exemplified by architectures like LAcc[8]. These ar-
chitectures either repurpose memory cells to store pre-calculated
outputs of high-precision matrix multiplications or support com-
plete CNN inference within the DRAM chip through hierarchi-
cal LUT-based processing architecture. Notably, architectures like
pPIM [1, 25] achieve even higher throughput, latency, and energy
efficiency compared to conventional PIM architectures.

The popularity of PIM architecture is growing, particularly in
real-time application domains. These PIM architectures are capa-
ble of efficiently executing matrix-vector multiplication (MVM)
operations, essential across various fields [11] including signal pro-
cessing, machine learning [3], deep learning [2], stochastic comput-
ing, image recognition, object recognition [1], and cryptography
[24]. However, to date, the application of PIM in energy harvesting
contexts remains unexplored.
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Figure 1: Hierarchical representation of the PIM Architecture showing (a) the distribution of clusters in a DRAM bank, (b) the
cluster architecture, (c) the router micro-architecture, and (d) the LUT-core design

3 PROPOSED FRAMEWORK

3.1 Harvesting Piezoelectric Kinetic Energy

Piezoelectric kinetic energy harvesting (KEH) involves creating a
device that captures mechanical motion or vibrations and converts
them into high-frequency AC electrical signals using piezoelectric
material. These signals are then rectified into DC using a diode
bridge circuit and stored in a supercapacitor. This stored energy can
be used to power electronic devices, reducing the need for external
power sources. Efficient power management techniques optimize
energy distribution and usage, making this technology valuable for
self-powered IoT/Edge applications, enhancing energy efficiency,
and reducing the built-in battery load.

Our design and implementation of Kinetic Energy Harvesting
(KEH) are depicted in Figure 1. The prototype comprises two main
parts: the Energy Harvesting section and the Load. For the Energy
Harvesting component, we chose two PEH bending transducers
from MIDE Systems as our PEH transducers. These transducers are
lightweight at 10.4 grams each, with dimensions of 76.2 x 31.75 x
2.28 mm?>. As illustrated in Figure 1, the two PEH transducers are
affixed to capture energy from vibrational motions.

The output pins of the PEH transducers connect to an energy
harvesting circuit, specifically the LTC3588-1 from Linear Technol-
ogy. The LTC3588-1 incorporates a low power-loss bridge rectifier
to rectify the AC voltage output from the PEH transducer. Addi-
tionally, it features a high-efficiency buck converter that transfers
energy stored in the capacitor into stable DC power for the load.
We opted for two electrolytic capacitors with a capacitance of 470
UF and a maximum voltage rating of 25V to store the generated
energy from the transducers.

When the capacitor voltage surpasses the under-voltage lockout
rising threshold of the buck converter (set at 4V), the buck converter
activates to discharge the stored energy. Conversely, if the capacitor
voltage falls below the lockout falling threshold (set at 3.08V), the
buck converter deactivates, allowing the capacitor to accumulate
harvested energy.

3.2 The PIM Architecture

This work employs a PIM framework tailored to facilitate the com-
putationally intensive tasks essential for neural network models.
Specifically designed to for integration into Dual In-line Memory
Module (DIMM) chips, which can be seamlessly integrated into con-
nected on-edge devices such as a vehicle’s on-board unit, this PIM
architecture is ideal for IoT/edge devices with limited processing
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capabilities. The hierarchical representation of the PIM architecture
is outlined in Figure 1, encompasing (a) the arrangement of clusters
within a DRAM bank, (b) the cluster architecture, (c) the router
microarchitecture, and (d) the LUT-core design, respectively.

3.2.1 Core Architecture. To ensure functional flexibility, the PIM
core employs an LUT-based design instead of a predefined logic cir-
cuit. This LUT-based approach enables the execution of in-memory
arithmetic operations such as addition, multiplication, substitu-
tion, and comparison operations with significantly reduced delay
compared to bitwise computations. This capability allows for the
implementation of various ML algorithms using a combination of
these operations.

Figure 1(d) provides a detailed overview of the architecture of a
single LUT core. Within the cluster, LUT cores consist of an 8-bit
256:1 multiplexer and eight 256-bit latch arrays. The outputs of
specific 8-bit operations are precomputed and stored in the latches
as eight 256-bit function words. These latches can access new func-
tion words from the bit lines of the DRAM subarrays. Each LUT
can generate a 4-bit data output for two input data operands with
a width of 4 bits, as depicted by the A and B registers in Figure
1(d). These registers collectively control the select pins of the multi-
plexers, allowing them to retrieve specific 8-bit data from the eight
latches representing the operation’s output.

3.2.2  Cluster Architecture. The PIM cluster serves as a processing
element (PE) that consolidates the operations executed by the LUT
core to carry out specific tasks, like convolution operations in a
neural network. Comprising nine PIM cores arranged in a 3x3
configuration, the PIM cluster is embedded within memory data
to execute in-memory operations. The PIM LUT cores inside the
cluster handle various logic and arithmetic operations. Connectivity
among all cores within the cluster is facilitated by a router. This
router facilitates data access from any core at any given time during
execution, enabling the execution of tasks such as multiplication
and accumulation, pooling, and convolution operations performed
within a neural network.

3.2.3 Router Architecture. A routing mechanism links all nine LUT
cores within a cluster, enabling direct and simultaneous commu-
nication among them. The router connects all components of the
cluster and read/write ports, facilitating parallel] communication.
This capability allows the router to access any data at any stage of
implementation.

3.3 Operations supported by the proposed PIM
architecture

Each PE is capable of performing complex operations such as 8-bit
MAC, 8-bit pooling, 16-bit addition. Each LUT core inside a PE can
operate in parallel and perform any logic/arithmetic operation such
as addition, multiplication, shifting, incrementing, decrementing,
bitwise logic, inversion, counting, comparison, substitution on a
pair of 4-bit operands or a single 8-bit operand. The cores are fully
programmable which makes it possible to program them individu-
ally to perform a wide range of desired operations. The outputs of
the LUT cores can be recirculated/redistributed among themselves
in parallel via the router. Therefore, by orchestrating a scheme of
multi-step operations across the nine heterogeneously programmed
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LUT cores inside a PE, it is possible to support complex operations
such as 8-bit MAC. To summarize, each Cluster is capable of:

(1) Supporting complex operations which are amalgamations
of a number of simpler logic/arithmetic operations,

(2) Scaling up the precision of an operation by adopting a multi-
step operation scheme, aided by the router.
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Figure 2: (a) Core Operation Mapping Scheme and (b) Step-wise
execution model for 8-bit Fixed point MAC inside a PIM PE. The left
and right arrows coming out of each core represent the most and
least significant 4-bit of the outputs of the cores respectively. Green
texts represent data from the prior round of operation. The clock-
steps of the operation are designated by the values of ‘t’ while the
letters I, J, K, L, M, N & P respectively represent the corresponding
stages of the partial addition operation. During each clock step, the
numeric tags accompanying the letters designate multiple parallel

operations across different cores.
These features make the proposed architecture a very flexible

and high-performance in-memory processing architecture. Con-
ventionally, A MAC is performed via consecutive operations of
Multiplication and then Addition. However, the proposed PIM ar-
chitecture partially parallelizes these two operations and thereby
combines these two into one continuous operation that takes fewer
clock cycles to execute. Alongside minimizing the latency, this also
maximizes resource utilization in the Cluster. Figure 2 shows the
programming scheme of the cores in the PE as well as the step-wise
operation scheme for the 8-bit fixed-point MAC operation. The LUT
cores require performing only two different types of operations:
4-bit multiplications and 4-bit additions. Four out of nine LUT cores
inside a PE are programmed as multipliers and five are programmed
as adders.

Alongside the 8-bit MAC, a PIM PE can also support a 4-bit MAC
operation which requires fewer steps of operations, with the aid
of only one multiplier and one adder core. Alongside, it can also
support other operations such as max-pooling and ReLU Activation
with either 8-bit or 4-bit fixed-point precision. For example, the
8-bit ReLU activation operation can be performed by implementing
an 8-bit substitution table on a single LUT core that produces zero
output values in response to negative inputs.
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4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

The proposed framework utilizes an S230-J1FR-1808XB two-layered
piezoelectric bending transducer from MIDE technology with a
block tip mass of 24.62g + 0.5% which has a resonance frequency of
25 Hz. Table 1 represnts the kinetic energy captured with respect
to time. All signals are sampled at a frequency of 100 Hz.

Table 1: Kinetic Energy Harvesting w.r.t. Time

Time (ms) | Power (mW)
10 0.022
20 0.027
50 0.034

100 0.063
200 0.105
250 0.117
400 0.145
500 0.162
1000 0.342
2000 0.72
3500 1.42
5000 1.9

To evaluate the performance of the proposed framework, we con-
ducted a case study focusing on the gesture recognition dataset. The
gesture recognition dataset was created by collecting the readings
from an IMU sensor built on the Arduino Nano board. We captured
IMU sensor reading for the following gestures (up, down, right, left,
twist, punch, and flex) and the dataset comprised of nearly 70K
samples. The gesture recognition data was trained and fine-tuned
on Tensorflow Lite model (MobileNet [14], LeNet-5, AlexNet and
ResNet [18]). These models were deployed on the Arduino board
for evaluation of the classification tasks.

4.2 PIM Core and Cluster Characteristics

In this section, we evaluate the PIM in terms of performance, energy
consumption, and area for DL applications. The delay & power
for the PIM core and cluster are obtained from Synopsys Design
Compiler using 28nm standard cell libraries from TSMC and are
presented in Table 2. The delay of a single 8-bit MAC performed
within a cluster involves computations inside the PIM cores as well
as communication among the cores. Power consumption of the
cluster is that of all the cores and the core-to-core communication.
The power and delay for intra and inter subarray data transfers are
obtained from [5] and [20]. These metrics are used in the system-
level performance evaluation of the PIM in the next subsections.

Table 2: Characteristics of Proposed PIM components in 28

nm node
Component Delay (ns) Power (mW) Active Area
(pm®)
PIM Caore 0.8 27 4196.64
PIM Cluster (MAC Operation) 6.4 8.2-11 37769.81
Intra-Subarray ~Communication | 63.0 0.028 N/A
[20]* pJ/comm
Inter-Subarray Communication [5] | 1485/ 1965/ | 0.0% 012/ | N/A
for subarrays 1/7/15 hops away* 260.5 0.17 pJ/comm

*Represented in 28nm technology node
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Figure 3: Comparison of Top-5 accuracies of LeNet, AlexNet,
ResNet-18, -34 and -50 on MNIST, CIFAR-10 datasets for 16-
bit, 8-bit data precision.
4.3 Inference Accuracy Comparison

We assess our proposed architecture across a range of cutting-edge
deep neural networks, including LeNet, AlexNet, and ResNet-18, -34,
and -50. These sophisticated deep learning models are deployed on
our proposed hardware accelerator using both the MNIST dataset
(with dimensions of 28x28x1) and the CIFAR-10 dataset (with dimen-
sions of 32x32x3). Each dataset comprises approximately 60,000
training and 10,000 testing images distributed across 10 classes,
with the objective being the accurate classification of input images.

In Figure 3, we present comparison plots of Top-5 accuracy
for both 16-bit floating-point (FP) and 8-bit fixed-point data preci-
sion across both datasets. Notably, we observe that the accuracies
achieved across the evaluated networks are highly similar for both
16-bit and 8-bit precision data (for both inputs and weights). For
instance, the Top-1 accuracy achieved on the MNIST dataset with
AlexNet implementation is 98.89% and 99.43% for 16-bit and 8-bit
precision, respectively. Conversely, on the CIFAR-10 dataset, the
Top-1 accuracy with AlexNet implementation is 83.5% and 82% for
16-bit and 8-bit precision, respectively. Additionally, we note that
the accuracies of LeNet, AlexNet, ResNet-18, -34, and -50 on the
CIFAR-10 dataset are noticeably lower compared to the MNIST
dataset, as illustrated in Figure 3.

4.4 Comparative Performance Evaluation on
PIM

In this section, we conduct a comparative analysis focusing on the
throughput and energy efficiency of PIM for two precision modes
across LeNet, AlexNet, ResNet-18, -34, and -50 algorithms. Energy
efficiency is quantified as the number of frames processed within
the processor per unit of energy (measured in Joules). Figures 4(a)
and 4(b) depict comparisons of throughput (measured in Frames
per Second) and energy efficiency (measured in Frames per Joule),
for 4 bit, 8 bit (weights and input) precision modes respectively.

Considering the observed low power consumption and area ef-
ficiency of PIM, we opt to utilize a PIM bank comprising 256 PIM
clusters per DRAM chip within a complete rank of DRAM chips for
a DIMM configuration. Therefore, for evaluation purposes in this
section, we focus on a single PIM implementation for a DIMM. In
figure 4 (a),(b) it is evident that the lowest performance and energy
efficiency across all CNN algorithms are achieved with 8-bit fixed-
point precision mode. This precision mode necessitates operand
decomposition into 4-bit segments before distribution across multi-
ple cores (i.e., all nine cores in a cluster for MAC operation), thereby
offering the least scope for parallelization.
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Figure 4: Comparison of (a) Throughput in Frames/s and (b)
Energy efficiency in Frames/Joule for AlexNet, ResNet -18,
-34, -50 inference on PIM

Conversely, the 4-bit inference mode exhibits higher throughput
and superior energy efficiency due to its smaller aggregated bit-
width of operand pairs, leading to reduced latency and increased
parallelization. This mode inherently offers a higher degree of par-
allelization, performing all operations in fewer steps. Additionally,
it’s noteworthy that the performance and energy efficiency of PIM
are closely related to the computational load imposed by different
CNN algorithms.

5 CONCLUSION

In this paper, we proposed and evaluated a novel framework, “En-
ergy Harvesting-assisted PIM Architecture” tailored for IoT/Edge
applications. By leveraging kinetic energy from piezoelectric har-
vesters, we achieved Energy-aware intermittent ML computation,
enhancing the sustainability of ML applications in resource con-
strained environments. Furthermore, our framework integrates
energy harvesting, voltage monitoring, intermittent computing,
and ML seamlessly, ensuring efficient utilization of harvested en-
ergy and enhancing on-device inference efficiency through PIM
architecture without compromising performance. Additionally, we
observed accelerated testing latency without compromising clas-
sification performance, demonstrating the effectiveness of our ap-
proach in optimizing energy usage and enhancing overall system
efficiency. We also evaluated the Energy Harvesting-assisted PIM ar-
chitecture on various CNN architectures, including LeNet, AlexNet,
ResNet-18, -34, and -50, for inference applications.
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