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Abstract

Fori : Z — X aclosed immersion of smooth varieties, we study how the V -filtration
along Z and the Hodge filtration on a mixed Hodge module M on X interact with each
other. We also give a formula for the functors i*, i in terms of this V-filtration. As
applications, we obtain results on the Hodge filtration of monodromic mixed Hodge
modules and we give a Hodge theoretic proof of Skoda’s theorem on multiplier ideals.
Finally, we use the results to study the Fourier—Laplace transform of a monodromic
mixed Hodge module.

Mathematics Subject Classification 14F10 - 14B05 - 32525

1 Introduction
1.1 Motivation

For X a smooth complex algebraic variety, Saito’s theory of mixed Hodge modules on
X [15, 17] provides a vast generalization of the theory of variations of Hodge structure
on X (also see the survey [20]).

The main objects of study are holonomic Dy-modules equipped with a good fil-
tration, called the Hodge filtration. Very roughly, mixed Hodge modules are defined
inductively by forcing their restriction to hypersurfaces to be mixed Hodge modules.
This restriction is defined using the V -filtration of Kashiwara and Malgrange (see [9,
12] and Sect. 2.2 below). To have a satisfactory theory, then, it is important to require
some sort of compatibility between the Hodge filtration F and the V-filtration (see
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[15, Section 3.2] or [20, Section 11]). For Z € X a smooth subvariety of higher codi-
mension, there is still a notion of V-filtration along Z for holonomic Dx-modules.
One of our main theorems proves an analogous compatibility condition between the
Hodge filtration of a filtered Dy-module underlying a mixed Hodge module and this
V filtration along Z.

If one wants to restrict mixed Hodge modules to a smooth subvariety Z C X of
higher codimension, this is done by writing Z locally as an intersection of smooth
hypersurfaces, and then step-by-step restricting from one hypersurface to the next.
Another main theorem gives a way to restrict mixed Hodge modules on X to mixed
Hodge modules on Z in a single step (see Theorem 1.2), using the V -filtration along
Z.

1.2 Main results

Let f = (f1,--., fr) : X = A’ be a smooth morphism between smooth algebraic
varieties over C, where A" is the affine r-space with coordinates (¢, ..., ). Let Z C
X be the fiber over the origin. Assume there exist global vector fields 91, 9, ..., 0y
on X dual to the one-forms dfi,df>,...,df,. Let Dx be the sheaf of differential
operators on X.

When r = 1, we have a smooth function ¢ and a global vector field 9; such that
[0, t] = 1. We have already mentioned the V -filtration along the hypersurface defined
by ¢ on a holonomic D-module M. Slightly more precisely (see Sect.2.2 for a more
detailed description), this is a decreasing filtration V* M, indexed by Q, such that

(@) tVEM C VeI M, with equality if @ > 0,
(b) VM C VelMm,
(c) td; — o + 1is nilpotent on grjy M = V¢ M/V=¥ M.

In this case, the graded quotients gr{, M are holonomic Dz modules that are used
to define nearby cycles and vanishing cycles of M. If a filtered Dx-module (M, F)
underlies a mixed Hodge module, then it is quasi-unipotent and regular along a hyper-
surface ([15, 3.2] and see also [20, 11.4]). This is a compatibility condition between
the Hodge filtration F and the V -filtration. By definition, it requires

(a) t: F,V*M — F,V** M is an isomorphism for o > 0,
(b) 9, : Fpgr‘{‘,"'l/\/l — Fpy1gr5, M is an isomorphism for & < 0.

In fact, all filtered Dx-modules underlying a mixed Hodge module on X satisfy
this property for any locally defined function g. Also by the theory of Hodge modules,
we have two distinguished triangles in the derived category of mixed Hodge modules
onZ

FMI-1] = grb M D g M - it M )

and
i'M— g M5 grh M — i M1, 2)

wherei : Z — X isthe closed immersion. This relates the V -filtration to the restriction
functors; see the nice survey by Schnell [20].
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When r > 2, gr“)‘//\/l need not even be coherent as a Dz-module in general (see
Sect.2.3). This is a major difference of the theory in higher codimension. In this paper,
we generalize the above properties concerning the V -filtration along hypersurfaces on
mixed Hodge modules to higher codimension. The statement is formulated using
certain Koszul-type complexes. For any left filtered regular holonomic and quasi-
unipotent Dx-module M and rational number «, define filtered complexes

A*(M) = {(V“M, FI=r]) &> @V IM, Fl=r]) 5 -+ 5 (V7 M, F[—r])]

i=1

placed in degrees 0, 1, ..., r,

BY(M) = {(gr%M, FI=r]) > @@ M, Fl—r]) 5 - 5 (@ M, F[—r])}

i=1

as the quotient A*(M)/A~*(M) and

CU(M) = [(gr‘;”/vl, Py S P M -1 S B @M, F[—r])]

i=1

in degrees —r, —r + 1, ..., 0, where V°* M is the V-filtration along Z, and F[i]; =
Fr_;.

The first main result of this paper is a generalization to higher codimension of Saito’s
condition of a D-module being “quasi-unipotent and regular” along a hypersurface.

Theorem 1.1 If the filtered Dx-module (M, F) underlies a mixed Hodge module,
then the Koszul-like complexes AX (M) (resp. CX(M)) are filtered acyclic for y > 0
(resp. x < 0).

Our next theorem is a generalization of the distinguished triangles (1) and (2). To
simplify the notation, denote B(M) := B%(M) and C(M) := CO(M). We give a
comparison between B(M) (resp. C(M)) and i'M (resp. i* M) if M underlies a
mixed Hodge module. Here i : Z < X is the closed embedding.

Theorem 1.2 Let M = (M, F, L, K) be a mixed Hodge module where F is the Hodge
filtration, L is the weight filtration and IC is the Q-structure of the Dx-module M i.e.
DRxM =~ K ®q C. Let 0 = Y _;_, t;0; be the Euler vector field. Then we have:

(a) the complexes B(M) and C (M) together with the filtrations W induced by the
relative monodromy filtration W = W@ —a +r, gr‘{‘, L M) on gty M are mixed
Hodge complexes on Z;

(b) the complex B(M) (resp. C(M)) is isomorphic to (i‘' M, F) (resp. (i* M, F)) in
the derived category of filtered D-modules with Q-structure;

(c) moreover, the isomorphisms in (b) are compatible with weight filtration and induce
isomorphism on the cohomologies:

g H'BM) ~ grll MY M and g HTPC(M) ~ gl 14 M
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as polarizable Hodge modules for € > 0.

Part of the proof of (b) is to show that B(M) and C (M) have Q-structure, and
then to relate the Q-structure on these complexes with those defined by Saito’s theory
on i*M and i* M, respectively.

See Sect. 6.1 and [18] for the definition of mixed Hodge complexes. The existence
of the relative monodromy filtration W = W (0 — a +r, gr{, L, M) on gr{, M can be
achieved easily using the deformation to the normal bundle (see Lemma 2.6).

Forgetting the weight filtration, the two distinguished triangles (1) and (2) are
recovered by Theorem 1.2(a). The reason why we do not get the distinguished triangles
in the derived category of mixed Hodge modules is that we directly use the monodromy
filtrations relative to gr(‘), (LM) on gr(‘),/\/l without the shift in Saito’s definition of
vanishing cycles (see Sect.2.5). For further motivation and discussion, see Sect.2.3.

Theorem 1.2 simplifies the calculation of the restriction functors. For example,
the usual approach to computation of i* uses either the Koszul complex induced by
the iterated V -filtrations along hypersurfaces or the Koszul complex induced by the
localization along hypersurfaces. Theorem 1.2 says that we can bypass the localization
or the iterated V-filtration by a one-step calculation on the V -filtration along Z.

As a very special case of Theorem 1.1, we give a Hodge-theoretic proof of Skoda’s
famous theorem concerning multiplier ideals. For the definition of multiplier ideals
and their properties (as well as a proof of Skoda’s theorem), see [11, Ch. 9]. See [2]
for the relation between the multiplier ideals and the V -filtration.

Corollary 1.3 (Skoda) Let a be a coherent ideal of Ox generated by r elements and
J(X, a©) be the multiplier ideal of exponent c. Then we have

J(X, a¢) = aJ(X,a"h

foranyc >r.

One of our main tools in this paper is the process of “specialization”, which is
described in [17, Section 2.30] and also used in [2]. From any mixed Hodge module
M on X, we obtain a monodromic mixed Hodge module Sp(M) on Tz X, the normal
bundle of Z inside X.

Our main application of Theorem 1.2 is to the Fourier transform of monodromic
mixed Hodge modules. To define a monodromic D-module, let E — X be a vector
bundle of rank r. A Dg-module M is monodromic if, for any local trivialization
E =X x A", M decomposes into generalized eigenspaces

M =P M*, 3)

xeC

where 0 — x +r =Y _._, d;;zi — x is nilpotent on MX. We say that a mixed Hodge
module M on E is monodromic if the underlying D-module M is a monodromic Dg-
module. We denote the abelian category of monodromic mixed Hodge modules by
MHM,,,,, (E). If M underlies a mixed Hodge module, then in fact the only non-zero
summands in the decomposition 3 are for x € Q.
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Let EV be the dual bundle. The Fourier-Laplace transform of any Dg-module is a
DEgv-module, denoted FL(M) (or, if we want to stress that we are on E, it is denoted
FLg(M)), where, if E = X x A” and EY = X x A’ are local trivializations, with
coordinates 71, ...,z and wy, ..., w, on the respective A" factors, then FL(M) has
the same underlying Dy -module structure as M, but

wim = —0;m, Oy,m = z;m.

This functor preserves the property of being monodromic, however, it does not have
a lift to the category of mixed Hodge modules. In fact, even if M has regular singu-
larities, it is possible for FL(M) to have irregular singularities. Thankfully, Brylinski
[1] showed that if M is monodromic with regular singularities, then FL(M) also has
regular singularities.

In fact, one can express the Fourier transform for monodromic modules as a
composition of functors coming from geometry (called the Fourier—Sato transform
or Monodromic Fourier transform). Let £ = E xy EY, with the regular function
g : £ — A! given by the natural evaluation map. Locally, with coordinates z1, . . ., z,
and wi, ..., w, as above, g = ) ._, z;w;. Consider the projection p : £ - E and
the zero-section o : EY — €.

Let g = g1 @ Vg, 21 : MHM(E X AlYy - MHM(&) be the total nearby cycles
functor, and ¢y = ¢, 1 © VYg 21 : MHM(E x Al) - MHM(E) be the total vanishing
cycles functor. For their definition, see Sect.2.8.

Our main theorem concerning the Fourier transform is the following:

Theorem 1.4 Let M be the filtered Dg-module underlying a monodromic mixed
Hodge module M on E. Then the Dgv-module underlying the mixed Hodge mod-
ule

HO0* g (p' (M)[—r]) € MHM(E")

is isomorphic to FL(M). We denote this composition of functors by FL(M).
Moreover, for x € Q, we have

FPFL(M)r_X = Fp_[x]./\/lx.
Finally, the weight filtration is given by
WiFLIM)* 2 = FL(Wigr g g MY

Here FLLIM)*Z = @, _; FLIM)** for any A € [0, 1).

The reason why we need Theorem 1.2 in the proof of this theorem is that the last
functor H%o* is most easily understood in the context of that theorem. This allows us
to understand both F, and W, on FL(M). The last statement was already shown for
a special class of monodromic mixed Hodge modules in [13, Prop. 4.12], where the
authors of loc. cit. use the definition of Fourier—Sato transform as in [10], see Remark
7.4 below for a comparison.
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In [13], they define the monodromic Fourier transform as a functor from
D’ (MHM(E)) to D2 (MHM(E")), where D% () is the full subcategory of
D" (=) of objects with monodromic cohomology modules. Then, using the fact that
this computes FL (which is an exact functor), they conclude that the functor descends
to one MHM,;,5, (E) — MHM,,,5,, (EY). In the same way, we can extend the functor
FL which we have defined to the entire mondromic derived category, giving

FL = o*¢gp'[—r]: D,,(MHM(E)) — DL (MHM(E")).

Not only does Theorem 1.4 follow from Theorem 1.2, but it also recasts Theorem
1.1 in a more symmetric way. Indeed, it is not hard to see that there are equal-
ities BX(M) = BX(Sp(M)), CX(M) = CX(Sp(M)). Similarly, it is not hard
to see that (at least, ignoring the filtration) CX (FL(Sp(M)) = B~X(Sp(M)) and
BX(FL(Sp(M)) = C~*(Sp(M)). Using the theorem, one can check that, actually,
these equalities do hold at the filtered level. Hence, filtered acyclicity of the B® complex
follows from filtered acyclicity of the C* complex, and conversely.

Note that the Hodge filtration is exactly the same as that which is obtained from
[19, Prop. 3.25]. As remarked in [19, Rem. 3.24], the Fourier—Laplace transform can
be endowed with many different mixed Hodge module structures. So the utility of this
theorem is to make explicit the Hodge and weight filtrations for some mixed Hodge
module structure on FL(M).

In order to get the information about the Hodge filtration for FL(M), it is important
to know that the Hodge filtration for monodromic mixed Hodge modules decomposes
along the eigenspace decomposition. For the case r = 1, this was shown in [19, Thm
2.2]. We use this as a base case for induction to show

Theorem 1.5 Let (M, F, W) be the bifiltered D-module underlying a monodromic
mixed Hodge module on E. Then

FoM = P FuM”,
x€Q

where FeMX = MX N FoM.

Moreover, the weight filtration W, M is its own relative monodromy filtration along
the nilpotent operator N = @XEQ(G — X +71), where 0 =Y\, z;0;,. In particular,
if M is pure, then the monodromy filtration is trivial, so for all x € Q, we have

MX =ker (0 — x +r).
Let FL : MHM(E) — MHM(EV) be the inverse Fourier transform. Up to a Tate
twist, it is simply FL. However, due to conventions in the definition of the filtrations
for mixed Hodge modules, we have to Tate twist the part which is not unipotent:

FL(M) := HO0*pg 1 p' (M (=r))[—r1 ® a*HO0*Yrg 21 p' (M (1 — r))[—r].

Here (£) denotes a Tate twist by £, ¥g 21 = ¢g 21 = Djc0.1) Vgrranda : E —
E is the antipodal map.

) Birkhauser



On V-filtration, Hodge filtration and Fourier transform Page70f76 50

Concerning this transformation, we have the following Fourier inversion formula

Corollary 1.6 For any monodromic mixed Hodge module M on E, we have an isomor-
phism

a*Flgv (FLE(M)) = M

The presence of the antipodal map is forced by the D-module structure, but does
not affect the Hodge or weight filtrations.

Finally, this inverse Fourier transform also comes up when we try to understand
how duality behaves with respect to FL. Specifically, we have the following:

Theorem 1.7 We have an isomorphism
Dgv o FLg Z FLgv o Dg : MHM,,0n (E) = MHM, 00 (EY).

In this way, we could have defined FL=D gv o FL o Dg. Note that the Tate twists
which occur on ¢, -1 but do not happen for ¢, ; are completely analogous to the
behavior of duality with respect to nearby and vanishing cycles, as explained in [17,
Prop. 2.6] and [16].

We also use our results in the work with Mircea Mustatd and Sebastidn Olano to
study local cohomology, higher Du Bois and higher rational singularities [3, 4].

1.3 Strategy of the proof

To prove Theorem 1.1, we first treat the case when (M, F,) underlies a polarizable
pure Hodge module. Using the fact that pure Hodge modules decompose by strict
support, we have to consider two situations:

(a) the support of M is contained in Z;
(b) there is no Dyx-submodule of M whose support is contained in Z.

The case (a) directly follows from the definition. For case (b), we pass to the blow-up
and reduce the problem to the codimension one case. Let 7 : X — X be the blow-up
of Z and E be the exceptional divisor. Let (/\7, F.ﬂ) be the minimal extension of
(M, FeM)|x\z along E, which also underlies a pure Hodge module by the structure
theorem of Hodge modules [20]. By the direct image theorem of Hodge modules,
(M, Fe M) is a direct summand of 4 (/\/l F, M) Therefore, it suffices to prove the
statement for 4. (M, F,M). Then we factor 7 : X — X into the graph embedding
X > X x X and the second projection p : X x X —> X and study the direct
1mages of (./\/l Fy M) under these two morphisms. The graph embedding case has no
homological algebra involved and in the case of the projection, we use the bistrictness
proved by Budur, Mustatd and Saito [2] and Hard Lefschetz [17, 2.14] on the direct
images.
The strategy of proof for the pure case does not work for mixed Hodge modules
because there is no reason that (M, F, M) is a direct summand of 7 (/\/l F, ./\/l)
Instead, we use deformation to the normal bundle to get the compatibility among the
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Hodge filtration, V -filtration and weight filtration. Using the compatibility we reduce
the proof to the pure case.

We also give an alternative proof of Theorem 1.1, using the direct image theorem
for mixed Hodge modules, as well as an explicit computation using a Cech complex.

As for the proof of Theorem 1.2, we first deal with the case when (M, F') underlies
a polarizable Hodge module as we did in the proof of the pure case for Theorem 1.1.
In this case we heavily use the semisimplicity of polarizable pure Hodge modules.
To do the mixed case we need a theorem of Deligne, which roughly states that there
exists a unique functorial splitting of the associated graded of the relative monodromy
filtration. The proof reduces to the pure case by Deligne’s Theorem.

Finally, for the proof of the results concerning the Fourier transform, the main
difficulty lies in computing the V -filtration along the graph embedding of the function
g = Zle ziw;. As an example, if M = Ox|[z] is the structure sheaf on E, then
Oxlz, w] is the structure sheaf on &, and the function g is (quasi)-homogeneous.
Hence, the computation of the V -filtration for such a module is given in [14, Formula
4.2.1] and [22, Lemma 3.3].

1.4 Outline

We first review some basic facts about V-filtration and mixed Hodge modules in
Sect.2. Some topological properties of V-filtrations along subvarieties are derived in
Sect. 3. We give two different proofs of Theorem 1.1 in Sect.4. Some applications of
Theorem 1.1 are derived in Sect. 5. Theorem 1.2 is proved in Sect. 6. We also point out
a proof of Theorem 1.2(b) which does not rely on Theorem 1.2(a); see Remark 6.8.
Finally we study the Fourier transform of monodromic mixed Hodge modules in
Sect. 7.

2 Preliminaries

2.1 Convention and notation

Let X be a smooth complex algebraic variety. We recall that there is an equivalence of
categories between filtered left and right Dy-modules. Given a filtered left Dx-module

(M, F), we denote by (M", F) the corresponding filtered right Dx-module. In fact,
M’ = wx ®py, M, while the filtration on M" is given by

FpyM" = wx ®0y FypM forall peZ,

where n = dim X.
For right Dx-modules it is customary to use the increasing V -filtration. This is
related to the V -filtration on the corresponding left Dy-module by

VoM = wx ®x VM.

) Birkhauser
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To match this convention with the lower indices, for right D-modules, we will
denote the complexes A, B and C from Theorem 1.1 with lower indices, as

Ag(M) = {(VaM, F) 5 @ Vaci M F) 5 - 5 (Vouyr M, F)}

i=1

placed in degrees O, 1, ..., r,

By (M) = {(grgm, F) 5 Pery (M. F) S S (gl M, F)}

i=1

as the quotient A, /A~y and

Ca(M) = [(grg,M, Fir) % @), M Flir—1) 5 o B (@l M, F)]

i=1

in degrees —r, —r + 1, ..., 0.
Moreover, for Z € X a smooth subvariety of the smooth variety X, we denote by
T7X = Specy (@kzo I /71y — Z the normal bundle of Z inside X.

2.2 Kashiwara-Malgrange V-filtrations

We begin with a review of the theory of V-filtrations introduced by Kashiwara and
Malgrange. For more details, see [15, Section 3.1] and [20, Section 9] for the case of
a hypersurface and [2, Section 1.1] for the case of higher codimension.

Let (t1,...,t) : X — A’ be a smooth regular function, with fiber Z over the
origin. We define a Z-indexed filtration on Dy by

VEDy ={P e Dx | P- T}, < I, forall j}.

A Q-indexed filtration V* M is discrete and left-continuous if (), _ g Ve = VA for
all B € Q, and if there exists some £ € Z- o such that the subspace V¥ is constant for
alla € (7, ’"T'H], for any m € Z.

Given a coherent left Dy-module M, a Kashiwara-Malgrange V -filtration on M
along Z (see [9, 12]) is an exhaustive, decreasing Q-indexed filtration which is discrete
and left-continuous such that, if & € VODy is any vector field lifting the identity on

Iz /22 , the filtration must satisfy:
(a) V¥DxVIM C VXthkMforallk e Z, x € Q,
(b) VADy VXM = VXt M forall k € Z=q, x > 0,
(c) Each VXM is coherent over VODy,
(d) The operator 6 — x + r is nilpotent on grjy M = VXM/V>X M.
Itis an easy exercise to see that there can be at most one V -filtration on any coherent
Dyx-module M. We say that a module M which has a Q-indexed V -filtration is Q-
specializable. Any morphism between Q-specializable modules is strict with respect
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to the V -filtration. Moreover, if
O-M->M->M' >0

is a short exact sequence of Dy-modules, and M has a V -filtration, then the induced
filtrations on M’ and M" satisfy the properties of the V-filtration.

If Z C X is a singular variety, defined by f1, ..., f; € Ox(X), thenif I" : X —
X x A’ is the graph embedding along fi, ..., f, the V-filtration along Z of a Dx-
module M is the V-filtration along X x {0} of the D« or-module I' . M.

Example 2.1 (a) Let & be an Ox-coherent Dx-module. Then VXE = I;X_r] €
satisfies the properties of the V -filtration. For example,

0t“m = t*(la| + 0)m,

(b) (Kashiwara’s equivalence) Assume M is supported on Z, so by Kashiwara’s
equivalence (see [8, Section 1.6]), there exists a coherent Dz-module A such that
M =" enr NOf. Then

VIIM =" N

lee] <x

For us, it will also be important to understand the case when (M, F) =i (N, F)
as a filtered D-module. For left D-modules, the pushforward of a filtered module has
filtration defined as

Fpi+(M F)= Z Fp_|a|_r./\/8ta.

aeN”

From this, we see easily that

FpV X (N, F) = Y Fpja—rNOf-

lal=x
This last example leads to an important property of the V-filtration.

Lemma 2.2 Assume ¢ : N'— M is a morphism between two specializable modules,
such that ¢|y : Nly — M|y is an isomorphism, where U = X — Z. Then ¢ :
V>IN = V=OM is an isomorphism.

Proof Let K = ker (), C = coker(p). The assumption implies these are supported

on Z, so by the previous example, V>°K = 0 and V>°C = 0. Hence, taking V>0 of
the long exact sequence

0 K—->N—->M-—C—0,

) Birkhauser
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we get
0=V"'Kk > V*'N-> Vv M- v>Ic=o,

proving the claim. O

One can also speak of a C-indexed Kashiwara-Malgrange filtration. The following
theorem of Kashiwara implies that the Dx-modules we care about always carry such
a filtration. It is built into the theory of mixed Hodge modules that the filtered Dx-
modules underlying them must actually be Q-specializable, not just C-specializable.

Theorem 2.3 [9] Any regular holonomic Dx-module M is C-specializable.

2.3 Normal crossing type

For the codimension one case, it is essentially immediate from the definition that the
maps £ : VIM — VEHIM (resp. 9; : gr‘{‘,HM — gr{, M) are isomorphisms for
all @ # 0. The following example shows that, for codimension larger than one, the
correct generalization of this property should concern Koszul-like complexes in the
H, ..o, b (Tesp. Oy, ...y Op)).

Let M be an algebraic regular holonomic left D>-module of normal crossing type
along the two axes on A2, where D; is the Weyl algebra over A2, For details on normal
crossing type modules, see [17, Section 3]. Let (x, y) be the coordinate system on A2
Define M%# = ker (8, x — o) N ker (dyy — B) for (a, B) € Q2. Because of the
assumption that M is of normal crossing type, we have the identity

@ Mo =
o,peQ?

and each M*# is a finite dimensional vector space over C. Then one can easily check
the V-filtration along the origin is given by

ViM =  m*P,
a+p>k

and gr‘{‘,x gr"s,)_/\/l = M*%P where V, M is the V-filtration along {x = 0} and VyMis
the V-filtration along {y = 0}. Then the double complex

gr@/\/l — gr]{,HM M x Me+1B

ly ly = @ ly ly “)

a+p=k
gIJ:/-HM X grl‘</+2M Ma,ﬁ+l X Mot+1,,3+l

) Birkhauser
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is exact if k # 0 because one of x and y must be bijective in a summand by the
properties of V-filtration in codimension one. If k = 0, the above double complex is
quasi-isomorphic to the total complex of

M0.0 L> MI,O
[ [

MO,] X M],]

which is isomorphic to i 'Z./\/l Since the total complex of the double complex is just
the Koszul complex

2 (Y
grl‘C/./\/l (x,) (gr]‘(;rl./\/l) ) gr]‘(/+2M’

we proved a version of generalization of the properties of V -filtration in codimension
one that the above Koszul complex is isomorphic to i 'Z./\/l when & = 0 and is exact
when k # 0. The similar statement regarding the complex

ENEN 2 ()
grk+2M ey (gr’{,“/\/l) i gry M

is left to the readers.

If (M, L) underlies a mixed Hodge module of normal crossing type where L is
the weight filtration then M*# carries a relative mondromy filtration W = W (3, x +
dyy—a—p, LM‘”’). In fact, we have the relation W = W (0, x —a, W(3yy — B, L))
by [17, 3] since we assume M is of normal crossing type. It follows that, if k = 0,
the result of applying gr" to the complex (4) is quasi-isomorphic to

ngMO’O X , ngMl,O

b b

ngMO,l X s ngMl’l

but the upper-horizontal and left-vertical morphisms are zero by [17, 1]. This is the
motivation for using mixed Hodge complexes in Theorem 1.2.

2.4 Deformation to the normal bundle

This subsection is devoted to studying the specialization construction, which goes
through the deformation to the normal bundle. See for example, Section 2.30 of [17]
and Section 1.3 of [2].

Let Z C X be a smooth subvariety of codimension r defined by the ideal sheaf
Tz < Oy, and consider the variety
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X := Specy <@I}Z ® 1/) )

LeZ

along with the smooth morphism u : X > Al = Spec(C[u]). The fiber u~1(0) is
isomorphic to 7z X, the normal bundle of Z in X, and so we call this a deformation to
the normal bundle. Over the open subset G,, := A! — {0}, the map is isomorphic to
the smooth projection X x G, — Gy,,. We will also consider the smooth morphism
p : X x G, — X of relative dimension 1. Let j : X x G, — X be the open
immersion. It is the complement of the smooth divisor 7z X = u=10).

X xGp=X* s X — Tyx s % — T,x
| Ll NP
G > Al ¢ {0} X+—2Z

For any M € MHM(X), define Sp(M) := ¥, j«(p*(M)[—1]) € MHM(T2z X). Here
the shift by [—1] comes from the relative dimension of the morphism p. Let M =
Jx(p*(M)[—1]). As explained in [2, Formula (1.3.1)], the underlying D-module of
M satisfies

peM) = P Mu’, (VM) =PV M,
Lel el

as Ox-modules, where V* M is the V -filtration along the smooth hypersurface defined
by u and V°*M is the V-filtration along Z. In particular, the D-module underlying
Sp(M) is

Sp(M) = @ @gr(,“_e_l./\/lue.

r€(0,1] L€Z

We are able to identify the Hodge filtration on Sp(M) in terms of that on M. To
do this, we first compute the Hodge filtration on M.

Lemma 2.4 Let (M, F,) be the filtered Dx -module underlying a mixed Hodge module
M on X. Then

F,VYM =@ vr—m
Lel
[—v]
N Z O+L+1D) O+ L+ QFp_gV 77 M | i,
q=0

with the understanding that the sum is simply equal to the termwithqg = 0if |—y | < 0.
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In particular, if y > 0,

FpVYM =@ F, v Mut.
el

Proof To begin, because j is the inclusion of the complement of a Cartier divisor, we
have the following formula for the Hodge filtration (see Formula 3.2.3.2 of [15] and
Remark 4.4 below)

Ft = 308 (VRO o (Fyogp" (M) [-11).

q>0

As p : X x G, — X is smooth of relative dimension 1, we know Fy p*(M)[—1] =
@ZGZ F ‘Mue'

Also, we have that d,, acts on a homogeneous element mu® by (6 +0)mu®~!, where
0 = Y;_, t;9;. Thus, we get the following description (which was pointed out to the
authors by Mustata)

FEM=P Y 0+t+1) - 0+t+qF, VM| u’.
teZ \gq>0

Let mu® € VVFPM, SO we can write m = ijzo(é‘ +L+1D)--- 0+ L+ qg)my,
where m, € F,_, V"~ 1747 M. Also, m € V¥~ M by assumption.
Now, break up

[—v] N
m=Y @+L+1) - @+Ltpmg+ Y O+L+D O+ L+qm,.
q=0 g=l-v]+1

Forq < |—y|,wehavethatr —1—g—£ >r—1+y —{,and so yr—l-a—t pf C
VY=t M. As m € V" ~1H7 ¢ M by assumption, this implies that the sum

N
D@L+ @+ L+ gmy

L=y J+1
N
=@ +L+ D@+ L+ —y]+D Y @ +E+1-y]+2)
g=l-rl+1

(@ Qmg e VT TOM,

Writem' =Y [ (@+L+[—y]+2) - O+ L+q)mg. Asmy € VITIZ07EM,
we have thatm’ € V" ~1=N = M. Then (9 +£+N+1)4m’ € V>""1=N=¢ M for some
d>0.AsN > |—yland @ +L+1)--- O+ L+ |—y] + Dm' € V>"—I=N-tp\,
Bézout’s identity implies m’ € V>""1=N= A, By discreteness of the V-filtration
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and repeating this argument, we see that m’ € V" ~!1=1=7V1=¢ Af_ As 6 shifts F by one,
m € Fp_ |-y yr-l=l=vl=t p,

Thus,m = O+ £+ 1)+ (O + £+ L=y ]+ Dmyy +m)+ X057 O+ £+
1)--- (0 + £ + q)m,, which proves the claim inductively. O

In the next subsection, we compute the weight filtration for Sp(M). Note that
WeSp(M) is a Dr,x-submodule, and so it is monodromic. We show that, on each
monodromic graded piece, the weight filtration induces the relative monodromy fil-
tration.

2.5 Admissiblity

For convenience, we recall the definition of the relative monodromy filtration, see
Section 1 of [17] for details.

Let L be a finite increasing filtration on an object M € C, an exact category which
we take to be embedded in some abelian category A. Let S : C — C be an additive
automorphism of the category, which extends to .A.

Let N : (M,L) — S~Y(M, L) be a filtered morphism such that Ni = 0 for
i > 0. Here the filtration L on S/M is defined as Li(S/M) = S/ (L M) for any
Jj € Z, k € Z. Then there is at most one finite, increasing filtration W = W(N, L) of
(M, L), called the relative monodromy filtration which satisfies:

(a) NA: (M:; L,W)— S~ (M; L, W[2]) is a filtered morphism,
(b) N': gr,?jrigr,fM — gr,?iigr,fM is an isomorphism for all i > 0.

Here, recall that an increasing filtration is shifted as W[jle = W,_;. We shall take C
the category of filtered D-modules and § the shifting of the filtration.

In the theory of mixed Hodge modules, the objects are defined to satisfy the admis-
sible condition: if (M, W) is a mixed Hodge module with its weight filtration and
g € Oy is any locally defined regular function, then

(a) the relative monodromy filtration for yo (M, W) exists for the nilpotent mon-
odromy operator on this nearby cycle, with L; = v,(W; 11 M). Similarly, one
assumes the existence of the relative monodromy filtration on ¢ 1 (M, W), with
L; = ¢¢,1(W; M) defined without a shift.

(b) the three filtrations are compatible

0— FVoWiiM — FVgWiM — FVyer) M — 0,

where V is the V -filtration along g.

In the setting of higher codimension, say Z is a smooth subvariety defined by
t1, ..., 1, it is an easy exercise using the specialization construction to see that the
V -filtration along Z satisfies a similar property. The associated graded modules gr)‘(//\/l
also have nilpotent operators, given by 0 — x = > /_, t;0, — X.

Lemma 2.5 Suppose that the triple (M, F, W) underlies a graded polarizable mixed
Hodge module, then the three filtrations F,V, W are compatible, i.e., the following
sequence is exact
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0 — FVuWisiM — FVuWiM — FiVygr!' M — 0.

Proof We first recall the setting in Sect.2.4: let X = Specx (Y7 Z4 - u™") be the
deformation to the normal bundle along Z, where Z7 is the ideal sheaf of Z and
IZZ = Ox forl <0.Letp: X — X, p: X* — X be the two structure morphisms
and j : X* - X is the open immersion. Abusing the notation, we also denote by
p: TzX — Z as the restriction of p : X - X. »

Let M = jip*M. Then by Saito’s theory [17], there exist filtrations Fe M
and W, M on M such that the triple (M, F, M, WoM) underlies a graded polar-
izable mixed Hodge module and that j*F, M= Dz FoyiMu® and j*W, M =
Dz We Mu®. Tt follows from the compatibility for mixed Hodge modules of the
codimension-one case that

0 — FVaW, \ M — FVuW;M — F Vet M — 0, Q)

where V, is the V-filtration along 77 X. Since V¢ only depends on the restriction of
a D-module to X*, it follows that Vo, W, M = V,, j p*W; M for @ < 0. On the other
hand, the Hodge filtration on V,, for @ < 0 can be calculated by

FiVaWiM = F Vo Wi jy p* M = jup* Fed WiM 0 Ve i p* Wi M.
We obtain, for o < 0,

peFiVaWil = @D Fest Varest WiM -’
tel

Similarly, we have, for ¢ < 0,

peFeVagr M = @) FiVaregr M- u.
tel
Applying p. to the sequence (5) for ¢ < 0 yields an exact sequence on X:

0— @ FiVasert Wit M -u® — @FkVaMHWiM -u®
el Lel

— @ Fy Va+g+1ger/\/l ut = 0.
el

Since the morphisms in the above sequence respect the grading, we have
0 — FVaWisiM — FVaWiM — FVegr!' M — 0

for every o € Q. We conclude the proof. O

Lemma 2.6 If (M, F, W) is a bifiltered Dx-module underlying a mixed Hodge mod-
ule with the weight filtration W, then the relative monodromy filtration W(6 — x, L)
on gr)‘(//\/l exists where L, gr)‘(/./\/l = gr)‘(/(W../\/l) is induced by the weight filtration.

) Birkhauser



On V-filtration, Hodge filtration and Fourier transform Page 17 of 76 50

Proof The relative monodromy filtration W = W(ud, — «, L) exists on ng/\/l for
o € [—1, 0] because M is a mixed Hodge module. Then since Wy ngM is invariant
under the G,;,-action ud,, applying p, gives

p*WkgrgM = @ Wkng+£+1M ub.
tel

induces a filtration W on each gra o1 M. We easily check that WarV wttq 1M is the
relative monodromy filtration W(@ — o — € — 1, L) if « < 0. Indeed, we have seen
that, fora < 0

pegriyigrrgry M = P et ke o M-ut
LeZ

The isomorphism (19, — a)¥ grkﬂ gr; ngM — gV ket 8L ng./\/l commutes with
the G,-action so it induces an isomorphism on each graded piece after we apply p..0

Lemma 2.7 Let (M, F) be a filtered D-module underlying a mixed Hodge module on
a product of smooth varieties Y x X. Letpr, : Y X X — X be the second projection
and Vo M is the V -filtration along Y x Z. Suppose that pr, is projective on the support
of M. Then we have:

(a) The spectral sequence associated to the relative monodromy filtration on
pr, +(gr(¥ M, F) degenerates at the second page E» in the category of filtered
D-modules.

(b) If (M, F) underlies a polarizable Hodge module, then Ef 1 is a filtered direct
summand of E f 4

(¢) If (M, F) underlies a polarizable Hodge module and Wgrg M is the monodromy
filtration, then the image of H' pry, Wi gr(‘x/ Min Hiprz i gr(‘; M is the monodromy
filtration of

ngHiperrM = H"pr2+gr(¥/\/l.
(d) We have the decomposition in the filtered derived category of D-modules

pro (gr) gry M, F) =~ @ (Hipry er} gy M, F)[—i]

i
where WgrY M is the relative monodromy filtration.

Proof Let pry: Y x TzX — TzX be the induced morphism on the normal bundles.
Then we obtain the following commutative diagram by abusing notation.

pry
Y xTzX — TzX

I 17

pry
YXxXZ ——— Z
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Then by the exactness of py, fore <0

—x —%
p<Pa, (ery M, F) = p,RpD,, (gry M ® /\ Ty, F) = Rpry, pu(gry M & )\ Ty, F)
—%

= Rprz* ®(gr<¥+t’+lM ® /\ Ty, F)- uZ = @Pru(gfg%ﬂ/\/l, F)- M€~
lel teZ

Here, we identify 9y with 9y« 1, x,7,x and the Hodge filtration F, ng M N
is given by

—%
F.+*gr(¥./\/l ® /\ Ty.

In particular, we see that p.pr,, = p«prp, in the derived category of filtered D-
modules. Therefore, by functoriality of the spectral sequences, we obtain a relation
between the spectral sequence EP? (P, (gry M, F )) induced by the relative mon-

odromy filtration on pr; , gr, Y M and the spectral sequence E/? (prp (gr M, F))on
pr2+(gra M? F)

o+ E (pr2+(gr ./\/l F)) = @E}U’q (pr2+(gr(¥+@+l./\/t, F)) ut fora < 0.
lel

(6)

Moreover, the differential d, is compatible with the direct sum decomposition.

Due to the fact that (grvM F, W) underlies a mixed Hodge module, the spectral

sequence E/" (pr2 L (gr /\/l F )) induced by the relative mondromy weight filtration

on prz Jr(gr M, F ) degenerates at the second page. Therefore, the spectral sequence
P4 (pry +(gra M, F)) also degenerates at the second page.

Since polarizable Hodge modules are semisimple [15, 5.2.13], E? (gr¥ M, F) is
asummand of E{" (grg[’/’cl, F). Thanks to (6) again, E5"? (pr,_ gr, M) is a summand
of Ef’q(perrgrx./\/l).

It follows from [15, 5.3.4.2] that the image of H'pr , Wagr) Min H"[ﬁ“ugré//\f\//l is
the monodromy filtration W,gr) H' pr, +/A\;l. Noticing that p, is exact and p,H' pry L=
Hiprz 4 Px> WE get

:O*WongHilfwM = @ W.gr;/+€+lHipr2+M u’
LelZ

fora < 0. Then W.grx e +17'{"p1r2 M is the monodromy filtration W(0 —a — £ — 1)
as pointed out in the proof of Lemma 2.6. Then applying p, for o < 0 to

Hiﬁf'erW.gro‘l//A\;l — W.gro‘{/Hi[%Jr./A\;l — Hi[%Jrgrxm
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gives:

@HiperrW.ngJerrlM cut - @ W.ngJFHIH"erM ut
LeZ LeZ

i v ¢
N @H pro, 8y o M- u
tel

respecting the grading. We have proved (c).

For (d), since ngV gr¥ M is a polarizable Hodge module, by choosing an ample
class on Y, it follows from the hard Lefschetz theorem that

H_i15rvz+(gr,?/grg/A\;l, F)= Hi@+(gr,?/gr;/ﬂ, (),
where (i) is the Tate twist. This implies for @ < 0 by applying p;

@H_ipfer(ngVngHHMa F)-u' =~ @(Hipfergrl‘?]ngHHMv F)(i) - u",
LeZ el

respecting the grading. Therefore, as a consequence, we have the decomposition as
claimed. O

Lemma 2.8 For any short exact sequence of mixed Hodge modules
0> M > M- M'=0,
the induced sequence
0— (gry M/, F, W) — (gry M, F, W) — (zrd M"", F, W) — 0
is bifiltered exact, where W is the relative monodromy filtration.
Proof By the assumption and [17, 2.5], we have
0— (@Y M, F.W)— (@l M, F, W) > (gtY M", F, W) - 0

is exact for @ € [—1, 0). Then the rest of the proof goes like the proof of the above
two Lemmas. O

Definition 2.9 We say a morphism ¢ : (M, F) — (N, F) is strict if F,NNim(p) =
@(F,M). We say that a filtered complex (K*®, F) is strict if all differentials are strict.

Recall the definition of a bistrict morphism between two bifiltered objects ¢ :
(M, F,F") - (N, F, F’). Such a morphism is one which is strict with respect to
both F and F’ and which satisfies

(FpN+im¢) N (F N +im¢) = Fy F,N +im¢ and  (F, Fy N) Nimé¢ = ¢ (F, F,M).
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A complex is bistrict if all morphisms are bistrict. Bistrict complexes have the property
that

FpFyH*C* = HN(F, F)C®).

As a corollary of Lemma 2.4, we show that any morphism between mixed Hodge
modules is bistrict along (F, V) for V the V-filtration along a smooth subvariety Z
of codimension r.

Corollary 2.10 Let ¢ : M — N be a morphism of mixed Hodge modules on X. Then
the corresponding map on filtered Dx-modules ¢ : M — N is bistrict with respect
to the Hodge filtration Fe M and V°* M.

Proof By the theory of mixed Hodge modules, ¢ is strict with respect to the Hodge
filtration. Similarly, by uniqueness of V-filtrations, it is strict with respect to V'°.

We now prove the remaining two conditions for bistrictness hold.

We know again by the theory of mixed Hodge modules that ¢ : ji p*(M)[—1] —
J+P*(NM)[—1] is bistrict with respect to the Hodge filtration and the V -filtration along
u.

Letn € (FpN+im($)) N(V*N+im($)). Write n = 7+ ¢ (m) for some 7i € Fp,N
andm € M.If 7 € V*N, then we are done. Otherwise, 77 € VEN for some 8 < A.

Let us determine a range of ¢ such that nut e Fp,1j+(p*(/\/)[1]). Using the
formula from 2.4 with y = 0, since 7 € F » VB(N), we can force this to be true if
—L+r—1<pB,orr—p8—1 < £ Hence, forall ¢ > r — 8 — 1, we see that
ut € Fp1jr(p*(MI1D.

On the other hand, writing n = n’ + ¢(m’) for n’ € V*N, then n'u® €
Vi (p*(M)[1]) whenever @ — £ = A — r + 1. To apply 2.4, it will be useful to
have o > 0. Thus, we need ¢ satisfying

O<a=A4+L—-r+1,L>r—p-—1,

which are both clearly possible for £ >> 0. Fix some £ for which both inequalities are
true.

Definea = A+£—r+1,thennu® = (I+¢(m)u’ € Fpo1j+(p*(M)[1]) +im(¢),
and nu® = (n' + ¢p(m"))u € V¥j (p*(\V)[1]) + im(¢). Here

1 j+ (P MDD — j(p* M1,
is a morphism of mixed Hodge modules.
In particular, it is bistrict with respect to F and the V -filtration along {u = 0}. Thus,
we see that nu® (Fp-1 Vi (p*(N)[1]) + im(¢). As it is homogeneous of degree
£, we get

n=n"+¢m"),

where n” € F,V*\, where we use the fact that @ > 0 and apply 2.4. This proves the
first condition needed for bistrictness.
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For the last condition, let n € F), VAN Nim(¢). Find y > 0 such that y — £ +
r — 1 = A, by choosing £ > 0. Then nut e Fp_1 VY j(p*(M)[1]), and it lies in
1m(¢) S0 by the fact that ¢> is bistrict with respect to V and F, there exists some
Zm,u € Fp1VY ji(p*(M)[1]) which maps to nu® under d). Taking meu® and
using 2.4, we see that mg € F), V*M, and ¢ (m¢) = n, proving the second condition
for bistrictness. O

2.6 Saito’s main theorems about Hodge modules

In this section, we state two essential theorems in Saito’s theory of mixed Hodge
modules.

The first main result is the behavior of mixed Hodge modules with respect to the
pushforward functor for a projective morphism f : ¥ — X. For more details and
proofs, see [20, Section 16] or [15, Section 5.3].

For example, a monomorphism i : A < B is strict iff the filtration on A is the
induced filtration from B. The main utility of strictness is that, if (K*®, F) is a filtered
complex with strict differentials, then HE(F »K®) — HA(K®)is injective forallk € Z.
Hence, we can define a filtration F on Hk(K *), and strictness allows us to commute
H* with F,.

We begin now with the statement of the direct image theorem in the pure case:

Theorem 2.11 [15, Thm 5.3.1] Let f : Y — X be a projective morphism of smooth
complex varieties, let M be a pure Hodge module on Y of weight w. Let £ € H>(Y, Z)
be the class of a relatively ample divisor over Y. Then

(@) fi(M, F) is strict and H' f (M, F) underlies a Hodge module on X of weight
w+ 1.
(b) ¢ : H_ier(M, F) > H f+(M, F)(i) is an isomorphism for all i > 0.

As an application, if X is a smooth projective variety, f : X — s is the constant
map, then the strictness of fi (M, F) recovers the fact that the Hodge-de Rham
spectral sequence degenerates at E.

Also, as a formal consequence of the second part of the theorem (see [5, Prop. 2.1]),
one recovers the decomposition theorem, i.e., an isomorphism in the derived category

frWM, P = @H fr (M, F)[=il.

ieZ

Remark 2.12 The strictness of f (M, F) in part (a) of Theorem 2.11 still holds if
we assume M is a mixed Hodge module. One particular application of Theorem 2.11
will be when the map f : ¥ = Z x X — X is a smooth, projective projection from
a product and (M, F) underlies a mixed Hodge module. In this case, the D-module
pushforward f (M) is given by applying R to the relative de Rham complex (see
[8, Prop. 1.5.28])

:{Miszlz®/\/li>...isz%imz®/\/l}

) Birkhauser



50 Page220f76 Q. Chen, B. Dirks

and this complex is filtered, given by
F,K* = |FPM = QL ® Fpy M = -+ = Fygim 7Q8mZ ®M} .
Then strictness tells us that the induced map
R fu(FyK*) = R fu(K*) = H' f1 (M)

is injective, and defines the Hodge filtration on this cohomology module.

The second main theorem is called the “structure theorem for polarizable Hodge
modules”.

Let Z € X be an irreducible closed subset. A Hodge module M on X has strict
support Z if the underlying D-module has no subquotient D-modules supported on
a proper subset of Z. See [20, Exercise 10.2] for a characterization of this property
in terms of the V-filtration along a hypersurface. See also our generalization of this
property to higher codimension in Corollary 3.3 and Corollary 3.4.

Built into the definition of the category of pure Hodge modules is the property that
every pure Hodge module has a decomposition by strict support, meaning, for any M
pure on X, we have

M:@MZ,

ZcX

where the direct sum ranges over irreducible closed subsets of Z, Mz # O for only
finitely many Z, and each M7 is a pure Hodge module with strict support Z. See [20,
Theorem 11.7] for a characterization of this property in terms of the V -filtration. See
our generalization of this property to higher codimension in Corollary 3.5.

The structure theorem gives a description of those pure Hodge modules with strict
support Z: they are generically given by (polarizable) variations of Hodge structure
on Z. See [20, Section 15].

Theorem 2.13 Let X be a smooth complex algebraic variety, Z C X an irreducible
subset. Then

(a) Every polarizable variation of Hodge structure of weight w — dim Z on a Zariski
open subset of Z extends uniquely to a polarizable Hodge module on X of weight
w with strict support Z.

(b) Every Hodge module with strict support Z arises in this way.

The difficult claim is to extend a polarizable VHS to a Hodge module with strict
support on Z. This result will be used to identify certain Hodge modules as strict
support direct summands of other Hodge modules.

2.7 Monodromic D-modules

For background on monodromic D-modules on a vector bundle E, see [1]. For results
on monodromic mixed Hodge modules on a line bundle, see [19].
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Let E be a vector bundle of rank r on a smooth variety X. A Dg-module M is
monodromic if, for every local trivialization U x A" of E, every choice of coordinates
Z1, ..., 2, on the A"-factor, with vector fields 9;,, ..., d;, and every local section
m € M, there exists a univariate polynomial b(w) € C[w] such that b(0)m = O,
where 0 = Y 7_, z;9;,.

Such modules satisfy several nice properties:

M.1 If M is monodromic, then it decomposes into generalized eigenspaces for the
0 action, i.e.,

M =P M~

xeC

where MX =ker (0 — x + r)®).

M.2 Every subquotient of a monodromic D-module is monodromic.

M.3 Every morphism between monodromic D-modules preserves the eigenspace
decomposition.

M4 M*C MXF g MY C MX forall 1 <i <.

M.S The (C-indexed) V -filtration of a coherent monodromic Dg-module along the
zero section X C E is given by

VM =P M~
x=h
and in particular,
grp M = M

A mixed Hodge module M on E is monodromic if the underlying D-module is. As
V -filtrations are Q-indexed for mixed Hodge modules by definition, we know that if
M underlies a mixed Hodge module, then M = B, . M”* by Property M.5.

2.8 Conventions for shifting the Hodge filtration

We refer to [20] for all conventions regarding the Hodge filtration and weight filtration
when applying functors to mixed Hodge modules when considering right D-modules.
As noted at the beginning of Sect. 2, these conventions may differ if we want to use
left D-modules instead. For convenience, we will list here those conventions for left
‘D-modules.

Tate Twist: Let (M, F) be afiltered Dx-module. Then we define (M, F) (k) for any
k € Z, the Tate twist of (M, F) by k, to be (M, F[k]), where F[k], M = F, ;M.

Smooth pullbacks: See Remark (4.4.2) and Formula (2.17.3) in [17]. Let p : X X
Y — Y be a smooth surjective morphism of relative dimension r = dim X between
smooth varieties. Let M = p*(M) as an O-module (which is also the D-module
pullback, see [8, Sect. 1.3]). If (M, F) is a filtered left Dy-module, let F, M =
pH(FpM).
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If M is a mixed Hodge module with underlying filtered Dy-module M, then the
pullback p*(M) € DPMHM(X x Y) has underlying filtered Dy y-module

(M, F.) 7

lying in cohomological degree r, and p'(M) € D’MHM(Y) has underlying filtered
Dx xy-module given by

(M, F[r]) ®)
lying in cohomological degree —r. The weight filtration is given by
Wap*(M)[r] = p*(We—y M) and W, p'(M)[—r] = p*(Werr M).

Nearby and Vanishing Cycles: Let X = {t = 0} € Y be a smooth hypersurface
defined by the global function ¢. Let M be a holonomic Dy-module. We define

Ui (M) = grhy M for A € (0, 1],
Gt a(M) =Y M ford € (0, 1)

and
b1 (M) = gth M,

where V* M is the V-filtration of M along X.
If (M, F) is a filtered holonomic Dx-module, then the filtration on nearby and
vanishing cycles is defined to be

F,V*M
Fpy (M) = —£——— for 1 € (0, 1] 9)
P FyV>*M

F 1VOM
F M) = kL T 10
1.1 (M) Fr VoM (10)

Just as the Hodge filtration includes a shift based onif A = 1 or A € (0, 1), so does
the weight filtration (see [20, Sect. 20]. We make note of it here for later use: the weight
filtration We¢; (M) for (M, W,) a D-module underlying a mixed Hodge module
is defined to be the relative monodromy filtration (as defined in Sect. 2.5 above) of
Leo: ). (M) along the nilpotent operator N = 9;¢ — . here, Lqo¢; 5 (M) is defined as

Ligpr 1 (M) = grl (Wi M), (11)
Ligpr (M) = grly (W1t M) for & € (0, 1). (12)
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3 Topological properties of V-filtration

In this section we first prove some basic properties of V -filtrations along a smooth sub-
variety. The analogous statements for a codimension 1 subvariety appearin[15, Section
3]. Now let us fix the notation. Let X be a smooth variety and Z be a smooth subvariety
of codimension r globally defined by regular functions ¢, f3, .. ., f.. Assume there
exist global vector fields 91, 2, . . ., 9, dual to the 1-forms dt{, dta, . . ., dt,.Let M be
a right holonomic Dx-module along Z and V, M be the V -filtration along Z. Recall
that we have introduced the following notation: for a right holonomic Dy -module M,
we define

Ay(M) = {Va/\/l = (Vg M) > -+ —> Va,r/\/i}, in degrees 0, 1,...,7;
By(M) = {ngM — (grgfl/\/l)’ — e ng_,M}, in degrees 0, 1,...,7;

Co(M) = {gr;/_,/\/l — (grg_rHM)’ — gr;//\/l}, indegrees —r,—r +1,...,0.

Theorem 3.1 The complexes By (M) and Cy (M) are exact for a # 0.

Proof We shall construct a retraction on the complex B, (M), i.e. a series of mor-
phisms

o (grx,gM)(Z) N (grLHlM)(lil)

suchthat sgyjody+dy—10s¢ = 6+£ where d is the differential of the complex By (M).
Note that the collection {6 + ¢} gives an endomorphism of the complex By (M). Let

.
(gr) M) = @grg_l./\/lei
i=1
where e1, e, ..., e, is a standard basis such that the Koszul differential works as

,
dy (176,-1 Aej, /\~--/\eil) = Zntiei Aejy ANep N Nejy,
i=1
where 7 is a local section of gr;C /M. Now we can define the morphism
r
Se (77 €ip Nejy N+ N ei() = Znaj 6?(6,’1 AN PAVANEEIVAN ei(),
j=1
where {e], e, ..., ef} is the dual basis and
¢
k—1
ejf(e,-1 Neipy N ANejy) = Z(—l) ey Neiy Ao A e’;(eik) Ao A,
k=1
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Without loss of generality, we only do the computation on ne; A ey A -+ - A eg:

(Se+10de+de—10s0)(ner Nex A+ Aeg)

r r
= S¢+1 (Zntiei/\el/\ez/\-~/\eg>+dg_1 (Znaje;(el/\ez/\'--/\eg))

i=1 j=1

r r r r
= ZZr)tine}:(ei AepAey A »«-/\eg)—I—ZZnBjtaea /\e;f(el Aery A Aep)
k=1 i=1 a=1j=1

,
:n(Zt,-E),-—{—E) epANexy N Neg

i=1

=n@+0heNex N Neg.

Because 0 + £ = (6 — (o — £)) + «, the scalar multiplication by « is equal to the
nilpotent operator 8 — (o — £) on the £-th cohomology of By (M). This can happen
for ¢ # 0 if and only if the £-th cohomology vanishes. We conclude that the complex
By (M) is exact for a # 0.

The proof of the exactness of the complex C, (M) is similar and we leave the rest
of the proof to the readers. O

Theorem 3.2 The complex Ay, (M) is exact for a < 0.

Proof It suffices to show that the complex A, (M) is exact for « < 0 by Theorem 3.1.
We will prove the claim for j € Zq. The Z-indexed filtration V, M is a good filtration
with respect to the Z-indexed V -filtration (Dy, V,), and so we can locally take a
(Dyx, V)-free filtered resolution

s (LN V) = (L, V) > (M, V)

of (M, V) such that (L!, V) = @;"’: (Dx, V[n?)]). It follows that the total complex
T* of the double complex

s Ag(LY, V) = A (L0, V)

is quasi-isomorphic to A,(M). As A,(—) gives a bounded complex, the terms
T-L,710 ...,T" onlyconcernLO, L', ..., L™t Weshow thatfora < ming<;<r41,;
{n(.i )} the complexes A (L') are acyclic for 0 < i < r + 1, proving the claim.

The claim is thus equivalent to Ay, (Dyx) is exact for « < 0. We will prove
erf’ A, (Dx) is acyclic, which implies the desired claim.

To see this, using local coordinates we reduce to the case X = A” and Z is defined
by the vanishing of coordinates t1, ..., t-. Then ngDx = R[t1,...,.tr, &1, ..., &]
where R = Opn—r &1, &r42, - - -, &4] and & is the principal symbol of 9. We put a
grading on this ring where R has degree 0, #; has degree —1 and &; has degree +1 for
i =1,2,---,r. Then the module grf V;Dx, in terms of grading, is given by:

g’ (viDx) = @P(er" Dx)g.
B=ij
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where (ngDX)ﬁ is the B-graded piece.
The elements #1, . . ., ¢, clearly form a regular sequence on grf Dy = @ﬂez(ng
Dx)p» and so the corresponding Koszul complex

orf Ao (Dy) = {ngDX L) o F Dy 5 ngDX}

gives a resolution of R[&1, ..., &.]. All maps in the Koszul complex are graded with
respect to the grading just defined. In particular, the resulting degree 8 complex

(1,10, 1)
Kﬁ = {(ngDX)ﬂ L) (ngDX)rﬁ_l — s = (ngDX)ﬂ—r}

is a resolution, as it is a direct summand of ng A (Dx). The claim is that for o < 0,
the complex

arf Ay (Dx) = P K}

B=a

is acyclic. The only possibly non-zero cohomology is the rightmost one whose grading
is B — r because Ky is a resolution. But since o < 0, by the definition of V,Dyx, the
rightmost cohomology of grf A, (Dy) is automatically zero, proving the claim. O

We give some elementary applications of Theorem 3.1 and Theorem 3.2. As a
consequence we give a criterion for when M has strict support decomposition along
Z.

Corollary 3.3 A Dx-module M with a V -filtration along Z has no submodules sup-
ported on Z if and only if gr(‘)/ M b, ngl./\/l is injective.

Proof If m € M is such that m#; = O for all i, then m € VoM. Indeed, m € Vy, M for
some A € Q. If A <0, we are done. Otherwise, considering the short exact sequence

00— A<)L(M) — A)L(M) e B}L(M) — 0,

by acyclicity of B (M) for L # 0, the left-most map being injective implies m €
V.M. Since the V-filtration is discrete, by induction we know that m € VoM.
This means that M has no submodules supported on Z if and only if (");_, ker (¢; :
VoM — V_i{ M) vanishes.

Since A .o(M) is acyclic, it follows from the short exact sequence and the snake
lemma

0— Ao(M) = Ag(M) = Bp(M) — 0.

that ()/_, ker (4 : grg M — gr’ M) = (_  ker (t; : VoM — V_1 M), which
concludes the proof. O
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Corollary 3.4 Let M’ be the smallest submodule of M such that M|y = M|y. Then

M/M' = i coker (@ gr’ M LA ngM) .
i=1

In particular, the morphism @);_, nglM — gr(‘)/ M is surjective if and only if M
has no quotients supported on Z.

Proof Note that M' = V; M -Dy forany A < 0.Indeed, we know that Vs M’ = V; M
if . < 0, as they restrict to the same module on X — Z. Thus, Vs, M-Dx = V, M'-Dx C
M’ . For the other inclusion, note that (V, M -Dx)|y = M|y, because the V -filtration
is all of M away from Z. Hence, by minimality of M’, we get the desired equality.

Note that M /M’ is supported on Z, so by Kashiwara’s equivalence M/ M’ =
irgry (M/M’), where i : Z — X is the inclusion. We know gty MM =
gry M/gry M’ and

VoM N M’

\% N o
gro (M) = Voo

because VogoM = VoM’ and VM N M’ = V, M’ by the uniqueness of the V-
filtration. Thus, the claim reduces to proving

VoMNOM ="V My, + VoM.

i=1

In fact, we can define inductively a filtration Ug M by Uy M" = Y7 | U, -1 M0, +
UM for i > 0and Uy M’ = V; M’ for A < 0. Note that Vs M’ = Vi M for A <0
is discrete so U, M’ is well-defined. Since M’ = V_gM - Dy, the filtration U, M
is exhausted. Then it is easy to check that U, M’ satisfies all the characterization of
V iltration, i.e. Up M’ = V, M’ which concludes the proof. O

We prove here an analogue of the fact from the codimension one case that you can
test if a module has a strict support decomposition by looking at ¢ 1 as f € Ox
varies.

Corollary 3.5 Let M be a Dx-module admitting a V -filtration along Z. Then there
exists a decomposition M = M' & M" with supp(M’) € Z and M" having no
submodules or quotient modules supported on Z if and only if

gr(‘)//\/l = (m ker (¢; : gr(‘)//\/l — grzl./\/l> @ <Zgrzl./\/l8,[> .
i=1 i=1

Proof For the “only if” part, by the previous lemma we know gr(‘)/ M = im(9;,)
and ();_; ker (¢; : gry M” — gr¥, M”) = 0. Also, by Kashiwara’s equivalence, we
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know M’ satisfies gr¥, M’ = 0. By taking gr} of the equality M = M’ & M”, we
conclude.

For the other implication, note that we must certainly set M’ = H% (M), as this
is the maximal submodule of M supported on Z. Let M” = V_ogM - Dy, which we
know is the smallest submodule such that M” |y = M|y, and satisfies

4 3,
MJM” =i (coker (@ g/ M = ng/\/l) .

i=1

By the assumption, this cokernel is isomorphic to ();_; ker (ti : gr(‘)/ M — grYlM),
and so M/M"” = M’. But the inclusion M" — M splits this quotient map, yielding
the direct sum

ME=MaeM’,
which proves the claim. O

For convenience, denote by B(M) = Bo(M) and C(M) = Co(M). To close
this section, we give a comparison of the restriction i 'Z./\/l and i, M with B(M) and
CM)forizy:Z — X.

Theorem 3.6 With notation as above, the complex B(M) (resp. C(M)) is isomorphic
to i!Z./\/l (resp. iy M) in th (Dz), where iz : Z — X is the closed embedding.

Proof First, we exhibit the quasi-isomorphism B(M) = i' M. Recall that i* M agrees
with the derived O-module pullback of M, hence, we can use the Koszul complex on
Malong ty, ..., 1.

Since B, (M) is exact by Theorem 3.1 when o > 0 and the V -filtration is discretely
indexed, we find that the natural inclusion of complexes Ag(M) < A (M) isaquasi-
isomorphism for any j > 0. This implies that the natural inclusion of complexes

Ao(M) > Ago (M) = [M—>M@’—> ...—>M} (13)

is a quasi-isomorphism, where the right hand side is the Koszul complex of M along
t,..., . Indeed, Vo M is exhaustive, so the right hand side is the direct limit as
J — oo of A;(M), and the direct limit is exact. By Theorem 3.2, the quotient map

Ao(M) — Bz(M)

is a quasi-isomorphism.

The statement about C (M) just follows from applying Proposition3.7to 7z X — Z
and Theorem 3.1. Indeed, Sp(M) is monodromic on 7z X, and it is not hard to show
that o *(Sp(M)) = i*(M), where 0 : Z — Tz X is the zero section of the normal
bundle. O
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Proposition 3.7 [7, Proposition 10.4] For a monodromic Dg-module M, there are
quasi-isomorphisms

pPAM~i*M, piM=~i'M
where p : E — Z is a vector bundle and i : Z — E is the zero section.

Remark 3.8 Proposition 3.7 also holds true if M is a monodromic mixed Hodge module
on E. The proof of the first claim uses the exact triangle

1
JIEM > M > ii* M 5,

which holds true in the category of mixed Hodge modules, too. Then, applying p. to
this triangle, it suffices to show that

p*]']'M = Ov

but in the proof, Ginzburg shows the underlying D-module is 0, so the mixed Hodge
module must necessarily be 0, as well. The second claim is related to the first by
duality.

Remark 3.9 Using the previous theorem, we can rephrase the results of Lemma 3.5
and Lemma 3.4 respectively as H%'M = 0 if and only if Hom(i N, M) = 0 for
all NV supported on Z, and H%*M = 0 if and only if Hom(M, i ) = 0 for all A/
supported on Z.

We can describe the vanishing of other cohomologies in terms of Ext groups, similar
to the characterization of vanishing of local cohomology for O-modules. Specifically,
the result is

HTi*M =0forall0 < j <k <= Ext/(M,i,N)
= 0 for all N'supportedon Z,0 < j <k

H/i'M =0forall0 < j <k < Ext/(i;N, M)
= 0 for all N'supportedon Z,0 < j < k.

The proofs of these are not hard, and we leave them to the reader.

4 Filtered acyclicity of Koszul complex

Recall our setting: let X — A’ be a smooth regular map of smooth varietes where
A" is the affine space of dimension r and let Z be the fiber over the origin. Suppose
(t1, 12, ..., 1) is a coordinate system on the A" term and assume there exist global
vector fields 1, 9, . .., 9, on X dual to the one-forms dt, dt>, . .., dt,. We give two
different methods to prove Theorem 1.1.
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4.1 First proof of the Theorem 1.1

We restate Theorem 1.1 in terms of right D-modules: for any right filtered regular
holonomic Dx-module M and rational number «, define Koszul-type filtered com-
plexes

Ag(M) = {(VaM, F) 5 @ Vaci M. F) 5 - 5 (Vayr M, F)}

i=1

placed in degrees O, 1, ..., r,

By(M) = [(ngM, F) S @y (M F) S D (e M, F)}
i=1

as the quotient A, /A~y and

CaM) = {(ng,M, Fir) 2 @l M Flir— 1) 5 B @l M, F)}
i=1

in degrees —r, —r + 1, ..., 0, where V, M is the V-filtration along Z and F[i]; =
Fi_;.

Theorem 4.1 With the above notation, assume that (M, Fg M) is a filtered holonomic
Dx-module underlying a mixed Hodge module. Then

(a) the complex FyAy(M) is exact for a < 0;
(b) the complex FyCy(M) is exact for o > O.

Proof By Lemma 2.5, we only need to prove the case when (M, F) underlies a
polarizable Hodge module. If the support of M is contained in Z, then by Kashiwara’s
equivalence, there exists a Hodge module (N, F, ) on Z such that (M, FoM) =
i+ (N, F,N). One can easily check that (see Example 2.1)

Z Fg_il_,'z_..._ir./\/'ail 352 ce 8,{r, a > 0;
FyVuM = { ij+io++ir<a
0, a < 0.

Thus, (gr(‘)/ M, F, gr(‘)/ /\/l) recovers the filtered Dz-module (N, F, V) and gr) M
vanishes for ¢ < 0. The statement (a) is clear now. The statement (b) follows
from the fact that 901, 9, ..., d, form a regular sequence on the polynomial ring
C[o1, 02, ..., 0r]. R

Now we are in the case that no submodule of M is supported in Z. Let X denote
the blowup of X along Z, with exceptional divisor E. Let (A/;l, F.ﬂ ) be the minimal
extension of (M, FeM)|x\z over E on X. By the structure theorem of Hodge modules
(see Theorem 2.13), (M, F, M) underlies a polarizable Hodge module. Then by the

) Birkhauser



50 Page320f76 Q. Chen, B. Dirks

decomposition theorem of polarizable Hodge modules, the filtered holonomic Dyx-
module (M, Fe M) is a direc/t\sumn/lgnd of H0n+ (//\7, F.ﬂ). Thus, it suffices to
prove the theorem for H0n+ (M, FobM). Let - X — X be the blow up of X along
Z and E = 7~ Z be the exceptional divisor. Consider the factorization 7 = i, o p
and the Cartesian diagram

) —
<)

—
—

X <— X

Z—
AN

<)
RN

;

X

where iy : X — X x X is the graph embedding and p : X x X —> X is the
second projection. Denote by I';; the graph of m. Since the problem is local on X,
we can assume that X is affine and that (71, 2, . . ., ;) extends to a coordinate system
(t,s)=(t1,t2,...,t,581,52,...,S,—r) on X. Note that the blow-up is given by

X = Projy @If , where 77 is generated by #1, 2, ..., .

i>0
Letu = [uy : up : --- : u,] be the homogeneous coordinates on P! Then X is a
subvariety of Pg(_l defined by u;t; —ujt; = 0forany 1 < i, j < r. Denote also by
(x,y) = (x1,Xx2, ..., X, Y1, . - -, Yn—r) the parameter (¢, s) on X so that

w(u,t,s) =(t,s)=(x,y).
Define a subvariety
H={(u,t,s,x,y) € X x X:uixj—ujx; =0forany 1 <i,j <r}

with codimension  — 1 in X x X. Since the graph I'; is defined by equations t = x
and s = y, itis contained in H. Therefore, we can further factor the graph embedding
iz = f o g to get a Cartesian diagram

E—3XxZ=—Xx2Z
[ !
X sH - v xxx

where g : X — H and f:H— X x X are the natural embeddings. Note that X x Z
is a hypersurface in H.
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The claim is that the Koszul complex

FoAa(in : JO = | FuVain M > (FeVamin ;M) = -0 = FiVae i M|
(14)
is exactif o« < O where V.iﬂ+ﬂ is the V-filtration of M along X x Z. The exactness
of the complex 14 is local so without loss of generality, we restrict everything to the

open subset U x X where U is the open subset of X defined u; # 0. The blow-up
over U is given in coordinates by

(B, U, Uy ey Uy S1,82, ooy Spy) P> (T, LU, LU, oo E Uy, 81,82, .oy Sp—r).

To give a concrete description of in+//\7l, we make the following local coordinate
charge:

t) fori=1 .
w; = . y pPi =Si forl<i<n-r,
u; for2<i<r
x1 fori=1 for 1 < i
7 = , i=y; torl <1 <n-—r
! x; —ujx; for2<i<r 4 =i
so that 2o, z3, . . ., z are the local defining equations of H. It follows from in+ﬂ =
f+g+M that

ix g M =g M[dy,, 0yr ..., 02, 1.
In fact, a simple calculation using the the chain rule indicates that
0y =0xy = 02, 073 =0x3 =03, ..., 0, =0 = 0.

Then F,V, iﬂ+.//\\/l can be written as

Yo Y FeaVakgr Moo o, (15)
k>0 ay+az+---ar=k

for every o where V, g+//\\/l is the V-filtration along X x Z. Notice that the morphism
FoVagsM =5 FyVa_18: M

is bijective when o < 0 because V, g+.//\\/l is the V-filtration along X x Z defined by
{x1 = 0} in H. We deduce that the morphism

Xy Fekaafngrﬂa;zag@ c 0 — FlszVafkflgH/\\/lagza? R
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is also bijective for @ < 0 and k > 0. It follows that the Koszul complex (14) is exact
when o < 0.
Similarly, the complex

FZCa(in-i-ﬂ)
o~ —~\ T —
= {Fg,,grxfri,w/\/l — (Fg,,Jr]grg_rHinJrM) — F@ngiﬂJr./\/l}
(16)

is exact for « > 0. By the expression (15),

V. A4 14 A 42 qa3
FogryizaM=Y"" Y Fojgry g M5 - .
k>0 ar+az+---a,=k

Since for each 2 < i < r the morphism
. Vv A4 Qa2 qa3 ar Vv A A ad2 qa3 aj+1 ar
0 Fooigry 18+ Mdy? 03 --- 3" — Fy_ygry,_ 84+ Mdy?05° -+ - 0; - 0

is bijective, the complex (16) is quasi-isomorphic to,
{Feigr) g4+ M BN Fygrl g M}, placed in degrees r — 1, r.

which is exact for « > 0 also because again V.g+/\7 is the V-filtration along the
hypersurface X xZCH.

It remains to prove the exactness of (14) and (16) are invariant under higher direct
image of p. This is Theorem 4.2 below. Applying Theorem 4.2 to (14) gives us that
the Koszul complex

FyAa(HE pyin M)
o~ —~\T o~
= {F@VQH"ngM = (nga,lﬁkpgﬂ/w) IR nga,erngM}

is exact for ¢ < 0 and every k where VoHE p+iﬂ+ﬁ is the V-filtration along Z. Due
to

koo k
H'ptiny =H'my,

we have finished the proof of the first statement in Theorem 1.1. The second statement
follows similarly and we leave it to the readers. O

Theorem 4.2 Let X be a nonsingular quasi-projective variety and Y be an affine
space with Z an affine subspace defined by x1, x3, ..., x,. Let (M, F) be a filtered
holonomic Dy xy-module underlying a polarizable Hodge module. Suppose that the
second projection p : X X Y — Y is projective on the support of M. Let VoM be the
V-filtration along p~'(Z). Let VyH* p,- M be the V -filtration along Z for every k.
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(a) If the complex
FrAg(M) = {FiVuM — (FVy t M) — -+ = FiVy M} (17)

is exact for some o, then the complex FyAq(HX p M) is also exact for every k.
(b) Similarly, if the Koszul complex

.
FiCoy(M) = {Fg_,grx_r/\/l — (Fg_,_ngZf,HM) —> e Fggr(‘x//\/l}

(18)

is exact for some a, then the complex FyCo(H* p1 M) is exact for every k.

Proof Because of the bistrictness proved in [2] on the complex py (M, V,, F,) =

(RP* (/Vl ® /\ «7XXY/Y> ,Rps (V.M ® /\ yxw/y) ,Rp. (F.+*M ® /\ «7XXY/Y>> ,

we know that the k-th cohomology of H* F;V,p. M = REp, (Fg.,_* VoM@ N7
Txxy /y) is canonically isomorphic to Fy VaHk p+ M. It follows from the Hard Lef-
schetz theorem on the direct image of polarizable Hodge modules (see part (b) of
Theorem 2.11) that the morphism

k
(27[«/—1L) CF Ve H ™ pi M — Fy Vo HE p M.

is an isomorphism induced by the Lefschetz operator L = wA of a hyperplane class
w on X. Therefore, we have the decomposition

FeVaps M = @D FeVaH py MI—K]
keZ

in the bounded derived category Dé’oh(Y, Oy) of Y. If we apply p4+ on (17), by the
above decomposition, we obtain

FeprAa(M) = €D FeAa(H! pr M)[—K]
kel

in Di’oh(Y, Oy). But by our assumption in (@), the complex Fy p4 A, (M) is exact. It

follows that each summand

FeAg(H py M)
= [FoVuHE p e M = (FoVard HEp e MY = o = FeVo e py M|

in the decomposition is exact. We have thus proved (a).
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The proof of (b) is similar. Since we still have the isomorphism from the Hard
Lefschetz theorem

k
(271\/ —1L>  FogtY H p o M — Fy gty HEp M,
we get a decomposition

P+ FeCo(M) = @D FeCo(H* pr M)[—k]
keZ

in Dé’oh(Y, Oy). The remaining goes like in (@) and is left to the readers. ]

Remark 4.3 One can bypass the decomposition theorem in the above proof by the
argument in Theorem 6.6 and the double complexes (27) and (29)

4.2 An alternative proof of C acyclicity

In this subsection, we describe an alternative proof for Theorem 1.1. The main idea is
to use Saito’s Direct Image Theorem 2.11, specifically in the setting of Remark 2.12.
Throughout, we use left D-modules, and the decreasing V -filtration.

Saito’s theorem would be useful if the projection Z x A" — Z were projective,
but it is clearly not. Hence, we compactify j : Z x A" — Z x P, where we have
homogeneous coordinates [# : - - - : #-] on P” and think of Z x A" = Uy = {tp # 0}.
In this way, z; = t% Let p : Z x P — Z be the projection. Then Saito’s theorem
applies to the direct image of a mixed Hodge module along p.

We set up notation for the other standard affine open subsets of Z x P". Let j; :
U; = {t; # 0} — Z x P" be the inclusion. Let U;g = U; N Uy, with inclusion maps
Jio : Uiop = Up and jjo : Ujp — U;.

4.2.1 Computation of V-filtration for extension of localization

Assume throughout that X (hence the closed subscheme Z C X)) is affine, so {U;};_,,
gives an affine open cover of Z x P.

For any M a bifiltered D-module underlying a mixed Hodge module on X, we
get M" = Sp(M) = P yeQ &* M a bifiltered D-module underlying a monodromic
mixed Hodge module on 77X = Z x A”". The motivation behind trying to use Saito’s
strictness theorem is that, if 7 : Z x A” — Z is the projection, then 7 (M) =
P yeQ C* (M) as complexes of D-modules. Hence, because we know by Theorem
1.1 that C* (M) is acyclic for x # 0, we use the injectivity from Saito’s direct image
theorem (see Remark 2.12) to conclude some vanishing for the cohomology of the
filtered complex as well.

The point of this subsection is to compute the Hodge filtration on the mixed Hodge
module j (Sp(M)). For this, we will make use of the affine open cover {U;};_, of
Z x P7 and the following remark (which we already made use of in computing the
Hodge filtration of Sp(M) in Lemma 2.4):
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Remark 4.4 Let V = {f # 0} € W be the inclusion of the complement of a smooth
hypersurface, which is defined by the nonvanishing of some global function f €
Ow(W). If (M, F, M) is a filtered Dy-module underlying a mixed Hodge module
M on V, then formula (3.2.3.2) of [15] allows us to compute the Hodge filtration on
the Dy -module underlying j (M).

First of all, the underlying Dw-module is simply jy (M), which is the O-module
pushforward of the sheaf M. Then the filtration is given by

Fpjs M) = 320 (VO i (M) 0 ju(Fpg M)

g>0

where 0y € Ty (W) is a globally defined vector field such that [0f, f] = 1 and
V0 (M) is the V-filtration along the smooth hypersurface { f = 0.

We are not exactly in this situation, however, because there is no global function f
for which Uy = { f # 0}. Indeed, Uy is the non-vanishing locus of a rational function
to on Z x P”. This causes no problems for our computation, as we will in any case be
using this affine open cover to compute higher direct images.

For 1 <i <r fixed, we considggi = Z x A, but the coordinates we choose on

A" are given by zi_l, Z]Zi_l, R zizi_l, R zrzi_l (in terms of the compactification,
these are the standard affine coordinates tt_?’ ’[—;, e, %). To be clear which coordinate
system we consider on each copy of A", we will denote this copy by A!.

Note that Jio : Ujp € Up corresponds to the subset {z; 7# 0}. Similarly, the
inclusion J; : Ujo € U; is the inclusion of the non-vanishing locus of the glob-
ally defined function zlf]. Now, we have the isomorphism of mixed Hodge modules
jl.*l(jJr(M’)) = J,-+(Jl.61M’), and so the Hodge filtration on j*(j; (M) can be
computed using Remark 4.4.

As M’ isaquasi-coherent Oy, -module, we have the identification J% M) = M/Zi ,
and the Hodge filtration is given by F), Jg; (M) = (Fp M');;. Let V* J;. (M) be the

V -filtration along z; 1, then Remark 4.4 tells us

FpdisM) = ) 0% (VO N Ji((Fpg M), (19)

q>0

Thus, it will be worthwhile to study this V-filtration. For this, note that by the
change of coordinates formula, using (z1, ..., z) and (Zi_l, ZlZi_l, cee z,zi_l) on
U;o, we have

— r .
where 6 = ) =120z
Given any % € M, we see that
Z; i
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SO

(¢ 191 =+ 1) (%) _ -0+ —kk — D).

Z:

i Zj

1

In this way, we see that the module M’Zi (and its pushforward J,'*(./\/l;,)) is mon-

odromic along the single coordinate z; L

r+k+1-2
gry

3
%

r+k+1*)\.M
V.J,‘*(le») = @ (Z grv—k> .

A>e \keZ i

The Ath monodromic piece is givenby > ;. M. Hence, by M.5, we know

1

In particular,

r+k+1_)\.M
VOJi*(MZi) — @ (Z ng—k> (20)

>0 \keZ Zj

This gives us the following
me FygrhM, x<r+1 = ? € Fplin(Ms). @1)

Indeed, x < r + 1 implies x = r + 0+ 1 — A for some A > 0, and so T €
VOJi*(M;i), then the claim follows from Formula 19, with ¢ = 0.

4.2.2 Proof of the Theorem

Recall that the strategy is to use Theorem 3.1 and Saito’s strictness result Theorem
2.11 to obtain the desired vanishing. The idea is that the Koszul-like complex naturally
arises as the underlying complex of Dz-modules when applying 7 to a D7, x-module.
If it were the case that Saito’s strictness theorem told us that

Fy(DR7,x/7(Sp(M))

9, a. 0, -
- {F,,Sp(/\/l) S FpouSpM el 5 .05 FopSpM) @ QA,}

was a strict complex, then we would be done. This is because if a complex of filtered
modules is exact (which we know to be true for our complex by Theorem 3.1) and
strict, then the complex must be filtered acyclic.

This is too good to be true, though, because Theorem 3.1 gives us acyclicity for all
x # 0, whereas in the case r = 1, we must restrict to x < 0 for the filtered acyclicity
to hold as in the definition of quasi-unipotent and regular.
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The reason Saito’s result does not apply to the map = is that it is not projective.
However, using the natural compactification j : Z x A" — Z x P” introduced in this
section, and the map p : Z x P" — Z, we can still make use of Saito’s result. Indeed,
mw = po j,soby [17] (4.3.2) we have my = p4 ji. In particular, the complex of
D-modules underlying o (j(Sp(M)) is DRr,x,z (Sp(M)). To make notation less
cumbersome, let Sp(M) =: M.

As j is the inclusion of the complement of a divisor, j; sends mixed Hodge modules
on Z x A" to mixed Hodge modules on Z x P”. To compute p (ji(M)), we use the
relative de Rham complex of Z x P” over Z for the module j (M), see [8] Proposi-
tion 1.5.28. This is a complex in degrees —r, ..., 0 denoted by DRz pr/z (j+ (M),
explicitly, it is

Js M) ®0p ¢*(Op) = ju(M) ® ¢*(Q2p) = - = ju(M)) ®0 ¢* (wpr),

where g : Z x P” — P’ is the other projection. This is a filtered complex, with pth
filtered piece given by

FpjrM) ®0 ¢*(Opr) = Fpi1j+ (M) @0 ¢*(2hr)
= o= Fpir jr (M) ®0 ¢ (wpr).

Saito’s result on the strictness of the direct image for a projective morphism tells
us that we have the following identification

FoHE (M) = R* p(FJDR zpr )7 (j+ M) <> R¥p (DR zxpr /7 (ji (M)
= Hkﬂ'+ (M/)

To compute these higher direct image sheaves, we use the standard open cover
of Z x P” introduced in this section to construct the Cech complex. Namely, fix

coordinates [fy : --- : t,Jon P and let j : Z x A" — Z x P" be the inclusion of
{to # 0}. Also, denote j; : {t; # 0} — Z x P’ the inclusion of the other standard
open subsets. We have an isomorphism U; := {f; # 0} = Z x A”, with coordinates
gz ) on A

Foranyip < --- < ig,let Uiyiy...i, = UiyNU; M- -ﬂUiq.The ordering is important
for keeping track of signs in the Cech complex.
For any sheaf Fon Z x P, letC4 (F) = ]_[i0<“_<l-q Tig..igx(F |Ui0il-~iq ). This forms

a chain complex of sheaves by the differential defined (on local sections) as

q+1

§:C1F) — C1N P 6@ig.oigsr = Y (—Diey, 7

ediedgyl”
i=0

Denote Tig.iy i (F [Uygsy..0,) 0Y Gy ()
If we have a bounded below complex of sheaves (F°, d), then we form the double
complex C*(F*) and take its associated total complex, which we call the Cech complex
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for F°. The nth term of this complex is

[T v,

p+q=n

and the differential is § + (—1)9d. Now, because U,'O.__iq — Z is affine for all iy <

. < iy, we know that, if each F* is quasi-coherent on Z x P”, the ith cohomology
of the Cech complex computes R p,(F*). By abuse of notation, we will drop the 7,
with the understanding that all sheaves are on Z.

Let T* be the Cech complex associated to DRzxpr/z (j+ (M), and let T[j be the

Cech complex associated to FDRzxpr;z( Jj+(M”)). Using our notation,
CO(FpDRzxpr/z(j1+(M")) = FyDRyy z(M"),
andforO0 <i <r,

CYH(FyDRzxpr)z(j4 (M) = j (FyDRzxpryz(jy (M)
= {iji*(MZi) ®0 Opr = Fpi1Jix(Mz) ®0 Q};; == FpardinMy) ®0 “’Af}'

Saito’s strictness result Theorem 2.11 tells us that the map Hk(Tl;) — HKT*)
is injective for all k € Z. Also, by the functoriality of pushforward of mixed Hodge
modules, 7y = p4 o j4, and so we have a quasi-isomorphism of complexes of Dz-
modules

DRy, z(M') = T*.

We would like to make this explicit using the Cech complex. Note that any map
of complexes ¥ : DRy, z(M’) — T* cannot land solely in CY(DRzxpr/z(M’)).
Indeed, the way the differential of the Cech complex is defined, whatever the target
element is would have to restrict to 0 on U;p, which is not true in general.

We can work around this by introducing for any u € M’ ® Qlf% elements u|y;, €

Tis(M)) @ Q.

Lemma4.5 Foranyp e M' ® Q]f‘a, there is a well-defined j; € M, ® Qg? such
that

M'Ui() = (,ui)lU,'()'

Proof We prove the claim for a simple tensor u = m ® dzj, where |I| = k is a
subset of {1,...,r}. Then @ = dz; is a holomorphic k-form on Af, and we can
restrict to the subset {z; # 0}, which has two systems of coordinates: (z1, ..., z,) and
G hazg . Lng ).
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The differential forms change as

dzi =d((z;H™h = —Z2dz ),
dzj =d((zjz; )z H™) = 2d(zjz7 ") — zjzd 7).

Hence, we can write w|y,, = Zfﬂ(a)i)lyio, where w; is a holomorphic k-form on
Al
, FHm . . . .
Then set i’ := “5— ® w;. It is clear that this satisfies the desired property. O

Now, using this we can define a map vk M ® Qk, — Co(j+(/\/l/) R QK C
T~k on simple tensors by m @ w — (m ® w, (m @ )|y;)i_,. By definition
of the differential in the Cech complex, this gives a morphism of complexes v :
DRy, z(M') — T*.

Now, fix p € Z, 1 € Q and define B, ) = EBXS)» Fpgr)‘(,/\/l. We can consider the
Koszul-like complex B;L 5> defined as

Or 0 0
Bp,k - Bp+l,k—l QLA — ... — Bp-l—r,A—r Q wAr.

Now, we can consider the commutative square of complexes

B, _. — DRy,,z(M")

p.<r

iz v

I, —— T°

Note that by the proof of Lemma 4.5, we know v, does actually land in T, by
Formula (21). Indeed, if we start with m @ w withm € F,grX M with x < r —k, then

k+1

Z'm € Fpgrt™ ! Mand x +k+1 < r+1. This tells us that “ € F), Jj, (M),
k+1

s0 4 lm Qw; € Tl’,‘, as desired.

id
p,<r

The obvious map 77 — B mapping to the C’é part of the Cech tuple, and then
projecting to the B,k <k ® Q]fv part, gives a splitting of the left hand map. This
splitting is preserved under taking cohomology, so the map H* (B;,O) — H* (Tp) s
injective for all k. Also, by strictness, the map Hk(TI;) — Hk(T') is injective.

Hence, the map HE Bp,<r) — H* (DRyy,z (M")) is injective. By decomposing
along the € e decomposition, this gives that the inclusion of Koszul-like complexes

_ _ 9, - — — 9, 9 - —
Fpgr‘f, l+r IM 1 @;:1 Fp_ng({(/ +1)+r lM N 1 Fp+rgr(\x/ C+r)+r IM

l 1 !

_ _ 9, - — — 9, 9, — —
gr‘{‘/ O+r IM a @;:1 gr‘:/ +1)+r IM a i grlf/ U+r)+r IM

induces injections on cohomology.
By Theorem 3.1, this completes the proof.
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Note that, this also proves the filtered acyclicity of B* (M) for @ > 0 by using the
computation of the Hodge filtration on the Fourier transform of Sp(M) (which is a
monodromic mixed Hodge module) in the final section of this paper. The result on the
Hodge filtration only uses the filtered acyclicity of C*(M) and the formula for i* in
terms of the V -filtration along Z.

5 Applications of Theorem 1.1

Here we collect some applications of the theorem on filtered acyclicity of the Koszul-
like complexes coming from Theorem 1.1.

The first of these applications is that we can give a Hodge-theoretic proof of Skoda’s
theorem.

Corollary 5.1 (Skoda) Let a be a coherent ideal of Ox generated by r elements and
J(X, a©) be the multiplier ideal of exponent c. Then we have

J(X, a¢) = aJ(X,a"h

foranyc >r.

Proof Let fi, f2, ..., fr be the generators of a and let ¢ : X — X x A’ be the graph
of f1,..., f,. Then by [2, Theorem 1], the Ox-module F, V*¢,, Oy is the multiplier
ideal J(X, a¢) for ¢ > 0 sufficiently small where V*iy Oy is the V-filtration along
X x {0}. Note that we use a different convention from [2]. The statement follows from
the exactness of A~ (1, Ox) when ¢ > r by Theorem 1.1. i

Remark 5.2 One can also prove that J(X, a‘) = aJ(X, a"_l) for ¢ > dim X by
making use of a reduction ¢ of a as in [11, Corollary 9.6.17, Example 9.6.19]. More
precisely, we can find a subideal ¢ of a locally generated by at most dim X many
elements such that ¢ and a have the same integral closure and therefore J(X, ¢¢) =
J(X, a).

Next, we prove an analogue of [17, Prop. 3.2.2, Rem. 3.2.3] which gives information
about the Hodge filtration for filtered D-modules which satisfy the filtered acyclicity
of the Koszul-like complexes.

We will make use of the following useful criterion for when an element m € V> M
liesin FyM.As X -7 = U;zl {zi # 0}, thisis an analogue of [15, Formula (3.2.2.1)].

Proposition 5.3 Assume m € VO M. Then m e Fp M if and only if for some £ > 0,
2“m € Fy M for all |a| = L. In other words,

FpV>OM — V>0M N (J*]*FPM)a

where the right hand side are those elements in V>0 M which, under the canonical
map M — H(j. j*M) land in j,j* Fp M.
If, moreover, the map (gr(‘)//\/l, F) RN 1 (gr{,/\/l, F) is strictly injective, then

F,VOM = VOMN (juj*FpM).
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Proof The “only if” part is clear, as z; preserves the Hodge filtration.

For the converse, induce on £. The base case £ = 0 is obvious. For £ > 0, assume
“m € FyM for all |¢| = ¢, and inductively, that if m’ is any element such that
Pm' € FyMforall |B| = ¢ — 1, thenm’ € F, M.

Well, fix B with |8| = £ — 1. Then |8 + ¢;| = £, so we know z; (zPm) € Fy M for
all1 <i <r.Assume z%m ¢ FyM for some g > p.

Look at the complex gr[j A-0(M), which is acyclic by Theorem 1.1. Then z#m
defines an element in the leftmost module of this complex which mapsto 0, as p < q.
Hence, by acyclicity, zm = 0 in grg ,s0zPm € F,_1 M. Repeating in this way, we
conclude that z8m € F »M. As this is true for all 8 with |8| = £ — 1, the inductive
hypothesis implies m € F, M. O

Now, we give the analogue of [15, Formula (3.2.2.2)], which gives a description of
the Hodge filtration of a mixed Hodge module in terms of the V-filtration along Z.

Proposition 5.4 Let (M, F) be a filtered Dx -module underlying a mixed Hodge mod-
ule on X. Let V* M be the V-filtration along the smooth subvariety Z. Then for all
pEZL,

FyM =" 9%(Fpja)VOM).

aeN”

Moreover, if the map

Derh M. FIID 5 (@) M, F)

i=1

is strictly surjective, then

FoM =Y 0%(Fp_ja)VOM).

aeN”

Proof We argue the first claim, the second one is proved in exactly the same way.
Define a second filtration by

FyM =" 0% (Fpjo) VOM).

aeN"

The claim is that F, M = F, M. By definition, F, M < F, M. Note that it is
clear that F 1’, VOIM =F » VOM. Indeed, the left hand side is contained in the right,
and by taking « = 0 in the definition of F [/,M we get the other containment.

Now, we prove that F, VXM C F;,M forall p € Z and x < 0 by descending
induction (which works because the V-filtration is discrete). Note that, by Theorem
1.1, we know

,
FpVIM =0, (Fp VI M) + F, VM,

i=1
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because the rightmost cohomology vanishes in F,C, (M).
Now, by definition of Fl’,/\/l, we know 9, FI’,M C FI’,HM.
Hence, if inductively we know F,V>XM C F 1’,./\/1 for all p € Z, we get

F,VXM C F[/,./\/l proving the claim. O

Remark 5.5 The previous lemmas are not used in the proof of Theorem 1.2. As a
consequence of this theorem, we can remove the adjective “strictly” in the second
claim of both Propositions 5.3 and 5.4, because the morphisms appearing in a mixed
Hodge complex are strict with respect to the Hodge filtration (see the remarks after
[18, Def. 2.2]).

As a first application, assume A" = H°(j, j*(M)) for j : X —Z — X the inclusion
of the complement of Z. Then by Lemma 3.3, we see that the map in the statement of
Proposition 5.3 is automatically injective, and hence we get the formula

F[JNZ Z 8?(‘/0/\/0 j*(j*(Fp—la\M)))'

aeN"

Secondly, we get a formula for the Hodge filtration of any filtered D-module (M, F)
underlying a mixed Hodge module with strict support not contained in Z, as follows:
by definition, the hypotheses of Propositions 5.3 and 5.4 are satisfied, and so we have

FpM =" 02(VOMN ju(G* (Fpojo M)

aeN"

Finally, we study the Hodge filtration of monodromic mixed Hodge modules on
E = X x A”. The result is a generalization to r > 1 of [19, Thm. 2.2]. We first record
an interesting application of the fact from loc. cit. that N = €5 yeQZdz —x+1) =0
on a pure monodromic Hodge module, when r = 1.

Corollary 5.6 Let M be a Dg-module underlying a pure, monodromic Hodge module
on a vector bundle E = X x A! of rank 1. Then

2 MO MY and 6. MY - MO
are both 0.

Proof By the last statement in [19, Prop 2.12], we know N = 0. In particular, N M=
(zBZ)/\/l1 = 0. From this, we see that im(d, : M 5> MO Cker(z: MO > M.
But M admits a decomposition by strict support, and so we know

MO = ¢\ M = ker (var) ® im(can) = ker (z) ® im(?.),

and since this sum is direct, this implies im(d;) = 0 and ker (z) = MO, proving the
claim. O

Now, we prove an analogue of the vanishing N = 0 forr > 1.
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Proposition 5.7 Let M be a Dg-module underlying a monodromic polarizable pure
Hodge module M € MHM(E). Then

MX =ker (0 — x +r),

ie, N = @XGQ(Q — x +r) is identically 0 on M.

Proof As M is a polarizable Hodge module, its underlying Dg-module M is semi-
simple. Indeed, on some locally closed subset, it is a polarizable variation of Hodge
structure V, whose underlying local system is semisimple. By Saito’s theory, M =
Jix(V), and since ji, preserves simple D-modules, the proof is complete.

Now, each simple direct summand of M is monodromic, with operator N =
P er(9 — X + r). As this is nilpotent, it cannot be an isomorphism, and so it must
be 0 on each simple summand. In particular, the operator is 0 on M. O

Finally, we prove that the Hodge filtration on a monodromic mixed Hodge module
decomposes along the monodromic decomposition. This will be important in the study
of the Fourier transform for monodromic Hodge modules later on.

Theorem 5.8 Let (M, F,) be a filtered Dg-module underlying a monodromic mixed
Hodge module on E = X x A", with decomposition M = ®X€Q MX. Then

FyM =@ FyMN M
x€Q

forall p € Z.

Proof The key observation is that, on {z; # 0}, there are two sets of coordinates:
(z1,...,2r) and (Z,-_l, ZlZi_l, ...,ZrZi_l). The change of coordinates formula says

that, if @ = Z;‘:l zjd;;, then

32;1 = —0.

Thus, if we look at M, = j*(M), where j; : {z; # 0} C E is the open immersion,

then
m O —0)m a1 [m € —-0)m
9 — =, Z: 3 . - = 5
(5) =5 e (5) -5

and so M, is monodromic along z1, ..., z, and along the single coordinate z;l . We
already saw this in the previous section. When we apply j to this module, the resulting
module is monodromic in both senses, and so ji«(j*(M)) has Hodge filtration which
decomposes by [19].

Now, we have a canonical morphism M — @i_; ji«(j*(M)) of mixed Hodge
modules, whose kernel K is supported on the zero section. Write this as an exact
sequence

) Birkhauser



50 Page460f76 Q. Chen, B. Dirks

0= K - M— @B ji(jF(M)).
i=1

Applying the exact (by Lemma 2.10) functor F ,,V>0 to this sequence, and using
the fact that V=K = 0, we get an injection

FpVOM — P Fp V=0 (G (M).

i=1

In particular, if m = Y, _gmy € F,V>°M, then we conclude that m, € F,M.

Ifm=mo+ ZX>0 my € FyM, then z;m = z;mg + ZX>O ZiMmy, € FpV>OM,
and so we know each piece lies in F, M. In particular, z;m, € F,M for all x >
0,1 <i < r, so again by filtered acylicity of AX (M), this implies m, € F, M for
all x > 0. Finally, mo=m — _,_,my € F,M, too.

Now, we are able to proceed by descending induction on 8 < 0. Let m = mg +
Zx>ﬁ my € FpyM forsome B < 0. Thenm € Fpgrf,./\/l, so by filtered acyclicity of
Cp(M), there exists 1, ..., n, € F,VFH I M and e € F,V># M such that

r
m = ZBZi(ni)+Ev

i=1

by assumption, € and n; for all i have their homogeneous pieces lying in F, (resp.
Fp,_1), so m has its homogeneous pieces lying in £, too. O

6 The restriction functors

In this section we prove Theorem 1.2 and it is more convenient to work with right
D-modules. Recall that the convention for right D-modules is that the V -filtration be
indexed increasingly. The proof is split into three parts: Theorem 6.1, Theorems 6.6
and 6.9. For simplicity, we denote by Bz(M) = By(M) and Cz(M) = Co(M) to
emphasize the V -filtration is along the smooth subvariety Z. If the V-filtration is clear
from the context, we will simply use the notation B(M) or C(M).

6.1 Mixed Hodge complex

We first prove that for M underlying a mixed Hodge module the complex B(M)
together with W induced by the relative monodromy filtration is a mixed Hodge
complex. A mixed Hodge complex, roughly speaking, is a bifiltered complex of D-
modules (C, F, W), where F is a decreasing “Hodge” filtration by O-submodules and
W is an increasing “weight” filtration by D-submodules with Q-structure (Cq, Wq).
These data should satisfy DR(C, W) =~ (Cq, Wq) ®q C and that
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gr (C. F) ~ P H e} (C. F)I-]
Lel

in the derived category of filtered D-modules. Moreover, (H* ngVC , F) together with
the induced Q-structure underlies a polarizable Hodge module of weight k + ¢ for any
k and ¢. Theorem 1.2(a) is restated as follows:

Theorem 6.1 Let M = (M, F, L, K) be a mixed Hodge module on a smooth variety
X as in Theorem 1.2 and let Z be a smooth subvariety of X. Then Bz (M) together
with the relative monodromy filtration is a mixed Hodge complex.

Proof We first remark that B(M) carries a Q-structure. Indeed, by Theorem 3.1
DRz(B(M)) ~DRz(i'M) ~i'K ®q C.

In fact, if W is the filtration on B(M) induced by the monodromy filtration on each
gry M relative to grY L, M then Wy B(M) also carries a Q-structure. This is because

DRz (i WeSp(M)) ~ i, WiSp(K) ®q C, iz : Z — TzX

and i 'Z WiSp(M) =~ Wi B(M) by the fact that the retraction constructed in the proof
of Theorem 3.1 also preserves the filtration W B(M). Recall that Sp(M) is the spe-
cialization of M introduced in 2.4.

Pure case We first prove the case when (M, F, K) is a polarizable Hodge module
of weight w. If M is supported on Z then B(M) =~ i;.gry M in the (F, W)-bifiltered
category and therefore, the theorem follows easily. Now assume that the support of
M is not contained in Z. Let 7 : X — X be the blow up along Z and M be the
minimal extension of M to X from X — E = X — Z. Then we can factor the blow up
into the graph embedding followed by the smooth projection

Xy Xxx s x

The proof consists of two steps:
Step 1 We show that B -1 (ir M) is a mixed Hodge complex.

In fact, the complex B/p:lz (in+ﬂ) together with the monodromy filtration is
quasi-isomorphic to Bg (M) locally, where E is the exceptional divisor of 7. Note

that, although E is not defined by a global function, we can make the complex Bg (//\7)
well-defined by

gy M® O(=E)|g — o’ M.

As we can see in the proof of Theorem 4.1: the formula (15) is compatible with the
monodromy filtration, i.e.

FogVerlin M= Z Z Fg,kngng_kg+Magza§‘3 R
k>0 ar+az+---ar=k
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But since Bg (ﬂ) is a mixed Hodge complex, and this property (like the property
of being a Hodge module) is local, it follows that B -1, (in+ﬂ) is also a mixed
Hodge complex. Due to the decomposition theorem of polarizable Hodge modules,
the module M is a summand of H' p.,i = +M. Therefore, we reduce the proof to the
following.

Step 2 We prove that if B -1 (M) is a mixed Hodge complex for a polarizable
Hodge module M of weight w on Y x X, where p : ¥ x X — X is the second pro-
jection proper over the support of M, then Bz (HK p+./\/l) is a mixed Hodge complex
of weight w + £ for any ¢ € Z.

In fact, we have

pi (2 Bz M) = @ ps (Hiar By (M) (i1
i€l
~ P Hps (H"gr,gVquZ(M)) =i — ]

i,jeZ

in the derived category of filtered D-modules. On the other hand, we also have the
decomposition in the derived category of filtered D-modules by Lemma 2.7(d):

pi (e Byriz(M) = @D Fiel—e),
LeZ

; _ 4 W i . . .
where 7} , = H" pigry B;,lz(/\/l). This implies

Fre =~ EPH Fiol-il (22)
ieZ

and ‘H! F ¢ is a polarizable Hodge module of weight w 4 k 4 i + £. For each k we
have a weight spectral sequence

Ey () =H™ pygr BE (M) = EQJ (k) = grH ™ puBE (M)

i

so that E 11] k) = N Note that by the bistrictness proved in [2], we have

—i,itj"
ES (k) = gr™ B (H'H py M.

We gather some facts deduced from the deformation to the normal bundle argument
(Lemma 2.7):

(al) the spectral sequence degenerates at the second page;
(b) the induced filtration WH'*/ p,, Bf} ~1,(M) is the monodromy filtration on

itj itj )
H po Bl M) = (e M peM) ™
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(c) lastly, E'zj (k) is a summand of E llj (k) in the category of filtered D-modules.

Therefore, the differential d; on the first page induces a double complex

di d; dy dy
s — Frgto—1 = Fre = Fot 41 — -+ .

Let T be the total complex of this double complex. Then by (22) and semisimplicity,
T decomposes into

d . d . d - d
S { = H i1 = H e = H Fioropn = - { [=i]
: . (23)
~ @D H, H Fiavral—i — j]
i,J
in the derived category of filtered D-modules. On the other hand, by the claim (c)
above, we also have another decomposition in the derived category:

T ~ @ Hﬂjil Fk—o,ﬁ—&-o[_jl
J

Since Hil}_"i"”' = ngV_ jBZ(HHf p+M), the decomposition (23) implies
ngV_ jBz (H** p, M) decomposes into the direct sum of its cohomology in the
derived category of filtered D-modules and the cohomology Higr,‘c}v Bz(H py M)
is of weight w + £ + k + i. It is easy to see that the decomposition is compatible with

Q-structures and therefore, we conclude the proof.
Mixed case By Lemma 6.2 below, there exists a functorial splitting

gtV ey M~ gtV erlor¥ M,

with respect to 1, t2, . . ., t, which implies gr’¥ B(M) ~ gr" B(gr’ M). Therefore,
we reduce the proof to the case where M underlies a pure Hodge module. O

We collect some corollaries of Deligne’s Theorem which we have already applied
in the previous theorem and will apply these results in the proof of Theorem 6.9. The
proof is based on [17, 1.5] and a theorem of Deligne (Theorem 6.12). For the purpose
of the exposition, we postpone the proof to the end of this section.

Lemma 6.2 Let M, M’ be mixed Hodge modules on a smooth variety X and V be
the V-filtration along a smooth subvariety Z. Let L be the filtration on grx induced
by the weight filtration and W = W (0 — «, L) be the relative monodromy filtration
on grx . Then we have:

(a) For any local defining equation f of Z, the induced filtered morphism
£V e M, F) — @ erl M, F)

Vv
a

W oL oV

splitsinto f : gr¥agrlegr¥ M — grWer gr,_ M.
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(b) For any local vector fields & normal to Z, the induced filtered morphism
£: (e gryg M, F) — (gr"gr) M, F[-1])
splits into & : (gr"W gr ng/\/l F)— (nggrLngJrl , F[—1)).

© If T : M — M is a morphism of mixed Hodge modules, then the filtered
morphism

eV (ngngM, F) — (ngngM/, F)

splits into gtV T : (grWart gty M, F) — (erWgrt gty M', F).

Now we turn to the complex C(M). The filtration W;C (M) also carries a Q-
structure. In fact, it follows from Proposition 3.7 and the fact that the retraction
constructed in Theorem 3.1 respects the filtration W that

DRz(WiC(M)) ~ DRz (p4 WiSp(M)) = p, Wi SpK. ®q C

where p : Tz X — Z is the projection. Therefore, we can simply modify the proof of
Theorem 6.1 to prove the following.

Theorem 6.3 Let (M, F, L, K) be a mixed Hodge module on a smooth variety X
and Z is a smooth subvariety. Then Cz(M) together with the relative monodromy
filtration is also a mixed Hodge complex.

By a formal argument Lemma 6.5 of Deligne in [6] on the mixed Hodge complexes
(see also [18, Proposition 2.3]), we deduce the following by noting that a mixed Hodge
complex satisfies all three conditions in Lemma 6.5:

Corollary 6.4 The Hodge spectral sequences of B(M) and C (M) degenerate at the
first page while the weight spectral sequences degenerate at the second page.

Lemma 6.5 For a complex (C, F) of filtered Dx-modules with a finite increasing
weight filtration W and a constructible complex (Cq, Wq) over Q such that

(@ DRx(C. W) = (Co, Wo) 89 C;

(b) each cohomology module ( (gr C),PH* (gr Co), F ) underlies a polarizable
Hodge module of weight k + € and

(c) the Hodge filtration F is strict on gr;, WC forallk € Z.

then the Hodge spectral sequence degenerates at the first page and the weight spectral
sequence degenerates at the second page.

Proof Forall p,q € Z, the term E{*? = HP"gr/V C of the first page of the weight
spectral sequence associated to W is a polarizable Hodge module of weight g. The
differential d; of the first page of the spectral sequence is a morphism of polarizable
Hodge modules, since it is compatible with F' and the Q-structure. It follows that
EFP? as the cohomology of d,_ is also a polarizable Hodge module of weight g for
all » > 1. But then d, must vanish if » > 2 because d, : EP'Y — EPTH4=r+1 g
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a morphism of polarizable Hodge modules of different weights when » > 2. This
proves that the weight spectral sequence degenerates at the second page. In particular,
(Hz (C), F) underlies a weakly mixed Hodge module.

As for the Hodge spectral sequence, the degeneration at the first page is equivalent
to the Hodge filtration on C being strict, i.e. the canonical maps HEF;C) - HYO)
are injective for all i and ¢. We prove this by induction on the length of the weight
filtration W. If there is some k that gr,‘;VC = C then by the condition (¢) we obtain
the base case. Assume that W C = C and the Hodge filtration is strict on W;_1C. By
the short exact sequence

0— Wi_1C - W;C — gr,fVC —0
we get a commutative diagram between two exact sequences:

H W (Figr ©) — HUF Wi €) — HUF;WiC) — HY(Figr)Y ©) — HTH(F Wit ©)

{ ! l [ !

H @ ©) —5— HE W1 ©) —— HEWkC) —— Higr) ©) —— H T (Wimy ©)

We finish the proof a diagram chase. Assume m € HE(F;WiC) is sent to 0 in
HZ(WkC ). Then the image of m in HE (F; ngV C) must vanish since, by the con-
dition (c), ’HK(F,-gr,fVC) — He(gr,‘f/C) is injective. By exactness, there is an
element m’ € H'(F;Wy_C) whose image is m. Let m” be the image of m’ in
HE(Wi_1C). Then there is i € Hl_l(gr,ZVC) whose image is m”, as m” is sent
to zero by HZ(Wk_lC) — HE(W/CC). We will conclude the proof if we can find
m e Hf_l(FingV C) such that m + m’ because this will imply m = 0. This is done
by noticing that « is a morphism of graded polarizable weakly mixed Hodge modules
since « preserves the Hodge filtration and the Q-structure and also ¢! (gr,?/ C)isof
weight k 4+ ¢ — 1 which is the top weight of H¢ (Wr_1C). It follows that « is strict and
there is m € Hg_l(Figr,ZVC) whose image is m’. O

6.2 Comparison to the restriction functors

The goal of this part is to prove Theorem 1.2(b):

Theorem 6.6 If (M, F) is a graded polarizable mixed Hodge module then the complex
B(M) (resp. C(M)) is isomorphic to (i'M, F) (resp. (i*M, F)) in the derived
category of filtered D-modules with Q-structures.

Before starting the proof, we give a lemma comparing Cech complexes. Let Z; be
the hypersurface defined by #; = 0. Then the complex i,i'M can be expressed by the
Cech complex

KM,Zi,Z2,....2,) =M —> @M(*ZQ—) RN M(*ZZ,)} (24)
i=1

i=1
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placed in degrees O, 1, ..., r where the morphism is induced by natural morphisms
N — N(xZ;) for any mixed Hodge module N on X. Similarly, the complex ii*M
can be expressed by the Cech complex (see the proof of [17, Prop. 2.19])

KM, Zy. Zr ... Z)) = [M (!Zzi) s P Mz - M} 25)
i=1

i=1

placed in degree —r, —r 4 1, ..., 0, where the morphism is induced by the natural
morphisms N (!Z;) — N for any mixed Hodge module N on X. Recall that N(!D) =
D(D(N )(x D)) for a hypersurface D, where D is duality for mixed Hodge modules. By
definition, this is j;j*(N), where j : X — Z — X is the inclusion of the complement
of Z.

Lemma6.7 Let y : X — X x A" be the graph embedding of f and iy : H =
X x {0} = X x A" be the closed embedding of the central fiber. Then we have natural
isomorphisms

(1) v+KWM,Zy,22,....Z2,) =ins KM, Zy,Z2,...,Z,) and
2) vy K\M, Z1,2s,...,2,) = ig  Ki\(M, 21,2, ..., Z;)

in DP (MHM(X x A")).
Proof of the lemma Let M = M X Qgr [r] be the pullback of M to X x A”. Denote by

D;j be the divisor on X x A" defined by f; —t; =0for j =1,2,...,r and denote
by H; be the divisor on X x A" defined by #; = 0. Then we have

K (M,D1,Ds,...,D;) = ysM(—r) and K (M, H, Ha, .., Hy) = ipg M(—r),
recalling that (—r) is the Tate twist. It follows that

K(M.Dy.Dy.....D; Hi. Hy, ... H;) = K (K (M. Dy, Dy.....Dy) . Hy. Hy, ... Hy)
~ K(yyM(=r), H\, Hy, ..., Hy)
>~y KM(—r), Zy, 2>, ..., Z,).

On the other hand,

K(M,D1, Dy, ..., Dy, Hi, Hy, ..., H) =K (K (M, Hy, Hp, ..., H), D\, Ds,..., D)
>~ K(igyM(=r), D1, D2, ..., D;)
~ig  KM(-r), 21,22, ..., Z;).

We conclude the first statement of the lemma by undoing the Tate twist. The second
statement is similar and, we leave it to the reader.

Proof of the Theorem Note that the Q-structure has already been handled in Theo-
rem 6.1.
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1. We first deal with the complex B(M). As above, the functor i, i'M can be
defined by the Cech complex in the derived category of mixed Hodge modules:

KM)=KWM.Z1, . 2) =i M —> @PMEZ) > - —> MY Zi)
i=1
(26)

placed in degrees 0, 1,...,r. Moreover, the complex K (M) is isomorphic to
iy gr(‘)/ K (M) in the derived category of (F, W)-bifiltered D-modules by Lemma 6.7.
Consider the double complex BK (M):

o 7 p— U V)

l : l

B mr MxZi) =2 @ (@ MEZ)) —5 - 2 @ eV, MxZi)
! ! !
! ! !

r 8 r ;8 8- r
gy MY Z) = (@ MY Z) — - S g MY Z))

27)

whose uppermost row is BK?(M) = B(M) and leftmost column is B°K (M) =
gr(‘)/ K (M). The total complex of BK (M) is (F, W)-bifiltered quasi-isomorphic to
gr(‘)/ K (M) because grx K (M) is (F, W)-bifiltered acyclic for « < 0 and Lemma 2.8.
On the other hand, the total complex of BK (M) is also F-filtered quasi-isomorphic to
B(M) because each row BK!(M) is F-filtered acyclic when i # 0 by Corollary 6.4
and Theorem 3.6. We conclude that gr(‘)/ K (M) and B(M) are isomorphic in the
derived category of F-filtered Dz-modules. But gr(‘)/ K(M)is (F, W)-bifiltered quasi-
isomorphic to i'(M, F, W). We conclude the proof of this part.

2. Next, we deal with the complex C(M). The functor i;i* M can be computed
by the the Cech complex

Ky(M) = {M <!ZZ,-) - > PMz) > M (28)
i=l

i=1

placed in degrees —r, —r + 1, ..., 0. Moreover, the complex K(M) is isomorphic to
iy gr(‘)/ K (M) in the derived category of (F, W)-bifiltered D-modules by Lemma 6.7.
Consider the double complex C K(M)
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5y Fi . 5
gr¥, M S (@Y M) ————— e M

! T 1 T

e, M0z 2 B gy (e MOZ0Y s @ e M(Z)
I ] 1 1
T T 7 7

VMO Z) S 2 (Y VMY Z)) LN ey MY Zi)

(29)
whose uppermost row is CK!O(M) = C(M) and leftmost column is COK (M) =
gr(‘)/ K (M). The total complex of C Ky(M) is (F, W)-bifiltered quasi-isomorphic to
gr0 K\ (M) because ngKv (M) is (F, W)-bifiltered acyclic for « < 0. On the other
hand, the total complex of CK,(M) is also F-filtered quasi-isomorphic to C(K)
because each row CK ,’ (M) is F-filtered acyclic when i # 0 because of Corollary 6.4
and Theorem 3.6. We conclude that grg K\(M) and C (M) are isomorphic in the
derived category of F-filtered Dz-modules. Finally, grO K1(M) is bifiltered quasi-
isomorphic to i*(M, F, W). We conclude the proof of this part.

Remark 6.8 1f one is just interested in the isomorphisms
(B(M), F) = (i'M, F) and (C(M), F) = (i*M, F)

in the derived category of filtered D-modules, there is a way to bypass mixed Hodge
complexes as are used in Theorem 6.1 and Theorem 6.3. To prove (B(M), F) =~
(i'M, F), we just need to show that (B(M(*Z ), F) is filtered acyclic for any Z; as
in the proof Theorem 6.6. For this we con51derM(*Z +E) onthe blow-up 7 X > X
along Z where M is the minimal extension of MI X—Z> Z is the strict transform of
Z; and E is the exceptional divisor. Note that 71+M(>|<Z + E) = M(xZ;). It follows
from the computatig\n in tkle proof of Theorem 4.1 that B (i, M (*Z- + E)) is filtered
acyclic where i, : X — X x X is the graph embedding because of the fact that one
of the Koszul differentials is filtered bijective. We can conclude by applying p, to
B(iz, M (*Z + E)) and the bistrictness result for smooth, projective morphisms. The
same idea works for the filtered acyclicity of (C(M(xZ;)), F).

6.3 Finishing the proof

We now prove the last part of Theorem 1.2:

Theorem 6.9 If M is a graded polarizable mixed Hodge module and W is the filtration

on B(M) and C (M) induced by the relative monodromy filtration on grg M, then

the quasi-isomorphisms in Theorem 6.6 induce isomorphisms on the cohomologies:
g H'BOM) ~ gl MM and grl HTCM) = i)Y ;Ht i M

as polarizable Hodge modules for € > 0.
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Proof 1. We first focus on the complex B(M). We shall prove the following as a
preparation: O

Lemma 6.10 The complex Hagrk BK (M) is exact for £ # 0 and any k € Z and the
natural inclusion

Higr} BK (M) = kergr)’ 8o — gr)) gry) K(M)
is a filtered quasi-isomorphism, where BK (M) is defined in (27).

Proof of the lemma We first prove that the inclusion
ker gr'8p — grery K(M)

is a bifiltered quasi-isomorphism. By Lemma 6.2, the double complex gr" BK (M)
decomposes into

gVerlgM —— (@ValgV M)y —— - —— gWarkaV M

L ! !

D eV ertard Mxz) » @l @V ertgy MEZ) > - » @i eV erkgrl MxZ)

+ b +
! ! !

nggrLgr(‘)/M(* i1 Zi) > (nggrLgrle(* U Z)) v arWarlgr’ MEY T Zi)

where L is the filtration induced by the weight filtration on K (M). Since the category
of polarizable Hodge modules on an algebraic variety is semisimple, the cohomology
HEgrl K (M) is a summand of gr K¢(M). It follows that grwgrO HigrE K (M) is
contained in H‘ker gr’ 8y because the support of gr’V gry Y H erl K (M) is contained
in Z. Then due to the fact that

gro Y H gt K (M) — H'ker grV

is injective, we conclude that ker gr" 8y — gr gro K (M) is an isomorphism.
Next, we prove that the complex % $20y WBK (M) is exact for £ > 0. By Theo-
rem 6.1, the total complex of ngB K (M) decomposes into

P Hier" BK (M)[-1.

el

On the other hand, we know B’ K (M) is acyclic fori > 0, as K (M) has cohomology
supported on {t; = --- = t, = 0}. Hence, gr’V B'K (M) is F-filtered exact for all
i > 0, the total complex of gr"¥ BK (M) is filtered quasi-isomorphic to gr’V gro K(M)
which is also filtered quasi-isomorphic to H; YorW BK (M) as we just proved. This
completes the proof of the lemma.
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Returning to the proof of the theorem, we have a weight spectral sequence on
BK’J (M)

EPT =My g BKI(M) = ELT = g™ HETBKT (M).

which degenerates at Ef ! by Theorem 6.1. The differential of the first page of the
spectral sequence induces morphisms of complexes

Ske = (HOgrl  BK (M) — Higr!'.,_ BK (M)

— = Hier,_ . BK(M)}

for any £ € Z. By the above lemma, the total complex of S ¢ is filtered isomorphic
to H gry  BK (M) and thus, gr. ,gr K (M). On the other hand, because of Theo-
rem 6.1, the second page of the weight spectral sequence on B (V) is zero if one of the
f; acts bijectively on a graded polarizable mixed Hodge module . This means Sy ¢ is
also filtered isomorphic to the first page of the weight spectral sequence of B(M):

Hygr  B(M) — Higr),  BIM) — - — Mg, B(M),

which is filtered isomorphic to gr,?jr ¢ gr(‘)/ K (M). If we take cohomology at degree ¢,
we conclude that

gl HEBM) = gl HEK (M)
as polarizable Hodge modules.

2. We deal with the complex C(M). The proof of the following lemma is parallel
to the one of Lemma 6.10 and therefore, we leave it to the readers.

Lemma 6.11 The complex ’Hﬁgr};vCKg (M) is exact for £ # 0 and any k € Z and the
natural quotient

g grd Ki(M) — Hgrl CK\(M) = coker gr}’ 6_

is a filtered quasi-isomorphism.

We also have a weight spectral sequence
EP? =My e K (M) = EET = gV HITICK (M.

which degenerates at the second page by Theorem 6.3. The differential of the first
page of the spectral sequence induces morphisms of complexes

Tie = (Hy gty CK\M) — Hy el CR(M) — - — Har]V ,CK (M)}

for any £ € Z. By the above lemma, the total complex of Ty, is filtered isomor-
phic to Hgr}V ,CK\(M) and thus, gr}¥ ,er} K\(M). On the other hand, because of
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Theorem 6.3, the second page of the weight spectral sequence on B(N) is zero if
N = N(!1Z). This means Ty ¢ is also filtered isomorphic to the first page of the weight
spectral sequence of C(M):

Hy et C(M) — HEngr,‘;‘iHrilC(M) - = Higr) ,C(M)

which is filtered isomorphic to gr,‘f/_ ¢ gr(‘)/ K1(M). If we take cohomology at degree —¢,
we conclude that

gt H C (M) ~ grl  H K (M)

as polarizable Hodge modules.

6.4 Deligne’s theorem

The aim of this part is to prove Lemma 6.2. For this purpose, we generalize, with little
effort, the theorem on relative monodromy filtrations to the abstract setting, proved
by Deligne in his personal letter to Cattani and Kaplan. Then Lemma 6.2 will be an
immediate corollary.

Let A be an abelian category and V be an object in A. Let L be a finite increasing
filtration of V and N be a nilpotent endomorphism preserving the filtration L. We
will now assume that the relative monodromy filtration W = W(N, L) exists and
that there is a splitting operator ¥ for W, i.e. Y is a semisimple operator on V with
eigenvalues in Z such that Wy = @, _; E;(Y) where E;(Y) is the i-eigenspace of Y.
We say the splitting operator Y satisfies the admissibility conditions if

[Y,N]=—-2N, and YL; C L;, foralli. 30)
Suppose that Y’ is a splitting operator for L that commutes with Y. Then the pair
(No, Y — Y’) determines an sl,-representation on V. We will denote the standard
sly-triple by (e*, e™, H):
[et,eT]=H, [H,e ]=-2¢", [H,et]=2e".

Then e~ = Ngand H = Y — Y’. We call the collection (V, L, N,Y,Y’) a Deligne-
system, a notion introduced in [21], if in addition

[et,N;1=0, forall j#0

where N; is the j-th ad Y'-homogeneous component of N. In other words, N; is
ad e™ -primitive in the adjoint representation for j # 0.

Theorem 6.12 Let (V, N, L, Y) be as above and assume Y satisfies the admissibility
condition (30). If the set of splitting operators of L commuting with Y is not empty
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then there exists a unique splitting operator Y’ of L such that (V,L,N,Y,Y") is a
Deligne-system.

Proof Fix a splitting operator of L commuting with Y. We can modify the splitting of
L by conjugating by an automorphism g such that g respects W and (g—1)L; C L;_1,
and consequently, g induces an automorphism on gr’. We want to achieve that

[N - ge_g‘l,ge+g_1] =0,
or equivalently,
[g‘lNg—e‘,ﬁ] = 0. 31)
We find g by successive approximations: if [N;, et] = 0 for 0 > i > —k, we take
g = 1 + y_i for y_; of degree —k with respect to the L-grading for k > 1. Then to
make the k-th L-degree in (31) valid, we need
[ [y=k.e ]+ Nk, eT] =0,
which is equivalent to
(ade®) ((ade™) (y—r) + N—x) = 0. (32)
As k —2 > —1, we can write uniquely N_y = N’ + (ade™)N”, by the Lefschetz
decomposition, such that N is in the kernel of ad e* and the ad H-degree of N is k
because N_j is of ad H-degree k — 2. Then (32) becomes
(ade™) (ade™) (y—x + N”) = 0.

It follows from the fact that the H-degree of y_j + N” is k that y_j has to equal —N".
It remains to show that [y_x, Y] = 0, i.e [N”, Y] = 0. By the admissible condition,

(adY)N_p = —2N_4.
Substituting N_; by N’ + (ade™)N”,

(adY)N' + (adY)(ade )N” = (ad Y)N' + (ade )(ad Y)N” —2(ad e )N”
= —2N'—2(ade”)N'.

Then we get
(adY +2)N' + (ade”)(ad Y)N" = 0.
Applying (ad e™)*~! yields
(ade )*(ad Y)N” =0,
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which forces (ad Y)N” = 0. This completes proof. a

The morphisms of a pair ofDehgne systems (V,L,N, Y Y’) and (V L N, Y, Y/)
are the operators 7 € Hom(V, V) such that YT = TY, NT =TNand TL C L for
all i. In fact, the morphisms of Deligne-systems are functoral:

Corollary 6.13 If T is a morphism of a pair of Deligne-systems

a~ s s s sy

(V.L,N,Y,Y) and (V,L,N,7,7"),
thenY'T =TY'.

Proof Let T = ) ,_T; be the ad Y'-homogeneous decomposition of T. Then

the H degree of T; is —i because YT = Tv. Suppose that 7; vanishes for
i =—1,2,...,—k + 1. Then (ad N)T = 0 gives

[No, T—x] + [N, To] = 0.
It follows that (ad et)(ad e~)T_; vanishes since

(adet)(ade )Tk = [et, [e™, T¢]]l = [e™, [T, N_k]]
= [[e*, Tol, N_x1 + [To, [et, N_]]

and [et, To] = [eT, N_x] = 0. Then T_; must vanish because the H-degree of T_
isk > 0. o

Finally we can give

Proof of Lemma 6.2 By [17, 1.5], we have a canonical splitting

gr,?/gr;//\/l ~ @ gr,‘(vgriLng./\/l.
i€Z

If weset (V,L,N) = (gtWary M, LegrWerY M, 6 — @) and ¥ =i on ger/\/l, then
we can apply Theorem 6.12 to this situation: there exists a unique splitting operator
Y’ for L such that (V, L, N, Y, Y’) is a Deligne-system. As a consequence, for any
local defining equation f of Z, it follows from Corollary 6.13 the induced morphism

frgVeal M — gWerl (M

commute the splitting operator Y’ which concludes (a).

For part (b), itis easy to see that the morphism gr" T is a morphism of Deligne’s sys-
tems (gr’¥ gr¥ M, LgrWer? M, 6 —a) and (gt er) M/, LgrtWgry M’ 6 —a). Then
by Corollary 6.13, gr'¥' T commutes with the splitting operator ¥’ which concludes
(b).
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7 Fourier transform for monodromic mixed Hodge modules
7.1 Notation

Let M € MHM(E) be a mixed Hodge module on the trivial vector bundle £ = X x A"

over X.Letzy, ..., z- be coordinates on the A" term of the vector bundle. Assume M is
monodromic along the z1, .. ., z,, 1.e., the underlying Dg-module M is monodromic.
Then

M=PH M,

x€Q

where MX is the subspace on which § — x + r acts nilpotently.

Let EY = X x A” with coordinates wy, ..., w, be another trivial bundle, which
we think of as the dual of E. We consider £ = E xx EV = X x A?, with projections
p:E€—> Eandq:€— EY.

Consider the mixed Hodge module on & given by p'(M)[—r]. The underlying D¢-
module is isomorphic to M[w]. Let g = Z?:l z;w;, a function on &, which is the
natural pairing between E and its dual EV.LetT" : £ — £xA! be the graph embedding
along g, with coordinate & on A'. We consider I' . (M[w]) = @j>0 Mlw] ® 3/, as
our goal is to compute the vanishing cycles of M[w] along g.

Recall the action on the graph embedding is as follows:

P(mw® ® 3/) = P(mw®) ® 3/ forall P € Dy + O¢
9z, (mw* ® 87y = 9, (m)w* ® 3 — mw*th @9/,
D, (mw* ® ) = aimuw® ™% ® 3/ — zimw® ® 9/,

Emuw® ® 7)) = gmw® ® 3/ — jmw* ® 3/,

dmw® ®37) = mw® @ 9/,

In particular, if é; is defined as
0-(mw* @ 37) = 0.(m)w* ® 3/,
then

0.(mw® ® 37) = (0 — (j + 1) — £3) (mw® ® d).
Similarly,

Ou(mu® ® 8/) = (la| = (j + 1) — £8)(mw® @ 87).
In particular, if we look at the commuting operators

T:=0,+&0+1, S:=0,+&0+1,
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we see that 'y (M[w]) breaks into simultaneous eigenspaces for these operators.
Indeed, the equality (7 —A)* (mw® ®d/) = 0form € MX holdsiff (9,— j—A1)*(m) =
0, whichitselfis trueiff x = j+A-+r. Similarly, (S—0)(mw*®3y’) = 0iff || = j+£.
For any element mw® ® 8/ (where m is homogeneous in M, i.e., m € MX for some
x € Q), there always exists some A and £ for which these conditions are true, hence
'+ (M[w]) breaks into these simultaneous eigenspaces. We shift these eigenspaces
for convenience of notation later, and denote

Ep¢ = Z MBHal+E @ ® a|0¢|+(’

aeN’,|a|>—¢

and it will be useful to pull out specifically the term involving 3/, so we denote this
as

Flo= Y MPHiuw"@dl C Eg,,
jal=j-¢

so that

Eg o= @Fé,é'

izt

These eigenspaces are mapped to one another via the elements of Dg, 41 in the fol-
lowing way

ZiEge CEgr1e wiEge CEge—1 §Egye C Egi10-1
0, Eg¢ S Eg_10 0w, Ege S Eger1 0Ege C Eg_1441-

Let VT (M[w]) be the V-filtration along g. Then, forany A € Q, VAT (M[w])
is invariant under both 7" and S, hence also decomposes into its eigenspace decompo-
sition, SO we write

VAF+(./\/l[w]) = GB Eg’@, where Eg_[ =FEg¢N v,
BeQ,LeZ

7.2 Fourier-Laplace transform

The Fourier—Laplace transform of a Dg-module M is a Dgv-module FL(M) which,
as a Dx-module, is the same as M, and such that

wim = —0;m, Oy,m = z;m.
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If M is monodromic along the z1, ..., z, then FL(MM) is monodromic along the
wi, ..., wy. Indeed,

Ow — x +rIm = widy, — x +rim= (=Y 0,z — x +r)m
=0 —(r— ) +r)m,
and so we see that, in terms of their monodromic decomposition,
FLIM) =% = MX.

The main goal of this section is to prove Theorem 1.4:

Theorem 1.4 Let M be the filtered Dg-module underlying a monodromic mixed
Hodge module M on E. Then the Dgv-module underlying the mixed Hodge mod-
ule

HOo*pg (p'(M)[—r]) € MHM(EY)

is isomorphic to FL(M). We denote this composition of functors by FL(M).
Moreover, for ). € [0, 1) and € € Z, we have

FpFL(M)rf()rI»e) — Fp—l—[k]M)\+e~
Finally, the weight filtration is given by
WiFLIM* 2 = FL(Wiy g o M2

Here FLIM)*Z = @, FLIM)** for any A € [0, 1).

We want to compute o *¢, (M][w]), which involves understanding the V -filtration
along the zero section o : EY — £by Theorem 1.2. The first step will be to show that
¢g,5.(M[w]) is monodromic along zy, ..., z, forall A € [0, 1). This will allow us (by
Property M.5) to compute the associated graded pieces of the V -filtration along the
zero section.

Lemma 7.1 Using the notation in the previous section, we have

ety Ty Mlw)) = @D ES  /E55.
B

For any » € Q, gri‘, Iy (M[w]) is monodromic along z, ...,z and along
wi, ..., W, and its xth homogeneous piece in the decomposition is

@y Ty Mw)t =@ EL,, /E
el

@y T MIwD)E = D Eh sy [Efr—sy
BeQ
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for the z;’s and w;’s respectively.

Proof This is easy to see, using the fact that N = &0 — A + 1 is nilpotent on
gr)“,FJr(M[w]). Then we can write

T=0.4+60+1=0,+N+xr
S =04 +Ed+1=0y+N+A,

and N commutes with 6, and 6,,. Hence, (6, — x 4 r) is nilpotent iff 7 — A — x +r

is nilpotent. Similarly, (6,, — x + r) is nilpotent iff S — A — x 4 r is nilpotent.
Then use the fact that Eg ¢ is the simultaneous eigenspace for T with eigenvalue

B — r and S with eigenvalue —¢. O

In terms of computing H® of o*, we are interested in the z-monodromic pieces
corresponding to x = 0 and 1. Using Theorem 1.2, we have

Hoo* (g Ty Mw]) = @ H'o™ (@i T Mlw])
1el0,1)

_ k E)\. E>), azi E)\, E>)~
= coker e/ Exfve — E5 o/ ES
r€[0,1) el 1<i<r

Note that this cokernel is monodromic along the w;’s. Using the lemma, the r — x th
monodromic piece is

er (D 2 Efh . S B JED
coker =2/ Eif1, y—a oo =2 EX 5 —a

i=1

where A € [0, 1) is the fractional part of x (because y — A must be an integer for it to
be an eigenvalue of S).

We are interested in the r — x th monodromic piece because we have FL(M)" ™% =
MZX as sets. Thus, we would like to construct an isomorphism

r aZi
coker (@ E%H,xf)»/E)ﬂl,fo — E)):’X)L/E;’)\(A> - M (33)

i=1

The eigenspaces Eg ¢ have natural morphisms defined as follows: letgg ¢ : Eg ¢ —
MPFE be such that

D maw® @ 3 > (=1 D 8% (ma).

aeN"

Note that, by definition of Eg ¢, the coefficient m,, lies in MBIl g 0% (my) €
MP* and so the map lies in the correct eigenspace of M. This map should be thought
of as evaluating w; at —d;, (which is how the Fourier transform behaves), and also 9
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at —1. Then for any B, £, the map ¢g ¢ is Dx-linear, and satisfies the following easy
to check relations

Yp—1,00; =0

$p.e—10wW; = —0; o Ppe

@B,e+1 0 O, = Zi O PB¢
@pt+1e—106 =—0 —L+r)oppy
p—1,6+4100 = —@p ¢.

In fact, the first relation can be strengthened:

Lemma?7.2 If¢ > 0, then

.
ker (pp,¢) = Z 0z Epr1,e-
i=1

Proof The containment D is clear from the first relation above.
For the other containment, let n = Z\aoq:o mew® @ 9%+ lie in the kernel. We
induce ona. If a = 0, then ¢p(mg) = (=Dfmo =0 implies mo = 0, so this is obvious.
For a > 0, assume we know it for any sum of elements with |¢| < a — 1. By
definition, we know (—1)° 205|a\§a 0% (mgy) = 0. Order the « € N” with |a| = a
in some way, write them as aW, ... aD Asa > 0, there exists some i 1 such that
l.(ll) (()[121)_8’_1 = Mo e, + 8zz~1 (mgm) and let m/(gl) = mpg for all other

)

.’ > 0. Define m

|B] = a — 1. Repeat with «®, finding some i, with ozl.(zz) > 0 and adjusting the m/(s1
using 9;;, (my ). Eventually, this terminates, as there are only finitely many « € N
with || = a. Let m;S = m/(sd) for all B € N” with || =a — 1.

Now, define n’ = Y 4141 mpwP © 81FITC. Then this still lies in the kernel of
¢ (it has the same value as that for m, which we assumed is 0). By induction, it lies in

>0z (Eps1.0)-
Finally, use n = 1’ + }_ 4=, 9z, (Maw® ™« @ 3l*1+¢=1y to conclude. ]

Let us now restrict to looking at Eﬁ o for A € [0, 1). Restricting ¢, ¢ to this
subspace, we get a map

A AL
E; = MM

To show that this map ¢, ¢ is the desired isomorphism 33, it suffices to show that
this map is surjective and its kernel is precisely

.
Z 3 (Exyy )+ EXG-
im1

For this, we must have an understanding of the V -filtration along g of 'y M[w].
However, we can restrict to proving it is an isomorphism for £ > 0, using the fact that
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the Koszul-like complexes for monodromic D-modules are acyclic. Indeed, for k < 0,
look at the morphism of complexes

PN TIN: NV S RTINS

l ls [

a9, _ 9, 0,
Mk+k+r Z @;:1 Mk+k+r 1 o M)H»k'

Hence, if by induction all but the rightmost vertical map is an isomorphism, then
so is the rightmost map. Here the terms in the top row are the corresponding domains
of the maps in Formula 33.

7.3 Computation of the V-filtration along ¢

To compute the V -filtration along &, it suffices to break up M = €5 2el0.1) Dz MAFE,
and handle each A € [0, 1) separately.
Recall the notation

Fé,fi: @ MPHiw* @37,
lal=j—¢

We use the following easy to prove facts

,
Y wiF,=F;, (34)
i=1

r . .
X+i#Er—1= Y #F ,=F (35)
i=l1
r
. j +1
X+i#Er—1= > 0,F  =F "L, (36)

i=1
The first is trivial from the definition, and the latter two use the fact that ) z; MX =
M+ whenever x 4+ 1 # r, by the acyclicity of the Koszul-like complex for mon-

odromic modules.
Throughout, we will define filtrations U*® only for e € [0, 1]. They are extended as

Ur=¢/U" 7 forr>1,1—j€(0,1],
and inductively,
U* = kU  + U forx < 0,1 +k € [0, 1).

In this way, the only conditions we must check for the V-filtration are that the
filtration defined in this way is exhaustive and
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V.1 U” is coherent over VODg, s1 for A € [0, 1],
V2 U2 U* 2UY DU forall A > A,

V.3 U0 c U,

V4 U CU°,

V.5 (38 — M)*U* C U>* forall A € [0, 1).

Indeed, note that we do not have to check (38 — 1)?U! € U>! if we know the
facts preceding it. This is because U>! = £U>?, and so we would have to show
08 — DU = ) U < U0, which is true if (38)*~1@UY) < U>?, but
Ul C UY, and so we are done.

Case I: A = 0.

Define

U%:= VD a1 - Fo+ VODgyp1 - F,
and
U' = V'Dga1 - Flo+ VODgpr - F{ L)

Exhaustive: letU = (o U k. Tt suffices (as U is closed under @ and multiplication
by wi, ..., w,) to show that M@l C Uforall ¢ € Z. By definition, F&O =
M2 ®1 C UY C U. Hence, by multiplying by z1, ..., 2, we conclude that M'®
L. . M'e1cu’cu

Also, inductively, we conclude that M‘®1 C Utorall £ < 0.Indeed, if M @1 -
U, then M w] ® § C U. Also, 0z, (./\/lgJrl ® 1) C U, so we get

>am)e1cu,

and we use acyclicity of the Koszul-like complex in the d;;’s to conclude that M®1 e
Uu.

Finally, Fj, = M" ® 8" < U. By applying (§ — g)", we see that M" ® 1 C U,
and then by applying the z;’s and using acyclicity of the Koszul like complex, we get
M1 C U for all £ > 0, proving that the filtration is exhaustive.

V.1 To see U is finitely generated over V0D, x1,letmy, ..., my be finitely many
gr), D generators of MPandletny, ..., ny be generators for M" over gt Dg. Then
these elements generate U°, by the following fact: given m ® 8% € U, we obtain
(gr(‘),DE -m) ® ok c UY. Indeed, we easily get Dy -m ® 9%, and to get z; 31]- m)®1,
we use

2i0z;(m) ® 1 = z;9;;(m @ 1) + w9y, (m ® 1),

which lies in U°. The same proof works for U
For the remaining conditions, we use the following lemma

Lemma 7.3 We have containment F ; (CU O for any triple satisfying either of the two
conditions
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>r, <.
.

e x=0,j
e 0<x=<r—-1,0=<j<r—xt=j.
Also, we have F ; et CU Uin either of the following cases:

e x>1,j=r—1,£0<j
e Il <x<r—10<j<r—yx,t<j.

In particular, we have

e E,o CUorall x >0,£>r,
° Ex,ggUlforallel,EZr—l,
e Eig C U forallt <0.

Proof We make use of the fact that UY is closed under Zi, Oy, and w; for all 7.
Starting from F&r c U, by Formula 35 we get F;’, < U% forall x > 0. Then by
Formula 36 we get F; ; C U° forall j > r. Finally, by Formula 34 we get Fj,c U°
forall x >0,j>r, ¢ <j.
Starting from F(?,() C UY% we get by Formula 35 F)(() 0 & U% forall 0 < x <r—1.
By applying Formula 36 we get F){,/' CU%orall0 <y <r—1landy+j <r.

Finally, applying Formula 34 we get F;’[ CUorall0< y <r—1,x+j<r
and £ < j.

Similarly, we argue for the containment of the other subsets in U

The last statements follow easily from these containments. For example, let £ < 0,
then Fi/,z C U! for all j > 0. Indeed, if j > r — 1, then this comes from the
fact that Flr ;_1 is contained as argued above. If 0 < j < r — 1, then in particular,

14+ j = x+j < r,so this follows from the fact that F' ﬁ o is contained as argued
above. O

V.2 Obvious, from the lemma. Also, F{:il = (& — g)FO”r.

V.3 Indeed, SF&O C E;—jand $F6’r C Ej r—1, so this follows from the lemma.

V.4Indeed,8F10,O = Folyl C Ep,1,whichisin U° by the lemma, andaFlr;ll = F(ir,
which is in U° by definition.

V.5 Note that ¢, g0 (0€)* = (0 +r)% o@p,0, SO since ¢ o has image in MO, (0 +r)
kills this for a > 0. Similarly, ¢g , o (06)* = (@ —r +7r)* o @o,and (@ —r +r)?
kills M” for a >> 0. Thus, we see that (0&)¢ multiplies F(g),o and F(;,r into ker (¢0.0)
and ker (¢o_), respectively. Well, by Lemma 7.2, these are

r r
Y 0, (Erg) and Y 9, (E1,)
i=1 i=1

respectively, and both of these are contained in U! by the lemma and the fact that U'!
is closed under 9d;; action.
This finishes the proof and shows that U® = V* is the V-filtration along &.
Case2 L € (0,1).
Define U? = U* := VODg,p1 - FY gand U' := VODgypi - | .
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Exhaustive: As F. ){)’0 = M’ ® 1, the fact that the filtration is exhaustive is shown
in exactly the same way as above (using the acyclicity of the Koszul-like complex).

V.1 By taking finitely many gr(‘),DE generators of M* and M**!, we see that U*
are VODg, x1-coherent.

V.2 Obvious,, using the relation 35 above.

In a similar way to the lemma above, we see that F)Q_b’,Z c UY%and ij+l+b,€ cU!
forallb >0,j>0and £ < j.

V.3, V.4 Note that EF/{),O C Ej41,—1, which is contained in U 1 by the previous
observation. Similarly, dFy11,0 € Ej 1 which is contained in U 0 by the previous
observation.

V.5 Finally, we need only check (0§ — A)“U * c U! for some a > 0. Just as
before, (0§ — A)? multiplies F)?,o into ker (¢5,0) = Y_ 9z, (Ex+1,0)- By the above, this
is contained in U, as desired.

This completes the proof that this is indeed the V -filtration along &.

7.4 Showing the isomorphism

Fix A € [0, 1) and £ € Z>o. We show that
¢ Ei»’e - M)»+€

is surjective, with kernel equal to ) 9, (E>A»+1,K) + E;%

Surjectivity is easy: we showed above that, either when A = 0 or when A € (0, 1),
Ff,z = M* ® 3¢ € V*, Under ©..¢, this hits all of MAHE

Using Lemma 7.2, we know that, before restricting to E i‘ ¢» the kernel of ¢, ¢ (for
£ > 0, which we have reduced the problem to) is precisely

> 0, (Exgre).

Note that we have E 1 ¢ C V* forall £ > 0. Indeed, for any fixed £ > 0, it suffices
to show F ){ 110 & V* for all j > €. This was already noted in the computation of the
V-filtration.

Hence, E)):-H,l = E;+1.¢, and so all that remains is to show E;% C ker (¢). To see
this, note that, in either case, we have E f 2‘ =F ){ ¢

Write an arbitrary element P of VODngl as P =) 85 A zPw* (£9)EK. We see
easily that

PEji1,0 S Eji1+ipl+k—|Bl,+ly|~lal—k-

For our fixed A € [0, 1), recall the explicit generators of V! given above, they are

all of the form F){ "y

way to get into this eigenspace from one of the form E; 11, is to involve 85 for some

» for some p > 0, j > p. We are interested in E )1\ ¢- The only
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Bl = 1 (as A < A + 1). As we know that elements of this form lie in the kernel, this
completes the proof.

Remark 7.4 In [10, Formula (10.3.31)], the Fourier—Sato transform is defined in the
following way: let g : € — EV be the projection, and consider (¢ x id) : £ x Al —
EV x A! with coordinate t on A!. Then the Fourier—Sato transformation in loc. cit. is
defined by

¢ 0 (g xid),oTyop,

where I' : £ — £ x Al is the graph embedding along g.
We trivially have ¢; o (g X id)« = g« o ¢:, as g does not see the ¢ coordinate. Hence,
this definition is equivalent to

q*ogb,oF*op!:q*oqﬁgop!,

where, as g does not define a smooth hypersurface, in order to define ¢ we first apply
the graph embedding and then take ¢, i.e., ¢g 1= ¢b; o I'.

Finally, by Remark 3.8 and the fact that ¢, "y p'(M) is monodromic (see Lemma
7.1), we know that g, ¢;I'y p'(M) = o*¢;I'y p'(M). Hence, our definition of
Fourier—Sato transform is the same as that in [10], up to a cohomological shift so
that it sends modules to modules in degree 0.

7.5 Results concerning the Hodge and weight filtrations

We have just finished showing that the Dgv-module Hoo*(¢g./\/t[w]) is isomorphic
to FL(M). We will now prove the main result concerning the weight filtration and
Hodge filtration. For this, we will make use of the results shown at the end of Sect. 5.

We begin by proving that the operator N = yeQ b — x +r decreases the weight
filtration of any monodromic mixed Hodge module by two. This generalizes the result
in the pure case saying that N = 0.

Theorem 7.5 Let (M, F, W) be a bifiltered Dg-module underlying a monodromic
mixed Hodge module on E. Then the weight filtration W on M is its own relative mon-
odromy filtration with respect to the nilpotent operator N, i.e., NWe M C We_r M.

Proof For this, we consider the specialization of M along the zero section of the vector
bundle E. It is easy to see that, as D-modules, Sp(M) = M (using the isomorphism
E = Tx E sending ¢; to z;).

Recall that by Lemma 2.6 the weight filtration on Sp(M) is the relative monodromy
filtration with respect to the filtration €9 x€Q gr)‘(/ (W M) and the nilpotent operator N.
Note that W, M C M is aD-submodule, hence it is monodromic. Thus, gr)‘(, (WiM) =
(Wi M)% in the monodromic decomposition.

So we are looking at the relative monodromy filtration for N and

LiSp(M) := W, M)X.
x€Q
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Note that gr*Sp(M) = @XGQ(gerM)X = Sp(gr)Y M) is the specialization of
the pure monodromic Hodge module grl-W M, so by Proposition 5.7, we know that the
monodromy filtration is trivial on griLSp(/\/l).

Recall that the relative monodromy filtration induces the monodromy filtration on
each graded piece griL Sp(M), and so this implies that its restriction to each graded
piece is trivial. Finally, we conclude that WeSp(M) = L4Sp(M) using Deligne’s
canonical splitting of the relative monodromy filtration. O

Using this and knowing that FL(M) is a monodromic mixed Hodge module, we
can compute the weight filtration on FL(M).

To begin, we make an easy observation using the fact that the relative monodromy
filtration is functorial. Specifically, if n : (A, W, N) — (A’, W/, N') is a morphism
between filtered objects in an abelian category with nilpotent operators N, N’, and if
the relative monodromy filtrations M, A and M_ A’ exist, then

n(MeA) C M A (37)

Recall the notation from the introduction that if M is a monodromic D-module,
then M**2 = @, , M*** forany A € [0, 1).

Lemma7.6 Let (M, F, W) be a bifiltered Dg-module underlying a monodromic
mixed Hodge module on E. Then

WiFLIM)* 2 C FL(Wyey 4 g MOMTZ

Proof The difficult part is that, in the composition of functors defining FL(—), we must
understand iterated relative monodromy filtrations.

Specifically, we consider ¢g,xp!(M)[—r], with W,qug’,\p!(./\/t)[—r] = ¢>g,;\p!
(Wetr41a1M). Here the [A] term is explained in Formulas 11 and 12. Then we take
the relative monodromy filtration of this along N1 := 9§ — A. This gives a filtration
W1, which is preserved by the operator Np := 6, 4+ r = > i_, 9;zi. By definition,
this is the weight filtration on ¢ » p! (M)[—r], see [20, Sect. 20]. Then, we take the
relative monodromy filtration of wland N, = 0, +r on gr(‘), (¢g. 2 M[w]), which we
call W2. ~

By definition of the D-action on the graph embedding, we know that Ny + N> = N,
where N acts on the M part of ', M[w] by N = EBXEQ 6 — x + r. We know that
(M, W) is its own relative monodromy filtration with respect to the action of N, or
equivalently, that NWe M C We_o M.

Hence, by Formula 37, we know N W1 c W.1 »» and by applying the formula again,
this implies N W.2 C W.z_

Butalso N = N> on gr,‘f’I gr(‘), (g2 M[w]), because N kills this associated graded.
In particular, we see that W2 is the relative monodromy filtration for (N, W").But N
decreases W! by 2, and so W! is its own relative monodromy filtration with respect
to N.In particular, we get that W2 = W, the relative monodromy along Ni and W°.
Now, we have the quotient map grv(qﬁg,;h./\/l[w]) — H o*(¢g 2 M[w]), which
induces afiltration W ! and N induces a nilpotent operator on the quotient. By functori-
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ality of the relative monodromy filtration in this setting, we get that the weight filtration
on the mixed Hodge module HOo* (¢g,» M[w]) (which is the filtration induced by this
quotient) is contained in the relative monodromy filtration of HOo* (¢g 2 M[w]) with
respect to the induced filtration by W and the induced nilpotent operator from Nj.
Under the isomorphism ¢ to M, these map to W, M and @XGQ 6 — x +r, and so
by the previous theorem, we get the desired containment. O

We now give a computation of the Hodge filtration on the Fourier transform of a
monodromic mixed Hodge module. The only difficulty is that there are shifts of the
Hodge filtration for certain functors along the way. We refer back to formulas from
Sect. 2.8 for the correct shifts of the Hodge filtration.

We have that p'M[—r] has underlying Dg-module given by M[w]. In any case,
the Hodge filtration is given by Formula 8

Fp(M[w]) = (Fp—rM)[w]-

Now, for the closed embedding I", the filtration is given by Formula 2.1:

FplyMIw]) =Y Fpj iMw) @ 37 = > (Fpj1iM)[w] @ /.

Jj=0 j=0

By Formula 9, there is no shift of the filtration for ¢ 1, and by Formula 10, there
is a shift of +1 for ¢y ;.

Finally, the Hodge filtration on g, = Hc* is shifted by [—r] as dictated by
Theorem 1.2. In summary, an arbitrary element of F, E )): ¢ 1s of the form

Z maw® @ glal+e
loe|>—¢

where

Fp_e_lalMA—i-lal—i-Z A=0

38
Fp—l—f—|ol\M)L+|a‘+E71 = (0’ 1) ( )

my €

Recall the claim:

Theorem 1.4 Let M be the filtered Dg-module underlying a monodromic mixed
Hodge module M on E. Then the Dgv-module underlying the mixed Hodge mod-
ule

HO0* g (p' (M)[—r]) € MHM(EY)

is isomorphic to FL(M). We denote this composition of functors by FL(M).
Moreover, for A € [0, 1) and £ € Z, we have

FPFL(./\/l)r_(H_[) = FP,g,[ﬂMM_Z.
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Finally, the weight filtration is given by

WiFLIM)M? = FL(Wigr g g MY

Here FLLIM)*Z = B, _; FLIM)** for any A € [0, 1).

So fix £ > 0, and we consider ¢(F pEi, ). Note that we have containment
@(FpE} ) € Fp (M if A = 0and € F, oMM if A € (0,1). Indeed,
by applying ¢ to an element of the form in Eq. 38, we get

(=D 9% (ma) € Fp_g MM

For the other containment, recall that MM gt CE i‘ ¢ in either case 1 = 0 or
A € (0, 1). Hence, Fy_¢— )M ¢ ® 3° € F,E} ,, and by applying ¢, we get all of

AL
Fp—g—pq M
For ¢ < 0, use descending induction on £ and Theorem 1.1, which tells us that for

{ <0,
> i FpFLM) =D = L M) =30,
Now, we introduce the inverse Fourier—Laplace transform, which will help us prove
that the containment in Lemma 7.6 is an equality. Note, that if we apply the Fourier
transform twice, we get the actions

Zim = —z;m, Oym = —0;,m,

and soifa : E — E is the antipodal map (x, v) — (x, —v), we see that, in terms of
underlying D-modules,

@ FLpvFLE(M) = M.

We recall the definition of the inverse Fourier transform from the introduction:
recall that FL is defined to be (B, (g HO0* g 1T p'[—r]. Breaking this up into the

case . = land A € (0, 1), we define

FLE(M) := H0* g 1 T4 p' (M (=1))[—r] ® H'0* g £1T4 p' (M (1 — r))[—r]

Using this, we see that a*FLgvFLg(M) — M preserves the Hodge filtration.
Indeed, let us check it on monodromic pieces. By definition, for A = 0, we have

FLevFLE(M) ™8 = FLgvFLE(M(=r)) ™,
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so by using our formula for the Hodge filtration, taking F, of this, we get

FpFLpvFLE(M(=r)) % = Fpyp_FLE(M)®
= Fppr—tFLEM) " = Fppr oM = F M C

Now, for A € (0, 1), we have
FpaFLgvFLE(M) =0 = Foo FLpvFLE (M) —3H+0)

because of the Tate twist in the definition of FL. Hence, by the theorem, this is equal
to

Fp+r—l—£—1F|-E(M)A+[ = Fp+r_1_z_1FLE(M)r_(r_(}“"l).

If we want to apply the theorem again, we need to write r — (A 4 £) as a number
in (0, 1) plus some integer. Well, this can be written as (1 — 1) + (r — 1 — £). Hence,
applying the theorem once more, we get

Fpiro1—t—1—(—1-0)—t M ™0 = p A= F0)

Moreover, by Lemma 7.6, this map is compatible with the weight filtration (again,
using the Tate twist by (1) on the A 7 0 part). Finally, in terms of the Q-structure, it is
shown in [10, Theorem 3.7.12(i)] that this morphism is an isomorphism of Q-structure
(see also [1, Prop. 6.13]). Hence, it is an isomorphism of mixed Hodge modules. This
gives the equality in Lemma 7.6 and in the statement of Theorem 1.4.

Finally, we describe how the functor FL behaves when taking duals of mixed Hodge
modules. Using the fact that

DOHOO'* ZHOO'! OD,
DO(ﬁg,l :¢g,1 OD
Do g 21 =g 21(1) 0D

and
Do p'[—r]= p*[r]oD,
we have
DpvoFLg =Dpv o Ho0* ¢,y p'[—r] = HO0 g1 @ g, 21 (D4 p*[—r] o Dp.
Ignoring Tate twists, the functors ¢,I" p'[—r]and ¢ p*[—r] agree. In particu-
lar, the computation of the V -filtration which we gave above can still be used for this

composition of functors. The difficult part is that now we are considering H’c"'. For
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this, we are interested in the z-monodromic pieces corresponding to x = 0 and 1 as
before. Using Theorem 1.2, we have

Ho' (@D Mw]) = P HOo' (¢l Milw])

1€[0,1)
PN
= @ @ker EAZ/E> @ EA IZ/EA 1,0
r€[0,1) €eZ I<i<r

The r — yth monodromic piece of this is

A Y
ker EAX A/EAX I @ E 1 o EXS 4o

1<i<r

As before, we want to give an isomorphism from this kernel to MX. Similarly,
using acyclicity of the Koszul-like complex, we can assume x — A > 0 and show we
have an isomorphism for such terms. We will use the same map ¢ : EQ’X% — MX
defined above.

Lemma 7.7 For x —A > 0, the map ;. y— restricted to this kernel is an isomorphism.

Proof Both surjectivity and injectivity make heavy use of the computation of the V-
filtration given above.

For surjectivity, when A = 0, by Lemma 7.3, we have that F(f .= MEgat C E(())’ ¢
forany £ > 0. Also, MT1 @ at = nye C E},e’ soziMi @t ¢ M ot C E%’[
implies that this lies in the kernel. Hence, under ¢, we get all of ./\/le, as desired. A
similar proof works for A € (0, 1).

For injectivity, we use the fact that y — A > 0 to apply Lemma 7.2. To see that our
map ¢ is injective, it suffices to show that if m € Ei,x—x is such that m € ker (¢) =
> im(d,,) and z;m € V! forall 1 <i <r,thenm € V1.

When A = 0, using our explicit description of the V-filtration, we know that we
can write

m=7 QekapynEd) LW M apyn
KBy € M°®1 0or M" ®3d". Moreover, since z; - M’ ®1 C

M'@lcViandz - M @3 € M1 @93 =F], € V! (by Lemma7.3), we
can assume 7 = 0. Similarly, of course we can assume k = 0. So we really have

where Q € Dx and myg i o

m=>" QuupyEN LW mapy.

As this is supposed to lie in Ej,_,_j

By Lemma 7.2, we can assume || > O for all «, as m is supposed to lie in the kernel
of ¢. Also, by taking homogeneous pieces with respect to the Eg ¢ decomposition, we
can assume |«| does not depend on «.

) Birkhauser



On V-filtration, Hodge filtration and Fourier transform Page750f76 50

Now, the assumption is that z;m € Viforalll <i <r. Writing this out, we have

Zim = (Z QZ,a,ﬂ,y(Ea)Zaiag_ei wﬁag)ml,a,ﬁ,y>

+ (2 Qrapr € AW O zimepy )

and by the explicit description of the V-filtration (specifically, the fact that M' ®
1, M1 ® 9" < v!), we know iMoo By € vl already. Hence, the entire second
sum lies in V!, and so we see that actually the first sum lies in V1 too. As V1 is closed
by the 9;-action, we get that

> Qrapy ED aidw OYmeypy €V

Finally, taking the sum over all i, we get |¢|m € V1 and so since ] > 0, we
conclude that m € V!, as desired.
The proof for A € (0, 1) is similar. O

This lemma shows that the D-module underlying H o' ¢g 1 Bepg. 21 ()T p*[—r]IM
is isomorphic to FLM. Now, using the relation p' M[—r] = p*(M(—r))[r], we get

Hoo'pe 1T p*[r]1 @ HO0' pg .1 (DT 4 p*[r] = FL,

and hence we have given a proof of Theorem 1.7.
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