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Abstract

For i : Z ↪→ X a closed immersion of smooth varieties, we study how the V -filtration

along Z and the Hodge filtration on a mixed Hodge module M on X interact with each

other. We also give a formula for the functors i∗, i ! in terms of this V -filtration. As

applications, we obtain results on the Hodge filtration of monodromic mixed Hodge

modules and we give a Hodge theoretic proof of Skoda’s theorem on multiplier ideals.

Finally, we use the results to study the Fourier–Laplace transform of a monodromic

mixed Hodge module.

Mathematics Subject Classification 14F10 · 14B05 · 32S25

1 Introduction

1.1 Motivation

For X a smooth complex algebraic variety, Saito’s theory of mixed Hodge modules on

X [15, 17] provides a vast generalization of the theory of variations of Hodge structure

on X (also see the survey [20]).

The main objects of study are holonomic DX -modules equipped with a good fil-

tration, called the Hodge filtration. Very roughly, mixed Hodge modules are defined

inductively by forcing their restriction to hypersurfaces to be mixed Hodge modules.

This restriction is defined using the V -filtration of Kashiwara and Malgrange (see [9,

12] and Sect. 2.2 below). To have a satisfactory theory, then, it is important to require

some sort of compatibility between the Hodge filtration F and the V -filtration (see
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[15, Section 3.2] or [20, Section 11]). For Z ⊆ X a smooth subvariety of higher codi-

mension, there is still a notion of V -filtration along Z for holonomic DX -modules.

One of our main theorems proves an analogous compatibility condition between the

Hodge filtration of a filtered DX -module underlying a mixed Hodge module and this

V -filtration along Z .

If one wants to restrict mixed Hodge modules to a smooth subvariety Z ⊆ X of

higher codimension, this is done by writing Z locally as an intersection of smooth

hypersurfaces, and then step-by-step restricting from one hypersurface to the next.

Another main theorem gives a way to restrict mixed Hodge modules on X to mixed

Hodge modules on Z in a single step (see Theorem 1.2), using the V -filtration along

Z .

1.2 Main results

Let f = ( f1, . . . , fr ) : X → Ar be a smooth morphism between smooth algebraic

varieties over C, where Ar is the affine r -space with coordinates (t1, . . . , tr ). Let Z ⊆
X be the fiber over the origin. Assume there exist global vector fields ∂1, ∂2, . . . , ∂r

on X dual to the one-forms d f1, d f2, . . . , d fr . Let DX be the sheaf of differential

operators on X .

When r = 1, we have a smooth function t and a global vector field ∂t such that

[∂t , t] = 1. We have already mentioned the V -filtration along the hypersurface defined

by t on a holonomic D-module M. Slightly more precisely (see Sect. 2.2 for a more

detailed description), this is a decreasing filtration V •M, indexed by Q, such that

(a) tV αM ⊆ V α+1M, with equality if α > 0,

(b) ∂t V
αM ⊆ V α−1M,

(c) t∂t − α + 1 is nilpotent on grαV M = V αM/V >αM.

In this case, the graded quotients grαV M are holonomic DZ modules that are used

to define nearby cycles and vanishing cycles of M. If a filtered DX -module (M, F)

underlies a mixed Hodge module, then it is quasi-unipotent and regular along a hyper-

surface ([15, 3.2] and see also [20, 11.4]). This is a compatibility condition between

the Hodge filtration F and the V -filtration. By definition, it requires

(a) t : FpV αM→ FpV α+1M is an isomorphism for α > 0,

(b) ∂t : Fpgrα+1
V M→ Fp+1grαV M is an isomorphism for α < 0.

In fact, all filtered DX -modules underlying a mixed Hodge module on X satisfy

this property for any locally defined function g. Also by the theory of Hodge modules,

we have two distinguished triangles in the derived category of mixed Hodge modules

on Z

i∗M[−1] → gr1
V M

∂t−→ gr0
V M→ i∗M (1)

and

i !M→ gr0
V M

t−→ gr1
V M→ i !M[1], (2)

where i : Z → X is the closed immersion. This relates the V -filtration to the restriction

functors; see the nice survey by Schnell [20].
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When r ≥ 2, grαV M need not even be coherent as a DZ -module in general (see

Sect. 2.3). This is a major difference of the theory in higher codimension. In this paper,

we generalize the above properties concerning the V -filtration along hypersurfaces on

mixed Hodge modules to higher codimension. The statement is formulated using

certain Koszul-type complexes. For any left filtered regular holonomic and quasi-

unipotent DX -module M and rational number α, define filtered complexes

Aα(M) =
{

(V αM, F[−r ]) t−→
r⊕

i=1

(V α+1M, F[−r ]) t−→ · · · t−→ (V α+rM, F[−r ])
}

placed in degrees 0, 1, . . . , r ,

Bα(M) =
{

(grαV M, F[−r ]) t−→
r⊕

i=1

(grα+1
V M, F[−r ]) t−→ · · · t−→ (grα+r

V M, F[−r ])
}

as the quotient Aα(M)/A>α(M) and

Cα(M) =
{

(grα+r
V M, F)

∂t−→
r⊕

i=1

(grα+r−1
V M, F[−1]) ∂t−→ · · · ∂t−→ (grαV M, F[−r ])

}

in degrees −r ,−r + 1, . . . , 0, where V •M is the V -filtration along Z , and F[i]k =
Fk−i .

The first main result of this paper is a generalization to higher codimension of Saito’s

condition of a D-module being “quasi-unipotent and regular” along a hypersurface.

Theorem 1.1 If the filtered DX -module (M, F) underlies a mixed Hodge module,

then the Koszul-like complexes Aχ (M) (resp. Cχ (M)) are filtered acyclic for χ > 0

(resp. χ < 0).

Our next theorem is a generalization of the distinguished triangles (1) and (2). To

simplify the notation, denote B(M) := B0(M) and C(M) := C0(M). We give a

comparison between B(M) (resp. C(M)) and i !M (resp. i∗M) if M underlies a

mixed Hodge module. Here i : Z ↪→ X is the closed embedding.

Theorem 1.2 Let M = (M, F, L,K) be a mixed Hodge module where F is the Hodge

filtration, L is the weight filtration and K is the Q-structure of the DX -module M i.e.

DRXM � K⊗Q C. Let θ =
∑r

i=1 ti∂i be the Euler vector field. Then we have:

(a) the complexes B(M) and C(M) together with the filtrations W induced by the

relative monodromy filtration W = W (θ −α+ r , grαV L•M) on grαV M are mixed

Hodge complexes on Z;

(b) the complex B(M) (resp. C(M)) is isomorphic to (i !M, F) (resp. (i∗M, F)) in

the derived category of filtered D-modules with Q-structure;

(c) moreover, the isomorphisms in (b) are compatible with weight filtration and induce

isomorphism on the cohomologies:

grW
k H� B(M) � grW

k+�H
�i !M and grW

k H−�C(M) � grW
k−�H

−�i∗M
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as polarizable Hodge modules for � ≥ 0.

Part of the proof of (b) is to show that B(M) and C(M) have Q-structure, and

then to relate the Q-structure on these complexes with those defined by Saito’s theory

on i !M and i∗M, respectively.

See Sect. 6.1 and [18] for the definition of mixed Hodge complexes. The existence

of the relative monodromy filtration W = W (θ − α+ r , grαV L•M) on grαV M can be

achieved easily using the deformation to the normal bundle (see Lemma 2.6).

Forgetting the weight filtration, the two distinguished triangles (1) and (2) are

recovered by Theorem 1.2(a). The reason why we do not get the distinguished triangles

in the derived category of mixed Hodge modules is that we directly use the monodromy

filtrations relative to gr0
V (LM) on gr0

V M without the shift in Saito’s definition of

vanishing cycles (see Sect. 2.5). For further motivation and discussion, see Sect. 2.3.

Theorem 1.2 simplifies the calculation of the restriction functors. For example,

the usual approach to computation of i ! uses either the Koszul complex induced by

the iterated V -filtrations along hypersurfaces or the Koszul complex induced by the

localization along hypersurfaces. Theorem 1.2 says that we can bypass the localization

or the iterated V -filtration by a one-step calculation on the V -filtration along Z .

As a very special case of Theorem 1.1, we give a Hodge-theoretic proof of Skoda’s

famous theorem concerning multiplier ideals. For the definition of multiplier ideals

and their properties (as well as a proof of Skoda’s theorem), see [11, Ch. 9]. See [2]

for the relation between the multiplier ideals and the V -filtration.

Corollary 1.3 (Skoda) Let a be a coherent ideal of OX generated by r elements and

J(X , ac) be the multiplier ideal of exponent c. Then we have

J(X , ac) = aJ(X , ac−1)

for any c ≥ r .

One of our main tools in this paper is the process of “specialization”, which is

described in [17, Section 2.30] and also used in [2]. From any mixed Hodge module

M on X , we obtain a monodromic mixed Hodge module Sp(M) on TZ X , the normal

bundle of Z inside X .

Our main application of Theorem 1.2 is to the Fourier transform of monodromic

mixed Hodge modules. To define a monodromic D-module, let E → X be a vector

bundle of rank r . A DE -module M is monodromic if, for any local trivialization

E ∼= X × Ar , M decomposes into generalized eigenspaces

M =
⊕

χ∈C

Mχ , (3)

where θ − χ + r =
∑r

i=1 ∂zi
zi − χ is nilpotent on Mχ . We say that a mixed Hodge

module M on E is monodromic if the underlying D-module M is a monodromic DE -

module. We denote the abelian category of monodromic mixed Hodge modules by

MHMmon(E). If M underlies a mixed Hodge module, then in fact the only non-zero

summands in the decomposition 3 are for χ ∈ Q.
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Let E∨ be the dual bundle. The Fourier–Laplace transform of any DE -module is a

DE∨-module, denoted FL(M) (or, if we want to stress that we are on E , it is denoted

FLE (M)), where, if E ∼= X × Ar and E∨ ∼= X × Ar are local trivializations, with

coordinates z1, . . . , zr and w1, . . . , wr on the respective Ar factors, then FL(M) has

the same underlying DX -module structure as M, but

wi m = −∂zi
m, ∂wi

m = zi m.

This functor preserves the property of being monodromic, however, it does not have

a lift to the category of mixed Hodge modules. In fact, even if M has regular singu-

larities, it is possible for FL(M) to have irregular singularities. Thankfully, Brylinski

[1] showed that if M is monodromic with regular singularities, then FL(M) also has

regular singularities.

In fact, one can express the Fourier transform for monodromic modules as a

composition of functors coming from geometry (called the Fourier–Sato transform

or Monodromic Fourier transform). Let E = E ×X E∨, with the regular function

g : E→ A1 given by the natural evaluation map. Locally, with coordinates z1, . . . , zr

and w1, . . . , wr as above, g =
∑r

i=1 ziwi . Consider the projection p : E → E and

the zero-section σ : E∨→ E.

Let ψg = ψg,1 ⊕ ψg,�=1 : MHM(E× A1) → MHM(E) be the total nearby cycles

functor, and φg = φg,1 ⊕ψg,�=1 : MHM(E×A1)→ MHM(E) be the total vanishing

cycles functor. For their definition, see Sect. 2.8.

Our main theorem concerning the Fourier transform is the following:

Theorem 1.4 Let M be the filtered DE -module underlying a monodromic mixed

Hodge module M on E. Then the DE∨ -module underlying the mixed Hodge mod-

ule

H0σ ∗φg(p!(M)[−r ]) ∈ MHM(E∨)

is isomorphic to FL(M). We denote this composition of functors by FL(M).

Moreover, for χ ∈ Q, we have

FpFL(M)r−χ = Fp−
χ�M
χ .

Finally, the weight filtration is given by

WkFL(M)λ+Z = FL(Wk+r+
λ�M)λ+Z.

Here FL(M)λ+Z =
⊕

�∈Z FL(M)λ+� for any λ ∈ [0, 1).

The reason why we need Theorem 1.2 in the proof of this theorem is that the last

functor H0σ ∗ is most easily understood in the context of that theorem. This allows us

to understand both F• and W• on FL(M). The last statement was already shown for

a special class of monodromic mixed Hodge modules in [13, Prop. 4.12], where the

authors of loc. cit. use the definition of Fourier–Sato transform as in [10], see Remark

7.4 below for a comparison.
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In [13], they define the monodromic Fourier transform as a functor from

Db
mon(MHM(E)) to Db

mon(MHM(E∨)), where Db
mon(−) is the full subcategory of

Db(−) of objects with monodromic cohomology modules. Then, using the fact that

this computes FL (which is an exact functor), they conclude that the functor descends

to one MHMmon(E) → MHMmon(E∨). In the same way, we can extend the functor

FL which we have defined to the entire mondromic derived category, giving

FL = σ ∗φg p![−r ] : Db
mon(MHM(E))→ Db

mon(MHM(E∨)).

Not only does Theorem 1.4 follow from Theorem 1.2, but it also recasts Theorem

1.1 in a more symmetric way. Indeed, it is not hard to see that there are equal-

ities Bχ (M) = Bχ (Sp(M)), Cχ (M) = Cχ (Sp(M)). Similarly, it is not hard

to see that (at least, ignoring the filtration) Cχ (FL(Sp(M)) = B−χ (Sp(M)) and

Bχ (FL(Sp(M)) = C−χ (Sp(M)). Using the theorem, one can check that, actually,

these equalities do hold at the filtered level. Hence, filtered acyclicity of the B• complex

follows from filtered acyclicity of the C• complex, and conversely.

Note that the Hodge filtration is exactly the same as that which is obtained from

[19, Prop. 3.25]. As remarked in [19, Rem. 3.24], the Fourier–Laplace transform can

be endowed with many different mixed Hodge module structures. So the utility of this

theorem is to make explicit the Hodge and weight filtrations for some mixed Hodge

module structure on FL(M).

In order to get the information about the Hodge filtration for FL(M), it is important

to know that the Hodge filtration for monodromic mixed Hodge modules decomposes

along the eigenspace decomposition. For the case r = 1, this was shown in [19, Thm

2.2]. We use this as a base case for induction to show

Theorem 1.5 Let (M, F, W ) be the bifiltered D-module underlying a monodromic

mixed Hodge module on E. Then

F•M =
⊕

χ∈Q

F•M
χ ,

where F•M
χ =Mχ ∩ F•M.

Moreover, the weight filtration W•M is its own relative monodromy filtration along

the nilpotent operator N =
⊕

χ∈Q(θ − χ + r), where θ =
∑r

i=1 zi∂zi
. In particular,

if M is pure, then the monodromy filtration is trivial, so for all χ ∈ Q, we have

Mχ = ker (θ − χ + r).

Let FL : MHM(E) → MHM(E∨) be the inverse Fourier transform. Up to a Tate

twist, it is simply FL. However, due to conventions in the definition of the filtrations

for mixed Hodge modules, we have to Tate twist the part which is not unipotent:

FL(M) := H0σ ∗φg,1 p!(M(−r))[−r ] ⊕ a∗H0σ ∗ψg,�=1 p!(M(1− r))[−r ].

Here (�) denotes a Tate twist by �, ψg,�=1 = φg,�=1 =
⊕

λ∈(0,1) ψg,λ, and a : E →
E is the antipodal map.
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Concerning this transformation, we have the following Fourier inversion formula

Corollary 1.6 For any monodromic mixed Hodge module M on E, we have an isomor-

phism

a∗FLE∨(FLE (M)) ∼= M .

The presence of the antipodal map is forced by the D-module structure, but does

not affect the Hodge or weight filtrations.

Finally, this inverse Fourier transform also comes up when we try to understand

how duality behaves with respect to FL. Specifically, we have the following:

Theorem 1.7 We have an isomorphism

DE∨ ◦ FLE
∼= FLE∨ ◦ DE : MHMmon(E)→ MHMmon(E∨).

In this way, we could have defined FL = DE∨ ◦ FL ◦ DE . Note that the Tate twists

which occur on φg,�=1 but do not happen for φg,1 are completely analogous to the

behavior of duality with respect to nearby and vanishing cycles, as explained in [17,

Prop. 2.6] and [16].

We also use our results in the work with Mircea Mustaţă and Sebastián Olano to

study local cohomology, higher Du Bois and higher rational singularities [3, 4].

1.3 Strategy of the proof

To prove Theorem 1.1, we first treat the case when (M, F•) underlies a polarizable

pure Hodge module. Using the fact that pure Hodge modules decompose by strict

support, we have to consider two situations:

(a) the support of M is contained in Z ;

(b) there is no DX -submodule of M whose support is contained in Z .

The case (a) directly follows from the definition. For case (b), we pass to the blow-up

and reduce the problem to the codimension one case. Let π : X̂ → X be the blow-up

of Z and E be the exceptional divisor. Let (M̂, F•M̂) be the minimal extension of

(M, F•M)|X\Z along E , which also underlies a pure Hodge module by the structure

theorem of Hodge modules [20]. By the direct image theorem of Hodge modules,

(M, F•M) is a direct summand of π+(M̂, F•M̂). Therefore, it suffices to prove the

statement for π+(M̂, F•M̂). Then we factor π : X̂ → X into the graph embedding

iπ : X̂ → X̂ × X and the second projection p : X̂ × X → X and study the direct

images of (M̂, F•M) under these two morphisms. The graph embedding case has no

homological algebra involved and in the case of the projection, we use the bistrictness

proved by Budur, Mustaţă and Saito [2] and Hard Lefschetz [17, 2.14] on the direct

images.

The strategy of proof for the pure case does not work for mixed Hodge modules

because there is no reason that (M, F•M) is a direct summand of π+(M̂, F•M̂).

Instead, we use deformation to the normal bundle to get the compatibility among the
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Hodge filtration, V -filtration and weight filtration. Using the compatibility we reduce

the proof to the pure case.

We also give an alternative proof of Theorem 1.1, using the direct image theorem

for mixed Hodge modules, as well as an explicit computation using a Čech complex.

As for the proof of Theorem 1.2, we first deal with the case when (M, F) underlies

a polarizable Hodge module as we did in the proof of the pure case for Theorem 1.1.

In this case we heavily use the semisimplicity of polarizable pure Hodge modules.

To do the mixed case we need a theorem of Deligne, which roughly states that there

exists a unique functorial splitting of the associated graded of the relative monodromy

filtration. The proof reduces to the pure case by Deligne’s Theorem.

Finally, for the proof of the results concerning the Fourier transform, the main

difficulty lies in computing the V -filtration along the graph embedding of the function

g =
∑r

i=1 ziwi . As an example, if M = OX [z] is the structure sheaf on E , then

OX [z, w] is the structure sheaf on E, and the function g is (quasi)-homogeneous.

Hence, the computation of the V -filtration for such a module is given in [14, Formula

4.2.1] and [22, Lemma 3.3].

1.4 Outline

We first review some basic facts about V -filtration and mixed Hodge modules in

Sect. 2. Some topological properties of V -filtrations along subvarieties are derived in

Sect. 3. We give two different proofs of Theorem 1.1 in Sect. 4. Some applications of

Theorem 1.1 are derived in Sect. 5. Theorem 1.2 is proved in Sect. 6. We also point out

a proof of Theorem 1.2(b) which does not rely on Theorem 1.2(a); see Remark 6.8.

Finally we study the Fourier transform of monodromic mixed Hodge modules in

Sect. 7.

2 Preliminaries

2.1 Convention and notation

Let X be a smooth complex algebraic variety. We recall that there is an equivalence of

categories between filtered left and right DX -modules. Given a filtered left DX -module

(M, F), we denote by (Mr , F) the corresponding filtered right DX -module. In fact,

Mr = ωX ⊗OX
M, while the filtration on Mr is given by

Fp−nMr = ωX ⊗OX
FpM for all p ∈ Z,

where n = dim X .

For right DX -modules it is customary to use the increasing V -filtration. This is

related to the V -filtration on the corresponding left DX -module by

VαMr = ωX ⊗X V−αM.
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To match this convention with the lower indices, for right D-modules, we will

denote the complexes A, B and C from Theorem 1.1 with lower indices, as

Aα(M) =
{

(VαM, F)
t−→

r⊕

i=1

(Vα−1M, F)
t−→ · · · t−→ (Vα−rM, F)

}

placed in degrees 0, 1, . . . , r ,

Bα(M) =
{

(grV
α M, F)

t−→
r⊕

i=1

(grV
α−1M, F)

t−→ · · · t−→ (grV
α−rM, F)

}

as the quotient Aα/A>α and

Cα(M) =
{

(grV
α−r M, F[r ]) ∂t−→

r⊕

i=1

(grV
α−r+1M, F[r − 1]) ∂t−→ · · · ∂t−→ (grV

α M, F)

}

in degrees −r ,−r + 1, . . . , 0.

Moreover, for Z ⊆ X a smooth subvariety of the smooth variety X , we denote by

TZ X = SpecX (
⊕

k≥0 Ik/Ik+1)→ Z the normal bundle of Z inside X .

2.2 Kashiwara–Malgrange V-filtrations

We begin with a review of the theory of V -filtrations introduced by Kashiwara and

Malgrange. For more details, see [15, Section 3.1] and [20, Section 9] for the case of

a hypersurface and [2, Section 1.1] for the case of higher codimension.

Let (t1, . . . , tr ) : X → Ar be a smooth regular function, with fiber Z over the

origin. We define a Z-indexed filtration on DX by

V kDX = {P ∈ DX | P · I j

Z ⊆ I
j+k

Z for all j}.

A Q-indexed filtration V •M is discrete and left-continuous if
⋂

α<β V α = V β for

all β ∈ Q, and if there exists some � ∈ Z>0 such that the subspace V α is constant for

all α ∈ (m
�
, m+1

�
], for any m ∈ Z.

Given a coherent left DX -module M, a Kashiwara-Malgrange V -filtration on M

along Z (see [9, 12]) is an exhaustive, decreasing Q-indexed filtration which is discrete

and left-continuous such that, if θ ∈ V 0DX is any vector field lifting the identity on

IZ/I2
Z , the filtration must satisfy:

(a) V kDX V χM ⊆ V χ+kM for all k ∈ Z, χ ∈ Q,

(b) V kDX V χM = V χ+kM for all k ∈ Z≥0, χ � 0,

(c) Each V χM is coherent over V 0DX ,

(d) The operator θ − χ + r is nilpotent on gr
χ
V M = V χM/V >χM.

It is an easy exercise to see that there can be at most one V -filtration on any coherent

DX -module M. We say that a module M which has a Q-indexed V -filtration is Q-

specializable. Any morphism between Q-specializable modules is strict with respect
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to the V -filtration. Moreover, if

0 →M′→M→M′′→ 0

is a short exact sequence of DX -modules, and M has a V -filtration, then the induced

filtrations on M′ and M′′ satisfy the properties of the V -filtration.

If Z ⊆ X is a singular variety, defined by f1, . . . , fr ∈ OX (X), then if � : X →
X × Ar is the graph embedding along f1, . . . , fr , the V -filtration along Z of a DX -

module M is the V -filtration along X × {0} of the DX×Ar -module �+M.

Example 2.1 (a) Let E be an OX -coherent DX -module. Then V χE := I

χ−r�
Z · E

satisfies the properties of the V -filtration. For example,

θ tαm = tα(|α| + θ)m,

(b) (Kashiwara’s equivalence) Assume M is supported on Z , so by Kashiwara’s

equivalence (see [8, Section 1.6]), there exists a coherent DZ -module N such that

M =
∑

α∈Nr N∂α
t . Then

V−χM =
∑

|α|≤χ

N∂α
t .

For us, it will also be important to understand the case when (M, F) ∼= i+(N, F)

as a filtered D-module. For left D-modules, the pushforward of a filtered module has

filtration defined as

Fpi+(N, F) =
∑

α∈Nr

Fp−|α|−rN∂α
t .

From this, we see easily that

FpV−χ i+(N, F) =
∑

|α|≤χ

Fp−|α|−rN∂α
t .

This last example leads to an important property of the V -filtration.

Lemma 2.2 Assume ϕ : N→M is a morphism between two specializable modules,

such that ϕ|U : N|U → M|U is an isomorphism, where U = X − Z. Then ϕ :
V >0N→ V >0M is an isomorphism.

Proof Let K = ker (ϕ), C = coker(ϕ). The assumption implies these are supported

on Z , so by the previous example, V >0 K = 0 and V >0C = 0. Hence, taking V >0 of

the long exact sequence

0 → K → N→M→ C → 0,
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we get

0 = V >0 K → V >0N→ V >0M→ V >0C = 0,

proving the claim. ��

One can also speak of a C-indexed Kashiwara-Malgrange filtration. The following

theorem of Kashiwara implies that the DX -modules we care about always carry such

a filtration. It is built into the theory of mixed Hodge modules that the filtered DX -

modules underlying them must actually be Q-specializable, not just C-specializable.

Theorem 2.3 [9] Any regular holonomic DX -module M is C-specializable.

2.3 Normal crossing type

For the codimension one case, it is essentially immediate from the definition that the

maps t : V αM → V α+1M (resp. ∂t : grα+1
V M → grαV M) are isomorphisms for

all α �= 0. The following example shows that, for codimension larger than one, the

correct generalization of this property should concern Koszul-like complexes in the

t1, . . . , tr (resp. ∂t1 , . . . , ∂tr ).

Let M be an algebraic regular holonomic left D2-module of normal crossing type

along the two axes on A2, where D2 is the Weyl algebra over A2. For details on normal

crossing type modules, see [17, Section 3]. Let (x, y) be the coordinate system on A2.

Define Mα,β = ker (∂x x − α)∞ ∩ ker (∂y y − β)∞ for (α, β) ∈ Q2. Because of the

assumption that M is of normal crossing type, we have the identity

⊕

α,β∈Q2

Mα,β =M

and each Mα,β is a finite dimensional vector space over C. Then one can easily check

the V -filtration along the origin is given by

V kM =
⊕

α+β≥k

Mα,β ,

and grαVx
gr

β

Vy
M = Mα,β where VxM is the V -filtration along {x = 0} and VyM is

the V -filtration along {y = 0}. Then the double complex

grk
V M grk+1

V M

grk+1
V M grk+2

V M

x

y y

x

=
⊕

α+β=k

»
¼¼½

Mα,β Mα+1,β

Mα,β+1 Mα+1,β+1

x

y y

x

¾
¿¿À (4)
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is exact if k �= 0 because one of x and y must be bijective in a summand by the

properties of V -filtration in codimension one. If k = 0, the above double complex is

quasi-isomorphic to the total complex of

M0,0 M1,0

M0,1 M1,1

x

y y

x

which is isomorphic to i !ZM. Since the total complex of the double complex is just

the Koszul complex

grk
V M

(
grk+1

V M
)2

grk+2
V M,

(x,y) ( y
−x)

we proved a version of generalization of the properties of V -filtration in codimension

one that the above Koszul complex is isomorphic to i !ZM when k = 0 and is exact

when k �= 0. The similar statement regarding the complex

grk+2
V M

(
grk+1

V M
)2

grV
k M

(∂x ,∂y) (
∂y
−∂x

)

is left to the readers.

If (M, L) underlies a mixed Hodge module of normal crossing type where L is

the weight filtration then Mα,β carries a relative mondromy filtration W = W (∂x x +
∂y y−α−β, LMα,β). In fact, we have the relation W = W (∂x x−α, W (∂y y−β, L))

by [17, 3] since we assume M is of normal crossing type. It follows that, if k = 0,

the result of applying grW to the complex (4) is quasi-isomorphic to

grW M0,0 grW M1,0

grW M0,1 grW M1,1

x

y y

x

but the upper-horizontal and left-vertical morphisms are zero by [17, 1]. This is the

motivation for using mixed Hodge complexes in Theorem 1.2.

2.4 Deformation to the normal bundle

This subsection is devoted to studying the specialization construction, which goes

through the deformation to the normal bundle. See for example, Section 2.30 of [17]

and Section 1.3 of [2].

Let Z ⊆ X be a smooth subvariety of codimension r defined by the ideal sheaf

IZ ⊆ OX , and consider the variety
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X̃ := SpecX

(⊕

�∈Z

I−�
Z ⊗ u�

)
,

along with the smooth morphism u : X̃ → A1 = Spec(C[u]). The fiber u−1(0) is

isomorphic to TZ X , the normal bundle of Z in X , and so we call this a deformation to

the normal bundle. Over the open subset Gm := A1 − {0}, the map is isomorphic to

the smooth projection X × Gm → Gm . We will also consider the smooth morphism

p : X × Gm → X of relative dimension 1. Let j : X × Gm ↪→ X̃ be the open

immersion. It is the complement of the smooth divisor TZ X = u−1(0).

X ×Gm = X̃∗ X̃ TZ X X̃∗ X̃ TZ X

Gm A1 {0} X Z

j j

p
ρ

For any M ∈ MHM(X), define Sp(M) := ψu j∗(p∗(M)[−1]) ∈ MHM(TZ X). Here

the shift by [−1] comes from the relative dimension of the morphism p. Let M̃ =
j∗(p∗(M)[−1]). As explained in [2, Formula (1.3.1)], the underlying D-module of

M̃ satisfies

ρ∗(M̃) =
⊕

�∈Z

Mu�, ρ∗(V λM̃) =
⊕

�∈Z

V r+λ−�−1Mu�,

as OX -modules, where V •M̃ is the V -filtration along the smooth hypersurface defined

by u and V •M is the V -filtration along Z . In particular, the D-module underlying

Sp(M) is

Sp(M) =
⊕

λ∈(0,1]

⊕

�∈Z

grr+λ−�−1
V Mu�.

We are able to identify the Hodge filtration on Sp(M) in terms of that on M. To

do this, we first compute the Hodge filtration on M̃.

Lemma 2.4 Let (M, F•) be the filtered DX -module underlying a mixed Hodge module

M on X. Then

FpV γ M̃ =
⊕

�∈Z

V γ−�+r−1M

∩

»
½
�−γ �∑

q=0

(θ + �+ 1) · · · (θ + �+ q)Fp−q V r−1−q−�M

¾
À u�,

with the understanding that the sum is simply equal to the term with q = 0 if �−γ � ≤ 0.
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In particular, if γ ≥ 0,

FpV γ M̃ =
⊕

�∈Z

FpV γ−�+r−1Mu�.

Proof To begin, because j is the inclusion of the complement of a Cartier divisor, we

have the following formula for the Hodge filtration (see Formula 3.2.3.2 of [15] and

Remark 4.4 below)

FpM̃ =
∑

q≥0

∂
q
u

(
V 0M̃ ∩ j∗

(
Fp−q p∗(M)

)
[−1]

)
.

As p : X ×Gm → X is smooth of relative dimension 1, we know F• p∗(M)[−1] =⊕
�∈Z F•Mu�.

Also, we have that ∂u acts on a homogeneous element mu� by (θ+�)mu�−1, where

θ =
∑r

i=1 ti∂ti . Thus, we get the following description (which was pointed out to the

authors by Mustaţă)

FpM̃ =
⊕

�∈Z

»
½∑

q≥0

(θ + �+ 1) · · · (θ + �+ q)Fp−q V r−1−q−�M

¾
À u�.

Let mu� ∈ V γ FpM̃, so we can write m =
∑N

q=0(θ + � + 1) · · · (θ + � + q)mq ,

where mq ∈ Fp−q V r−1−q−�M. Also, m ∈ V γ−�+r−1M by assumption.

Now, break up

m =
�−γ �∑

q=0

(θ + �+ 1) · · · (θ + �+ q)mq +
N∑

q=�−γ �+1

(θ + �+ 1) · · · (θ + �+ q)mq .

For q ≤ �−γ �, we have that r −1−q−� ≥ r −1+γ −�, and so V r−1−q−�M ⊆
V r−1+γ−�M. As m ∈ V r−1+γ−�M by assumption, this implies that the sum

N∑

�−γ �+1

(θ + �+ 1) · · · (θ + �+ q)mq

= (θ + �+ 1) · · · (θ + �+ �−γ � + 1)

N∑

q=�−γ �+1

(θ + �+ �−γ � + 2)

· · · (θ + �+ q)mq ∈ V r−1+γ−�M.

Write m′ =
∑N
�−γ �+1(θ+�+�−γ �+2) · · · (θ+�+q)mq . As mq ∈ V r−1−q−�M,

we have that m′ ∈ V r−1−N−�M. Then (θ+�+N+1)dm′ ∈ V >r−1−N−�M for some

d � 0. As N > �−γ � and (θ + �+ 1) · · · (θ + �+ �−γ � + 1)m′ ∈ V >r−1−N−�M,

Bézout’s identity implies m′ ∈ V >r−1−N−�M. By discreteness of the V -filtration
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and repeating this argument, we see that m′ ∈ V r−1−�−γ �−�M. As θ shifts F by one,

m′ ∈ Fp−�−γ �V r−1−�−γ �−�M.

Thus, m = (θ + �+ 1) · · · (θ + �+ �−γ � + 1)(m�−γ � +m′)+
∑�−γ �−1

q=0 (θ + �+
1) · · · (θ + �+ q)mq , which proves the claim inductively. ��

In the next subsection, we compute the weight filtration for Sp(M). Note that

W•Sp(M) is a DTZ X -submodule, and so it is monodromic. We show that, on each

monodromic graded piece, the weight filtration induces the relative monodromy fil-

tration.

2.5 Admissiblity

For convenience, we recall the definition of the relative monodromy filtration, see

Section 1 of [17] for details.

Let L be a finite increasing filtration on an object M ∈ C, an exact category which

we take to be embedded in some abelian category A. Let S : C → C be an additive

automorphism of the category, which extends to A.

Let N : (M, L) → S−1(M, L) be a filtered morphism such that N i = 0 for

i � 0. Here the filtration L on S j M is defined as Lk(S j M) = S j (Lk M) for any

j ∈ Z, k ∈ Z. Then there is at most one finite, increasing filtration W = W (N , L) of

(M, L), called the relative monodromy filtration which satisfies:

(a) N : (M; L, W )→ S−1(M; L, W [2]) is a filtered morphism,

(b) N i : grW
k+i grL

k M → grW
k−i grL

k M is an isomorphism for all i > 0.

Here, recall that an increasing filtration is shifted as W [ j]• = W•− j . We shall take C

the category of filtered D-modules and S the shifting of the filtration.

In the theory of mixed Hodge modules, the objects are defined to satisfy the admis-

sible condition: if (M, W ) is a mixed Hodge module with its weight filtration and

g ∈ OX is any locally defined regular function, then

(a) the relative monodromy filtration for ψg(M, W ) exists for the nilpotent mon-

odromy operator on this nearby cycle, with L i = ψg(Wi+1 M). Similarly, one

assumes the existence of the relative monodromy filtration on φg,1(M, W ), with

L i = φg,1(Wi M) defined without a shift.

(b) the three filtrations are compatible

0 → F�VαWi−1M→ F�VαWiM→ F�VαgrW
i M→ 0,

where V is the V -filtration along g.

In the setting of higher codimension, say Z is a smooth subvariety defined by

t1, . . . , tr , it is an easy exercise using the specialization construction to see that the

V -filtration along Z satisfies a similar property. The associated graded modules grV
χ M

also have nilpotent operators, given by θ − χ =
∑r

i=1 ti∂ti − χ .

Lemma 2.5 Suppose that the triple (M, F, W ) underlies a graded polarizable mixed

Hodge module, then the three filtrations F, V , W are compatible, i.e., the following

sequence is exact
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0 → Fk VαWi−1M→ Fk VαWiM→ Fk VαgrW
i M→ 0.

Proof We first recall the setting in Sect. 2.4: let X̃ = SpecX

(∑
�∈Z I�

Z · u−�
)

be the

deformation to the normal bundle along Z , where IZ is the ideal sheaf of Z and

I�
Z = OX for � < 0. Let ρ : X̃ → X , p : X̃∗ → X be the two structure morphisms

and j : X̃∗ → X̃ is the open immersion. Abusing the notation, we also denote by

ρ : TZ X → Z as the restriction of ρ : X̃ → X .

Let M̃ = j+ p∗M. Then by Saito’s theory [17], there exist filtrations F•M̃
and W•M̃ on M̃ such that the triple (M̃, F•M̃, W•M̃) underlies a graded polar-

izable mixed Hodge module and that j∗F•M̃ =
⊕

�∈Z F•+1Mu� and j∗W•M̃ =⊕
�∈Z W•Mu�. It follows from the compatibility for mixed Hodge modules of the

codimension-one case that

0 → Fk VαWi−1M̃→ Fk VαWiM̃→ Fk VαgrW
i M̃→ 0, (5)

where V• is the V -filtration along TZ X . Since V<0 only depends on the restriction of

a D-module to X̃∗, it follows that VαWiM̃ = Vα j+ p∗WiM for α < 0. On the other

hand, the Hodge filtration on Vα for α < 0 can be calculated by

Fk VαWiM̃ = Fk VαWi j+ p∗M̃ = j∗ p∗Fk+1WiM ∩ Vα j+ p∗WiM.

We obtain, for α < 0,

ρ∗Fk VαWiM̃ =
⊕

�∈Z

Fk+1Vα+�+1WiM · u�.

Similarly, we have, for α < 0,

ρ∗Fk VαgrW
i M̃ =

⊕

�∈Z

Fk Vα+�+1grW
i M · u�.

Applying ρ∗ to the sequence (5) for α < 0 yields an exact sequence on X :

0 →
⊕

�∈Z

Fk Vα+�+1Wi−1M · u� →
⊕

�∈Z

Fk Vα+�+1WiM · u�

→
⊕

�∈Z

Fk Vα+�+1grW
i M · u� → 0.

Since the morphisms in the above sequence respect the grading, we have

0 → Fk VαWi−1M→ Fk VαWiM→ Fk VαgrW
i M→ 0

for every α ∈ Q. We conclude the proof. ��

Lemma 2.6 If (M, F, W ) is a bifiltered DX -module underlying a mixed Hodge mod-

ule with the weight filtration W , then the relative monodromy filtration W (θ − χ, L)

on grV
χ M exists where L•grV

χ M = grV
χ (W•M) is induced by the weight filtration.
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Proof The relative monodromy filtration W = W (u∂u − α, L) exists on grV
α M̃ for

α ∈ [−1, 0] because M̃ is a mixed Hodge module. Then since WkgrV
α M̃ is invariant

under the Gm-action u∂u , applying ρ∗ gives

ρ∗WkgrV
α M̃ =

⊕

�∈Z

WkgrV
α+�+1M · u�.

induces a filtration W on each grV
α+�+1M. We easily check that W grV

α+�+1M is the

relative monodromy filtration W (θ − α − � − 1, L) if α < 0. Indeed, we have seen

that, for α < 0

ρ∗grW
k+i grL

i grV
α M̃ =

⊕

�∈Z

grW
k+i grL

i grV
α+�+1M · u�.

The isomorphism (u∂u − α)k : grW
k+i grL

i grV
α M̃→ grW

−k+i grL
i grV

α M̃ commutes with

the Gm-action so it induces an isomorphism on each graded piece after we apply ρ∗.��

Lemma 2.7 Let (M, F) be a filtered D-module underlying a mixed Hodge module on

a product of smooth varieties Y × X. Let pr2 : Y × X → X be the second projection

and V•M is the V -filtration along Y× Z. Suppose that pr2 is projective on the support

of M. Then we have:

(a) The spectral sequence associated to the relative monodromy filtration on

pr2+(grV
α M, F) degenerates at the second page E2 in the category of filtered

D-modules.

(b) If (M, F) underlies a polarizable Hodge module, then E
p,q
2 is a filtered direct

summand of E
p,q
1 .

(c) If (M, F) underlies a polarizable Hodge module and W grV
α M is the monodromy

filtration, then the image of Hi pr2+WkgrV
α M in Hi pr2+grV

α M is the monodromy

filtration of

grV
α Hi pr2+M = Hi pr2+grV

α M.

(d) We have the decomposition in the filtered derived category of D-modules

pr2+(grW
k grV

α M, F) �
⊕

i

(Hi pr2+grW
k grV

α M, F)[−i]

where W grV
α M is the relative monodromy filtration.

Proof Let p̃r2 : Y × TZ X → TZ X be the induced morphism on the normal bundles.

Then we obtain the following commutative diagram by abusing notation.

Y × TZ X TZ X

Y × Z Z

p̃r2

ρ ρ

pr2
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Then by the exactness of ρ∗, for α < 0

ρ∗p̃r2+(grV
α M̃, F) = ρ∗Rp̃r2∗(grV

α M̃⊗
−∗∧

TY , F) = Rpr2∗ρ∗(grV
α M̃⊗

−∗∧
TY , F)

= Rpr2∗
⊕

�∈Z

(grV
α+�+1M⊗

−∗∧
TY , F) · u� =

⊕

�∈Z

pr2+(grV
α+�+1M, F) · u�.

Here, we identify TY with TY×TZ X/TZ X and the Hodge filtration F•grV
α M̃⊗

∧−∗
TY

is given by

F•+∗grV
α M̃⊗

−∗∧
TY .

In particular, we see that ρ∗p̃r2+ = ρ∗pr2+ in the derived category of filtered D-

modules. Therefore, by functoriality of the spectral sequences, we obtain a relation

between the spectral sequence E
p,q
r

(
p̃r2+(grV

α M̃, F)
)

induced by the relative mon-

odromy filtration on pr2+grV
α M̃ and the spectral sequence E

p,q
r (pr2+(grV

α M, F)) on

pr2+(grV
α M, F):

ρ∗E
p,q
r

(
p̃r2+(grV

α M̃, F)
)
=
⊕

�∈Z

E
p,q
r

(
pr2+(grV

α+�+1M, F)
)
· u� for α < 0.

(6)

Moreover, the differential dr is compatible with the direct sum decomposition.

Due to the fact that (grV
α M̃, F, W ) underlies a mixed Hodge module, the spectral

sequence E
p,q
r

(
p̃r2+(grV

α M̃, F)
)

induced by the relative mondromy weight filtration

on p̃r2+(grV
α M̃, F) degenerates at the second page. Therefore, the spectral sequence

E
p,q
r (pr2+(grV

α M, F)) also degenerates at the second page.

Since polarizable Hodge modules are semisimple [15, 5.2.13], E
p,q
2 (grV

α M̃, F) is

a summand of E
p,q
1 (grV

α M̃, F). Thanks to (6) again, E
p,q
2 (pr2+grV

α M) is a summand

of E
p,q
1 (pr2+grV

α M).

It follows from [15, 5.3.4.2] that the image of Hi p̃r2+W•grV
α M̃ in Hi p̃r2+grV

α M̃ is

the monodromy filtration W•grV
α Hi p̃r2+M̃. Noticing that ρ∗ is exact and ρ∗H

i p̃r2+ =
Hi pr2+ρ∗, we get

ρ∗W•grV
α Hi p̃r2+M̃ =

⊕

�∈Z

W•grV
α+�+1H

i pr2+M · u�

for α < 0. Then W•grV
α+�+1H

i pr2+M is the monodromy filtration W (θ −α− �−1)

as pointed out in the proof of Lemma 2.6. Then applying ρ∗ for α < 0 to

Hi p̃r2+W•grV
α M̃ � W•grV

α Hi p̃r2+M̃ ↪→ Hi p̃r2+grV
α M̃
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gives:

⊕

�∈Z

Hi pr2+W•grV
α+�+1M · u�

�

⊕

�∈Z

W•grV
α+�+1H

i pr2+M · u�

↪→
⊕

�∈Z

Hi pr2+grV
α+�+1M · u�

respecting the grading. We have proved (c).

For (d), since grW
k grV

α M̃ is a polarizable Hodge module, by choosing an ample

class on Y , it follows from the hard Lefschetz theorem that

H−i p̃r2+(grW
k grV

α M̃, F) ∼= Hi p̃r2+(grW
k grV

α M̃, F)(i),

where (i) is the Tate twist. This implies for α < 0 by applying ρ∗;

⊕

�∈Z

H−i pr2+(grW
k grV

α+�+1M, F) · u� �
⊕

�∈Z

(Hi pr2+grW
k grV

α+�+1M, F)(i) · u�,

respecting the grading. Therefore, as a consequence, we have the decomposition as

claimed. ��

Lemma 2.8 For any short exact sequence of mixed Hodge modules

0 →M′→M→M′′→ 0,

the induced sequence

0 → (grV
α M′, F, W )→ (grV

α M, F, W )→ (grV
α M′′, F, W )→ 0

is bifiltered exact, where W is the relative monodromy filtration.

Proof By the assumption and [17, 2.5], we have

0 → (grV
α M̃

′
, F, W )→ (grV

α M̃, F, W )→ (grV
α M̃

′′
, F, W )→ 0

is exact for α ∈ [−1, 0). Then the rest of the proof goes like the proof of the above

two Lemmas. ��

Definition 2.9 We say a morphism ϕ : (M, F)→ (N, F) is strict if FpN∩ im(ϕ) =
ϕ(FpM). We say that a filtered complex (K •, F) is strict if all differentials are strict.

Recall the definition of a bistrict morphism between two bifiltered objects φ :
(M, F, F ′) → (N, F, F ′). Such a morphism is one which is strict with respect to

both F and F ′ and which satisfies

(FpN+ imφ) ∩ (F ′qN+ imφ) = Fp F ′qN+ imφ and (Fp F ′qN) ∩ imφ = φ(Fp F ′qM).
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A complex is bistrict if all morphisms are bistrict. Bistrict complexes have the property

that

Fp F ′qHkC• = Hk(Fp F ′qC•).

As a corollary of Lemma 2.4, we show that any morphism between mixed Hodge

modules is bistrict along (F, V ) for V the V -filtration along a smooth subvariety Z

of codimension r .

Corollary 2.10 Let ϕ : M → N be a morphism of mixed Hodge modules on X. Then

the corresponding map on filtered DX -modules ϕ : M → N is bistrict with respect

to the Hodge filtration F•M and V •M.

Proof By the theory of mixed Hodge modules, ϕ is strict with respect to the Hodge

filtration. Similarly, by uniqueness of V -filtrations, it is strict with respect to V •.
We now prove the remaining two conditions for bistrictness hold.

We know again by the theory of mixed Hodge modules that ϕ̃ : j+ p∗(M)[−1] →
j+ p∗(N)[−1] is bistrict with respect to the Hodge filtration and the V -filtration along

u.

Let n ∈ (FpN+ im(φ))∩(V λN+ im(φ)). Write n = ñ+φ(m) for some ñ ∈ FpN

and m ∈M. If ñ ∈ V λN, then we are done. Otherwise, ñ ∈ V β N for some β < λ.

Let us determine a range of � such that ñu� ∈ Fp−1 j+(p∗(N)[1]). Using the

formula from 2.4 with γ = 0, since ñ ∈ FpV β(N), we can force this to be true if

−� + r − 1 < β, or r − β − 1 < �. Hence, for all � > r − β − 1, we see that

ñu� ∈ Fp−1 j+(p∗(N)[1]).
On the other hand, writing n = n′ + φ(m′) for n′ ∈ V λN, then n′u� ∈

V α j+(p∗(N)[1]) whenever α − � = λ − r + 1. To apply 2.4, it will be useful to

have α ≥ 0. Thus, we need � satisfying

0 ≤ α = λ+ �− r + 1, � > r − β − 1,

which are both clearly possible for �� 0. Fix some � for which both inequalities are

true.

Define α = λ+�−r+1, then nu� = (̃n+φ(m))u� ∈ Fp−1 j+(p∗(N)[1])+im(φ̃),

and nu� = (n′ + φ(m′))u� ∈ V α j+(p∗(N)[1])+ im(φ̃). Here

φ̃ : j+(p∗(M)[1])→ j+(p∗(N)[1]),

is a morphism of mixed Hodge modules.

In particular, it is bistrict with respect to F and the V -filtration along {u = 0}. Thus,

we see that nu� ∈ (Fp−1V α j+(p∗(N)[1]) + im(φ̃). As it is homogeneous of degree

�, we get

n = n′′ + φ(m′′),

where n′′ ∈ FpV λN, where we use the fact that α ≥ 0 and apply 2.4. This proves the

first condition needed for bistrictness.
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For the last condition, let n ∈ FpV λN ∩ im(φ). Find γ ≥ 0 such that γ − � +
r − 1 = λ, by choosing � � 0. Then nu� ∈ Fp−1V γ j+(p∗(N)[1]), and it lies in

im(φ̃), so by the fact that φ̃ is bistrict with respect to V and F , there exists some∑
mi u

i ∈ Fp−1V γ j+(p∗(M)[1]) which maps to nu� under φ̃. Taking m�u� and

using 2.4, we see that m� ∈ FpV λM, and φ(m�) = n, proving the second condition

for bistrictness. ��

2.6 Saito’s main theorems about Hodgemodules

In this section, we state two essential theorems in Saito’s theory of mixed Hodge

modules.

The first main result is the behavior of mixed Hodge modules with respect to the

pushforward functor for a projective morphism f : Y → X . For more details and

proofs, see [20, Section 16] or [15, Section 5.3].

For example, a monomorphism i : A ↪→ B is strict iff the filtration on A is the

induced filtration from B. The main utility of strictness is that, if (K •, F) is a filtered

complex with strict differentials, then Hk(Fp K •)→ Hk(K •) is injective for all k ∈ Z.

Hence, we can define a filtration F on Hk(K •), and strictness allows us to commute

Hk with Fp.

We begin now with the statement of the direct image theorem in the pure case:

Theorem 2.11 [15, Thm 5.3.1] Let f : Y → X be a projective morphism of smooth

complex varieties, let M be a pure Hodge module on Y of weight w. Let � ∈ H2(Y , Z)

be the class of a relatively ample divisor over Y . Then

(a) f+(M, F) is strict and Hi f+(M, F) underlies a Hodge module on X of weight

w + i .

(b) �i : H−i f+(M, F)→ Hi f+(M, F)(i) is an isomorphism for all i ≥ 0.

As an application, if X is a smooth projective variety, f : X → ∗ is the constant

map, then the strictness of f+(M, F) recovers the fact that the Hodge-de Rham

spectral sequence degenerates at E1.

Also, as a formal consequence of the second part of the theorem (see [5, Prop. 2.1]),

one recovers the decomposition theorem, i.e., an isomorphism in the derived category

f+(M, F) ∼=
⊕

i∈Z

Hi f+(M, F)[−i].

Remark 2.12 The strictness of f+(M, F) in part (a) of Theorem 2.11 still holds if

we assume M is a mixed Hodge module. One particular application of Theorem 2.11

will be when the map f : Y = Z × X → X is a smooth, projective projection from

a product and (M, F) underlies a mixed Hodge module. In this case, the D-module

pushforward f+(M) is given by applying R f∗ to the relative de Rham complex (see

[8, Prop. 1.5.28])

K • =
{
M

d−→ �1
Z ⊗M

d−→ . . .
d−→ �dim Z

Z ⊗M
}
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and this complex is filtered, given by

Fp K • =
{

FpM→ �1
Z ⊗ Fp+1M→ · · · → Fp+dim Z�dim Z

Z ⊗M
}

.

Then strictness tells us that the induced map

Ri f∗(Fp K •)→ Ri f∗(K •) = Hi f+(M)

is injective, and defines the Hodge filtration on this cohomology module.

The second main theorem is called the “structure theorem for polarizable Hodge

modules”.

Let Z ⊆ X be an irreducible closed subset. A Hodge module M on X has strict

support Z if the underlying D-module has no subquotient D-modules supported on

a proper subset of Z . See [20, Exercise 10.2] for a characterization of this property

in terms of the V -filtration along a hypersurface. See also our generalization of this

property to higher codimension in Corollary 3.3 and Corollary 3.4.

Built into the definition of the category of pure Hodge modules is the property that

every pure Hodge module has a decomposition by strict support, meaning, for any M

pure on X , we have

M =
⊕

Z⊆X

MZ ,

where the direct sum ranges over irreducible closed subsets of Z , MZ �= 0 for only

finitely many Z , and each MZ is a pure Hodge module with strict support Z . See [20,

Theorem 11.7] for a characterization of this property in terms of the V -filtration. See

our generalization of this property to higher codimension in Corollary 3.5.

The structure theorem gives a description of those pure Hodge modules with strict

support Z : they are generically given by (polarizable) variations of Hodge structure

on Z . See [20, Section 15].

Theorem 2.13 Let X be a smooth complex algebraic variety, Z ⊆ X an irreducible

subset. Then

(a) Every polarizable variation of Hodge structure of weight w− dim Z on a Zariski

open subset of Z extends uniquely to a polarizable Hodge module on X of weight

w with strict support Z.

(b) Every Hodge module with strict support Z arises in this way.

The difficult claim is to extend a polarizable VHS to a Hodge module with strict

support on Z . This result will be used to identify certain Hodge modules as strict

support direct summands of other Hodge modules.

2.7 MonodromicD-modules

For background on monodromic D-modules on a vector bundle E , see [1]. For results

on monodromic mixed Hodge modules on a line bundle, see [19].
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Let E be a vector bundle of rank r on a smooth variety X . A DE -module M is

monodromic if, for every local trivialization U ×Ar of E , every choice of coordinates

z1, . . . , zr on the Ar -factor, with vector fields ∂z1 , . . . , ∂zr and every local section

m ∈ M, there exists a univariate polynomial b(w) ∈ C[w] such that b(θ)m = 0,

where θ =
∑r

i=1 zi∂zi
.

Such modules satisfy several nice properties:

M.1 If M is monodromic, then it decomposes into generalized eigenspaces for the

θ action, i.e.,

M =
⊕

χ∈C

Mχ ,

where Mχ = ker ((θ − χ + r)∞).

M.2 Every subquotient of a monodromic D-module is monodromic.

M.3 Every morphism between monodromic D-modules preserves the eigenspace

decomposition.

M.4 ziM
χ ⊆Mχ+1, ∂zi

Mχ ⊆Mχ−1 for all 1 ≤ i ≤ r .

M.5 The (C-indexed) V -filtration of a coherent monodromic DE -module along the

zero section X ⊆ E is given by

V λM =
⊕

χ≥λ

Mχ ,

and in particular,

grλV M ∼=Mλ.

A mixed Hodge module M on E is monodromic if the underlying D-module is. As

V -filtrations are Q-indexed for mixed Hodge modules by definition, we know that if

M underlies a mixed Hodge module, then M =
⊕

χ∈Q Mχ by Property M.5.

2.8 Conventions for shifting the Hodge filtration

We refer to [20] for all conventions regarding the Hodge filtration and weight filtration

when applying functors to mixed Hodge modules when considering right D-modules.

As noted at the beginning of Sect. 2, these conventions may differ if we want to use

left D-modules instead. For convenience, we will list here those conventions for left

D-modules.

Tate Twist: Let (M, F) be a filtered DX -module. Then we define (M, F)(k) for any

k ∈ Z, the Tate twist of (M, F) by k, to be (M, F[k]), where F[k]pM = Fp−kM.

Smooth pullbacks: See Remark (4.4.2) and Formula (2.17.3) in [17]. Let p : X ×
Y → Y be a smooth surjective morphism of relative dimension r = dim X between

smooth varieties. Let M̃ = p∗(M) as an O-module (which is also the D-module

pullback, see [8, Sect. 1.3]). If (M, F) is a filtered left DY -module, let FpM̃ =
p∗(FpM).
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If M is a mixed Hodge module with underlying filtered DY -module M, then the

pullback p∗(M) ∈ DbMHM(X × Y ) has underlying filtered DX×Y -module

(M̃, F•) (7)

lying in cohomological degree r , and p!(M) ∈ DbMHM(Y ) has underlying filtered

DX×Y -module given by

(M̃, F•[r ]) (8)

lying in cohomological degree −r . The weight filtration is given by

W• p∗(M)[r ] = p∗(W•−rM) and W• p!(M)[−r ] = p∗(W•+rM).

Nearby and Vanishing Cycles: Let X = {t = 0} ⊆ Y be a smooth hypersurface

defined by the global function t . Let M be a holonomic DY -module. We define

ψt,λ(M) = grλV M for λ ∈ (0, 1],
φt,λ(M) = ψt,λM for λ ∈ (0, 1)

and

φt,1(M) = gr0
V M,

where V •M is the V -filtration of M along X .

If (M, F) is a filtered holonomic DX -module, then the filtration on nearby and

vanishing cycles is defined to be

Fpψt,λ(M) =
FpV λM

FpV >λM
for λ ∈ (0, 1] (9)

Fpφt,1(M) =
Fp+1V 0M

Fp+1V >0M
. (10)

Just as the Hodge filtration includes a shift based on if λ = 1 or λ ∈ (0, 1), so does

the weight filtration (see [20, Sect. 20]. We make note of it here for later use: the weight

filtration W•φt,λ(M) for (M, W•) a D-module underlying a mixed Hodge module

is defined to be the relative monodromy filtration (as defined in Sect. 2.5 above) of

L•φt,λ(M) along the nilpotent operator N = ∂t t − λ. here, L•φt,λ(M) is defined as

Lkφt,1(M) = gr0
V (WkM), (11)

Lkφt,λ(M) = grλV (Wk+1M) for λ ∈ (0, 1). (12)
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3 Topological properties of V -filtration

In this section we first prove some basic properties of V -filtrations along a smooth sub-

variety. The analogous statements for a codimension 1 subvariety appear in [15, Section

3]. Now let us fix the notation. Let X be a smooth variety and Z be a smooth subvariety

of codimension r globally defined by regular functions t1, t2, . . . , tr . Assume there

exist global vector fields ∂1, ∂2, . . . , ∂r dual to the 1-forms dt1, dt2, . . . , dtr . Let M be

a right holonomic DX -module along Z and V•M be the V -filtration along Z . Recall

that we have introduced the following notation: for a right holonomic DX -module M,

we define

Aα(M) =
{

VαM→ (Vα−1M)r → · · · → Vα−r M
}
, in degrees 0, 1, . . . , r;

Bα(M) =
{

grV
α M→ (grV

α−1M)r → · · · → grV
α−r M

}
, in degrees 0, 1, . . . , r;

Cα(M) =
{

grV
α−r M→ (grV

α−r+1M)r → · · · → grV
α M

}
, in degrees − r ,−r + 1, . . . , 0.

Theorem 3.1 The complexes Bα(M) and Cα(M) are exact for α �= 0.

Proof We shall construct a retraction on the complex Bα(M), i.e. a series of mor-

phisms

s� :
(

grV
α−�M

)(r
�) →

(
grV

α−�+1M
)( r

�−1)

such that s�+1◦d�+d�−1◦s� = θ+� where d is the differential of the complex Bα(M).

Note that the collection {θ + �} gives an endomorphism of the complex Bα(M). Let

(grV
α−1M)r =

r⊕

i=1

grV
α−1Mei

where e1, e2, . . . , er is a standard basis such that the Koszul differential works as

d�

(
η ei1 ∧ ei2 ∧ · · · ∧ ei�

)
=

r∑

i=1

ηti ei ∧ ei1 ∧ ei2 ∧ · · · ∧ ei� ,

where η is a local section of grV
α−�M. Now we can define the morphism

s�

(
η ei1 ∧ ei2 ∧ · · · ∧ ei�

)
=

r∑

j=1

η∂ j e∗j (ei1 ∧ ei2 ∧ · · · ∧ ei�),

where {e∗1, e∗2, . . . , e∗r } is the dual basis and

e∗j (ei1 ∧ ei2 ∧ · · · ∧ ei�) =
�∑

k=1

(−1)k−1ei1 ∧ ei2 ∧ · · · ∧ e∗j (eik
) ∧ · · · ∧ ei� .
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Without loss of generality, we only do the computation on ηe1 ∧ e2 ∧ · · · ∧ e�:

(s�+1 ◦ d� + d�−1 ◦ s�)(η e1 ∧ e2 ∧ · · · ∧ e�)

= s�+1

(
r∑

i=1

ηti ei ∧ e1 ∧ e2 ∧ · · · ∧ e�

)
+ d�−1

»
½

r∑

j=1

η∂ j e∗j (e1 ∧ e2 ∧ · · · ∧ e�)

¾
À

=
r∑

k=1

r∑

i=1

ηti∂k e∗k (ei ∧ e1 ∧ e2 ∧ · · · ∧ e�)+
r∑

a=1

r∑

j=1

η∂ j ta ea ∧ e∗j (e1 ∧ e2 ∧ · · · ∧ e�)

= η

(
r∑

i=1

ti∂i + �

)
e1 ∧ e2 ∧ · · · ∧ e�

= η(θ + �) e1 ∧ e2 ∧ · · · ∧ e�.

Because θ + � = (θ − (α − �)) + α, the scalar multiplication by α is equal to the

nilpotent operator θ − (α − �) on the �-th cohomology of Bα(M). This can happen

for α �= 0 if and only if the �-th cohomology vanishes. We conclude that the complex

Bα(M) is exact for α �= 0.

The proof of the exactness of the complex Cα(M) is similar and we leave the rest

of the proof to the readers. ��
Theorem 3.2 The complex Aα(M) is exact for α < 0.

Proof It suffices to show that the complex Aα(M) is exact for α � 0 by Theorem 3.1.

We will prove the claim for j ∈ Z�0. The Z-indexed filtration V•M is a good filtration

with respect to the Z-indexed V -filtration (DX , V•), and so we can locally take a

(DX , V )-free filtered resolution

· · · → (L1, V )→ (L0, V )→ (M, V )

of (M, V ) such that (L i , V ) =
⊕mi

j=1(DX , V [n(i)
j ]). It follows that the total complex

T • of the double complex

· · · → Aα(L1, V )→ Aα(L0, V )

is quasi-isomorphic to Aα(M). As Aα(−) gives a bounded complex, the terms

T−1, T 0, . . . , T r only concern L0, L1, . . . , Lr+1. We show that for α < min0≤i≤r+1, j

{n(i)
j } the complexes Aα(L i ) are acyclic for 0 ≤ i ≤ r + 1, proving the claim.

The claim is thus equivalent to Aα(DX ) is exact for α ≤ 0. We will prove

grF Aα(DX ) is acyclic, which implies the desired claim.

To see this, using local coordinates we reduce to the case X = An and Z is defined

by the vanishing of coordinates t1, . . . , tr . Then grFDX = R[t1, . . . , tr , ξ1, . . . , ξr ]
where R = OAn−r [ξr+1, ξr+2, · · · , ξn] and ξi is the principal symbol of ∂ti . We put a

grading on this ring where R has degree 0, ti has degree −1 and ξi has degree +1 for

i = 1, 2, · · · , r . Then the module grF V jDX , in terms of grading, is given by:

grF (V jDX ) =
⊕

β≤ j

(grFDX )β ,
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where (grFDX )β is the β-graded piece.

The elements t1, . . . , tr clearly form a regular sequence on grFDX =
⊕

β∈Z(grF

DX )β , and so the corresponding Koszul complex

grF A∞(DX ) :=
{

grFDX
(t1,t2,··· ,tr )−−−−−−→ (grFDX )r → · · · → grFDX

}

gives a resolution of R[ξ1, . . . , ξr ]. All maps in the Koszul complex are graded with

respect to the grading just defined. In particular, the resulting degree β complex

Kβ :=
{
(grFDX )β

(t1,t2,··· ,tr )−−−−−−→ (grFDX )r
β−1 → · · · → (grFDX )β−r

}

is a resolution, as it is a direct summand of grF A∞(DX ). The claim is that for α ≤ 0,

the complex

grF Aα(DX ) =
⊕

β≤α

K •β

is acyclic. The only possibly non-zero cohomology is the rightmost one whose grading

is β − r because Kβ is a resolution. But since α ≤ 0, by the definition of V•DX , the

rightmost cohomology of grF Aα(DX ) is automatically zero, proving the claim. ��

We give some elementary applications of Theorem 3.1 and Theorem 3.2. As a

consequence we give a criterion for when M has strict support decomposition along

Z .

Corollary 3.3 A DX -module M with a V -filtration along Z has no submodules sup-

ported on Z if and only if grV
0 M

t−→
⊕r

i=1 grV
−1M is injective.

Proof If m ∈M is such that mti = 0 for all i , then m ∈ V0M. Indeed, m ∈ VλM for

some λ ∈ Q. If λ ≤ 0, we are done. Otherwise, considering the short exact sequence

0 → A<λ(M)→ Aλ(M)→ Bλ(M)→ 0,

by acyclicity of Bλ(M) for λ �= 0, the left-most map being injective implies m ∈
V<λM. Since the V -filtration is discrete, by induction we know that m ∈ V0M.

This means that M has no submodules supported on Z if and only if
⋂r

t=1 ker (ti :
V0M→ V−1M) vanishes.

Since A<0(M) is acyclic, it follows from the short exact sequence and the snake

lemma

0 → A<0(M)→ A0(M)→ B0(M)→ 0.

that
⋂r

t=1 ker (ti : grV
0 M → grV

−1M) =
⋂r

t=1 ker (ti : V0M → V−1M), which

concludes the proof. ��
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Corollary 3.4 Let M′ be the smallest submodule of M such that M′|U ∼=M|U . Then

M/M′ ∼= i+coker

(
r⊕

i=1

grV
−1M

∂t−→ grV
0 M

)
.

In particular, the morphism
⊕r

i=1 grV
−1M → grV

0 M is surjective if and only if M

has no quotients supported on Z.

Proof Note that M′ = VλM·DX for any λ < 0. Indeed, we know that VλM
′ = VλM

if λ < 0, as they restrict to the same module on X−Z . Thus, VλM·DX = VλM
′·DX ⊆

M′. For the other inclusion, note that (VλM ·DX )|U =M|U , because the V -filtration

is all of M away from Z . Hence, by minimality of M′, we get the desired equality.

Note that M/M′ is supported on Z , so by Kashiwara’s equivalence M/M′ =
i+grV

0

(
M/M′), where i : Z → X is the inclusion. We know grV

0 M/M′ =
grV

0 M/grV
0 M′ and

grV
0 (M′) =

V0M ∩M′

V<0M
,

because V<0M = V<0M
′ and V•M ∩M′ = V•M

′ by the uniqueness of the V -

filtration. Thus, the claim reduces to proving

V0M ∩M′ =
r∑

i=1

V−1M∂ti + V<0M.

In fact, we can define inductively a filtration U•M
′ by UλM

′ =
∑r

i=1 Uλ−1M∂ti+
U<λM for λ ≥ 0 and UλM

′ = VλM
′ for λ < 0. Note that VλM

′ = VλM for λ < 0

is discrete so U•M
′ is well-defined. Since M′ = V<0M · DX , the filtration U•M

is exhausted. Then it is easy to check that U•M
′ satisfies all the characterization of

V -filtration, i.e. U•M
′ = V•M

′ which concludes the proof. ��

We prove here an analogue of the fact from the codimension one case that you can

test if a module has a strict support decomposition by looking at φ f ,1 as f ∈ OX

varies.

Corollary 3.5 Let M be a DX -module admitting a V -filtration along Z. Then there

exists a decomposition M = M′ ⊕M′′ with supp(M′) ⊆ Z and M′′ having no

submodules or quotient modules supported on Z if and only if

grV
0 M =

(
r⋂

i=1

ker (ti : grV
0 M→ grV

−1M

)⊕(
r∑

i=1

grV
−1M∂ti

)
.

Proof For the “only if” part, by the previous lemma we know grV
0 M′′ = im(∂zi

)

and
⋂r

i=1 ker (ti : grV
0 M′′ → grV

−1M
′′) = 0. Also, by Kashiwara’s equivalence, we
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know M′ satisfies grV
−1M

′ = 0. By taking grV
0 of the equality M =M′ ⊕M′′, we

conclude.

For the other implication, note that we must certainly set M′ = H0
Z (M), as this

is the maximal submodule of M supported on Z . Let M′′ = V<0M ·DX , which we

know is the smallest submodule such that M′′|U =M|U , and satisfies

M/M′′ = i+(coker

(
r⊕

i=1

grV
−1M

∂ti−→ grV
0 M

)
.

By the assumption, this cokernel is isomorphic to
⋂r

i=1 ker
(
ti : grV

0 M→ grV
−1M

)
,

and so M/M′′ ∼=M′. But the inclusion M′→M splits this quotient map, yielding

the direct sum

M ∼=M′ ⊕M′′,

which proves the claim. ��

For convenience, denote by B(M) = B0(M) and C(M) = C0(M). To close

this section, we give a comparison of the restriction i !ZM and i∗ZM with B(M) and

C(M) for iZ : Z → X .

Theorem 3.6 With notation as above, the complex B(M) (resp. C(M)) is isomorphic

to i !ZM (resp. i∗ZM) in Db
rh(DZ ), where iZ : Z → X is the closed embedding.

Proof First, we exhibit the quasi-isomorphism B(M) ∼= i !M. Recall that i !M agrees

with the derived O-module pullback of M, hence, we can use the Koszul complex on

M along t1, . . . , tr .

Since Bα(M) is exact by Theorem 3.1 when α > 0 and the V -filtration is discretely

indexed, we find that the natural inclusion of complexes A0(M) ↪→ A j (M) is a quasi-

isomorphism for any j ≥ 0. This implies that the natural inclusion of complexes

A0(M) ↪→ A∞(M) :=
{
M→M

⊕
r → · · · →M

}
(13)

is a quasi-isomorphism, where the right hand side is the Koszul complex of M along

t1, . . . , tr . Indeed, V•M is exhaustive, so the right hand side is the direct limit as

j →∞ of A j (M), and the direct limit is exact. By Theorem 3.2, the quotient map

A0(M)→ BZ (M)

is a quasi-isomorphism.

The statement about C(M) just follows from applying Proposition 3.7 to TZ X → Z

and Theorem 3.1. Indeed, Sp(M) is monodromic on TZ X , and it is not hard to show

that σ ∗(Sp(M)) = i∗(M), where σ : Z → TZ X is the zero section of the normal

bundle. ��
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Proposition 3.7 [7, Proposition 10.4] For a monodromic DE -module M, there are

quasi-isomorphisms

p+M � i∗M, p†M � i !M

where p : E → Z is a vector bundle and i : Z → E is the zero section.

Remark 3.8 Proposition 3.7 also holds true if M is a monodromic mixed Hodge module

on E . The proof of the first claim uses the exact triangle

j! j
∗M→M→ i∗i

∗M
+1−→,

which holds true in the category of mixed Hodge modules, too. Then, applying p∗ to

this triangle, it suffices to show that

p∗ j! j
!M = 0,

but in the proof, Ginzburg shows the underlying D-module is 0, so the mixed Hodge

module must necessarily be 0, as well. The second claim is related to the first by

duality.

Remark 3.9 Using the previous theorem, we can rephrase the results of Lemma 3.5

and Lemma 3.4 respectively as H0i !M = 0 if and only if Hom(i+N,M) = 0 for

all N supported on Z , and H0i∗M = 0 if and only if Hom(M, i+N) = 0 for all N

supported on Z .

We can describe the vanishing of other cohomologies in terms of Ext groups, similar

to the characterization of vanishing of local cohomology for O-modules. Specifically,

the result is

H− j i∗M = 0 for all 0 ≤ j ≤ k ⇐⇒ Ext j (M, i+N)

= 0 for all N supported on Z , 0 ≤ j ≤ k

H j i !M = 0 for all 0 ≤ j ≤ k ⇐⇒ Ext j (i+N,M)

= 0 for all N supported on Z , 0 ≤ j ≤ k.

The proofs of these are not hard, and we leave them to the reader.

4 Filtered acyclicity of Koszul complex

Recall our setting: let X → Ar be a smooth regular map of smooth varietes where

Ar is the affine space of dimension r and let Z be the fiber over the origin. Suppose

(t1, t2, . . . , tr ) is a coordinate system on the Ar term and assume there exist global

vector fields ∂1, ∂2, . . . , ∂r on X dual to the one-forms dt1, dt2, . . . , dtr . We give two

different methods to prove Theorem 1.1.
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4.1 First proof of the Theorem 1.1

We restate Theorem 1.1 in terms of right D-modules: for any right filtered regular

holonomic DX -module M and rational number α, define Koszul-type filtered com-

plexes

Aα(M) =
{

(VαM, F)
t−→

r⊕

i=1

(Vα−1M, F)
t−→ · · · t−→ (Vα+rM, F)

}

placed in degrees 0, 1, . . . , r ,

Bα(M) =
{

(grV
α M, F)

t−→
r⊕

i=1

(grV
α−1M, F)

t−→ · · · t−→ (grV
α−rM, F)

}

as the quotient Aα/A>α and

Cα(M) =
{

(grV
α−r M, F[r ]) ∂t−→

r⊕

i=1

(grV
α−r+1M, F[r − 1]) ∂t−→ · · · ∂t−→ (grV

α M, F)

}

in degrees −r ,−r + 1, . . . , 0, where V•M is the V -filtration along Z and F[i]k =
Fk−i .

Theorem 4.1 With the above notation, assume that (M, F•M) is a filtered holonomic

DX -module underlying a mixed Hodge module. Then

(a) the complex F� Aα(M) is exact for α < 0;

(b) the complex F�Cα(M) is exact for α > 0.

Proof By Lemma 2.5, we only need to prove the case when (M, F) underlies a

polarizable Hodge module. If the support of M is contained in Z , then by Kashiwara’s

equivalence, there exists a Hodge module (N, F•N) on Z such that (M, F•M) =
i+(N, F•N). One can easily check that (see Example 2.1)

F�VαM =

⎧
⎪«
⎪¬

∑

i1+i2+·+ir≤α

F�−i1−i2−···−ir N∂
i1

1 ∂
i2

2 · · · ∂
ir
r , α ≥ 0;

0, α < 0.

Thus,
(
grV

0 M, F•grV
0 M

)
recovers the filtered DZ -module (N, F•N) and grV

α M

vanishes for α < 0. The statement (a) is clear now. The statement (b) follows

from the fact that ∂1, ∂2, . . . , ∂r form a regular sequence on the polynomial ring

C[∂1, ∂2, . . . , ∂r ].
Now we are in the case that no submodule of M is supported in Z . Let X̂ denote

the blowup of X along Z , with exceptional divisor E . Let (M̂, F•M̂) be the minimal

extension of (M, F•M)|X\Z over E on X̂ . By the structure theorem of Hodge modules

(see Theorem 2.13), (M̂, F•M̂) underlies a polarizable Hodge module. Then by the
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decomposition theorem of polarizable Hodge modules, the filtered holonomic DX -

module (M, F•M) is a direct summand of H0π+(M̂, F•M̂). Thus, it suffices to

prove the theorem for H0π+(M̂, F•M̂). Let π : X̂ → X be the blow up of X along

Z and E = π−1 Z be the exceptional divisor. Consider the factorization π = iπ ◦ p

and the Cartesian diagram

E X̂ × Z Z

X̂ X̂ × X X ,
iπ

π

p

where iπ : X̂ → X̂ × X is the graph embedding and p : X̂ × X → X is the

second projection. Denote by �π the graph of π . Since the problem is local on X ,

we can assume that X is affine and that (t1, t2, . . . , tr ) extends to a coordinate system

(t, s) = (t1, t2, . . . , tr , s1, s2, . . . , sn−r ) on X . Note that the blow-up is given by

X̂ = ProjX

⊕

i≥0

Ii
Z , where IZ is generated by t1, t2, . . . , tr .

Let u = [u1 : u2 : · · · : ur ] be the homogeneous coordinates on Pr−1. Then X̂ is a

subvariety of Pr−1
X defined by ui t j − u j ti = 0 for any 1 ≤ i, j ≤ r . Denote also by

(x, y) = (x1, x2, . . . , xr , y1, . . . , yn−r ) the parameter (t, s) on X so that

π(u, t, s) = (t, s) = (x, y).

Define a subvariety

H = {(u, t, s, x, y) ∈ X̂ × X : ui x j − u j xi = 0 for any 1 ≤ i, j ≤ r}

with codimension r − 1 in X̂ × X . Since the graph �π is defined by equations t = x

and s = y, it is contained in H . Therefore, we can further factor the graph embedding

iπ = f ◦ g to get a Cartesian diagram

E X̂ × Z X̂ × Z

X̂ H X̂ × X
g

iπ

f

where g : X̂ → H and f : H → X̂ × X are the natural embeddings. Note that X̂ × Z

is a hypersurface in H .
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The claim is that the Koszul complex

F� Aα(iπ+M̂) =
{

F�Vαiπ+M̂→
(
F�Vα−1iπ+M̂

)r → · · · → F�Vα−r iπ+M̂
}

(14)

is exact if α < 0 where V•iπ+M̂ is the V -filtration of M̂ along X̂ × Z . The exactness

of the complex 14 is local so without loss of generality, we restrict everything to the

open subset U × X where U is the open subset of X̂ defined u1 �= 0. The blow-up

over U is given in coordinates by

π : (t1, u2, u3, . . . , ur , s1, s2, . . . , sn−r ) �→ (t1, t1u2, t1u2, . . . , t1ur , s1, s2, . . . , sn−r ).

To give a concrete description of iπ+M̂, we make the following local coordinate

charge:

wi =
{

t1 for i = 1

ui for 2 ≤ i ≤ r
, pi =si for 1 ≤ i ≤ n − r ,

zi =
{

x1 for i = 1

xi − ui x1 for 2 ≤ i ≤ r
, qi =yi for 1 ≤ i ≤ n − r

so that z2, z3, . . . , zr are the local defining equations of H . It follows from iπ+M̂ =
f+g+M̂ that

iπ+M̂ = g+M̂[∂z2 , ∂z3 , . . . , ∂zr ].

In fact, a simple calculation using the the chain rule indicates that

∂z2 = ∂x2 = ∂2, ∂z3 = ∂x3 = ∂3, . . . , ∂zr = ∂xr = ∂r .

Then F�Vαiπ+M̂ can be written as

∑

k≥0

∑

a2+a3+···ar=k

F�−k Vα−k g+M̂∂
a2

2 ∂
a3

3 · · · ∂
ar
r , (15)

for every α where V•g+M̂ is the V -filtration along X̂ × Z . Notice that the morphism

F�Vαg+M̂ F�Vα−1g+M̂
x1

is bijective when α < 0 because V•g+M̂ is the V -filtration along X̂ × Z defined by

{x1 = 0} in H . We deduce that the morphism

x1 : F�−k Vα−k g+M̂∂
a2

2 ∂
a3

3 · · · ∂
ar
r → F�−k Vα−k−1g+M̂∂

a2

2 ∂
a3

3 · · · ∂
ar
r
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is also bijective for α < 0 and k ≥ 0. It follows that the Koszul complex (14) is exact

when α < 0.

Similarly, the complex

F�Cα(iπ+M̂)

=
{

F�−r grV
α−r iπ+M̂→

(
F�−r+1grV

α−r+1iπ+M̂
)r

→ · · · → F�grV
α iπ+M̂

}

(16)

is exact for α > 0. By the expression (15),

F�grV
α iπ+M̂ =

∑

k≥0

∑

a2+a3+···ar=k

F�−kgrV
α−k g+M̂∂

a2

2 ∂
a3

3 · · · ∂
ar
r .

Since for each 2 ≤ i ≤ r the morphism

∂i : F�−kgrV
α−k g+M̂∂

a2

2 ∂
a3

3 · · · ∂
ar
r → F�−kgrV

α−k g+M̂∂
a2

2 ∂
a3

3 · · · ∂
ai+1
i · · · ∂ar

r

is bijective, the complex (16) is quasi-isomorphic to,

{F�−1grV
α−1g+M̂ F�grV

α g+M̂}, placed in degrees r − 1, r .
∂1

which is exact for α > 0 also because again V•g+M̂ is the V -filtration along the

hypersurface X̂ × Z ⊂ H .

It remains to prove the exactness of (14) and (16) are invariant under higher direct

image of p. This is Theorem 4.2 below. Applying Theorem 4.2 to (14) gives us that

the Koszul complex

F� Aα(Hk p+iπ+M̂)

=
{

F�VαHk p+iπ+M̂→
(

F�Vα−1H
k p+iπ+M̂

)r

→ · · · → F�Vα−r H
k p+iπ+M̂

}

is exact for α < 0 and every k where V•H
k p+iπ+M̂ is the V -filtration along Z . Due

to

Hk p+iπ+ = Hkπ+,

we have finished the proof of the first statement in Theorem 1.1. The second statement

follows similarly and we leave it to the readers. ��

Theorem 4.2 Let X be a nonsingular quasi-projective variety and Y be an affine

space with Z an affine subspace defined by x1, x2, . . . , xr . Let (M, F) be a filtered

holonomic DX×Y -module underlying a polarizable Hodge module. Suppose that the

second projection p : X ×Y → Y is projective on the support of M. Let V•M be the

V -filtration along p−1(Z). Let V•H
k p+M be the V -filtration along Z for every k.
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(a) If the complex

F� Aα(M) =
{

F�VαM→ (F�Vα−1M)r → · · · → F�Vα−rM
}

(17)

is exact for some α, then the complex F� Aα(Hk p+M) is also exact for every k.

(b) Similarly, if the Koszul complex

F�Cα(M) =
{

F�−r grV
α−rM→

(
F�−r+1grV

α−r+1M
)r

→ · · · → F�grV
α M

}

(18)

is exact for some α, then the complex F�Cα(Hk p+M) is exact for every k.

Proof Because of the bistrictness proved in [2] on the complex p+ (M, V•, F•) =
(

R p∗

(
M⊗

−�∧
TX×Y/Y

)
, R p∗

(
V•M⊗

−�∧
TX×Y/Y

)
, R p∗

(
F•+�M⊗

−�∧
TX×Y/Y

))
,

we know that the k-th cohomology of Hk F�Vα p+M = Rk p∗
(
F�+�VαM ⊗

∧−�

TX×Y/Y

)
is canonically isomorphic to F�VαHk p+M. It follows from the Hard Lef-

schetz theorem on the direct image of polarizable Hodge modules (see part (b) of

Theorem 2.11) that the morphism

(
2π
√
−1L

)k

: F�VαH−k p+M→ F�−k VαHk p+M.

is an isomorphism induced by the Lefschetz operator L = ω∧ of a hyperplane class

ω on X . Therefore, we have the decomposition

F�Vα p+M �
⊕

k∈Z

F�VαHk p+M[−k]

in the bounded derived category Db
coh(Y ,OY ) of Y . If we apply p+ on (17), by the

above decomposition, we obtain

F� p+Aα(M) �
⊕

k∈Z

F� Aα(Hk p+M)[−k]

in Db
coh(Y ,OY ). But by our assumption in (a), the complex F� p+Aα(M) is exact. It

follows that each summand

F� Aα(Hk p+M)

=
{

F�VαHk p+M→ (F�Vα−1H
k p+M)r → · · · → F�Vα−rH

k p+M
}

in the decomposition is exact. We have thus proved (a).
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The proof of (b) is similar. Since we still have the isomorphism from the Hard

Lefschetz theorem

(
2π
√
−1L

)k

: F�grV
α H−k p+M→ F�−kgrV

α Hk p+M,

we get a decomposition

p+F�Cα(M) �
⊕

k∈Z

F�Cα(Hk p+M)[−k]

in Db
coh(Y ,OY ). The remaining goes like in (a) and is left to the readers. ��

Remark 4.3 One can bypass the decomposition theorem in the above proof by the

argument in Theorem 6.6 and the double complexes (27) and (29)

4.2 An alternative proof of C˛ acyclicity

In this subsection, we describe an alternative proof for Theorem 1.1. The main idea is

to use Saito’s Direct Image Theorem 2.11, specifically in the setting of Remark 2.12.

Throughout, we use left D-modules, and the decreasing V -filtration.

Saito’s theorem would be useful if the projection Z × Ar → Z were projective,

but it is clearly not. Hence, we compactify j : Z × Ar → Z × Pr , where we have

homogeneous coordinates [t0 : · · · : tr ] on Pr and think of Z ×Ar = U0 = {t0 �= 0}.
In this way, zi = ti

t0
. Let ρ : Z × Pr → Z be the projection. Then Saito’s theorem

applies to the direct image of a mixed Hodge module along ρ.

We set up notation for the other standard affine open subsets of Z × Pr . Let ji :
Ui = {ti �= 0} ↪→ Z × Pr be the inclusion. Let Ui0 = Ui ∩U0, with inclusion maps

Ji0 : Ui0 ↪→ U0 and ji0 : Ui0 ↪→ Ui .

4.2.1 Computation of V -filtration for extension of localization

Assume throughout that X (hence the closed subscheme Z ⊆ X ) is affine, so {Ui }ri=0

gives an affine open cover of Z × Pr .

For any M a bifiltered D-module underlying a mixed Hodge module on X , we

get M′ = Sp(M) =
⊕

χ∈Q grχM a bifiltered D-module underlying a monodromic

mixed Hodge module on TZ X = Z ×Ar . The motivation behind trying to use Saito’s

strictness theorem is that, if π : Z × Ar → Z is the projection, then π+(M′) ∼=⊕
χ∈Q Cχ (M) as complexes of D-modules. Hence, because we know by Theorem

1.1 that Cχ (M) is acyclic for χ �= 0, we use the injectivity from Saito’s direct image

theorem (see Remark 2.12) to conclude some vanishing for the cohomology of the

filtered complex as well.

The point of this subsection is to compute the Hodge filtration on the mixed Hodge

module j+(Sp(M)). For this, we will make use of the affine open cover {Ui }ri=0 of

Z × Pr and the following remark (which we already made use of in computing the

Hodge filtration of Sp(M) in Lemma 2.4):
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Remark 4.4 Let V = { f �= 0} ⊆ W be the inclusion of the complement of a smooth

hypersurface, which is defined by the nonvanishing of some global function f ∈
OW (W ). If (M, F•M) is a filtered DV -module underlying a mixed Hodge module

M on V , then formula (3.2.3.2) of [15] allows us to compute the Hodge filtration on

the DW -module underlying j+(M).

First of all, the underlying DW -module is simply j+(M), which is the O-module

pushforward of the sheaf M. Then the filtration is given by

Fp j+(M) =
∑

q≥0

∂
q
f

(
V 0 j+(M) ∩ j∗(Fp−qM)

)
,

where ∂ f ∈ TW (W ) is a globally defined vector field such that [∂ f , f ] = 1 and

V 0 j+(M) is the V -filtration along the smooth hypersurface { f = 0}.
We are not exactly in this situation, however, because there is no global function f

for which U0 = { f �= 0}. Indeed, U0 is the non-vanishing locus of a rational function

t0 on Z × Pr . This causes no problems for our computation, as we will in any case be

using this affine open cover to compute higher direct images.

For 1 ≤ i ≤ r fixed, we consider Ui = Z × Ar , but the coordinates we choose on

Ar are given by z−1
i , z1z−1

i , . . . ,
̂
zi z
−1
i , . . . , zr z−1

i (in terms of the compactification,

these are the standard affine coordinates t0
ti
, t1

ti
, . . . , tr

ti
). To be clear which coordinate

system we consider on each copy of Ar , we will denote this copy by Ar
i .

Note that Ji0 : Ui0 ⊆ U0 corresponds to the subset {zi �= 0}. Similarly, the

inclusion Ji : Ui0 ⊆ Ui is the inclusion of the non-vanishing locus of the glob-

ally defined function z−1
i . Now, we have the isomorphism of mixed Hodge modules

j−1
i ( j+(M ′)) ∼= Ji+(J−1

i0 M ′), and so the Hodge filtration on j∗i ( j+(M′)) can be

computed using Remark 4.4.

AsM′ is a quasi-coherentOU0 -module, we have the identification J ∗i0(M
′) ∼=M′

zi
,

and the Hodge filtration is given by Fp J ∗0i (M
′) = (FpM

′)zi
. Let V • Ji∗(M

′
zi
) be the

V -filtration along z−1
i , then Remark 4.4 tells us

Fp Ji∗(M
′
zi
) =

∑

q≥0

∂
q

z−1
i

(V 0 ∩ Ji∗((Fp−qM′)zi
)). (19)

Thus, it will be worthwhile to study this V -filtration. For this, note that by the

change of coordinates formula, using (z1, . . . , zr ) and (z−1
i , z1z−1

i , . . . , zr z−1
i ) on

Ui0, we have

∂
z j z−1

i
= zi∂z j

, ∂
z−1

i
= −ziθ,

where θ =
∑r

j=1 z j∂z j
.

Given any m

zk
i

∈M′
zi

, we see that

∂
z−1

i

(
m

zk
i

)
=

(k − θ)m

zk−1
i

,
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so

(z−1
i ∂

z−1
i
− λ+ 1)

(
m

zk
i

)
=
−(θ + λ− k − 1)(m)

zk
i

.

In this way, we see that the module M′
zi

(and its pushforward Ji∗(M
′
zi
)) is mon-

odromic along the single coordinate z−1
i .

The λth monodromic piece is given by
∑

k∈Z

grr+k+1−λ
V M

zk
i

. Hence, by M.5, we know

V • Ji∗(Mzi
) =

⊕

λ≥•

(∑

k∈Z

grr+k+1−λ
V M

zk
i

)
.

In particular,

V 0 Ji∗(Mzi
) =

⊕

λ≥0

(∑

k∈Z

grr+k+1−λ
V M

zk
i

)
(20)

This gives us the following

m ∈ Fpgr
χ

V M, χ ≤ r + 1 "⇒
m

1
∈ Fp Ji∗(Mzi

). (21)

Indeed, χ ≤ r + 1 implies χ = r + 0 + 1 − λ for some λ ≥ 0, and so m
1
∈

V 0 Ji∗(M
′
zi
), then the claim follows from Formula 19, with q = 0.

4.2.2 Proof of the Theorem

Recall that the strategy is to use Theorem 3.1 and Saito’s strictness result Theorem

2.11 to obtain the desired vanishing. The idea is that the Koszul-like complex naturally

arises as the underlying complex of DZ -modules when applying π+ to a DTZ X -module.

If it were the case that Saito’s strictness theorem told us that

Fp(DRTZ X/Z (Sp(M))

=
{

FpSp(M)
∂z−→ Fp+1Sp(M)⊗�1

Ar

∂z−→ . . .
∂z−→ Fp+r Sp(M)⊗�r

Ar

}

was a strict complex, then we would be done. This is because if a complex of filtered

modules is exact (which we know to be true for our complex by Theorem 3.1) and

strict, then the complex must be filtered acyclic.

This is too good to be true, though, because Theorem 3.1 gives us acyclicity for all

χ �= 0, whereas in the case r = 1, we must restrict to χ < 0 for the filtered acyclicity

to hold as in the definition of quasi-unipotent and regular.
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The reason Saito’s result does not apply to the map π is that it is not projective.

However, using the natural compactification j : Z ×Ar → Z ×Pr introduced in this

section, and the map ρ : Z ×Pr → Z , we can still make use of Saito’s result. Indeed,

π = ρ ◦ j , so by [17] (4.3.2) we have π+ = ρ+ j+. In particular, the complex of

D-modules underlying ρ+( j+(Sp(M)) is DRTZ X/Z (Sp(M)). To make notation less

cumbersome, let Sp(M) =:M′.
As j is the inclusion of the complement of a divisor, j+ sends mixed Hodge modules

on Z ×Ar to mixed Hodge modules on Z ×Pr . To compute ρ+( j+(M′)), we use the

relative de Rham complex of Z ×Pr over Z for the module j+(M′), see [8] Proposi-

tion 1.5.28. This is a complex in degrees −r , . . . , 0 denoted by DRZ×Pr /Z ( j+(M′)),
explicitly, it is

j∗(M
′)⊗OP

q∗(OP)→ j∗(M
′)⊗ q∗(�1

P)→ · · · → j∗(M
′)⊗O q∗(ωPr ),

where q : Z × Pr → Pr is the other projection. This is a filtered complex, with pth

filtered piece given by

Fp j+(M′)⊗O q∗(OPr )→ Fp+1 j+(M′)⊗O q∗(�1
Pr )

→ · · · → Fp+r j+(M′)⊗O q∗(ωPr ).

Saito’s result on the strictness of the direct image for a projective morphism tells

us that we have the following identification

F•H
kπ+(M′) = Rkρ∗(F•DRZ×Pr /Z ( j+M′)) ↪→ Rkρ∗(DRZ×Pr /Z ( j+(M′))

= Hkπ+(M′).

To compute these higher direct image sheaves, we use the standard open cover

of Z × Pr introduced in this section to construct the Čech complex. Namely, fix

coordinates [t0 : · · · : tr ] on Pr and let j : Z × Ar → Z × Pr be the inclusion of

{t0 �= 0}. Also, denote ji : {ti �= 0} → Z × Pr the inclusion of the other standard

open subsets. We have an isomorphism Ui := {ti �= 0} ∼= Z × Ar , with coordinates

(z−1
i , z1z−1

i , . . . , zr z−1
i ) on Ar .

For any i0 < · · · < iq , let Ui0i1...iq = Ui0∩Ui1∩· · ·∩Uiq . The ordering is important

for keeping track of signs in the Čech complex.

For any sheaf F on Z×Pr , let Cq(F) =
∏

i0<···<iq
πi0...iq ,∗(F |Ui0i1 ...iq

). This forms

a chain complex of sheaves by the differential defined (on local sections) as

δ : Cq(F)→ Cq+1(F), δ(α)i0...iq+1 =
q+1∑

i=0

(−1)iαi0...îi ...iq+1
.

Denote πi0...iq ,∗(F |Ui0i1 ...iq
) by C

q
i0,...,iq

(F).

If we have a bounded below complex of sheaves (F•, d), then we form the double

complex C•(F•) and take its associated total complex, which we call the Čech complex
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for F•. The nth term of this complex is

∏

p+q=n

Cq(Fp),

and the differential is δ + (−1)qd. Now, because Ui0...iq → Z is affine for all i0 <

· · · < iq , we know that, if each Fk is quasi-coherent on Z × Pr , the i th cohomology

of the Čech complex computes Riρ∗(F
•). By abuse of notation, we will drop the π∗

with the understanding that all sheaves are on Z .

Let T • be the Čech complex associated to DRZ×Pr /Z ( j+(M′)), and let T •p be the

Čech complex associated to FpDRZ×Pr /Z ( j+(M′)). Using our notation,

C0
0(FpDRZ×Pr /Z ( j+(M′)) = FpDRU0/Z (M′),

and for 0 < i ≤ r ,

C0
i (FpDRZ×Pr /Z ( j+(M′)) = j−1

i (FpDRZ×Pr /Z ( j+(M′))

=
{

Fp Ji∗(Mzi
)⊗O OAr

i
→ Fp+1 Ji∗(Mzi

)⊗O �1
Ar

i
→ · · · → Fp+r Ji∗(Mzi

)⊗O ωAr
i

}
.

Saito’s strictness result Theorem 2.11 tells us that the map Hk(T •p ) → Hk(T •)
is injective for all k ∈ Z. Also, by the functoriality of pushforward of mixed Hodge

modules, π+ = ρ+ ◦ j+, and so we have a quasi-isomorphism of complexes of DZ -

modules

DRU0/Z (M′) ∼= T •.

We would like to make this explicit using the Čech complex. Note that any map

of complexes ψ : DRU0/Z (M′) → T • cannot land solely in C0
0(DRZ×Pr /Z (M′)).

Indeed, the way the differential of the Čech complex is defined, whatever the target

element is would have to restrict to 0 on Ui0, which is not true in general.

We can work around this by introducing for any μ ∈ M′ ⊗�k
Ar

0
elements μ|Ui

∈
Ji∗(M

′
zi
)⊗�k

Ar
i
.

Lemma 4.5 For any μ ∈ M′ ⊗ �k
Ar

0
, there is a well-defined μi ∈ M′

zi
⊗ �k

Ar
i

such

that

μ|Ui0
= (μi )|Ui0

.

Proof We prove the claim for a simple tensor μ = m ⊗ dz I , where |I | = k is a

subset of {1, . . . , r}. Then ω = dz I is a holomorphic k-form on Ar
0, and we can

restrict to the subset {zi �= 0}, which has two systems of coordinates: (z1, . . . , zr ) and

(z−1
i , z1z−1

i , . . . , zr z−1
i ).



On V-filtration, Hodge filtration and Fourier transform Page 41 of 76 50

The differential forms change as

dzi = d((z−1
i )−1) = −z2

i d(z−1
i ),

dz j = d((z j z
−1
i )(z−1

i )−1)) = zi d(z j z
−1
i )− z j zi d(z−1

i ).

Hence, we can write ω|Ui0
= zk+1

i (ωi )|Ui0
, where ωi is a holomorphic k-form on

Ar
i .

Then set μ′ := zk+1
i m

1
⊗ ωi . It is clear that this satisfies the desired property. ��

Now, using this we can define a map ψk : M′ ⊗ �k
Ar → C0( j+(M′) ⊗ �k

Pr ) ⊆
T−(r−k) on simple tensors by m ⊗ ω �→ (m ⊗ ω, (m ⊗ ω)|Ui

)r
i=1. By definition

of the differential in the Čech complex, this gives a morphism of complexes ψ :
DRU0/Z (M′)→ T •.

Now, fix p ∈ Z, λ ∈ Q and define Bp,λ =
⊕

χ≤λ Fpgr
χ

V M. We can consider the

Koszul-like complex B•p,λ, defined as

Bp,λ
∂t−→ Bp+1,λ−1 ⊗�Ar

∂t−→ . . .
∂t−→ Bp+r ,λ−r ⊗ ωAr .

Now, we can consider the commutative square of complexes

B•p,<r DRU0/Z (M′)

T •p T •
ψp ψ .

Note that by the proof of Lemma 4.5, we know ψp does actually land in T •p , by

Formula (21). Indeed, if we start with m⊗ω with m ∈ FpgrχM with χ < r−k, then

zk+1
i m ∈ Fpgrχ+k+1M and χ+k+1 < r+1. This tells us that

zk+1
i m

1
∈ Fp Ji∗(M

′
zi
),

so
zk+1

i m

1
⊗ ωi ∈ T k

p , as desired.

The obvious map T •p → B•p,<r mapping to the Ck
0 part of the Čech tuple, and then

projecting to the Bp+k,<r−k ⊗ �k
Ar part, gives a splitting of the left hand map. This

splitting is preserved under taking cohomology, so the map Hk(B•p,0) → Hk(T •p ) is

injective for all k. Also, by strictness, the map Hk(T •p )→ Hk(T •) is injective.

Hence, the map Hk(Bp,<r ) → Hk(DRU0/Z (M′)) is injective. By decomposing

along the
⊕

χ∈Q decomposition, this gives that the inclusion of Koszul-like complexes

Fpgrα−�+r−1
V M

⊕r
i=1 Fp+1gr

α−(�+1)+r−1
V M . . . Fp+r gr

α−(�+r)+r−1
V M

grα−�+r−1
V M

⊕r
i=1 gr

α−(�+1)+r−1
V M . . . gr

α−(�+r)+r−1
V M

∂t ∂t ∂t

∂t ∂t ∂t

induces injections on cohomology.

By Theorem 3.1, this completes the proof.
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Note that, this also proves the filtered acyclicity of Bα(M) for α > 0 by using the

computation of the Hodge filtration on the Fourier transform of Sp(M) (which is a

monodromic mixed Hodge module) in the final section of this paper. The result on the

Hodge filtration only uses the filtered acyclicity of Cα(M) and the formula for i∗ in

terms of the V -filtration along Z .

5 Applications of Theorem 1.1

Here we collect some applications of the theorem on filtered acyclicity of the Koszul-

like complexes coming from Theorem 1.1.

The first of these applications is that we can give a Hodge-theoretic proof of Skoda’s

theorem.

Corollary 5.1 (Skoda) Let a be a coherent ideal of OX generated by r elements and

J(X , ac) be the multiplier ideal of exponent c. Then we have

J(X , ac) = aJ(X , ac−1)

for any c ≥ r .

Proof Let f1, f2, . . . , fr be the generators of a and let ι : X → X ×Ar be the graph

of f1, . . . , fr . Then by [2, Theorem 1], the OX -module Fr V c+ει+OX is the multiplier

ideal J(X , ac) for ε > 0 sufficiently small where V •ι+OX is the V -filtration along

X×{0}. Note that we use a different convention from [2]. The statement follows from

the exactness of Ac−r+ε(ι+OX ) when c ≥ r by Theorem 1.1. ��
Remark 5.2 One can also prove that J(X , ac) = aJ(X , ac−1) for c ≥ dim X by

making use of a reduction c of a as in [11, Corollary 9.6.17, Example 9.6.19]. More

precisely, we can find a subideal c of a locally generated by at most dim X many

elements such that c and a have the same integral closure and therefore J(X , cc) =
J(X , ac).

Next, we prove an analogue of [17, Prop. 3.2.2, Rem. 3.2.3] which gives information

about the Hodge filtration for filtered D-modules which satisfy the filtered acyclicity

of the Koszul-like complexes.

We will make use of the following useful criterion for when an element m ∈ V >0M

lies in FpM. As X−Z =
⋃r

i=1{zi �= 0}, this is an analogue of [15, Formula (3.2.2.1)].

Proposition 5.3 Assume m ∈ V >0M. Then m ∈ FpM if and only if for some � ≥ 0,

zαm ∈ FpM for all |α| = �. In other words,

FpV >0M = V >0M ∩ ( j∗ j∗FpM),

where the right hand side are those elements in V >0M which, under the canonical

map M→ H0( j∗ j∗M) land in j∗ j∗FpM.

If, moreover, the map (gr0
V M, F)

zi−→
⊕r

i=1(gr1
V M, F) is strictly injective, then

FpV 0M = V 0M ∩ ( j∗ j∗FpM).
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Proof The “only if” part is clear, as zi preserves the Hodge filtration.

For the converse, induce on �. The base case � = 0 is obvious. For � > 0, assume

zαm ∈ FpM for all |α| = �, and inductively, that if m′ is any element such that

zβm′ ∈ FqM for all |β| = �− 1, then m′ ∈ FqM.

Well, fix β with |β| = �− 1. Then |β + ei | = �, so we know zi (z
βm) ∈ FpM for

all 1 ≤ i ≤ r . Assume zβm ∈ FqM for some q > p.

Look at the complex grF
q A>0(M), which is acyclic by Theorem 1.1. Then zβm

defines an element in the leftmost module of this complex which maps to 0, as p < q.

Hence, by acyclicity, zβm = 0 in grF
q , so zβm ∈ Fq−1M. Repeating in this way, we

conclude that zβm ∈ FpM. As this is true for all β with |β| = � − 1, the inductive

hypothesis implies m ∈ FpM. ��
Now, we give the analogue of [15, Formula (3.2.2.2)], which gives a description of

the Hodge filtration of a mixed Hodge module in terms of the V -filtration along Z .

Proposition 5.4 Let (M, F) be a filtered DX -module underlying a mixed Hodge mod-

ule on X. Let V •M be the V -filtration along the smooth subvariety Z. Then for all

p ∈ Z,

FpM =
∑

α∈Nr

∂α
z (Fp−|α|V

0M).

Moreover, if the map

r⊕

i=1

(gr1
V M, F[1]) ∂z−→ (gr0

V M, F)

is strictly surjective, then

FpM =
∑

α∈Nr

∂α
z (Fp−|α|V

>0M).

Proof We argue the first claim, the second one is proved in exactly the same way.

Define a second filtration by

F ′pM =
∑

α∈Nr

∂α
z (Fp−|α|V

0M).

The claim is that F ′pM = FpM. By definition, F ′pM ⊆ FpM. Note that it is

clear that F ′pV 0M = FpV 0M. Indeed, the left hand side is contained in the right,

and by taking α = 0 in the definition of F ′pM, we get the other containment.

Now, we prove that FpV χM ⊆ F ′pM for all p ∈ Z and χ < 0 by descending

induction (which works because the V -filtration is discrete). Note that, by Theorem

1.1, we know

FpV χM =
r∑

i=1

∂zi
(Fp−1V χ+1M)+ FpV >χM,
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because the rightmost cohomology vanishes in FpCχ (M).

Now, by definition of F ′pM, we know ∂zi
F ′pM ⊆ F ′p+1M.

Hence, if inductively we know FpV >χM ⊆ F ′pM for all p ∈ Z, we get

FpV χM ⊆ F ′pM, proving the claim. ��

Remark 5.5 The previous lemmas are not used in the proof of Theorem 1.2. As a

consequence of this theorem, we can remove the adjective “strictly” in the second

claim of both Propositions 5.3 and 5.4, because the morphisms appearing in a mixed

Hodge complex are strict with respect to the Hodge filtration (see the remarks after

[18, Def. 2.2]).

As a first application, assume N = H0( j∗ j∗(M)) for j : X−Z → X the inclusion

of the complement of Z . Then by Lemma 3.3, we see that the map in the statement of

Proposition 5.3 is automatically injective, and hence we get the formula

FpN =
∑

α∈Nr

∂α
z (V 0N ∩ j∗( j∗(Fp−|α|M))).

Secondly, we get a formula for the Hodge filtration of any filtered D-module (M, F)

underlying a mixed Hodge module with strict support not contained in Z , as follows:

by definition, the hypotheses of Propositions 5.3 and 5.4 are satisfied, and so we have

FpM =
∑

α∈Nr

∂α
z (V >0M ∩ j∗( j∗(Fp−|α|M))

Finally, we study the Hodge filtration of monodromic mixed Hodge modules on

E = X ×Ar . The result is a generalization to r > 1 of [19, Thm. 2.2]. We first record

an interesting application of the fact from loc. cit. that N =
⊕

χ∈Q(z∂z −χ + 1) = 0

on a pure monodromic Hodge module, when r = 1.

Corollary 5.6 Let M be a DE -module underlying a pure, monodromic Hodge module

on a vector bundle E = X × A1 of rank 1. Then

z :M0 →M1 and ∂z :M1 →M0

are both 0.

Proof By the last statement in [19, Prop 2.12], we know N = 0. In particular, NM1 =
(z∂z)M

1 = 0. From this, we see that im(∂z :M1 →M0) ⊆ ker (z :M0 →M1).

But M admits a decomposition by strict support, and so we know

M0 = φz,1M = ker (var)⊕ im(can) = ker (z)⊕ im(∂z),

and since this sum is direct, this implies im(∂z) = 0 and ker (z) = M0, proving the

claim. ��

Now, we prove an analogue of the vanishing N = 0 for r > 1.
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Proposition 5.7 Let M be a DE -module underlying a monodromic polarizable pure

Hodge module M ∈ MHM(E). Then

Mχ = ker (θ − χ + r),

i.e., N =
⊕

χ∈Q(θ − χ + r) is identically 0 on M.

Proof As M is a polarizable Hodge module, its underlying DE -module M is semi-

simple. Indeed, on some locally closed subset, it is a polarizable variation of Hodge

structure V , whose underlying local system is semisimple. By Saito’s theory, M =
j!∗(V ), and since j!∗ preserves simple D-modules, the proof is complete.

Now, each simple direct summand of M is monodromic, with operator N =⊕
χ∈Q(θ − χ + r). As this is nilpotent, it cannot be an isomorphism, and so it must

be 0 on each simple summand. In particular, the operator is 0 on M. ��

Finally, we prove that the Hodge filtration on a monodromic mixed Hodge module

decomposes along the monodromic decomposition. This will be important in the study

of the Fourier transform for monodromic Hodge modules later on.

Theorem 5.8 Let (M, F•) be a filtered DE -module underlying a monodromic mixed

Hodge module on E = X × Ar , with decomposition M =
⊕

χ∈Q Mχ . Then

FpM =
⊕

χ∈Q

FpM ∩Mχ

for all p ∈ Z.

Proof The key observation is that, on {zi �= 0}, there are two sets of coordinates:

(z1, . . . , zr ) and (z−1
i , z1z−1

i , . . . , zr z−1
i ). The change of coordinates formula says

that, if θ =
∑r

j=1 z j∂z j
, then

∂
z−1

i
= −θ.

Thus, if we look at Mzi
= j∗i (M), where ji : {zi �= 0} ⊆ E is the open immersion,

then

θ

(
m

z�
i

)
=

(θ − �)m

z�
i

, z−1
i ∂−1

zi

(
m

z�
i

)
=

(�− θ)m

z�
i

,

and so Mzi
is monodromic along z1, . . . , zr and along the single coordinate z−1

i . We

already saw this in the previous section. When we apply ji∗ to this module, the resulting

module is monodromic in both senses, and so ji∗( j∗i (M)) has Hodge filtration which

decomposes by [19].

Now, we have a canonical morphism M →
⊕r

i=1 ji∗( j∗i (M)) of mixed Hodge

modules, whose kernel K is supported on the zero section. Write this as an exact

sequence
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0 → K →M→
r⊕

i=1

ji∗( j∗i (M)).

Applying the exact (by Lemma 2.10) functor FpV >0 to this sequence, and using

the fact that V >0 K = 0, we get an injection

FpV >0M→
r⊕

i=1

FpV >0 ji∗( j∗i (M)).

In particular, if m =
∑

χ>0 mχ ∈ FpV >0M, then we conclude that mχ ∈ FpM.

If m = m0 +
∑

χ>0 mχ ∈ FpM, then zi m = zi m0 +
∑

χ>0 zi mχ ∈ FpV >0M,

and so we know each piece lies in FpM. In particular, zi mχ ∈ FpM for all χ >

0, 1 ≤ i ≤ r , so again by filtered acylicity of Aχ (M), this implies mχ ∈ FpM for

all χ > 0. Finally, m0 = m −
∑

χ>0 mχ ∈ FpM, too.

Now, we are able to proceed by descending induction on β < 0. Let m = mβ +∑
χ>β mχ ∈ FpM for some β < 0. Then m ∈ Fpgr

β

V M, so by filtered acyclicity of

Cβ(M), there exists n1, . . . , nr ∈ FpV β+1M and ε ∈ FpV >βM such that

m =
r∑

i=1

∂zi
(ni )+ ε,

by assumption, ε and ni for all i have their homogeneous pieces lying in Fp (resp.

Fp−1), so m has its homogeneous pieces lying in Fp, too. ��

6 The restriction functors

In this section we prove Theorem 1.2 and it is more convenient to work with right

D-modules. Recall that the convention for right D-modules is that the V -filtration be

indexed increasingly. The proof is split into three parts: Theorem 6.1, Theorems 6.6

and 6.9. For simplicity, we denote by BZ (M) = B0(M) and CZ (M) = C0(M) to

emphasize the V -filtration is along the smooth subvariety Z . If the V -filtration is clear

from the context, we will simply use the notation B(M) or C(M).

6.1 Mixed Hodge complex

We first prove that for M underlying a mixed Hodge module the complex B(M)

together with W induced by the relative monodromy filtration is a mixed Hodge

complex. A mixed Hodge complex, roughly speaking, is a bifiltered complex of D-

modules (C, F, W ), where F is a decreasing “Hodge” filtration by O-submodules and

W is an increasing “weight” filtration by D-submodules with Q-structure (CQ, WQ).

These data should satisfy DR(C, W ) � (CQ, WQ)⊗Q C and that
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grW
k (C, F) �

⊕

�∈Z

H�grW
k (C, F)[−�]

in the derived category of filtered D-modules. Moreover, (H�grW
k C, F) together with

the induced Q-structure underlies a polarizable Hodge module of weight k+� for any

k and �. Theorem 1.2(a) is restated as follows:

Theorem 6.1 Let M = (M, F, L,K) be a mixed Hodge module on a smooth variety

X as in Theorem 1.2 and let Z be a smooth subvariety of X. Then BZ (M) together

with the relative monodromy filtration is a mixed Hodge complex.

Proof We first remark that B(M) carries a Q-structure. Indeed, by Theorem 3.1

DRZ

(
B(M)

)
� DRZ (i !M) � i !K⊗Q C.

In fact, if W is the filtration on B(M) induced by the monodromy filtration on each

grV
α M relative to grV

α L•M then Wk B(M) also carries a Q-structure. This is because

DRZ

(
i !Z WkSp(M)

)
� i !Z WkSp(K)⊗Q C, iZ : Z → TZ X

and i !Z WkSp(M) � Wk B(M) by the fact that the retraction constructed in the proof

of Theorem 3.1 also preserves the filtration W B(M). Recall that Sp(M) is the spe-

cialization of M introduced in 2.4.

Pure case We first prove the case when (M, F,K) is a polarizable Hodge module

of weight w. If M is supported on Z then B(M) � i+grV
0 M in the (F, W )-bifiltered

category and therefore, the theorem follows easily. Now assume that the support of

M is not contained in Z . Let π : X̂ → X be the blow up along Z and M̂ be the

minimal extension of M to X̂ from X̂ − E ∼= X − Z . Then we can factor the blow up

into the graph embedding followed by the smooth projection

X̂ X̂ × X X
iπ p

The proof consists of two steps:

Step 1 We show that Bp−1 Z

(
iπ+M̂

)
is a mixed Hodge complex.

In fact, the complex Bp−1 Z

(
iπ+M̂

)
together with the monodromy filtration is

quasi-isomorphic to BE

(
M̂
)

locally, where E is the exceptional divisor of π . Note

that, although E is not defined by a global function, we can make the complex BE

(
M̂
)

well-defined by

grV
0 M̂⊗O(−E)|E → grV

−1M̂.

As we can see in the proof of Theorem 4.1: the formula (15) is compatible with the

monodromy filtration, i.e.

F�grW grV
α iπ+M̂ =

∑

k≥0

∑

a2+a3+···ar=k

F�−kgrW grV
α−k g+M̂∂

a2

2 ∂
a3

3 · · · ∂
ar
r
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But since BE

(
M̂
)

is a mixed Hodge complex, and this property (like the property

of being a Hodge module) is local, it follows that Bp−1 Z

(
iπ+M̂

)
is also a mixed

Hodge complex. Due to the decomposition theorem of polarizable Hodge modules,

the module M is a summand of H0 p+iπ+M. Therefore, we reduce the proof to the

following.

Step 2 We prove that if Bp−1 Z (M) is a mixed Hodge complex for a polarizable

Hodge module M of weight w on Y × X , where p : Y × X → X is the second pro-

jection proper over the support of M, then BZ

(
H� p+M

)
is a mixed Hodge complex

of weight w + � for any � ∈ Z.

In fact, we have

p+
(

grW
k Bp−1 Z (M)

)
�
⊕

i∈Z

p+
(
Hi grW

k Bp−1 Z (M)
)
[−i]

�
⊕

i, j∈Z

H j p+
(
Hi grW

k Bp−1 Z (M)
)
[−i − j]

in the derived category of filtered D-modules. On the other hand, we also have the

decomposition in the derived category of filtered D-modules by Lemma 2.7(d):

p+
(

grW
k Bp−1 Z (M)

)
�
⊕

�∈Z

Fk,�[−�],

where Fi
k,� = H� p+grW

k Bi
p−1 Z

(M). This implies

Fk,� �
⊕

i∈Z

HiFk,�[−i] (22)

and HiFk,� is a polarizable Hodge module of weight w + k + i + �. For each k we

have a weight spectral sequence

E
i, j
1 (k) = Hi+ j p+grW

−i Bk
p−1 Z

(M)⇒ E
i, j
∞ (k) = grW

−iH
i+ j p+Bk

p−1 Z
(M)

so that E
i, j
1 (k) = Fk

−i,i+ j . Note that by the bistrictness proved in [2], we have

E
i, j
∞ (k) = grW

−i Bk
Z (Hi+ j p+M).

We gather some facts deduced from the deformation to the normal bundle argument

(Lemma 2.7):

(a1) the spectral sequence degenerates at the second page;

(b) the induced filtration WHi+ j p+Bk
p−1 Z

(M) is the monodromy filtration on

Hi+ j p+Bk
p−1 Z

(M) =
(

grV
−kH

i+ j p+M
)(r

k) ;
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(c) lastly, E
i, j
2 (k) is a summand of E

i, j
1 (k) in the category of filtered D-modules.

Therefore, the differential d1 on the first page induces a double complex

· · · d1−→ Fk+1,�−1
d1−→ Fk,�

d1−→ Fk−1,�+1
d1−→ · · · .

Let T be the total complex of this double complex. Then by (22) and semisimplicity,

T decomposes into

⊕

i

{
· · · d1−→ HiFk+1,�−1

d1−→ HiFk,�
d1−→ HiFk−1,�+1

d1−→ · · ·
}
[−i]

�
⊕

i, j

H
j
d1

HiFk−•,�+•[−i − j]
(23)

in the derived category of filtered D-modules. On the other hand, by the claim (c)

above, we also have another decomposition in the derived category:

T �
⊕

j

H
j

d1
Fk−•,�+•[− j].

Since H
j
d1

Fk−•,�+• = grW
k− j BZ (H�+ j p+M), the decomposition (23) implies

grW
k− j BZ (H�+ j p+M) decomposes into the direct sum of its cohomology in the

derived category of filtered D-modules and the cohomology Hi grW
k BZ (H� p+M)

is of weight w+ �+ k + i . It is easy to see that the decomposition is compatible with

Q-structures and therefore, we conclude the proof.

Mixed case By Lemma 6.2 below, there exists a functorial splitting

grW grV
α M � grW grLgrV

α M,

with respect to t1, t2, . . . , tr which implies grW B(M) � grW B(grLM). Therefore,

we reduce the proof to the case where M underlies a pure Hodge module. ��

We collect some corollaries of Deligne’s Theorem which we have already applied

in the previous theorem and will apply these results in the proof of Theorem 6.9. The

proof is based on [17, 1.5] and a theorem of Deligne (Theorem 6.12). For the purpose

of the exposition, we postpone the proof to the end of this section.

Lemma 6.2 Let M,M′ be mixed Hodge modules on a smooth variety X and V be

the V -filtration along a smooth subvariety Z. Let L be the filtration on grV
α induced

by the weight filtration and W = W (θ − α, L) be the relative monodromy filtration

on grV
α . Then we have:

(a) For any local defining equation f of Z, the induced filtered morphism

f : (grW grV
α M, F)→ (grW grV

α−1M, F)

splits into f : grW grLgrV
α M→ grW grLgrV

α−1M.
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(b) For any local vector fields ξ normal to Z, the induced filtered morphism

ξ : (grW grV
α M, F)→ (grW grV

α+1M, F[−1])

splits into ξ : (grW grLgrV
α M, F)→ (grW grLgrV

α+1M, F[−1]).
(c) If T : M → M′ is a morphism of mixed Hodge modules, then the filtered

morphism

grW T : (grW grV
α M, F)→ (grW grV

α M′, F)

splits into grW T : (grW grLgrV
α M, F)→ (grW grLgrV

α M′, F).

Now we turn to the complex C(M). The filtration WkC(M) also carries a Q-

structure. In fact, it follows from Proposition 3.7 and the fact that the retraction

constructed in Theorem 3.1 respects the filtration W that

DRZ

(
WkC(M)

)
� DRZ (p+WkSp(M)) � p∗WkSpK⊗Q C

where p : TZ X → Z is the projection. Therefore, we can simply modify the proof of

Theorem 6.1 to prove the following.

Theorem 6.3 Let (M, F, L,K) be a mixed Hodge module on a smooth variety X

and Z is a smooth subvariety. Then CZ (M) together with the relative monodromy

filtration is also a mixed Hodge complex.

By a formal argument Lemma 6.5 of Deligne in [6] on the mixed Hodge complexes

(see also [18, Proposition 2.3]), we deduce the following by noting that a mixed Hodge

complex satisfies all three conditions in Lemma 6.5:

Corollary 6.4 The Hodge spectral sequences of B(M) and C(M) degenerate at the

first page while the weight spectral sequences degenerate at the second page.

Lemma 6.5 For a complex (C, F) of filtered DX -modules with a finite increasing

weight filtration W and a constructible complex (CQ, WQ) over Q such that

(a) DRX (C, W ) ∼= (CQ, WQ)⊗Q C;

(b) each cohomology module
(
H�(grW

k C), pH�(grW
k CQ), F

)
underlies a polarizable

Hodge module of weight k + � and

(c) the Hodge filtration F is strict on grW
k C for all k ∈ Z.

then the Hodge spectral sequence degenerates at the first page and the weight spectral

sequence degenerates at the second page.

Proof For all p, q ∈ Z , the term E
p,q
1 = Hp+qgrW

−pC of the first page of the weight

spectral sequence associated to W is a polarizable Hodge module of weight q. The

differential d1 of the first page of the spectral sequence is a morphism of polarizable

Hodge modules, since it is compatible with F and the Q-structure. It follows that

E
p,q
r as the cohomology of dr−1 is also a polarizable Hodge module of weight q for

all r ≥ 1. But then dr must vanish if r ≥ 2 because dr : E
p,q
r → E

p+r ,q−r+1
r is
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a morphism of polarizable Hodge modules of different weights when r ≥ 2. This

proves that the weight spectral sequence degenerates at the second page. In particular,

(H�(C), F) underlies a weakly mixed Hodge module.

As for the Hodge spectral sequence, the degeneration at the first page is equivalent

to the Hodge filtration on C being strict, i.e. the canonical maps H�(Fi C)→ H�(C)

are injective for all i and �. We prove this by induction on the length of the weight

filtration W . If there is some k that grW
k C = C then by the condition (c) we obtain

the base case. Assume that WkC = C and the Hodge filtration is strict on Wk−1C . By

the short exact sequence

0 → Wk−1C → WkC → grW
k C → 0

we get a commutative diagram between two exact sequences:

H�−1(Fi grW
k C) H�(Fi Wk−1C) H�(Fi WkC) H�(Fi grW

k C) H�+1(Fi Wk−1C)

H�−1(grW
k C) H�(Wk−1C) H�(WkC) H�(grW

k C) H�+1(Wk−1C)
α

We finish the proof a diagram chase. Assume m ∈ H�(Fi WkC) is sent to 0 in

H�(WkC). Then the image of m in H�(Fi grW
k C) must vanish since, by the con-

dition (c), H�(Fi grW
k C) → H�(grW

k C) is injective. By exactness, there is an

element m′ ∈ H�(Fi Wk−1C) whose image is m. Let m′′ be the image of m′ in

H�(Wk−1C). Then there is m̃ ∈ H�−1(grW
k C) whose image is m′′, as m′′ is sent

to zero by H�(Wk−1C) → H�(WkC). We will conclude the proof if we can find

m̄ ∈ H�−1(Fi grW
k C) such that m̄ �→ m′ because this will imply m = 0. This is done

by noticing that α is a morphism of graded polarizable weakly mixed Hodge modules

since α preserves the Hodge filtration and the Q-structure and also H�−1(grW
k C) is of

weight k+ �− 1 which is the top weight of H�(Wk−1C). It follows that α is strict and

there is m̄ ∈ H�−1(Fi grW
k C) whose image is m′. ��

6.2 Comparison to the restriction functors

The goal of this part is to prove Theorem 1.2(b):

Theorem 6.6 If (M, F) is a graded polarizable mixed Hodge module then the complex

B(M) (resp. C(M)) is isomorphic to (i !M, F) (resp. (i∗M, F)) in the derived

category of filtered D-modules with Q-structures.

Before starting the proof, we give a lemma comparing Čech complexes. Let Zi be

the hypersurface defined by ti = 0. Then the complex i+i !M can be expressed by the

Čech complex

K (M, Z1, Z2, . . . , Zr ) =
{

M →
r⊕

i=1

M(∗Zi )→ · · · → M

(
∗

r∑

i=1

Zi

)}
(24)
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placed in degrees 0, 1, . . . , r where the morphism is induced by natural morphisms

N → N (∗Zi ) for any mixed Hodge module N on X . Similarly, the complex i+i∗M

can be expressed by the Čech complex (see the proof of [17, Prop. 2.19])

K!(M, Z1, Z2, . . . , Zr ) =
{

M

(
!

r∑

i=1

Zi

)
→ · · · →

r⊕

i=1

M(!Zi )→ M

}
(25)

placed in degree −r ,−r + 1, . . . , 0, where the morphism is induced by the natural

morphisms N (!Zi )→ N for any mixed Hodge module N on X . Recall that N (!D) =
D
(
D(N )(∗D)

)
for a hypersurface D, where D is duality for mixed Hodge modules. By

definition, this is j! j∗(N ), where j : X − Z → X is the inclusion of the complement

of Z .

Lemma 6.7 Let γ : X → X × Ar be the graph embedding of f and iH : H =
X×{0} → X×Ar be the closed embedding of the central fiber. Then we have natural

isomorphisms

(1) γ+K (M, Z1, Z2, . . . , Zr ) � iH+K (M, Z1, Z2, . . . , Zr ) and

(2) γ+K!(M, Z1, Z2, . . . , Zr ) � iH+K!(M, Z1, Z2, . . . , Zr )

in Db(MHM(X × Ar )).

Proof of the lemma Let M̃ = M �QH
Ar [r ] be the pullback of M to X ×Ar . Denote by

D j be the divisor on X × Ar defined by f j − t j = 0 for j = 1, 2, . . . , r and denote

by H j be the divisor on X × Ar defined by t j = 0. Then we have

K
(
M̃, D1, D2, . . . , Dr

)
� γ+M(−r) and K

(
M̃, H1, H2, .., Hr

)
� iH+M(−r),

recalling that (−r) is the Tate twist. It follows that

K (M̃, D1, D2, . . . , Dr , H1, H2, . . . , Hr ) = K
(
K
(
M̃, D1, D2, . . . , Dr

)
, H1, H2, . . . , Hr

)

� K (γ+M(−r), H1, H2, . . . , Hr )

� γ+K (M(−r), Z1, Z2, . . . , Zr ).

On the other hand,

K (M̃, D1, D2, . . . , Dr , H1, H2, . . . , Hr ) = K
(
K
(
M̃, H1, H2, . . . , Hr

)
, D1, D2, . . . , Dr

)

� K (iH+M(−r), D1, D2, . . . , Dr )

� iH+K (M(−r), Z1, Z2, . . . , Zr ).

We conclude the first statement of the lemma by undoing the Tate twist. The second

statement is similar and, we leave it to the reader.

Proof of the Theorem Note that the Q-structure has already been handled in Theo-

rem 6.1.
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1. We first deal with the complex B(M). As above, the functor i+i !M can be

defined by the Čech complex in the derived category of mixed Hodge modules:

K (M) = K (M, Z1, · · · , Zr ) =
{

M→
⊕

M(∗Zi )→ · · · →M(∗
r∑

i=1

Zi )

}

(26)

placed in degrees 0, 1, . . . , r . Moreover, the complex K (M) is isomorphic to

i+grV
0 K (M) in the derived category of (F, W )-bifiltered D-modules by Lemma 6.7.

Consider the double complex BK (M):

grV
0 M (grV

−1M)r · · · grV
−r M

⊕r
i=1 grV

0 M(∗Zi )
⊕r

i=1(grV
−1M(∗Zi ))

r · · ·
⊕r

i=1 grV
−r M(∗Zi )

· · · · · · · · · · · ·

grV
0 M(∗

∑r
i=1 Zi ) (grV

−1M(∗
∑r

i=1 Zi ))
r · · · grV

−r M(∗
∑r

i=1 Zi )

δ0 δ1 δr−1

δ0 δ1 δr−1

δ0 δ1 δr−1

(27)

whose uppermost row is BK 0(M) = B(M) and leftmost column is B0 K (M) =
grV

0 K (M). The total complex of BK (M) is (F, W )-bifiltered quasi-isomorphic to

grV
0 K (M) because grV

α K (M) is (F, W )-bifiltered acyclic for α < 0 and Lemma 2.8.

On the other hand, the total complex of BK (M) is also F-filtered quasi-isomorphic to

B(M) because each row BK i (M) is F-filtered acyclic when i �= 0 by Corollary 6.4

and Theorem 3.6. We conclude that grV
0 K (M) and B(M) are isomorphic in the

derived category of F-filtered DZ -modules. But grV
0 K (M) is (F, W )-bifiltered quasi-

isomorphic to i !(M, F, W ). We conclude the proof of this part.

2. Next, we deal with the complex C(M). The functor i+i∗M can be computed

by the the Čech complex

K!(M) =
{

M

(
!

r∑

i=1

Zi

)
→ · · · →

r⊕

i=1

M(!Zi )→M

}
(28)

placed in degrees−r ,−r +1, . . . , 0. Moreover, the complex K!(M) is isomorphic to

i+grV
0 K!(M) in the derived category of (F, W )-bifiltered D-modules by Lemma 6.7.

Consider the double complex C K!(M)
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grV
−r M · · · (grV

−r+1M)r grV
0 M

⊕r
i=1 grV

−r M(!Zi ) · · ·
⊕r

i=1(grV
−r+1M(!Zi ))

r
⊕r

i=1 grV
0 M(!Zi )

· · · · · · · · · · · ·

grV
−r M(!

∑r
i=1 Zi ) · · · (grV

−r+1M(!
∑r

i=1 Zi ))
r grV

0 M(!
∑r

i=1 Zi )

δ−r δ−r+1 δ−1

δ−r δ−r+1 δ−1

δ−r δ−r+1 δ−1

(29)

whose uppermost row is C K 0
! (M) = C(M) and leftmost column is C0 K (M) =

grV
0 K!(M). The total complex of C K!(M) is (F, W )-bifiltered quasi-isomorphic to

grV
0 K!(M) because grV

α K!(M) is (F, W )-bifiltered acyclic for α < 0. On the other

hand, the total complex of C K!(M) is also F-filtered quasi-isomorphic to C(K )

because each row C K i
! (M) is F-filtered acyclic when i �= 0 because of Corollary 6.4

and Theorem 3.6. We conclude that grV
0 K!(M) and C(M) are isomorphic in the

derived category of F-filtered DZ -modules. Finally, grV
0 K!(M) is bifiltered quasi-

isomorphic to i∗(M, F, W ). We conclude the proof of this part.

Remark 6.8 If one is just interested in the isomorphisms

(B(M), F) � (i !M, F) and (C(M), F) � (i∗M, F)

in the derived category of filtered D-modules, there is a way to bypass mixed Hodge

complexes as are used in Theorem 6.1 and Theorem 6.3. To prove (B(M), F) �
(i !M, F), we just need to show that (B(M(∗Zi )), F) is filtered acyclic for any Zi as

in the proof Theorem 6.6. For this we considerM̂(∗Ẑi+E)on the blow-upπ : X̂ → X

along Z where M̂ is the minimal extension of M|X−Z , Ẑi is the strict transform of

Zi and E is the exceptional divisor. Note that π+M̂(∗Ẑi + E) =M(∗Zi ). It follows

from the computation in the proof of Theorem 4.1 that B(iπ+M(∗Ẑi + E)) is filtered

acyclic where iπ : X̂ → X̂ × X is the graph embedding because of the fact that one

of the Koszul differentials is filtered bijective. We can conclude by applying p+ to

B(iπ+M(∗Ẑi + E)) and the bistrictness result for smooth, projective morphisms. The

same idea works for the filtered acyclicity of (C(M(∗Zi )), F).

6.3 Finishing the proof

We now prove the last part of Theorem 1.2:

Theorem 6.9 If M is a graded polarizable mixed Hodge module and W is the filtration

on B(M) and C(M) induced by the relative monodromy filtration on grV
α M, then

the quasi-isomorphisms in Theorem 6.6 induce isomorphisms on the cohomologies:

grW
k H� B(M) � grW

k+�H
�i !ZM and grW

k H−�C(M) � grW
k−�H

−�i∗ZM

as polarizable Hodge modules for � ≥ 0.
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Proof 1. We first focus on the complex B(M). We shall prove the following as a

preparation: ��

Lemma 6.10 The complex H�
δgrW

k BK (M) is exact for � �= 0 and any k ∈ Z and the

natural inclusion

H0
δgrW

k BK (M) = ker grW
k δ0 → grW

k grV
0 K (M)

is a filtered quasi-isomorphism, where BK (M) is defined in (27).

Proof of the lemma We first prove that the inclusion

ker grW δ0 → grW grV
0 K (M)

is a bifiltered quasi-isomorphism. By Lemma 6.2, the double complex grW BK (M)

decomposes into

grW grL grV
0 M (grW grL grV

−1M)r · · · grW grL grV
−r M

⊕r
i=1 grW grL grV

0 M(∗Zi )
⊕r

i=1(grW grL grV
−1M(∗Zi ))

r · · ·
⊕r

i=1 grW grL grV
−r M(∗Zi )

· · · · · · · · · · · ·

grW grL grV
0 M(∗

∑r
i=1 Zi ) (grW grL grV

−1M(∗
∑r

i=1 Zi ))
r · · · grW grL grV

−r M(∗
∑r

i=1 Zi )

where L is the filtration induced by the weight filtration on K (M). Since the category

of polarizable Hodge modules on an algebraic variety is semisimple, the cohomology

H�grL K (M) is a summand of grL K �(M). It follows that grW grV
0 H�grL K (M) is

contained in H�ker grW δ0 because the support of grW grV
0 H�grL K (M) is contained

in Z . Then due to the fact that

grW grV
0 H�grL K (M)→ H�ker grW δ0

is injective, we conclude that ker grW δ0 → grW grV
0 K (M) is an isomorphism.

Next, we prove that the complex H�
δgrW

k BK (M) is exact for � > 0. By Theo-

rem 6.1, the total complex of grW BK (M) decomposes into

⊕

�∈Z

H�
δgrW BK (M)[−�].

On the other hand, we know Bi K (M) is acyclic for i > 0, as K (M) has cohomology

supported on {t1 = · · · = tr = 0}. Hence, grW Bi K (M) is F-filtered exact for all

i > 0, the total complex of grW BK (M) is filtered quasi-isomorphic to grW grV
0 K (M)

which is also filtered quasi-isomorphic to H0
δgrW BK (M) as we just proved. This

completes the proof of the lemma.
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Returning to the proof of the theorem, we have a weight spectral sequence on

BK j (M)

E
p,q
1 = H

p+q
δ grW

−p BK j (M)⇒ E
p,q
∞ = grW

−pH
p+q
δ BK j (M).

which degenerates at E
p,q
2 by Theorem 6.1. The differential of the first page of the

spectral sequence induces morphisms of complexes

Sk,� = {H0
δgrW

k+� BK (M)→ H1
δgrW

k+�−1 BK (M)

→ · · · → Hr
δgrW

k+�−r BK (M)}

for any � ∈ Z. By the above lemma, the total complex of Sk,� is filtered isomorphic

to H0
δgrW

k+� BK (M) and thus, grW
k+�grV

0 K (M). On the other hand, because of Theo-

rem 6.1, the second page of the weight spectral sequence on B(N) is zero if one of the

ti acts bijectively on a graded polarizable mixed Hodge module N. This means Sk,� is

also filtered isomorphic to the first page of the weight spectral sequence of B(M):

H0
δgrW

k+� B(M)→ H1
δgrW

k+�−1 B(M)→ · · · → Hr
δgrW

k+�−r B(M),

which is filtered isomorphic to grW
k+�grV

0 K (M). If we take cohomology at degree �,

we conclude that

grW
k H� B(M) � grW

k+�H
�K (M)

as polarizable Hodge modules.

2. We deal with the complex C(M). The proof of the following lemma is parallel

to the one of Lemma 6.10 and therefore, we leave it to the readers.

Lemma 6.11 The complex H�
δgrW

k C K!(M) is exact for � �= 0 and any k ∈ Z and the

natural quotient

grW
k grV

0 K!(M)→ H0
δgrW

k C K!(M) = coker grW
k δ−1

is a filtered quasi-isomorphism.

We also have a weight spectral sequence

E
p,q
1 = H

p+q
δ grW

−pC K
j

! (M)⇒ E
p,q
∞ = grW

−pH
p+q
δ C K

j

! (M).

which degenerates at the second page by Theorem 6.3. The differential of the first

page of the spectral sequence induces morphisms of complexes

Tk,� = {H−r
δ grW

k−�+r C K!(M)→ H−r+1
δ grW

k−�+r−1C K!(M)→ · · · → H0
δgrW

k−�C K!(M)}

for any � ∈ Z. By the above lemma, the total complex of Tk,� is filtered isomor-

phic to H0
δgrW

k−�C K!(M) and thus, grW
k−�grV

0 K!(M). On the other hand, because of
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Theorem 6.3, the second page of the weight spectral sequence on B(N) is zero if

N = N(!Z). This means Tk,� is also filtered isomorphic to the first page of the weight

spectral sequence of C(M):

H−r
δ grW

k−�+r C(M)→ H−r+1
δ grW

k−�+r−1C(M)→ · · · → H0
δgrW

k−�C(M)

which is filtered isomorphic to grW
k−�grV

0 K!(M). If we take cohomology at degree−�,

we conclude that

grW
k H−�C(M) � grW

k−�H
−�K!(M)

as polarizable Hodge modules.

6.4 Deligne’s theorem

The aim of this part is to prove Lemma 6.2. For this purpose, we generalize, with little

effort, the theorem on relative monodromy filtrations to the abstract setting, proved

by Deligne in his personal letter to Cattani and Kaplan. Then Lemma 6.2 will be an

immediate corollary.

Let A be an abelian category and V be an object in A. Let L be a finite increasing

filtration of V and N be a nilpotent endomorphism preserving the filtration L . We

will now assume that the relative monodromy filtration W = W (N , L) exists and

that there is a splitting operator Y for W , i.e. Y is a semisimple operator on V with

eigenvalues in Z such that Wk =
⊕

i≤k Ei (Y ) where Ei (Y ) is the i-eigenspace of Y .

We say the splitting operator Y satisfies the admissibility conditions if

[Y , N ] = −2N , and Y L i ⊂ L i , for all i . (30)

Suppose that Y ′ is a splitting operator for L that commutes with Y . Then the pair

(N0, Y − Y ′) determines an sl2-representation on V . We will denote the standard

sl2-triple by (e+, e−, H):

[e+, e−] = H , [H , e−] = −2e−, [H , e+] = 2e+.

Then e− = N0 and H = Y − Y ′. We call the collection (V , L, N , Y , Y ′) a Deligne-

system, a notion introduced in [21], if in addition

[e+, N j ] = 0, for all j �= 0

where N j is the j-th ad Y ′-homogeneous component of N . In other words, N j is

ad e−-primitive in the adjoint representation for j �= 0.

Theorem 6.12 Let (V , N , L, Y ) be as above and assume Y satisfies the admissibility

condition (30). If the set of splitting operators of L commuting with Y is not empty
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then there exists a unique splitting operator Y ′ of L such that (V , L, N , Y , Y ′) is a

Deligne-system.

Proof Fix a splitting operator of L commuting with Y . We can modify the splitting of

L by conjugating by an automorphism g such that g respects W and (g−1)L i ⊂ L i−1,

and consequently, g induces an automorphism on grL . We want to achieve that

[
N − ge−g−1, ge+g−1

]
= 0,

or equivalently,

[
g−1 Ng − e−, e+

]
= 0. (31)

We find g by successive approximations: if [Ni , e+] = 0 for 0 > i > −k, we take

g = 1 + γ−k for γ−k of degree −k with respect to the L-grading for k ≥ 1. Then to

make the k-th L-degree in (31) valid, we need

[
−
[
γ−k, e−

]
+ N−k, e+

]
= 0,

which is equivalent to

(
ad e+

) ((
ad e−

)
(γ−k)+ N−k

)
= 0. (32)

As k − 2 ≥ −1, we can write uniquely N−k = N ′ + (ad e−)N ′′, by the Lefschetz

decomposition, such that N ′ is in the kernel of ad e+ and the ad H -degree of N ′′ is k

because N−k is of ad H -degree k − 2. Then (32) becomes

(
ad e+

) (
ad e−

) (
γ−k + N ′′

)
= 0.

It follows from the fact that the H -degree of γ−k+N ′′ is k that γ−k has to equal−N ′′.
It remains to show that [γ−k, Y ] = 0, i.e [N ′′, Y ] = 0. By the admissible condition,

(ad Y )N−k = −2N−k .

Substituting N−k by N ′ + (ad e−)N ′′,

(ad Y )N ′ + (ad Y )(ad e−)N ′′ = (ad Y )N ′ + (ad e−)(ad Y )N ′′ − 2(ad e−)N ′′

= −2N ′ − 2(ad e−)N ′.

Then we get

(ad Y + 2)N ′ + (ad e−)(ad Y )N ′′ = 0.

Applying (ad e−)k−1 yields

(ad e−)k(ad Y )N ′′ = 0,
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which forces (ad Y )N ′′ = 0. This completes proof. ��

The morphisms of a pair of Deligne-systems (V , L, N , Y , Y ′) and (V̂ , L̂, N̂ , Ŷ , Ŷ ′)
are the operators T ∈ Hom(V , V̂ ) such that Ŷ T = T Y , N̂ T = T N and T L ⊂ L̂ for

all i . In fact, the morphisms of Deligne-systems are functoral:

Corollary 6.13 If T is a morphism of a pair of Deligne-systems

(V , L, N , Y , Y ′) and (V̂ , L̂, N̂ , Ŷ , Ŷ ′),

then Ŷ ′T = T Ŷ ′.

Proof Let T =
∑

i≤0 Ti be the ad Y ′-homogeneous decomposition of T . Then

the H degree of Ti is −i because Ŷ T = T Y . Suppose that Ti vanishes for

i = −1, 2, . . . ,−k + 1. Then (ad N )T = 0 gives

[N0, T−k] + [N−k, T0] = 0.

It follows that (ad e+)(ad e−)T−k vanishes since

(ad e+)(ad e−)T−k = [e+, [e−, T−k]] = [e+, [T0, N−k]]
= [[e+, T0], N−k] + [T0, [e+, N−k]]

and [e+, T0] = [e+, N−k] = 0. Then T−k must vanish because the H -degree of T−k

is k > 0. ��

Finally we can give

Proof of Lemma 6.2 By [17, 1.5], we have a canonical splitting

grW
k grV

α M �
⊕

i∈Z

grW
k grL

i grV
α M.

If we set (V , L, N ) = (grW grV
α M, LgrW grV

α M, θ − α) and Y = i on grW
i M, then

we can apply Theorem 6.12 to this situation: there exists a unique splitting operator

Y ′ for L such that (V , L, N , Y , Y ′) is a Deligne-system. As a consequence, for any

local defining equation f of Z , it follows from Corollary 6.13 the induced morphism

f : grW grV
α M→ grW grV

α−1M

commute the splitting operator Y ′ which concludes (a).

For part (b), it is easy to see that the morphism grW T is a morphism of Deligne’s sys-

tems (grW grV
α M, LgrW grV

α M, θ −α) and (grW grV
α M′, LgrW grV

α M′, θ −α). Then

by Corollary 6.13, grW T commutes with the splitting operator Y ′ which concludes

(b).
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7 Fourier transform for monodromic mixed Hodgemodules

7.1 Notation

Let M ∈ MHM(E) be a mixed Hodge module on the trivial vector bundle E = X×Ar

over X . Let z1, . . . , zr be coordinates on the Ar term of the vector bundle. Assume M is

monodromic along the z1, . . . , zr , i.e., the underlying DE -module M is monodromic.

Then

M =
⊕

χ∈Q

Mχ ,

where Mχ is the subspace on which θ − χ + r acts nilpotently.

Let E∨ = X × Ar with coordinates w1, . . . , wr be another trivial bundle, which

we think of as the dual of E . We consider E = E ×X E∨ = X ×A2r , with projections

p : E→ E and q : E→ E∨.

Consider the mixed Hodge module on E given by p!(M)[−r ]. The underlying DE-

module is isomorphic to M[w]. Let g =
∑r

i=1 ziwi , a function on E, which is the

natural pairing between E and its dual E∨. Let � : E→ E×A1 be the graph embedding

along g, with coordinate ξ on A1. We consider �+(M[w]) =
⊕

j≥0 M[w] ⊗ ∂ j , as

our goal is to compute the vanishing cycles of M[w] along g.

Recall the action on the graph embedding is as follows:

P(mwα ⊗ ∂ j ) = P(mwα)⊗ ∂ j for all P ∈ DX +OE

∂zi
(mwα ⊗ ∂ j ) = ∂zi

(m)wα ⊗ ∂ j − mwα+ei ⊗ ∂ j ,

∂wi
(mwα ⊗ ∂ j ) = αi mwα−ei ⊗ ∂ j − zi mwα ⊗ ∂ j ,

ξ(mwα ⊗ ∂ j ) = gmwα ⊗ ∂ j − jmwα ⊗ ∂ j−1,

∂(mwα ⊗ ∂ j ) = mwα ⊗ ∂ j+1.

In particular, if θ̃z is defined as

θ̃z(mwα ⊗ ∂ j ) = θz(m)wα ⊗ ∂ j ,

then

θz(mwα ⊗ ∂ j ) = (θ̃z − ( j + 1)− ξ∂)(mwα ⊗ ∂ j ).

Similarly,

θw(mwα ⊗ ∂ j ) = (|α| − ( j + 1)− ξ∂)(mwα ⊗ ∂ j ).

In particular, if we look at the commuting operators

T := θz + ξ∂ + 1, S := θw + ξ∂ + 1,
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we see that �+(M[w]) breaks into simultaneous eigenspaces for these operators.

Indeed, the equality (T−λ)a(mwα⊗∂ j ) = 0 for m ∈Mχ holds iff (θz− j−λ)a(m) =
0, which itself is true iff χ = j+λ+r . Similarly, (S−�)(mwα⊗∂ j ) = 0 iff |α| = j+�.

For any element mwα ⊗ ∂ j (where m is homogeneous in M, i.e., m ∈Mχ for some

χ ∈ Q), there always exists some λ and � for which these conditions are true, hence

�+(M[w]) breaks into these simultaneous eigenspaces. We shift these eigenspaces

for convenience of notation later, and denote

Eβ,� =
∑

α∈Nr ,|α|≥−�

Mβ+|α|+�wα ⊗ ∂ |α|+�,

and it will be useful to pull out specifically the term involving ∂ j , so we denote this

as

F
j

β,� =
∑

|α|= j−�

Mβ+ jwα ⊗ ∂ j ⊆ Eβ,�,

so that

Eβ,� =
⊕

j≥�

F
j

β,�.

These eigenspaces are mapped to one another via the elements of DE×A1 in the fol-

lowing way

zi Eβ,� ⊆ Eβ+1,�

∂zi
Eβ,� ⊆ Eβ−1,�

wi Eβ,� ⊆ Eβ,�−1

∂wi
Eβ,� ⊆ Eβ,�+1

ξ Eβ,� ⊆ Eβ+1,�−1

∂ Eβ,� ⊆ Eβ−1,�+1.

Let V •�+(M[w]) be the V -filtration along g. Then, for any λ ∈ Q, V λ�+(M[w])
is invariant under both T and S, hence also decomposes into its eigenspace decompo-

sition, so we write

V λ�+(M[w]) =
⊕

β∈Q,�∈Z

Eλ
β,�, where Eλ

β,� = Eβ,� ∩ V λ.

7.2 Fourier–Laplace transform

The Fourier–Laplace transform of a DE -module M is a DE∨-module FL(M) which,

as a DX -module, is the same as M, and such that

wi m = −∂zi
m, ∂wi

m = zi m.
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If M is monodromic along the z1, . . . , zr , then FL(M) is monodromic along the

w1, . . . , wr . Indeed,

(θw − χ + r)m = (
∑

wi∂wi
− χ + r)m = (−

∑
∂zi

zi − χ + r)m

= −(θ − (r − χ)+ r)m,

and so we see that, in terms of their monodromic decomposition,

FL(M)r−χ =Mχ .

The main goal of this section is to prove Theorem 1.4:

Theorem 1.4 Let M be the filtered DE -module underlying a monodromic mixed

Hodge module M on E. Then the DE∨ -module underlying the mixed Hodge mod-

ule

H0σ ∗φg(p!(M)[−r ]) ∈ MHM(E∨)

is isomorphic to FL(M). We denote this composition of functors by FL(M).

Moreover, for λ ∈ [0, 1) and � ∈ Z, we have

FpFL(M)r−(λ+�) = Fp−�−
λ�M
λ+�.

Finally, the weight filtration is given by

WkFL(M)λ+Z = FL(Wk+r+
λ�M)λ+Z.

Here FL(M)λ+Z =
⊕

�∈Z FL(M)λ+� for any λ ∈ [0, 1).

We want to compute σ ∗φg(M[w]), which involves understanding the V -filtration

along the zero section σ : E∨→ E by Theorem 1.2. The first step will be to show that

φg,λ(M[w]) is monodromic along z1, . . . , zr for all λ ∈ [0, 1). This will allow us (by

Property M.5) to compute the associated graded pieces of the V -filtration along the

zero section.

Lemma 7.1 Using the notation in the previous section, we have

grλV �+(M[w]) =
⊕

β,�

Eλ
β,�/E>λ

β,�.

For any λ ∈ Q, grλV �+(M[w]) is monodromic along z1, . . . , zr and along

w1, . . . , wr , and its χ th homogeneous piece in the decomposition is

(grλV �+(M[w]))χz =
⊕

�∈Z

Eλ
χ+λ,�/E>λ

χ+λ,�

(grλV �+(M[w]))χw =
⊕

β∈Q

Eλ
β,r−λ−χ/E>λ

β,r−λ−χ
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for the zi ’s and wi ’s respectively.

Proof This is easy to see, using the fact that N = ξ∂ − λ + 1 is nilpotent on

grλV �+(M[w]). Then we can write

T = θz + ξ∂ + 1 = θz + N + λ

S = θw + ξ∂ + 1 = θw + N + λ,

and N commutes with θz and θw. Hence, (θz − χ + r) is nilpotent iff T − λ− χ + r

is nilpotent. Similarly, (θw − χ + r) is nilpotent iff S − λ− χ + r is nilpotent.

Then use the fact that Eβ,� is the simultaneous eigenspace for T with eigenvalue

β − r and S with eigenvalue −�. ��

In terms of computing H0 of σ ∗, we are interested in the z-monodromic pieces

corresponding to χ = 0 and 1. Using Theorem 1.2, we have

H0σ ∗(φg�+M[w]) =
⊕

λ∈[0,1)

H0σ ∗(φg,λ�+M[w])

=
⊕

λ∈[0,1)

coker

»
½ ⊕

�∈Z,1≤i≤r

Eλ
λ+1,�/E>λ

λ+1,�

∂zi−→ Eλ
λ,�/E>λ

λ,�

¾
À .

Note that this cokernel is monodromic along the wi ’s. Using the lemma, the r−χ th

monodromic piece is

coker

(
r⊕

i=1

Eλ
λ+1,χ−λ/E>λ

λ+1,χ−λ

∂zi−→ Eλ
λ,χ−λ/E>λ

λ,χ−λ

)

where λ ∈ [0, 1) is the fractional part of χ (because χ − λ must be an integer for it to

be an eigenvalue of S).

We are interested in the r −χ th monodromic piece because we have FL(M)r−χ =
Mχ as sets. Thus, we would like to construct an isomorphism

coker

(
r⊕

i=1

Eλ
λ+1,χ−λ/E>λ

λ+1,χ−λ

∂zi−→ Eλ
λ,χ−λ/E>λ

λ,χ−λ

)
→Mχ (33)

The eigenspaces Eβ,� have natural morphisms defined as follows: let ϕβ,� : Eβ,� →
Mβ+� be such that

∑
mαwα ⊗ ∂ |α|+� �→ (−1)�

∑

α∈Nr

∂α
z (mα).

Note that, by definition of Eβ,�, the coefficient mα lies in Mβ+�+|α|, so ∂α
z (mα) ∈

Mβ+� and so the map lies in the correct eigenspace of M. This map should be thought

of as evaluating wi at −∂zi
(which is how the Fourier transform behaves), and also ∂
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at −1. Then for any β, �, the map ϕβ,� is DX -linear, and satisfies the following easy

to check relations

ϕβ−1,� ◦ ∂zi
= 0

ϕβ,�−1 ◦ wi = −∂zi
◦ ϕβ,�

ϕβ,�+1 ◦ ∂wi
= zi ◦ ϕβ,�

ϕβ+1,�−1 ◦ ξ = −(θ − �+ r) ◦ ϕβ,�

ϕβ−1,�+1 ◦ ∂ = −ϕβ,�.

In fact, the first relation can be strengthened:

Lemma 7.2 If � ≥ 0, then

ker (ϕβ,�) =
r∑

i=1

∂zi
Eβ+1,�.

Proof The containment ⊇ is clear from the first relation above.

For the other containment, let η =
∑a
|α|=0 mαwα ⊗ ∂ |α|+� lie in the kernel. We

induce on a. If a = 0, then ϕ(m0) = (−1)�m0 = 0 implies m0 = 0, so this is obvious.

For a > 0, assume we know it for any sum of elements with |α| ≤ a − 1. By

definition, we know (−1)�
∑

0≤|α|≤a ∂α
z (mα) = 0. Order the α ∈ Nr with |α| = a

in some way, write them as α(1), . . . , α(d). As a > 0, there exists some i1 such that

α
(1)
i1

> 0. Define m
(1)

α(1)−ei1

:= mα(1)−ei1
+ ∂zi1

(mα(1)) and let m
(1)
β = mβ for all other

|β| = a − 1. Repeat with α(2), finding some i2 with α
(2)
i2

> 0 and adjusting the m
(1)
β

using ∂zi2
(mα(2)). Eventually, this terminates, as there are only finitely many α ∈ Nr

with |α| = a. Let m′β := m
(d)
β for all β ∈ Nr with |β| = a − 1.

Now, define η′ =
∑

0≤|α|≤a−1 m′βwβ ⊗ ∂ |β|+�. Then this still lies in the kernel of

ϕ (it has the same value as that for m, which we assumed is 0). By induction, it lies in∑
∂zi

(Eβ+1,�).

Finally, use η = η′ +
∑
|α|=a ∂ziα

(mαwα−eiα ⊗ ∂ |α|+�−1) to conclude. ��

Let us now restrict to looking at Eλ
λ,�, for λ ∈ [0, 1). Restricting ϕλ,� to this

subspace, we get a map

Eλ
λ,� →Mλ+�.

To show that this map ϕλ,� is the desired isomorphism 33, it suffices to show that

this map is surjective and its kernel is precisely

r∑

i=1

∂zi
(Eλ

λ+1,�)+ E>λ
λ,�.

For this, we must have an understanding of the V -filtration along g of �+M[w].
However, we can restrict to proving it is an isomorphism for � ≥ 0, using the fact that
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the Koszul-like complexes for monodromic D-modules are acyclic. Indeed, for k < 0,

look at the morphism of complexes

Nλ+k+r
⊕r

i=1 Nλ+k+r−1 . . . Nλ+k

Mλ+k+r
⊕r

i=1 Mλ+k+r−1 . . . Mλ+k .

w

ϕ

w

ϕ

w

ϕ

∂z ∂z ∂z

Hence, if by induction all but the rightmost vertical map is an isomorphism, then

so is the rightmost map. Here the terms in the top row are the corresponding domains

of the maps in Formula 33.

7.3 Computation of the V-filtration along �

To compute the V -filtration along ξ , it suffices to break upM =
⊕

λ∈[0,1)

⊕
�∈Z Mλ+�,

and handle each λ ∈ [0, 1) separately.

Recall the notation

F
j

β,� =
⊕

|α|= j−�

Mβ+ jwα ⊗ ∂ j .

We use the following easy to prove facts

r∑

i=1

wi F
j

χ,� = F
j

χ,�−1 (34)

χ + j �= r − 1 "⇒
r∑

i=1

zi F
j

χ,� = F
j

χ+1,� (35)

χ + j �= r − 1 "⇒
r∑

i=1

∂wi
F

j
χ, j = F

j+1
χ, j+1 (36)

The first is trivial from the definition, and the latter two use the fact that
∑

ziM
χ =

Mχ+1 whenever χ + 1 �= r , by the acyclicity of the Koszul-like complex for mon-

odromic modules.

Throughout, we will define filtrations U • only for • ∈ [0, 1]. They are extended as

Uλ = ξ jUλ− j for λ > 1, λ− j ∈ (0, 1],

and inductively,

Uλ = ∂kUλ+k +U>λ for λ < 0, λ+ k ∈ [0, 1).

In this way, the only conditions we must check for the V -filtration are that the

filtration defined in this way is exhaustive and
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V.1 Uλ is coherent over V 0DE×A1 for λ ∈ [0, 1],
V.2 U 0 ⊇ Uλ ⊇ Uλ′ ⊇ U 1 for all λ′ > λ,

V.3 ξU 0 ⊆ U 1,

V.4 ∂U 1 ⊆ U 0,

V.5 (∂ξ − λ)aUλ ⊆ U>λ for all λ ∈ [0, 1).

Indeed, note that we do not have to check (∂ξ − 1)aU 1 ⊆ U>1 if we know the

facts preceding it. This is because U>1 = ξU>0, and so we would have to show

(∂ξ − 1)aU 1 = (ξ∂)aU 1 ⊆ ξU>0, which is true if (∂ξ)a−1(∂U 1) ⊆ U>0, but

∂U 1 ⊆ U 0, and so we are done.

Case 1: λ = 0.

Define

U 0 := V 0DE×A1 · F0
0,0 + V 0DE×A1 · Fr

0,r

and

U 1 := V 0DE×A1 · F0
1,0 + V 0DE×A1 · Fr−1

1,r−1.

Exhaustive: let U =
⋃

k∈Q U k . It suffices (as U is closed under ∂ and multiplication

by w1, . . . , wr ) to show that M� ⊗ 1 ⊆ U for all � ∈ Z. By definition, F0
0,0 =

M0 ⊗ 1 ⊆ U 0 ⊆ U. Hence, by multiplying by z1, . . . , zr , we conclude that M1 ⊗
1, . . . ,Mr−1 ⊗ 1 ⊆ U 0 ⊆ U.

Also, inductively, we conclude thatM�⊗1 ⊆ U for all � ≤ 0. Indeed, ifM�+1⊗1 ⊆
U, then M�+1[w] ⊗ ∂ ⊆ U. Also, ∂zi

(M�+1 ⊗ 1) ⊆ U, so we get

(∑
∂zi

M�+1
)
⊗ 1 ⊆ U,

and we use acyclicity of the Koszul-like complex in the ∂zi
’s to conclude that M�⊗1 ∈

U.

Finally, Fr
0,r = Mr ⊗ ∂r ⊆ U. By applying (ξ − g)r , we see that Mr ⊗ 1 ⊆ U,

and then by applying the zi ’s and using acyclicity of the Koszul like complex, we get

Mr+� ⊗ 1 ⊆ U for all � ≥ 0, proving that the filtration is exhaustive.

V.1 To see U 0 is finitely generated over V 0DE×A1 , let m1, . . . , m N be finitely many

gr0
V DE generators of M0 and let η1, . . . , ηM be generators for Mr over gr0

V DE . Then

these elements generate U 0, by the following fact: given m ⊗ ∂k ∈ U 0, we obtain

(gr0
V DE ·m)⊗ ∂k ⊆ U 0. Indeed, we easily get DX ·m⊗ ∂k , and to get zi∂z j

(m)⊗ 1,

we use

zi∂z j
(m)⊗ 1 = zi∂z j

(m ⊗ 1)+ w j∂wi
(m ⊗ 1),

which lies in U 0. The same proof works for U 1.

For the remaining conditions, we use the following lemma

Lemma 7.3 We have containment F
j

χ,� ⊆ U 0 for any triple satisfying either of the two

conditions
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• χ ≥ 0, j ≥ r , � ≤ j .

• 0 ≤ χ ≤ r − 1, 0 ≤ j < r − χ, � ≤ j .

Also, we have F
j

χ,� ⊆ U 1 in either of the following cases:

• χ ≥ 1, j ≥ r − 1, � ≤ j

• 1 ≤ χ ≤ r − 1, 0 ≤ j ≤ r − χ, � ≤ j .

In particular, we have

• Eχ,� ⊆ U 0 for all χ ≥ 0, � ≥ r ,

• Eχ,� ⊆ U 1 for all χ ≥ 1, � ≥ r − 1,

• E1,� ⊆ U 1 for all � ≤ 0.

Proof We make use of the fact that U 0 is closed under zi , ∂wi
and wi for all i .

Starting from Fr
0,r ⊆ U 0, by Formula 35 we get Fr

χ,r ⊆ U 0 for all χ ≥ 0. Then by

Formula 36 we get F
j

χ, j ⊆ U 0 for all j ≥ r . Finally, by Formula 34 we get F
j

χ,� ⊆ U 0

for all χ ≥ 0, j ≥ r , � ≤ j .

Starting from F0
0,0 ⊆ U 0, we get by Formula 35 F0

χ,0 ⊆ U 0 for all 0 ≤ χ ≤ r − 1.

By applying Formula 36 we get F
j

χ, j ⊆ U 0 for all 0 ≤ χ ≤ r − 1 and χ + j < r .

Finally, applying Formula 34 we get F
j

χ,� ⊆ U 0 for all 0 ≤ χ ≤ r − 1, χ + j < r

and � ≤ j .

Similarly, we argue for the containment of the other subsets in U 1.

The last statements follow easily from these containments. For example, let � ≤ 0,

then F
j

1,� ⊆ U 1 for all j ≥ 0. Indeed, if j ≥ r − 1, then this comes from the

fact that Fr−1
1,r−1 is contained as argued above. If 0 ≤ j < r − 1, then in particular,

1 + j = χ + j < r , so this follows from the fact that F0
1,0 is contained as argued

above. ��

V.2 Obvious, from the lemma. Also, Fr−1
1,r−1 = (ξ − g)Fr

0,r .

V.3 Indeed, ξ F0
0,0 ⊆ E1,−1 and ξ Fr

0,r ⊆ E1,r−1, so this follows from the lemma.

V.4 Indeed, ∂ F0
1,0 = F1

0,1 ⊆ E0,1, which is in U 0 by the lemma, and ∂ Fr−1
1,r−1 = Fr

0,r ,

which is in U 0 by definition.

V.5 Note that ϕ0,0◦(∂ξ)a = (θ+r)a ◦ϕ0,0, so since ϕ0,0 has image in M0, (θ+r)a

kills this for a � 0. Similarly, ϕ0,r ◦ (∂ξ)a = (θ − r + r)a ◦ ϕ0,r , and (θ − r + r)a

kills Mr for a >> 0. Thus, we see that (∂ξ)a multiplies F0
0,0 and Fr

0,r into ker (ϕ0,0)

and ker (ϕ0,r ), respectively. Well, by Lemma 7.2, these are

r∑

i=1

∂zi
(E1,0) and

r∑

i=1

∂zi
(E1,r )

respectively, and both of these are contained in U 1 by the lemma and the fact that U 1

is closed under ∂zi
action.

This finishes the proof and shows that U • = V • is the V -filtration along ξ .

Case 2 λ ∈ (0, 1).

Define U 0 = Uλ := V 0DE×A1 · F0
λ,0 and U 1 := V 0DE×A1 · F0

λ+1,0.
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Exhaustive: As F0
λ,0 = Mλ ⊗ 1, the fact that the filtration is exhaustive is shown

in exactly the same way as above (using the acyclicity of the Koszul-like complex).

V.1 By taking finitely many gr0
V DE generators of Mλ and Mλ+1, we see that U •

are V 0DE×A1-coherent.

V.2 Obvious„ using the relation 35 above.

In a similar way to the lemma above, we see that F
j

λ+b,� ⊆ U 0 and F
j

λ+1+b,� ⊆ U 1

for all b ≥ 0, j ≥ 0 and � ≤ j .

V.3, V.4 Note that ξ F0
λ,0 ⊆ Eλ+1,−1, which is contained in U 1 by the previous

observation. Similarly, ∂ Fλ+1,0 ⊆ Eλ,1 which is contained in U 0 by the previous

observation.

V.5 Finally, we need only check (∂ξ − λ)aUλ ⊆ U 1 for some a � 0. Just as

before, (∂ξ − λ)a multiplies F0
λ,0 into ker (ϕλ,0) =

∑
∂zi

(Eλ+1,0). By the above, this

is contained in U 1, as desired.

This completes the proof that this is indeed the V -filtration along ξ .

7.4 Showing the isomorphism

Fix λ ∈ [0, 1) and � ∈ Z≥0. We show that

ϕ : Eλ
λ,� →Mλ+�

is surjective, with kernel equal to
∑

∂zi
(Eλ

λ+1,�)+ E>λ
λ,�.

Surjectivity is easy: we showed above that, either when λ = 0 or when λ ∈ (0, 1),

F�
λ,� =Mλ+� ⊗ ∂� ⊆ V λ. Under ϕλ,�, this hits all of Mλ+�.

Using Lemma 7.2, we know that, before restricting to Eλ
λ,�, the kernel of ϕλ,� (for

� ≥ 0, which we have reduced the problem to) is precisely

∑
∂zi

(Eλ+1,�).

Note that we have Eλ+1,� ⊆ V λ for all � ≥ 0. Indeed, for any fixed � ≥ 0, it suffices

to show F
j

λ+1,� ⊆ V λ for all j ≥ �. This was already noted in the computation of the

V -filtration.

Hence, Eλ
λ+1,� = Eλ+1,�, and so all that remains is to show E>λ

λ,� ⊆ ker (ϕ). To see

this, note that, in either case, we have E>λ
λ,� = E1

λ,�.

Write an arbitrary element P of V 0DE×A1 as P =
∑

∂
β
z ∂

γ
wzρwα(ξ∂) jξ k . We see

easily that

P Eλ+1,� ⊆ Eλ+1+|ρ|+k−|β|,�+|γ |−|α|−k .

For our fixed λ ∈ [0, 1), recall the explicit generators of V 1 given above, they are

all of the form F
j

λ+1,p for some p ≥ 0, j ≥ p. We are interested in E1
λ,�. The only

way to get into this eigenspace from one of the form Eλ+1,p is to involve ∂
β
z for some
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|β| ≥ 1 (as λ < λ+ 1). As we know that elements of this form lie in the kernel, this

completes the proof.

Remark 7.4 In [10, Formula (10.3.31)], the Fourier–Sato transform is defined in the

following way: let q : E→ E∨ be the projection, and consider (q × id) : E× A1 →
E∨×A1 with coordinate t on A1. Then the Fourier–Sato transformation in loc. cit. is

defined by

φt ◦ (q × id)∗ ◦ �∗ ◦ p!,

where � : E→ E× A1 is the graph embedding along g.

We trivially have φt ◦(q× id)∗ = q∗ ◦φt , as q does not see the t coordinate. Hence,

this definition is equivalent to

q∗ ◦ φt ◦ �∗ ◦ p! = q∗ ◦ φg ◦ p!,

where, as g does not define a smooth hypersurface, in order to define φg we first apply

the graph embedding and then take φt , i.e., φg := φt ◦ �∗.
Finally, by Remark 3.8 and the fact that φt�+ p!(M) is monodromic (see Lemma

7.1), we know that q+φt�+ p!(M) = σ ∗φt�+ p!(M). Hence, our definition of

Fourier–Sato transform is the same as that in [10], up to a cohomological shift so

that it sends modules to modules in degree 0.

7.5 Results concerning the Hodge and weight filtrations

We have just finished showing that the DE∨-module H0σ ∗(φgM[w]) is isomorphic

to FL(M). We will now prove the main result concerning the weight filtration and

Hodge filtration. For this, we will make use of the results shown at the end of Sect. 5.

We begin by proving that the operator N =
⊕

χ∈Q θ −χ + r decreases the weight

filtration of any monodromic mixed Hodge module by two. This generalizes the result

in the pure case saying that N = 0.

Theorem 7.5 Let (M, F, W ) be a bifiltered DE -module underlying a monodromic

mixed Hodge module on E. Then the weight filtration W on M is its own relative mon-

odromy filtration with respect to the nilpotent operator N, i.e., N W•M ⊆ W•−2M.

Proof For this, we consider the specialization of M along the zero section of the vector

bundle E . It is easy to see that, as D-modules, Sp(M) ∼=M (using the isomorphism

E ∼= TX E sending ti to zi ).

Recall that by Lemma 2.6 the weight filtration on Sp(M) is the relative monodromy

filtration with respect to the filtration
⊕

χ∈Q gr
χ
V (W•M) and the nilpotent operator N .

Note that WkM ⊆M is aD-submodule, hence it is monodromic. Thus, gr
χ
V (WkM) =

(WkM)χ in the monodromic decomposition.

So we are looking at the relative monodromy filtration for N and

L i Sp(M) :=
⊕

χ∈Q

(WiM)χ .
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Note that grL
i Sp(M) =

⊕
χ∈Q(grW

i M)χ = Sp(grW
i M) is the specialization of

the pure monodromic Hodge module grW
i M, so by Proposition 5.7, we know that the

monodromy filtration is trivial on grL
i Sp(M).

Recall that the relative monodromy filtration induces the monodromy filtration on

each graded piece grL
i Sp(M), and so this implies that its restriction to each graded

piece is trivial. Finally, we conclude that W•Sp(M) = L•Sp(M) using Deligne’s

canonical splitting of the relative monodromy filtration. ��

Using this and knowing that FL(M) is a monodromic mixed Hodge module, we

can compute the weight filtration on FL(M).

To begin, we make an easy observation using the fact that the relative monodromy

filtration is functorial. Specifically, if η : (A, W , N ) → (A′, W ′, N ′) is a morphism

between filtered objects in an abelian category with nilpotent operators N , N ′, and if

the relative monodromy filtrations M•A and M ′
•A′ exist, then

η(M•A) ⊆ M ′
•A′ (37)

Recall the notation from the introduction that if M is a monodromic D-module,

then Mλ+Z =
⊕

�∈Z Mλ+� for any λ ∈ [0, 1).

Lemma 7.6 Let (M, F, W ) be a bifiltered DE -module underlying a monodromic

mixed Hodge module on E. Then

WkFL(M)λ+Z ⊆ FL(Wk+r+
λ�M)λ+Z.

Proof The difficult part is that, in the composition of functors defining FL(−), we must

understand iterated relative monodromy filtrations.

Specifically, we consider φg,λ p!(M)[−r ], with W 0
• φg,λ p!(M)[−r ] := φg,λ p!

(W•+r+
λ�M). Here the 
λ� term is explained in Formulas 11 and 12. Then we take

the relative monodromy filtration of this along N1 := ∂ξ − λ. This gives a filtration

W 1, which is preserved by the operator N2 := θz + r =
∑r

i=1 ∂zi
zi . By definition,

this is the weight filtration on φg,λ p!(M)[−r ], see [20, Sect. 20]. Then, we take the

relative monodromy filtration of W 1 and N2 = θz + r on gr0
V (φg,λM[w]), which we

call W 2.

By definition of the D-action on the graph embedding, we know that N1+N2 = Ñ ,

where Ñ acts on the M part of �∗M[w] by N =
⊕

χ∈Q θ − χ + r . We know that

(M, W ) is its own relative monodromy filtration with respect to the action of N , or

equivalently, that N W•M ⊆ W•−2M.

Hence, by Formula 37, we know Ñ W 1
• ⊆ W 1

•−2, and by applying the formula again,

this implies Ñ W 2
• ⊆ W 2

•−2.

But also Ñ = N2 on grW 1

k gr0
V (φg,λM[w]), because N1 kills this associated graded.

In particular, we see that W 2 is the relative monodromy filtration for (Ñ , W 1). But Ñ

decreases W 1 by 2, and so W 1 is its own relative monodromy filtration with respect

to Ñ . In particular, we get that W 2 = W 1, the relative monodromy along N1 and W 0.

Now, we have the quotient map gr0
V (φg,λM[w]) → H0σ ∗(φg,λM[w]), which

induces a filtration W 1 and N1 induces a nilpotent operator on the quotient. By functori-
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ality of the relative monodromy filtration in this setting, we get that the weight filtration

on the mixed Hodge module H0σ ∗(φg,λM[w]) (which is the filtration induced by this

quotient) is contained in the relative monodromy filtration of H0σ ∗(φg,λM[w]) with

respect to the induced filtration by W 0 and the induced nilpotent operator from N1.

Under the isomorphism ϕ to M, these map to W•+rM and
⊕

χ∈Q θ − χ + r , and so

by the previous theorem, we get the desired containment. ��

We now give a computation of the Hodge filtration on the Fourier transform of a

monodromic mixed Hodge module. The only difficulty is that there are shifts of the

Hodge filtration for certain functors along the way. We refer back to formulas from

Sect. 2.8 for the correct shifts of the Hodge filtration.

We have that p!M[−r ] has underlying DE-module given by M[w]. In any case,

the Hodge filtration is given by Formula 8

Fp(M[w]) = (Fp−rM)[w].

Now, for the closed embedding �+, the filtration is given by Formula 2.1:

Fp�+(M[w]) =
∑

j≥0

Fp− j−1(M[w])⊗ ∂ j =
∑

j≥0

(Fp− j−1M)[w] ⊗ ∂ j .

By Formula 9, there is no shift of the filtration for φg,�=1, and by Formula 10, there

is a shift of +1 for φg,1.

Finally, the Hodge filtration on H0q+ = H0σ ∗ is shifted by [−r ] as dictated by

Theorem 1.2. In summary, an arbitrary element of Fp Eλ
λ,� is of the form

∑

|α|≥−�

mαwα ⊗ ∂ |α|+�,

where

mα ∈
{

Fp−�−|α|M
λ+|α|+� λ = 0

Fp−1−�−|α|M
λ+|α|+�−1 λ ∈ (0, 1)

(38)

Recall the claim:

Theorem 1.4 Let M be the filtered DE -module underlying a monodromic mixed

Hodge module M on E. Then the DE∨ -module underlying the mixed Hodge mod-

ule

H0σ ∗φg(p!(M)[−r ]) ∈ MHM(E∨)

is isomorphic to FL(M). We denote this composition of functors by FL(M).

Moreover, for λ ∈ [0, 1) and � ∈ Z, we have

FpFL(M)r−(λ+�) = Fp−�−
λ�M
λ+�.
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Finally, the weight filtration is given by

WkFL(M)λ+Z = FL(Wk+r+
λ�M)λ+Z.

Here FL(M)λ+Z =
⊕

�∈Z FL(M)λ+� for any λ ∈ [0, 1).

So fix � ≥ 0, and we consider ϕ(Fp Eλ
λ,�). Note that we have containment

ϕ(Fp Eλ
λ,�) ⊆ Fp−�M

λ+� if λ = 0 and ⊆ Fp−1−�M
λ+� if λ ∈ (0, 1). Indeed,

by applying ϕ to an element of the form in Eq. 38, we get

(−1)�
∑

α

∂α
z (mα) ∈ Fp−�M

λ+�.

For the other containment, recall that Mλ+� ⊗ ∂� ⊆ Eλ
λ,� in either case λ = 0 or

λ ∈ (0, 1). Hence, Fp−�−
λ�M
λ+� ⊗ ∂� ⊆ Fp Eλ

λ,�, and by applying ϕ, we get all of

Fp−�−
λ�M
λ+�.

For � < 0, use descending induction on � and Theorem 1.1, which tells us that for

� < 0,

∑
wi FpFL(M)r−(λ+�+1) = FpFL(M)r−(λ+�).

Now, we introduce the inverse Fourier–Laplace transform, which will help us prove

that the containment in Lemma 7.6 is an equality. Note, that if we apply the Fourier

transform twice, we get the actions

zi m = −zi m, ∂zi
m = −∂zi

m,

and so if a : E → E is the antipodal map (x, v) �→ (x,−v), we see that, in terms of

underlying D-modules,

a∗FLE∨FLE (M)
∼=−→M.

We recall the definition of the inverse Fourier transform from the introduction:

recall that FL is defined to be
⊕

λ∈(0,1]H
0σ ∗φg,λ�∗ p![−r ]. Breaking this up into the

case λ = 1 and λ ∈ (0, 1), we define

FLE (M) := H0σ ∗φg,1�+ p!(M(−r))[−r ] ⊕H0σ ∗φg,�=1�+ p!(M(1− r))[−r ]

Using this, we see that a∗FLE∨FLE (M) → M preserves the Hodge filtration.

Indeed, let us check it on monodromic pieces. By definition, for λ = 0, we have

FLE∨FLE (M)r−� = FLE∨FLE (M(−r))r−�,
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so by using our formula for the Hodge filtration, taking Fp of this, we get

FpFLE∨FLE (M(−r))r−� = Fp+r−�FLE (M)�

= Fp+r−�FLE (M)r−(r−�) = Fp+r−�−(r−�)M
r−� = FpM

r−�.

Now, for λ ∈ (0, 1), we have

Fpa∗FLE∨FLE (M)r−(λ+�) = Fp+r−1FLE∨FLE (M)r−(λ+�),

because of the Tate twist in the definition of FL. Hence, by the theorem, this is equal

to

Fp+r−1−�−1FLE (M)λ+� = Fp+r−1−�−1FLE (M)r−(r−(λ+�).

If we want to apply the theorem again, we need to write r − (λ + �) as a number

in (0, 1) plus some integer. Well, this can be written as (1− λ)+ (r − 1− �). Hence,

applying the theorem once more, we get

Fp+r−1−�−1−(r−1−�)−1M
r−(λ+�) = FpM

r−(λ+�).

Moreover, by Lemma 7.6, this map is compatible with the weight filtration (again,

using the Tate twist by (1) on the λ �= 0 part). Finally, in terms of the Q-structure, it is

shown in [10, Theorem 3.7.12(i)] that this morphism is an isomorphism of Q-structure

(see also [1, Prop. 6.13]). Hence, it is an isomorphism of mixed Hodge modules. This

gives the equality in Lemma 7.6 and in the statement of Theorem 1.4.

Finally, we describe how the functor FL behaves when taking duals of mixed Hodge

modules. Using the fact that

D ◦H0σ ∗ = H0σ ! ◦ D,

D ◦ φg,1 = φg,1 ◦ D

D ◦ φg,�=1 = φg,�=1(1) ◦ D

and

D ◦ p![−r ] = p∗[r ] ◦ D,

we have

DE∨ ◦ FLE = DE∨ ◦H0σ ∗φg�+ p![−r ] = H0σ !φg,1 ⊕ φg,�=1(1)�+ p∗[−r ] ◦ DE .

Ignoring Tate twists, the functors φg�+ p![−r ] and φg�+ p∗[−r ] agree. In particu-

lar, the computation of the V -filtration which we gave above can still be used for this

composition of functors. The difficult part is that now we are considering H0σ !. For
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this, we are interested in the z-monodromic pieces corresponding to χ = 0 and 1 as

before. Using Theorem 1.2, we have

H0σ !(φg�+M[w]) =
⊕

λ∈[0,1)

H0σ !(φg,λ�+M[w])

=
⊕

λ∈[0,1)

⊕

�∈Z

ker

»
½Eλ

λ,�/E>λ
λ,�

zi−→
⊕

1≤i≤r

Eλ
λ−1,�/E>λ

λ−1,�

¾
À .

The r − χ th monodromic piece of this is

ker

»
½Eλ

λ,χ−λ/E>λ
λ,χ−λ

zi−→
⊕

1≤i≤r

Eλ
λ−1,χ−λ/E>λ

λ−1,χ−λ

¾
À .

As before, we want to give an isomorphism from this kernel to Mχ . Similarly,

using acyclicity of the Koszul-like complex, we can assume χ − λ ≥ 0 and show we

have an isomorphism for such terms. We will use the same map ϕ : Eλ
λ,χ−λ → Mχ

defined above.

Lemma 7.7 For χ−λ ≥ 0, the map ϕλ,χ−λ restricted to this kernel is an isomorphism.

Proof Both surjectivity and injectivity make heavy use of the computation of the V -

filtration given above.

For surjectivity, when λ = 0, by Lemma 7.3, we have that F�
0,� =M�⊗ ∂� ⊆ E0

0,�

for any � ≥ 0. Also, M�+1⊗ ∂� = F�
1,� ⊆ E1

1,�, so ziM
�⊗ ∂� ⊆M�+1⊗ ∂� ⊆ E1

1,�

implies that this lies in the kernel. Hence, under ϕ, we get all of M�, as desired. A

similar proof works for λ ∈ (0, 1).

For injectivity, we use the fact that χ − λ ≥ 0 to apply Lemma 7.2. To see that our

map ϕ is injective, it suffices to show that if m ∈ Eλ
λ,χ−λ is such that m ∈ ker (ϕ) =∑

im(∂zi
) and zi m ∈ V 1 for all 1 ≤ i ≤ r , then m ∈ V 1.

When λ = 0, using our explicit description of the V -filtration, we know that we

can write

m =
∑

Q�,k,α,β,γ,η(ξ∂)�ξ k∂α
z wβ∂γ

wzηm�,k,α,β,γ,η,

where Q ∈ DX and m�,k,α,β,γ,η ∈M0⊗1 or Mr⊗∂r . Moreover, since zi ·M0⊗1 ⊆
M1 ⊗ 1 ⊆ V 1 and zi ·Mr ⊗ ∂r ⊆ Mr+1 ⊗ ∂r = Fr

1,r ⊆ V 1 (by Lemma 7.3), we

can assume η = 0. Similarly, of course we can assume k = 0. So we really have

m =
∑

Q�,α,β,γ (ξ∂)�∂α
z wβ∂γ

wm�,α,β,γ .

As this is supposed to lie in Eλ,χ−λ

By Lemma 7.2, we can assume |α| > 0 for all α, as m is supposed to lie in the kernel

of ϕ. Also, by taking homogeneous pieces with respect to the Eβ,� decomposition, we

can assume |α| does not depend on α.
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Now, the assumption is that zi m ∈ V 1 for all 1 ≤ i ≤ r . Writing this out, we have

zi m =
(∑

Q�,α,β,γ (ξ∂)�αi∂
α−ei
z wβ∂γ

wm�,α,β,γ

)

+
(∑

Q�,α,β,γ (ξ∂)�∂α
z wβ∂γ

wzi m�,α,β,γ

)
,

and by the explicit description of the V -filtration (specifically, the fact that M1 ⊗
1,Mr+1 ⊗ ∂r ⊆ V 1), we know zi m�,α,β,γ ∈ V 1 already. Hence, the entire second

sum lies in V 1, and so we see that actually the first sum lies in V 1, too. As V 1 is closed

by the ∂zi
-action, we get that

∑
Q�,α,β,γ (ξ∂)�αi∂

α
z wβ∂γ

wm�,α,β,γ ∈ V 1.

Finally, taking the sum over all i , we get |α|m ∈ V 1, and so since |α| > 0, we

conclude that m ∈ V 1, as desired.

The proof for λ ∈ (0, 1) is similar. ��

This lemma shows that theD-module underlyingH0σ !φg,1⊕φg,�=1(1)�+ p∗[−r ]M
is isomorphic to FLM. Now, using the relation p!M[−r ] ∼= p∗(M(−r))[r ], we get

H0σ !φg,1�+ p∗[r ] ⊕H0σ !φg,�=1(1)�+ p∗[r ] = FL,

and hence we have given a proof of Theorem 1.7.
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