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Abstract. Let G be a reductive group scheme over the p-adic integers, and let μ be a

minuscule cocharacter for G. In the Hodge-type case, we construct a functor from nilpotent

(G, μ)-displays over p-nilpotent rings R to formal p-divisible groups over R equipped

with crystalline Tate tensors. When R/pR has a p-basis étale locally, we show that this

defines an equivalence between the two categories. The definition of the functor relies on

the construction of a G-crystal associated with any adjoint nilpotent (G, μ)-display, which

extends the construction of the Dieudonné crystal associated with a nilpotent Zink display.

As an application, we obtain an explicit comparison between the Rapoport-Zink functors of

Hodge type defined by Kim and by Bültel and Pappas.

1. Introduction

Fix a prime p, and let G be a smooth affine group scheme over Zp whose generic

fiber is reductive. This paper contributes to the search for what it means to endow

a p-divisible group with G-structure. When G is a classical group coming from

a local Shimura datum of EL- or PEL-type, to equip a p-divisible group with G-

structure is to decorate it with additional structures coming from the data which cuts

out G inside of some general linear group, such as a polarization or an action by a

semisimple algebra. Moduli spaces of p-divisible groups with additional structure

define Rapoport-Zink formal schemes, whose rigid analytic generic fibers deter-

mine local analogs of Shimura varieties.

Recently, Scholze and Weinstein [28] have developed a general theory of local

Shimura varieties. Unlike in the EL- and PEL-type cases, however, the general

theory takes place entirely in the generic fiber and leaves open the question of

whether there exist formal schemes which act as integral models. One would expect

moduli spaces of p-divisible groups with G-structure to define integral models in

all cases, as they do in the EL- and PEL-type cases. However, due to the lack of a

natural tensor product on the category of p-divisible groups, the traditional methods

for defining G-structure do not simply carry over to this case. In particular, any kind

of Tannakian approach is not straightforward.
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In this paper we restrict our focus to the case where the pair (G, μ) is of

Hodge type, i.e., where there is a closed embedding η : G ↪→ GL(�) such that the

cocharacterη◦μ is conjugate to a standard minuscule cocharacter for GL(�). In this

case, there are two approaches to endowing p-divisible groups with G-structure

which have enjoyed some success in providing functor of points descriptions of

Rapoport-Zink formal schemes. In the first approach, one uses the embedding

G ↪→ GL(�) to define additional structures on tensor powers of the Dieudonné

crystal of the given p-divisible group. In the second, one replaces p-divisible groups

with Zink’s displays, which are linear-algebraic objects and therefore more readily

equipped with G-structure. The main result of this paper is that, at least under

certain restrictions on the base ring (see Theorem A below), these two approaches

are equivalent.

Let us describe the two approaches in more detail. If (G, μ) is of Hodge type,

then G is the element-wise stabilizer in GL(�) of a finite collection s = (s1, . . . , sr )

of elements of the total tensor algebra of � ⊕ �∨, which we denote by �⊗. We

call the tuple G = (G, μ,�, η, s) a local Hodge embedding datum. If X is a p-

divisible group over a p-nilpotent Zp-algebra R, then a crystalline Tate tensor is

a morphism of crystals t : 1 → D(X)⊗ over Spec R which preserves the Hodge

filtrations and which is equivariant for the action of the Frobenius, up to isogeny.

Here 1 denotes the unit object in the tensor category of crystals of finite locally free

OSpec R/Zp
-modules, and D(X) denotes the covariant Dieudonné crystal of X as in

[1]. A p-divisible group with (s, μ)-structure over R is a pair (X, t) consisting of a

p-divisible group X over Spec R whose Hodge filtration is étale locally determined

by μ, and a collection t = (t1, . . . , tr ) of crystalline Tate tensors which are fppf-

locally identified with s (see Definition 5.2). The main theorem of [16] (see also

[14]) states that, when G is reductive and (G, μ) is of Hodge type, a Rapoport-

Zink formal scheme can be defined which is roughly a moduli space of p-divisible

groups with (s, μ)-structure.

On the other hand, the idea of using group-theoretic analogs of Zink’s displays

to define Rapoport-Zink spaces originally appears in [5]. There, a theory of (G, μ)-

displays is developed for pairs (G, μ) such that G is reductive and μ is minuscule,

and the theory is used to give a purely group-theoretic definition of Rapoport-

Zink formal schemes of Hodge type. Subsequently, Lau generalized the theory of

(G, μ)-displays [24], and an equivalent Tannakian framework was developed in the

author’s previous paper [9]. Denote by Disp(W (R)) the category of higher displays

over the Witt frame for R as in [24]. In the Tannakian framework, we say a (G, μ)-

display over W (R) is an exact tensor functor RepZp
G → Disp(W (R)) such that,

for every representation, the structure of the corresponding display is fpqc-locally

governed by the cocharacter μ (see Definitions 3.13 and 3.15). This formulation is

essential to the results of this paper, as it allows for a close connection with Zink’s

original theory of displays [30], and therefore also with p-divisible groups.

When G = GLh and μ = μd,h is the cocharacter t �→ (1(d), t (h−d)), (G, μ)-

displays are nothing but Zink displays of height h and dimension d. When (G, μ)

is of Hodge type, the embedding η : G ↪→ GL(�) induces a functor from (G, μ)-

displays to Zink displays, and in this case we say a (G, μ)-display is nilpotent with
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respect to η if the corresponding Zink display is nilpotent in the sense of [30]. The

following is the main result of this paper, see Theorem 5.17.

Theorem A. Let G be a reductive group scheme over Zp, and let μ be a minuscule

cocharacter for G. For every p-nilpotent Zp-algebra R, there is a functor

BTG,R :

(

(G, μ)-displays over W (R)

which are nilpotent with respect to η

)

→

(

formal p-divisible groups over R

with (s, μ)-structure

)

.

If R/pR has a p-basis étale locally, then BTG,R is an equivalence of categories.

In particular, the equivalence in Theorem A holds when R is a field of charac-

teristic p, or when R/pR is a regular, Noetherian, and F-finite (the latter by [23,

Lem. 2.1]; see Definition 2.19 for the definition of a p-basis). When G = GLh and

μ = μd,h , the equivalence in question holds for arbitrary p-nilpotent rings R by a

theorem of Zink and Lau (see [30] and [20]). Hence the main result of this paper

can be seen as a group-theoretic generalization of the theorem of Zink and Lau (but

note that the theorem of Zink and Lau is an invaluable input in the proof). Let us

also mention that a similar result is proven in the case where G and μ come from

an EL-type local Shimura datum in [9, 5.4].

Given a (G, μ)-display P which is nilpotent with respect to η, it is straightfor-

ward to obtain a formal p-divisible group: one takes the p-divisible group X asso-

ciated with the Zink display induced by the embedding η : G ↪→ GL(�). The pri-

mary difficulty lies in determining an (s, μ)-structure on X . This is resolved by the

main innovation of this paper, which is the association of a G-crystal to the (G, μ)-

display P . We summarize the properties of this G-crystal in the following theorem,

which is an amalgamation of the results in 4.1 and 4.2. Let LFCrys(Spec R/Zp)

denote the category of crystals in locally free OSpec R/Zp
-modules as in [1].

Theorem B. Let R be a p-nilpotent Zp-algebra. Suppose P is a (G, μ)-display

over W (R) which is nilpotent with respect to η. Then there exists an exact tensor

functor

D(P) : RepZp
G → LFCrys(Spec R/Zp), (V, Ã) �→ D(P)Ã

such that the following properties hold:

(i) The association P �→ D(P) is functorial in P and compatible with base

change.

(ii) If Zη(P) is the nilpotent Zink display associated with P via the embedding η,

then there is a natural isomorphism of crystals

D(P)η ∼= D(Zη(P)),

where D(Zη(P)) denotes the crystal associated with Zη(P) as in [30].

Once such a crystal is constructed, it is not difficult to obtain an (s, μ)-structure

on the p-divisible group X associated with P . Indeed, by viewing the tensors si

as morphisms of representations from the trivial representation to �⊗, we can use

functoriality of the G-crystal in representations and its compatibility with the tensor
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product to obtain morphisms ti : 1 → (D(P)η)⊗. By Theorem B, we can replace

(D(P)η)⊗ with D(Zη(P))⊗, which is in turn isomorphic to D(X)⊗ by the theory

of Zink and Lau (Lemma 2.23). With some work (see Proposition 4.11) one can

show that the resulting morphisms of crystals ti : 1 → D(X)⊗ are crystalline Tate

tensors.

The proof of Theorem A then proceeds in two steps. First, the case where

pR = 0 is dealt with using the strategy of [9, Thm. 5.15], see Proposition 5.16.

The case of general R is then reduced to this one using analogs Grothendieck-

Messing theory developed in the settings of G-displays and of p-divisible groups

with (s, μ)-structure, respectively.

The construction of the crystal in Theorem B requires a technical result about

(G, μ)-displays which may be of independent interest. As a starting point we recall

that by [9, Thm. 3.16], if R is a p-nilpotent Zp-algebra, (G, μ)-displays over the

Witt frame W (R) in the Tannakian framework are equivalent to G-displays of typeμ

over W (R) defined using the torsor-theoretic framework of [24]. More generally, if

S is an étale sheaf of frames over Spec R, we can define a category of G-displays of

typeμ over S(R) as in [24], and a category of (G, μ)-displays over S(R) following

the Tannakian formulation of [9]. We say S satisfies descent for modules if finite

projective graded modules over the graded ring S form an étale stack over Spec R.

The following theorem (Theorem 3.16 below), which is essentially a generalization

of [9, Thm. 3.16], is critical to our construction of a G-crystal for a (G, μ)-display.

Theorem C. If S is an étale sheaf of frames on Spec R which satisfies descent for

modules, then there is an equivalence of categories

(

(G, μ)-displays over S(R)
) ∼

−→
(

G-displays of typeμover S(R)
)

.

In particular, in Appendix A, we prove that the sheaf on Spec A associated

with the relative Witt frame W (B/A) for a p-adic PD-thickening B → A satisfies

descent for modules. Other sheaves of frames which satisfy descent for modules

are those associated with p-adic frames as in [24, Def. 4.2.1]. Examples of p-

adic frames include the Zink frame W(R) for an admissible local ring R [24, Ex.

2.1.13] and its relative analog associated with a PD-thickening B → R, as well as

the truncated Witt frames W n(R) over an Fp-algebra R [24, Ex. 2.1.6].

Let us briefly sketch the construction of the G-crystal. Given a (G, μ)-display

P over R, we obtain a corresponding G-display of type μ over W (R) using [9,

Thm. 3.16]. Moreover, if B → R is a PD-thickening, then the work of Lau (see

Proposition 3.29) allows us to lift the G-display of type μ over W (R) to a G-

display of type μ over the relative Witt frame W (B/R). Since the relative Witt

frame satisfies descent for modules (see Proposition A.18), the above theorem

applies, and we obtain a (G, μ)-display over W (B/R), which is, in particular, an

exact tensor functor from RepZp
G to the category of displays over W (B/R). Given

any representation, we can obtain from such an object a B-module, which we denote

D(P)
Ä
B/R . The functor which assigns to (V, Ã) the crystal (B → R) �→ D(P)ÃB/R

is the desired G-crystal.

As a consequence of the Theorem A we obtain an explicit relationship between

the Rapoport-Zink functors of Hodge type defined in [16] and in [5]. To be more
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specific, let k be an algebraic closure of Fp , suppose (G, {μ}, [b]) is an integral local

Shimura datum which is unramified of Hodge type, and let G = (G, μ,�, η, s) be

a local Hodge embedding datum. Given a good choice of μ and b, we can define a

(G, μ)-display P0 which is nilpotent with respect to η, and we denote by (X0, t0)

its associated formal p-divisible group with (s, μ)-structure. Denote by Nilpfsm
W (k)

the category of p-nilpotent W (k)-algebras which are formally smooth and formally

finitely generated over W (k)/pm W (k) for some m. To the datum (G, b) we can

associate two Rapoport-Zink functors on Nilpfsm
W (k). The first, denoted RZ

p-div,fsm
G,b ,

assigns to a p-nilpotent W (k)-algebra the set of isomorphism classes of triples

(X, t, ι), where (X, t) is a p-divisible group with (s, μ)-structure over A, and ι

is a quasi-isogeny over Spf A/p A between X and X0 which respects the tensors

modulo an ideal of definition. The second, denoted RZ
disp
G,μ,b, assigns to such rings

the set of isomorphism classes of pairs (P, Ä) consisting of a (G, μ)-display P

over W (R) and a G-quasi-isogeny Ä between P and P0 which is defined over

Spf A/p A (see 5.4 for details).

By [24, Lem. 2.1], if A is an object in Nilpfsm
W (k), then A/p A has a p-basis étale

locally, so the equivalence of Theorem A holds. As a result, we obtain the following

corollary (see Theorem 5.23).

Corollary D. The functors RZ
p-div,fsm
G,b and RZ

disp,fsm
G,μ,b on Nilpfsm

W (k) are naturally

isomorphic.

It follows from Corollary D that the formal schemes defined by Kim [16] and

Bültel and Pappas [5] which represent these functors are isomorphic. This was

already known by [5, Remark 5.2.7], but the geometric method of proof offered in

loc. cit. differs from the explicit comparison of functors given here.

Let us give a brief outline of the paper. In the first section we review the defi-

nitions of displays and frames as in [24], and the crystalline theory of p-divisible

groups and displays, following especially [1], [30], and [21]. In 3 we recall basic

notions about G-displays of type μ and (G, μ)-displays, and we prove Theorem C.

By results in Appendix A, the theorem applies in particular in the case of relative

Witt frames, which is in turn crucial for 4, where we construct the G-crystal asso-

ciated with a (G, μ)-display over the Witt frame and prove the collection of results

which comprise Theorem B. In 5 we prove Theorem A, and derive consequences

for the study of Rapoport-Zink spaces of Hodge type and for the deformation theory

of p-divisible groups with crystalline Tate tensors.

1.1. Notation

• Throughout the paper, fix a prime p and a finite field k0 of characteristic p and

cardinality q = p�.

• A ring or abelian group will be called p-adic if it is complete and separated

with respect to the p-adic topology.

• If f : A → B is a ring homomorphism and M is an A-module, we write f ∗M

for M ⊗A, f B. If f is understood, we write MB = M ⊗A B as well. If X is a
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p-divisible group over Spec A, we often write X ⊗A B for the base change of

X to B.

• If f : A → B is a ring homomorphism, M is an A-module, and N is a B-

module, we say a map α : M → N is f -linear if α(a · m) = f (a) · α(m) for

a ∈ A, m ∈ M . In this case we write α
 for the linearization f ∗M → N given

by m ⊗ b �→ α(m) · b. We say α is an f -linear bijection if α
 is a B-module

isomorphism.

• If R is a commutative ring, denote by Mod(R) the category of R-modules.

• For a Zp-algebra O, denote by NilpO the category of O-algebras in which p is

nilpotent. We will refer to such an O-algebra as a p-nilpotent O-algebra.

• Let
⊕

Sn be a Z-graded ring. For a ring homomorphism ϕ :
⊕

Sn → R, we

write ϕn for the restriction of ϕ to Sn .

• Let R be a ring. Denote by ÉtR the category of affine étale R-schemes. We

endow this category with a topology by defining a covering of Spec A ∈ ÉtR

to be an étale covering {Ui → Spec A} such that each Ui is affine.

• If G is a sheaf of groups in a topos, denote by TorsG the stack of G-torsors.

• If S is any Z-graded ring, denote by GrMod(S) the category of graded S-

modules, and by PGrMod(S) the full subcategory of finite projective graded

S-modules. By [24, Lemma 3.0.1], this latter category is equivalent to the full

subcategory of finitely generated graded S-modules which are projective over

S.

• If R is a p-adic ring, denote by pdiv(R) the category of p-divisible groups over

R, and denote by fpdiv(R) the full subcategory of formal p-divisible groups

over R.

• If M is a module over a ring R, denote by M∨ its linear dual.

• If X is a p-divisible group over a ring R, denote by X D its Serre dual.

• Let R be a p-adic W (k0)-algebra. If A is an R-algebra, a p-adic PD-thickening

of A over R is a surjective ring homomorphism B → A such that B is a p-adic

W (k0)-algebra and such that the kernel J of B → A is equipped with divided

powers δ which are compatible with the canonical divided powers on pW (k0).

• A PD-morphism between PD-thickenings B → A and B ′ → A′ with divided

powers δ and δ′ on their respective kernels is a pair of homomorphisms ϕ :

B → B ′ and ψ : A → A′ such that the obvious diagram commutes, and such

that δ′n(ϕ(x)) = ϕ(δn(x)) for all x ∈ J and all n.

2. Preliminaries

2.1. Frames, graded modules, and displays

We review the basic definitions and properties of (higher) frames and displays

following [24] and [9, 2]. In particular, we recall the definition of the Witt frame

over a p-nilpotent ring R (Example 2.9) and the relative Witt frame associated

with a p-adic PD-thickening B → A (Example 2.10). Moreover, we make explicit

the connection between the theory of displays presented here and the theory of

windows (see Lemma 2.8).
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Definition 2.1. A frame S = (S, Ã, Ä ) is a triple consisting of a Z-graded ring S

and two ring homomorphisms Ã, Ä : S → S0 satisfying the following properties.

(i) The endomorphism Ä0 of S0 is the identity, and Ä−n : S−n → S0 is a bijection

for all n ≥ 1.

(ii) The endomorphismÃ0 of S0 induces the p-power Frobenius s �→ s p on S0/pS0,

and if t is the unique element in S−1 such that Ä−1(t) = 1, then Ã−1(t) = p.

(iii) We have p ∈ Rad(S0).

We say that S is a frame for R = S0/Ä(S1). The conditions in the definition

imply that Ä acts on S1 as multiplication by t , so we will usually write Ä(S1) = t S1.

Definition 2.2. Let S = (S, Ã, Ä ) be a frame for R. A display over S is a pair

M = (M, F) consisting of a finite projective graded S-module M and a Ã -linear

bijection F : M → Ä ∗M .

Definition 2.3. A standard datum for a display is a pair (L ,�) consisting of a finite

projective graded S0-module L and a Ã -linear automorphism � : L → L .

From a standard datum (L ,�)we define a display (M, F)where M = L ⊗S0 S

and F(x ⊗ s) = Ã(s)�(x). If every M in PGrMod(S) is of the form M = L ⊗S0 S

for a finite projective S0-module L , then every display is isomorphic to one defined

by a standard datum, see [24, 3.4]. In particular, by [24, Lem. 3.1.4], this occurs if

every finite projective R-module lifts to S0.

Let us denote by Disp(S) the category of displays over S. If S → S′ is a frame

homomorphism, then we obtain a base change functor

Disp(S)→ Disp(S′), M �→ M ⊗S S′.

The category Disp(S) has a tensor product given by (M, F)⊗ (M ′, F ′) = (M ⊗S

M ′, F ⊗ F ′), which makes it into an exact rigid tensor category with unit object

S = (S, Ã ).

For any display M over a frame S, there exists a canonical descending filtration

on M := Ä ∗M ⊗S0 R, called the Hodge filtration of M , see [24, 5.2]. Let us recall

the definition. Denote by θn : Mn → Ä ∗M the composition Mn ↪→ M → Ä ∗M ,

and by θ̄n the composition

Mn
θn
−→ Ä ∗M → Ä ∗M ⊗S0 R.

The nth piece of the Hodge filtration is given by im(θ̄n), and is denoted Fil n(M):

Filn(M) := im(θ̄n) ¢ M . (2.1)

Since θ̄n factors through t : Mn → Mn−1, we have Filn(M) ¢ Filn−1(M), so

(Filn(M))n∈Z defines a descending filtration on M . If (L ,�) is a standard datum

for M , with L =
⊕

i L i , then

Filn(M) =
⊕

i≥n

L i ⊗S0 R.
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Remark 2.4. The Hodge filtration is functorial in M , meaning that any morphism

of displays ϕ : M → M ′ induces a morphism of R-modules ϕ̄ : M → M ′ which

sends Filn(M) into Filn(M ′). Moreover, the Hodge filtration is compatible with

tensor products of displays, i.e., we have

Filn(M ⊗ M ′) =
∑

j+k=n

Fil j (M)⊗ Filk(M ′). (2.2)

Let us briefly review the connection between (higher) displays over frames and

windows over 1-frames. Recall the following definition (see [24, Def. 2.2.1]).

Definition 2.5. A 1-frame S = (S0 £ I, Ã0, Ã̇ ) consists of a ring S0, an ideal

I ¢ S0, a ring endomorphism Ã0 of S0, and a Ã0-linear map Ã̇ : I → S0 such that

(i) Ã0 : S0 → S0 is a lift of the Frobenius on S0/pS0,

(ii) Ã0(a) = pÃ̇ (a) for a ∈ I ,

(iii) p ∈ Rad(S0).

We say that S is a 1-frame for R = S0/I .

A frame S is said to extend the 1-frame S if t : S1 → S0 is injective, I = t S1,

and Ã̇ (ta) = Ã1(a) for a ∈ S1.

Definition 2.6. Let S be a 1-frame. A window over S is a quadruple P =

(P,Fil P, F0, F1) consisting of a finitely generated projective S0-module P , an S0-

submodule Fil P ⊆ P , and two Ã0-linear maps F0 : P → P and F1 : Fil P → P

such that

(i) there is a decomposition P = L0 ⊕ L1 with Fil P = L0 ⊕ I L1,

(ii) F1(ax) = Ã̇ (a)F0(x) for a ∈ I and x ∈ P ,

(iii) F0(x) = pF1(x) for x ∈ Fil P ,

(iv) F0(P)+ F1(Fil P) generates P as an S0-module.

Because there is no surjectivity condition on Ã̇ in the definition of a 1-frame, the

definition of windows that appears here differs slightly from others in the literature,

see [20, Rmk. 2.11]. By [20, Lem. 2.6], if P = L0 ⊕ L1 is a finite projective

S0-module and Fil P = I L0 ⊕ L1, then the set of S-window structures on P and

Fil P is mapped bijectively to the set of Ã0-linear isomorphisms

� : L0 ⊕ L1 → P.

The bijection is determined by � = F0

∣

∣

L0
⊕ F1

∣

∣

L1
, and the triple (L0, L1, �) is

called a normal representation for (P,Fil P, F0, F1). We remark for later use that,

in terms of �, the linearization of F0 can be expressed as

F


0 = �
 ◦ (idL0 ⊕ p · idL1). (2.3)

To any window P = (P,Fil P, F0, F1) over S we can associate an S0-module

homomorphism V 
 : P → Ã ∗
0 P which is uniquely determined by the identities

V 
(ξ · F0(x)) = pξ ⊗ x and V 
(ξ · F1(y)) = ξ ⊗ y
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for ξ ∈ S0, x ∈ P, y ∈ Fil P . If (L0, L1, �) is a normal representation for P , then

V 
 = (p · idL0 ⊕ idL1) ◦ (�

)−1. (2.4)

From (2.3) and (2.4) we see that F


0 ◦ V 
 = p · idP and V 
 ◦ F



0 = p · idÃ ∗

0 P .

If S is a frame for R, denote by ν the ring homomorphism S → R which extends

the projection S0 → R by zero on Sn for n �= 0. If M is a finite projective graded

module over S, then M ⊗S,ν R is a finite projective graded R-module with graded

pieces that we denote by L i . Recall the following definition, cf. [9, Def. 2.16].

Definition 2.7. We say M is a 1-display over S if L i = 0 for all i < 0 and i > 1.

In the language of [9], M is a 1-display if the depth of M is nonnegative and

the altitude of M is less than 1. If (L ,�) is a standard datum for M , then M is a

1-display if and only if L i = 0 for all i < 0 and i > 1, see [9, Lem. 2.7].

Lemma 2.8. Suppose S is a frame extending the 1-frame S, and suppose that all

finitely projective R-modules lift to S0. Then the functor

PS : (1-displays over S)→ (Windows over S), (2.5)

defined by assigning to a 1-display M = (M, F) the window (P,Fil P, F0, F1)with

P = Ä ∗M,Fil P = θ1(M1), F0 = F
∣

∣

M0
◦ θ−1

0 : P → P, and F1 = F
∣

∣

M1
◦ θ−1

1 :

Fil P → P is an equivalence of categories.

Proof. The proof follows from a straightforward adaptation of the arguments in [9,

Lem. 2.25]. ��

One can also prove the lemma using normal representations: if (L ,�) is a

standard datum for a 1-display over S, then L = L0 ⊕ L1, so (L0, L1,�) is a

normal representation for the associated window over S. For use later, let us denote

the quasi-inverse functor to PS by

MS : (Windows over S)→ (1-displays over S). (2.6)

We close this section by discussing a few example of frames and 1-frames that

will be of particular importance in what follows. Recall that to give a frame it

suffices to specify a triple (S≥0, Ã, (tn)n≥0) consisting of a Z≥0-graded ring S≥0, a

ring homomorphism Ã : S≥0 → S0, and a maps tn : Sn+1 → Sn , see [9, 2.1] and

[24, Rmk. 2.0.2].

If R is a Zp-algebra, let W (R) denote the ring of infinite length Witt vectors

over R. The ring W (R) comes equipped with a ring endomorphism fR , called the

Frobenius, and an additive self-map vR , called the Verschiebung. When the ring R

is clear from context we will write simply f and v for these maps. Denote by I (R)

the kernel of the canonical map w0 : W (R)→ R, so I (R) = v(W (R)).

Example 2.9. (The Witt frame) Let R be a p-adic ring. Define a frame W (R) from

the Witt ring over R as follows. Define S0 = W (R), and for n ≥ 1, let Sn = I (R),

viewed as an S0-module. We define a Z≥0-graded ring structure on S≥0 = S0 ⊕
⊕

n>0 Sn by endowing it with the multiplication Sn × Sm → Sn+m determined by
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(v(a), v(b)) �→ v(ab) for n,m ≥ 1. The map t0 : S1 → S0 is given by inclusion

I (R) ↪→ W (R), and tn is multiplication by p for n ≥ 1. We let Ã0 = fR , and for

n ≥ 1 we define Ãn(v(s)) = s for all v(s) ∈ Sn = I (R). We will write S = W (R)⊕

for the resulting Z-graded ring. The corresponding frame W (R) = (W (R)⊕, Ã, Ä )

is the Witt frame for R.

The Witt frame extends the Witt 1-frame W(R) = (W (R) £ I (R), f, v−1).

Windows over the Witt 1-frame are equivalent to 3n-displays in the sense of [30],

which we will hereafter refer to as Zink displays. Then by Lemma 2.8, 1-displays

over W (R) are equivalent to Zink displays.

Let B → A be a p-adic PD-thickening with kernel J . Using the divided powers

on J , Zink defines an isomorphism of W (B)-modules

log : W (J )
∼
−→

∏

i∈N

J,

see [30, 1.4] for details. Denote the image of ξ ∈ W (J ) by log(ξ) = [ξ0, ξ1, . . . ].

Example 2.10. (The relative Witt frame) Let B → A be a p-adic PD-thickening.

Define a frame W (B/A) associated with B/A as follows. For S≥0 take the Z≥0-

graded ring with S0 = W (B), Sn = I (B)⊕ J with J viewed as a W (B)-module by

restriction of scalars, and multiplication Sn × Sm → Sn+m for n,m ≥ 1 defined by

(v(a), x) · (v(b), y) = (v(ab), xy) for a, b ∈ W (B), x, y ∈ J . The map t0 : S1 =

I (B)⊕ J → W (B) = S0 is given by (v(a), x) �→ v(a)+ log−1[x, 0, 0, . . . ], and

tn for n ≥ 1 is given by multiplication by p on the first factor and the identity on the

second factor. Finally, let Ã0 = fB and for n ≥ 1 define Ãn(v(a), x) = a. Denote

the resulting Z-graded ring by W (B/A)⊕. The corresponding frame W (B/A) =

(W (B/A)⊕, Ã, Ä ) is the relative Witt frame for B/A.

Let I (B/A) denote the kernel of W (B) → A, and denote by ṽ−1 the unique

extension of v−1 to I (B/A) whose restriction to W (J ) = ker(W (B)→ W (A)) is

given by [ξ0, ξ1, . . . ] �→ [ξ1, ξ2, . . . ] in logarithmic coordinates. Then W(B/A) =

(W (B) £ I (B/A), f, ṽ−1) is a 1-frame (see [22, 2.2]), and W (B/A) extends

W(B/A).

2.2. Recollections on crystals

We review the definitions of crystals and the crystalline site as in [1], and we sketch

proofs of some standard lemmas which will be useful in 4.2 when we are checking

Frobenius equivariance of certain morphisms of crystals.

For a W (k0)-scheme X in which p is locally nilpotent, denote by CRIS(X/W (k0))

the big fppf crystalline site as in [1]. This is the site whose underlying category is the

category of triples (U, T, δ) where U ↪→ T is a closed immersion of an X -scheme

U into a p-nilpotent W (k0)-scheme T such that the ideal I of OT defining the

embedding is equipped with divided powers compatible with the natural divided

powers on pW (k0). If X = Spec R is affine, we will write CRIS(R/W (k0)) to

mean CRIS(Spec R/W (k0)). Recall that to give a sheaf on CRIS(X/W (k0)) is

equivalent to giving, for every triple (U, T, δ) in CRIS(X/W (k0)), an fppf sheaf
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FT on T , and for every morphism (u, v) : (U ′, T,′ , δ′)→ (U, T, δ), a morphism

of sheaves v−1FT → FT ′ which satisfies a cocycle condition (see [1, 1.1.3]). The

crystalline structure sheaf for X over W (k0), denoted by OX/W (k0), is defined by the

rule �((U, T, δ),OX/W (k0)) = �(T,OT ). If F is a sheaf of OX/W (k0)-modules,

then for a morphism (u, v) as above the transition morphism v−1FT → FT ′

induces a morphism v∗FT → FT ′ .

Definition 2.11. A crystal of finite locally free (resp. locally free, resp. quasi-

coherent) OX/W (k0)-modules is an OX/W (k0)-module F such that for every

(U, T, δ) in CRIS(X/W (k0)) the OT -module FT is finite locally free (resp.

locally free, resp. quasi-coherent) and for every morphism (u, v) : (U ′, T ′, δ′) →

(U, T, δ), the transition morphism v∗FT → FT ′ is an isomorphism.

We will denote by LFCrys(X/W (k0)) the category of crystals of locally

free OX/W (k0)-modules. The full subcategory of crystals of finite locally free

OX/W (k0)-,modules is a rigid exact tensor category which is a full tensor sub-

category of the category of crystals in quasi-coherent OX/W (k0)-modules. The unit

object is the crystal 1 which assigns to any (U, T, δ) the finite locally free OT -

module OT . If X = Spec R is affine, we will write LFCrys(R/W (k0)) instead of

LFCrys(Spec R/W (k0)).

Remark 2.12. We will often write just B → A to denote the PD-thickening

(Spec A,Spec B, δ). Because fppf sheaves on a scheme T are uniquely deter-

mined by their evaluations on affine T -schemes, to give a crystal in quasi-coherent

OX/W (k0)-modules, it is enough to give, for every PD-thickening B → A of p-

nilpotent W (k0)-algebras over X , a B-module MB/A, and for every morphism

(B ′ → A′)→ (B → A) of PD-thickenings, an isomorphism

MB/A ⊗B B ′ ∼
−→ MB′/A′ . (2.7)

These isomorphisms should satisfy the obvious cocycle condition for compositions.

The associated crystal is (finite) locally free if each B-module MB/A is (finite)

projective.

If (U, T, δ) is an object in CRIS(X/W (k0)), then we can view (U, T, δ) as an

object in CRIS(Y/W (k0)), denoted ψ!(U, T, δ), by viewing U as a Y -scheme via

U → X → Y . If F is a sheaf on CRIS(Y/W (k0)), define ψ∗F by

ψ∗
F (U, T, δ) := F (ψ!(U, T, δ)). (2.8)

This determines a pullback functor Sh(CRIS(Y/W (k0)))→ Sh(CRIS(X/W (k0)),

which preserves the respective categories of crystals.

Definition 2.13. The category of isocrystals over X , denoted Isoc(X), is the cat-

egory whose objects are crystals D in locally free OX/W (k0)-modules, and whose

morphisms are global sections of the Zariski sheaf Hom(D,D′)[1/p]. We will write

D[1/p] for the object D viewed as an object in Isoc(X). When X = Spec R is affine,

we write Isoc(Spec R) = Isoc(R).
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Remark 2.14. If X is quasi-compact, then Hom(D,D′)[1/p] can be identified with

Hom(D,D′)[1/p], i.e. a morphism D[1/p] → D′[1/p] in Isoc(X) is an equivalence

class of diagrams

D
pn

←− D
s
−→ D′,

where s is a morphism of crystals of OX/W (k0)-modules.

If B → A is a p-adic PD-thickening, then B → A can be written as the

projective limit of divided power extensions Bn = B/pn B → A/pn A = An . If D

is a crystal in OSpec R/W (k0)-modules and B → A is a p-adic PD-thickening over

R, we write DB/A := lim
←−

DBn/An . This defines an evaluation functor

(−)B/A : LFCrys(R/W (k0))→ Mod(B), D �→ DB/A. (2.9)

The functor (−)B/A extends naturally to a functor

(−)B/A[1/p] : Isoc(R)→ Mod(B[1/p]), D[1/p] �→ (DB/A)[1/p] (2.10)

which on morphisms is given by the composition

Hom(D1,D2)→ HomB((D1)B/A, (D2)B/A)[1/p] → HomB[1/p]((D1)B/A[1/p], (D2)B/A[1/p]).

Remark 2.15. If D1 is a crystal of finite locally free OSpec R/W (k0)-modules, then

(D1)B/A is a finite projective B-module, and the last arrow is an isomorphism.

Remark 2.16. If B → A is a PD-thickening over R, then W (B) is p-adic by [30,

Prop. 3], and W (B) → A is a p-adic PD-thickening, see e.g. [22, 1 G]. When

pR = 0 and R is perfect, the evaluation functors (−)W (R)/R and (−)W (R)/R[1/p]

are equivalences (see e.g., [13, Prop. 4.5]).

The following lemmas are no doubt well-known to experts, but we could not

find a reference, so we sketch proofs for the sake of completeness. Suppose R is

an Fp-algebra, and choose a polynomial algebra W (k0)[xα]α∈A surjecting onto

R. Let γ denote the canonical divided powers on pW (k0), and denote by D the

PD-envelope of W (k0)[xα] with respect to K = ker(W (k0)[xα] → R) relative

to (W (k0), pW (k0), γ ). Then the kernel J̄ of D → R is equipped with divided

powers compatible with those on pW (k0), and Dn := D/pn D → R is a PD-

thickening over R for every n. If we denote by D∧ the p-adic completion of D,

then D∧ → R defines a p-adic PD-thickening, and we can define functors (−)D∧/R

and (−)D∧/R[1/p] as in (2.9) and (2.10).

Lemma 2.17. The functor (−)D∧/R is faithful. Moreover, if D1 is a crystal of finite

locally free OSpec R/W (k0)-modules, then the map

Hom(D1,D2)[1/p] → HomD∧[1/p]((D1)D∧/R[1/p], (D2)D∧/R[1/p])

induced by (−)D∧/R[1/p] is injective.



G-displays of Hodge type and formal p-divisible groups 57

Proof. The first statement follows from the fact that for any PD-thickening B → A

we can find a lift W (k0)[xα] → B of R → A, so by the universal properties of D

and D∧ we obtain a PD-morphism (D∧ → R)→ (B → A). The second statement

follows from the first using Remark 2.15 and exactness of localization. ��

As R varies in NilpW (k0)
we obtain fibered categories LFCrys and Isoc whose

fibers over R in NilpW (k0)
are the categories LFCrys(R) and Isoc(R), respectively.

Lemma 2.18. The fibered categories LFCrys and Isoc form stacks for the étale

topology on NilpW (k0)
.

Proof. It is enough to show the result for LFCrys, where the key point is that if

B → A is a PD-thickening over R, and R → R′ is étale and faithfully flat, then

the homomorphism A → A′ := A ⊗R R′ is also étale and faithfully flat, so there

exists a unique étale faithfully flat lift B → B ′ with B ′ → A′ a PD-thickening

over R′. The result follows from étale descent for modules over rings along with

the crystal property (2.7). ��

We will eventually want to consider p-nilpotent W (k0)-algebras which have a

p-basis étale locally. For the convenience of the reader, we recall the definition of

a p-basis.

Definition 2.19. Let R be an Fp-algebra. A p-basis for R is a subset {xα} of R such

that the set of monomials x J for J running over the multi-indices J = (iα), 0 ≤

iα < p, provides a basis for R viewed as an R-module over itself via the Frobenius.

For example, any field of characteristic p or any regular local ring which is

essentially of finite type over a field of characteristic p has a p-basis (see [3, Ex.

1.1.2]). We say that an Fp-algebra R has a p-basis étale locally if there is some

faithfully flat étale ring homomorphism R → R′ where R′ has a p-basis. One

reason for the usefulness of the existences of a p-basis is the following lemma.

Recall that the perfect closure of an Fp-algebra is the colimit of infinitely many

copies of R along the Frobenius morphism x �→ x p.

Lemma 2.20. Let R be an k0-algebra which admits a p-basis, and let Rperf be the

perfect closure of R. Then R → Rperf is faithfully flat, and the base change functor

LFCrys(R/W (k0))→ LFCrys(Rperf/W (k0)) (see (2.8)) is faithful.

Proof. If R has a p-basis then the Frobenius φ : R → R is faithfully flat, since R

is free viewed as a module over itself via φ. Thus Rperf is faithfully flat, since

it is a colimit of faithfully flat R-algebras. The second part follows from [23,

Lem. 7.5]; we give the argument for completeness. If (xi )i∈I is a p-basis for R,

then Rperf = R[(x
1/p∞

i )i∈I ], and for a PD-thickening B → A over R, we have

A ⊗R Rperf = A[(a
1/p∞

i )i∈I ], where ai is the image of xi in A. If bi ∈ B is a lift of

ai , then the divided powers extend to B[(b
1/p∞

i )i∈I ] → A[(a
1/p∞

i )i∈I ] by flatness.

Thus the result follows from faithfully flat descent for modules over rings along

with the crystal property (2.7). ��
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The following lemma will be useful in the proof of Theorem A.

Lemma 2.21. Suppose pR = 0 and that R has a p-basis étale locally. Let D and

D′ be crystals in locally free OSpec R/W (k0)-modules, and let

t1, t2 : D → D′

be two morphisms of crystals. Then t1 = t2 if and only if their evaluations on

W (R)→ R agree.

Proof. One direction holds by definition, so we only need to prove that t1 = t2 if

their evaluations on W (R) → R agree. The property of agreeing on W (R) → R

is stable under base change so, by Lemma 2.18, it is enough to assume that R has

a p-basis. In turn we can use Lemma 2.20 to reduce to the case where R is perfect.

There the result follows because evaluation on W (R) → R is faithful for perfect

rings, see Remark 2.16. ��

Suppose R is a p-nilpotent W (k0)-algebra, and let R0 = R/pR. Then

the closed embedding i : Spec R0 ↪→ Spec R induces a morphism of topoi

iCRIS = (iCRIS∗, i
∗
CRIS) between sheaves on CRIS(R0/W (k0)) and sheaves on

CRIS(R/W (k0)). By [2, IV, Thm. 1.4.1], the functors iCRIS∗ and i∗CRIS are quasi-

inverse to one another, and induce an equivalence of categories

LFCrys(R0/W (k0))
∼
−→ LFCrys(R/W (k0)). (2.11)

This equivalence extends to an equivalence Isoc(R0)
∼
−→ Isoc(R).

Let R0 be an Fp-algebra, and let φ0 denote the p-power Frobenius r �→ r p of

R0. If B → A is a PD-thickening over R0, we write φ!(B/A) for the PD-thickening

B → A where A is viewed as an R0-algebra via restriction of scalars along φ0.

For any crystal D in OSpec R0/W (k0)-modules, we define the value of the Frobenius

pullback φ∗
0D on a p-adic PD-thickening B → A over R0 by

(φ∗
0D)B/A := Dφ0 !(B/A). (2.12)

If Ã : B → B is a lift of the Frobenius of A which preserves the divided powers,

then Ã induces a PD-morphism (B → A) → φ0!(B → A), so by the crystal

property we obtain

(φ∗
0D)B/A

∼
−→ Ã ∗(DB/A). (2.13)

More generally, if R is a p-nilpotent W (k0)-algebra and D is a crystal in locally

free OSpec R/W (k0)-modules, then we can use the equivalence (2.11) to define the

Frobenius pullback φ∗D of D. Explicitly,

φ∗D := iCRIS∗(φ
∗
0 i∗CRISD).
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2.3. The crystals associated with p-divisible groups and displays

We recall the crystals associated with p-divisible groups and to nilpotent Zink

displays, and we discuss the connection between the two. Our main reference for

the crystals associated with p-divisible groups is [1]. For more information on the

crystals associated with nilpotent Zink displays, we refer the reader to [30, 2.2] and

[24, 2.4].

If X is a p-divisible group over a p-nilpotent W (k0)-algebra R, denote by D(X)

the covariant Dieudonné crystal of X as in [1]. In fact, the crystal associated with

X as defined in loc. cit. is contravariant, so to obtain a covariant crystal we define

D(X) to be the contravariant Dieudonné crystal associated with X D . Equivalently,

by the crystalline duality theorem [1, 5.3], D(X) is the dual of the contravariant

Dieudonné crystal associated with X .

The Dieudonné crystal D(X) is a crystal of finite locally free OSpec R/W (k0)-

modules, and the sections of D(X) over the trivial PD-thickening idR : R → R are

equipped with a filtration by finite projective R-modules

Fil0(D(X)) = D(X)R/R £ Fil1(D(X)) = Lie(X D)∨ £ Fil2(D(X)) = 0, (2.14)

called the Hodge filtration of X , which makes the following sequence exact

0 → Fil1(D(X))→ D(X)R/R → Lie(X)→ 0. (2.15)

Definition 2.22. A Dieudonné crystal over R is a triple (D,F,V), where D is a

crystal of finite locally free OSpec R/W (k0)-modules, and

F : φ∗D → D and V : D → φ∗D

are morphisms of crystals such that F ◦ V = p · idD and V ◦ F = p · idφ∗D.

If X is a p-divisible group over an Fp-algebra R0, denote by X (p) the p-divisible

group X ⊗R0,φ0 R0 obtained by base change along φ0. We obtain a Dieudonné

crystal structure on D(X) by taking F and V to be induced from the Verschiebung

and Frobenius

VX : X (p) → X, FX : X → X (p),

respectively. Let us emphasize that since we are using the covariant Dieudonné

crystal, X �→ D(X) sends the Frobenius of X to the Verschiebung of D(X) and the

Verschiebung of X to the Frobenius of D(X). More generally, if R is a p-nilpotent

W (k0)-algebra, then we obtain F and V on D(X) by taking the unique maps lifting

the Frobenius and Verschiebung for i∗CRISD(X) along the equivalence (2.11).

The unit object 1 in the rigid tensor category of finite locally free crystals in

OSpec R/W (k0)-modules is given by the crystal D(μp∞) associated with the multi-

plicative p-divisible groupμp∞ over R (here we use D(μp∞) because we normalize

Dieudonné theory covariantly; in this way we have the same unit object as in [14]

and [16]). It follows that 1 is endowed with the structure of a Dieudonné crystal.

Explicitly, we have a canonical isomorphism φ∗
1 ∼= 1, and with respect to this
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isomorphism we take F = id1 and V = p · id1. We will also endow the sections

of 1 over idR : R → R with the filtration

Fil0(1) = R £ Fil1(1) = 0. (2.16)

We will refer to this as the Hodge filtration for 1.

Let R be a p-nilpotent Zp-algebra, and denote by Zink(R) the category of Zink

displays over R, which is equivalent to the category of windows over W(R) and

to the category of 1-displays over W (R) by Lemma 2.8. Denote by nZink(R) the

full subcategory of nilpotent Zink displays (see [30, Def. 11]). If a Zink display P

over R is nilpotent, then we can associate to P a formal p-divisible group BTR(P).

By the main theorems of [30] and [19], BTR defines an equivalence of categories

between nilpotent Zink displays and formal p-divisible groups over R. When the

ring R is clear from context, we will sometimes omit the subscript from BTR .

An explicit quasi-inverse functor �R for BTR is defined in [21, Prop. 2.1].

Let us briefly review its definition. As a first step one defines a functor from p-

divisible groups over R to the category of filtered F-V -modules over R. Here a

filtered F-V -module over R is a quadruple (P,Fil P, F
, V 
), where P is a finite

projective W (R)-module with a filtration I (R)P ⊆ Fil P ⊆ P such that P/Fil P

is projective over R, and where F
 : f ∗ P → P and V 
 : P → f ∗ P are W (R)-

module homomorphisms such that F
 ◦ V 
 = p · idP and V 
 ◦ F
 = p · id f ∗ P .

Let R0 = R/pR, so the kernel of W (R) → R0 is naturally equipped with

divided powers, making W (R) → R0 into a p-adic PD-thickening over R0 (see

Remark 2.16). If X is a p-divisible group over R, and X0 = X ⊗R R0, then

since the Frobenius for W (R) is compatible with the PD-structure on the kernel of

W (R)→ R0 (see [22, 1 G]), by (2.13) we have

(φ∗
0D(X0))W (R)/R0

∼= f ∗(D(X0)W (R)/R0
).

Hence if we take P = D(X0)W (R)/R0
, the evaluation of F and V for D(X0) on

W (R)→ R0 induce homomorphisms F
 and V 
 as in the above definition. More-

over, the natural identification D(X)W (R)/R
∼= D(X0)W (R)/R0

provides us with a

map P → Lie(X) via the composition

P
∼
−→ D(X)W (R)/R � D(X)R/R � Lie(X).

It follows that we can define a filtered F-V -module associated with X by

(P,Fil P, F
, V 
), with Fil P = ker(P → Lie(X)). As in [21] we write �R

for the functor which assigns a filtered F-V -module to a p-divisible group.

We also have a faithful functor ϒR from Zink displays over R to filtered F-V -

modules over R, defined by assigning to the Zink display P = (P,Fil P, F0, F1) the

filtered F-V -module (P,Fil P, F


0 , V 
), where F



0 : f ∗ P → P is the linearization

of F0 and V 
 is the homomorphism P → f ∗ P associated with P by [30, Lem. 10]

(see 2.1). By [21, Prop. 2.1], there is a unique functor

�R : pdiv(R)→ Zink(R) (2.17)

which is compatible with base change and for which there is a natural isomorphism

of functors �R
∼= ϒR ◦�R . The restriction of �R to formal p-divisible groups is
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an equivalence by [21, Thm. 5.1], and�R provides a quasi-inverse to BTR by [21,

Lem. 8.1].

If P is a Zink display over an Fp-algebra R0, define P(p) = (P(p),Fil P(p),

F
(p)
0 , F

(p)
1 ) to be the base change of P along the p-power Frobeniusφ0 : R0 → R0.

By definition of base change for displays, we have P(p) = f ∗ P . By [30, Ex. 23],

F


0 and V 
 induce functorial morphisms of Zink displays

VerP : P(p) → P and FrP : P → P(p), (2.18)

respectively. If X is a p-divisible group over R0, then one sees from the definition

of �R0 and the faithfulness of ϒR0 that

�R0(VX ) = Ver�R0
(X) and �R0(FX ) = Fr�R0

(X). (2.19)

Let us now recall the definition of the crystal associated with a nilpotent Zink

display. Let B → A be a p-adic PD-thickening over R. Then the natural morphism

of 1-frames W(B/A) → W(A) induces an equivalence of categories between

nilpotent windows over W(B/A) and nilpotent Zink displays over A by [30, Thm.

44] (see also [20, Prop. 10.4], and for the definition of nilpotence in this generality

see [20, 10.3]). It follows that if P is a nilpotent Zink display over R, and P A is

the base change of P to W(A), then for any p-adic PD-thickening B → A over

R there is a unique (up to unique isomorphism which lifts the identity) lift of P A

to W(B/A). Denote this lift by P̃ = (P̃,Fil P̃, F̃0, F̃1). The evaluation of the

Dieudonné crystal D(P) associated with P on B → A is

D(P)B/A := P̃/I (B)P̃ .

In particular, if P = (P,Fil P, F0, F1), then D(P)R/R = P/I (R)P . We refer to

the filtration

Fil0(D(P)) = P/I (R)P £ Fil1(D(P)) = Fil P/I (R)P £ Fil2(D(P)) = 0

as the Hodge filtration of D(P) (or of P), and we observe that the following

sequence is exact

0 → Fil1(D(P))→ D(P)R/R → P/Fil P → 0.

We will sometimes denote P/Fil P by Lie(P). If P = �R(X) for a formal p-

divisible group X over R, then by definition of �R we have Lie(P) = P/Fil P ∼=
Lie(X). If P is the Zink display associated with a higher display M by Lemma 2.8,

then

Fili (M) = Fili (D(P)), (2.20)

for 0 ≤ i ≤ 2, where Fili (M) is the Hodge filtration of M (see (2.1)).

The assignment P �→ D(P) is functorial in P , so if P is a Zink display over

an Fp-algebra R0, then the maps (2.18) induce morphisms of crystals

F : D(P(p))→ D(P) and V : D(P)→ D(P(p)). (2.21)
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Moreover, as a consequence of the definition of D(P) we obtain a canonical iso-

morphism

φ∗
0D(P) ∼= D(P(p)). (2.22)

Hence D(P) is canonically endowed with the structure of a Dieudonné crystal. As

in the case of p-divisible groups, we can use (2.11) to lift this structure in the case

of p-nilpotent Zp-algebras R.

Lemma 2.23. The functors P �→ D(P) and P �→ D(BTR(P)) from nilpotent

Zink displays to crystals in finite locally free OSpec R/Zp
-modules are naturally

isomorphic. Moreover, the isomorphism is compatible with the Frobenius and Ver-

schiebung maps, and it preserves the Hodge filtration.

Proof. The first statement proven in [30, Thm. 94] for the restriction of these

crystals to the nilpotent crystalline site, and in [30, Cor. 97] for the restriction to

PD-thickenings B → A which have nilpotent kernel. In general, it follows from

the results of [21]. Indeed, it is enough to show that the functors X �→ D(X) and

X �→ D(�R(X)) from infinitesimal p-divisible groups to LFCrys(Spec R/Zp)

are naturally isomorphic. For any given PD-thickening B → A over R, there is an

isomorphism of B-modules

D(X)B/A
∼= D(�R(X))B/A (2.23)

by [21, Cor. 2.7]. Explicitly, by the results of [21], if P̃ is the unique lift

of �R(X) to W(B/A), then we can identify P̃ = D(X)W (B)/A, so (2.23) is

obtained from the crystal property applied to the morphism of PD-thickenings

(W (B) → A) → (B → A). That (2.23) is compatible with the transition isomor-

phisms follows from the cocycle condition for D(X) and uniqueness of liftings along

W(B/A) → W(A). Functoriality in X follows from functoriality of X �→ D(X),

and if�R(X) = (P,Fil P, F0, F1), then Fil P = ker(D(X)W (R)/R → Lie(X)), so

it follows from (2.15) that (2.23) preserves the Hodge filtrations.

Finally to prove compatibility with the Frobenius and Verschiebung one reduces

to the case where R is an Fp-algebra, in which case we have FD(X) = D(VX ) and

VD(X) = D(FX ). Then the result follows from functoriality of the isomorphism

D(X) ∼= D(�R(X)) along with (2.19) and compatibility of �R with base change.

��

3. G-displays

Let G = Spec OG be a flat affine group scheme of finite type over Zp, and let μ :

Gm,W (k0) → GW (k0) be a cocharacter of GW (k0). In section 3.1 we define the stack

of G-displays of type μ over an étale sheaf of frames, following [24], and in 3.2 we

develop Tannakian analogs of these objects. If R is in NilpZp
, and S is an étale sheaf

of frames on Spec R which satisfies descent for displays (see Definition 3.8), we

prove (Theorem 3.16) that our Tannakian framework is equivalent to Lau’s torsor-

theoretic framework. This is closely analogous to [9, Thm. 3.16], and throughout
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we provide references to [9] in lieu of proofs whenever the arguments mimic those

in loc. cit.

In 3.3 we define the Hodge filtration for Tannakian (G, μ)-displays, compare

it to the Hodge filtration for G-displays of type μ, and explain (following [24])

how lifts of the Hodge filtration relate to lifts of a Tannakian (G, μ)-display. In 3.4,

under the additional assumptions that G is reductive and μ is minuscule, we recall

Lau’s unique lifting lemma (Proposition 3.29) for adjoint nilpotent (G, μ)-displays.

The unique lifting lemma is a crucial component of the construction of the crystal

associated with an adjoint nilpotent (G, μ)-display in 4.1.

3.1. G-displays of type μ

Recall [24, 5] a frame S is a frame over W (k0) if S is a graded W (k0)-algebra and

Ã : S → S0 extends the Frobenius of W (k0). In particular, if R is in NilpW (k0)

and B → A is a PD-thickening over R, then the frames W (R) and W (B/A) are

W (k0)-frames. See [24, Ex. 5.0.2] for details.

If X = Spec A is an affine W (k0)-scheme, then an action of Gm on X is

equivalent to a Z-grading on A (see [24, 5.1] and [9, 3.1] for details). If Gm acts

on X , and S is a Z-graded W (k0)-algebra, denote by X (S)0 ⊆ X (S) the set of

Gm-equivariant sections Spec S → X over W (k0). In other words, X (S)0 is the

set Hom0
W (k0)

(A, S) of homomorphisms A → S of graded W (k0)-algebras.

Suppose S is an étale sheaf of frames on Spec R. If R → R′ is étale, write

S(R′) = (S(R′), Ã (R′), Ä (R′)),

so S(R′) is a Z-graded ring, andÃ(R′) and Ä(R′) are ring homomorphisms S(R′)→

S(R′)0 as in Definition 2.1. To X and S we associate two functors on étale R-

algebras:

X (S)0 : R′ �→ X (S(R′))0, and X (S0) : R′ �→ X (S(R′)0).

Lemma 3.1. Let S be an étale sheaf of frames on Spec R, and let X be an affine

scheme of finite type over W (k0). Then the functors X (S)0 and X (S0) are étale

sheaves on Spec R.

Proof. The proof is formally the same as that of [24, Lem.5.3.1]. ��

Let us recall the definition of the display group associated with G and μ with

values in a Z-graded ring S. For details we refer the reader to [9, 3.1] and [24, 5.1].

The cocharacter μ defines a right action of Gm,W (k0) on GW (k0) by

g · λ := μ(λ)−1gμ(λ)

for any W (k0)-algebra R, g ∈ GW (k0)(R) and λ ∈ Gm,W (k0)(R). If S is a Z-graded

ring, define

G(S)μ := G(S)0,
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i.e., G(S)μ is the subset of GW (k0)(S) = HomW (k0)(OG, S) consisting of W (k0)-

algebra homomorphisms which preserve the respective gradings. Similarly, if S is

an étale sheaf of frames on Spec R, define

G(S)μ := G(S)0,

so G(S)μ is an étale sheaf of groups on Spec R.

Suppose S = (S, Ã, Ä ) is a W (k0)-frame. Then the Zp-algebra homomorphisms

Ã, Ä : S → S0 induce group homomorphisms

Ã, Ä : G(S)μ → G(S0)

as follows: if g ∈ G(S)μ, then Ã(g) (resp. Ä(g)) is defined by post-composing

g ∈ HomW (k0)(OG , S) with Ã : S → S0 (resp. Ä : S → S0). Using Ã and Ä , we

define an action of G(S)μ on G(S0):

G(S0)× G(S)μ → G(S0), (x, g) �→ Ä(g)−1xÃ(g). (3.1)

If S is an étale sheaf of W (k0)-frames on Spec R, this action sheafifies to provide

an action of G(S)μ on G(S0).

Definition 3.2. Let R be a p-nilpotent W (k0)-algebra, and suppose S is an étale

sheaf of W (k0)-frames on Spec R. The stack of G-displays of type μ over S is the

étale quotient stack

G-DispS,μ := [G(S0)/G(S)μ]

over ÉtR , where G(S)μ acts on G(S0) via the action (3.1).

Explicitly, for an étale R-algebra R′, G-DispS,μ(R
′) is the groupoid of pairs

(Q, α), where Q is an étale locally trivial G(S)μ-torsor over Spec R′ and α : Q →

G(S0) is a G(S)μ-equivariant morphism for the action (3.1).

Let us point out the case which will be of particular interest to us. Suppose

B → A is a PD-thickening of p-nilpotent W (k0)-algebras. If A → A′ is étale, let

B(A′) be the unique étale B-algebra with B(A′) ⊗B A = A′ (see e.g., [27, Tag

039R]). If J = ker(B → A), then ker(B(A′) → A′) = J B ′, and the divided

powers on B → A extend to B(A′)→ A′ by flatness of B → B(A′), see [27, Tag

07H1]. Denote by W B/A the étale sheaf of frames defined by

W B/A(A
′) = W (B(A′)/A′) (3.2)

for A → A′ étale (see Lemma A.15). By taking S = W B/A in Definition 3.2 we

obtain the stack of G-displays of type μ for B → A

G-DispW (B/A),μ.

Following [24, 7.4], we have a notion of a Hodge filtration for G-displays of

type μ, which will be useful later on for understanding deformations of G-displays

along nilpotent thickenings. Let us recall this notion.

https://stacks.math.columbia.edu/tag/039R
https://stacks.math.columbia.edu/tag/039R
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Let S be a frame for R, and let (Q, α) be a G-display of type μ over S. Let Ǟ

be the composition of Ä : S → S0 with the quotient S0 → R. Then Ǟ defines a

morphism of étale sheaves on Spec R

Ǟ : G(S)μ → G R . (3.3)

We write Q R for the G R-torsor induced from Q by Ä .

Let Pμ ¢ G be the subgroup scheme defined by μ, that is

Pμ(R) = {h ∈ H(R) | lim
t→0

μ(t)hμ(t)−1 exists }, (3.4)

see [6, Thm. 4.1.17]. By [24, Prop. 6.2.2], the morphism (3.3) has image inside of

Pμ; write Ǟ0 for the resulting morphism G(S)μ → Pμ,R .

Definition 3.3. Let (Q, α) be a G-display of type μ over S. The Hodge filtration

for (Q, α) is the Pμ,R-torsor Qμ ¢ Q R induced from Q by Ǟ0.

We close this section by recalling the stack of G-displays of type μ over the

Witt frame. Let W be the fpqc sheaf in frames on NilpZp
given by R �→ W (R).

associated with G, μ, and W we have two group-valued functors on NilpZp
:

L+G := G(W 0), and L+
μG := G(W )0.

By [24, Lem. 5.4.1] these are representable functors.

Definition 3.4. The stack of G-displays of typeμ over W is the étale quotient stack

G-DispW ,μ := [L+G/L+
μG]

over NilpW (k0)
, where L+

μG acts on L+G via the action (3.1).

Remark 3.5. One could also take the quotient stack with respect to the fpqc topology,

which is the perspective used in [9]. The point is that the étale stack given by

Definition 3.4 is an fpqc stack by [24, Lem. 5.4.2].

3.2. Tannakian G-displays

Continuing the notation of the previous section, let G be a flat affine group scheme

of finite type over Zp, and letμ : Gm,W (k0) → GW (k0) be a cocharacter for GW (k0).

Let us recall some definitions from [9]. If (V, Ã) is any representation of G, then

VW (k0) = V ⊗Zp
W (k0) is graded by the action of the cocharacter μ, and for any

W (k0)-algebra R we obtain an exact tensor functor C (W )μ,R (denoted Cμ,R in

[9]), given by

C (W )μ,R : RepZp
G → PGrMod(W (R)⊕), (V, Ã) �→ VW (k0) ⊗W (k0) W (R)⊕.

We refer to an exact tensor functor F : RepZp
G → PGrMod(W (R)⊕) as a

graded fiber functor over W (R)⊕, and we say F is of type μ if F is étale locally

isomorphic to C (W )μ,R . Let υR denote the forgetful functor Disp(W (R)) →

PGrMod(W (R)⊕). Recall the following definition (see [9, Def. 3.14]).
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Definition 3.6. A Tannakian (G, μ)-display over W (R) is an exact tensor functor

P : RepZp
G → Disp(W (R))

such that υR ◦ P is a graded fiber functor of type μ.

Denote the stack of Tannakian (G, μ)-displays on NilpW (k0)
by G-Disp⊗

W ,μ.

From a Tannakian (G, μ)-display over W (R) we obtain a G-display P of type μ

by taking QP to be the L+
μG-torsor of trivializations of the underlying fiber functor

of type μ of P and αP the morphism Q → L+G coming from the Frobenius

for P , see [9, Cons. 3.15] for details. The following is a consequence of the main

theorem of [9, 3]:

Theorem 3.7. The morphism

G-Disp⊗
W ,μ → G-DispW ,μ, P �→ (QP , αP )

is an equivalence of étale stacks on NilpW (k0)
.

Proof. This is proved in [9, Thm. 2.16] in the case where G-DispW ,μ is given as

the quotient for the fpqc topology and graded fiber functors of type μ are defined

to be fpqc-locally isomorphic to C (W )μ. The result follows in general because

any fpqc-locally trivial L+
μG-torsor is étale locally trivial (hence any graded fiber

functor which is fpqc-locally trivial is étale locally trivial) by [24, Lem. 5.4.2]. ��

In this section we prove a theorem analogous to Theorem 3.7 for G-displays

of type μ over étale sheaves of frames with good descent properties. Let R be a

ring, and let S be an étale sheaf of Z-graded rings over Spec R. We will denote

by PGrModS the fibered category over ÉtR whose fiber over an étale R-algebra R′

is PGrMod(S(R′)). Further, if S is a sheaf of frames, let DispS denote the fibered

category of displays over S.

Definition 3.8. We say:

• An étale sheaf of Z-graded rings S on Spec R satisfies descent for modules if

PGrModS is an étale stack over ÉtR .

• An étale sheaf of frames S on Spec R satisfies descent for displays if DispS is

an étale stack over ÉtR .

Lemma 3.9. Let S be an étale sheaf of frames on Spec R such that S(R′) is a

frame for R′ for all étale R-algebras R′. If the underlying sheaf of Z-graded rings

S satisfies descent for modules, then S satisfies descent for displays.

Proof. That morphisms descend follows from Lemma A.14 (iv) and the fact that S

satisfies descent for modules. To prove that objects descend we need only to show

that isomorphisms Ã ∗M
∼
−→ Ä ∗M form an étale sheaf. But since S is an étale sheaf

of frames, the functor S0 : R′ �→ S(R′)0 is an étale sheaf of rings on Spec R, and

so for any finite projective S(R)0-module N the following sequence is exact:

0 → N → N ⊗S(R)0 S(R′)0 ⇒ N ⊗S(R)0 S(R′ ⊗R R′)0,

and the result follows. ��
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Remark 3.10. The frame of interest for the purposes of this paper is the relative

Witt frame W (B/A) associated with a p-adic PD-thickening B → A (Example

2.10). The étale sheaf of frames A′ �→ W (B ′/A′) associated with W (B/A) (see

A.3) satisfies descent for modules (hence for displays as well, by Lemma 3.9) by

Proposition A.18. The other primary example of a sheaf of frames which satisfies

descent for modules is the étale sheaf of frames on Spec R associated with a p-adic

frame S over R (see [24, Lem. 4.3.1]). The Zink frame W(R) over an admissible

ring R [24, Ex. 2.1.13] and its relative analog [24, Ex. 2.1.14] for a PD-thickening

B → A of admissible rings, as well as the truncated Witt frames over Fp-algebras

[24, Ex. 2.1.6] and their relative analogs are all examples of p-adic frames. The

relative Witt frame W (B/A) for B → A is also a p-adic frame, but the étale sheaf

of frames associated with it by [24, Lem. 4.2.3] using the p-adic topology differs

from the one we consider here, which uses the natural topology for the Witt vectors

(see [24, Ex. 4.2.7]).

Definition 3.11. Let S be a Z-graded W (k0)-algebra. A graded fiber functor over

S is an exact tensor functor

F : RepZp
G → PGrMod(S).

Denote by GFF(S) the category of graded fiber functors over S. Suppose S is

an étale sheaf of Z-graded rings on Spec R. If R → R′ is a homomorphism of étale

R-algebras, the natural base change M �→ M ⊗S(R) S(R′) induces a base change

functor GFF(S(R))→ GFF(S(R′)). In this way we obtain a fibered category GFFS

over ÉtR .

Lemma 3.12. Let S be an étale sheaf of frames such that the underlying sheaf of

graded rings S satisfies descent for modules. Then the fibered category GFFS is an

étale stack over ÉtR .

Proof. The proof is the same as that of [9, Lem. 3.5], with Lemma A.14 (i) replacing

[9, Lem. 2.12]. ��

Suppose R is a W (k0)-algebra, and that S is an étale sheaf of W (k0)-frames over

Spec R which satisfies descent for modules. For any cocharacter μ of G defined

over W (k0) and any étale R-algebra R′, we define a distinguished graded fiber

functor over S(R′). Given a representation (V, Ã) in RepZp
G, let

V i
W (k0)

= {v ∈ VW (k0) | (Ã ◦ μ)(z) · v = ziv for all z ∈ Gm(W (k0))}.

Then μ induces a canonical weight decomposition

VW (k0) =
⊕

i∈Z

V i
W (k0)

. (3.5)

Since any morphism of representations preserves the grading induced by μ, we

obtain an exact tensor functor

C (S)μ,R′ : RepZp
G → PGrModS(R

′), V �→ VW (k0) ⊗W (k0) S(R′). (3.6)
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If R′ is an étale R-algebra, then C (S)μ,R′ is given by the composition of functors

RepZp
G

C (S)μ,R
−−−−−→ PGrModS(R)→ PGrModS(R

′),

where the second functor is the canonical base change. If R is understood, we will

suppress it in the notation and write C (S)μ for C (S)μ,R .

Definition 3.13. A graded fiber functor F over S(R) is of type μ if for some

faithfully flat étale extension R → R′ there is an isomorphism FR′ ∼= C (S)μ,R′ .

Let GFFS,μ denote the fibered category of graded fiber functors of typeμ. Since

the property of being type μ is étale-local, GFFS,μ forms a substack of GFFS .

If F1 and F2 are two graded fiber functors over S, denote by Isom⊗(F1,F2)

the étale sheaf of isomorphisms of tensor functors F1
∼
−→ F2. Let Aut⊗(F ) =

Isom⊗(F ,F ). The following is the analog of the main theorems of [9, 3.2].

Theorem 3.14. Let S be an étale sheaf of W (k0)-frames which satisfies descent

for modules. The assignment g �→ (Ã(g))(V,Ã) defines an isomorphism of étale

sheaves on Spec R

G(S)μ
∼
−→ Aut⊗(C (S)μ),

which, in turn, induces an equivalence of stacks

GFFS,μ
∼
−→ TorsG(S)μ , F �→ Isom⊗(C (S)μ,F ).

Proof. The arguments of [9, 3.2] go through nearly verbatim, after replacing the

Witt frame with S, and the fpqc topology with the étale topology. ��

For any étale R-algebra R′ we have a forgetful functor

υS(R′) : DispS(R
′)→ PGrModS(R

′), (M, F) �→ M. (3.7)

Definition 3.15. Let R be a p-nilpotent W (k0)-algebra.

• A Tannakian G-display over S(R) is an exact tensor functor

P : RepZp
G → DispS(R).

• A Tannakian (G, μ)-display over S(R) is a Tannakian G-display P over S(R′)

such that υS(R) ◦ P is a graded fiber functor of type μ.

If R → R′ is étale, denote by G-Disp⊗(S(R′)), resp. G-Disp⊗
μ (S(R

′)) the

category of Tannakian G-displays, resp. the full subcategory of Tannakian (G, μ)-

displays over S(R′). By an analog of Lemma 3.12 we see that Tannakian G-displays

form an étale stack G-Disp⊗
S over ÉtR , and Tannakian (G, μ)-displays define a

substack G-Disp⊗
S,μ.
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There are a number of useful functorialities between categories of Tannakian

G-displays. If P is a Tannakian G-display over S(R) and ψ : R → R′ is homo-

morphism of p-nilpotent W (k0)-algebras, we denote by ψ∗P or PS(R′) the base

change of P , which is given by

RepZp
G

P
−→ DispS(R)→ DispS(R

′).

Similarly, if α : S → S′ is a morphism of étale sheaves of frames, we obtain a base

change functor

α∗ : G-Disp⊗
S → G-Disp⊗

S′ (3.8)

given by post-composition with Disp(S(R)) → Disp(S′(R)). Finally, if γ : G →

G ′ is a homomorphism of Zp-group schemes, and P is a Tannakian G-display

over S(R), we denote by γ (P) the G ′-display

RepZp
G ′ res

−→ RepZp
G

P
−→ DispS(R).

If P is a Tannakian (G, μ)-display, then γ (P) is a Tannakian (G ′, γ ◦μ)-display.

To any Tannakian (G, μ)-display we can associate a G-display of typeμ. Let us

summarize the construction (see [9, Constr. 3.15] for details). Let P be a Tannakian

(G, μ)-display over S(R). By Theorem 3.14,

QP := Isom⊗(C (S)μ,R, υS(R) ◦ P)

is a G(S)μ-torsor over R. If R′ is an étale R-algebra, write PR′(V, Ã) =

(M(Ã)′, F(Ã)′) for any (V, Ã) in RepZp
G. Given an isomorphism of tensor func-

tors λ : C (S)μ,R′
∼
−→ υS(R′) ◦ PR′ , we obtain an automorphism

αP (λ)
Ã := Ä ∗(λÃ ) ◦ (F(Ã)′)
 ◦ Ã ∗(λÃ )

of V ⊗Zp
S(R′)0 for every (V, Ã) in RepZp

G. IfωS(R′)0 denotes the canoncial fiber

functor (V, Ã) �→ V ⊗Zp
S(R′)0, then the collection (αP (λ)

Ã )(V,Ã) constitutes

an element of Aut⊗(ωS(R′)0). By Tannakian duality [7, Thm. 44], the map g �→

(Ã(g))(V,Ã) determines an isomorphism

G(S(R′)0) ∼= Aut⊗(ωS(R′)0),

so there is some αP (λ) ∈ G(S(R′)0) = G(S0)(R
′) such that Ã(αP (λ)) =

αP (λ)
Ã for every (V, Ã). Altogether the assignment λ �→ αP (λ) defines a mor-

phism of étale sheaves

αP : QP → G(S0). (3.9)

As in [9, Constr. 3.15] one checks that the association P �→ (QP , αP ) is func-

torial in P and compatible with base change, so we obtain a morphism of stacks

G-Disp⊗
S,μ → G-DispS,μ, P �→ (QP , αP ). (3.10)

The following is the analog of [9, Thm. 3.16].
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Theorem 3.16. If S satisfies descent for modules, the morphism (3.10) is an equiv-

alence of étale stacks over ÉtR .

Proof. The proof of [9, Thm. 3.16] goes through here as well, after replacing the

Witt frame by the frame S, and the fpqc topology by the étale topology. Let us

sketch the argument.

By the first part of Theorem 3.14, the functor is faithful. If P1 and P2 are

Tannakian (G, μ)-displays over R, and η : (QP1
, αP1

) → (QP2
, αP2

) is a

morphism, then the second part of Theorem 3.14 provides us with a morphism

ψ : υR ◦ P1 → υR ◦ P2 which induces QP1
→ QP2

. It remains only to check

this morphism is compatible with the respective Frobeneius morphisms, but by

Lemma A.14 (iv) it is enough to check this after some faithfully flat étale extension

R → R′. By choosing an extension such that QP1
(R′) is nonempty, the result

follows from the definitions of the αPi
. Finally, to complete the proof it is enough

to show that every G-display of type μ over S(R) is étale locally in the essential

image of (3.10), which is done using Theorem 3.14. ��

Corollary 3.17. Let B → A be a PD-thickening of p-nilpotent W (k0)-algebras.

Then (3.10) induces an equivalence

G-Disp⊗
W (B/A),μ

∼
−→ G-DispW (B/A),μ.

Proof. Combine Theorem 3.16 with Proposition A.18. ��

Remark 3.18. Let�be a finite free Zp-module, and letμbe a cocharacter of GL(�).

Let us say a display M = (M, F) over S(R) is of type μ if, étale locally, there is

an isomorphism M ∼= � ⊗Zp
S(R) of graded S(R)-modules, where � is graded

by the weight space decomposition of the cocharacter μ. Denote by Dispμ(S(R))

the category of displays over S(R) which are of type μ. Then one checks (as in [9,

Thm. 5.15], for example) that the functor

GL(�)-Disp⊗
S,μ(R)→ Dispμ(S)

induced by evaluation on the standard representation is an equivalence of categories.

If I = (i1, i2, . . . , in) ∈ Zn with i1 ≤ i2 ≤ · · · ≤ in , and μI is the cocharacter

t �→ diag(t i1 , t i2 , . . . , t in ) for some choice of basis of �, then this is compatible

with the equivalence between GLn-DispS,μI
and the stack of displays of type I

over S described in [24, Ex. 5.3.5] (see also [9, Rmk. 3.2]).

Suppose now S(R) extends some 1-frame S. We say that a window over S is

of type μ if the corresponding 1-display is of type μ. If μ is minuscule, the func-

tor described above is valued in 1-displays, and therefore induces an equivalence

between Tannakian (GL(�), μ)-displays over S(R) and windows over S of typeμ.

In particular, if I = (0(d), 1(h−d)) for some d, and μ = μI , then GLh-Disp⊗
S,μI
(R)

is equivalent to the category of windows (P0, P1, F0, F1) over S with rkS0 P0 = h

and rkR(P0/P1) = d.

Let us now summarize the local description of the stack G-Disp⊗
S,μ. Let us again

assume that R is a W (k0)-algebra, and that S is an étale sheaf of W (k0)-frames

over Spec R which satisfies descent for modules.
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Definition 3.19. A Tannakian (G, μ)-display P over S(R) is banal if there is an

isomorphism υS(R) ◦ P ∼= C (S)μ,R .

If P is a Tannakian (G, μ)-display over R, then P is banal locally for the

étale topology on R. Given any U ∈ G(S(R)0) we can define a banal Tannakian

(G, μ)-display PU on S(R) as follows: to the representation (V, Ã) we associate

the display over S(R) defined from the standard datum

(V ⊗Zp
S(R)0, Ã(U ) ◦ (id ⊗ Ã0)),

where V ⊗Zp
S(R)0 = VW (k0)⊗W (k0) S(R)0 is endowed with the grading induced

by the cocharacter μ.

Proposition 3.20. (i) Every banal Tannakian (G, μ)-display P over R is isomor-

phic to PU for some U ∈ G(S(R)0).

(ii) The category of banal Tannakian (G, μ)-displays over R is equivalent to the

category whose objects are U ∈ G(S(R)0) and whose morphisms are given by

Hom(U,U ′) = {h ∈ G(S)μ(R) | Ä(h)−1U ′Ã(h) = U }.

Proof. The proof follows from the arguments at the end of [9, 3.3]. ��

Remark 3.21. If (Q, α) is the G-display of type μ corresponding to a Tannakian

(G, μ)-display P , then P is banal if and only if Q is a trivial torsor, and if β :

G(S)μ
∼
−→ Q is a trivialization, then giving U as in Proposition 3.20 is equivalent

to giving α(β(1)).

3.3. The Hodge filtration for Tannakian G-displays

Let G be a flat affine group scheme of finite type over Zp and letμ be a cocharacter

for GW (k0). Suppose R is in NilpW (k0)
, and let S be an étale sheaf of frames on

Spec R. In this section we define the Hodge filtration for Tannakian G-displays over

S(R) and compare it to the Hodge filtration for G-displays of type μ as defined in

3.1.

For any ring R, let us denote by Fil(R) the category of finite projec-

tive R-modules M equipped with a descending filtration by direct summands

(Filn(M))n∈Z. This is an exact tensor category with tensor product on the filtrations

defined as in (2.2). To any graded fiber functor F over S(R)we can attach an exact

tensor functor

FilF : RepZp
G → Fil(R) (3.11)

by assigning to any (V, Ä) the filtered R-module obtained by tensoring the evalu-

ation of F on (V, Ä) along Ǟ : S
Ä
−→ S0 → R. In particular, if F = C (S)μ for

some cocharacter μ of G, then for any representation (V, Ä), the i th filtered piece

of FilF (V, Ä) is given by

Fili =
⊕

i≥n

V i ⊗W (k0) R.
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Hence in this case FilC (S)μ is the canonical functor

Filμ : RepZp
(G)→ Fil(R) (3.12)

associated to the cocharacter μ.

Definition 3.22. A fiber functor for R is an exact tensor functor

ω : RepZp
G → Mod(R)

such that ωF is étale locally (on Spec R) isomorphic to the functor

ωR : RepZp
G → Mod(R), (V, Ä) �→ V ⊗Zp

R. (3.13)

If ω is a fiber functor for R, a functor Fil : RepZp
G → Fil(R) is a filtration of ω if

ω factors into the composition

RepZp
G

Fil
−→ Fil(R)→ Mod(R).

Given a graded fiber functor F of type μ over S(R), define the exact tensor

functor

ωF : RepZp
G → Mod(R)

by postcomposing FilF with the forgetful functor Fil(R) → Mod(R). Since F

is étale locally isomorphic to C (S)μ, ωF is a fiber functor. Moreover, FilF is

obviously a filtration of ωF .

By Tannakian duality, there is a natural isomorphism Aut⊗(ωR)
∼
−→ G R (see

e.g. [7, Thm. 44]). It follows that

QωF
:= Isom⊗(ωR, ωF ) (3.14)

is a G R-torsor on Spec R. If QF is the G(S)μ-torsor associated to F by Theorem

3.14, then QωF
is isomorphic to the G R-torsor QF ,R induced from QF by Ǟ :

G(S)μ → G R (see (3.3)). Indeed, base change along Ǟ : S → R induces a G R-

equivariant morphism

QF = Isom⊗(C (S)μ,F )→ Isom⊗(ωR, ωF ) = QωF
, (3.15)

which is necessarily an isomorphism of G R-torsors.

Let P be a Tannakian G-display over S(R). Since υS(R) ◦ P is a graded fiber

functor, we can define from P functors ωP and FilP by

ωP := ωυS(R)◦P and FilP := FilυS(R)◦P . (3.16)

Definition 3.23. Let P be a Tannakian G-display over S(R). The Hodge filtration

for P is the exact tensor functor FilP defined in (3.16).
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We can equivalently define FilP as the functor that assigns to every (V, Ä) the

Hodge filtration of its corresponding display over S(R) as in (2.1).

Suppose now G is reductive andμ is a cocharacter for G. Let P be a Tannakian

(G, μ)-display over S(R). Let us compare the Hodge filtration of P to that of its

associated G-display of typeμ, (QP , αP ), see Definition 3.3. By [7, Thm. 60 and

Rmk. 54], the étale sheaf on Spec R of automorphisms of the tensor functor Filμ
(see (3.12)) is isomorphic to the sheaf associated to the parabolic subgroup Pμ,R
of G R (see (3.4)). Thus the subsheaf

Isom⊗(Filμ,FilP ) ¢ QωF
(3.17)

of tensor-isomorphisms Filμ
∼
−→ FilP is an étale Pμ,R-torsor on Spec R, which we

denote by QFilP . If QP,μ ¢ QP,R denotes the Hodge filtration of the associated

G-display of type μ, then the natural map

QP = Isom⊗(C (Sμ,R, υS(R) ◦ P)→ Isom⊗(Filμ,FilP ) = QFilP

given by base change along Ǟ : S → R induces Pμ,R-equivariant map

QP,μ → QFilP (3.18)

which is therefore necessarily an isomorphism of Pμ,R-torsors. Moreover, (3.18)

is compatible with the inclusions QP,μ ¢ QP,R and QFilP ¢ QωP
and the

isomorphism (3.15).

We close this section by explaining the way that the Hodge filtration controls

lifts along certain homomorphisms of étale sheaves of frames, following [24, 7.4].

Let B → A be a homomorphism of p-nilpotent W (k0)-algebras such that J =

ker(B → A) is locally nilpotent; i.e., such that xn = 0 for some n for all x ∈ J (for

example, B → A could be a PD-thickening). Let S′ be an étale sheaf of frames on

Spec B, and let S be an étale sheaf of frames on Spec A. Since J is locally nilpotent,

for every étale A-algebra A′ there exists a unique étale B-algebra B(A′) lifting A′,

so we can consider S′ as an étale sheaves of frames on Spec A. We assume that for

all étale A-algebras A′, S(A′) is a frame for A′, and S′(B(A′)) is a frame for B(A′).

Suppose now that we have a morphism of étale sheaves of frames β : S′ → S

such that, for all étale A-algebras A′, β0 : S′(B(A′))0 → S(A′)0 is bijective. The

morphism β determines a morphism of stacks on Spec A

G-Disp⊗
S′,μ

→ G-Disp⊗
S,μ. (3.19)

Let us continue to assume that G is reductive over Zp and let us suppose now

that μ is minuscule. Let P ′ be a Tannakian (G, μ)-display over S′(B). Applying

the morphism (3.19) to P ′, we obtain a Tannakian (G, μ)-display P over S(A).

Associated with P ′ is the Hodge filtration FilP ′ of P ′ from Definition 3.23, which

is a filtration of the functor ωP ′ : RepZp
G → Mod(B), see (3.16). Moreover, we

have the Hodge filtration FilP of P . Then FilP ′ is a lift of FilP along B → A.

Since β0 is bijective, we have a morphism Ä̃ : S(A)→ S(A)0
∼
−→ S′(B)0 → B,

with the property that the composition of Ä̃ with the natural map S′(B)→ S(A) is
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the map Ǟ0 : S(B) → B. Therefore base change along the map Ä̃ induces a fiber

functor

ωP,B : RepZp
G → Mod(B),

with the property that ωP,B composed with the base change Mod(B)→ Mod(A)

is the fiber functor ωP associated to P . Since the composition S(B)→ S(A)
Ä̃
−→

B → B is Ǟ : S(B) → B, we see that in fact ωP,B = ωP ′ is the fiber functor

associated to P ′ in the case where P is obtained from base change from P ′ along

S′ → S.

Proposition 3.24. Suppose β : S′ → S is a morphism of frames as above such

that β1 : S′(B(A′))1 → S(A′)1 is injective for all étale A-algebras A′. Then the

assignment

P
′ �→ (P,FilP ′)

described above determines an equivalence of categories between Tannakian

(G, μ)-displays over S′(B) and Tannakian (G, μ)-displays over S(A) together

with a filtration Fil of the fiber functor ωP,B .

Proof. By Theorem 3.7 and Theorem 3.16 along with the comparison of the respec-

tive Hodge filtrations (3.18), it is enough to show the result for G-displays of type

μ. This follows from the arguments of [24, 7.4] with the following remarks. In

loc. cit. this is shown for any morphism of p-adic frames S′ → S for R′ and R,

respectively, over W (k0) with S′
0 = S0, such that the property

S′
1 → S1 is injective, and S1/S′

1 = ker(R′ → R) (3.20)

is satisfied (recall that we are assuming G is reductive and μ is minuscule). In the

case of [24], it follows from the fact that S′ and S are p-adic frames that the property

(3.20) is preserved after étale base change, and therefore the result follows from

[24, Lem. 7.4.2]. In our case, it is preserved by assumption. Thus once again the

result follows from [24, Lem. 7.4.2]. ��

In particular, this result applies when B → A is a PD-thickening, S′ = W (B)

is the Witt frame for B, and S = W (B/A) is the relative Witt frame for B →

A. Indeed, W (B)⊕0 = W (B/A)⊕0 = W (B), and W (B)⊕1 → W (B/A)⊕1 is the

inclusion I (B) ↪→ I (B/A), see Example 2.10. Moreover, these properties clearly

hold for all étale A-algebras A′.

3.4. Adjoint nilpotence and liftings

In this section we assume that G is a reductive group scheme over Zp and that

μ : Gm,W (k0) → GW (k0) is a minuscule cocharacter of GW (k0). Let B → A be

a PD-thickening of p-nilpotent W (k0)-algebras. We first fit the adjoint nilpotence

condition of [5, 3.4] into the present context, and state Lau’s unique lifting lemma for

adjoint nilpotent Tannakian (G, μ)-displays along W (B/A)→ W (A) (Proposition
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3.29). We then explain (in our context) Lau’s classification of lifts of Tannakian

(G, μ)-displays along W (B)→ W (B/A) by lifts of the Hodge filtration.

Recall that G-Disp⊗
W ,μ (equiv. G-DispW ,μ) is a stack for the étale topology on

NilpW (k0)
. For a p-nilpotent W (k0)-algebra A, we can restrict the stack G-Disp⊗

W ,μ

(resp. G-DispW ,μ) to obtain an étale stack on Spec A, which we will denote by

G-Disp⊗
W (A),μ (resp. G-DispW (A),μ). Alternatively this is G-DispW A,μ

, where W A

is the étale sheaf on Spec A defined by

W A(A
′) = W (A′) (3.21)

for all étale A-algebras A′.

Let k be a perfect field of characteristic p, and let K = W (k)[1/p]. The

Frobenius Ã of W (k) naturally extends to K . Denote by F-Isoc(k) the cat-

egory F-isocrystals over k, i.e., the category of pairs (M, ϕ) consisting of a

finite-dimensional K -vector space M and an isomorphism of K -vector spaces

ϕ : Ã ∗M
∼
−→ M . When k is algebraically closed, F-Isoc(k) is a semi-simple

category with simple objects parametrized by λ ∈ Q (see e.g., [11]). In that case,

for λ ∈ Q, we write Mλ for the λ-isotypic component of M , and if Mλ is nonzero

we will say λ is a slope of (M, ϕ).

Let R be a k0-algebra, and let P be a Tannakian (G, μ)-display over W (R).

For every point x ∈ Spec R, choose an algebraic closure k(x) of the residue

field of x . The base change Pk(x) of P to k(x) is banal, since the L+
μG-torsor

Isom⊗(C (W )μ,k(x), υk(x) ◦ Pk(x)) over k(x) is trivial. Hence by Proposition 3.20

there is some u(x) ∈ L+G(k(x)) = G(W (k(x)) such that u(x) determines Pk(x).

Let K (x) = W (k(x))[1/p], and define b(x) = u(x)μÃ (p) ∈ G(K (x)). To b(x)

we can associate an exact tensor functor

Nb(x) : RepQp
(G)→ F-Isoc(k(x)), (V, Ã) �→ (V ⊗Qp

K (x), Ã(b(x)) ◦ (idV ⊗ Ã)).

Let us denote by (g,AdG) the adjoint representation of G.

Definition 3.25. Let R be a p-nilpotent W (k0)-algebra. A Tannakian (G, μ)-

display P over W (R) is adjoint nilpotent if for all x ∈ Spec R/pR all slopes

of the isocrystal Nb(x)(g,AdG) are greater than −1.

We will likewise say that U ∈ L+G(R) is adjoint nilpotent over W (R) if the

associated Tannakian (G, μ)-display PU is adjoint nilpotent. See [5, 3.4] for a

discussion of this condition.

Let� be a finite free Zp-module. Let us briefly recall the relationship between

adjoint nilpotence and Zink’s nilpotence condition in the case where G = GL(�)

(cf. [5, Rmk. 3.4.5]). If R is a p-nilpotent Zp-algebra, then by Remark 3.18, eval-

uation on the standard representation (�, ι) defines an equivalence of categories

between Tannakian (GL(�), μ)-displays and 1-displays of type μ over W (R). We

will say that a 1-display is nilpotent if its corresponding Zink display (under the

equivalence in Lemma 2.8) satisfies Zink’s nilpotence condition (see [30, Def. 11]).

Lemma 3.26. Suppose P is a (GL(�), μ)-display over W (R) such that P(�, ι)

is a nilpotent 1-display. Then P is adjoint nilpotent over W (R).
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Proof. This follows from the arguments in [5, Rmk. 3.4.5]. ��

We extend this definition to the relative Witt frame as follows. Let B → A be a

PD-thickening of p-nilpotent W (k0)-algebras. The W (k0)-algebra homomorphism

W (B) → W (A) induces a morphism of frames α : W (B/A) → W (A), and base

change along α (see (3.8)) determines a morphism

G-Disp⊗
W (B/A),μ → G-Disp⊗

W (A),μ (3.22)

of étale stacks on Spec A. If P is a Tannakian (G, μ)-display over W (B/A), we

denote its base change to W (A) by α∗P or PW (A).

Definition 3.27. Let B → A be a PD thickening of p-nilpotent W (k0)-algebras. A

Tannakian (G, μ)-display P over W (B/A) is adjoint nilpotent if PW (A) is adjoint

nilpotent in the sense of Definition 3.25.

Likewise, an element U ∈ G(W (B)) is said to be adjoint nilpotent over

W (B/A) if the associated Tannakian (G, μ)-display PU over W (B/A) is adjoint

nilpotent.

Remark 3.28. If U ∈ G(W (B)), we obtain banal Tannakian (G, μ)-displays PU

over W (B) and P ′
U over W (B/A) corresponding to U . Since B → A induces a

homeomorphism Spec A → Spec B, PU is adjoint nilpotent over W (B) if and

only if P ′
U is adjoint nilpotent over W (B/A). Hence there is no ambiguity in the

statement “U ∈ G(W (B)) is adjoint nilpotent”.

We will denote by G-Disp
⊗,ad
W (B/A),μ, resp. G-Disp

⊗,ad
W (A),μ the substack of adjoint

nilpotent objects in G-Disp⊗
W (B/A),μ, resp. G-Disp⊗

W (A),μ. The morphism (3.22)

induces a morphism

G-Disp
⊗,ad
W (B/A),μ → G-Disp

⊗,ad
W (A),μ. (3.23)

Proposition 3.29. The morphism (3.23) is an equivalence of étale stacks on Spec A.

Proof. By Theorem 3.7 and Theorem 3.16, it is enough to show the result for the

respective stacks of G-displays of type μ. Hence the proposition follows from [24,

Rmk. 7.1.8]. ��

Remark 3.30. In the case where J = ker(B → A) is a nilpotent ideal the proposi-

tion follows from [5, Thm. 3.5.4].

4. Crystals and G-displays

Let R be a p-nilpotent Zp-algebra, let G be a reductive group scheme over Zp,

and let μ be a minuscule cocharacter for GW (k0). In 4.1, we construct and study the

functorial properties of a G-crystal associated with any adjoint nilpotent Tannakian

(G, μ)-display over W (R). If � is a finite free Zp-module, and G = GL(�), this

construction recovers the crystal associated with a nilpotent Zink display as in 2.3,

see Lemma 4.5. In 4.2 we narrow our focus to the case where (G, μ) is a Hodge

type pair (see Definition 4.6).
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4.1. The crystals associated with G-displays

Let G be a reductive group scheme over Zp, and let μ : Gm,W (k0) → GW (k0)

be a minuscule cocharacter of GW (k0). Let R be a p-nilpotent W (k0)-algebra, and

suppose P is an adjoint nilpotent Tannakian (G, μ)-display over W (R). If A is an

R-algebra, denote by PW (A) the base change of P to W (A).

Let B → A be a PD-thickening over R. By Proposition 3.29, there exists a

lift PB/A of PW (A) to a Tannakian (G, μ)-display over W (B/A), and PB/A is

unique up to a unique isomorphism which lifts idPW (A)
. For every representation

(V, Ã) of G, write

MÃ
B/A = (MÃ

B/A, FÃB/A) (4.1)

for the evaluation of PB/A on (V, Ã). By base change along the composition

W (B/A)⊕
Ä
−→ W (B)

w0
−→ B, we obtain a finite projective B-module

D(P)ÃB/A := (Ä ∗MÃ
B/A)⊗W (B) B.

We claim that the assignment (B → A) �→ D(P)ÃB/A defines a crystal of finite

locally free OSpec R/W (k0)-modules for every representation (V, Ã). Indeed, we

need to show that if (B → A) → (B ′ → A′) is a morphism of PD-thickenings,

then there is an isomorphism of B ′-modules

D(P)ÃB/A ⊗B B ′ ∼
−→ D(P)ÃB′/A′ , (4.2)

and that these isomorphisms satisfy the cocycle condition with respect to compo-

sitions. But to obtain an isomorphism (4.2) it is enough to exhibit an isomorphism

(PB/A)W (B′/A′)
∼
−→ PB′/A′

of Tannakian (G, μ)-displays over W (B ′/A′). Such an isomorphism is readily

found using uniqueness of lifts, since both (PB/A)W (B′/A′) and PB′/A′ lift PW (A′).

It is straightforward to check that compositions of the transition isomorphisms

obtained in this way satisfy the cocycle condition, so by Remark 2.12 we obtain a

crystal of finite locally free OSpec R/W (k0)-modules D(P)Ã for every (V, Ã).

Lemma 4.1. The association

D(P) : RepZp
(G)→ LFCrys(R/W (k0)), (V, Ã) �→ D(P)Ã ,

defines an exact tensor functor.

Proof. A G-equivariant morphism (V1, Ã1) → (V2, Ã2) induces a morphism of

finite projective graded W (B/A)⊕-modules M
Ã1

B/A → M
Ã2

B/A, and by base change to

B ′ we obtain D(P)Ã1 → D(P)Ã2 . If (B ′ → A′)→ (B → A) is a PD-morphism,

then the transition map D(P)ÃB/A ⊗B B ′ ∼
−→ D(P)Ã

B′/A′ is induced from the natural

transformation of functors (PB/A)W (B′/A′)
∼
−→ PB′/A′ , which is compatible with

the induced morphisms of representations. It follows that D(P)Ã1 → D(P)Ã2

is a morphism of crystals. Compatibility with tensor products follows from the

definition of D(P) and the compatibility of P with tensor products. Exactness

follows similarly, using that all modules are projective and hence all exact sequences

in question split. ��
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Definition 4.2. If P is an adjoint nilpotent Tannakian (G, μ)-display over W (R)

for some p-nilpotent W (k0)-algebra R, then the functor D(P) defined in Lemma

4.1 is the G-crystal associated with P .

Lemma 4.3. The assignment P �→ D(P) is functorial in P and compatible with

base change.

Proof. Suppose ψ : P → P ′ is a morphism of Tannakian (G, μ)-displays.

If B → A is a PD-thickening over R, denote by PB/A the lift of PW (A) to

W (B/A), and by P ′
B/A the lift of P ′

W (A). By Theorem 3.29, ψW (A) lifts uniquely

to a morphism of Tannakian (G, μ)-displays PB/A → P ′
B/A over W (B/A). In

particular, for every (V, Ã) we have a morphism

ψÃB/A : MÃ
B/A → (M ′

B/A)
Ã ,

where here we use notation as in (4.1). Tensoring this along W (B/A)⊕
Ä
−→

W (B)→ B gives us a morphism

D(ψ)ÃB/A : D(P)ÃB/A → D(P ′)ÃB/A

for every B → A and every (V, Ã). That this determines a morphism of crys-

tals D(ψ)Ã : D(P)Ã → D(P ′)Ã follows from the definition of the tran-

sition morphisms and Proposition 3.29. Moreover, that the resulting morphism

D(ψ) : D(P)→ D(P ′) is a natural transformation and is compatible with tensor

products both follow from the corresponding properties of the morphism ψB/A.

If α : R → R′ is a W (k0)-algebra homomorphism, write α∗D(P) for the base

change of D(P) to R′. Explicitly, for any PD-thickening B → A over R′ and

representation (V, Ã),

α∗D(P)ÃB/A = D(P)Ãα!(B/A),

where we write α!(B/A) for the PD-thickening B → A over R given by viewing A

as an R-algebra via restriction of scalars. Compatibility with base change follows,

since by definition D(PW (R′))
Ã
B/A is also given by D(P)Ã

α!(B/A). ��

Remark 4.4. Suppose that P is a banal Tannakian (G, μ)-display over W (R) (see

Definition 3.19), so there exists an isomorphism ψ : PU
∼
−→ P for U ∈ L+G(R)

by Proposition 3.20. Fix a PD-thickening B → A over R, and denote by UA

the image of U under G(W (R)) → G(W (A)). Any choice of lift UB of UA to

G(W (B)) determines a Tannakian (G, μ)-display PUB
over W (B/A) which lifts

PU . Hence by Proposition 3.29, there exists a unique isomorphismψUB
: PUB

∼
−→

PB/A lifting ψA, where PB/A is the unique lift of PW (A). From the definitions

of PUB
and of D(P)B/A, we obtain from ψUB

an isomorphism of tensor functors

ψUB
: ωB

∼
−→ D(P)B/A, where ωB is the usual fiber functor (3.13).

Suppose � is a finite free Zp-module, G = GL(�) and μ is a minuscule

cocharacter for G whose weights are contained in {0, 1}. Then by Remark 3.18,

the category of (GL(�), μ)-displays over a p-adic W (k0)-algebra R is equivalent
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to the category of Zink displays of type μ over R. In 2.3 we recalled the definition

of the crystal D(P) associated with a nilpotent Zink display P .

Denote by ZR the functor which gives the equivalence between (GL(�), μ)-

displays over W (R) and Zink displays of type μ over R. By Lemma 3.26, if P is

a (GL(�), μ)-display over W (R) such that ZR(P) is nilpotent, then P is adjoint

nilpotent. The following lemma describes the relationship between the G-crystal

associated with P and the crystal associated with ZR(P).

Lemma 4.5. Let P be a (GL(�), μ)-display over W (R) such that the associated

Zink display ZR(P) is nilpotent, and denote by (�, ι) the standard representation

of GL(�). Then there is a natural isomorphism of crystals

D(P)ι ∼= D(ZR(P)).

Proof. Let B → A be a PD-thickening over R, and let PB/A be the unique lift of

PW (A) to a (GL(�), μ)-display over W (B/A). Then PB/A(�, ι) corresponds to a

window over W(B/A)which lifts the Zink display corresponding to PW (A)(�, ι).

But P̃ is the unique window over W(B/A)with this property, so it is isomorphic to

the window associated with PB/A(�, ι). In particular, we obtain an isomorphism

Ä ∗M ι
B/A

∼= P̃0. The result follows. ��

4.2. G-displays of Hodge type

Let us continue to assume that G is a reductive group scheme over Zp and that

μ : Gm,W (k0) → GW (k0) is a minuscule cocharacter for GW (k0).

Definition 4.6. We say the pair (G, μ) is of Hodge type if there exists a closed

embedding of Zp-group schemes η : G ↪→ GL(�) for a finite free Zp-module �,

such that after a choice of basis �W (k0)
∼
−→ W (k0)

h , the composition η ◦ μ is the

minuscule cocharacter a �→ diag(1(d), a(h−d)) of GLh for some d. In this case, the

representation (�, η) is called a Hodge embedding for (G, μ).

If (G, μ) is of Hodge type, and P is a Tannakian (G, μ)-display over W (R),

then P(�, η) is a 1-display over W (R). Let Zη,R(P) denote the Zink display

associated with this 1-display via Lemma 2.8. If the ring R is clear from context,

we will write simply Zη(P).

Definition 4.7. We say a Tannakian (G, μ)-display P over W (R) is nilpotent with

respect to η if Zη(P) is a nilpotent Zink display.

This condition is local for the fpqc topology, and we denote by G-Disp
⊗,η
W ,μ the

stack of Tannakian (G, μ)-displays which are nilpotent with respect to η.

Lemma 4.8. Suppose (G, μ) is of Hodge type, and let P be a Tannakian (G, μ)-

display over R. If P is nilpotent with respect to η, then it is adjoint nilpotent.
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Proof. Notice (η(P))(�, ι) = P(�, η), so since Zη(P) is nilpotent, it follows

from Lemma 3.26 that η(P) is an adjoint nilpotent (GL(�), η ◦ μ)-display over

R. Then P is an adjoint nilpotent Tannakian (G, μ)-display over W (R) (cf. [5,

3.7.1]). ��

In the remainder of this section, we assume (G, μ) is of Hodge type with

Hodge embedding (�, η). Let P be a Tannakian (G, μ)-display over W (R)which

is nilpotent with respect to η, so in particular P is adjoint nilpotent by Lemma 4.8,

and we can associate a G-crystal D(P) to P as in the previous section. It is easy

to see D(P)η ∼= D(η∗P)ι, so by Lemma 4.5 we have a canonical isomorphism

D(P)η ∼= D(Zη(P)). (4.3)

As a result we can endow D(P)η with the structure of a Dieudonné crystal using

the Dieudonné crystal structure on D(Zη(P)) as in Sect. 2.3. Denote by

F : φ∗D(P)η → D(P)η and V : D(P)η → φ∗D(P)η

the Frobenius and Verschiebung for D(P)η.

Suppose pR = 0 and that P is banal, so there exists an isomorphism ψ :

PU
∼
−→ P for U ∈ L+G(R) by Proposition 3.20. As in Remark 4.4, for any PD-

thickening B → A over R and choice of lift UB to G(W (B))of the image UA of U in

G(W (A)), we obtain an isomorphism of tensor functors ψUB
: ωB

∼
−→ D(P)B/A.

In particular, by evaluating ψUB
on (�, η), we have an isomorphism

�⊗Zp
B

∼
−→ D(P)

η
B/A. (4.4)

LetP(p) denote the base change ofP alongφ : R → R. From the trivialization

ψ we obtain an isomorphism ψ (p) : (PU )
(p) ∼

−→ P(p). Moreover, if f (U ) is

the image of U in L+G(R) under the Witt vector Frobenius f , then we have an

isomorphism · : P f (U )
∼
−→ (PU )

(p) given by

V ⊗Zp
W (R)⊕

∼
−→ V ⊗Zp

W (R)⊕ ⊗W (R)⊕,W (φ)⊕ W (R)⊕, x ⊗ ξ �→ x ⊗ 1 ⊗ ξ

(4.5)

for every representation (V, Ã). Hence P(p) is banal, with trivializationψ (p)◦·. By

functoriality, f (UB) is a lift of f (U ), so by Remark 4.4, we obtain an isomorphism

ψ
(p)

f (UB )
: ωB

∼
−→ D(P)B/A, which evaluates on (�, η) to give a trivialization of

D(P(p))
η
B/A:

�⊗Zp
B

∼
−→ D(P(p))

η
B/A. (4.6)

Moreover, there is a natural identification

D(P(p))
∼
−→ φ∗D(P). (4.7)

Indeed, this follows essentially from the definitions: since φ∗D(P)B/A =

D(P)φ!(B/A), (see (2.12)), in order to evaluate φ∗D(P) on B → A, we first
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base change P to W (A) along R
φ
−→ R → A. But this is exactly how we evaluate

D(P(p)) on B → A. Thus combining (4.6) with the identification (4.7), we obtain

a trivialization of φ∗D(P)
η
B/A:

�⊗Zp
B

∼
−→ φ∗D(P)

η
B/A. (4.8)

Write ŪB for the image of UB in G(B) under w0 : W (B)→ B.

Lemma 4.9. Let B → A be a PD-thickening over R. Then with respect to the

trivializations (4.4) and (4.8), the Frobenius and Verschiebung for D(P)
η
B/A are

given by

η(ŪB) ◦ (id�0
B

⊕ p · id�1
B
) and (p · id�0

B
⊕ id�1

B
) ◦ η(ŪB)

−1,

respectively.

Proof. If P is a Tannakian (G, μ)-display over W (R) (resp. over W (B/A) for

some PD-thickening B → A) which is nilpotent with respect to η, then we will

denote by Zη(P) the associated Zink display (resp. window over W(B/A)). If

P = Zη(P) is the Zink display associated with P , then by compatibility of Zη
with base change we have Zη(P

(p)) ∼= P(p). For any Zink display P over R and

any PD-thickening B → A, denote by P B/A the unique lift of of P A to a window

over W(B/A). Recall from the proof of Lemma 4.5 that if P = Zη(P), then

P B/A = PB/A(�, η), where PB/A is the unique lift of PW (A) to W (B/A).

Let P be a banal Tannakian (G, μ)-display over R with trivialization isomor-

phism ψ : PU
∼
−→ P . By replacing P by PW (A), we may assume A = R. Let

us start by proving the lemma for the Frobenius. We want an explicit description

of the map

�⊗Zp
B

∼
−→ φ∗D(P)

η
B/R

FB/R
−−−→ D(P)

η
B/R

∼
−→ �⊗Zp

B, (4.9)

where the first arrow is (4.8) and the last is (4.4). The unique lift ψUB
: PUB

∼
−→

PB/R of ψ induces an isomorphism of W(B/R) windows

Zη(PU )B/R
∼
−→ Zη(P)B/R . (4.10)

Similarly, the trivialization ψ (p) ◦ · (see (4.5)) induces an isomorphism

Zη(P f (U ))B/R
∼
−→ Zη(P

(p))B/R . (4.11)

Denote by F̃


0 the unique lift of the display Verschiebung VerZη(P) : Zη(P

(p))→

Zη(P) to a morphism of W(B/R)-windows. Then (4.9) is the reduction modulo

IB of the following composition:

Zη(P f (U ))B/R
∼
−→ Zη(P

(p))B/R

F̃


0

−→ Zη(P)B/R
∼

←− Zη(PU )B/R, (4.12)
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where the first arrow is (4.11), and the last is the inverse of (4.10). In turn, (4.12) is

the unique lift of the composition

Zη(P f (U ))
Zη(·)
−−−→ Zη(PU )

(p)
Zη(ψ)

(p)

−−−−−→ Zη(P)
(p)

VerZη(P )

−−−−−→ Zη(P)
Zη(ψ

−1)
−−−−−→ Zη(PU ).

(4.13)

Hence to prove the lemma for the Frobenius it is enough to show (4.13) is given by

η(U )◦(id⊕ p ·id). By functoriality of Ver, we can rewrite (4.13) as the composition

VerZη(PU ) ◦ Zη(·), and we have an explicit description of VerZη(PU ) (see (2.3)):

VerZη(PU ) = ((η(U ) ◦ (id� ⊗ f ))
 ◦ (id f ∗�0
W (R)

⊕ p · id f ∗�1
W (R)
).

The result for the Frobenius follows because (η(U )◦(id�⊗ f ))
 = η(U )◦ Z(·)−1,

and Zη(·)
−1 commutes with id ⊕ p · id. The computation is nearly identical for the

Verschiebung, using the explicit description (2.4) of the Frobenius for Zη(PU ). ��

For any finite free Zp-module �, let �⊗ =
⊕

m,n �
⊗m ⊗Zp

(�∨)⊗n denote

the total tensor algebra of � ⊕ �∨. For any element s ∈ �⊗ and Zp-algebra R,

write (s ⊗ 1)R for the map R → �⊗ ⊗Zp
R given by 1 �→ s ⊗ 1. If the pair (G, μ)

is of Hodge type, then by [17, Prop. 1.3.2] and [10], there exists a finite collection

of tensors s = (s1, . . . , sr ) with si ∈ �⊗ such that, for all Zp-algebras R,

G(R) = {g ∈ GL(�⊗Zp
R) | g(si ⊗ 1)R = (si ⊗ 1)R for all i}.

We say the collection of tensors s defines the group G inside GL(�). Without loss

of generality, we may assume that, for each i , we have

si ∈ �⊗mi ⊗ (�∨)⊗ni

for some mi and ni . Let �(i) = �⊗mi ⊗ (�∨)⊗ni . This is a G-stable submodule

of �⊗, and we will denote by (�(i), η(i)) the corresponding representation. For

every i , si defines a morphism of representations

si : Zp → �(i), 1 �→ si , (4.14)

where Zp denotes the trivial representation. Each�(i) is canonically graded by the

action of the cocharacter μ, and since si is G-invariant, we see si ∈ (�(i))0.

Definition 4.10. A local Hodge embedding datum is a tuple G = (G, μ,�, η, s),

where

• (G, μ) is a pair consisting of a reductive Zp-group scheme and a minuscule

cocharacter μ of GW (k0) such that (G, μ) is of Hodge type,

• η : G ↪→ GL(�) is a Hodge embedding for (G, μ), and

• s = (s1, . . . , sr ) is a collection of tensors which define G inside of GL(�).
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If P is an adjoint nilpotent Tannakian (G, μ)-display over R, we may apply

D(P) to si to obtain a morphism of crystals

ti : 1 → D(P)η(i).

Notice that φ∗
1 is canonically identified with 1, so we likewise obtain a morphism

ti : 1 → φ∗D(P)η(i).

If P is nilpotent with respect to η, we have an identification D(P)η ∼= D(P),

where P = Zη(P). Since D(P) is compatible with tensor products, we see

D(P)η(i) = D(P)⊗mi ⊗ (D(P)∨)⊗ni .

The Frobenius F on D(Zη(P)) (see (2.21)) extends to tensor products, and it

extends to (linear) duals after we pass to the associated isocrystal. By the relation

FV = p, we see that the resulting extension of F to D(P)∨[1/p] is given by

F = p−1Vt . Hence F extends to a morphism of isocrystals

Fi : φ∗D(P)η(i)[1/p] → D(P)η(i)[1/p] (4.15)

Proposition 4.11. For each i , ti is Frobenius equivariant, i.e., Fi ◦ ti = ti .

Proof. By the equivalence (2.11) between Isoc(R) and Isoc(R/pR), we may

assume pR = 0. Moreover, by Lemma 2.17, it is enough to show the result after

applying the functor (−)D∧/R[1/p] : Isoc(R) → Mod(D∧[1/p]), so it is enough

to show Fi fixes

(ti )D∧/R : D∧ → D(P)
η(i)

D∧/R
[1/p].

Notice Fi is given by p−ni F′
i , where F′

i = F⊗mi ⊗(Vt )⊗ni is a morphism of crystals

φ∗D(P)η(i) → D(P)η(i). As in 2.2, let write Dn = D∧/pn D∧. If we denote by

F′
i,n the evaluation of F′

i on φ∗D(P)
η(i)
Dn/R , then

Fi (ti ) = p−ni · (F′
i,n(ti ))k∈Z>0

∈
(

lim
←−

D(P)
η(i)
Dn/R

)

[1/p].

Hence we see it is enough to show F′
i,n(ti ) = pni ti for all n ∈ Z>0.

By Lemma 2.18 we may replace R by an étale faithfully flat extension, and

since every Tannakian (G, μ)-display is étale locally banal (see the proof of [24,

Lem. 5.4.2]), we may assume P is banal. Let ψ : PU
∼
−→ P be a trivialization of

P for some U ∈ L+G(R). We obtain also a trivialization of P(p) by ψ (p) ◦ · :

P f (U )
∼
−→ P(p), where · is defined in (4.5). If we choose a lift UDn of U to

G(W (Dn)), then these trivializations induce isomorphisms

�⊗Zp
Dn

∼
−→ D(P)

η
Dn/R and �⊗Zp

Dn
∼
−→ φ∗D(P)

η
Dn/R (4.16)

as in (4.4) and (4.8). Under these identifications, the morphisms ti correspond to

Dn → �(i)⊗Zp
Dn, 1 �→ si ⊗ 1,

since the isomorphisms (4.16) are induced by isomorphisms of tensor functors.
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Denote by FDn and VDn the evaluations of F and V respectively on Dn → R.

By Lemma 4.9, with respect to the trivializations (4.16) we have

FDn/R = η(ŪDn ) ◦ (id�0
Dn

⊕ p · id�1
Dn
) and VDn/R = (p · id�0

Dn
⊕ id�1

Dn
) ◦ η(ŪDn )

−1,

(4.17)

where ŪDn is the image of UDn under w0 : W (Dn)→ Dn .

Since �W (k0) decomposes as �W (k0) = �0 ⊕ �1, we see that �(i) ⊗Zp
Dn

can be written as a direct sum of terms of the form

(�0
Dn
)⊗ j ⊗Dn (�

1
Dn
)⊗mi − j ⊗Dn ((�

0
Dn
)∨)⊗k ⊗Dn ((�

1
Dn
)∨)⊗ni −k .

Moreover, since si ∈ (�(i))0, each si ⊗ 1 is contained in a direct sum of terms

which satisfy mi − j = ni − k. By (4.17), F′
i,n acts on such a term by

η(ŪDn )
⊗ j ⊗ pmi − jη(ŪDn )

⊗mi − j ⊗ pkη∨(ŪDn )
⊗k ⊗ η∨(ŪDn )

⊗ni −k, (4.18)

where η∨ denotes the contragradient representation. Since mi − j = ni − k, (4.18)

is equal to pni · η(i)(ŪDn/R), so

F′
i,n(si ⊗ 1) = pni · η(i)(ŪDn/R)(si ⊗ 1) = pni · (si ⊗ 1),

with the last equality following because η(i)(ŪDn/R) fixes si ⊗ 1 for every n. Thus

Fi ◦ ti = ti . ��

5. G-displays and formal p-divisible groups

Let G be a reductive Zp-group scheme and let μ be a minuscule cocharacter

for GW (k0). Moreover, assume that the pair (G, μ) is of Hodge type, and that

G = (G, μ,�, η, s) is a local Hodge embedding datum. In 5.1 we define a notion

of p-divisible groups with (s, μ)-structure (Definition 5.2) and prove that these

objects form an étale stack on NilpW (k0)
(Lemma 5.5). In 5.2, we define a functor

from Tannakian (G, μ)-displays which are nilpotent with respect to η to formal

p-divisible groups with (s, μ)-structure over R in NilpW (k0)
(Lemma 5.8). In 5.3

we prove the functor is an equivalence if R/pR has a p-basis étale locally, (The-

orem 5.17). In sections 5.4 and 5.5 we establish corollaries of the main theorem.

In particular, in 5.4, using Theorem 5.17, we prove that the RZ-functors of Hodge

type defined in [16] and in [5] are naturally equivalent, and in 5.5 we study the

deformation theory of p-divisible groups with (s, μ)-structure.

5.1. Crystalline Tate tensors

Let R be a p-nilpotent W (k0)-algebra, and let D = (D,F,V) be a Dieudonné

crystal on Spec R. Suppose DR/R is equipped with a filtration by finite projective

R-modules

Fil0(D) = DR/R £ Fil1(D) £ Fil2(D) = 0. (5.1)
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Extending the notation of the previous section, let us denote by D⊗ the total tensor

algebra of D⊕D∨. This is a crystal of finite locally free OSpec R/W (k0)-modules, and

the filtration (5.1) naturally extends to a filtration for D⊗
R/R . Further, the Frobenius

for D endows the associated isocrystal D⊗[1/p] with the structure of an F-isocrystal

as in (4.15).

Definition 5.1. A crystalline Tate tensor for D over Spec R is a morphism t : 1 →

D⊗ of locally free crystals of OSpec R/W (k0)-modules such that tR(R) ¢ Fil0(D⊗)

and such that the induced morphism of isocrystals 1 → D⊗[1/p] is Frobenius

equivariant.

Let G = (G, μ,�, η, s) be a local Hodge embedding datum in the sense of

Definition 4.10. As in the previous section, we have si ∈ �⊗mi ⊗ (�∨)⊗ni =

�(i) for every i . More generally, throughout this section, we fix the pair (mi , ni )

associated with each i , and for any object N in a rigid tensor category we define

N (i) := N⊗mi ⊗(N∨)⊗ni . Ifψ is a morphism N → N ′, writeψ(i) for the induced

morphism N (i)→ N ′(i).

Definition 5.2. Let R be a p-nilpotent W (k0)-algebra, and let D be a Dieudonné

crystal over R whose R-sections are equipped with a filtration (5.1). An (s, μ)-

structure on D over Spec R is a finite collection of crystalline Tate tensors t =

(t1, . . . , tr ) satisfying the following conditions:

(i) For every PD-thickening B → A over R, there is an extension B → B ′ which

is faithfully flat and of finite presentation such that there is an isomorphism

(�⊗Zp
B ′, (s ⊗ 1)B′)

∼
−→ (DB′/A′ , t B′),

where A′ = A ⊗B B ′.

(ii) For some faithfully flat étale extension R → R′, there is an isomorphism

(�⊗Zp
R′, (s ⊗ 1)R′)

∼
−→ (DR/R ⊗R R′, t R′)

respecting the tensors, such that the filtration Fil1(D)⊗R R′ ¢ DR/R ⊗R R′ ∼
−→

�⊗Zp
R′ is induced by μ.

Remark 5.3. Let us derive a few consequences of Definition 5.2, compare [14, Def.

2.3.3 and Rmk. 2.3.5(b)]. Suppose t = (t1, . . . , tr ) is an (s, μ)-structure on a

Dieudonné crystal D over R. Let B → A be a PD-thickening over R, and let TDB/A

denote the B-scheme of B-module isomorphisms�⊗Zp
B

∼
−→ DB/A which respect

the tensors. That is, for an B-algebra B ′,

TDB/A
(B ′) = Isom((�⊗Zp

B ′, (s ⊗ 1)B′), (DB/A ⊗A B ′, t B ⊗ 1)).

Definition 5.2 (i) implies that TDB/A
is an fppf-locally trivial G A-torsor.

Moreover, denote by TDR/R ,μ the subscheme of TDR/R
classifying R-module

isomorphisms which identify the canonical filtration Fil1(�⊗Zp
R) defined by μ

with the Hodge filtration Fil1(D) of D. Then Conditions (i) and (ii) of Definition 5.2

together imply that TDR/R ,μ is a Pμ,R-torsor, where Pμ is the parabolic subgroup

of G defined by μ as in (3.4).
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Definition 5.4. Let R be a p-nilpotent W (k0)-algebra.

(i) A p-divisible group with (s, μ)-structure over R is a pair (X, t) consisting of a

p-divisible group X over R and an (s, μ)-structure t on D(X) over Spec R.

(ii) A nilpotent Zink display with (s, μ)-structure over R is a pair (P, t) consisting

of a nilpotent Zink display P over R and an (s, μ)-structure t on D(P) over

Spec R.

Denote by fpdivs,μ(R) the category whose objects are formal p-divisible groups

with (s, μ)-structure and whose morphisms (X, t) → (X ′, t ′) are isomorphisms

of p-divisible groups X → X ′ such that the composition of the tensor ti with the

induced morphism D(X)⊗ → D(X ′)⊗ is the tensor t ′i for every i . Similarly, let

nZinks,μ(R) denote the category of nilpotent Zink displays with (s, μ)-structure

over R. As R varies in NilpW (k0)
, these determine fibered categories fpdivs,μ and

nZinks,μ.

Lemma 5.5. The fibered categories fpdivs,μ and nZinks,μ form stacks for the étale

topology on NilpW (k0)
.

Proof. It is well known that p-divisible groups form an fpqc stack on NilpW (k0)

(see e.g., [26, Rmk. 2.4.2]), and formal p-divisible groups form a substack because

the property of being a formal p-divisible group is fpqc local on the base. Further,

nilpotent Zink displays form an fpqc stack by [30, Thm. 37]. For the remainder of

the proof, the same arguments work for both fpdivs,μ and nZinks,μ, so we give the

proof only for the former.

Let R → R′ be a faithfully flat étale homomorphism of p-nilpotent W (k0)-

algebras. Denote by fpdivs,μ(R
′/R) the category of formal p-divisible groups with

(s, μ)-structure equipped with descent data from Spec R′ down to Spec R. We

want to show the natural functor fpdivs,μ(R)→ fpdivs,μ(R
′/R) is an equivalence.

That the functor is faithful is immediate from the corresponding property for p-

divisible groups. Moreover, morphisms in fpdivs,μ(R
′/R) automatically descend

to isomorphisms of p-divisible groups over R, and these isomorphisms must be

compatible with the tensors by Lemma 2.18.

It remains to prove that objects descend. Let (X ′, t ′) be a formal p-divisible

group with (s, μ)-structure over R′, equipped with a descent datum. We obtain an

object (X, t) over R by descent for p-divisible groups and Lemma 2.18. Frobenius

equivariance of each ti follows from another application of Lemma 2.18, and étale

descent for R-modules implies that each ti preserves the filtrations. Condition (ii)

of Definition 5.2 holds for (X, t) because étale covers are stable under composition.

To finish the proof we need only check that the first condition of Definition 5.2 holds

for (X, t). If B → A is a PD-thickening over R then A′ = A ⊗R R′ is faithfully

flat étale over A, and we can lift B → A to B ′ → A′ with B ′ faithfully flat étale

over B. By the flatness of B → B ′, the divided powers extend to divided powers

on the kernel of B ′ → A′. Hence B ′ → A′ is a PD-thickening over Spec R′, so by

condition (ii) for (X ′, t ′), there is an fppf cover Spec B ′′ → Spec B ′ trivializing

(D(X ′)B′/A′ , t ′). Then the composition Spec B ′′ → Spec B ′ → Spec B provides

an fppf cover which trivializes (D(X)B/A, t). ��
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Remark 5.6. It is a consequence of the theorem of Zink and Lau (see [19, Thm.

1.1.]) and the compatibility of crystals (see Lemma 2.23) that the natural functor

(P, t) �→ (BTR(P), t) defines an equivalence between the stacks nZinks,μ and

fpdivs,μ.

Let us now study Grothendieck-Messing deformation theory in this setting. Let

R be a p-nilpotent W (k0)-algebra and let R0 = R/pR. If X is a p-divisible group

over R, define

T (X)R/R0 := TD(X)R/R0
, and T (X)R/R,μ := TD(X)R/R ,μ, (5.2)

where TD(X)R/R0
and TD(X)R/R ,μ are the G R- and Pμ,R-torsors respectively defined

in Remark 5.3.

Suppose now (X, t) is a formal p-divisible group with (s, μ)-structure over

R, and let (X R0 , t R0
) denote the formal p-divisible group with (s, μ)-structure

over R0 obtained by base change. Then we have a canonical identification

T (X)R/R
∼
−→ T (X R0)R/R0 induced by the isomorphism D(X R0)R/R0

∼
−→ D(X)R/R .

It follows that the Pμ,R-torsor T (X)R/R,μ associated with (X, t) determines a lift

of T (X R0)R0/R0,μ inside of T (X)R/R0 . The same constructions can all be carried

out for nilpotent Zink displays with (s, μ)-structure, and we denote the resulting

G R and Pμ,R-torsors by T (P)R/R0 and T (P)R/R0,μ, respectively.

Define a groupoid fpdivs,μ(R/R0) as follows. For objects take pairs consist-

ing of a formal p-divisible group with (s, μ)-structure (X, t) over R0 and a lift

Tμ ¢ T (X)R/R0 of T (X)R0/R0,μ ¢ T (X)R0/R0 , and for morphisms take pairs of

isomorphisms α : (X, t)
∼
−→ (X ′, t ′) and β : T (X)R/R0,μ

∼
−→ T (X ′)R/R0,μ such

that the isomorphism T (X)R/R0

∼
−→ T (X ′)R/R0 induced by α restricts to β. Define

similarly the category nZinks,μ(R/R0).

Lemma 5.7. The functor

fpdivs,μ(R)→ fpdivs,μ(R/R0) (5.3)

defined by assigning to a p-divisible group with (s, μ)-structure (X, t) its reduction

(X R0 , t R0
) mod p along with the Pμ,R-torsor T (X)R/R,μ inside of T (X)R/R is an

equivalence of categories. Moreover, the analogous result holds for nilpotent Zink

displays with (s, μ)-structure.

Proof. By Grothendieck-Messing theory, the functor X �→ (X R0 ,Fil1(D(X)))

determines an equivalence of categories between formal p-divisible groups X over

R and pairs (X0, E) consisting of a formal p-divisible group X0 over R0 and a lift

of the Hodge filtration of X0 to a direct summand E ¢ D(X0)R/R0 . Indeed, for

p ≥ 3, the divided powers for R → R0 are nilpotent so this follows from [26, V.

Thm. 1.6]. For p = 2 it holds because we are restricting our attention to formal

p-divisible groups, see [21, Rmk. 2.6]. The analogous result holds for nilpotent

Zink displays as well, see [30, Thm. 48]. We will give the remainder of the proof

for formal p-divisible groups; the case of nilpotent Zink displays follows from the

same arguments.
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Grothendieck-Messing theory implies that the functor (5.3) is faithful. Let us

prove it is full, so suppose (X, t) and (X ′, t ′) are formal p-divisible groups over R

with (s, μ)-structure, and suppose we have isomorphisms

α : (X R0 , t R0
)

∼
−→ (X ′

R0
, t ′R0

) and β : T (X R0)R/R0,μ
∼
−→ T (X ′

R0
)R/R0,μ

such that the induced isomorphismα∗ : T (X R0)R/R0

∼
−→ T (X ′

R0
)R/R0 restricts toβ.

By definition of T (X R0)R/R0,μ and T (X ′
R0
)R/R0,μ, it follows that α(Fil1(D(X))) =

Fil1(D(X ′)), étale locally on Spec R. By étale descent for finite projective R-

modules the Hodge filtration will be preserved over R as well, so α lifts to a

morphism X → X ′ by Grothendieck-Messing theory. The tensors are preserved

by the lift because of the equivalence (2.11) between LFCrys(R0/W (k0)) and

LFCrys(R/W (k0)).

Let (X0, t0) be a formal p-divisible group with (s, μ)-structure over R0 with a

lift Tμ of T (X0)R0/R0,μ. By étale descent, it is enough to prove essential surjectivity

étale locally, so we may assume Tμ is a trivial Pμ,R-torsor. Then any ψ ∈ Tμ ¢

T (X0)R/R0 induces an isomorphism (� ⊗Zp
R, (s ⊗ 1)R)

∼
−→ (D(X0)R/R0 , t R)

such that the base change ψ0 of ψ along R → R0 identifies the Hodge filtrations,

i.e.,

ψ0(Fil1(�⊗Zp
R0)) = Fil1(D(X0)), (5.4)

where Fil1(� ⊗Zp
R0) is the filtration defined by μ. Define E = ψ(Fil1(� ⊗Zp

R)) ¢ D(X0)R/R0 . By (5.4), E is a lift of the Hodge filtration for X0, and therefore

the pair (X0, E) lifts to a formal p-divisible group X over R by Grothendieck-

Messing theory. It is immediate from (2.11) that the tensors t0 lift to a set of tensors

t for X , so it remains only to show that conditions (i) and (ii) of Definition 5.2 are

satisfied.

For condition (i), let B → A be a PD-thickening over R. Then B → A →

A/p = A0 is a PD-thickening over R0, so there exists a homomorphism B → B ′

which is faithfully flat and of finite presentation such that there exists an isomor-

phism

(�⊗Zp
B, (s ⊗ 1)B)

∼
−→ (D(X0)B/A0 , t0 B

).

Then condition (i) follows from the identification (D(X0)B/A0 , t0 B
)

∼
−→ (D(X)B/A, t B).

Condition (ii) is satisfied because the isomorphism ψ respects the tensors, and it

respects the Hodge filtration by definition of X . ��

5.2. From G-displays to p-divisible groups

Let G = (G, μ,�, η, s) be a local Hodge embedding datum in the sense of Defini-

tion 4.10. Let P be a Tannakian (G, μ)-display over W (R)which is nilpotent with

respect to η, let P = Zη,R(P) be the associated Zink display, and let X = BTR(P)
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be the associated formal p-divisible group. As in the previous section, the tensors

si , viewed as morphisms Zp → �(i), induce morphisms of crystals

ti := D(P)(si ) : 1 → D(P)η(i). (5.5)

Following the notation of the previous section, we write D(X)(i) = D(X)⊗mi ⊗

(D(X)∨)⊗ni . If B → A is a p-adic PD-thickening, then D(X)B/A is p-adically

complete and separated, since same holds for any finite projective B-module. The

same is true of
(

D(X)B/A

)

(i), and hence the natural map

(

D(X)B/A

)

(i)→ (D(X)(i))B/A (5.6)

is an isomorphism.

By combining (4.3) with Lemma 2.23 and applying the compatibility of D(P)

with tensor products, we have D(P)η(i) ∼= D(X)(i), and hence we obtain mor-

phisms of crystals

ti : 1 → D(X)⊗ (5.7)

for each i . By Lemma 2.23, it is equivalent to view ti as a morphism 1 → D(P)⊗.

Lemma 5.8. The pair (X, t) (resp. (P, t)) defines a formal p-divisible group (resp.

nilpotent Zink display) with (s, μ)-structure.

Proof. It is enough to prove that (X, t) is a p-divisible group with (s, μ)-structure.

Let us write MÃ for the evaluation of P on a representation (V, Ã). We have

isomorphisms D(X) ∼= D(Zη,R(P)) ∼= D(P)η, which all preserve the respective

filtrations (see (2.20) and Lemma 2.23), and since the Hodge filtrations of displays

are compatible with tensor products (see Remark 2.4), we can conclude that the

filtration on D(X)(i)R/R induced from the filtration on D(X)R/R agrees with the

Hodge filtration of Mη(i). Similarly, the filtration on 1 agrees with the one on the

unit display S = (S, Ã ), so it is enough to show the map

(ti )R : R → Ä ∗Mη(i) ⊗W (R) R

preserves the filtrations of the corresponding displays. But the map (ti )R/R is defined

as the reduction of the map S → Mη(i) induced by si , so this is automatic (see

again Remark 2.4). Frobenius equivariance follows from Proposition 4.11 and the

comparison of crystals, so we can conclude t is a collection of crystalline Tate

tensors on D(X) over Spec R.

The lift PB/A of PW (A) is étale locally banal for any PD-thickening B → A

over R. Thus for some étale faithfully flat extension B → B ′, there is an isomor-

phism of tensor functors

D(P)B′/A′
∼
−→ ωB′ ,

where ωB′ is the usual fiber functor, see (3.13). Condition (i) follows.

For condition (ii), by (4.3) and Lemma 2.23, we have a canonical isomorphism

D(X)R/R
∼
−→ D(P)

η
R/R . (5.8)
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Write P(�, η) = Mη, and endow D(P)
η
R/R = Ä ∗Mη ⊗W R R with the Hodge

filtration as in (2.1). Then (5.8) preserves the respective Hodge filtrations (see

(2.20)). Now choose a faithfully flat étale extension R → R′ such that PW (R′) is

banal, with a trivialization ψ : PU
∼
−→ PW (R′) for some U ∈ L+G(R′). Then ψ

induces an isomorphism

�⊗Zp
R′ = D(PU )

η

R′/R′

∼
−→ D(P)

η

R′/R′ . (5.9)

Thus by (5.8) and (5.9), it is enough to show Fil1(D(PU )
η) = �1 ⊗W (k0) R′. But

if PU (�, η) = Mη, then

Fil1(D(PU )
η) = im(θ̄1),

where θ̄1 is the map M
η
1 → Ä ∗Mη → Ä ∗Mη ⊗W (R′) R′. Since PU is banal, we

have

M
η
1 = (�0 ⊗W (k0) IR′)⊕ (�1 ⊗W (k0) W (R′)),

and θ̄1 is reduction modulo IR′ , so the result follows. ��

If P → P ′ is a morphism Tannakian (G, μ)-displays over W (R) which are

nilpotent with respect to η, then it follows from the natural transformation property

that the resulting morphisms P → P ′ and X → X ′ are compatible with the

(s, μ)-structure. Hence we obtain functors

BTG,R : G-Disp
⊗,η
W ,μ(R)→ fpdivs,μ(R), P �→ (BTR(Zη,R(P)), t), (5.10)

and

ZG,R : G-Disp
⊗,η
W ,μ(R)→ nZinks,μ(R), P �→ (Zη,R(P), t). (5.11)

The following lemmas will be useful in the proofs of Theorem A and Corollary

D. Following [30, 2.2], if D is a crystal of OSpec R/W (k0)-modules, then we define

DW (R)/R by

DW (R)/R = lim
←−

DWn(R)/R .

By [30, Prop. 53], if P is a nilpotent Zink display over W (R), there is a canonical

isomorphism

¸ : D(P)W (R)/R
∼
−→ P. (5.12)

Explicitly, the isomorphism is defined as follows. The Cartier homomorphism  :

W (R) → W (W (R)) (see [30, (90)]) defines a morphism of 1-frames W(R) →

W(W (R)/R), and the base change  ∗ P is lift of P to a W(W (R)/R)-window

(note that by [20, Lem. 2.12] we can freely pass between W(W (R)/R)-windows

and compatible systems of W(Wn(R)/R)-windows for varying n as defined in

[30]). Such a lift is unique up to unique isomorphism lifting idP by [30, Thm. 44],

so we have an isomorphism of W(W (R)/R)-windows

˜̧ : PW (R)/R

∼
−→  ∗ P, (5.13)
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which reduces to the identity after base change along W(W (R)/R) → W(R).

Here PW (R)/R is the lift of P used to define D(P). Then (5.12) is obtained by

tensoring (5.13) along ŵ0 : W (W (R)) → W (R), where ŵ0 denotes the zeroth

ghost coordinate for W (W (R)). It is clear from this description and uniqueness

of lifts to W(W (R)/R) that ¸ is functorial in P . In other words, if P ′ is another

nilpotent Zink display with corresponding homomorphism ¸ ′ as in (5.12), and

β : P → P ′ is a morphism of displays, then

β ◦ ¸ = ¸ ′ ◦ D(β). (5.14)

If P is a Tannakian (G, μ)-display over W (R) which is nilpotent with respect

to η, and P(�, η) = (Mη, Fη), then by Lemma 4.5 there is an isomorphism

D(P)η
∼
−→ D(Zη(P)). Combining this with (5.12), we obtain an isomorphism

D(P)
η

W (R)/R

∼
−→ Ä ∗M , which we also denote by ¸ . Using compatibility of P and

D(P) with tensor products, ¸ extends to

¸(i) : D(P)
η(i)

W (R)/R

∼
−→ Ä ∗Mη(i). (5.15)

Lemma 5.9. Let P be a Tannakian (G, μ)-display over W (R) which is nilpotent

with respect to η. Suppose P is banal, with a trivialization given byψ : PU
∼
−→ P

for some U ∈ L+G(R). Then there exists a unique isomorphism of tensor functors

� : ωW (R)
∼
−→ D(P)W (R)/R

such that ¸ ◦�η = Ä ∗ψη.

Proof. Uniqueness follows immediately from the identity ¸ ◦�η = Ä ∗ψη because

the representation (�, η) is a tensor generator for the category RepZp
(G) (see for

example [29, Thm. 2.2.8]), and any two morphisms of tensor functors which agree

after evaluation on a tensor generator will agree in general.

Next we prove existence. For every n ≥ 1, denote by rn the natural quotient

W (R)→ Wn(R), and let Un = (W (rn) ◦ )(U ) ∈ L+G(Wn(R)). For each n, the

trivializationψ lifts to a trivializationψn : PUn

∼
−→ Pn , where Pn is the unique lift

of P to an adjoint nilpotent Tannakian (G, μ)-display over W (Wn(R)/R)-display,

see Remark 4.4. Hence we obtain isomorphisms V ⊗Zp
Wn(R)

∼
−→ D(P)

Ä

Wn(R)/R

for every representation (V, Ä). Moreover, these are compatible with the natural

maps V ⊗Zp
Wn(R)→ V ⊗Zp

Wn−1(R) induced by rn−1 becauseUn is a compatible

system of lifts. In this way we obtain an isomorphism of tensor functors

� : ωW (R)
∼
−→ D(P)W (R)/R .

It remains to show

¸ ◦�η = Ä ∗ψη (5.16)

Let Zη(P)W (R)/R and Zη(PU )W (R)/R be the unique lifts of Zη(P) and Zη(PU ),

respectively, to windows over W(W (R)/R) By [20, Lem 2.12], Zη(P)W (R)/R

is the inverse limit of the compatible system of lifts Zη(P)Wn(R)/R = Zη(Pn),
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and likewise for Zη(PU )W (R)/R . We claim �η is the reduction modulo ŵ0 of the

isomorphism of W(W (R)/R)-windows

Zη(ψ)W (R)/R : Zη(PU )W (R)/R = lim
←−

Zη(PUn )
lim Ä∗(ψn )

η

−−−−−−→ lim
←−

Zη(Pn) = Zη(P)W (R)/R .

Indeed, this can be checked after applying − ⊗W (R) Wn(R) to the underlying

W (R)-modules for every n, and therefore the result follows from the identity

rn◦ŵ0 = ŵ0◦W (rn). Moreover, since ŵ0◦ = idW (R), Ä
∗ψη is the reduction mod-

ulo ŵ0 of the morphism of W(W (R)/R)-windows  ∗Ä ∗ψη : Zη(PU )W (R)/R =

 ∗Zη(PU ) →  ∗Zη(P), and ¸ is the reduction of ˜̧ (see (5.13)). Thus to show

(5.16), it is enough to show the identity

 ∗Ä ∗ψη = ˜̧ ◦ Zη(ψ)W (R)/R

of morphisms of W(W (R)/R)-windows. This can be checked after base change

to W(R). But W (w0)
∗ ∗Ä ∗ψη = Ä ∗ψη because W (w0) ◦  = idW (R), and

W (w0)
∗Zη(ψ)W (R)/R = Ä ∗(ψ1)

η = Ä ∗ψη. The result follows because ˜̧ lifts the

identity of Zη(P). ��

Lemma 5.10. Let P be a Tannakian (G, μ)-display over W (R) which is nilpotent

with respect toη, and let ti = D(P)(si ) as in (5.5). Then ¸(i)◦(ti )W (R) = Ä ∗P(si ).

Proof. By Zink’s Witt vector descent [30, Prop. 33], the question is fpqc-local on

Spec R, so we may assume P is banal, with a trivialization ψ : PU → P for

some U ∈ L+G(R). Then by Lemma 5.9 there is an isomorphism� : ωW (R)/R
∼
−→

D(P)W (R)/R such that ¸(η) ◦�η = Ä ∗ψη.

Because ψ is a morphism of tensor functors, we have P(si ) = Ä ∗ψη(i) ◦ (si ⊗

1)W (R). Likewise (ti )W (R) = �η(i) ◦ (si ⊗ 1)W (R). Then

¸(i) ◦ (ti )W (R) = ¸(i) ◦�η(i) ◦ (si ⊗ 1)W (R) = Ä ∗ψη(i) ◦ (si ⊗ 1)W (R) = P(si ).

��

5.3. Proof of Theorem A

In this section we prove Theorem A. Our strategy is as follows: We first prove the

theorem in the case where pR = 0 and R admits a p-basis étale locally by following

the strategy in the proof of [9, Thm. 5.15]. That is, we first prove full-faithfulness of

the functor, and then we reduce essential surjectivity to the banal case using descent,

see Proposition 5.16 below. The case of general R is then reduced to the case where

pR = 0 using the analogs of Grothendieck-Messing theory in the two settings; this

is Theorem 5.17. Let G = (G, μ,�, η, s) be a local Hodge embedding datum as

in the previous section.

Let R be a p-nilpotent W (k0)-algebra, and let M be a finite projective graded

W (R)⊕-module. Suppose we are given a collection u = (u1, . . . , ur ) of W (R)-

module homomorphisms ui : W (R)→ (Ä ∗M)(i). Define

QM,u = Isom0((�W (R)⊕, (s ⊗ 1)W (R)), (M, u))
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to be the fpqc sheaf on Spec R of isomorphisms of graded W (R)⊕-modules

ψ : �W (R)⊕
∼
−→ M which respect the tensors after pulling back by Ä , in the

sense that (Ä ∗ψ)(i)◦ (si ⊗1)W (R) = ui for every i . We will denote such an isomor-

phism by (�W (R)⊕ , (s ⊗1)W (R))
∼
−→ (M, u). We write Aut0(�W (R)⊕, (s ⊗1)W (R))

for the sheaf Q�W (R)⊕ ,(s⊗1)W (R) . When the set of tensors is empty, we denote the

corresponding sheaf simply by Aut0(�W (R)⊕). By the arguments of [9, Lem. 3.9],

we have

Aut0(�W (R)⊕)
∼= L+

η◦μGL(�). (5.17)

It follows from (5.17) and Lemma 5.11 below that we have an identification

Aut0(�W (R)⊕ , (s ⊗ 1)W (R)) = L+
μG. (5.18)

Lemma 5.11. Let g ∈ L+
η◦μGL(�)(R). Then g ∈ L+

μG(R) if and only if Ä(g) ∈

L+G(R).

Proof. For any reductive group scheme H over Zp with cocharacter λ : Gm → H ,

let Pλ ¢ H be the parabolic subgroup defined by λ, see (3.4). Following [5], define

also a closed subgroup scheme Hλ ¢ L+H by

Hλ(R) = {h ∈ H | h0 ∈ Pλ(R)}

for any Zp-algebra R, where h0 denotes the image of h under w0 : H(W (R)) →

H(R).

By [24, Rmk. 6.3.3], Ä induces isomorphisms

L+
η◦μGL(�)

∼
−→ Hη◦μ and L+

μG
∼
−→ Hμ.

Thus we reduce to showing that Hη◦μ ∩ L+G = Hμ, which follows from the

identity Pη◦μ ∩ G = Pμ, see [6, Prop. 4.1.10, 1.]. ��

Suppose (P, t) is a nilpotent Zink display with (s, μ)-structure over R, and let

M = MW (R)(P) be the 1-display associated with P as in Lemma 2.8 (here we use

notation as in (2.5)). Recall the isomorphism ¸ : D(P)W (R)/R
∼
−→ P = Ä ∗M (see

(5.12)), which extends to an isomorphism ¸(i) : D(P)W (R)/R(i)
∼
−→ Ä ∗M(i). For

each i , then, we obtain a W (R)-module homomorphism

¸(i) ◦ (ti )W (R) : W (R)→ (Ä ∗M)(i),

which we denote by ui . Notice here that we are using the natural isomorphism (5.6)

to identify

(

D(P)W (R)/R

)

(i)
∼
−→

(

D(P)(i)
)

W (R)/R
.

Lemma 5.12. Let (P, t) be a nilpotent Zink display with (s, μ)-structure, and let

M = MW (R)(P) be the 1-display associated with P. Let ui = ¸(i)◦(ti )W (R). Then

the fpqc sheaf

QM,u = Isom0((�W (R)⊕, (s ⊗ 1)W (R)), (M, u))

is an étale locally trivial L+
μG-torsor over Spec R.
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Proof. By (5.18) it is enough to show that, étale locally, there is an isomorphism

ψ : (�W (R)⊕, (s ⊗ 1)W (R))
∼
−→ (M, tW (R)). Moreover, letting

Fil�W (R) := I (R)(�0 ⊗W (k0) W (R))⊕ (�1 ⊗W (k0) W (R)),

we see that it is enough to show that, étale locally, there is an isomorphism ψ :

�W (R)
∼
−→ P which sends Fil�W (R) into Fil P and which respects the tensors.

Condition (ii) in Definition 5.2 implies that, after replacing R by some faithfully

flat étale extension, we have an isomorphism �R
∼
−→ D(P)R/R which sends �1

R

into Fil1(D(P)) and which respects the tensors. Recalling the identifications

D(P)R/R = P/I (R)P, Fil1(D(P)) = Fil P/I (R)P, and ¸ : D(P)W (R)/R
∼
−→ P,

we reduce the proof to showing that any such isomorphism lifts to an isomorphism

�W (R)
∼
−→ D(P)W (R)/R which respects the tensors, since any lift will automatically

preserve the filtrations.

Define Y to be the W (R)-scheme whose points in a W (R)-algebra R′ are

isomorphisms �R′
∼
−→ D(P)W (R)/R ⊗W (R) R′ which respect the tensors, i.e.

Y (R′) = Isom((�R′ , (s ⊗ 1)R′), (D(P)W (R)/R ⊗W (R) R′, tW (R) ⊗ idR′)).

We need to show that the natural map Y (W (R)) → Y (R) is surjective. For every

n, define the analogous Wn(R)-scheme Yn , so for any Wn(R)-algebra R′ we have

Yn(R
′) = Isom((�R′ , (s ⊗ 1)R′), (D(X)Wn(R)/R ⊗Wn(R) R′, t Wn(R)

⊗ idR′)).

Then, in particular, Yn(R
′) = Y (R′) for all Wn(R)-algebras, and condition (i) of

Definition 5.2 implies that Yn is an fppf locally trivial GWn(R)-torsor. In particular,

Yn is formally smooth over Wn(R). Since Wn(R)→ Wn−1(R) has nilpotent kernel

for all p-nilpotent W (k0)-algebras R, it follows that the natural map Yn(Wn(R))→

Yn(Wn−1(R)) is surjective for all n. Hence Y (Wn(R))→ Y (Wn−1(R)) is surjective

for all n, and therefore so too is Y (W (R))→ Y (R). ��

Continuing with the notation of Lemma 5.12, so (P, t) is a nilpotent Zink

display with (s, μ)-structure over R, and M is the corresponding 1-display over

W (R). Thus we have an identity P = Ä ∗M . Suppose β ∈ QM,tW (R)
(R). Then Ä ∗β

defines an isomorphism �W (R) = Ä ∗(�W (R)⊕)
∼
−→ Ä ∗M , and the composition

�W (R)
∼
−→ Ã ∗�W (R)⊕

Ã ∗β
−−→ Ã ∗M

F


−→ Ä ∗M
Ä∗β−1

−−−→ �W (R) (5.19)

determines an element Uβ ∈ GL(�W (R)).

Let L = β(�⊗Zp
W (R)) ¢ M viewed as a graded W (R)-module. Then multi-

plication induces an isomorphism of graded W (R)⊕-modules L ⊗W (R)W (R)
⊕ ∼

−→

M . This gives us an identification of W (R)-modules

L
∼
−→ Ä ∗(L ⊗W (R) W (R)⊕)

∼
−→ Ä ∗M = P (5.20)
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such that the composition � ⊗Zp
W (R)

∼
−→ L → P is equal to Ä ∗β. Denote by

L0 and L1 the images of β(�0
W (R)) and β(�1

W (R)) respectively inside P under

(5.20), so P = L0 ⊕ L1. If we define � = F0

∣

∣

L0
⊕ F1

∣

∣

L1
, then � is an f -linear

automorphism, and (L0, L1, �) is a normal representation for P . Moreover, we

have an isomorphism

f ∗ P
∼
−→ f ∗L

∼
−→ Ã ∗(L ⊗W (R) W (R)⊕)

∼
−→ Ã ∗M, (5.21)

where the first arrow comes from applying f ∗ to the inverse of (5.20). From the

definition of the equivalence between 1-displays and Zink displays (see Lemma

2.8), the identification (5.21) has the property that the composition f ∗ P
(5.21)
−−−−→

Ã ∗M
F


−→ Ä ∗M = P is equal to �
 : f ∗ P
∼
−→ P . Hence (5.19) can be identified

with the composition

�W (R)
∼
−→ f ∗�W (R)

f ∗Ä∗β
−−−→ f ∗ P

�


−→ P
Ä∗β−1

−−−→ �W (R). (5.22)

By definition of L0 and L1, the isomorphism Ä ∗β : �⊗Zp
W (R)

∼
−→ P sends�0

W (R)

to L0 and�1
W (R) to L1. Thus (5.22) implies that we have an isomorphism between

P and the display Pβ given by Pβ = � ⊗Zp
W (R) with normal representation

(�0
W (R),�

1
W (R),Uβ ◦ (id ⊗ f )).

Using the isomorphism Ä ∗β : Pβ
∼
−→ P , we can extend the tensors t to Pβ .

Explicitly, let t ′i be the composition

1
ti
−→ D(P)(i)

(Ä∗β)−1

−−−−→ D(Pβ)(i). (5.23)

Becauseβ ∈ QM,u , we know Ä ∗β◦(si ⊗1)W (R) = ui . Write ¸β for the isomorphism

D(Pβ)W (R)/R
∼
−→ Pβ given by (5.12). Then ¸β(i) ◦ (si ⊗ 1)W (R) = (si ⊗ 1)W (R).

Hence by functoriality of ¸ (see (5.14)), we see

(t ′i )W (R) = (si ⊗ 1)W (R). (5.24)

Let Ã denote the representation GL(�)→ GL(�(i)).

Lemma 5.13. Suppose pR = 0 and that R admits a p-basis étale locally. Then in

the situation described above, Ã(Uβ)(si ⊗ 1)W (R) = (si ⊗ 1)W (R).

Proof. By descent for Witt vectors [30, Prop. 33] we may assume R admits a p-

basis. In that case the map from R to its perfect closure Rperf is faithfully flat by

Lemma 2.20, so we may further assume that R is perfect.

Let Pβ be defined as above, and write Pβ = (Pβ ,Fil Pβ , Fβ,0, Fβ,1). By [30,

Prop. 57], the identification ¸ : D(Pβ)W (R)/R
∼
−→ Pβ (see (5.12)) is compatible

with the Frobenius. Thus the composition

f ∗D(Pβ)W (R)/R
∼
−→ φ∗D(Pβ)W (R)/R

FW (R)/R
−−−−→ D(Pβ)W (R)/R
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is given by F


β,0 : f ∗ Pβ → Pβ . Moreover, Pβ = � ⊗Zp

W (R) and F


β,0 =

Uβ ◦ (id�0
W (R)

⊕ p · id�1
W (R)
) ◦ (id ⊗ f )
 by definition of Pβ . Thus the composition

�⊗Zp
W (R)

∼
−→ f ∗(�⊗Zp

W (R)) = f ∗ Pβ
F


β,0

−−→ P = �⊗Zp
W (R)

is given by Uβ ◦(id�0
W (R)

⊕ p ·id�1
W (R)
). Similarly the evaluation of the Verschiebung

on W (R) → R is identified with (p · id�0
W (R)

⊕ �1
W (R)) ◦ U−1

β under the above

identifications.

Since si is fixed by G for all i , we have in particular si ⊗ 1 ¢ (�(i))0. Hence

we can compute exactly as at the end of Proposition 4.11 to obtain

pni Fi (si ⊗ 1)W (R) = pniÃ(U )(si ⊗ 1)W (R).

By (5.24), (si ⊗ 1)W (R) = (t ′i )W (R). Since t ′i is Frobenius invariant, it follows that

pni (si ⊗ 1)W (R) = pniÃ(U )(si ⊗ 1)W (R). Thus Ã(U )(si ⊗ 1)W (R) = (si ⊗ 1)W (R)
because W (R) is p-torsion free when R is perfect. ��

In the following lemma, we associate a G-display of type μ over W (R) to any

nilpotent Zink display with (s, μ)-structure (P, t). Continue the notation of Lemma

5.12, and denote by αM,u the map QM,u → L+G, β �→ Uβ defined by Lemma

5.13.

Lemma 5.14. Suppose pR = 0 and that R admits a p-basis étale locally. Then

the pair (QM,u, αM,u) determines a G-display of type μ over W (R). Moreover, if

M = P(�, η) for some Tannakian (G, μ)-display P over W (R), then evaluation

on (�, η) induces an isomorphism of G-displays of type μ

(QP , αP )
∼
−→ (QM,u, αM,u).

Remark 5.15. Here (QP , αP ) is the G-display of type μ over W (R) associated

with P as in (3.10) (see also [9, Constr. 3.15]).

Proof. For the first assertion, we note that if h ∈ L+
μG(R), then Uβ·h is the com-

position Ä ∗h−1 ◦ Ä ∗β−1 ◦�
 ◦ Ã ∗h ◦ Ã ∗β, which is equal to Ä(h)−1 · Uβ · Ã(h).

The second assertion follows from the proof of [9, Lem. 5.14]. ��

We can now prove Theorem A in the case where pR = 0.

Proposition 5.16. Suppose pR = 0 and R admits a p-basis étale locally. Then the

functor BTG,R is an equivalence.

Proof. By Remark 5.6 it is enough to show the functor ZG,R is an equivalence. The

proof in this case is formally very similar to the proof of [9, Thm. 5.15]. Indeed,

faithfulness of ZG,R follows exactly as in loc. cit. Namely, the problem reduces

by descent to faithfulness of the representation η. For fullness, if P and P ′ are

Tannakian (G, μ)-displays over W (R) which are nilpotent with respect to η, and

ϕ : ZG,R(P) → ZG,R(P
′) is a morphism of p-divisible groups with (s, μ)-

structure, one uses Lemma 5.14 to obtain a morphism (QP , αP )→ (QP ′, αP ′)
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of G-displays of type μ over W (R), which is induced from a unique morphism

ξ : P → P ′. As in the proof of [9, Thm. 5.15], we have Zη,R(ξ) = ξη = ϕ.

Let us now show essential surjectivity. Let (P, s) be a nilpotent Zink display

with (s, μ)-structure over R. Since ZG,R is fully faithful, by descent it is enough to

show that (P, t) is étale locally in the essential image of ZG,R . Let M = MW (R)(P)

be the 1-display corresponding to P . By Lemma 5.12, QM,u(R
′) has a section β

for some étale faithfully flat extension R′ of R. The composition Uβ = Ä ∗β−1 ◦

F



R′ ◦ Ã ∗β is an element of L+G(R′) by Lemma 5.13, and Zη,R′(PUβ ) = Pβ ,

where Pβ is the Zink display with normal representation (�0
W (R),�

1
W (R),Uβ ◦

(id⊗ f )) defined before Lemma 5.13. It follows that β determines an isomorphism

Zη,R′(PUβ ) = Pβ
∼
−→ P R′ . It remains to show the induced isomorphism of crystals

D(Pβ)
∼
−→ D(P R′) (5.25)

sends ti to tβ,i := D(PUβ )(si ) for all i . Let t ′i be the tensor for Pβ induced by (5.25),

see also (5.23). Since β ∈ QM,u , we know that (t ′i )W (R) = (si ⊗1)W (R), see (5.24).

On the other hand, it follows from Lemma 5.10 that (tβ,i )W (R) = (si ⊗ 1)W (R).

Thus we have the equality t ′i = tβ,i by Lemma 2.21, so Zη,R′(PUβ )
∼= (P, t). ��

Theorem 5.17. Suppose R is a p-nilpotent W (k0)-algebra such that R/pR has a

p-basis étale locally. Then the functor BTG,R is an equivalence.

Proof. Let R0 = R/pR. We have a commutative diagram of functors

G-Disp
⊗,η
W ,μ(R) fpdivs,μ(R)

G-Disp
⊗,η
W ,μ(R0) fpdivs,μ(R0).

BTG,R

BTG,R0

By Proposition 5.16, the bottom horizontal arrow is an equivalence.

By Proposition 3.29 and Proposition 3.24, lifts of a Tannakian (G, μ)-display

P over W (R0) along the left-hand vertical arrow correspond to lifts of the Hodge

filtration FilP of the fiber functor ωP to a filtration of ωP,R . Equivalently, by the

discussion at the end of 3.2, lifts of P correspond to lifts of the Hodge filtration

QFilP of the corresponding G-display of type μ to a Pμ,R-torsor Qμ inside the

G R-torsor QωP .R
.

On the other hand, by Lemma 5.7, we have an analogous description of lifts

along the right-hand arrow: Lifts of a formal p-divisible group with (s, μ)-structure

(X, t) over μ correspond to lifts of the Pμ,R0 -torsor T (X)R0/R0,μ associated with

(X, t) to a Pμ,R-torsor Tμ inside the G R-torsor T (X)R/R0 . Thus BTG,R will be an

equivalence if we can show that the respective torsors correspond under BTG,R .

Let P be a Tannakian (G, μ)-display over R which is nilpotent with respect

to η, and write P(V, Ä) = (MÄ, FÄ) for every representation (V, Ä) of G. Set

(X, t) = BTG,R(P). Then the G R- and Pμ,R torsors associated to P are

QωP
= Isom⊗(ωR, ωP ) and Isom⊗(Filμ,FilP ),
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respectively, see (3.14) and (3.17). Any β ∈ QωP
is an isomorphism of tensor

functors, so β(si ⊗ 1)R = Ǟ ∗P(si ) for every i . Therefore evaluation on η induces

an isomorphism of G R-torsors

QωP

∼
−→ Isom((�⊗Zp

R, (s ⊗ 1)R), (Ä
∗Mη ⊗W (R) R, Ǟ ∗

P(s))).

But we have an isomorphism Ä ∗Mη ⊗W (R) R = D(P)
η
R/R

∼
−→ D(X)R/R , and

under this isomorphism Ǟ ∗(P(si )) is identified with (ti )R by definition of ti (see

(5.5)). Thus we have an isomorphism of G R-torsors QωP

∼
−→ T (X)R/R . Similarly,

QFilP

∼
−→ T (X)R/R,μ, since if β ∈ QωP

preserves the Hodge filtration of the

Tannakian (G, μ)-display, then its evaluation on ηwill preserve the Hodge filtration

of the corresponding formal p-divisible group.

Finally we check that D(P)η
∼
−→ D(X) induces an isomorphism QωP ,R

∼
−→

T (X)R/R0 . This is similar to the case of QωP
, except here evaluation on (�, η)

sends an isomorphism β ∈ QωP ,R
to an isomorphism

(�⊗Zp
R, (s ⊗ 1)R)

∼
−→ (Ä̃ ∗M

η
R/R0

⊗W (R) R, Ä̃ ∗(PR/R0(s))), (5.26)

where M
η
R/R0

is the evaluation of the unique lift PR/R0 of P to a Tannakian

(G, μ)-display over W (R/R0). By definition of D(P), the right-hand side of (5.26)

is identified with (D(P)
η
R/R0

,D(P)R/R0(s)), and hence with (D(X)R/R0 , t R).

Therefore we obtain an isomorphism of G R-torsors QωP ,R

∼
−→ T (X)R/R0 , and the

theorem follows. ��

5.4. RZ spaces of Hodge type

In this section we give an explicit isomorphism between the Rapoport-Zink functor

of Hodge type defined using Tannakian (G, μ)-displays as in [5] and [9], and the

one defined using crystalline Tate tensors as in [16] and [14]. We begin by recalling

the definition of G-quasi-isogenies as in [9], which are used to define the Rapoport-

Zink functor in terms of Tannakian (G, μ)-displays.

If R is a Zp-algebra, the Frobenius for W (R) naturally extends to W (R)[1/p].

An isodisplay over R is a pair (N , ϕ) where N is a finitely generated projective

W (R)[1/p]-module and ϕ : N → N is an f -linear isomorphism. If M is a display

over W (R), then we can associate to M an isodisplay (N , ϕ) using the process

explained in [9, 3.4]. Let us review the construction.

If M = (M, F) is a display over W (R) with standard datum (L ,�), then

the depth of M is the smallest integer d such that Ld , the d th graded piece of

L =
⊕

L i , is nonzero. By [9, Lem. 2.7], d does not depend on the choice of normal

decomposition. Moreover, by [9, Lem. 2.8], the natural map θn : Mn → Ä ∗M (see

2.1) is an isomorphism of W (R)-modules for all n ≤ d.

Suppose M is a display of depth d. Define ϕ = pd ◦ Fd ◦ θ−1
d . Then N =

(Ä ∗M, ϕ) is an isodisplay, and the assignment M �→ (Ä ∗M, ϕ) determines an exact

tensor functor from displays over W (R) to isodisplays over R. A quasi-isogeny of

displays over W (R) is an isomorphism of their corresponding isodisplays, and a
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quasi-isogeny is an isogeny if it is induced from a morphism of displays. These

notions naturally extend to G-displays. Indeed, a G-isodisplay over R is an exact

tensor functor RepZp
(G)→ Isodisp(R). Any G-display P naturally determines a

G-isodisplay P[1/p] by composition of functors, and a G-quasi-isogeny between

two G-displays is an isomorphism of their corresponding G-isodisplays. See [9,

3.4] for more details.

Let us now recall the definition of local Shimura data of Hodge type as in [14]

and [5] (see also [9]). Let k be an algebraic closure of Fp, and let W (k) be the Witt

vectors over k. Write K = W (k)[1/p], and let K̄ be an algebraic closure of K . We

will write Ã for the extension of the Frobenius of W (k) to K (hopefully this causes

no confusion with the previous definition of Ã ).

Assume that G is a connected reductive group scheme over Zp , and let ({μ}, [b])

be a pair such that

• {μ} is a G(K̄ )-conjugacy class of cocharacters Gm K̄ → G K̄ ;

• [b] is a Ã -conjugacy class of elements b ∈ G(K ).

The local reflex field is the field of definition E of the conjugacy class {μ}. Because

GQp
splits over an unramified extension of Qp, E is a subfield of K (a priori,

E ¢ K̄ ), and by [18, Lem. 1.1.3], there is a cocharacter μ ∈ {μ} which is defined

over E . Moreover, we an find a representative μ which extends to an integral

cocharacter defined over the valuation ring OE of E . Note that if kE is the residue

field of OE , then kE is finite, OE = W (kE ), and E = W (kE )[1/p].

We say the triple (G, {μ}, [b]) is a local unramified Shimura datum if {μ} is

minuscule and for some (or equivalently, any) integral representative μ of {μ}, the

Ã -conjugacy class [b] has a representative

b ∈ G(W (k))Ã (μ)(p)G(W (k)).

If these assumptions are satisfied, then we can find an integral representative μ of

{μ} defined over OE and a representative b of [b] such that b = uÃ(μ)(p) for some

u ∈ L+G(k). Such a pair (μ, b) will be called a framing pair.

If (μ, b) is a framing pair, then we associate to (μ, b) the framing object P0 :=

Pu where u ∈ L+G(k) is the unique element such that b = uÃ(μ)(p), and Pu is

defined as in Proposition 3.20.

Definition 5.18. Fix a framing pair (μ, b) for (G, {μ}, [b]), and let P0 be the

associated framing object. The display RZ-functor associated with (G, μ, b) is

the functor on NilpW (k) which assigns to a p-nilpotent W (k)-algebra R the set of

isomorphism classes of pairs (P, Ä), where

• P is a Tannakian (G, μ)-display over R,

• Ä : PR/pR ��� (P0)R/pR is a G-quasi-isogeny.

Denote the display RZ-functor associated with (G, μ, b) by RZ
disp
G,μ,b.

Let Nilpfsm
W (k) denote the category of adic W (k)-algebras in which p is nilpotent,

and which are formally finitely generated and formally smooth over W (k)/pn W (k)
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for some n ≥ 1. We extend RZ
disp
G,μ,b to a functor RZ

disp,fsm
G,μ,b on Nilpfsm

W (k) by defining

RZ
disp,fsm
G,μ,b (A) := lim

←−
n

RZ
disp
G,μ,b(A/I n),

where I is an ideal of definition of A.

Remark 5.19. Let A ∈ Nilpfsm
W (k), and suppose I is an ideal of definition for A.

Define a Tannakian (G, μ)-display over Spf A to be a compatible system (Pn)n of

Tannakian (G, μ)-displays Pn over W (A/I n). Likewise, a G-quasi-isogeny over

Spf A is a compatible system (Än)n of G-quasi-isogenies over A/I n . With these

definitions, we see that RZ
disp,fsm
G,μ,b (A) is the set of isomorphism classes of pairs

((Pn)n, (Än)n), with (P)n a Tannakian (G, μ)-display over Spf A, and (Än)n a

G-quasi-isogeny PA/p A ��� (P0)A/p A defined over Spf A/p A. In fact, by [5,

Prop. 3.2.11] and [9, Cor. 3.17], the categories of Tannakian (G, μ)-displays over

W (A) and over Spf A are equivalent, so it is equivalent to consider pairs (P, (Än)n),

where P is a Tannakian (G, μ)-display over W (A) and (Än)n is a G-quasi-isogeny

over Spf A/p A.

Let (G, μ) be of Hodge type as in Definition 4.6, with Hodge embedding η :

G ↪→ GL(�). Suppose (μ, b) is a framing pair, and let P0 be the framing object

given by u ∈ L+G(k), so b = uÃ(μ)(p). Then G is cut out by some collection

of tensors s, and G = (G, μ,�, η, s) is a local Hodge embedding datum. For the

remainder of this section we will assume P0 is nilpotent with respect to η. Then

by [5, Thm. 5.1.3], the restriction of RZ
disp
G,μ,b to Noetherian algebras in NilpW (k) is

representable by a formal scheme RZBP
G,μ,b which is formally smooth and formally

locally of finite type over W (k). Applying BTG,k to P0, we obtain a formal p-

divisible group with (s, μ)-structure

(X0, t0) = (BTk(Zk(P0)),D(P0)(s)).

Definition 5.20. Let G = (G, μ,�, η, s), b and (X0, t0) be as above. The p-

divisible group RZ-functor associated with the data (G, b) is the functor on NilpW (k)

which assigns to a p-nilpotent W (k)-algebra the set of isomorphism classes of

triples (X, t, ι), where

• (X, t) is a p-divisible group with (s, μ)-structure,

• ι : X ⊗R R/pR ��� X0 ⊗k R/pR is a quasi-isogeny such that, for some

nilpotent ideal J ¢ R with p ∈ J , the composition of ti with

D(ιR/J ) : D(X ⊗R R/J )⊗[1/p]
∼
−→ D(X ⊗k R/J )⊗[1/p]

is equal to t0,i for every i .

Denote the p-divisible group RZ-functor associated with (G, b) by RZ
p-div
G,b .

We also extend RZ
p-div
G,b to a functor RZ

p-div,fsm
G,b on Nilpfsm

W (k) by defining

RZ
p-div,fsm
G,b (A) := lim

←−
n

RZ
p-div
G,b (A/I n),

where once again I is an ideal of definition of A.
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Remark 5.21. As in the case of the display RZ-functor, the extension to Nilpfsm
W (k)

can be thought of as classifying objects over Spf A. More precisely, RZ
p-div,fsm
G,b (A)

is the set of isomorphism classes of triples (X, t, ι), with (X, t) a p-divisible group

with (s, μ)-structure over Spf A, and ι = (ιn)n a quasi-isogeny over Spf A/p A

such that for every n, D((ιn)A/I ) ◦ ti = t0,i , for all i . Since (ιn)n is a compatible

system, it is equivalent to assume D(ι1) ◦ ti = t0,i for all i . If I is chosen with

p ∈ I , then by rigidity of quasi-isogenies along with [12, Lem. 2.4.4] and the proof

of [12, Prop. 2.4.8], elements of RZ
p-div,fsm
G,b (A) correspond to triples (X, t, ι), with

(X, t) a p-divisible group with (s, μ)-structure over Spec A and

ι : X ⊗A A/I ��� X0 ⊗k A/I

a quasi-isogeny such that D(ι) ◦ ti = t0,i for all i (see [14, 2.3.6] for details).

Suppose (P, Ä) ∈ RZ
disp
G (R) for R ∈ NilpW (k). Let us write

PR/pR(�, η) = Mη and (P0)R/pR(�, η) = M0
η.

By evaluating Ä on (�, η), we obtain a quasi-isogeny of 1-displays

Mη
��� M0

η.

By [30, Prop. 66], such a quasi-isogeny is equivalent to an invertible section of

HomDisp(W (R/pR))(M
η,M0

η)[1/p],

so the functor BT induces a quasi-isogeny of p-divisible groups

ιÄ : BT(Zη(PR/pR)) ��� BT(Zη((P0)R/pR)).

If (Än)n is a G-quasi-isogeny defined over Spf A/p A for A ∈ Nilpfsm
W (k) with ideal

of definition I containing p, then by taking R = A/I n as n varies we obtain a

quasi-isogeny of p-divisible groups (ιÄn )n defined over Spf A/p A.

Lemma 5.22. The assignment

(P, (Än)n) �→ (BTG,R(P), (ιÄn )n)

determines a natural transformation � : RZ
disp,fsm
G,μ,b → RZ

p-div,fsm
G,b of functors on

Nilpfsm
W (k).

Proof. Let P be a Tannakian (G, μ)-display over W (A), and let (Än)n be a G-

quasi-isogeny over Spf A (cf. Remark 5.19). Suppose I is an ideal of definition for

A with p ∈ I , and let R = A/I . Write Ä = Ä1, and ι = ιÄ , so ι = (ιÄn )R for every

n. We need to show D(ι) ◦ ti = t0,i for every i . We claim it is enough to show this

after evaluation on W (R)→ R. Indeed, by [14, Lem. 3.2.8 and its proof], since R

is finitely generated over k, it is enough to check the identity holds at a closed point

in each connected component of Spec R (see also [14, Rmk. 2.3.5 (d)]). But any

field k′ of characteristic p has a p-basis, so if the identity holds after evaluation on

W (k′)→ k′, then it holds over Spec k′ by Lemma 2.21.



102 P. Daniels

Since Ä is a natural transformation of functors Ä : P[1/p] → (P0)R[1/p],

we have an identification

Äη(i) ◦ P[1/p](si ) = (P0)R[1/p](si ). (5.27)

Moreover, by definition, we have P[1/p](si ) = Ä ∗P(si ), so (5.27) can be rewrit-

ten as

Äη(i) ◦ Ä ∗
P(si ) = Ä ∗(P0)R(si ). (5.28)

Recall the isomorphism ¸(i) : D(P)
η(i)

W (R)/R

∼
−→ Ä ∗Mη(i) (see (5.15)). We will write

¸0(i) for the analogous isomorphism defined for P0. By Lemma 5.10, Ä ∗P(si ) =

¸(i) ◦ (ti )W (R), and Ä ∗(P0)R(si ) = ¸0(i) ◦ (t0,i )W (R). Moreover, the isomorphism

D(P)
∼
−→ D(BT(P)) from Lemma 2.23 is functorial in P , so we can identify D(ι)

with D(Äη). Thus it is enough to show ¸0 ◦ D(Äη) = Äη ◦ ¸ . But this follows

immediately from the functoriality of ¸ , see (5.14). ��

Theorem 5.23. The natural transformation � : RZ
disp,fsm
G,μ,b → RZ

p-div,fsm
G,b defined

in Lemma 5.22 is an isomorphism of functors on Nilpfsm
W (k).

Proof. This is formally similar to [9, Thm. 5.15]. If A is in Nilpfsm
W (k), then the Fp-

algebra A/p A satisfies condition (1.3.1.1) of [12], so in particular it is Noetherian,

F-finite, and formally smooth over Fp . Hence by [23, Lem. 2.1] A/p A has a p-basis

étale (even Zariski) locally. Thus for any A in Nilpfsm
W (k), �A is injective by full-

faithfulness of BTG,A. For surjectivity, suppose (X, t, (ιn)n) ∈ RZ
p-div,fsm
G,b (A) for

A ∈ Nilpfsm
W (k). Then by Theorem 5.17 there exists a Tannakian (G, μ)-display P

over W (A) such that BTG,A(P) ∼= (X, t). It remains to define a G-quasi-isogeny

(Än)n over Spf A.

Choose an ideal of definition I with p ∈ I , fix n, and let An = A/((p)+ I n).

Consider the G-quasi-isogeny ιn : X ⊗A An ��� X0⊗k An . By the second condition

in Definition 5.20, we have D((ιn)A/I ) ◦ ti = t0,i . Moreover, by [16, Lem. 4.6.3],

such an identity lifts along a quotient by a nilpotent ideal, so we obtain

D(ιn) ◦ ti = t0,i . (5.29)

By descent it is enough to define the G-quasi-isogeny étale locally. After an étale

faithfully flat extension, P is banal, with trivialization ψ : PU
∼
−→ P for some

U ∈ L+G(A). For every n denote by Pn the base change of P to An , let Un denote

the image of U in L+G(An), and letψn : PUn

∼
−→ Pn be the trivialization obtained

by base change. By [9, Thm. 4.7], a G-quasi-isogeny (PU )An/p An = PUn ���

(P0)An/p An is given by gn ∈ G(W (An))[1/p] such that UnÃ(μ(p)) = g−1
n b f (gn)

in G(W (An)[1/p]).

By Lemma 5.9, the trivialization ψ lifts to an isomorphism of tensor functors

� : ωW (A)
∼
−→ D(P)W (A)/A such that ¸ ◦ �η = Ä ∗ψη. Since W (A) → W (An)

preserves the divided powers, there is an isomorphism

D(Pn)W (An)/An
= D(P)W (A)/A ⊗W (A) W (An)
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given by the crystal property for D(P). Thus base change along A → An induces

�n : ωW (An)
∼
−→ D(Pn)W (An)/An

such that ¸n ◦ �
η
n = Ä ∗ψn . By uniqueness, �n

is the isomorphism associated to ψn by Lemma 5.9.

Let gn denote the composition

�⊗Zp
W (An)[1/p]

�
η
n

−→ D(P)
η

W (An)/An
[1/p]

D(ιn)W (An )
−−−−−−→ D(P0)

η

W (An)/An
[1/p]

= �⊗Zp
W (An)[1/p].

Then gn ∈ GL(� ⊗Zp
W (An)[1/p]). We claim gn ∈ G(W (An)[1/p]) and

UÃ(μ(p)) = g−1
n b f (gn).

For the first claim, we note that by Lemma 5.10, �
η
n ◦ (si ⊗ 1)W (An) =

D(Pn)(si ). Moreover, since BTG,A(P) = (X, t), we know D(P)(si ) = ti . Hence

it follows from the identity (5.29) and the definition of gn that gn(si ⊗1)W (An)[1/p] =

(si ⊗ 1)W (An)[1/p].

Now let Pn(�, η) = (M
η
n , F

η
n ), and let F′

W (An)
be the homomorphism

f ∗(�⊗Zp
W (An)[1/p])→ �⊗Zp

W (An)[1/p] induced by the Frobenius FW (An)

for D(X) via �
η
n . By [30, Prop. 57], the isomorphism ¸n : D(Pn)

η

W (An)/An

∼
−→

Ä ∗M
η
n is compatible with Frobenius, so F′

W (An)
is identified with the Frobenius for

PUn on (�, η), which is given by UnÃ(μ(p)) ◦ (id ⊗ f )
 by [9, Lem. 3.27]. Sim-

ilarly, the Frobenius for D(P0)
η

W (An)/An
is identified with b ◦ (id ⊗ f )
. Thus the

identity UnÃ(μ(p)) = g−1
n b f (gn) follows from the fact that D(ιn) is a morphism

of F-isocrystals.

The collection (gn)n is compatible as n varies because the same is true for D(ιn),

and because �n is induced by base change of � along A → An . Let Än be the

isogeny induced by gn for each n; thus (P, (Än)n) ∈ RZ
disp, fsm
G,μ,b . It remains to show

that Än induces ιn for each n. For this it is enough to show Ä
η
n and�(ιn) define the

same quasi-isogeny of 1-displays (here� is Lau’s functor (2.17)). By definition of

Än , we haveÄ
η
n ◦¸ = ¸0◦D(ιn)W (An), where ¸0 is the analog of ¸ for Zη(P0). On the

other hand, by functoriality of ¸ (see (5.14)), we have�(ιn)◦ ¸ = ¸0 ◦D(ιn)W (An).

Thus Än = �(ιn) for all n, and the result follows. ��

Remark 5.24. The functor in Definition 5.20 is formulated using covariant Dieudonné

theory, hence it differs slightly from those of [16] and [14] which are formulated

using contravariant Dieudonné theory. In fact, the difference is purely aesthetic, and

the functors are isomorphic. Indeed, if (G, μ,�, η, s) is a local Hodge embedding

datum in our sense, then the embedding η∨ : G ↪→ GL(�∨) determines a local

Hodge embedding datum for (G, {μ}, [b]) in the sense of [14, Def. 2.2.3]. It follows

that (G, b, μ,�∨) is a local unramified Shimura-Hodge datum in the sense of loc.

cit., and X D
0 is the unique p-divisible group over k associated with this datum by

[14, Lem. 2.2.5]. Moreover, the contravariant Dieudonné crystal of a p-divisible

group X is given by the covariant Dieudonné crystal of the Serre dual X D of X ,

and under this relationship the respective Hodge filtrations are identified. Hence the

assignment (X, ι) �→ (X D, ιD) provides the isomorphism between our p-divisible

group RZ-functor and that of [16] and [14].
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The main theorem of [16] states that there is a formal scheme RZG,b over Spf

W (k)which is formally smooth and formally locally of finite type which represents

RZfsm
G,b in the sense that

RZfsm
G,b(A) = HomSpf W (k)(Spf A,RZG,b) (5.30)

for A ∈ Nilpfsm
W (k).

Corollary 5.25. The formal schemes RZBP
G,μ,b and RZG,b are isomorphic.

Proof. By the results of [16], RZG,b is the unique formally smooth and locally

formally of finite type formal scheme over Spf W (k) representing the functor RZfsm
G,b

on Nilpfsm
W (k) in the sense of (5.30). But by Theorem 5.23 the same is true of RZBP

G,μ,b.

��

Remark 5.26. Corollary 5.25 is also known by [5, Rmk. 5.2.7]. However, in loc.

cit. no explicit isomorphism is given between the respective RZ-functors.

5.5. Deformations

Let G be a reductive group scheme over Zp, and letμ be a minuscule cocharacter of

G defined over W (k0). In this section we want to study the infinitesimal deformation

theory of p-divisible groups with G-structure over k. We begin by reviewing the

deformation theory of adjoint nilpotent Tannakian (G, μ)-displays as in [5, 3.5], so

fix a Tannakian (G, μ)-display P0 which is adjoint nilpotent over k. Let ArtW (k)
denote the category of augmented local Artin W (k)-algebras, i.e., the category of

local artin W (k)-algebras (R,m) together with a fixed isomorphism R/m
∼
−→ k.

Such a ring is necessarily a p-nilpotent W (k)-algebra.

Let Def(P0) denote the functor on ArtW (k) which assigns to R ∈ ArtW (k)
the set of isomorphism classes of pairs (P, δ) where P is a Tannakian (G, μ)-

display over R and δ : Pk
∼
−→ P0 is an isomorphism of Tannakian (G, μ)-displays

over W (k). An isomorphism between pairs (P, δ) and (P ′, δ′) is an isomorphism

ψ : P
∼
−→ P ′ such that δ′ ◦ ψk = δ. We will usually omit the fixed isomorphism

δ and refer to the pair (P, δ) simply as P .

By [5, 3.5.9], Def(P0) is prorepresentable by a power series ring over W (k).

Let us summarize the theory and describe the universal deformation. Denote by U ◦
G

the opposite unipotent subgroup of G defined by μ. By [24, Lem. 6.3.2] (see also

[5, Lem. A.0.5]), there exists a unique Gm-equivariant isomorphism of schemes

log : U ◦
G

∼
−→ V (Lie U ◦

G)

which induces the identity on Lie algebras. Moreover, log is an isomorphism of

W (k0)-group schemes. Since U ◦
G is smooth (see e.g. [6, Thm. 4.1.17]), Lie U ◦

G

is finite and free as a W (k0)-module, so after a choice of basis log induces an

isomorphism of W (k0)-group schemes

log : U ◦
G

∼
−→ G�a,
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where � is the dimension of U ◦
G . Let Spf(RG)be the formal completion of U ◦

G⊗W (k0)

W (k) at the origin, and note that we have a (non-canonical) isomorphism RG
∼=

W (k)[[t1, . . . , t�]]. If w ∈ RG , denote by [w] the Teichmüller lift of w in W (RG),

so [w] = (w, 0, . . . ) in the usual Witt vector coordinates. Define the element

huniv
G ∈ U ◦

G(W (RG)) to be the unique element such that

log(huniv
G ) = ([t1], . . . , [t�]) ∈ G�a(W (RG)).

Since k is algebraically closed, P0 is banal, given by some u0 ∈ L+G(k), and the

inclusion W (k) ↪→ RG allows us to view u0 as an element of L+G(RG). Define

uuniv
G := (huniv

G )−1u0 ∈ L+G(RG),

and let Puniv denote the Tannakian (G, μ)-display over W (RG) defined by uuniv
G .

By the results of [5, 3.5.9], the ring RG prorepresents Def(P0), and Puniv defines

the universal deformation of P0 over RG .

If G = GLh , μ = μd,h , and P0 corresponds to a nilpotent Zink display P0,

then this recovers the deformation theory of [30, 2.2] because any lift of P0 to a

Zink display over a local Artin W (k)-algebra is nilpotent by [30, Lem. 21].

Suppose now G = (G, μ,�, η, s) is a local Hodge embedding datum, and

suppose that we can choose a basis for �W (k0) such that η ◦ μ = μd,h . Let

RGL := RGL(�), so that Spf(RGL) is the formal completion of U ◦
GL(�)⊗W (k0)W (k)

at the origin, where U ◦
GL(�) is the opposite unipotent subgroup of GL(�) defined

by η ◦ μ. Then U ◦
G ↪→ U ◦

GL(�) induces a surjection RGL → RG , which

we denote by Ã . Notice that RGL is non-canonically isomorphic to the power

series ring W (k)[[t1, . . . , td(h−d)]]. We choose coordinates for RG so that RG
∼=

R/(tr+1, . . . , td(h−d)).

Let P0 be a Tannakian (G, μ)-display over k which is nilpotent with respect

to η, and write Def(P0) for the associated Zink display over k. Write defn(P0) for

the deformation functor of (GL(�), η ◦ μ)-displays for P0. Then by the above

paragraph Def(P0) is prorepresentable by RGL, with universal deformation Puniv

having standard representation (�0 ⊗W (k0) W (RGL),�
1 ⊗W (k0) W (RGL),�

univ
GL ),

where

�univ
GL = (huniv

GL )
−1η(u0) ◦ (id� ⊗ f ).

Lemma 5.27. If Puniv is the universal deformation of P0 as a Tannakian (G, μ)-

display over W (RG), then

P
univ(�, η) = (Puniv)RG

.

Proof. Given the explicit descriptions of the universal deformations above, it is

enough to show

W (Ã)(huniv
GL ) = η(huniv

G ).

The embedding η induces an embedding U ◦
G ↪→ U ◦

GL, which we also denote by η,

as well as a map dη : Lie U ◦
G → Lie U ◦

GL. With the above choice of coordinates,

W (Ã)([t1], . . . , [td(h−d)]) = ([t1], . . . , [tr ], 0, . . . 0) = dη([t1], . . . , [tr ]).
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From the explicit description of the log map given in [24, Lem. 6.3.2] we see that

log ◦ η = dη ◦ log as maps U ◦
G → V (Lie U ◦

GL). Hence W (Ã)(huniv
GL ) and η(huniv

G )

agree after applying log, so the result follows because log is an isomorphism. ��

Let (X0, t0) be a formal p-divisible group with (s, μ)-structure over k, and

let P0 be the Tannakian (G, μ)-display over W (k) corresponding to (X0, t0) by

Theorem 5.17. We will apply our results to the deformation theory of (X0, t0).

Denote by Def(X0) the functor of deformations of the p-divisible group X0, so for

R ∈ ArtW (k), Def(X0)(R) is the set of isomorphism classes of p-divisible groups

X over R together with an isomorphism X ⊗R k ∼= X0. If P0 is the nilpotent Zink

display corresponding to X0, then by the equivalence of Zink and Lau (or by [15,

Cor. 4.8(i)]) it follows that RGL prorepresents Def(X0) with universal deformation

given by BTRGL(P
univ) over RGL.

Corollary 5.28. Let R ∈ ArtW (k), such that R/pR admits a p-basis étale locally,

and choose a p-divisible group X over R which lifts X0. Let ! : RGL → R be

the homomorphism induced by X. Then ! factors through RG if and only if there

exists an (s, μ)-structure on D(X) lifting the one on D(X0).

Proof. First note that X is infinitesimal since the same is true for X0, and the

property can be checked at geometric points in characteristic p (see [26, II Prop.

4.4]). Let P be the nilpotent Zink display associated with X , so P = ! ∗ Puniv.

The result will follow from Theorem 5.17 if we can show that! factors through

RG if and only if P ∼= P(�, η) for some Tannakian (G, μ)-display P over W (R).

If! factors as ν◦Ã for some ν : RG → R, then P = ! ∗ Puniv ∼= ν∗(Ã∗ Puniv). But

then by Lemma 5.27 we have P ∼= (ν∗Puniv)(�, η). Conversely, if P ∼= P(�, η)

for some Tannakian (G, μ)-display P , then P is a deformation of P0, so there is

some ν : RG → R such that P = ν∗Puniv. Then again Lemma 5.27 implies that

P ∼= ν∗Ã∗ Puniv, so ν ◦ Ã = ! by prorepresentability of RGL and universality of

Puniv. ��
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Appendix A: Descent

A.1. Semi-frames and Witt vectors

For our purposes we find it useful to develop a slightly weaker notion than that of

a frame, which we call a semi-frame.

Definition A.1. A semi-frame is a pair S = (S, Ä ), where S is a Z-graded ring

S =
⊕

n∈Z

Sn

and Ä : S → S0 is a ring homomorphism, such that the following conditions hold:

• The endomorphism Ä0 of S0 is the identity, and Ä−n : S−n → S0 is a bijection

for all n ≥ 1.

• The image of S1 under Ä is contained in the Jacobson radical of S0, Rad(S0).

We say (S, Ä ) is a semi-frame for R = S0/Ä(S1).

As in 2.1, we write Ä(S1) = t S1 since Ä acts on S1 as multiplication by t .

Remark A.2. As in [9, 2.1] we note that a semi-frame is equivalent to a pair

(
⊕

n≥0 Sn, (tn)n≥0) where S≥0 is a Z≥0-graded ring and (tn)n≥0 is a collection

of S≥0-linear maps tn : Sn+1 → Sn such that t0(S1) ⊆ Rad(S0).

Lemma A.3. Let S = (S, Ã, Ä ) be a frame. Then t S1 ⊆ Rad(S0).

Proof. This is proved as part of [24, Lemma 3.1.1]. Let us repeat the proof here.

Let a ∈ t S1. Then Ã(a) ∈ pS0. Since Ã lifts the p-power Frobenius of S0/pS0, it

follows that a p ∈ pS0. But p ∈ Rad(S0) by assumption, so a ∈ Rad(S0) as well.

��

It follows from Lemma A.3 that the assignment (S, Ã, Ä ) �→ (S, Ä ) defines a

forgetful functor from the category of frames to the category of semi-frames. The

following lemma provides a way to check that certain quotients of frames are semi-

frames.

Lemma A.4. Let S′ be a Z-graded ring S′ =
⊕

n∈Z S′
n and Ä ′ be a ring homomor-

phism Ä ′ : S′ → S′
0 such that the pair (S′, Ä ′) satisfies the first bullet in Definition

A.1. If there exists a frame (S, Ã, Ä ) and a surjective homomorphism of graded

rings ϕ : S → S′ such that Ä ′ ◦ ϕ = ϕ ◦ Ä , then Ä ′(S′
1) ⊆ Rad(S′

0), i.e., (S′, Ä ′) is

a semi-frame.

Proof. Since S → S′ is surjective, the image of Rad(S0) is contained in Rad(S′
0).

Let t ′ be the unique element in S′
−1 with Ä ′(t ′) = 1. Then ϕ(t) = t ′, and surjectivity

of ϕ implies that ϕ(t S1) = t ′S′
1. Therefore, by Lemma A.3,

t ′S′
1 = ϕ(t S1) ⊆ ϕ(Rad(S0)) ⊆ Rad(S′

0).

��
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Let R be a ring. Then for every m ≥ 1 we attach to R the ring of m-truncated

p-typical Witt vectors Wm(R). These rings are equipped with a Frobenius fm,R :

Wm+1(R) → Wm(R) which is a ring homomorphism, and a Verschiebung vm,R :

Wm(R) → Wm+1(R) which is additive. We will suppress the subscripts on the

Frobenius and the Verschiebung when m and R are clear from context.

Let Im(R) = v(Wm−1(R)) = ker(Wm(R) → R), and let I (R) = v(W (R)) ⊆

W (R). For every finite m, the truncation map rm : W (R) → Wm(R) induces an

isomorphism W (R)/vm(W (R)) ∼= Wm(R), and these combine to give an isomor-

phism

W (R) ∼= lim
←−

Wm(R).

Hence W (R) is complete and separated with respect to the topology defined by the

ideals vm(W (R)). We will refer to this as the v-adic topology.

For every non-negative integer m we have the following truncated variant of the

Witt frame.

Example A.5. (Truncated Witt semi-frames) For a p-adic ring R and a non-negative

integer m, let Wm(R)
⊕ be the quotient of W (R)⊕ by the graded ideal

Vm(R) =
⊕

n≥0

(vm(W (R)) · t−n)⊕
⊕

n≥1

vm(W (R)).

To be precise, for n ≥ 1, Vm(R)n = vm(W (R)) is viewed as a W (R)-submodule

of v(W (R)) = I (R) = W (R)⊕n . The map Ä : W (R)⊕ → W (R) extends to a map

Äm : Wm(R)
⊕ → Wm(R), so by Lemma A.4 the pair (Wm(R)

⊕, Ä ) constitutes a

semi-frame, called the m-truncated Witt semi-frame for R.

Remark A.6. The truncated Witt semi-frames are not associated with frames in

general. Indeed, the Frobenius f on Wm(R) has image in the smaller ring Wm−1(R),

and does not determine an endomophism of Wm(R) unless pR = 0. In the latter

case the semi-frame (Wm(R)
⊕, Ä ) is associated with a frame, but this frame differs

slightly from the truncated Witt frame given in [24, Example 2.1.6], which uses

Im+1(R) for each graded piece above zero.

Example A.7. (Truncated relative Witt semi-frames) Let m be a non-negative integer

and let B → A be a PD-thickening of p-adic rings. Let Wm(B/A)⊕ be the quotient

of W (B/A)⊕ by the graded ideal

Vm(B/A) =
⊕

n≥1

vm(W (B)) · t−n ⊕
⊕

n≥0

vm(W (B)),

where vm(W (B)) is embedded into I (B) ⊕ J via the first factor. Define maps

tn : (Wm(B/A)⊕)n+1 → (Wm(B/A)⊕)n as follows: for n ≥ 1, tn is multiplication

by p on the first component and the identity on J , and t0 is the map

t0 : Im(B)⊕ J → Wm(B), (v(a), x) �→ rm(v(a))+ rm(log−1[x, 0, . . . ]),
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where rm : W (B)→ Wm(B) is the truncation homomorphism. These maps deter-

mine a pair Wm(B/A) = (Wm(B/A)⊕, Ä ) by Remark A.2, which constitutes a

semi-frame by Lemma A.4. Since we have an isomorphism

Wm(B)/t (Im(B)⊕ J ) ∼= A,

Wm(B/A) defines a semi-frame over A, which we call the m-truncated relative

Witt semi-frame for B → A.

We close this section by giving a Nakayama lemma for finite graded modules

over the graded ring associated with a semi-frame, following [24, Lemma 3.1.1,

Corollary 3.1.2]. Let (S, Ä ) be a semi-frame over a ring R. Denote by ν : S → R

the ring homomorphism which extends the natural projection S0 → R by zero on

all graded pieces away from S0.

Lemma A.8. Let (S, Ä ) be a semi-frame, and let M be a finite graded S-module.

(i) If M ⊗S,ν R = 0, then M = 0.

(ii) Let N be another finite graded S-module, and suppose M is projective. Then a

homomorphism f : N → M of graded S-modules is bijective if and only if its

reduction f̄ : N ⊗S,ν R → M ⊗S,ν R is bijective.

Proof. The proof of (i) is identical to the proof of [24, Lemma 3.1.1] since t S1 ⊆

Rad(S0). Part (ii) is an immediate consequence of (i), as in [24, Corollary 3.1.2]. ��

A.2. Complete semi-frames

In this section we develop a technical framework for frames which arise as the limit

of a sequence of semi-frames, in a sense which we will make precise. This will be

used in the next section to prove descent for displays over relative Witt frames.

For this section, let S be a Z-graded ring, and let V • be a sequence of graded ideals

V m =
⊕

n∈Z

V m
n

in S such that V m+1
n ⊆ V m

n for all m, n. For every m, denote by Sm the quotient

S/V m . Explicitly,

Sm =
⊕

n∈Z

(Sn/V m
n ).

If M is a finite projective graded S-module, then for every m, the quotient M/V m M

is a finite projective graded Sm-module, with graded pieces

(M/V m M)n = Mn/(Mn ∩ V m M).

Definition A.9. Let S and V • be as above, and let M be a graded S-module.
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(a) The graded completion of S with respect to V • is

S∧ :=
⊕

n∈Z

(

lim
←−

m

Sn/V m
n

)

.

The graded ring S is V •-adic if the natural homomorphism of graded rings

S → S∧ is an isomorphism.

(b) The graded completion of M with respect to V • is

M∧ :=
⊕

n∈Z

(

lim
←−

m

Mn/(Mn ∩ V m M)

)

.

We say M is V •-adic if the natural graded S-module homomorphism ϕM :

M → M∧ is an isomorphism.

Lemma A.10. Let S be V •-adic, and suppose that M is a finite projective graded

S-module. Then M is V •-adic.

Proof. The proof reduces to the case where M is a finite free graded S-module,

which is immediate. ��

Definition A.11. Let S and V • be as above. Define PGrMod((Sm)m) to be the cat-

egory whose objects are systems (Mm)m∈N of finite projective graded Sm-modules

equipped with graded Sm+1-module homomorphisms

θm : Mm+1 → Mm

which induce isomorphisms Mm+1 ⊗Sm+1 Sm ∼
−→ Mm . If (Mm)m∈N and (N m)m∈N

are two objects in PGrMod((Sm)m), then a morphism between them is a collection

of graded Sm-module homomorphisms Mm → N m which are compatible with the

θm-maps.

If M is an object in PGrMod(S), then for every m, M/V m M is an object in

PGrMod(Sm). This assignment determines a functor

PGrMod(S)→ PGrMod((Sm)m). (A.1)

Proposition A.12. Let (S, Ä ) be a semi-frame for R, and let V • = (V m)m∈N be a

sequence of graded ideals in S such that S is V •-adic. Suppose

(i) For each m, there exists a ring homomorphism Äm : Sm → Sm
0 such that

(Sm, Äm) is a semi-frame and such that the natural homomorphism of graded

rings S → Sm induces a morphism of semi-frames (S, Ä )→ (Sm, Äm).

(ii) For every m, Sm
0 /t Sm

1 = R, and the homomorphisms S0 → Sm
0 lift the identity

on R.

(iii) For every finite projective R-module M there exists a finite projective S0-module

M ′ along with an isomorphism of R-modules M ′ ⊗S0 R ∼= M.

Then the functor (A.1) is an equivalence of categories.
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Proof. We define an quasi-inverse functor as follows: Let (Mm)m∈N be an object

in PGrMod((Sm)m), so Mm =
⊕

n∈Z Mm
n for every m, and define M =

⊕

Mn ,

where Mn = lim
←−m

Mm
n . Here the transition maps Mm+1

n → Mm
n are given by

θm
n , i.e. by the nth graded piece of θm . We claim M is a finite projective graded

S-module.

Consider the finite projective graded R-module L := M1 ⊗S1,ν1 R. By (iii), there is

a finite projective graded S0-module L such that L⊗S0 R ∼= L . Define N := L⊗S0 S.

Then N is a finite projective graded S-module. Because the maps θm : Mm+1 →

Mm are surjective for every m, we see that the induced map M → Mk sending

(am)m ∈ Mn = lim
←−m

Mm
n to ak ∈ Mk

n is also surjective, and therefore so too

is the homomorphism M → L = M1 ⊗S1,ν1 R. Then the identity of L lifts to

a homomorphism of graded S-modules ψ : N → M. Note that conditions (i)

and (ii) imply that ν : S → R factors through Sm for every m, so, in particular,

V m ⊆ ker(ν : S → R) for every m. Let us denote by νm the induced map Sm → R.

The composition N → M → Mm factors through N/V m N , inducing a graded

Sm-module homomorphism ψm : N/V m N → Mm for every m. Further, N → L

factors through N/V m N since V m ⊆ ker(ν : S → R), and M → L factors

through Mm , so ψm also lifts the identity of L . Therefore (N/V m N )⊗Sm ,νm R →

Mm ⊗Sm ,νm R is an isomorphism, and by Lemma A.8 (ii),ψm is an isomorphism of

graded Sm-modules. By definition these isomorphisms satisfy θm ◦ψm+1 = ψm ◦

(θ ′)m , where (θ ′)m is the natural surjection N/V m+1 N → N/V m N . Altogether

we see

lim
←−

m

Nn/(V
m N ∩ Nn) ∼= lim

←−
m

Mm
n

for every n, so M ∼= N as graded S-modules by Lemma A.10, and M is indeed a

finite projective graded S-module. Also, Lemma A.10 and the isomorphism

M/V m M ∼= N/V m N ∼= Mm

show that these functors are quasi-inverse to one another. ��

Let A, B and R be p-adic rings, and let B → A be a PD-thickening with kernel J .

Recall the graded ideals V •
R = (Vm(R))m≥1 and V •

B/A = (Vm(B/A))m≥1 defined

in Example A.7.

Lemma A.13. The frames W (R) and W (B/A) defined in the previous section

satisfy conditions (i) - (iii) in Proposition A.12.

Proof. Let us first prove that condition (iii) is satisfied. Since R is p-adic, it follows

from [30, Proposition 3] that W (R) is complete and separated with respect to I (R).

Then every finite projective R-module lifts to a finite projective W (R)-module.

Similarly every finite projective B-module lifts to W (B), and every finite projective

A-module lifts to B since J is a locally nilpotent ideal.

Now, W (R)⊕ is graded complete with respect to the ideals Vm(A) because

both W (R) and I (R) are complete with respect to the ideals vm(W (R)). Sim-

ilarly W (B/A)⊕ is graded complete with respect to Vm(B/A). For the semi-

frames (Sm, Äm) we take (Wm(R)
⊕, Äm) in the case of (W (R)⊕, Ä ), and we take
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(Wm(B/A)⊕, Äm) in the case of (W (B/A)⊕, Ä ). Conditions (i) and (ii) of Propo-

sition A.12 are easily verified in each of these cases. ��

A.3. Descent for the relative Witt frame

As R varies, the frame W (R) is naturally a functor of R. In fact, this associa-

tion determines an fpqc sheaf in frames because the functors R �→ W (R) and

R �→ I (R) both determine fpqc sheaves of abelian groups. Denote by PGrModW

the fibered category over NilpZp
whose fiber over R in NilpZp

is the category

PGrMod(W (R)). By [24, Lemma 4.3.2], PGrModW is an fpqc stack over NilpZp
.

The goal of this section is to prove the analog of this statement, replacing W (R)⊕

with W (B/A)⊕. We need to be a little careful here, because the behavior of the

relative Witt frame differs from that of the Witt frame. In particular, we must replace

the fpqc topology with the étale topology.

Let us begin by checking some étale-local properties of finite projective graded

modules over semi-frames. The following lemma is analogous to [9, Lemmas 2.10

- 2.12].

Lemma A.14. Suppose S is an étale sheaf of semi-frames on Spec R, with the

property that S(R′) = (S(R′), Ä (R′)) is a semi-frame for R′ for all étale R-algebras

R′. If R → R′ is a faithfully flat étale ring homomorphism, then the following hold:

(i) If M is a finite projective graded S(R)-module, then there is an exact sequence

0 M M ⊗S(R) S(R′) M ⊗S(R) S(R′ ⊗R R′)

where the arrows are induced by applying S to the usual exact sequence

0 R R′ R′ ⊗R R′

(ii) A finite projective graded S(R)-module M is of type I = (i1, . . . , in) if and

only if MS(R′) is of type I .

(iii) A sequence 0 → M → N → P → 0 of finite projective graded S(R)-modules

is exact if and only if it is exact after base change to S(R′).

(iv) Suppose additionally that S is a sheaf of frames on Spec R. If M = (M, F) and

M ′ = (M ′, F ′) are displays over S, then a homomorphism ψ : M → M ′ of

graded S(R)-modules is a morphism of displays if and only ifψR′ is a morphism

of displays.

Proof. For (i), since M is finite projective we can reduce to the case where M is

finite free as a graded S(R)-module. This in turn reduces to the case M = S(R),

for which the result holds because S is an étale sheaf of Z-graded rings.

The proof for (ii) follows from the fact that the rank of a finite projective module

is invariant under base change.

The proof of (iii) is formally the same as that of [9, Lemma 2.12]. The only nontrivial

assertion is that if the sequence is exact after base change, then M → P is surjective.

But since S is a sheaf of semi-frames, Nakayama’s lemma (Lemma A.8) applies,
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so it is enough to check M ⊗S(R),ν R → P ⊗S(R),ν R is surjective. But this follows

from surjectivity of MS(R′) → PS(R′) and faithful flatness of R → R′.

Let us prove (iv). If ψ is a morphism of displays then ψR′ is as well. For the

converse, we need to prove (F ′)
 ◦ Ã ∗ψ and Ä ∗ψ ◦ F
 agree as homomorphism of

finite projective S(R)0-modules. We know this holds after base change to S(R′)0,

so it is enough to prove the base change functor from the category of finite projective

S(R)0-modules to the category of finite projective S(R′)0-modules is faithful. But

this is easy to see because by (i) the homomorphism M → M ⊗S(R)0 S(R′)0 is

injective. ��

Now we narrow our focus to the relative Witt frame. Let A be a ring in NilpZp
,

and let B → A be a PD-thickening. In order to treat the finite and infinite cases

uniformly, denote by W∞(B/A) the frame W (B/A). If A′ is any étale A-algebra,

then there exists a unique étale B-algebra B ′ along with a isomorphism of A-

algebras B ′ ⊗B A ∼= A′ (see [27, Tag 039R], for example). Moreover, if J =

ker(B → A), then ker(B ′ → A′) = J B ′, and by flatness the divided powers on

B → A extend to B ′ → A′, see [27, Tag 07H1]. In this way the assignment

A′ �→ Wm(B
′/A′) (A.2)

becomes a functor from the category of étale A-algebras to the category of semi-

frames for any m ≥ 1 (including ∞).

Lemma A.15. Let 1 ≤ m ≤ ∞. The functor (A.2) defines an étale sheaf of semi-

frames over ÉtA.

Proof. Let A → A′ be a faithfully flat étale morphism with B ′ → A′ lifting

B → A. Define A′′ = A′ ⊗A A′, and let B ′′ = B ′ ⊗B B ′, which is the unique étale

B ′-algebra lifting A′′. Let J = ker(B → A) and define J ′ and J ′′ analogously.

Then the proof reduces to showing that

0 → Im(B)⊕ J → Im(B
′)⊕ J ′

⇒ Im(B
′′)⊕ J ′′

is exact, which follows from étale descent for B-modules. ��

Remark A.16. The frame W (B/A) over A is a p-adic frame in the sense of [24,

Def. 4.2.1], so by [24, Lem. 4.2.3], we can associate to it an étale sheaf of frames S

such that S(A) = W (B/A). However, by [24, Ex. 4.2.7], this sheaf will not agree

in general with the étale sheaf of frames A′ �→ W (B ′/A′) described above.

For 1 ≤ m ≤ ∞, denote by PGrModm
B/A the fibered category over ÉtA whose fiber

over an étale A-algebra A′ is PGrMod(Wm(B
′/A′)⊕), where B ′ is the unique étale

B-algebra with B ′ ⊗B A ∼= A′. Before we prove that PGrModm
B/A is a stack, let us

first prove a useful lemma.

Lemma A.17. Let 1 ≤ m < ∞. Suppose B → A is a PD-thickening in NilpZp
,

and suppose A → A′ is étale with lift B → B ′.

https://stacks.math.columbia.edu/tag/039R
https://stacks.math.columbia.edu/tag/07H1
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(i) The natural graded ring homomorphism Wm(B/A)⊕ → Wm(B
′/A′)⊕ induces

an isomorphism

Wm(B/A)⊕ ⊗Wm (B) Wm(B
′)

∼
−→ Wm(B

′/A′)⊕.

(ii) Let A′′ = A′ ⊗A A′ and B ′′ = B ′ ⊗B B ′. Then the natural homomorphism of

graded rings

Wm(B
′/A′)⊕ ⊗Wm (B/A)⊕ Wm(B

′/A′)⊕ → Wm(B
′′/A′′)⊕

is an isomorphism.

(iii) Let A′′′ = A′ ⊗A A′ ⊗A A′ and B ′′′ = B ′ ⊗B B ′ ⊗B B ′. Then the natural

homomorphism of graded rings

Wm(B
′/A′)⊕ ⊗Wm (B/A)⊕ Wm(B

′/A′)⊕ ⊗Wm (B/A)⊕ Wm(B
′/A′)⊕ → Wm(B

′′′/A′′′)⊕

is an isomorphism.

(iv) If A → A′ is faithfully flat étale, then Wm(B/A)⊕ → Wm(B
′/A′)⊕ is faithfully

flat.

Proof. For (i), since tensor products commute with direct sums, it is enough to

prove this for each graded piece of Wm(B
′/A′)⊕. For graded pieces with n ≤ 0

this is clear, so we need only prove

(Im(B)⊕ J )⊗Wm (B) Wm(B
′) ∼= Im(B

′)⊕ J ′.

This further reduces to proving the statement for Im(B
′) and for J ′. By [25, Proposi-

tion A.8], the homomorphism Wm(B)→ Wm(B
′) is étale, andw0 : Wm(B

′)→ B ′

induces an isomorphism

B ⊗Wm (B) Wm(B
′) ∼= B ′. (A.3)

Then by taking the tensor product of 0 → Im(B) → Wm(B) → B → 0 with

Wm(B
′) and applying the five lemma we obtain Im(B)⊗Wm (B) Wm(B

′) ∼= Im(B
′).

Finally, flatness of Wm(B
′) over Wm(B) implies J ⊗Wm (B) Wm(B

′) ∼= Wm(B
′)J ,

and by definition of the Wm(B) action on J , we have Wm(B
′)J = B ′ J . Hence

J ⊗Wm (B) Wm(B
′) ∼= Wm(B

′)J ∼= B ′ J ∼= J ⊗B B ′.

The result follows since J ⊗B B ′ ∼= J ′.

To prove (ii) and (iii) we first prove an auxiliary statement. Let A → A1 and A →

A2 be étale ring homomorphisms with lifts B → B1 and B → B2. Then B1 ⊗B B2

is an étale B-algebra lifting A1 ⊗A A2. We claim the natural homomorphism of

graded rings

Wm(B1/A1)
⊕ ⊗Wm (B/A)⊕ Wm(B2/A2)

⊕ → Wm(B1 ⊗B B2/A1 ⊗A A2)
⊕

(A.4)

is an isomorphism. Granting (A.4) for the moment, we can prove (ii) and (iii).

Indeed, (ii) follows immediately by taking A1 = A2 = A′, and (iii) follows by

combining (ii) with (A.4) for A1 = A′′ and A2 = A′.
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Now let us prove (A.4). For the sake of brevity let us write S = Wm(B/A)⊕,

S1 = Wm(B1/A1)
⊕, S2 = Wm(B2/A2)

⊕, and S1,2 = Wm(B1⊗B B2/A1⊗A A2)
⊕.

By [4, Cor. 9.4] (take R = Z, and E = pZ to obtain the p-typical Witt vectors in

loc. cit.), since B → B1 and B → B2 are étale, the natural map Wm(B1)⊗Wm (B)

Wm(B2) → Wm(B1 ⊗B B2) is an isomorphism. Combining this with part (i), we

have a chain of isomorphisms

S1 ⊗S S2 ∼
−→ S ⊗S0 (S

1
0 ⊗S0 S2

0 )
∼
−→ S ⊗S0 S

1,2
0 .

But since A → A1 ⊗A A2 is étale with lift B → B1 ⊗B B2, we have S ⊗S0 S
1,2
0

∼
−→

S1,2 by part (i) again. One checks that the composition S1 ⊗S S2 ∼
−→ S1,2 is the

desired map.

Now, for (iii), to show Wm(B/A)⊕ → Wm(B
′/A′)⊕ is faithfully flat it is enough to

prove the same is true of Wm(B) → Wm(B
′), by part (i). But Wm(B) → Wm(B

′)

is étale by [25, Proposition A.8] and Spec Wm(B
′) → Spec Wm(B) is surjective

because B → B ′ is faithfully flat and Wm(B) → B and Wm(B
′) → B ′ are

PD-thickenings for A in NilpZp
. ��

Proposition A.18. For 1 ≤ m ≤ ∞, the fibered category PGrModm
B/A is an étale

stack over ÉtA.

Proof. This proof is similar to the proof of [24, Lemma 4.3.1]. Indeed, that the

morphisms form a sheaf follows from Lemma A.14 (i) by the arguments in loc. cit.

Let us first prove that objects descend in the case where m is finite. Let A → A′ be

an étale faithfully flat homomorphism, and let B ′ be the unique étale B-algebra such

that B ′⊗B A ∼= A′. Note that B → B ′ is then also faithfully flat. Let A′′ = A′⊗A A′,

and B ′′ = B ′ ⊗B B ′. Suppose M ′ is a finite projective graded Wm(B
′/A′)⊕-

module equipped with a descent datum over Wm(B
′′/A′′)⊕. By parts (ii), (iii),

and (iv) of Lemma A.17, we may apply faithfully flat descent for graded modules

over graded rings (see, e.g. [8, Corollary III.1.4]) to obtain a graded Wm(B/A)⊕-

module M such that M ⊗Wm (B/A)⊕ Wm(B
′/A′)⊕ ∼= M ′. Additionally, faithful

flatness of Wm(B/A)⊕ → Wm(B
′/A′)⊕ implies that M is finite and projective as

an Wm(B/A)⊕-module, hence it is finite and projective as a graded Wm(B/A)⊕-

module by [24, Lemma 3.0.1]. This completes the proof of descent for finite m.

Now let S = W (B/A)⊕, S′ = W (B ′/A′)⊕, and S′′ = W (B ′′/A′′)⊕. For every

finite m, let V m = Vm(B/A), Sm = S/V m , and define the variants for S′ and

S′′ in the obvious way. Let p1 : S′ → S′′, resp. p2 : S′ → S′′ be the map

induced by a �→ a ⊗ 1 resp. a �→ 1 ⊗ a from A′ to A′ ⊗A A′. Define similarly

pm
1 , pm

2 : (S′)m → (S′′)m . Denote by PGrMod(S → S′) the category of finite

projective graded S′ modules M ′ equipped with descent data, i.e., equipped with

isomorphismsα : p∗
1(M

′)
∼
−→ p∗

2(M
′)which satisfy the cocycle condition. We must

show that the natural functor PGrMod(S)→ PGrMod(S → S′) is an equivalence.

Define the category PGrMod((Sm → (S′)m)m) consisting of systems (Mm)

of finite projective graded (S′)m-modules Mm along with isomorphisms θm :

Mm+1 ⊗(S′)m+1 (S′)m
∼
−→ Mm and descent data αm : (Mm)pm

1
∼
−→ (Mm)pm

2 such
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that αm ◦ θm = θm ◦ (αm+1 ⊗ id(S′′)m ) for all m. Then the first part of the proof

implies that the natural functor

PGrMod((Sm)m)→ PGrMod((Sm → (S′)m)m) (A.5)

is an equivalence of categories. Further, it is straightforward to check that the functor

(A.1) respects descent data, and that the equivalence in Proposition A.12 extends

to an equivalence

PGrMod(S → S′)
∼
−→ PGrMod((Sm → (S′)m)m). (A.6)

The result follows by combining the equivalence PGrMod(S)
∼
−→ PGrMod((Sm)m)

with (A.5) and (A.6). ��

References

[1] Berthelot, P., Breen, L., Messing, W.: Théorie de Dieudonné cristalline. II. Lecture

notes in Mathematics, vol. 930, Springer, Berlin (1982)

[2] Berthelot, P.: Cohomologie cristalline des schémas de caractéristique p>0. Lecture

notes in Mathematics, vol. 407 (1974)

[3] Berthelot, P., Messing, W.: Théorie de Dieudonné cristalline. III. Théorèmes

d’équivalence et de pleine fidélité., The Grothendieck Festschrift, Vol. I, Progr. Math.,

no. 86, pp. 173–247 (1990)

[4] Borger, J.: The basic geometry of Witt vectors, I: the affine case. Algebra Number

Theory 5(2), 231–285 (2011)

[5] Bültel, O., Pappas, G.: (G, μ)-displays and Rapoport-Zink spaces. J. Inst. Math.

Jussieu, 19, no. 4, 1211–1257 (2020)

[6] Conrad, B.: Reductive group schemes. Autour des schémas en groupes. Vol. I, Panor.

Synthèses 42/43, Soc. Math. France, pp. 93–444 (2014)

[7] Cornut, C.: Filtrations and buildings, Mem. Amer. Math. Soc. 266, no. 1296 (2020)

[8] Caenepeel, S., Van Oystaeyen, F.: Brauer groups and the cohomology of graded rings.

Marcel Dekker Inc., New York and Basel (1988)

[9] Daniels, P.: A Tannakian framework for G-displays and Rapoport-Zink spaces. Int.

Math. Res. Not. 22, 16963–17024 (2021)

[10] Deligne, P.: Letter to Kisin

[11] Demazure, M.: Lectures on p-divisible groups. Lecture notes in Mathematics, Vol.

302, Springer, Berlin (1972)

[12] de Jong, A.J.: Crystalline Dieudonné module theory via formal and rigid geometry.

Inst. Hautes Étuedes Sci. Publ. Math. 82, 5–96 (1995)

[13] Grothendieck, A.: Groupes de Barsotti-Tate et cristaux de Dieudonné, Séminaire de

Mathématiques Supérieures, No. 45 (Été 1970) (1974)

[14] Howard, B., Pappas, G.: Rapoport-Zink spaces for spinor groups. Compos. Math.

153(5), 1050–1118 (2017)

[15] Illusie, L.: Déformations de groupes de Barsotti-Tate (d’après A. Grothendeick). Sem-

inar on arithmetic bundles: the Mordell conjecture (Paris, 1983/1984), Astérisque, no.

127, pp. 151–198 (1985)

[16] Kim, W.: Rapoport-zink spaces of hodge type. Forum Math. Sigma, no. 6 (2018)

[17] Kisin, M.: Integral models for Shimura varieties of abelian type. J. Amer. Math. Soc.

23(4), 967–1012 (2010)



G-displays of Hodge type and formal p-divisible groups 117

[18] Kottwitz, R.: Shimura varieties and twisted orbital integrals. Math. Ann. 269(3), 287–

300 (1984)

[19] Lau, E.: Displays and formal p-divisible groups. Invent. Math. 171(3), 617–628 (2008)

[20] Lau, E.: Frames and finite group schemes over complete regular local rings. Doc. Math.

15, 545–569 (2010)

[21] Lau, E.: Smoothness of the truncated display functor. J. Amer. Math. Soc. 26(1), 129–

165 (2013)

[22] Lau, E.: Relations between Dieudonné displays and crystalline Dieudonné theory.

Algebra Number Theory 8(9), 2201–2262 (2014)

[23] Lau, E.: Divided Dieudonné crystals, arXiv preprint arXiv:1811.09439 (2018)

[24] Lau, E.: Higher frames and G-displays. Algebra Number Theory 15(9), 2315–2355

(2021)

[25] Langer, A., Zink, T.: De Rham-Witt cohomology for a proper and smooth morphism.

J. Inst. Math. Jussieu 3(2), 231–314 (2004)

[26] Messing, W.: The crystals associated to Barsotti-Tate groups. Lecture notes in Mathe-

matics, vol. 264, Springer, Berlin (1972)

[27] The stacks project authors, Stacks Project, http://stacks.math.columbia.edu (2017)

[28] Scholze, P., Weinstein, J.: Berkeley lectures on p-adic geometry: (AMS-207). Annals

of Mathematical Studies, Princeton University Press, Princeton (2020)

[29] Wilson, K.M. Jr.: A Tannakian description for parahoric Bruhat-Tits group schemes.

Thesis (Ph.D.) - University of Maryland, College Park, 112 (2010)

[30] Zink, T.: The display of a formal p-divisible group, Cohomologies p-adiques et applica-

tions arithmétiques, I. Astérisque, no. 278, Société mathématique de France, pp. 127–

248 (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this

article under a publishing agreement with the author(s) or other rightsholder(s); author self-

archiving of the accepted manuscript version of this article is solely governed by the terms

of such publishing agreement and applicable law.

http://arxiv.org/abs/1811.09439
http://stacks.math.columbia.edu

	G-displays of Hodge type and formal p-divisible groups
	Abstract.
	1 Introduction
	1.1 Notation

	2 Preliminaries
	2.1 Frames, graded modules, and displays
	2.2 Recollections on crystals
	2.3 The crystals associated with p-divisible groups and displays

	3 G-displays
	3.1 G-displays of type µ
	3.2 Tannakian G-displays
	3.3 The Hodge filtration for Tannakian G-displays
	3.4 Adjoint nilpotence and liftings

	4 Crystals and G-displays
	4.1 The crystals associated with G-displays
	4.2 G-displays of Hodge type

	5 G-displays and formal p-divisible groups
	5.1 Crystalline Tate tensors
	5.2 From G-displays to p-divisible groups
	5.3 Proof of Theorem A
	5.4 RZ spaces of Hodge type
	5.5 Deformations

	Acknowledgements
	A.1 Semi-frames and Witt vectors
	A.2 Complete semi-frames
	A.3 Descent for the relative Witt frame

	References


