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Abstract. Let G be a reductive group scheme over the p-adic integers, and let © be a
minuscule cocharacter for G. In the Hodge-type case, we construct a functor from nilpotent
(G, n)-displays over p-nilpotent rings R to formal p-divisible groups over R equipped
with crystalline Tate tensors. When R/pR has a p-basis étale locally, we show that this
defines an equivalence between the two categories. The definition of the functor relies on
the construction of a G-crystal associated with any adjoint nilpotent (G, )-display, which
extends the construction of the Dieudonné crystal associated with a nilpotent Zink display.
As an application, we obtain an explicit comparison between the Rapoport-Zink functors of
Hodge type defined by Kim and by Biiltel and Pappas.

1. Introduction

Fix a prime p, and let G be a smooth affine group scheme over Z, whose generic
fiber is reductive. This paper contributes to the search for what it means to endow
a p-divisible group with G-structure. When G is a classical group coming from
a local Shimura datum of EL- or PEL-type, to equip a p-divisible group with G-
structure is to decorate it with additional structures coming from the data which cuts
out G inside of some general linear group, such as a polarization or an action by a
semisimple algebra. Moduli spaces of p-divisible groups with additional structure
define Rapoport-Zink formal schemes, whose rigid analytic generic fibers deter-
mine local analogs of Shimura varieties.

Recently, Scholze and Weinstein [28] have developed a general theory of local
Shimura varieties. Unlike in the EL- and PEL-type cases, however, the general
theory takes place entirely in the generic fiber and leaves open the question of
whether there exist formal schemes which act as integral models. One would expect
moduli spaces of p-divisible groups with G-structure to define integral models in
all cases, as they do in the EL- and PEL-type cases. However, due to the lack of a
natural tensor product on the category of p-divisible groups, the traditional methods
for defining G-structure do not simply carry over to this case. In particular, any kind
of Tannakian approach is not straightforward.
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In this paper we restrict our focus to the case where the pair (G, u) is of
Hodge type, i.e., where there is a closed embedding 1 : G < GL(A) such that the
cocharacter nou is conjugate to a standard minuscule cocharacter for GL(A). In this
case, there are two approaches to endowing p-divisible groups with G-structure
which have enjoyed some success in providing functor of points descriptions of
Rapoport-Zink formal schemes. In the first approach, one uses the embedding
G — GL(A) to define additional structures on tensor powers of the Dieudonné
crystal of the given p-divisible group. In the second, one replaces p-divisible groups
with Zink’s displays, which are linear-algebraic objects and therefore more readily
equipped with G-structure. The main result of this paper is that, at least under
certain restrictions on the base ring (see Theorem A below), these two approaches
are equivalent.

Let us describe the two approaches in more detail. If (G, ) is of Hodge type,
then G is the element-wise stabilizer in GL(A) of a finite collections = (s1, ..., s;)
of elements of the total tensor algebra of A @ AV, which we denote by A®. We
call the tuple G = (G, i, A, n, s) alocal Hodge embedding datum. If X is a p-
divisible group over a p-nilpotent Zy-algebra R, then a crystalline Tate tensor is
a morphism of crystals ¢ : 1 — ID(X)® over Spec R which preserves the Hodge
filtrations and which is equivariant for the action of the Frobenius, up to isogeny.
Here 1 denotes the unit object in the tensor category of crystals of finite locally free
Ospec R/Z » -modules, and D(X) denotes the covariant Dieudonné crystal of X as in
[1]. A p-divisible group with (s, w)-structure over R is a pair (X, ¢) consisting of a
p-divisible group X over Spec R whose Hodge filtration is étale locally determined
by u, and a collection t = (#1, ..., ) of crystalline Tate tensors which are fppf-
locally identified with s (see Definition 5.2). The main theorem of [16] (see also
[14]) states that, when G is reductive and (G, u) is of Hodge type, a Rapoport-
Zink formal scheme can be defined which is roughly a moduli space of p-divisible
groups with (s, p)-structure.

On the other hand, the idea of using group-theoretic analogs of Zink’s displays
to define Rapoport-Zink spaces originally appears in [5]. There, a theory of (G, w)-
displays is developed for pairs (G, 1) such that G is reductive and p is minuscule,
and the theory is used to give a purely group-theoretic definition of Rapoport-
Zink formal schemes of Hodge type. Subsequently, Lau generalized the theory of
(G, p)-displays [24], and an equivalent Tannakian framework was developed in the
author’s previous paper [9]. Denote by Disp(W (R)) the category of higher displays
over the Witt frame for R as in [24]. In the Tannakian framework, we say a (G, u)-
display over W(R) is an exact tensor functor RCPZ,, G — Disp(W(R)) such that,
for every representation, the structure of the corresponding display is fpqc-locally
governed by the cocharacter p (see Definitions 3.13 and 3.15). This formulation is
essential to the results of this paper, as it allows for a close connection with Zink’s
original theory of displays [30], and therefore also with p-divisible groups.

When G = GLj, and u = g4, is the cocharacter ¢ +— QD 1 h=Dy (G, )-
displays are nothing but Zink displays of height # and dimension d. When (G, )
is of Hodge type, the embedding n : G < GL(A) induces a functor from (G, w)-
displays to Zink displays, and in this case we say a (G, u)-display is nilpotent with
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respect to n if the corresponding Zink display is nilpotent in the sense of [30]. The
following is the main result of this paper, see Theorem 5.17.

Theorem A. Let G be a reductive group scheme over Z,, and let |1 be a minuscule
cocharacter for G. For every p-nilpotent Z,-algebra R, there is a functor

(G, w)-displays over W(R) formal p-divisible groups over R
BTQ,R . — .

which are nilpotent with respect to n with (s, u)-structure

If R/ pR has a p-basis étale locally, then BT g is an equivalence of categories.

In particular, the equivalence in Theorem A holds when R is a field of charac-
teristic p, or when R/pR is a regular, Noetherian, and F-finite (the latter by [23,
Lem. 2.1]; see Definition 2.19 for the definition of a p-basis). When G = GLj, and
W = W4.n, the equivalence in question holds for arbitrary p-nilpotent rings R by a
theorem of Zink and Lau (see [30] and [20]). Hence the main result of this paper
can be seen as a group-theoretic generalization of the theorem of Zink and Lau (but
note that the theorem of Zink and Lau is an invaluable input in the proof). Let us
also mention that a similar result is proven in the case where G and p come from
an EL-type local Shimura datum in [9, 5.4].

Given a (G, w)-display & which is nilpotent with respect to 7, it is straightfor-
ward to obtain a formal p-divisible group: one takes the p-divisible group X asso-
ciated with the Zink display induced by the embedding  : G < GL(A). The pri-
mary difficulty lies in determining an (s, pt)-structure on X. This is resolved by the
main innovation of this paper, which is the association of a G-crystal to the (G, w)-
display &2. We summarize the properties of this G-crystal in the following theorem,
which is an amalgamation of the results in 4.1 and 4.2. Let LFCrys(Spec R/Z)
denote the category of crystals in locally free Ospec 7z » -modules as in [1].

Theorem B. Let R be a p-nilpotent Z,-algebra. Suppose & is a (G, u)-display
over W (R) which is nilpotent with respect to n. Then there exists an exact tensor
functor

D(Z) . ReprG — LFCrys(Spec R/Z,), (V,m) — D(P)"
such that the following properties hold:

(i) The association P +— D(P) is functorial in & and compatible with base
change.

(ii) If Z,,(2?) is the nilpotent Zink display associated with & via the embedding ),
then there is a natural isomorphism of crystals

D(2)" = D(Z,(2)),
where D(Z,(2?)) denotes the crystal associated with Z,/(Z) as in [30].

Once such a crystal is constructed, it is not difficult to obtain an (s, p)-structure
on the p-divisible group X associated with &. Indeed, by viewing the tensors s;
as morphisms of representations from the trivial representation to A®, we can use
functoriality of the G-crystal in representations and its compatibility with the tensor



48 P. Daniels

product to obtain morphisms #; : 1 — (D(Z?)")®. By Theorem B, we can replace
(D(2)M® with D(Z,(£))®, which is in turn isomorphic to D(X)® by the theory
of Zink and Lau (Lemma 2.23). With some work (see Proposition 4.11) one can
show that the resulting morphisms of crystals #; : 1 — D(X)® are crystalline Tate
tensors.

The proof of Theorem A then proceeds in two steps. First, the case where
pR = 0 is dealt with using the strategy of [9, Thm. 5.15], see Proposition 5.16.
The case of general R is then reduced to this one using analogs Grothendieck-
Messing theory developed in the settings of G-displays and of p-divisible groups
with (s, u)-structure, respectively.

The construction of the crystal in Theorem B requires a technical result about
(G, n)-displays which may be of independent interest. As a starting point we recall
that by [9, Thm. 3.16], if R is a p-nilpotent Z,-algebra, (G, 11)-displays over the
Witt frame W (R) in the Tannakian framework are equivalent to G-displays of type
over W (R) defined using the torsor-theoretic framework of [24]. More generally, if
S is an étale sheaf of frames over Spec R, we can define a category of G-displays of
type u over S(R) as in [24], and a category of (G, w)-displays over S(R) following
the Tannakian formulation of [9]. We say S satisfies descent for modules if finite
projective graded modules over the graded ring S form an étale stack over Spec R.
The following theorem (Theorem 3.16 below), which is essentially a generalization
of [9, Thm. 3.16], is critical to our construction of a G-crystal for a (G, w)-display.

Theorem C. If S is an étale sheaf of frames on Spec R which satisfies descent for
modules, then there is an equivalence of categories

((G, w)-displays over S(R)) — (G-displays of type pover S(R)).

In particular, in Appendix A, we prove that the sheaf on Spec A associated
with the relative Witt frame W (B/A) for a p-adic PD-thickening B — A satisfies
descent for modules. Other sheaves of frames which satisfy descent for modules
are those associated with p-adic frames as in [24, Def. 4.2.1]. Examples of p-
adic frames include the Zink frame W(R) for an admissible local ring R [24, Ex.
2.1.13] and its relative analog associated with a PD-thickening B — R, as well as
the truncated Witt frames W, (R) over an I ,-algebra R [24, Ex. 2.1.6].

Let us briefly sketch the construction of the G-crystal. Given a (G, w)-display
& over R, we obtain a corresponding G-display of type u over W (R) using [9,
Thm. 3.16]. Moreover, if B — R is a PD-thickening, then the work of Lau (see
Proposition 3.29) allows us to lift the G-display of type p over W(R) to a G-
display of type p over the relative Witt frame W (B/R). Since the relative Witt
frame satisfies descent for modules (see Proposition A.18), the above theorem
applies, and we obtain a (G, p)-display over W(B/R), which is, in particular, an
exact tensor functor from RepZP G to the category of displays over W (B/R). Given
any representation, we can obtain from such an object a B-module, which we denote
]D)(W)g/R. The functor which assigns to (V, ) the crystal (B — R) +— ]D)(@)’é/R
is the desired G-crystal.

As a consequence of the Theorem A we obtain an explicit relationship between
the Rapoport-Zink functors of Hodge type defined in [16] and in [5]. To be more



G-displays of Hodge type and formal p-divisible groups 49

specific, let k be an algebraic closure of I, suppose (G, {1}, [b]) is anintegral local
Shimura datum which is unramified of Hodge type, and let G = (G, u, A, n, s) be
a local Hodge embedding datum. Given a good choice of x and b, we can define a
(G, w)-display &y which is nilpotent with respect to 1, and we denote by (X, 7o)
its associated formal p-divisible group with (s, ®)-structure. Denote by Nilpt{;r‘(’k)
the category of p-nilpotent W (k)-algebras which are formally smooth and formally

finitely generated over W (k)/p™ W (k) for some m. To the datum (G, b) we can

associate two Rapoport-Zink functors on Nllpf;}?k) The first, denoted RZ(; (ZV fsm.

assigns to a p-nilpotent W (k)-algebra the set of isomorphism classes of triples
(X, t, 1), where (X, t) is a p-divisible group with (s, p)-structure over A, and ¢
is a quasi-isogeny over Spf A/pA between X and Xo which respects the tensors
modulo an ideal of definition. The second, denoted RZ! Z p» assigns to such rings
the set of isomorphism classes of pairs (<, p) consmtmg of a (G, p)-display &
over W(R) and a G-quasi-isogeny p between & and # which is defined over
Spf A/pA (see 5.4 for details).

By [24, Lem. 2.1], if A is an object in Nilpﬁ,“(‘k), then A/pA has a p-basis étale
locally, so the equivalence of Theorem A holds. As aresult, we obtain the following
corollary (see Theorem 5.23).

Corollary D. The functors RZp divime g RZdlgp Bm o Nl]pw(k) are naturally
isomorphic.

It follows from Corollary D that the formal schemes defined by Kim [16] and
Biiltel and Pappas [5] which represent these functors are isomorphic. This was
already known by [5, Remark 5.2.7], but the geometric method of proof offered in
loc. cit. differs from the explicit comparison of functors given here.

Let us give a brief outline of the paper. In the first section we review the defi-
nitions of displays and frames as in [24], and the crystalline theory of p-divisible
groups and displays, following especially [1], [30], and [21]. In 3 we recall basic
notions about G-displays of type u and (G, w)-displays, and we prove Theorem C.
By results in Appendix A, the theorem applies in particular in the case of relative
Witt frames, which is in turn crucial for 4, where we construct the G-crystal asso-
ciated with a (G, n)-display over the Witt frame and prove the collection of results
which comprise Theorem B. In 5 we prove Theorem A, and derive consequences
for the study of Rapoport-Zink spaces of Hodge type and for the deformation theory
of p-divisible groups with crystalline Tate tensors.

1.1. Notation

e Throughout the paper, fix a prime p and a finite field k¢ of characteristic p and
cardinality ¢ = p°.

e A ring or abelian group will be called p-adic if it is complete and separated
with respect to the p-adic topology.

e If f: A — Bisaring homomorphism and M is an A-module, we write f*M
for M @4, B.If f is understood, we write Mp = M @4 B as well. If X is a
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p-divisible group over Spec A, we often write X ® 4 B for the base change of
X to B.

If f: A — B isaring homomorphism, M is an A-module, and N is a B-
module, we say amap « : M — N is f-linear if a(a - m) = f(a) - a(m) for
a € A,m € M. In this case we write o for the linearization f*M — N given
by m ® b — a(m) - b. We say « is an f-linear bijection if o is a B-module
isomorphism.

e If R is a commutative ring, denote by Mod(R) the category of R-modules.
e For a Z,-algebra O, denote by Nilpo the category of O-algebras in which p is

nilpotent. We will refer to such an (J-algebra as a p-nilpotent O-algebra.

Let @ S, be a Z-graded ring. For a ring homomorphism ¢ : @ S, — R, we
write ¢, for the restriction of ¢ to S,,.

Let R be a ring. Denote by Etg the category of affine étale R-schemes. We
endow this category with a topology by defining a covering of Spec A € Etg
to be an étale covering {U; — Spec A} such that each U; is affine.

e If G is a sheaf of groups in a topos, denote by Torsg the stack of G-torsors.
e If S is any Z-graded ring, denote by GrMod(S) the category of graded S-

modules, and by PGrMod(S) the full subcategory of finite projective graded
S-modules. By [24, Lemma 3.0.1], this latter category is equivalent to the full
subcategory of finitely generated graded S-modules which are projective over
S.

If R is a p-adic ring, denote by pdiv(R) the category of p-divisible groups over
R, and denote by fpdiv(R) the full subcategory of formal p-divisible groups
over R.

e If M is a module over aring R, denote by M" its linear dual.
e If X is a p-divisible group over a ring R, denote by X? its Serre dual.
e Let R be a p-adic W (kp)-algebra. If A is an R-algebra, a p-adic PD-thickening

of A over R is a surjective ring homomorphism B — A such that B is a p-adic
W (ko)-algebra and such that the kernel J of B — A is equipped with divided
powers 8 which are compatible with the canonical divided powers on pW (ko).
A PD-morphism between PD-thickenings B — A and B’ — A’ with divided
powers & and &’ on their respective kernels is a pair of homomorphisms ¢ :
B — B’ and ¥ : A — A’ such that the obvious diagram commutes, and such
that 8/, (¢ (x)) = @(8,(x)) for all x € J and all n.

2. Preliminaries

2.1. Frames, graded modules, and displays

We review the basic definitions and properties of (higher) frames and displays
following [24] and [9, 2]. In particular, we recall the definition of the Witt frame
over a p-nilpotent ring R (Example 2.9) and the relative Witt frame associated
with a p-adic PD-thickening B — A (Example 2.10). Moreover, we make explicit
the connection between the theory of displays presented here and the theory of
windows (see Lemma 2.8).
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Definition 2.1. A frame S = (S, o, 7) is a triple consisting of a Z-graded ring S
and two ring homomorphisms o, 7 : § — Sy satisfying the following properties.

(i) The endomorphism t of Sy is the identity, and t—, : S_, — Sp is a bijection
foralln > 1.
(ii) The endomorphism o of S induces the p-power Frobenius s — s” on So/ pSo,
and if 7 is the unique element in S_; such that 7_;(t) = 1, then o_1(¢) = p.
(iii)) We have p € Rad(Sp).

We say that S is a frame for R = So/7(S1). The conditions in the definition
imply that 7 acts on S as multiplication by ¢, so we will usually write t(S1) = ¢57.

Definition 2.2. Let S = (S, 0, t) be a frame for R. A display over S is a pair
M = (M, F) consisting of a finite projective graded S-module M and a o-linear
bijection F : M — t*M.

Definition 2.3. A standard datum for a display is a pair (L, ®) consisting of a finite
projective graded So-module L and a o-linear automorphism & : L — L.

From a standard datum (L, ®) we define a display (M, F') where M = L ®g, S
and F(x ® s) = o (s)®(x). If every M in PGrMod(S) is of the form M = L ®g, S
for a finite projective Sp-module L, then every display is isomorphic to one defined
by a standard datum, see [24, 3.4]. In particular, by [24, Lem. 3.1.4], this occurs if
every finite projective R-module lifts to Sp.

Let us denote by Disp(S) the category of displays over S. If S — S’ is a frame
homomorphism, then we obtain a base change functor

Disp(S) — Disp(S), M > M ®s §'.

The category Disp(S) has a tensor product given by (M, F) @ (M', F') = (M ®s
M’', F ® F’), which makes it into an exact rigid tensor category with unit object
§=(S,0).

For any display M over a frame S, there exists a canonical descending filtration
on M :=1*M ®s, R, called the Hodge filtration of M, see [24, 5.2]. Let us recall
the definition. Denote by 6, : M,, — t*M the composition M,, — M — t*M,
and by 6, the composition

9’1
M, = "M — t*M ®s, R.

The nth piece of the Hodge filtration is given by im(6,), and is denoted Fil” M):
Fil*(M) := im(6,) C M. (2.1

Since 6, factors through r : M, — M,_1, we have Fil*(M) c Fil*"'(M), so
(Fil*(M)), <z defines a descending filtration on M. If (L, ®) is a standard datum
for M, with L = P; L, then

Fil'(M) = (P Li ®s, R.

i>n
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Remark 2.4. The Hodge filtration is functorial in M, meaning that any morphism
of displays ¢ : M — M’ induces a morphism of R-modules ¢ : M — M’ which
sends Fil" (M) into Fil" (M'). Moreover, the Hodge filtration is compatible with
tensor products of displays, i.e., we have

Fil'(M @ M) = Y Fill M) @ Fil* (M), 22)
jt+k=n

Let us briefly review the connection between (higher) displays over frames and
windows over 1-frames. Recall the following definition (see [24, Def. 2.2.1]).

Definition 2.5. A 1-frame S = (Sy D I, 09, ¢) consists of a ring Sp, an ideal
I C Sy, a ring endomorphism oq of Sy, and a op-linear map ¢ : I — Sy such that

(i) ap : So — S is a lift of the Frobenius on Sy/pSo,
(ii) og(a) = po(a) fora € I,
(iii) p € Rad(Sp).

We say that S is a 1-frame for R = Sp/1.

A frame S is said to extend the 1-frame S if t : S} — Sy is injective, I = ¢S],
and 6 (ta) = o1(a) fora € S;.

Definition 2.6. Let S be a 1-frame. A window over S is a quadruple P =
(P, Fil P, Fy, F1) consisting of a finitely generated projective Sp-module P, an Sp-
submodule Fil P € P, and two op-linear maps Fp : P — P and F : FilP — P
such that

(i) there is a decomposition P = Lo @ Ly with FilP = Lo & I Ly,
(ii) Fi(ax) =6 (a)Fo(x) fora e I andx € P,
(iii) Fo(x) = pFi(x) for x € Fil P,
@iv) Fo(P) + F;(Fil P) generates P as an Sp-module.

Because there is no surjectivity condition on ¢ in the definition of a 1-frame, the
definition of windows that appears here differs slightly from others in the literature,
see [20, Rmk. 2.11]. By [20, Lem. 2.6], if P = Ly & L; is a finite projective
So-module and FilP = I Lo & L1, then the set of S-window structures on P and
Fil P is mapped bijectively to the set of og-linear isomorphisms

V:Lop L — P.

The bijection is determined by ¥ = F0|L0 ®F |L1, and the triple (Lo, L1, ¥) is
called a normal representation for (P, Fil P, Fy, F1). We remark for later use that,
in terms of W, the linearization of F can be expressed as

F§ = W o (idy, @ p-idp,). (2.3)

To any window P = (P, Fil P, Fy, F|) over S we can associate an Syp-module
homomorphism V?: P — oy P which is uniquely determined by the identities

VEE  Fo(x) = pE®@xand VEE - F1(y) =£® y
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foré € So,x € P,y e FilP.If (Lo, L1, V) is a normal representation for P, then
V= (p-idy, ®idg,) o (WH) 71, (2.4)

From (2.3) and (2.4) we see that F§ o V¥ = p-idp and V¥ o F§ = p - idgyp.

If S is a frame for R, denote by v the ring homomorphism S — R which extends
the projection So — R by zero on S, for n # 0. If M is a finite projective graded
module over S, then M ®g ,, R is a finite projective graded R-module with graded
pieces that we denote by L;. Recall the following definition, cf. [9, Def. 2.16].

Definition 2.7. We say M is a I-display over Sif L; = 0foralli <Oandi > 1.

In the language of [9], M is a 1-display if the depth of M is nonnegative and
the altitude of M is less than 1. If (L, ®) is a standard datum for M, then M is a
1-display if and only if L; = O foralli < Oandi > 1, see [9, Lem. 2.7].

Lemma 2.8. Suppose S is a frame extending the 1-frame S, and suppose that all
finitely projective R-modules lift to Sy. Then the functor

Ps : (1-displays over S) — (Windows over S), (2.5)

defined by assigning to a 1-display M = (M, F) the window (P, Fil P, Fy, F1) with
P = t*M,FilP = 6,(M)), Fo = F|,, 00y P — P and F = Fly, o
Fil P — P is an equivalence of categories.

Proof. The proof follows from a straightforward adaptation of the arguments in [9,
Lem. 2.25]. O

One can also prove the lemma using normal representations: if (L, ®) is a
standard datum for a 1-display over S, then L = Lo & L1, so (Lo, L1, D) is a
normal representation for the associated window over S. For use later, let us denote
the quasi-inverse functor to Pg by

M5 : (Windows over S) — (1-displays over S). (2.6)

We close this section by discussing a few example of frames and 1-frames that
will be of particular importance in what follows. Recall that to give a frame it
suffices to specify a triple (S>0, 0, (;)n>0) consisting of a Zx¢-graded ring S>0, a
ring homomorphism o : S>¢9 — So, and amaps #, : Sp+1 — Sy, see [9, 2.1] and
[24, Rmk. 2.0.2].

If R is a Zp-algebra, let W(R) denote the ring of infinite length Witt vectors
over R. The ring W (R) comes equipped with a ring endomorphism fg, called the
Frobenius, and an additive self-map vg, called the Verschiebung. When the ring R
is clear from context we will write simply f and v for these maps. Denote by 1 (R)
the kernel of the canonical map wg : W(R) — R, so I(R) = v(W(R)).

Example 2.9. (The Witt frame) Let R be a p-adic ring. Define a frame W (R) from
the Witt ring over R as follows. Define Sy = W (R), and forn > 1,let S, = I (R),
viewed as an Sp-module. We define a Z>o-graded ring structure on S>9 = So ®
P,.- o Sn by endowing it with the multiplication S, x S, — S, determined by
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(v(a), v(b)) — v(ab) forn,m > 1. The map #y : S — Sp is given by inclusion
I(R) — W(R), and ¢, is multiplication by p forn > 1. We let o9 = fr, and for
n > 1 wedefine o, (v(s)) = s forallv(s) € S, = I(R). We will write § = W(R)®
for the resulting Z-graded ring. The corresponding frame W (R) = (W(R)®, o, 1)
is the Witt frame for R.

The Witt frame extends the Witt 1-frame W(R) = (W(R) D I(R), f, v h.
Windows over the Witt 1-frame are equivalent to 3n-displays in the sense of [30],
which we will hereafter refer to as Zink displays. Then by Lemma 2.8, 1-displays
over W (R) are equivalent to Zink displays.

Let B — A be a p-adic PD-thickening with kernel J. Using the divided powers
on J, Zink defines an isomorphism of W (B)-modules

log: W(J) > ]_[ J,
ieN

see [30, 1.4] for details. Denote the image of & € W (J) by log(¢) = [&, &1, ... ]

Example 2.10. (The relative Witt frame) Let B — A be a p-adic PD-thickening.
Define a frame W (B/A) associated with B/A as follows. For S>¢ take the Z>o-
graded ring with Sy = W(B), S,, = I (B) @ J with J viewed as a W (B)-module by
restriction of scalars, and multiplication S,, X S, — S+ forn, m > 1 defined by
(v(a), x) - (v(b),y) = (v(ab),xy) fora,b € W(B),x,y € J.Themapty: S1 =
I(B)® J — W(B) = S is given by (v(a), x) — v(a) —I—log_l[x, 0,0,...],and
t, forn > 1is given by multiplication by p on the first factor and the identity on the
second factor. Finally, let o9 = fp and for n > 1 define o, (v(a), x) = a. Denote
the resulting Z-graded ring by W(B/A)®. The corresponding frame W(B/A) =
(W(B/A)®, o, 1) is the relative Witt frame for B/ A.

Let 1(B/A) denote the kernel of W(B) — A, and denote by 77! the unique
extension of v=1 to I1(B/A) whose restriction to W(J) = ker(W(B) - W(A)) is
given by [&, &1, ...] — [£1, &, ... ]inlogarithmic coordinates. Then W(B/A) =
(W(B) D I(B/A), f, 7" is a 1-frame (see [22, 2.2]), and W(B/A) extends
W(B/A).

2.2. Recollections on crystals

We review the definitions of crystals and the crystalline site as in [1], and we sketch
proofs of some standard lemmas which will be useful in 4.2 when we are checking
Frobenius equivariance of certain morphisms of crystals.

Fora W (ko)-scheme X in which p is locally nilpotent, denote by CRIS (X / W (ko))
the big fppf crystalline site as in [1]. This is the site whose underlying category is the
category of triples (U, T, §) where U < T is a closed immersion of an X-scheme
U into a p-nilpotent W (ko)-scheme T such that the ideal .# of Or defining the
embedding is equipped with divided powers compatible with the natural divided
powers on pW (ko). If X = Spec R is affine, we will write CRIS(R/ W (ko)) to
mean CRIS(Spec R/ W (kp)). Recall that to give a sheaf on CRIS(X/W (ko)) is
equivalent to giving, for every triple (U, T, §) in CRIS(X/ W (kop)), an fppf sheaf
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Z7 on T, and for every morphism (u, v) : (U’, T,”,8') — (U, T, ), a morphism
of sheaves v~ 1.%r — Z 7 which satisfies a cocycle condition (see [1, 1.1.3]). The
crystalline structure sheaf for X over W (k¢), denoted by Ox,w ), is defined by the
rule F((U, T, 5), OX/W(ko)) = F(T, OT). If .% is a sheaf of OX/W(kO)—modules,
then for a morphism (u, v) as above the transition morphism v 1% > Fr
induces a morphism v* #r — 7.

Definition 2.11. A crystal of finite locally free (resp. locally free, resp. quasi-
coherent) Ox/wky)-modules is an Ox;wk,-module .# such that for every
(U, T,38) in CRIS(X/W (ko)) the Op-module Zr is finite locally free (resp.
locally free, resp. quasi-coherent) and for every morphism (u, v) : (U’, T',8') —
(U, T, §), the transition morphism v*.%p — %7 is an isomorphism.

We will denote by LFCrys(X/W (ko)) the category of crystals of locally
free Ox,/wk,)-modules. The full subcategory of crystals of finite locally free
Ox/w k) --modules is a rigid exact tensor category which is a full tensor sub-
category of the category of crystals in quasi-coherent Oy, w (,)-modules. The unit
object is the crystal 1 which assigns to any (U, T, §) the finite locally free Or-
module Or. If X = Spec R is affine, we will write LECrys(R/ W (ko)) instead of
LFCrys(Spec R/ W (ko)).

Remark 2.12. We will often write just B — A to denote the PD-thickening
(Spec A, Spec B, §). Because fppf sheaves on a scheme T are uniquely deter-
mined by their evaluations on affine 7'-schemes, to give a crystal in quasi-coherent
Ox/wky)-modules, it is enough to give, for every PD-thickening B — A of p-
nilpotent W (ko)-algebras over X, a B-module Mp,4, and for every morphism
(B’ — A’) — (B — A) of PD-thickenings, an isomorphism

Mpja ®p B — My . 2.7

These isomorphisms should satisfy the obvious cocycle condition for compositions.
The associated crystal is (finite) locally free if each B-module Mp, 4 is (finite)
projective.

If (U, T, §) is an object in CRIS(X/ W (ko)), then we can view (U, T, §) as an
object in CRIS(Y/ W (kg)), denoted ¥ (U, T, §), by viewing U as a Y-scheme via
U — X — Y.If % is a sheaf on CRIS(Y/ W (kg)), define ¥*.% by

Y*FWU,T,8) = FY(U,T,$H)). (2.8)

This determines a pullback functor Sh(CRIS(Y/ W (ko))) — Sh(CRIS(X/ W (ko)),
which preserves the respective categories of crystals.

Definition 2.13. The category of isocrystals over X, denoted Isoc(X), is the cat-
egory whose objects are crystals D in locally free Ox /w y)-modules, and whose
morphisms are global sections of the Zariski sheaf Hom(ID, D)[1/ p]. We will write
D[1/ p] for the object D viewed as an object in Isoc(X). When X = Spec R is affine,
we write Isoc(Spec R) = Isoc(R).
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Remark 2.14. If X is quasi-compact, then Hom(ID, I')[1/ p] can be identified with
Hom(DD, D)[1/p],i.e.amorphismID[1/p] — D'[1/p]linIsoc(X) is anequivalence
class of diagrams

DD D,
where s is a morphism of crystals of Ox/w x,)-modules.

If B — A is a p-adic PD-thickening, then B — A can be written as the
projective limit of divided power extensions B, = B/p"B — A/p"A = A,.If D
is a crystal in Ospec R/ W (k)-modules and B — A is a p-adic PD-thickening over
R, we write Dp/4 = 1(£n Dp,/a,- This defines an evaluation functor

(=)Bya : LECrys(R/ W (ko)) — Mod(B), D > Dp/a. 2.9)
The functor (—) g, extends naturally to a functor
(=)B/all/pl : Isoc(R) — Mod(B[1/p]), D[1/p] — (Dp/a)1/p] (2.10)

which on morphisms is given by the composition

Hom(DDy, D) — Hompg ((D1)g/a, (D2)g/a)[1/p] — Homp1/p1(D1) g al1/pl, (D2)g/al1/pD).

Remark 2.15. If Dy is a crystal of finite locally free Ospec r/w (ko)-modules, then
(ID1) B/ 4 is a finite projective B-module, and the last arrow is an isomorphism.

Remark 2.16. If B — A is a PD-thickening over R, then W (B) is p-adic by [30,
Prop. 3], and W(B) — A is a p-adic PD-thickening, see e.g. [22, 1 G]. When
pR = 0 and R is perfect, the evaluation functors (—)wr),r and (=)wr)y/r[1/p]
are equivalences (see e.g., [13, Prop. 4.5]).

The following lemmas are no doubt well-known to experts, but we could not
find a reference, so we sketch proofs for the sake of completeness. Suppose R is
an [F,-algebra, and choose a polynomial algebra W (ko)[xy]loeca surjecting onto
R. Let y denote the canonical divided powers on pW (kg), and denote by D the
PD-envelope of W (kg)[x] with respect to K = ker(W (kg)[x,] — R) relative
to (W (ko), pW (ko), v). Then the kernel J of D — R is equipped with divided
powers compatible with those on pW(kg), and D, := D/p"D — R is a PD-
thickening over R for every n. If we denote by D" the p-adic completion of D,
then D — R defines a p-adic PD-thickening, and we can define functors (—) pa /R
and (=) pa/r[1/p] asin (2.9) and (2.10).

Lemma 2.17. The functor (=) p~ g is faithful. Moreover, if Dy is a crystal of finite
locally free Ospec Ry W (ko) -modules, then the map

Hom(D1, D2)[1/p] — Hompa(1,p((D1) pryrll/ pl, D2) pryrll/ p))

induced by (=) pr/r[1/p] is injective.
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Proof. The first statement follows from the fact that for any PD-thickening B — A
we can find a lift W (kog)[xq] — B of R — A, so by the universal properties of D
and D" we obtain a PD-morphism (D" — R) — (B — A). The second statement
follows from the first using Remark 2.15 and exactness of localization. O

As R varies in Nilpy, ;) we obtain fibered categories LFCrys and Isoc whose
fibers over R in Nilpyy 4, are the categories LFCrys(R) and Isoc(R), respectively.

Lemma 2.18. The fibered categories LFCrys and Isoc form stacks for the étale
topology on Nilpy ).

Proof. Tt is enough to show the result for LFCrys, where the key point is that if
B — A is a PD-thickening over R, and R — R’ is étale and faithfully flat, then
the homomorphism A — A’ := A ®g R’ is also étale and faithfully flat, so there
exists a unique étale faithfully flat lift B — B’ with B’ — A’ a PD-thickening
over R’. The result follows from étale descent for modules over rings along with
the crystal property (2.7). O

We will eventually want to consider p-nilpotent W (kp)-algebras which have a
p-basis étale locally. For the convenience of the reader, we recall the definition of
a p-basis.

Definition 2.19. Let R be an I ,-algebra. A p-basis for R is a subset {x,} of R such
that the set of monomials x’ for J running over the multi-indices J = (iy), 0 <
iy < p,provides a basis for R viewed as an R-module over itself via the Frobenius.

For example, any field of characteristic p or any regular local ring which is
essentially of finite type over a field of characteristic p has a p-basis (see [3, Ex.
1.1.2]). We say that an IF,-algebra R has a p-basis étale locally if there is some
faithfully flat étale ring homomorphism R — R’ where R’ has a p-basis. One
reason for the usefulness of the existences of a p-basis is the following lemma.
Recall that the perfect closure of an IF,-algebra is the colimit of infinitely many
copies of R along the Frobenius morphism x +— x?.

Lemma 2.20. Let R be an ko-algebra which admits a p-basis, and let R pe the
perfect closure of R. Then R — RP® is faithfully flat, and the base change functor
LFCrys(R/ W (ko)) — LFCrys(RP*/ W (ko)) (see (2.8)) is faithful.

Proof. If R has a p-basis then the Frobenius ¢ : R — R is faithfully flat, since R
is free viewed as a module over itself via ¢. Thus RP* is faithfully flat, since
it is a colimit of faithfully flat R-algebras. The second part follows from [23,
Lem. 7.5]; we give the argument for completeness. If (x;);c; is a p-basis for R,

then RPe = R[(xil/poo)iel], and for a PD-thickening B — A over R, we have
AQpg RPef = A[(ail/poo)iel], where q; is the image of x; in A. If b; € B is alift of

a;, then the divided powers extend to B[(bt}/pw)iel] — A[(ail/poo)iel] by flatness.
Thus the result follows from faithfully flat descent for modules over rings along
with the crystal property (2.7). O
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The following lemma will be useful in the proof of Theorem A.

Lemma 2.21. Suppose pR = 0 and that R has a p-basis étale locally. Let D and
I’ be crystals in locally free Ospec R/ W (ko)-modules, and let

ti,t:D— D

be two morphisms of crystals. Then t| = tp if and only if their evaluations on
W(R) — R agree.

Proof. One direction holds by definition, so we only need to prove that t; = 1, if
their evaluations on W(R) — R agree. The property of agreeing on W(R) — R
is stable under base change so, by Lemma 2.18, it is enough to assume that R has
a p-basis. In turn we can use Lemma 2.20 to reduce to the case where R is perfect.
There the result follows because evaluation on W(R) — R is faithful for perfect
rings, see Remark 2.16. O

Suppose R is a p-nilpotent W (kp)-algebra, and let Ry = R/pR. Then
the closed embedding i : Spec Ry <> Spec R induces a morphism of topoi
icris = (iCRIS«» iéRIS) between sheaves on CRIS(Rg/ W (kp)) and sheaves on
CRIS(R/ W (ko)). By [2, IV, Thm. 1.4.1], the functors icris« and ijgg are quasi-
inverse to one another, and induce an equivalence of categories

LECrys(Ro/ W (ko)) = LFCrys(R/ W (ko). @2.11)

This equivalence extends to an equivalence Isoc(Rp) 5 Isoc(R).

Let Ry be an IF ,-algebra, and let ¢y denote the p-power Frobenius r +— r? of
Ry.If B — Ais aPD-thickening over Ry, we write ¢ (B/A) for the PD-thickening
B — A where A is viewed as an Rp-algebra via restriction of scalars along ¢y.
For any crystal D in Ospec Ry, w (kg)-modules, we define the value of the Frobenius
pullback ¢ on a p-adic PD-thickening B — A over Ry by

(#oD)B/a := Dy, (B)A)- (2.12)
If 0 : B — B is alift of the Frobenius of A which preserves the divided powers,

then o induces a PD-morphism (B — A) — ¢o,(B — A), so by the crystal
property we obtain

(@5D)g/a — o*(Dp/a). (2.13)
More generally, if R is a p-nilpotent W (ko)-algebra and D is a crystal in locally

free Ospec R/ W (ko)-modules, then we can use the equivalence (2.11) to define the
Frobenius pullback ¢*D of D. Explicitly,

¢*D = icris«(PpicrisD)-
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2.3. The crystals associated with p-divisible groups and displays

We recall the crystals associated with p-divisible groups and to nilpotent Zink
displays, and we discuss the connection between the two. Our main reference for
the crystals associated with p-divisible groups is [1]. For more information on the
crystals associated with nilpotent Zink displays, we refer the reader to [30, 2.2] and
[24,2.4].

If X is a p-divisible group over a p-nilpotent W (ko)-algebra R, denote by D(X)
the covariant Dieudonné crystal of X as in [1]. In fact, the crystal associated with
X as defined in loc. cit. is contravariant, so to obtain a covariant crystal we define
D(X) to be the contravariant Dieudonné crystal associated with X . Equivalently,
by the crystalline duality theorem [1, 5.3], D(X) is the dual of the contravariant
Dieudonné crystal associated with X.

The Dieudonné crystal D(X) is a crystal of finite locally free Ospec R/ W (ko)-
modules, and the sections of D(X) over the trivial PD-thickening idg : R — R are
equipped with a filtration by finite projective R-modules

Fil’(D(X)) = D(X)g/r D Fil'(D(X)) = Lie(X?)" > FI*(D(X)) =0, (2.14)
called the Hodge filtration of X, which makes the following sequence exact

0 — Fil'(D(X)) — D(X)gr/r — Lie(X) — 0. (2.15)

Definition 2.22. A Dieudonné crystal over R is a triple (D, F, V), where D is a
crystal of finite locally free Ospec R/ W (kg)-modules, and

F:¢*D— DandV:D — ¢*D
are morphisms of crystals such that Fo V= p -idp and Vo F = p - idg+p.

If X is a p-divisible group over an I ,-algebra R¢, denote by X (P) the p-divisible
group X ®g,.¢, Ro obtained by base change along ¢. We obtain a Dieudonné
crystal structure on D(X) by taking IF and V to be induced from the Verschiebung
and Frobenius

Vx : XP = X, Fx : X — X,

respectively. Let us emphasize that since we are using the covariant Dieudonné
crystal, X — ID(X) sends the Frobenius of X to the Verschiebung of ID(X) and the
Verschiebung of X to the Frobenius of D(X). More generally, if R is a p-nilpotent
W (ko)-algebra, then we obtain F and V on ID(X) by taking the unique maps lifting
the Frobenius and Verschiebung for if'p;D(X) along the equivalence (2.11).

The unit object 1 in the rigid tensor category of finite locally free crystals in
Ospec R/ W (k)-modules is given by the crystal ID(u o) associated with the multi-
plicative p-divisible group i oo over R (here we use ID(u po< ) because we normalize
Dieudonné theory covariantly; in this way we have the same unit object as in [14]
and [16]). It follows that 1 is endowed with the structure of a Dieudonné crystal.
Explicitly, we have a canonical isomorphism ¢*1 = 1, and with respect to this
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isomorphism we take ' = idy and V = p - id1. We will also endow the sections
of 1 overidg : R — R with the filtration

Fil’(1) = R D Fill(1) = 0. (2.16)

We will refer to this as the Hodge filtration for 1.

Let R be a p-nilpotent Z,-algebra, and denote by Zink(R) the category of Zink
displays over R, which is equivalent to the category of windows over W(R) and
to the category of 1-displays over W (R) by Lemma 2.8. Denote by nZink(R) the
full subcategory of nilpotent Zink displays (see [30, Def. 11]). If a Zink display P
over R is nilpotent, then we can associate to P a formal p-divisible group BTz (P).
By the main theorems of [30] and [19], BT defines an equivalence of categories
between nilpotent Zink displays and formal p-divisible groups over R. When the
ring R is clear from context, we will sometimes omit the subscript from BTg.

An explicit quasi-inverse functor ®g for BTy is defined in [21, Prop. 2.1].
Let us briefly review its definition. As a first step one defines a functor from p-
divisible groups over R to the category of filtered F-V-modules over R. Here a
filtered F-V -module over R is a quadruple (P, Fil P, F¥, V%), where P is a finite
projective W (R)-module with a filtration / (R)P C Fil P € P such that P/Fil P
is projective over R, and where F* : f*P — Pand V¥ : P — f*P are W(R)-
module homomorphisms such that F* o V¥ = p -idp and V* o F* = p -idp+p.

Let Ry = R/pR, so the kernel of W(R) — Ry is naturally equipped with
divided powers, making W(R) — Ry into a p-adic PD-thickening over Ry (see
Remark 2.16). If X is a p-divisible group over R, and Xo = X ®g Rp, then
since the Frobenius for W (R) is compatible with the PD-structure on the kernel of
W(R) — Ry (see [22, 1 G]), by (2.13) we have

(P D(Xo)wry/Ro = [ (D(X0)W(R)/Ry)-

Hence if we take P = D(Xo)w(r)/R,» the evaluation of I and V for ID(X() on
W(R) — R induce homomorphisms F* and V* as in the above definition. More-
over, the natural identification D(X)wry/r = D(Xo)w(r)/Rr, Provides us with a
map P — Lie(X) via the composition

P = D(X)wryr — D(X)g/r — Lie(X).

It follows that we can define a filtered F-V-module associated with X by
(P,FilP, F*, V%), with FilP = ker(P — Lie(X)). As in [21] we write Of
for the functor which assigns a filtered F-V-module to a p-divisible group.

We also have a faithful functor Yz from Zink displays over R to filtered F-V -
modules over R, defined by assigning to the Zink display P = (P, Fil P, Fy, F1) the
filtered F-V-module (P, Fil P, Fg, V%), where Fg : f*P — P isthe linearization
of Fyand V¥ is the homomorphism P — f* P associated with P by [30, Lem. 10]
(see 2.1). By [21, Prop. 2.1], there is a unique functor

®p : pdiv(R) — Zink(R) 2.17)

which is compatible with base change and for which there is a natural isomorphism
of functors ® g = Y o ®g. The restriction of ® g to formal p-divisible groups is
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an equivalence by [21, Thm. 5.1], and @ provides a quasi-inverse to BTg by [21,
Lem. 8.1].

If P is a Zink display over an IF,-algebra Ry, define ﬂ(p) = (P(p), Fil P(P),
Fép ), F l(p )) to be the base change of P along the p-power Frobenius ¢g : Ry — Rp.
By definition of base change for displays, we have P(P) = f*P. By [30, Ex. 23],
FOt and V* induce functorial morphisms of Zink displays

Verp : PP > Pand Frp: P — PP, (2.18)

respectively. If X is a p-divisible group over Ry, then one sees from the definition
of ®p, and the faithfulness of Yg, that

q)R()(VX) = VCI'QRO(X) and CDR()(FX) = Frcho(X). (219)

Let us now recall the definition of the crystal associated with a nilpotent Zink
display. Let B — A be a p-adic PD-thickening over R. Then the natural morphism
of 1-frames W(B/A) — W!(A) induces an equivalence of categories between
nilpotent windows over W(B/A) and nilpotent Zink displays over A by [30, Thm.
44] (see also [20, Prop. 10.4], and for the definition of nilpotence in this generality
see [20, 10.3]). It follows that if P is a nilpotent Zink display over R, and P 4 is
the base change of P to WW(A), then for any p-adic PD-thickening B — A over
R there is a unique (up to unique isomorphism which lifts the identity) lift of P 4
to W(B/A). Denote this lift by E = (P,Fil P, Fy, F1). The evaluation of the
Dieudonné crystal D(P) associated with P on B — A is

D(P)p/a := P/I(B)P.

In particular, if P = (P, Fil P, Fy, F1), then D(P)gr,g = P/I(R)P. We refer to
the filtration

Fil’(D(P)) = P/I(R)P D Fil'(D(P)) = FilP/I(R)P D Fil>(D(P)) =0

as the Hodge filtration of D(P) (or of P), and we observe that the following
sequence is exact

0 — Fil'(D(P)) — D(P)gr/g — P/FilP — 0.

We will sometimes denote P/Fil P by Lie(P). If P = ®g(X) for a formal p-
divisible group X over R, then by definition of ®r we have Lie(P) = P/FilP =
Lie(X). If P is the Zink display associated with a higher display M by Lemma 2.8,
then

Fil' (M) = Fil' (D(P)), (2.20)

for 0 < i < 2, where Fil’ (M) is the Hodge filtration of M (see (2.1)).
The assignment P +— D(P) is functorial in P, so if P is a Zink display over
an [F,-algebra Ry, then the maps (2.18) induce morphisms of crystals

F:DPP) - D(P)and V : D(P) — D(PP). (2.21)
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Moreover, as a consequence of the definition of D(P) we obtain a canonical iso-
morphism

PsD(P) = D(PP). (2.22)

Hence D(P) is canonically endowed with the structure of a Dieudonné crystal. As
in the case of p-divisible groups, we can use (2.11) to lift this structure in the case
of p-nilpotent Z,-algebras R.

Lemma 2.23. The functors P +— D(P) and P — DBTr(P)) from nilpotent
Zink displays to crystals in finite locally free Ospec r/z,-modules are naturally
isomorphic. Moreover, the isomorphism is compatible with the Frobenius and Ver-
schiebung maps, and it preserves the Hodge filtration.

Proof. The first statement proven in [30, Thm. 94] for the restriction of these
crystals to the nilpotent crystalline site, and in [30, Cor. 97] for the restriction to
PD-thickenings B — A which have nilpotent kernel. In general, it follows from
the results of [21]. Indeed, it is enough to show that the functors X +— D(X) and
X +— D(Pg(X)) from infinitesimal p-divisible groups to LFCrys(Spec R/Z,)
are naturally isomorphic. For any given PD-thickening B — A over R, there is an
isomorphism of B-modules

D(X)p/a = D(Pr(X)) B4 (2.23)

by [21, Cor. 2.7]. Explicitly, by the results of [21], if E is the unique lift
of ®r(X) to W(B/A), then we can identify P = D(X)w sy 4, so (2.23) is
obtained from the crystal property applied to the morphism of PD-thickenings
(W(B) - A) — (B — A). That (2.23) is compatible with the transition isomor-
phisms follows from the cocycle condition for D(X) and uniqueness of liftings along
W(B/A) — W(A). Functoriality in X follows from functoriality of X — D(X),
and if ®g(X) = (P, Fil P, Fy, F1), then Fil P = ker(D(X)w(r),r — Lie(X)), so
it follows from (2.15) that (2.23) preserves the Hodge filtrations.

Finally to prove compatibility with the Frobenius and Verschiebung one reduces
to the case where R is an IF ,-algebra, in which case we have Fpx) = D(Vx) and
Vpxy = D(Fx). Then the result follows from functoriality of the isomorphism
D(X) = D(®Pg (X)) along with (2.19) and compatibility of ®z with base change.

O

3. G-displays

Let G = Spec Og be a flat affine group scheme of finite type over Z,, and let u :
Gm,wky) = Gw,) be a cocharacter of Gw x,). In section 3.1 we define the stack
of G-displays of type w over an étale sheaf of frames, following [24], and in 3.2 we
develop Tannakian analogs of these objects. If R is in Nilp; , and S is an étale sheaf
of frames on Spec R which satisfies descent for displays (see Definition 3.8), we
prove (Theorem 3.16) that our Tannakian framework is equivalent to Lau’s torsor-
theoretic framework. This is closely analogous to [9, Thm. 3.16], and throughout
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we provide references to [9] in lieu of proofs whenever the arguments mimic those
in loc. cit.

In 3.3 we define the Hodge filtration for Tannakian (G, u)-displays, compare
it to the Hodge filtration for G-displays of type u, and explain (following [24])
how lifts of the Hodge filtration relate to lifts of a Tannakian (G, p)-display. In 3.4,
under the additional assumptions that G is reductive and u is minuscule, we recall
Lau’s unique lifting lemma (Proposition 3.29) for adjoint nilpotent (G, w)-displays.
The unique lifting lemma is a crucial component of the construction of the crystal
associated with an adjoint nilpotent (G, p)-display in 4.1.

3.1. G-displays of type |1

Recall [24, 5] a frame S is a frame over W (ko) if S is a graded W (ko)-algebra and
o : § — Sy extends the Frobenius of W (kg). In particular, if R is in NilpW(kO)
and B — A is a PD-thickening over R, then the frames W(R) and W(B/A) are
W (ko)-frames. See [24, Ex. 5.0.2] for details.

If X = Spec A is an affine W (kg)-scheme, then an action of G,, on X is
equivalent to a Z-grading on A (see [24, 5.1] and [9, 3.1] for details). If G,, acts
on X, and S is a Z-graded W (kg)-algebra, denote by X($)? C X(S) the set of
G, -equivariant sections Spec S — X over W (kp). In other words, X ($) is the
set Hom%,(ko)(A, S) of homomorphisms A — S of graded W (kg)-algebras.

Suppose S is an étale sheaf of frames on Spec R. If R — R’ is étale, write

S(R") = (S(R)), o (R)), T(R")),

s0 S(R’)is aZ-gradedring, and o (R") and t (R’) are ring homomorphisms S(R") —
S(R")g as in Definition 2.1. To X and S we associate two functors on étale R-
algebras:

X(9)%: R+ X(S(R))°, and X(S,) : R' — X(S(R)o).

Lemma 3.1. Ler S be an étale sheaf of frames on Spec R, and let X be an affine
scheme of finite type over W (ko). Then the functors X (S)° and X (8y) are étale
sheaves on Spec R.

Proof. The proof is formally the same as that of [24, Lem.5.3.1]. O

Let us recall the definition of the display group associated with G and p with
values in a Z-graded ring S. For details we refer the reader to [9, 3.1] and [24, 5.1].
The cocharacter p defines a right action of G, w(x,) on Gw k) by

g-Ai=unm gum)

for any W (ko)-algebra R, g € Gwy)(R) and A € Gy, w(k) (R). If S is a Z-graded
ring, define

G(S)u = G(S),
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i.e., G(S), is the subset of Gw i, (S) = Homw ) (Og, S) consisting of W (ko)-
algebra homomorphisms which preserve the respective gradings. Similarly, if S is
an étale sheaf of frames on Spec R, define

G(S)u = G(S),

s0 G(8), is an étale sheaf of groups on Spec R.
Suppose S = (S, o, T) isa W (ko)-frame. Then the Z,-algebra homomorphisms
0,7 : S — Sy induce group homomorphisms

0,7:G(S), — G(So)

as follows: if g € G(S)u, then o(g) (resp. 7(g)) is defined by post-composing
g € Homw ) (Og, S) witho : § — Sp (resp. T : § — Sp). Using o and 7, we
define an action of G(S), on G(Sp):

G(S0) x G(8),. = G(S), (x,8) — 1(8) 'x0(g). (3.1

If S is an étale sheaf of W (kg)-frames on Spec R, this action sheafifies to provide
an action of G(S),, on G(S,).

Definition 3.2. Let R be a p-nilpotent W (kg)-algebra, and suppose S is an étale
sheaf of W (ko)-frames on Spec R. The stack of G-displays of type p over S is the
étale quotient stack

G-Dispg , :=[G(S))/G(S),]
over EtR, where G(§),, acts on G(S,)) via the action (3.1).

Explicitly, for an étale R-algebra R’, G-Dispg H(R’ ) is the groupoid of pairs
(Q, @), where Q is an étale locally trivial G (S) ,-torsor over Spec R'and v : O —
G(8) is a G(S),-equivariant morphism for the action (3.1).

Let us point out the case which will be of particular interest to us. Suppose
B — A is a PD-thickening of p-nilpotent W (kg)-algebras. If A — A’ is étale, let
B(A’) be the unique étale B-algebra with B(A") ® p A = A’ (see e.g., [27, Tag
039R]). If J = ker(B — A), then ker(B(A") — A’) = JB’, and the divided
powers on B — A extend to B(A") — A’ by flatness of B — B(A'), see [27, Tag
07H1]. Denote by W 4 the étale sheaf of frames defined by

Wg a(A) = W(B(A)/A) (3.2)

for A — A’ étale (see Lemma A.15). By taking S = W, in Definition 3.2 we
obtain the stack of G-displays of type u for B — A

G_Dispﬂ(B/A),/L'

Following [24, 7.4], we have a notion of a Hodge filtration for G-displays of
type w, which will be useful later on for understanding deformations of G-displays
along nilpotent thickenings. Let us recall this notion.


https://stacks.math.columbia.edu/tag/039R
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Let S be a frame for R, and let (Q, o) be a G-display of type n over S. Let T
be the composition of T : § — Sp with the quotient So — R. Then T defines a
morphism of étale sheaves on Spec R

7:G(S), — Gg. (3.3)

We write Qg for the G g-torsor induced from Q by 7.
Let P, C G be the subgroup scheme defined by u, that is

Py(R)=1{h e H(R) | lir% M([)h/t(l)_l exists }, (3.4
t—
see [6, Thm. 4.1.17]. By [24, Prop. 6.2.2], the morphism (3.3) has image inside of
P,,; write Ty for the resulting morphism G(S),, — P, r.

Definition 3.3. Let (Q, o) be a G-display of type u over S. The Hodge filtration
for (Q, @) is the P, g-torsor @, C Qg induced from Q by 7.

We close this section by recalling the stack of G-displays of type u over the
Witt frame. Let W be the fpqc sheaf in frames on Nilpr given by R — W(R).
associated with G, u, and W we have two group-valued functors on Nilpr:

LG :=G(W,), and LG := G(W)".
By [24, Lem. 5.4.1] these are representable functors.
Definition 3.4. The stack of G-displays of type u over W is the étale quotient stack
G-Dispy , :=[LTG/L}G]
over Nilpy ), where L ¥ G acts on L*G via the action (3.1).

Remark 3.5. One could also take the quotient stack with respect to the fpqc topology,
which is the perspective used in [9]. The point is that the étale stack given by
Definition 3.4 is an fpqc stack by [24, Lem. 5.4.2].

3.2. Tannakian G-displays

Continuing the notation of the previous section, let G be a flat affine group scheme
of finite type over Zp, and let it : Gy, wkg) — Gw ko) be a cocharacter for Gy ).
Let us recall some definitions from [9]. If (V, &) is any representation of G, then
Vwike =V ®z » W (ko) is graded by the action of the cocharacter u, and for any
W (ko)-algebra R we obtain an exact tensor functor ¢’(W),, r (denoted 6, g in
[9]), given by

G (W)u.r : Repg G — PGrMod(W (R)®), (V, 1) = Viykg) ®wre) W(R)®.

We refer to an exact tensor functor % : RepZPG — PGrMod(W(R)®) as a
graded fiber functor over W(R)®, and we say .7 is of type u if .7 is étale locally
isomorphic to €(W),, gr. Let vg denote the forgetful functor Disp(W(R)) —
PGrMod(W (R)®). Recall the following definition (see [9, Def. 3.14]).
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Definition 3.6. A Tannakian (G, w)-display over W (R) is an exact tensor functor
P RepZPG — Disp(W(R))
such that vg o & is a graded fiber functor of type .

Denote the stack of Tannakian (G, w)-displays on Nilpy ,, by G—Disp% T
From a Tannakian (G, p)-display over W (R) we obtain a G-display 2 of type
by taking Q 4 to be the LZ G-torsor of trivializations of the underlying fiber functor
of type p of & and o the morphism Q — LT G coming from the Frobenius
for &, see [9, Cons. 3.15] for details. The following is a consequence of the main
theorem of [9, 3]:

Theorem 3.7. The morphism
G-Disp@u — G-Dispy ., P (Q2.02)
is an equivalence of étale stacks on Nilpyy -

Proof. This is proved in [9, Thm. 2.16] in the case where G-Dispy, , is given as
the quotient for the fpqc topology and graded fiber functors of type w are defined
to be fpqc-locally isomorphic to € (W),,. The result follows in general because
any fpqc-locally trivial L:G-torsor is étale locally trivial (hence any graded fiber
functor which is fpqc-locally trivial is étale locally trivial) by [24, Lem. 5.4.2]. O

In this section we prove a theorem analogous to Theorem 3.7 for G-displays
of type u over étale sheaves of frames with good descent properties. Let R be a
ring, and let S be an étale sheaf of Z-graded rings over Spec R. We will denote
by PGrModg the fibered category over Etg whose fiber over an étale R-algebra R’
is PGrMod(S(R’)). Further, if S is a sheaf of frames, let Dispg denote the fibered
category of displays over S. B

Definition 3.8. We say:

e An étale sheaf of Z-graded rings S on Spec R satisfies descent for modules if
PGrModg is an étale stack over Etg.
o An étale sheaf of frames S on Spec R satisfies descent for displays if Dispg is

an étale stack over EtR.

Lemma 3.9. Let S be an étale sheaf of frames on Spec R such that S(R') is a
frame for R’ for all étale R-algebras R'. If the underlying sheaf of Z-graded rings
S satisfies descent for modules, then S satisfies descent for displays.

Proof. That morphisms descend follows from Lemma A.14 (iv) and the fact that S
satisfies descent for modules. To prove that objects descend we need only to show

that isomorphisms o *M = *M form an étale sheaf. But since S is an étale sheaf
of frames, the functor Sy : R’ — S(R’) is an étale sheaf of rings on Spec R, and
so for any finite projective S(R)o-module N the following sequence is exact:

0— N — N ®sr), S(R/)o = N Qs(r), S(R/ ®r R)o,

and the result follows. O
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Remark 3.10. The frame of interest for the purposes of this paper is the relative
Witt frame W(B/A) associated with a p-adic PD-thickening B — A (Example
2.10). The étale sheaf of frames A" — W (B’/A’) associated with W (B/A) (see
A.3) satisfies descent for modules (hence for displays as well, by Lemma 3.9) by
Proposition A.18. The other primary example of a sheaf of frames which satisfies
descent for modules is the étale sheaf of frames on Spec R associated with a p-adic
frame S over R (see [24, Lem. 4.3.1]). The Zink frame W(R) over an admissible
ring R [24, Ex. 2.1.13] and its relative analog [24, Ex. 2.1.14] for a PD-thickening
B — A of admissible rings, as well as the truncated Witt frames over [F ,-algebras
[24, Ex. 2.1.6] and their relative analogs are all examples of p-adic frames. The
relative Witt frame W(B/A) for B — A is also a p-adic frame, but the étale sheaf
of frames associated with it by [24, Lem. 4.2.3] using the p-adic topology differs
from the one we consider here, which uses the natural topology for the Witt vectors
(see [24, Ex. 4.2.7]).

Definition 3.11. Let S be a Z-graded W (kg)-algebra. A graded fiber functor over
S is an exact tensor functor

F ReprG — PGrMod(S).

Denote by GFF(S) the category of graded fiber functors over S. Suppose S is
an étale sheaf of Z-graded rings on Spec R.If R — R’ is a homomorphism of étale
R-algebras, the natural base change M — M ®Qg(r) S(R’) induces a base change
functgr GFF(S(R)) — GFF(S(R")). In this way we obtain a fibered category GFFg
over Etg.

Lemma 3.12. Let S be an étale sheaf of frames such that the underlying sheaf of
graded rings S satisfies descent for modules. Then the fibered category GFFs is an
étale stack over Etg.

Proof. The proofis the same as that of [9, Lem. 3.5], with Lemma A.14 (i) replacing
[9, Lem. 2.12]. O

Suppose R is a W (ko)-algebra, and that S is an étale sheaf of W (k¢)-frames over
Spec R which satisfies descent for modules. For any cocharacter u of G defined
over W (ko) and any étale R-algebra R’, we define a distinguished graded fiber
functor over S(R’). Given a representation (V, ) in Repzp G, let

Vivio) = 1V € Vi) | (T 0 )(2) - v = z'v for all z € Gy (W (ko))}-

Then w induces a canonical weight decomposition
Vo) = B Viv ko) - (3.5)
ieZ
Since any morphism of representations preserves the grading induced by u, we
obtain an exact tensor functor

%(§)M~R’ : RepZ,,G — PGI‘MOds(R/), V= Vi) ®@w ko) S(R/). 3.6)
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If R’ is an étale R-algebra, then €'(S),, g’ is given by the composition of functors

CS),
Repy, G ZOmK pGrMods(R) — PGrMods(R'),

where the second functor is the canonical base change. If R is understood, we will
suppress it in the notation and write €(S),, for € (S) . r-

Definition 3.13. A graded fiber functor .# over S(R) is of type n if for some
faithfully flat étale extension R — R’ there is an isomorphism g = €'(S),, r'-

Let GFFy, , denote the fibered category of graded fiber functors of type 1. Since
the property of being type w is étale-local, GFFg , forms a substack of GFFj.
If .7, and %, are two graded fiber functors over S, denote by Isom® (%, %)

the étale sheaf of isomorphisms of tensor functors .%#; 5 %, Let Aut®(F) =
Isom® (%, #). The following is the analog of the main theorems of [9, 3.2].

Theorem 3.14. Let S be an étale sheaf of W (ko)-frames which satisfies descent
for modules. The assignment g — (7(g))(v ) defines an isomorphism of étale
sheaves on Spec R

G(S)u = AU (E(S),),
which, in turn, induces an equivalence of stacks
GFFs,,, — Torsg(s),, F +> Isom®(€(S),., 7).

Proof. The arguments of [9, 3.2] go through nearly verbatim, after replacing the
Witt frame with S, and the fpqc topology with the étale topology. O

For any étale R-algebra R’ we have a forgetful functor
Us(r'y : Dispg(R") — PGrMods(R'), (M, F) — M. 3.7)
Definition 3.15. Let R be a p-nilpotent W (kg)-algebra.
o A Tannakian G-display over S(R) is an exact tensor functor
& :Repy G — Dispg(R).

o A Tannakian (G, p)-display over S(R) is a Tannakian G-display & over S(R")
such that vg(g) o & is a graded fiber functor of type L.

If R — R’ is étale, denote by G-Disp®(S(R’)), resp. G-Disp (S(R")) the
category of Tannakian G-displays, resp. the full subcategory of Tannakian (G, u)-
displays over S(R’). By an analog of Lemma 3.12 we see that Tannakian G-displays
form an étale stack G-Disp? over EtR, and Tannakian (G, p)-displays define a

substack G-Disp? u
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There are a number of useful functorialities between categories of Tannakian
G-displays. If & is a Tannakian G-display over S(R) and ¢ : R — R’ is homo-
morphism of p-nilpotent W (k¢)-algebras, we denote by * &7 or g gy the base
change of &, which is given by

Repy G 2 Dispg(R) — Dispg(R").
Similarly, if @ : S — S’ is a morphism of étale sheaves of frames, we obtain a base
change functor
a: G—Dispg’ — G-Dispg (3.8)
given by post-composition with Disp(S(R)) — Disp(8’(R)). Finally, if y : G —

G’ is a homomorphism of Z,-group schemes, and & is a Tannakian G-display
over S(R), we denote by y () the G'-display

|7
Repy, G’ ™ Repy, G 2> Disps(R).

If £ is a Tannakian (G, w)-display, then y (£?) is a Tannakian (G’, y o )-display.

To any Tannakian (G, u)-display we can associate a G-display of type p. Let us
summarize the construction (see [9, Constr. 3.15] for details). Let &2 be a Tannakian
(G, p)-display over S(R). By Theorem 3.14,

Q= Isom®(<€(§)u,R7 Usr) © &)

is a G(8),-torsor over R. If R’ is an étale R-algebra, write Pg/(V, ) =
(M), F(x)) forany (V, ) in ReprG. Given an isomorphism of tensor func-

tors A : €(S) v’ = us(ry © Pr/, we obtain an automorphism
amp (W)™ =T () o (F(1))* 0 0™ (W7)

of V ®z, S(R')g forevery (V, ) in Repr G.If wg(g), denotes the canoncial fiber
functor (V,7) = V ®z, S(R")o, then the collection (g2 (A)™)(v,z) constitutes
an element of Aut® (wg(g'),). By Tannakian duality [7, Thm. 44], the map g —
(7t (8))(v,x) determines an isomorphism

G(S(R)0) = Aut® (s(rr,),

so there is some oz (X) € G(S(R)o) = G(Sy)(R’) such that m(xs(A)) =
a g ()" for every (V, ). Altogether the assignment A — « g7 ()) defines a mor-
phism of étale sheaves

agp: Qp — G(Sy). (3.9)

As in [9, Constr. 3.15] one checks that the association &2 — (Q #, @) is func-
torial in & and compatible with base change, so we obtain a morphism of stacks

G-Disp?u — G-Dispg ,. P+ (Qp.ap). (3.10)
The following is the analog of [9, Thm. 3.16].
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Theorem 3.16. If S satisfies descent for modules, the morphism (3.10) is an equiv-
alence of étale stacks over Etg.

Proof. The proof of [9, Thm. 3.16] goes through here as well, after replacing the
Witt frame by the frame S, and the fpqc topology by the étale topology. Let us
sketch the argument.

By the first part of Theorem 3.14, the functor is faithful. If &?| and &7, are
Tannakian (G, w)-displays over R, and n : (Q%,,a%) — (O, ap,) isa
morphism, then the second part of Theorem 3.14 provides us with a morphism
Y i vg 0o P — v o & which induces Q , — Q &,. It remains only to check
this morphism is compatible with the respective Frobeneius morphisms, but by
Lemma A.14 (iv) it is enough to check this after some faithfully flat étale extension
R — R’. By choosing an extension such that Q g, (R’) is nonempty, the result
follows from the definitions of the a 5, . Finally, to complete the proof it is enough
to show that every G-display of type p over S(R) is étale locally in the essential
image of (3.10), which is done using Theorem 3.14. O

Corollary 3.17. Let B — A be a PD-thickening of p-nilpotent W (ko)-algebras.
Then (3.10) induces an equivalence

G-DISPE(B/A),M — G'DISPE(B/A),M'
Proof. Combine Theorem 3.16 with Proposition A.18. O

Remark 3.18. Let A be afinite free Z ,-module, and let i be a cocharacter of GL(A).
Let us say a display M = (M, F) over S(R) is of type u if, étale locally, there is
an isomorphism M = A ®z, S(R) of graded S(R)-modules, where A is graded
by the weight space decomposition of the cocharacter u. Denote by Disp,, (S(R))
the category of displays over S(R) which are of type . Then one checks (as in [9,
Thm. 5.15], for example) that the functor

GL(A)-Disp§ , (R) — Disp,, (S)

induced by evaluation on the standard representation is an equivalence of categories.
If I = (iy,ip,...,0y) € Z" withi; <ip < --- < iy, and puy is the cocharacter
t — diag(¢t'!, 2, ..., t') for some choice of basis of A, then this is compatible
with the equivalence between GL,-Dispg ,, and the stack of displays of type /
over S described in [24, Ex. 5.3.5] (see also [9, Rmk. 3.2]).

Suppose now S(R) extends some 1-frame S. We say that a window over S is
of type w if the corresponding 1-display is of type . If u is minuscule, the func-
tor described above is valued in 1-displays, and therefore induces an equivalence
between Tannakian (GL(A), w)-displays over S(R) and windows over S of type .
In particular, if I = (0@ 1¢h=Dy for some d, and u = iy, then GL, -Disp?w (R)
is equivalent to the category of windows (Py, Py, Fo, F1) over S withrkg, Py = h
and rkg(Py/P1) =d.

Let us now summarize the local description of the stack G-Disp? - Letus again
assume that R is a W (kg)-algebra, and that S is an étale sheaf of W (kg)-frames
over Spec R which satisfies descent for modules.
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Definition 3.19. A Tannakian (G, u)-display &2 over S(R) is banal if there is an
isomorphism vgg) 0 & = €' (S) . R-

If &7 is a Tannakian (G, p)-display over R, then & is banal locally for the
étale topology on R. Given any U € G(S(R)o) we can define a banal Tannakian
(G, n)-display &£y on S(R) as follows: to the representation (V, 7r) we associate
the display over S(R) defined from the standard datum

(V ®z, S(R)o, m(U) o (id ® 00)),

where V ®z, S(R)o = Vw(ky) ®W (ko) S(R)o is endowed with the grading induced
by the cocharacter .

Proposition 3.20. (i) Every banal Tannakian (G, )-display &2 over R is isomor-
phic to Py for some U € G(S(R)o).

(ii) The category of banal Tannakian (G, )-displays over R is equivalent to the
category whose objects are U € G(S(R)o) and whose morphisms are given by

Hom(U,U") = {h € G(S),.(R) | (k)" 'U'o(h) = U}.
Proof. The proof follows from the arguments at the end of [9, 3.3]. O

Remark 3.21. If (Q, @) is the G-display of type u corresponding to a Tannakian
(G, n)-display &, then & is banal if and only if Q is a trivial torsor, and if 8 :
Gy 5 Qs a trivialization, then giving U as in Proposition 3.20 is equivalent
to giving a(B(1)).

3.3. The Hodge filtration for Tannakian G-displays

Let G be a flat affine group scheme of finite type over Z, and let t be a cocharacter
for Gw ky)- Suppose R is in Nilpy ), and let S be an étale sheaf of frames on
Spec R. In this section we define the Hodge filtration for Tannakian G-displays over
S(R) and compare it to the Hodge filtration for G-displays of type u as defined in
3.1

For any ring R, let us denote by Fil(R) the category of finite projec-
tive R-modules M equipped with a descending filtration by direct summands
(Fil*(M)), <z This is an exact tensor category with tensor product on the filtrations
defined as in (2.2). To any graded fiber functor .# over S(R) we can attach an exact
tensor functor

Fil 7 : Rep; G — Fil(R) @3.11)

by assigning to any (V, p) the filtered R-module obtained by tensoring the evalu-
ation of % on (V, p) along T : § 5 Sy — R.In particular, if & = € (S),, for
some cocharacter u of G, then for any representation (V, p), the ith filtered piece
of Fil#(V, p) is given by

Fil' = P V' @w) R.

i>n
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Hence in this case Filg (), is the canonical functor
Fil,, : Repz (G) — Fil(R) (3.12)
associated to the cocharacter (.
Definition 3.22. A fiber functor for R is an exact tensor functor
w: RepZPG — Mod(R)
such that w & is étale locally (on Spec R) isomorphic to the functor
wR : ReprG — Mod(R), (V,p) — V ®z, R. (3.13)

If w is a fiber functor for R, a functor Fil : Repr G — Fil(R) is afiltration of w if
w factors into the composition

Rep;, G BL Ril(R) = Mod(R).

Given a graded fiber functor .% of type n over S(R), define the exact tensor
functor

0 ReprG — Mod(R)

by postcomposing Fil &z with the forgetful functor Fil(R) — Mod(R). Since .
is étale locally isomorphic to €(S),, w is a fiber functor. Moreover, Fil # is
obviously a filtration of w g .

By Tannakian duality, there is a natural isomorphism Aut®(wg) S Gp (see
e.g. [7, Thm. 44]). It follows that

Qu, = Isom®(wg, wz) (3.14)

is a G g-torsor on Spec R.If Q # is the G(S),,-torsor associated to .# by Theorem
3.14, then Q, is isomorphic to the G g-torsor Q # r induced from Q # by 7 :
G(S),, — Gg (see (3.3)). Indeed, base change along 7 : § — R induces a G-
equivariant morphism

Qg =Isom® (@ (S, F) — Isom®(wr, 07) = Qu, (3.15)

which is necessarily an isomorphism of G g-torsors.
Let & be a Tannakian G-display over S(R). Since vg(g) o & is a graded fiber
functor, we can define from & functors w 4 and Fil » by

WP 1= Wy 09 and Fil g = Filyg 0. (3.16)

Definition 3.23. Let & be a Tannakian G-display over S(R). The Hodge filtration
for & is the exact tensor functor Fil 5» defined in (3.16).
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We can equivalently define Fil &7 as the functor that assigns to every (V, p) the
Hodge filtration of its corresponding display over S(R) as in (2.1).

Suppose now G is reductive and u is a cocharacter for G. Let & be a Tannakian
(G, n)-display over S(R). Let us compare the Hodge filtration of & to that of its
associated G-display of type u, (Q o, & ), see Definition 3.3. By [7, Thm. 60 and
Rmk. 54], the étale sheaf on Spec R of automorphisms of the tensor functor Fil,,
(see (3.12)) is isomorphic to the sheaf associated to the parabolic subgroup P, g
of G (see (3.4)). Thus the subsheaf

Isom® (Fil,,, Filp) C Q. (3.17)

of tensor-isomorphisms Fil, = Fil » is an étale Py, g-torsor on Spec R, which we
denote by QFil,, . If Q2 ,, C O » g denotes the Hodge filtration of the associated
G-display of type i, then the natural map

Q. =1Isom®(€(S,, g, vs(r) © P) — Isom®(Fil,,, Fil ») = O,
given by base change along 7 : § — R induces P, g-equivariant map

Q.. — OFily (3.18)

which is therefore necessarily an isomorphism of P, g-torsors. Moreover, (3.18)
is compatible with the inclusions Q» , C Q% r and Qri, C Qu, and the
isomorphism (3.15).

We close this section by explaining the way that the Hodge filtration controls
lifts along certain homomorphisms of étale sheaves of frames, following [24, 7.4].
Let B — A be a homomorphism of p-nilpotent W (kg)-algebras such that J =
ker(B — A) islocally nilpotent; i.e., such that x* = 0 for some » for all x € J (for
example, B — A could be a PD-thickening). Let S’ be an étale sheaf of frames on
Spec B, and let S be an étale sheaf of frames on Spec A. Since J is locally nilpotent,
for every étale A-algebra A’ there exists a unique étale B-algebra B(A’) lifting A,
so we can consider S’ as an étale sheaves of frames on Spec A. We assume that for
all étale A-algebras A’, S(A’) is a frame for A’, and S’'(B(A”)) is a frame for B(A’).

Suppose now that we have a morphism of étale sheaves of frames 8 : §' — S
such that, for all étale A-algebras A’, By : S'(B(A"))g — S(A)g is bijective. The
morphism f determines a morphism of stacks on Spec A

G-Disp§ e G-Disp§ . (3.19)

Let us continue to assume that G is reductive over Z, and let us suppose now
that u is minuscule. Let &' be a Tannakian (G, w)-display over S'(B). Applying
the morphism (3.19) to &, we obtain a Tannakian (G, w)-display & over S(A).
Associated with &2’ is the Hodge filtration Fil g of £’ from Definition 3.23, which
is a filtration of the functor w4 : ReprG — Mod(B), see (3.16). Moreover, we
have the Hodge filtration Fil g» of 2. Then Fil & is a lift of Fil 5> along B — A.

Since By is bijective, we have amorphism 7 : S(A) — S(A)p = S'"(B)y — B,
with the property that the composition of 7 with the natural map S’(B) — S(A) is
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the map 7o : S(B) — B. Therefore base change along the map 7 induces a fiber
functor

WP B ReprG — Mod(B),

with the property that w o p composed with the base change Mod(B) — Mod(A)

is the fiber functor w 4 associated to . Since the composition S(B) — S(A) N
B — BistT:S(B) — B, we see that in fact wp p = wg» is the fiber functor
associated to &’ in the case where & is obtained from base change from £’ along
S — S.

Proposition 3.24. Suppose B : S' — S is a morphism of frames as above such
that By : S'(B(A))1 — S(A") is injective for all étale A-algebras A’. Then the
assignment

P > (P, Fil )

described above determines an equivalence of categories between Tannakian
(G, w)-displays over S'(B) and Tannakian (G, w)-displays over S(A) together
with a filtration Fil of the fiber functor w g p.

Proof. By Theorem 3.7 and Theorem 3.16 along with the comparison of the respec-
tive Hodge filtrations (3.18), it is enough to show the result for G-displays of type
w. This follows from the arguments of [24, 7.4] with the following remarks. In
loc. cit. this is shown for any morphism of p-adic frames S’ — S for R’ and R,
respectively, over W (ko) with S = So, such that the property

S} — S is injective, and S1/S] = ker(R' — R) (3.20)

is satisfied (recall that we are assuming G is reductive and p is minuscule). In the
case of [24], it follows from the fact that S” and S are p-adic frames that the property
(3.20) is preserved after étale base change, and therefore the result follows from
[24, Lem. 7.4.2]. In our case, it is preserved by assumption. Thus once again the
result follows from [24, Lem. 7.4.2]. O

In particular, this result applies when B — A is a PD-thickening, §' = W (B)
is the Witt frame for B, and S = W(B/A) is the relative Witt frame for B —
A. Indeed, W(B)Y = W(B/A)§ = W(B), and W(B)Y — W(B/A)} is the
inclusion I (B) — I (B/A), see Example 2.10. Moreover, these properties clearly

hold for all étale A-algebras A’.

3.4. Adjoint nilpotence and liftings

In this section we assume that G is a reductive group scheme over Z, and that
w: Guwig) — Gwky) is a minuscule cocharacter of Gy ). Let B — A be
a PD-thickening of p-nilpotent W (ko)-algebras. We first fit the adjoint nilpotence
condition of [5, 3.4] into the present context, and state Lau’s unique lifting lemma for
adjoint nilpotent Tannakian (G, u)-displays along W(B/A) — W (A) (Proposition
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3.29). We then explain (in our context) Lau’s classification of lifts of Tannakian
(G, n)-displays along W(B) — W (B/A) by lifts of the Hodge filtration.

Recall that G- Disp%, " (equiv. G-Dispw ;) is a stack for the étale topology on
Nilpy ,)- For a p-nilpotent W (ko)-algebra A, we can restrict the stack G- DlSpW
(resp. G-Dispw ;) to obtain an étale stack on Spec A, which we will denote t by
G- DISPE(A),M (resp. G-Dispw a),,.)- Alternatively this is G-Dispw , ., where W 4
is the étale sheaf on Spec A defined by

W, (A) =W (3.21)

for all étale A-algebras A’.

Let k be a perfect field of characteristic p, and let K = W(k)[1/p]. The
Frobenius o of W (k) naturally extends to K. Denote by F-Isoc(k) the cat-
egory F-isocrystals over k, i.e., the category of pairs (M, ¢) consisting of a
finite-dimensional K-vector space M and an isomorphism of K-vector spaces
@ o*M 5 M. When k is algebraically closed, F-Isoc(k) is a semi-simple
category with simple objects parametrized by A € Q (see e.g., [11]). In that case,
for 1 € Q, we write M), for the A-isotypic component of M, and if M, is nonzero
we will say A is a slope of (M, ¢).

Let R be a kg-algebra, and let &2 be a Tannakian (G, w)-display over W (R).
For every point x € Spec R, choose an algebraic closure k(x) of the residue
field of x. The base change P () of & to k(x) is banal, since the L/’:G—torsor
Isom® (¢’ (W) wk(x)> Vk(x) © Pi(x)) over k(x) is trivial. Hence by Proposition 3.20
there is some u(x) € LTG(k(x)) = G(W (k(x)) such that u(x) determines Pr(x)-
Let K(x) = W(k(x))[1/p], and define b(x) = u(x)u®(p) € G(K (x)). To b(x)
we can associate an exact tensor functor

Np) RepQP(G) — F-Isoc(k(x)), (V,m)+— (V ®q, K(x), w(b(x)) o (idy ® 0)).

Let us denote by (g, Ad®) the adjoint representation of G.

Definition 3.25. Let R be a p-nilpotent W (kg)-algebra. A Tannakian (G, w)-
display & over W(R) is adjoint nilpotent if for all x € Spec R/pR all slopes
of the isocrystal Np(y)(g, AdY) are greater than —1.

We will likewise say that U € LT G(R) is adjoint nilpotent over W (R) if the
associated Tannakian (G, u)-display &2y is adjoint nilpotent. See [5, 3.4] for a
discussion of this condition.

Let A be a finite free Z,-module. Let us briefly recall the relationship between
adjoint nilpotence and Zink’s nilpotence condition in the case where G = GL(A)
(cf. [5, Rmk. 3.4.5]). If R is a p-nilpotent Z ,-algebra, then by Remark 3.18, eval-
uation on the standard representation (A, ¢) defines an equivalence of categories
between Tannakian (GL(A), w)-displays and 1-displays of type u over W(R). We
will say that a 1-display is nilpotent if its corresponding Zink display (under the
equivalence in Lemma 2.8) satisfies Zink’s nilpotence condition (see [30, Def. 11]).

Lemma 3.26. Suppose &7 is a (GL(A), w)-display over W (R) such that (A, t)
is a nilpotent 1-display. Then 22 is adjoint nilpotent over W (R).
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Proof. This follows from the arguments in [5, Rmk. 3.4.5]. O

We extend this definition to the relative Witt frame as follows. Let B — A be a
PD-thickening of p-nilpotent W (k¢)-algebras. The W (k¢)-algebra homomorphism
W(B) — W(A) induces a morphism of frames « : W(B/A) — W(A), and base
change along « (see (3.8)) determines a morphism

o ® o ®
G-DlspE(B/A)’M — G-Dlspﬂmw (3.22)

of étale stacks on Spec A. If & is a Tannakian (G, w)-display over W(B/A), we
denote its base change to W (A) by «* & or Pw (a).

Definition 3.27. Let B — A be a PD thickening of p-nilpotent W (k¢)-algebras. A
Tannakian (G, p)-display &2 over W (B/A) is adjoint nilpotent if P a) is adjoint
nilpotent in the sense of Definition 3.25.

Likewise, an element U € G(W(B)) is said to be adjoint nilpotent over
W(B/A) if the associated Tannakian (G, n)-display &y over W(B/A) is adjoint
nilpotent.

Remark 3.28. If U € G(W(B)), we obtain banal Tannakian (G, u)-displays £y
over W(B) and @b over W(B/A) corresponding to U. Since B — A induces a
homeomorphism Spec A — Spec B, Zy is adjoint nilpotent over W (B) if and
only if &7, is adjoint nilpotent over W(B/A). Hence there is no ambiguity in the
statement “U € G(W (B)) is adjoint nilpotent”.

We will denote by G-Disp%(aél /). 0 TESP- G—Disp%fg)’ . the substack of adjoint
pilpotent objects. in G-Dispﬁ( B/A).u» TESP- G-Dispg( A The morphism (3.22)
induces a morphism

. @ad . ®ad
G-Dlspﬁf‘B/A)’# — G-D1Sp§(aA)’M. (3.23)

Proposition 3.29. The morphism (3.23) is an equivalence of étale stacks on Spec A.

Proof. By Theorem 3.7 and Theorem 3.16, it is enough to show the result for the
respective stacks of G-displays of type . Hence the proposition follows from [24,
Rmk. 7.1.8]. m]

Remark 3.30. In the case where J = ker(B — A) is a nilpotent ideal the proposi-
tion follows from [5, Thm. 3.5.4].

4. Crystals and G-displays

Let R be a p-nilpotent Z,-algebra, let G be a reductive group scheme over Z,
and let . be a minuscule cocharacter for Gy (). In 4.1, we construct and study the
functorial properties of a G-crystal associated with any adjoint nilpotent Tannakian
(G, w)-display over W (R). If A is a finite free Z,-module, and G = GL(A), this
construction recovers the crystal associated with a nilpotent Zink display as in 2.3,
see Lemma 4.5. In 4.2 we narrow our focus to the case where (G, u) is a Hodge
type pair (see Definition 4.6).
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4.1. The crystals associated with G-displays

Let G be a reductive group scheme over Zp, and let i : Gy wig) = Gwkg)
be a minuscule cocharacter of Gw ). Let R be a p-nilpotent W (ko)-algebra, and
suppose < is an adjoint nilpotent Tannakian (G, w)-display over W (R). If A is an
R-algebra, denote by &y (4) the base change of &7 to W (A).

Let B — A be a PD-thickening over R. By Proposition 3.29, there exists a
lift Zp/4 of Py a) to a Tannakian (G, p)-display over W(B/A), and P4 is
unique up to a unique isomorphism which lifts id For every representation
(V, ) of G, write

Pway:

tht?/A = (Mg/Aa Fg/A) 4.1)
for the evaluation of &?g,4 on (V,m). By base change along the composition
W(B/A)® 5 W(B) 2% B, we obtain a finite projective B-module

D(‘@)%/A = (I*MZ/A) ®ws) B.

We claim that the assignment (B — A) > D(P)} /A defines a crystal of finite
locally free Ospec R/ W (kg)-modules for every representation (V, ). Indeed, we
need to show that if (B — A) — (B’ — A’) is a morphism of PD-thickenings,
then there is an isomorphism of B’-modules

D(P)G/4 @8 B = DDV 005 (4.2)

and that these isomorphisms satisfy the cocycle condition with respect to compo-
sitions. But to obtain an isomorphism (4.2) it is enough to exhibit an isomorphism

(PN w Ay — Poja

of Tannakian (G, u)-displays over W (B’/A’). Such an isomorphism is readily
found using uniqueness of lifts, since both (g, 4)w(p'/ a7y and P ar lift Py ar).
It is straightforward to check that compositions of the transition isomorphisms
obtained in this way satisfy the cocycle condition, so by Remark 2.12 we obtain a
crystal of finite locally free Ospec R/ W (ky)-modules D(F)™ for every (V, ).

Lemma 4.1. The association
D(2) : Repr(G) — LFCrys(R/ W (ko)), (V,7) — D(P2)",
defines an exact tensor functor.

Proof. A G-equivariant morphism (Vi, w1) — (V», m2) induces a morphism of
finite projective graded W (B/A)®-modules Mg‘/ A M gi 4»and by base change to
B’ we obtain D(2)™! — D(Z)™2. If (B’ — A’) — (B — A) is a PD-morphism,
then the transition map D(Z)7 /A®B B S D(2) % A is induced from the natural

transformation of functors (¥g,A)w (' JA") = Py /A7, Which is compatible with
the induced morphisms of representations. It follows that D(Z?)™ — D(Z)™
is a morphism of crystals. Compatibility with tensor products follows from the
definition of D(&?) and the compatibility of &7 with tensor products. Exactness
follows similarly, using that all modules are projective and hence all exact sequences
in question split. O
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Definition 4.2. If &2 is an adjoint nilpotent Tannakian (G, w)-display over W(R)
for some p-nilpotent W (kg)-algebra R, then the functor D(&?) defined in Lemma
4.1 is the G-crystal associated with .

Lemma 4.3. The assignment & +— D(P) is functorial in & and compatible with
base change.

Proof. Suppose ¥ : & — 22’ is a morphism of Tannakian (G, u)-displays.
If B — A is a PD-thickening over R, denote by &p/4 the lift of Pw 4 to
W(B/A), and by 91/9//\ the lift of &} ). By Theorem 3.29, Yy (a) lifts uniquely
to a morphism of Tannakian (G, w)-displays &p/a — ‘@%/A over W(B/A). In
particular, for every (V, 7) we have a morphism

Wyat Mpja — (Mg, )"

where here we use notation as in (4.1). Tensoring this along W(B/A)® N
W(B) — B gives us a morphism

D(W)%/A : D(f@)%/“; g D(«@/)%/A

for every B — A and every (V, m). That this determines a morphism of crys-
tals D(¥)™ : D(P)" — D(L)" follows from the definition of the tran-
sition morphisms and Proposition 3.29. Moreover, that the resulting morphism
D@) : D(P) — D(Z) is a natural transformation and is compatible with tensor
products both follow from the corresponding properties of the morphism v/p,/4.

Ifa: R — R'isa W(kp)-algebra homomorphism, write «*D(Z?) for the base
change of D(Z?) to R’. Explicitly, for any PD-thickening B — A over R’ and
representation (V, ),

DDV 4 = D( PN 8/4):

where we write (B /A) for the PD-thickening B — A over R given by viewing A
as an R-algebra via restriction of scalars. Compatibility with base change follows,
since by definition ID)(@E(R/))’;/A is also given by ]D)(W)Z!(B/A). O

Remark 4.4. Suppose that & is a banal Tannakian (G, u)-display over W (R) (see
Definition 3.19), so there exists an isomorphism ¥ : &y 5 PforU € LYG(R)
by Proposition 3.20. Fix a PD-thickening B — A over R, and denote by Uyh
the image of U under G(W(R)) — G(W(A)). Any choice of lift Up of Uy to
G (W (B)) determines a Tannakian (G, u)-display &y, over W(B/A) which lifts
Zy . Hence by Proposition 3.29, there exists a unique isomorphism ¥y, : Py, =
Ppya lifting Y4, where Fp/4 is the unique lift of Py (4. From the definitions
of Py, and of D(Z) g, 4, we obtain from v/, an isomorphism of tensor functors

WUB Cwp — D(Z) A, Where wp is the usual fiber functor (3.13).

Suppose A is a finite free Z,-module, G = GL(A) and p is a minuscule
cocharacter for G whose weights are contained in {0, 1}. Then by Remark 3.18,
the category of (GL(A), w)-displays over a p-adic W (kg)-algebra R is equivalent
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to the category of Zink displays of type u over R. In 2.3 we recalled the definition
of the crystal D(P) associated with a nilpotent Zink display P.

Denote by Zg the functor which gives the equivalence between (GL(A), u)-
displays over W (R) and Zink displays of type u over R. By Lemma 3.26, if & is
a (GL(A), p)-display over W (R) such that Zg (<) is nilpotent, then & is adjoint
nilpotent. The following lemma describes the relationship between the G-crystal
associated with &2 and the crystal associated with Zg ().

Lemma 4.5. Let & be a (GL(A), w)-display over W (R) such that the associated
Zink display Z.r (2P) is nilpotent, and denote by (A, t) the standard representation
of GL(A). Then there is a natural isomorphism of crystals

D(L) = D(Zr(P)).

Proof. Let B — A be a PD-thickening over R, and let Zp,4 be the unique lift of
Pwaytoa(GL(A), u)-display over W(B/A). Then &g, (A, 1) corresponds to a
window over WW(B/A) which lifts the Zink display corresponding to Zw4)(A, 1).
But P is the unique window over W(B/A) with this property, so it is isomorphic to
the window associated with &g /A(A, 1). In particular, we obtain an isomorphism
t*MZ’/A = Py. The result follows. O

4.2. G-displays of Hodge type

Let us continue to assume that G is a reductive group scheme over Z, and that
G wiky) = Gwky) is @ minuscule cocharacter for G ().

Definition 4.6. We say the pair (G, u) is of Hodge type if there exists a closed
embedding of Z,-group schemes 7 : G < GL(A) for a finite free Z,-module A,

such that after a choice of basis Aw ) = W (ko)", the composition 7 o p is the
minuscule cocharacter a — diag(1 @) qth=d)y of GLj, for some d. In this case, the
representation (A, n) is called a Hodge embedding for (G, ).

If (G, w) is of Hodge type, and & is a Tannakian (G, u)-display over W (R),
then Z(A, n) is a 1-display over W(R). Let Z, z(Z?) denote the Zink display
associated with this 1-display via Lemma 2.8. If the ring R is clear from context,
we will write simply Z, (£?).

Definition 4.7. We say a Tannakian (G, n)-display &2 over W (R) is nilpotent with
respect to 1 if Z,/(Z?) is a nilpotent Zink display.

This condition is local for the fpqc topology, and we denote by G -Disp%,"l’l the
stack of Tannakian (G, w)-displays which are nilpotent with respect to n.

Lemma 4.8. Suppose (G, ) is of Hodge type, and let & be a Tannakian (G, i)-
display over R. If & is nilpotent with respect to n, then it is adjoint nilpotent.
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Proof. Notice (n(Z))(A, 1) = P (A, n), so since Z,(Z) is nilpotent, it follows
from Lemma 3.26 that n(<?) is an adjoint nilpotent (GL(A), n o w)-display over
R. Then &7 is an adjoint nilpotent Tannakian (G, w)-display over W(R) (cf. [5,
3.7.1D. O

In the remainder of this section, we assume (G, u) is of Hodge type with
Hodge embedding (A, 1). Let &2 be a Tannakian (G, w)-display over W (R) which
is nilpotent with respect to 7, so in particular &2 is adjoint nilpotent by Lemma 4.8,
and we can associate a G-crystal D(Z?) to & as in the previous section. It is easy
to see D(L)T = D(n, L)', so by Lemma 4.5 we have a canonical isomorphism

D(P2)" = D(Z,(2)). 4.3)

As a result we can endow ID(Z?)" with the structure of a Dieudonné crystal using
the Dieudonné crystal structure on ID(Z,(£?)) as in Sect.2.3. Denote by

F:¢*D(P2)T — D(P) and V : D(P)" — ¢*D(P2)"

the Frobenius and Verschiebung for ID(Z2)".
Suppose pR = 0 and that & is banal, so there exists an isomorphism ¥ :

Py S ProrlU e L1 G(R) by Proposition 3.20. As in Remark 4.4, for any PD-
thickening B — A over R and choice of lift Up to G(W (B)) of theimage U4 of U in

G(W(A)), we obtain an isorllorphism of tensor functors JUB Twp = D(P)/a.
In particular, by evaluating v ¢, on (A, 1), we have an isomorphism

A®z, B> D(P) 4 4.4)

Let 22(P) denote the base change of 22 along ¢ : R — R.From the trivialization
¥ we obtain an isomorphism ¥ () : (2y)P) S 2P Moreover, if f(U) is
the image of U in L*G(R) under the Witt vector Frobenius f, then we have an
isomorphism € : Z ¢y 5@y given by

V®z, WR® = V ez, WR® @wrewepe WRE, x@t > x@1®E
(4.5)

for every representation (V, 7). Hence 22 (P) is banal, with trivialization v ?) oe. By
functoriality, f(Up) is alift of f(U), so by Remark 4.4, we obtain an isomorphism

J(fp()UB) D wp — D(Z) B/ 4, which evaluates on (A, n) to give a trivialization of
]D)(@(”))%/A:
A ®z, B = D2 /A (4.6)
Moreover, there is a natural identification
D(P2P) S ¢*D(P). (4.7)

Indeed, this follows essentially from the definitions: since ¢*D(FP)p4a =
()¢, (B/4), (see (2.12)), in order to evaluate ¢*ID(F) on B — A, we first
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base change & to W(A) along R g R — A. But this is exactly how we evaluate
D(Z2P)on B — A.Thus combining (4.6) with the identification (4.7), we obtain
a trivialization of ¢*D(2)7, e

A®z, B DD - (4.8)

Write Up for the image of Up in G(B) under wg : W(B) — B.

Lemma4.9. Let B — A be a PD-thickening over R. Then with respect to the
trivializations (4.4) and (4.8), the Frobenius and Verschiebung for D(QZ)% /A are
given by

n(Up) o (idyy ® p-idy)) and (p-idyg ®idyy) o n(Up) ™,
respectively.

Proof. If &2 is a Tannakian (G, w)-display over W(R) (resp. over W(B/A) for
some PD-thickening B — A) which is nilpotent with respect to 1, then we will
denote by Z,(”) the associated Zink display (resp. window over W(B/A)). If
P = 7,(2) is the Zink display associated with &, then by compatibility of Z,
with base change we have Z,,(2P)) = PP)_ For any Zink display P over R and
any PD-thickening B — A, denote by Py, the unique lift of of P, to a window
over W(B/A). Recall from the proof of Lemma 4.5 that if P = Z,(%?), then
Ppip= Ppa(A, n), where Pp, 4 is the unique lift of Py () to W(B/A).

Let & be a banal Tannakian (G, w)-display over R with trivialization isomor-
phism ¥ : Py — 2. By replacing & by Pw(a), we may assume A = R. Let
us start by proving the lemma for the Frobenius. We want an explicit description
of the map

~ F ~
A®z, B ¢*D(P)} p —> D(P)} p — A®z, B, 4.9)

~

where the first arrow is (4.8) and the last is (4.4). The unique lift Yy, : Py, —
Py /R of Y induces an isomorphism of WW(B/R) windows

Zy(Pv)B/R = Zy(P)/R- (4.10)

Similarly, the trivialization ¥ (?) o ¢ (see (4.5)) induces an isomorphism
Z(Prw)) /R = Zo(PP) k- 4.11)
Denote by ﬁg the unique lift of the display Verschiebung Verz, (%) : Z,(& Py -

Z,(Z) to a morphism of W(B/R)-windows. Then (4.9) is the reduction modulo
Ip of the following composition:

~ E? ~
Zy(Z ) B/R — Zn(P PV gir > (PR < Zy(Pu)BiRs  (4.12)
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where the first arrow is (4.11), and the last is the inverse of (4.10). In turn, (4.12) is
the unique lift of the composition

Very, (» Z, (v~
" 702 2 7, ().

4.13)

Zy ()
—_—

Zy(©) ]
Z(Psw)) —— Zy(Py) P Z,(2)P)

Hence to prove the lemma for the Frobenius it is enough to show (4.13) is given by
n(U)o(id® p-id). By functoriality of Ver, we can rewrite (4.13) as the composition
Verzﬂ(gvu) o Zy(e), and we have an explicit description of Verzn( 2y (see (2.3)):

_ . ﬁ . .
Verz, (2,) = (n(U) o (idpy ® f))" o (1df*AgV(R) ®p- ]df*A{/V(R)).

The result for the Frobenius follows because (7(U) o (idpa ® f))* = n(U)o Z(e)~!,
and Z, (¢)~! commutes with id @ p - id. The computation is nearly identical for the
Verschiebung, using the explicit description (2.4) of the Frobenius for Z, (£y). O

For any finite free Z,-module A, let A® = @, , A®" Qz, (AY)®" denote
the total tensor algebra of A @ AY. For any element s € A® and Z,-algebra R,
write (s ® 1) for the map R — A® ®z, R givenby 1 > s ® 1. If the pair (G, ©)
is of Hodge type, then by [17, Prop. 1.3.2] and [10], there exists a finite collection
of tensors s = (s1,...,s,) withs; € A® such that, for all Zp-algebras R,

G(R) ={g € GL(A®z, R) | g(si ® g = (5; ® ) for all i}.

We say the collection of tensors s defines the group G inside GL(A). Without loss
of generality, we may assume that, for each i, we have

s; € A®mi ® (AV)®ni

for some m; and n;. Let A(i) = A®™ ® (AY)®" . This is a G-stable submodule
of A®, and we will denote by (A (i), (i)) the corresponding representation. For
every i, s; defines a morphism of representations

siiZp— AG), 1> s, 4.14)

where Z, denotes the trivial representation. Each A (i) is canonically graded by the
action of the cocharacter w, and since s; is G-invariant, we see s; € (A (i ))O.

Definition 4.10. A local Hodge embedding datum is a tuple G = (G, u, A, n, s),
where

o (G, u) is a pair consisting of a reductive Z,-group scheme and a minuscule
cocharacter u of Gw ) such that (G, ) is of Hodge type,

e 1 : G — GL(A) is a Hodge embedding for (G, u), and

e s =(sq,...,S)1s acollection of tensors which define G inside of GL(A).
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If & is an adjoint nilpotent Tannakian (G, u)-display over R, we may apply
D(Z) to s; to obtain a morphism of crystals

ti: 1 — D210,

Notice that ¢*1 is canonically identified with 1, so we likewise obtain a morphism
ti: 1 — ¢*D(P)"10).

If 22 is nilpotent with respect to i, we have an identification D(£2)"7 = D(P),
where P = Z,(Z?). Since D(£) is compatible with tensor products, we see

D(2)"1D = D(P)®™ @ (D(P)")®".

The Frobenius F on D(Z,(Z?)) (see (2.21)) extends to tensor products, and it
extends to (linear) duals after we pass to the associated isocrystal. By the relation
FV = p, we see that the resulting extension of F to D(P)¥[1/p] is given by
F = p~!V’. Hence F extends to a morphism of isocrystals

Fi : ¢*D(2)"O11/p] - D(2)"O[1/p] (4.15)
Proposition 4.11. For each i, t; is Frobenius equivariant, i.e., F; ot; = t;.

Proof. By the equivalence (2.11) between Isoc(R) and Isoc(R/pR), we may
assume pR = 0. Moreover, by Lemma 2.17, it is enough to show the result after
applying the functor (=) pn,g[1/p] : Isoc(R) — Mod(D"[1/p]), so it is enough
to show IF; fixes

(t)prjk 2 DN = D2 [1/p).

Notice IF; is given by p~"F}, where F; = F®" @ (V')®" is a morphism of crystals
¢*D(2)1D - D(P)"D . As in 2.2, let write D, = D”/p"D’. If we denote by
I} ,, the evaluation of I} on ¢*D(@)"D(:>R, then

Fi(t;) = p™" - (F; ,(ti)kez. € (@D(W)?)(:}Q (1/pl.

Hence we see it is enough to show F;’n(ti) = plit; foralln € Z~y.
By Lemma 2.18 we may replace R by an étale faithfully flat extension, and
since every Tannakian (G, p)-display is étale locally banal (see the proof of [24,

Lem. 5.4.2]), we may assume &7 is banal. Let Y : Py = P be atrivialization of
2 for some U € LYG(R). We obtain also a trivialization of ") by %P o ¢ :

Pruy — PP, where ¢ is defined in (4.5). If we choose a lift Up, of U to
G(W(Dy,)), then these trivializations induce isomorphisms

A ®z, Dy = D(P)}, p and A ®2, Dy = ¢*D(P)}, (4.16)
as in (4.4) and (4.8). Under these identifications, the morphisms #; correspond to
D, — A(i) ®z, D,, 1~ 5 ®1,

since the isomorphisms (4.16) are induced by isomorphisms of tensor functors.
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Denote by Fp, and Vp, the evaluations of F and V respectively on D, — R.
By Lemma 4.9, with respect to the trivializations (4.16) we have

Fp,/& =1(Up,) o (idyy ®p-idy) )and Vp,/r = (p-idyy @idyy )onUp,)~",
(4.17)

where U p, 1s the image of Up, under wy : W(D,) — D,.
Since A, decomposes as A, = A% @ Al, we see that A(i) ®z, D,
can be written as a direct sum of terms of the form

(A(l)),,)®j ®Dn (A})n)‘@mi*j ®Dn ((A(l))n)v)®k ®Dn ((A})n)v)@)n,fk.

Moreover, since s; € (A(i ))0, each s; ® 1 is contained in a direct sum of terms
which satisfy m; — j = n; — k. By (4.17), F;,n acts on such a term by

n(Up,)®’ & p™~In(Up,)®™ I @ p*nY(Up,)®* @ n¥(Up,)®"*, (4.18)

where 1V denotes the contragradient representation. Since m; — j = n; — k, (4.18)
is equal to p" - n(i)(Up,/R), 80

Fi,(si ® ) = p" - n()(Up,/r)(si @ 1) = p" - (5: ® 1),

with the last equality following because (i) (U p,/R) fixes s; ® 1 for every n. Thus
Fiot; =1. |

5. G-displays and formal p-divisible groups

Let G be a reductive Zj,-group scheme and let x be a minuscule cocharacter
for Gwk,). Moreover, assume that the pair (G, ) is of Hodge type, and that
G = (G, u, A, n,s) is alocal Hodge embedding datum. In 5.1 we define a notion
of p-divisible groups with (s, p)-structure (Definition 5.2) and prove that these
objects form an étale stack on Nilpy ) (Lemma 5.5). In 5.2, we define a functor
from Tannakian (G, p)-displays which are nilpotent with respect to n to formal
p-divisible groups with (s, u)-structure over R in Nilpy ;) (Lemma 5.8). In 5.3
we prove the functor is an equivalence if R/pR has a p-basis étale locally, (The-
orem 5.17). In sections 5.4 and 5.5 we establish corollaries of the main theorem.
In particular, in 5.4, using Theorem 5.17, we prove that the RZ-functors of Hodge
type defined in [16] and in [5] are naturally equivalent, and in 5.5 we study the
deformation theory of p-divisible groups with (s, u)-structure.

5.1. Crystalline Tate tensors

Let R be a p-nilpotent W (kg)-algebra, and let D = (D, F, V) be a Dieudonné
crystal on Spec R. Suppose D, is equipped with a filtration by finite projective
R-modules

Fil’(D) = Dg/g D Fil' (D) > Fil*(D) = 0. (5.1)
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Extending the notation of the previous section, let us denote by D® the total tensor
algebra of D@D . This is a crystal of finite locally free Ospec R w (ky)-modules, and
the filtration (5.1) naturally extends to a filtration for ]D)% /R Further, the Frobenius
for D endows the associated isocrystal D®[1/ p] with the structure of an F-isocrystal
as in (4.15).

Definition 5.1. A crystalline Tate tensor for D over Spec R is amorphism? : 1 —
D® of locally free crystals of Ospec R/ W (ky)-modules such that 7g(R) C Fil®(D®)
and such that the induced morphism of isocrystals 1 — D®[1/p] is Frobenius
equivariant.

Let G = (G, u, A, n, s) be a local Hodge embedding datum in the sense of
Definition 4.10. As in the previous section, we have s; € A®" @ (AV)®% =
A (i) for every i. More generally, throughout this section, we fix the pair (m;, n;)
associated with each 7, and for any object N in a rigid tensor category we define
N(i) := N®™ @ (NV)®" If 4 isamorphism N — N’, write v/ (i) for the induced
morphism N (i) — N'(i).

Definition 5.2. Let R be a p-nilpotent W (kg)-algebra, and let D be a Dieudonné
crystal over R whose R-sections are equipped with a filtration (5.1). An (s, ©)-
structure on D over Spec R is a finite collection of crystalline Tate tensors ¢ =
(t1, ..., t,) satisfying the following conditions:

(i) For every PD-thickening B — A over R, there is an extension B — B’ which
is faithfully flat and of finite presentation such that there is an isomorphism

(A®z, B'.(s® ) = Dpyar.tp).

where A’ = A ®p B’.
(ii) For some faithfully flat étale extension R — R’, there is an isomorphism

(A®z, R',(s® Dg)) = (Dr/r ®r R, 15)

respecting the tensors, such that the filtration Fil! D)®gr R’ C Dg /R ®R R =
A ®z, R'is induced by p.

Remark 5.3. Let us derive a few consequences of Definition 5.2, compare [14, Def.
2.3.3 and Rmk. 2.3.5(b)]. Suppose t = (t1,...,1) is an (s, ;)-structure on a
Dieudonné crystal D over R. Let B — A be a PD-thickening over R, and let T,

denote the B-scheme of B-module isomorphisms A ®z, B ) B/ A Whichrespect
the tensors. That is, for an B-algebra B,

Ty, (B") = Isom((A ®z, B, s ® Dp'), (Dp/a ®a B', 15 ® 1)).

Definition 5.2 (i) implies that T, is an fppf-locally trivial G 4-torsor.

Moreover, denote by T, ., the subscheme of Ty, . classifying R-module
isomorphisms which identify the canonical filtration Fil! (A ®z , R) defined by
with the Hodge filtration Fil! (D) of D. Then Conditions (i) and (ii) of Definition 5.2
together imply that T, is @ Py, g-torsor, where P, is the parabolic subgroup
of G defined by u as in (3.4).
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Definition 5.4. Let R be a p-nilpotent W (kg)-algebra.

(1) A p-divisible group with (s, w)-structure over R is a pair (X, t) consisting of a
p-divisible group X over R and an (s, u)-structure ¢ on ID(X) over Spec R.

(i) A nilpotent Zink display with (s, ju)-structure over R is a pair (P, t) consisting
of a nilpotent Zink display P over R and an (s, u)-structure ¢ on D(P) over
Spec R.

Denote by fpdiv , (R) the category whose objects are formal p-divisible groups
with (s, u)-structure and whose morphisms (X, ) — (X’,t’) are isomorphisms
of p-divisible groups X — X’ such that the composition of the tensor ¢; with the
induced morphism D(X)® — D(X’)® is the tensor t/ for every i. Similarly, let
nZinky , (R) denote the category of nilpotent Zink displays with (s, u)-structure
over R. As R varies in Nilpy ., these determine fibered categories fpdiv, , and
nZinky ;.

Lemma S.5. The fibered categories fpdiv, ,, and nZinky, ,, form stacks for the étale
topology on Nilpy ;.- -

Proof. Tt is well known that p-divisible groups form an fpqc stack on Nilpy
(seee.g., [26, Rmk. 2.4.2]), and formal p-divisible groups form a substack because
the property of being a formal p-divisible group is fpqc local on the base. Further,
nilpotent Zink displays form an fpqc stack by [30, Thm. 37]. For the remainder of
the proof, the same arguments work for both fpdiv, , and nZinky,,, so we give the
proof only for the former.

Let R — R’ be a faithfully flat étale homomorphism of p-nilpotent W (ko)-
algebras. Denote by fpdiv, M(R’ /R) the category of formal p-divisible groups with
(s, w)-structure equipped with descent data from Spec R’ down to Spec R. We
want to show the natural functor fpdiv, ,(R) — fpdiv , (R’/R) is an equivalence.
That the functor is faithful is immediate from the corresponding property for p-
divisible groups. Moreover, morphisms in fpdivy M(R’ /R) automatically descend
to isomorphisms of p-divisible groups over R, and these isomorphisms must be
compatible with the tensors by Lemma 2.18.

It remains to prove that objects descend. Let (X', ") be a formal p-divisible
group with (s, u)-structure over R’, equipped with a descent datum. We obtain an
object (X, t) over R by descent for p-divisible groups and Lemma 2.18. Frobenius
equivariance of each #; follows from another application of Lemma 2.18, and étale
descent for R-modules implies that each #; preserves the filtrations. Condition (ii)
of Definition 5.2 holds for (X, t) because étale covers are stable under composition.
To finish the proof we need only check that the first condition of Definition 5.2 holds
for (X,1). If B — A is a PD-thickening over R then A’ = A ®g R’ is faithfully
flat étale over A, and we can lift B — A to B — A’ with B’ faithfully flat étale
over B. By the flatness of B — B’, the divided powers extend to divided powers
on the kernel of B — A’. Hence B’ — A’ is a PD-thickening over Spec R’, so by
condition (ii) for (X', ¢'), there is an fppf cover Spec B” — Spec B’ trivializing
(D(X")pryar, t'). Then the composition Spec B” — Spec B’ — Spec B provides
an fppf cover which trivializes (ID(X) g4, t). ]



G-displays of Hodge type and formal p-divisible groups 87

Remark 5.6. It is a consequence of the theorem of Zink and Lau (see [19, Thm.
1.1.]) and the compatibility of crystals (see Lemma 2.23) that the natural functor
(P,t) — (BTg(P), 1) defines an equivalence between the stacks nZink, , and
fpdivy ;.

Let us now study Grothendieck-Messing deformation theory in this setting. Let
R be a p-nilpotent W (ko)-algebra and let Ry = R/pR. If X is a p-divisible group
over R, define

T(X)R/Ry = TD(X)g/r,» A T(X)R/R, 1 = TD(X)p/R115 (5.2)

where Tip(x) gz, a0d TD(x)g g, are the G g- and P, g-torsors respectively defined
in Remark 5.3.

Suppose now (X, t) is a formal p-divisible group with (s, @)-structure over
R, and let (Xg,,tg,) denote the formal p-divisible group with (s, w)-structure
over Ry obtained by base change. Then we have a canonical identification
T(X)r/R = T (XRy)R/R, induced by the isomorphism ID(X g,) g/ g, = D(X)r/r-
It follows that the P, g-torsor T'(X)g/r,, associated with (X, t) determines a lift
of T(XRy)Ry/Ro, inside of T (X)g/R,. The same constructions can all be carried
out for nilpotent Zink displays with (s, u)-structure, and we denote the resulting
Gg and P, g-torsors by T (P)g/r, and T (P)R/R,, . T€Spectively.

Define a groupoid fpdiv, ,(R/Ro) as follows. For objects take pairs consist-
ing of a formal p-divisible group with (s, p)-structure (X, t) over Ry and a lift
T, C T(X)R/Ry of T(X)Ry/Ry,. € T(X)Ry/R,» and for morphisms take pairs of
isomorphisms « : (X,1) — (X', ) and B : T(X)r/Ryu — T(X')R/Ry.u SUch
that the isomorphism 7' (X) g/ g, = T(Xr /R, induced by « restricts to 8. Define
similarly the category nZink; , (R/Ryp).

Lemma 5.7. The functor
fpdivi’M(R) — fpdivLM(R/Ro) (5.3)

defined by assigning to a p-divisible group with (s, w)-structure (X, t) its reduction
(XRgs ERO) mod p along with the P, g-torsor T(X)r/Rr,, inside of T(X)g/r is an
equivalence of categories. Moreover, the analogous result holds for nilpotent Zink
displays with (s, u)-structure.

Proof. By Grothendieck-Messing theory, the functor X — (Xg,, Fill(D(X)))
determines an equivalence of categories between formal p-divisible groups X over
R and pairs (X, E) consisting of a formal p-divisible group X over R¢ and a lift
of the Hodge filtration of X to a direct summand E C D(Xo)r/g,. Indeed, for
p > 3, the divided powers for R — Ry are nilpotent so this follows from [26, V.
Thm. 1.6]. For p = 2 it holds because we are restricting our attention to formal
p-divisible groups, see [21, Rmk. 2.6]. The analogous result holds for nilpotent
Zink displays as well, see [30, Thm. 48]. We will give the remainder of the proof
for formal p-divisible groups; the case of nilpotent Zink displays follows from the
same arguments.
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Grothendieck-Messing theory implies that the functor (5.3) is faithful. Let us
prove it is full, so suppose (X, ) and (X', ¢’) are formal p-divisible groups over R
with (s, p)-structure, and suppose we have isomorphisms

o (XRyatg,) = (Xg, 1) and B : T(XRry)r/Rpn — T (X)) R/Rost

such that the induced isomorphism oy : T (X gy) g/ Ry = T(X ;’?0) R/ R, Testricts to 8.
By definition of T (X g,) g/R,, ;. and T(X%O)R/Ro,u’ it follows that o (Fil' (ID(X))) =
Fill (D(X")), étale locally on Spec R. By étale descent for finite projective R-
modules the Hodge filtration will be preserved over R as well, so « lifts to a
morphism X — X’ by Grothendieck-Messing theory. The tensors are preserved
by the lift because of the equivalence (2.11) between LFCrys(Ry/ W (ko)) and
LFCrys(R/ W (kg)).

Let (Xo, t) be a formal p-divisible group with (s, u)-structure over Ry with a
lift T, of T (X0) Ry/ Ry, .- BY étale descent, it is enough to prove essential surjectivity
étale locally, so we may assume T}, is a trivial P, g-torsor. Then any € T, C
T(X0)r/R, induces an isomorphism (A ®z, R, (s ® 1)g) = (ID(X0)R/Ry> L)
such that the base change o of ¥ along R — Ry identifies the Hodge filtrations,
ie.,

Yo(Fil'(A ®z, Ro)) = Fil' (D(X0)), (54)

where Fil' (A ®z, Ro) is the filtration defined by 1. Define E = v (Fil' (A ®z,
R)) C D(Xo)Rr/Ry- By (5.4), E is alift of the Hodge filtration for X, and therefore
the pair (Xg, E) lifts to a formal p-divisible group X over R by Grothendieck-
Messing theory. It is immediate from (2.11) that the tensors ¢ lift to a set of tensors
t for X, so it remains only to show that conditions (i) and (ii) of Definition 5.2 are
satisfied.

For condition (i), let B — A be a PD-thickening over R. Then B — A —
A/p = Ag is a PD-thickening over Ry, so there exists a homomorphism B — B’
which is faithfully flat and of finite presentation such that there exists an isomor-
phism

(A®z, B, (s® 1)g) > (D(X0)B/ag: to )
Then condition (i) follows from the identification (ID(X¢) /¢ t_OB) N D(X)p/a,tpg)-
Condition (ii) is satisfied because the isomorphism 1 respects the tensors, and it
respects the Hodge filtration by definition of X. O
5.2. From G-displays to p-divisible groups
Let G = (G, 1, A, n, s) be alocal Hodge embedding datum in the sense of Defini-

tion 4.10. Let & be a Tannakian (G, u)-display over W (R) which is nilpotent with
respectto , let P = Z, gr(?) be the associated Zink display, and let X = BT (P)
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be the associated formal p-divisible group. As in the previous section, the tensors
s;, viewed as morphisms Z, — A(i), induce morphisms of crystals

ti = D(P)(s;) : 1 — D(2)"D, (5.5)

Following the notation of the previous section, we write D(X)(i) = D(X)®"™ ®
(D(X)V)®"i If B — A is a p-adic PD-thickening, then D(X)p/a is p-adically
complete and separated, since same holds for any finite projective B-module. The
same is true of (D(X)p/4) (i), and hence the natural map

(D(X)B/4) (1) = (D(X)())p/a (5.6)

is an isomorphism.

By combining (4.3) with Lemma 2.23 and applying the compatibility of ID(<?)
with tensor products, we have ID(22)") = D(X)(i), and hence we obtain mor-
phisms of crystals

i1 — D(X)® (5.7
for each i. By Lemma 2.23, it is equivalent to view #; as a morphism 1 — D(P)®.

Lemma 5.8. The pair (X, t) (resp. (P, t)) defines a formal p-divisible group (resp.
nilpotent Zink display) with (s, |L)-structure.

Proof. Itis enough to prove that (X, t) is a p-divisible group with (s, w)-structure.
Let us write M” for the evaluation of & on a representation (V, 7). We have
isomorphisms D(X) = D(Z,,r(£?)) = ()", which all preserve the respective
filtrations (see (2.20) and Lemma 2.23), and since the Hodge filtrations of displays
are compatible with tensor products (see Remark 2.4), we can conclude that the
filtration on D(X) (i) gk induced from the filtration on ID(X)g,r agrees with the
Hodge filtration of M"®_ Similarly, the filtration on 1 agrees with the one on the
unit display S = (S, 0), so it is enough to show the map

(tH)r: R — M@ Qwr) R

preserves the filtrations of the corresponding displays. But the map (#;) g/ g is defined
as the reduction of the map § — M"® induced by s;, so this is automatic (see
again Remark 2.4). Frobenius equivariance follows from Proposition 4.11 and the
comparison of crystals, so we can conclude ¢ is a collection of crystalline Tate
tensors on D(X) over Spec R.

The lift g4 of Pw(a) is étale locally banal for any PD-thickening B — A
over R. Thus for some étale faithfully flat extension B — B’, there is an isomor-
phism of tensor functors

D(P)pja — wp,

where wp is the usual fiber functor, see (3.13). Condition (i) follows.
For condition (ii), by (4.3) and Lemma 2.23, we have a canonical isomorphism

D(X)r/g = D(P)} g (5.8)
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Write Z(A,n) = M", and endow D(@)"R/R = t*M" Qwpr R with the Hodge
filtration as in (2.1). Then (5.8) preserves the respective Hodge filtrations (see
(2.20)). Now choose a faithfully flat étale extension R — R’ such that Py () is

banal, with a trivialization ¢ : Py = Pw r) for some U € LtG(R’). Then ¥
induces an isomorphism

A®z, R =D(P) g = D) e (5.9)
Thus by (5.8) and (5.9), it is enough to show Fill(D(22y)") = A! ®wky R But
if Py (A, n) =M", then
Fil' (D(2y)") = im (@),

where 6; is the map M? — T"M" — T*M" ®@w gy R'. Since Py is banal, we
have

M = (A° ®wag) Ir) @ (A ®wry) W(R')),
and 8, is reduction modulo I Rr’, so the result follows. m]

If 2 — 22’ is a morphism Tannakian (G, n)-displays over W (R) which are
nilpotent with respect to 7, then it follows from the natural transformation property
that the resulting morphisms P — P’ and X — X’ are compatible with the
(s, w)-structure. Hence we obtain functors

BT r : G-Disp}y", (R) — fpdiv, ,(R)., & = (BTr(Zyr()).1). (5.10)
and
Zg.r : G-Disply" (R) — nZinky ,(R), 2 > (Zy r(P).1). (5.11)

The following lemmas will be useful in the proofs of Theorem A and Corollary
D. Following [30, 2.2], if D is a crystal of Ospec R/ w (ko)-modules, then we define
Dw gy, & by

Dwry/r = 1im Dy, (r)/&-

By [30, Prop. 53], if P is a nilpotent Zink display over W (R), there is a canonical
isomorphism

¢ :DP)wryr — P. (5.12)

Explicitly, the isomorphism is defined as follows. The Cartier homomorphism A :
W(R) — W(W(R)) (see [30, (90)]) defines a morphism of 1-frames W(R) —
W(W(R)/R), and the base change A*P is lift of P to a W(W(R)/R)-window
(note that by [20, Lem. 2.12] we can freely pass between W(W (R)/R)-windows
and compatible systems of W(W, (R)/R)-windows for varying n as defined in
[30]). Such a lift is unique up to unique isomorphism lifting id p by [30, Thm. 44],
so we have an isomorphism of W(W (R)/R)-windows

¢ Pyryr — AP, (5.13)
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which reduces to the identity after base change along W(W(R)/R) — W(R).
Here Pywry/r is the lift of P used to define D(P). Then (5.12) is obtained by
tensoring (5.13) along wg : W(W(R)) — W(R), where wo denotes the zeroth
ghost coordinate for W (W (R)). It is clear from this description and uniqueness
of lifts to W(W (R)/R) that ¢ is functorial in P. In other words, if P’ is another
nilpotent Zink display with corresponding homomorphism ¢’ as in (5.12), and
B : P — P’is a morphism of displays, then

Bot=1¢ oD(B). (5.14)

If & is a Tannakian (G, w)-display over W (R) which is nilpotent with respect
to n, and Z(A,n) = (M", F"), then by Lemma 4.5 there is an isomorphism

D(2)" = D(Z,(£?)). Combining this with (5.12), we obtain an isomorphism
]]])(32)"7,[,( R)/R = 7*M, which we also denote by ¢. Using compatibility of & and
D(&?) with tensor products, ¢ extends to

o) : D(@)"’,}"()R)/R = oM@, (5.15)

Lemma 5.9. Let & be a Tannakian (G, w)-display over W (R) which is nilpotent

with respect to 1. Suppose & is banal, with a trivialization given by ¥ : Py S
for some U € LT G(R). Then there exists a unique isomorphism of tensor functors

W owr) — D(P)wr)R
such that £ o W' = t*y",

Proof. Uniqueness follows immediately from the identity £ o W7 = 7*y/" because
the representation (A, 1) is a tensor generator for the category Repzp (G) (see for
example [29, Thm. 2.2.8]), and any two morphisms of tensor functors which agree
after evaluation on a tensor generator will agree in general.

Next we prove existence. For every n > 1, denote by r, the natural quotient
W(R) — W, (R),andlet U, = (W(r,) o A)(U) € LY G(W,(R)). For each n, the
trivialization y lifts to a trivialization v, : Py, 5 P, where 2, isthe unique lift
of & to an adjoint nilpotent Tannakian (G, u)-display over W (W, (R)/R)-display,
see Remark 4.4. Hence we obtain isomorphisms V ®z, W, (R) = D(@)‘;Vn(R)/R
for every representation (V, p). Moreover, these are compatible with the natural
maps V®Zp W,.(R) — V®Zp W,—1(R) induced by r,,_1 because U,, is acompatible
system of lifts. In this way we obtain an isomorphism of tensor functors

)\ D WW(R) = D(@)W(R)/R.
It remains to show
oW = ¥y (5.16)

Let Zn(gz)W(R)/R and Zr/(gU)W(R)/R be the unique lifts of Zn(gz) and Zn(gzy),
respectively, to windows over W(W(R)/R) By [20, Lem 2.12], Z,(Z)wr)/r
is the inverse limit of the compatible system of lifts Z, () w,r)/r = Zy(Pn),
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and likewise for Z, (Zy)w r),/r- We claim W' is the reduction modulo g of the
isomorphism of W(W (R)/R)-windows
Zy W) wiryk  Zo( P wiryr = EmZy(2u,) T G Z,(2) = Zy(P)wwk.

Indeed, this can be checked after applying — ®w ) W, (R) to the underlying
W (R)-modules for every n, and therefore the result follows from the identity
rpoWo = Woo W (r,). Moreover, since oo A = idw gy, T*¥" is the reduction mod-
ulo Wy of the morphism of W(W (R)/R)-windows A*t*y" : Z,(Py)wr)y/R =
N*Z,(Py) — A*Z,(Z), and ¢ is the reduction of ¢ (see (5.13)). Thus to show
(5.16), it is enough to show the identity

A*T*YT = o Zy(Y)w(R)/R

of morphisms of W(W (R)/R)-windows. This can be checked after base change
to W(R). But W(wo)*A*t*yT = t*y" because W(wp) o A = idw(g), and
W (wo)*Z,()wwryr = TF(¥1)"T = t*¢". The result follows because Z lifts the
identity of Z, (£). O

Lemma 5.10. Let & be a Tannakian (G, p)-display over W (R) which is nilpotent
with respectton, and lett; = D(P)(s;) asin(5.5). Then L (i)o(t;)wr) = T* P (si).

Proof. By Zink’s Witt vector descent [30, Prop. 33], the question is fpgc-local on
Spec R, so we may assume & is banal, with a trivialization ¢ : &y — & for
some U € LT G(R). Then by Lemma 5.9 there is an isomorphism W : WW(R)/R =
D(P)w(r),r such that £ (1) o W7 = T*Y 7.

Because v is a morphism of tensor functors, we have 2 (s;) = t*y"® o (s; ®
Dwr). Likewise (t;)wr) = P o (si ® Dw(r). Then

c@) o (twr = £@) o WD o (s; @ Dwry = ¢ o (5 @ Dwry = P(si).

O

5.3. Proof of Theorem A

In this section we prove Theorem A. Our strategy is as follows: We first prove the
theorem in the case where p R = 0 and R admits a p-basis étale locally by following
the strategy in the proof of [9, Thm. 5.15]. That is, we first prove full-faithfulness of
the functor, and then we reduce essential surjectivity to the banal case using descent,
see Proposition 5.16 below. The case of general R is then reduced to the case where
pR = 0 using the analogs of Grothendieck-Messing theory in the two settings; this
is Theorem 5.17. Let G = (G, u, A, n, s) be a local Hodge embedding datum as
in the previous section.

Let R be a p-nilpotent W (kg)-algebra, and let M be a finite projective graded
W (R)®-module. Suppose we are given a collection u = (uy, ..., u,) of W(R)-
module homomorphisms u; : W(R) — (t*M)(i). Define

Omu = Isom’(Awrye, (s ® Dw(r), (M, u))
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to be the fpqc sheaf on Spec R of isomorphisms of graded W(R)®-modules

Yo Ay = M which respect the tensors after pulling back by t, in the
sense that (t*y) (i) o (s; ® 1) w(r) = u; for every i. We will denote such an isomor-

phism by (Aw rye. (s® Dw(r) — (M, 1). We write Aut’ (A gye. (s ® Dw(r))
for the sheaf QA , o.(s®1)w - When the set of tensors is empty, we denote the
corresponding sheaf simply by Aut’(A w(r)®)- By the arguments of [9, Lem. 3.9],
we have

Aut’(Awrye) = LT, GL(A). (5.17)

It follows from (5.17) and Lemma 5.11 below that we have an identification

Aut’ (A e, (s ® Dwr) = L} G. (5.18)
Lemma 5.11. Let g € L, GL(A)(R). Then g € L,/ G(R) if and only if T(g) €
LTG(R).

Proof. For any reductive group scheme H over Z, with cocharacter A : G,, — H,
let P,, C H be the parabolic subgroup defined by A, see (3.4). Following [5], define
also a closed subgroup scheme H* C LT H by

H*(R) ={h € H | hy € P,(R)}

for any Z,-algebra R, where h¢ denotes the image of & under wo : H(W(R)) —
H(R).
By [24, Rmk. 6.3.3], 7 induces isomorphisms

L}, ,GL(A) > H"™" and L} G = H".
Thus we reduce to showing that H"°* N L*G = H*, which follows from the
identity Py, NG = P, see [6, Prop. 4.1.10, 1.]. m]

Suppose (P, t) is a nilpotent Zink display with (s, w)-structure over R, and let
M = Myw ) (P) be the 1-display associated with P as in Lemma 2.8 (here we use
notation as in (2.5)). Recall the isomorphism ¢ : D(P)w(r)/r S P=1t*M (see
(5.12)), which extends to an isomorphism ¢ (@) : D(P)wr)/r () = T*M(i). For
each i, then, we obtain a W (R)-module homomorphism
¢(@) o (t)wr) : W(R) — (t"M)(i),

which we denote by u;. Notice here that we are using the natural isomorphism (5.6)
to identify

(DPYwry/r) @) = (DEPYD) gy

Lemma 5.12. Let (P, t) be a nilpotent Zink display with (s, u)-structure, and let
M = Mwr)(P) be the I-display associated with P. Letu; = {(i)o (t;)w(r). Then
the fpqc sheaf

Owmu = Isom’(Aw(rye, (s ® Dw(r), (M, 0))

is an étale locally trivial LZG—torsor over Spec R.
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Proof. By (5.18) it is enough to show that, étale locally, there is an isomorphism
Y (Awrye, (S ® Dw(r)) = (M, ty (g))- Moreover, letting

Fil Awr) := I (R)(A® ®wg) W(R) ® (A ®wy) W(R)),

we see that it is enough to show that, étale locally, there is an isomorphism ¥/ :

Aw(r) = P which sends Fil A r) into Fil P and which respects the tensors.
Condition (ii) in Definition 5.2 implies that, after replacing R by some faithfully

flat étale extension, we have an isomorphism A g = D(P)g/r which sends A}e
into Fil' (D(P)) and which respects the tensors. Recalling the identifications

D(P)g/r = P/I(R)P, Fil'(D(P)) = Fil P/I(R)P, and ¢ : D(P)wr)/r — P,

we reduce the proof to showing that any such isomorphism lifts to an isomorphism

Aw(R) = D(P)w gy, r Whichrespects the tensors, since any lift will automatically
preserve the filtrations.
Define Y to be the W(R)-scheme whose points in a W(R)-algebra R’ are

isomorphisms A g/ = D(P)wr)/R W (R) R’ which respect the tensors, i.e.
Y(R) =Isom((Ag/, (s ® Dr), D(P)wr)/R @w(r) R, Ly gy @ idr)).

We need to show that the natural map Y (W (R)) — Y (R) is surjective. For every
n, define the analogous W, (R)-scheme Y,,, so for any W, (R)-algebra R’ we have

Y, (R) = Isom((Ag, (s ® D), (DX w,r)/R Qw,(r) R, tw, gy @ 1dg)).

Then, in particular, Y,,(R") = Y (R’) for all W, (R)-algebras, and condition (i) of
Definition 5.2 implies that Y, is an fppf locally trivial G, (g)-torsor. In particular,
Y,, is formally smooth over W,,(R). Since W,,(R) — W,_1(R) has nilpotent kernel
for all p-nilpotent W (kq)-algebras R, it follows that the natural map Y, (W, (R)) —
Y, (W,—1(R)) is surjective for all n. Hence Y (W, (R)) — Y(W,_1(R)) is surjective
for all n, and therefore so too is Y (W (R)) — Y (R). m|

Continuing with the notation of Lemma 5.12, so (P, t) is a nilpotent Zink
display with (s, w)-structure over R, and M is the corresponding 1-display over
W(R). Thus we have an identity P = t*M. Suppose 8 € QM’LW(R) (R). Then %8

defines an isomorphism Ay g) = T*(Aw(g)®) = 7*M, and the composition

~ B PP g
AW(R) — 0 AW(R)® — oM — 1M —— AW(R) (5.19)

determines an element Ug € GL(Aw(g))-
LetL = B(A®z, W(R)) C M viewed as a graded W (R)-module. Then multi-

plication induces an isomorphism of graded W (R)®-modules L @y gy W (R)® 5
M. This gives us an identification of W (R)-modules

LS (L ®wr WR)®) S t*M = P (5.20)
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such that the composition A ®z, W(R) 5L Pis equal to 7*B. Denote by
Lo and L; the images of 8 (A?,V( R)) and ﬂ(A{V( R)) respectively inside P under
(5.20),s0 P = Lo & L. If we define ¥ = FO}LO &) F1|L1, then W is an f-linear
automorphism, and (Lo, L1, V) is a normal representation for P. Moreover, we
have an isomorphism

f*P S f*L S o* (L Qwiry WR)®) = o*M, (5.21)

where the first arrow comes from applying f* to the inverse of (5.20). From the

definition of the equivalence between 1-displays and Zink displays (see Lemma

. . . .. 5.21
2.8), the identification (5.21) has the property that the composition f*P Q

# ~
o*M Ll T*M = P isequal to W* : f*P — P.Hence (5.19) can be identified
with the composition

*g—1

~ rrep wE o Tp
Awwr)y = ffAww) —— f*P — P —— Awg). (5.22)

By definition of Lo and L1, the isomorphism 7*f : A®z, W (R) 5 Psends A(‘),V(R)
to Lo and A {4, (k) tO L. Thus (5.22) implies that we have an isomorphism between

P and the display Py given by Pg = A ®z, W(R) with normal representation
(A (ry> Mgy Up © (id ® 1))

Using the isomorphism t*8 : P B 5 P, we can extend the tensors f to Pg.
Explicitly, let #/ be the composition

15 D)) S5 Dep ). (5.23)

Because 8 € Qum.u, weknow *Bo(s; @ 1) w(r) = u;. Write {g for the isomorphism
D(ﬂﬂ)W(R)/R 5 Pﬁ given by (5.12). Then {lg(i) o(si ® l)W(R) =G ® l)W(R)-
Hence by functoriality of ¢ (see (5.14)), we see
wry = (si @ Dw(r). (5.24)
Let 7 denote the representation GL(A) — GL(A(7)).

Lemma 5.13. Suppose pR = 0 and that R admits a p-basis étale locally. Then in
the situation described above, w(Ug)(si @ Dw(r) = (si ® Dw(r).

Proof. By descent for Witt vectors [30, Prop. 33] we may assume R admits a p-
basis. In that case the map from R to its perfect closure RP®™ is faithfully flat by
Lemma 2.20, so we may further assume that R is perfect.

Let ﬂﬂ be defined as above, and write ﬂﬁ = (Pg, Fil Pg, Fg o, Fg,1). By [30,

Prop. 57], the identification ¢ : ]D)(ﬁﬂ)W(R)/R 5 Pg (see (5.12)) is compatible
with the Frobenius. Thus the composition

~ Fwry/r
DL gwryR — " D(PIwr)/R —— D(Pwr)/R
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is given by Fg,o : f*Pg — Pg. Moreover, Pg = A ®z, W(R) and Fg,o =
Ug o (idA(v)V(m Dp- idA%)V(R)) o (id® f)* by definition of P 4. Thus the composition

~ Fg
A ®z, W(R) > f*(A®z, W(R) = f*Pg —> P = A®z, W(R)
is given by Ugo (id A e @p-id, . ). Similarly the evaluation of the Verschiebung

on W(R) — R is identified with (p - idA%/(R) ® A{,V(R)) o Uﬂ_1 under the above
identifications.

Since s; is fixed by G for all i, we have in particular s; ® 1 C (A(i))°. Hence
we can compute exactly as at the end of Proposition 4.11 to obtain

PTFi(si @ Dwry = p" 7w (U)(si @ Dw(r)-

By (5.24), (si ® Dw(r) = (t))w(r)- Since t] is Frobenius invariant, it follows that

P (si ® Dwry = p"w(U)(si ® Dw(ry. Thus m(U)(si @ Dw(ry = (5i @ Dw(r)
because W (R) is p-torsion free when R is perfect. O

In the following lemma, we associate a G-display of type u over W (R) to any
nilpotent Zink display with (s, @)-structure (P, t). Continue the notation of Lemma
5.12, and denote by oy, the map Qp — LTG, B+ Ug defined by Lemma
5.13.

Lemma 5.14. Suppose pR = 0 and that R admits a p-basis étale locally. Then
the pair (Q p.u, opm,u) determines a G-display of type . over W (R). Moreover, if
M = P (A, n) for some Tannakian (G, w)-display & over W (R), then evaluation
on (A, n) induces an isomorphism of G-displays of type 1

(Qz,05) = (OMus AM.u)-

Remark 5.15. Here (Q &, o o) is the G-display of type u over W(R) associated
with &2 as in (3.10) (see also [9, Constr. 3.15]).

Proof. For the first assertion, we note that if & € L,J[G(R), then Ug., is the com-
position *h ™! o T*87! 0 ®F 0 6*h 0 0*B, which is equal to T (h) ! - Ug - o (h).
The second assertion follows from the proof of [9, Lem. 5.14]. O

We can now prove Theorem A in the case where pR = 0.

Proposition 5.16. Suppose pR = 0 and R admits a p-basis étale locally. Then the
Sfunctor BTg g is an equivalence.

Proof. By Remark 5.6 itis enough to show the functor Z¢ g is an equivalence. The
proof in this case is formally very similar to the proof of [9, Thm. 5.15]. Indeed,
faithfulness of Zg g follows exactly as in loc. cit. Namely, the problem reduces
by descent to faithfulness of the representation 7. For fullness, if &2 and &’ are
Tannakian (G, p)-displays over W (R) which are nilpotent with respect to n, and
¢ Zg.rR(P) — Zg r(Z) is a morphism of p-divisible groups with (s, u)-
structure, one uses Lemma 5.14 to obtain a morphism (Q o, ¢ ) — (Q @/, w.g1)
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of G-displays of type u over W(R), which is induced from a unique morphism
£: P — 2. Asinthe proof of [9, Thm. 5.15], we have Z, gr(§) = §" = ¢.

Let us now show essential surjectivity. Let (P, s) be a nilpotent Zink display
with (s, p)-structure over R. Since Zg g is fully faithful, by descent it is enough to
show that (P, ) is étale locally in the essential image of Zg g.Let M = My (g)(P)
be the 1-display corresponding to P. By Lemma 5.12, Qs ,(R’) has a section g
for some étale faithfully flat extension R’ of R. The composition Ug = t*B 1o
Flte/ o 6*B is an element of LT G(R’) by Lemma 5.13, and Zy r(Puy) = Py,
where P is the Zink display with normal representation (A9 gy, Ay gy Up ©
(1d® f)) defined before Lemma 5.13. It follows that 8 determines an isomorphism
Zyr(Pyy) =P 8 5 P /. Itremains to show the induced isomorphism of crystals

D(Pg) = D(Pg) (5.25)

sends?; totg; = D(@Uﬁ)(si) foralli.Let ti/ be the tensor for P ginduced by (5.25),
see also (5.23). Since B € Q ., we know that (f,{)W(R) = (5; @ Dw(r), see (5.24).
On the other hand, it follows from Lemma 5.10 that (t5;) )wr) = (5 ® Dw(r)-
Thus we have the equality #; = tg; by Lemma 2.21, s0 Z, g (Zy,) = (P,1). O

Theorem 5.17. Suppose R is a p-nilpotent W (ko)-algebra such that R/pR has a
p-basis étale locally. Then the functor BT g is an equivalence.

Proof. Let Ry = R/pR. We have a commutative diagram of functors

BT
G-Disply”, (R) —= fpdiv, , (R)

| |

. BTg.r .
G-Dlsp@i (Ro) —' fpdiv,_, (Ro).

By Proposition 5.16, the bottom horizontal arrow is an equivalence.

By Proposition 3.29 and Proposition 3.24, lifts of a Tannakian (G, w)-display
& over W(Ry) along the left-hand vertical arrow correspond to lifts of the Hodge
filtration Fil & of the fiber functor w » to a filtration of w g g. Equivalently, by the
discussion at the end of 3.2, lifts of &7 correspond to lifts of the Hodge filtration
OFil, of the corresponding G-display of type u to a P, g-torsor O, inside the
G g-torsor Oy p-

On the other hand, by Lemma 5.7, we have an analogous description of lifts
along the right-hand arrow: Lifts of a formal p-divisible group with (s, @)-structure
(X, t) over u correspond to lifts of the P, g,-torsor T'(X)Rg,/R,,. associated with
(X, 1) toa P, g-torsor T, inside the G g-torsor T (X)g/r,- Thus BT g will be an
equivalence if we can show that the respective torsors correspond under BTg r.

Let &2 be a Tannakian (G, u)-display over R which is nilpotent with respect
to n, and write Z(V, p) = (MP, FP) for every representation (V, p) of G. Set
(X,1) = BTG, r(Z?). Then the G- and P, r torsors associated to & are

0w, = Isom®(wg, @) and Isom®(Fil,,, Fil ),
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respectively, see (3.14) and (3.17). Any B € O, is an isomorphism of tensor
functors, so B(s; ® 1)g = T* P (s;) for every i. Therefore evaluation on 1 induces
an isomorphism of G g-torsors

Quw, — Isom((A ®z, R. (s ® D). (*M" ®w(r) R, T*P(5))).

But we have an isomorphism t*M"7 Qw k) R = D(‘@)];Q/R = D(X)g,r, and
under this isomorphism 7*(Z(s;)) is identified with (¢;) g by definition of #; (see
(5.5)). Thus we have an isomorphism of G g-torsors Q,, = T(X)Rr/r- Similarly,

OFil = T(X)R/R,u» since if B € O, preserves the Hodge filtration of the
Tannakian (G, w)-display, then its evaluation on 1 will preserve the Hodge filtration
of the corresponding formal p-divisible group.

Finally we check that D(Z2)" = D(X) induces an isomorphism Qg =
T(X)R/Ry- This is similar to the case of Q, , except here evaluation on (A, 1)
sends an isomorphism 8 € Q,,,, , to an isomorphism

(A®z, R, (s®r) = (f*MZ/RO Ow®r) R, T (PRr/Ry (5))), (5.26)

where M, R/Ro is the evaluation of the unique lift Hg /Ry Of 2 to a Tannakian
(G, n)- dlsplay over W(R/Ry). By definition of D(&?), the right-hand side of (5.26)
is identified with (D(SZ)R/RO, D(Z)r/Rry(s)), and hence with (D(X) /Ry, Lg)-

Therefore we obtain an isomorphism of G g-torsors Q,, ® = T (X)Rr/R,> and the
theorem follows. ]

5.4. RZ spaces of Hodge type

In this section we give an explicit isomorphism between the Rapoport-Zink functor
of Hodge type defined using Tannakian (G, w)-displays as in [5] and [9], and the
one defined using crystalline Tate tensors as in [16] and [14]. We begin by recalling
the definition of G-quasi-isogenies as in [9], which are used to define the Rapoport-
Zink functor in terms of Tannakian (G, p)-displays.

If R is a Z p-algebra, the Frobenius for W (R) naturally extends to W (R)[1/p].
An isodisplay over R is a pair (N, ¢) where N is a finitely generated projective
W(R)[1/p]-module and ¢ : N — N is an f-linear isomorphism. If M is a display
over W(R), then we can associate to M an isodisplay (N, ¢) using the process
explained in [9, 3.4]. Let us review the construction.

If M = (M, F) is a display over W(R) with standard datum (L, &), then
the depth of M is the smallest integer d such that Ly, the d™ graded piece of
L = @ L;,isnonzero. By [9, Lem. 2.7], d does not depend on the choice of normal
decomposition. Moreover, by [9, Lem. 2.8], the natural map 6,, : M, — t*M (see
2.1) is an isomorphism of W (R)-modules for all n < d.

Suppose M is a display of depth d. Define ¢ = p? o F; o Od_l. Then N =
(t*M, @) is an isodisplay, and the assignment M +— (7*M, ¢) determines an exact
tensor functor from displays over W (R) to isodisplays over R. A quasi-isogeny of
displays over W(R) is an isomorphism of their corresponding isodisplays, and a
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quasi-isogeny is an isogeny if it is induced from a morphism of displays. These
notions naturally extend to G-displays. Indeed, a G-isodisplay over R is an exact
tensor functor Repr (G) — Isodisp(R). Any G-display & naturally determines a
G-isodisplay Z[1/ p] by composition of functors, and a G-quasi-isogeny between
two G-displays is an isomorphism of their corresponding G-isodisplays. See [9,
3.4] for more details.

Let us now recall the definition of local Shimura data of Hodge type as in [14]
and [5] (see also [9]). Let k be an algebraic closgre of I, and let W (k) be the Witt
vectors over k. Write K = W (k)[1/p], and let K be an algebraic closure of K. We
will write o for the extension of the Frobenius of W (k) to K (hopefully this causes
no confusion with the previous definition of o).

Assume that G is a connected reductive group scheme over Z,, and let ({ e}, [b])
be a pair such that

e {1} is a G(K)-conjugacy class of cocharacters Gng — Gg;
e [b] is a o-conjugacy class of elements b € G(K).

The local reflex field is the field of definition E of the conjugacy class {u}. Because
Gq, splits over an unramified extension of Qp, E is a subfield of K (a priori,
E C k), and by [18, Lem. 1.1.3], there is a cocharacter n € {it} which is defined
over E. Moreover, we an find a representative © which extends to an integral
cocharacter defined over the valuation ring Of of E. Note that if kg is the residue
field of O, then kg is finite, O = W(kg), and E = W (kg)[1/p].

We say the triple (G, {u}, [P]) is a local unramified Shimura datum if {} is
minuscule and for some (or equivalently, any) integral representative u of {u}, the
o-conjugacy class [b] has a representative

b e G(W(k))o (1) (p)G(W(k)).

If these assumptions are satisfied, then we can find an integral representative u of
{u} defined over Of and a representative b of [b] such that b = uo (u)(p) for some
u € LY G(k). Such a pair (u, b) will be called a framing pair.

If (e, b) is a framing pair, then we associate to (i, b) the framing object &y :=
P, where u € LT G (k) is the unique element such that b = uo (1)(p), and &, is
defined as in Proposition 3.20.

Definition 5.18. Fix a framing pair (u, b) for (G, {u}, [b]), and let &y be the
associated framing object. The display RZ-functor associated with (G, u, b) is
the functor on Nilpw ) which assigns to a p-nilpotent W (k)-algebra R the set of
isomorphism classes of pairs (<, p), where

e Z is a Tannakian (G, w)-display over R,
o p: PripR ——> (P0)R/pR is a G-quasi-isogeny.
Denote the display RZ-functor associated with (G, u, b) by RZ(éi,SZ’ b

Let Nilpﬁ;}mk denote the category of adic W (k)-algebras in which p is nilpotent,
and which are formally finitely generated and formally smooth over W (k) /p" W (k)
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dlSp fsm

for some n > 1. We extend RZ isp b toa functor RZ; on NllpW ) by defining

disp,f: . di
RZ™ ;m(A) = 1(1£1RZGI’SEJ)(A/I"),

n

where [ is an ideal of definition of A.

Remark 5.19. Let A € Nilpf;,“(lk), and suppose [ is an ideal of definition for A.
Define a Tannakian (G, w)-display over Spf A to be a compatible system (), of
Tannakian (G, w)-displays &2, over W(A/I"). Likewise, a G-quasi-isogeny over
Spf A is a compatible system (p,), of G-quasi-isogenies over A/I". With these
definitions, we see that RZdlSp fsm(A) is the set of isomorphism classes of pairs
(P, (on)n), wWith (@)n a Tannakian (G, n)-display over Spf A, and (p,), a
G-quasi-isogeny Pa/pa -+ (P0)a/pa defined over Spf A/pA. In fact, by [5,
Prop. 3.2.11] and [9, Cor. 3.17], the categories of Tannakian (G, )-displays over
W (A) and over Spf A are equivalent, so itis equivalent to consider pairs (22, (0,)n),
where & is a Tannakian (G, w)-display over W (A) and (p,), is a G-quasi-isogeny
over Spf A/pA.

Let (G, n) be of Hodge type as in Definition 4.6, with Hodge embedding 1 :
G — GL(A). Suppose (u, b) is a framing pair, and let & be the framing object
given by u € LTG(k), so b = uo(t)(p). Then G is cut out by some collection
of tensors s, and G = (G, u, A, n, s) is a local Hodge embedding datum. For the
remainder of this section we will assume & is nilpotent with respect to 1. Then
by [5, Thm. 5.1.3], the restriction of RZdlSp » to Noetherian algebras in Nilpy, ) is
representable by a formal scheme RZ b Wthh is formally smooth and formally
locally of finite type over W (k). Applymg BTGk to &, we obtain a formal p-
divisible group with (s, u)-structure

(Xo, t0) = BTk (Zx(P0)), D(F0) ().

Definition 5.20. Let G = (G, u, A, n,s), b and (Xo, 1) be as above. The p-
divisible group RZ-functor associated with the data (G, b) is the functor on Nilpw )
which assigns to a p-nilpotent W (k)-algebra the set of isomorphism classes of
triples (X, ¢, 1), where
e (X, 1) is a p-divisible group with (s, w)-structure,
t: X®Rr R/pR --+ Xo ® R/pR is a quasi-isogeny such that, for some
nilpotent ideal J C R with p € J, the composition of #; with

D(ir/s) : DX @ R/DE[1/p] = D(X & R/I)®[1/p]

is equal to #g ; for every i.
Denote the p-divisible group RZ-functor associated with (G, b) by RZé’f})iV.
We also extend RZE?:V to a functor RZg;' (ziv’fsm on Nilpﬁ,“(lk) by defining

RZL M (A) - _hmRZ‘" P (A,

where once again / is an ideal of definition of A.
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fsm

Remark 5.21. As in the case of the display RZ-functor, the extension to NilpW(k)
can be thought of as classifying objects over Spf A. More precisely, RZZ"(,?V’fsm(A)
is the set of isomorphism classes of triples (X, ¢, ¢), with (X, t) a p-divisible group
with (s, p)-structure over Spf A, and ¢ = (¢,), a quasi-isogeny over Spf A/pA
such that for every n, D((t4)a/1) o t; = to,;, for all i. Since (1), is a compatible
system, it is equivalent to assume D(t1) o t; = to; for all i. If I is chosen with
p € I, then by rigidity of quasi-isogenies along with [12, Lem. 2.4.4] and the proof

of [12, Prop. 2.4.8], elements of RZ’G"’CZV’fsm(A) correspond to triples (X, ¢, t), with
(X, t) a p-divisible group with (s, p)-structure over Spec A and

L: XQa A/l --» Xo®r A/l
a quasi-isogeny such that D(¢) o ¢; = fp; for all i (see [14, 2.3.6] for details).
Suppose (£, p) € RZ?;SP(R) for R € Nilpw(k). Let us write
PRripr(N, ) = M and (Po)g/pr(A, n) = Mo".
By evaluating p on (A, 1), we obtain a quasi-isogeny of 1-displays
M7 s My".
By [30, Prop. 66], such a quasi-isogeny is equivalent to an invertible section of

Hompispw (r/pr)) (M", Mo™)[1/p],

so the functor BT induces a quasi-isogeny of p-divisible groups
tp : BT(Zy(PR/pR)) ——* BT(Zy((ZP0)R/pR))-

If (pn)n is @ G-quasi-isogeny defined over Spf A/pA for A € Nilp%,“(lk) with ideal
of definition / containing p, then by taking R = A/I" as n varies we obtain a
quasi-isogeny of p-divisible groups (¢p, ), defined over Spf A/pA.

Lemma 5.22. The assignment
(Z, (pn)n) = BTG, r(2), (1p,)n)

determines a natural transformation WV : RZg?Z’)me — RZZ:C;;V’fsm of functors on
Nilp{/e,,.
Proof. Let & be a Tannakian (G, u)-display over W(A), and let (p,), be a G-
quasi-isogeny over Spf A (cf. Remark 5.19). Suppose / is an ideal of definition for
Awithp € I,andlet R = A/I. Write p = p1,and ¢ =1, S0t = (1,,) g for every
n. We need to show D(¢) o f; = #o; for every i. We claim it is enough to show this
after evaluation on W(R) — R. Indeed, by [14, Lem. 3.2.8 and its proof], since R
is finitely generated over k, it is enough to check the identity holds at a closed point
in each connected component of Spec R (see also [14, Rmk. 2.3.5 (d)]). But any
field k" of characteristic p has a p-basis, so if the identity holds after evaluation on
W (k') — k', then it holds over Spec k’ by Lemma 2.21.
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Since p is a natural transformation of functors p : Z[1/p] — (Lo)r[1/p],
we have an identification

P o P11/ p)(si) = (Po)r[1/p1(s). (5.27)

Moreover, by definition, we have Z[1/p](s;) = t*P(s;), so (5.27) can be rewrit-
ten as

"D o T* P (si) = TH(Po) R (5i). (5:28)

Recall the isomorphism ¢ (i) : D(Z)}y ) g — T*M"® (see (5.15)). We will write
Lo (i) for the analogous isomorphism defined for &#y. By Lemma 5.10, 7* Z(s;) =
¢(@) o (t)w(ry, and T (L) r (s;) = Lo(i) o (t,;) w(r). Moreover, the isomorphism
D(P) = D(BT(P)) from Lemma 2.23 is functorial in P, so we can identify D(¢)
with D(p"). Thus it is enough to show ¢y o D(p") = p” o ¢. But this follows
immediately from the functoriality of ¢, see (5.14). O
Theorem 5.23. The natural transformation ¥V : RZ‘E?Z’,fzm — Rng})iv’fsm defined
in Lemma 5.22 is an isomorphism of functors on N ilp%,"(lk).

Proof. This is formally similar to [9, Thm. 5.15]. If A is in Nilpﬁ,[?k), then the IF ,-
algebra A/ pA satisfies condition (1.3.1.1) of [12], so in particular it is Noetherian,
F-finite, and formally smooth over IF,. Hence by [23, Lem. 2.1] A/ pA has a p-basis
étale (even Zariski) locally. Thus for any A in Nilp{i}?k), Wy, is injective by full-
faithfulness of BT 4. For surjectivity, suppose (X, ¢, (t;),) € RZgiiV’fsm (A) for
A e Nilp‘;;r?k). Then by Theorem 5.17 there exists a Tannakian (G, w)-display &
over W (A) such that BTG 4(£?) = (X, t). It remains to define a G-quasi-isogeny
(pn)n over Spf A.

Choose an ideal of definition I with p € I, fix n,and let A, = A/((p) + I").
Consider the G-quasi-isogeny ¢, : X®4 A, --+ XoQ®x A,,. By the second condition
in Definition 5.20, we have ID((t,) /1) o t;i = to,;. Moreover, by [16, Lem. 4.6.3],
such an identity lifts along a quotient by a nilpotent ideal, so we obtain

D@y)oti =1p,. (5.29)

By descent it is enough to define the G-quasi-isogeny étale locally. After an étale
faithfully flat extension, & is banal, with trivialization ¥ : Py = P for some
U € LT G(A).Forevery n denote by 2, the base change of & to A,, let U, denote
theimage of U in LT G(A,), and let ¥, : Py, = 2, be the trivialization obtained
by base change. By [9, Thm. 4.7], a G-quasi-isogeny (Zy)a,/pa, = Pu, ——*
(20) A,/ pa, is given by g, € G(W(A,)[1/p]suchthat Uno (1(p)) = g, 'bf (gn)
in G(W(A,)[1/pD.

By Lemma 5.9, the trivialization ¥ lifts to an isomorphism of tensor functors
W owa) — D(P)wiaya such that £ o W = t*y. Since W(A) — W(A,)
preserves the divided powers, there is an isomorphism

D(Z)wan/a, = D(P)waya @way W(AL)
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given by the crystal property for D(Z?). Thus base change along A — A, induces
W, owa,) — D(Z,)w (a4, such that £, o W] = T*y,. By uniqueness, ¥,
is the isomorphism associated to ¥, by Lemma 5.9.

Let g, denote the composition

D) wan)
—_

A ®z, W(An)[1/p] _) D(r@) W(Ap)/An [1/p] D(’@())ZV(A,I)/An[l/p]

— A ®z, W(A[1/p].

Then g, € GL(A ®z, W(A,)[1/p]). We claim g, € G(W(A,)[1/p]) and
Uo (1u(p)) = g, 'bf (gn)-

For the first claim, we note that by Lemma 5.10, U o(si ® Dwa,y =
D(Z,)(s:). Moreover, since BTG 4 () = (X, t), weknow D(#)(s;) = ;. Hence
it follows from the identity (5.29) and the definition of g, that g, (s; ® D wa,)[1/p] =
(si ® Dwanti/pr-

Now let Z,(A,n) = (M), F,), and let F, 4,) be the homomorphism
(A ®z, W(A)[1/p]) = A®z, W(An)[1/p] 1nduced by the Frobenius FW(A )
for D(X) via W,. By [30, Prop. 57], the isomorphism ¢, : (%, )W(A )/ A =

*M,! is compatible with Frobenius, so ]F’W (A is identified with the Frobenius for
Py, on (A, n), which is given by U,o (u(p)) o (id ® f)ﬁ by [9, Lem. 3.27]. Sim-
ilarly, the Frobenius for D(@o)%( A/ Ay is identified with b o (id ® f)*. Thus the
identity U,o (u(p)) = g;lbf(gn) follows from the fact that D(¢,,) is a morphism
of F-isocrystals.

The collection (g, ), is compatible as n varies because the same is true for D(¢,,),
and because W, is induced by base change of W along A — A,. Let p, be the

isogeny induced by g,, for each n; thus (£, (pn)n) € Rzgfﬁ’ lffm. It remains to show

that p,, induces ¢, for each n. For this it is enough to show p, and ®(1,,) define the
same quasi-isogeny of 1-displays (here ® is Lau’s functor (2.17)). By definition of
Pu, we have p;! o¢ = ¢ooD(ty) w(a,), Where {o is the analog of ¢ for Z,(Z%). On the
other hand, by functoriality of ¢ (see (5.14)), we have ®(1,) 0 & = oo D(t) w(a,)-
Thus p, = ®(1,) for all n, and the result follows. |

Remark 5.24. The functor in Definition 5.20 is formulated using covariant Dieudonné
theory, hence it differs slightly from those of [16] and [14] which are formulated
using contravariant Dieudonné theory. In fact, the difference is purely aesthetic, and
the functors are isomorphic. Indeed, if (G, i, A, 7, ) is a local Hodge embedding
datum in our sense, then the embedding n¥ : G < GL(A") determines a local
Hodge embedding datum for (G, {u}, [b]) in the sense of [14, Def. 2.2.3]. It follows
that (G, b, u, AY) is a local unramified Shimura-Hodge datum in the sense of loc.
cit., and X OD is the unique p-divisible group over k associated with this datum by
[14, Lem. 2.2.5]. Moreover, the contravariant Dieudonné crystal of a p-divisible
group X is given by the covariant Dieudonné crystal of the Serre dual X? of X,
and under this relationship the respective Hodge filtrations are identified. Hence the
assignment (X, ) > (X D Dy provides the isomorphism between our p-divisible
group RZ-functor and that of [16] and [14].
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The main theorem of [16] states that there is a formal scheme RZg ;, over Spf
W (k) which is formally smooth and formally locally of finite type which represents
RZfGSf']‘] in the sense that

szgsrf;?(A) = Homspf W (k) (Spf A, RZQ,})) (5.30)

for A e Nilpjy,,.-

Corollary 5.25. The formal schemes RZ]?;I’)M, » and RZg.  are isomorphic.

Proof. By the results of [16], RZg ; is the unique formally smooth and locally
formally of finite type formal scheme over Spf W (k) representing the functor RZfCS;‘f;,

onN ilp%,"(lk) in the sense of (5.30). But by Theorem 5.23 the same is true of RZ%Z: b
O

Remark 5.26. Corollary 5.25 is also known by [5, Rmk. 5.2.7]. However, in loc.
cit. no explicit isomorphism is given between the respective RZ-functors.

5.5. Deformations

Let G be areductive group scheme over Z,, and let 1+ be a minuscule cocharacter of
G defined over W (ko). In this section we want to study the infinitesimal deformation
theory of p-divisible groups with G-structure over k. We begin by reviewing the
deformation theory of adjoint nilpotent Tannakian (G, u)-displays as in [5, 3.5], so
fix a Tannakian (G, pw)-display 2y which is adjoint nilpotent over k. Let Artyy )
denote the category of augmented local Artin W (k)-algebras, i.e., the category of
local artin W (k)-algebras (R, m) together with a fixed isomorphism R/m 5ok
Such a ring is necessarily a p-nilpotent W (k)-algebra.

Let Def(Hp) denote the functor on Arty ) which assigns to R € Arty )
the set of isomorphism classes of pairs (£, §) where & is a Tannakian (G, w)-
display over R and § : F 5 Pyisan isomorphism of Tannakian (G, u)-displays
over W (k). An isomorphism between pairs (2, §) and (27, §') is an isomorphism
W P S P suchthat 8 o Yy = 8. We will usually omit the fixed isomorphism
8 and refer to the pair (£, §) simply as &2.

By [5, 3.5.9], ®e¢f(S) is prorepresentable by a power series ring over W (k).
Let us summarize the theory and describe the universal deformation. Denote by U
the opposite unipotent subgroup of G defined by n. By [24, Lem. 6.3.2] (see also
[5, Lem. A.0.5]), there exists a unique G,,-equivariant isomorphism of schemes

log : U — V(Lie Ug)

which induces the identity on Lie algebras. Moreover, log is an isomorphism of
W (ko)-group schemes. Since Ug is smooth (see e.g. [6, Thm. 4.1.17]), Lie U
is finite and free as a W (kg)-module, so after a choice of basis log induces an
isomorphism of W (kg)-group schemes

log : Ug = G,
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where £ is the dimension of U¢,. Let Spf( R ) be the formal completion of Ug, @w (k)
W (k) at the origin, and note that we have a (non-canonical) isomorphism Rg =
W k) [[t1, - .., t]]l. If w € Rg, denote by [w] the Teichmiiller lift of w in W(Rg),
so [w] = (w,0,...) in the usual Witt vector coordinates. Define the element
h‘g‘iv € Uz (W(Rg)) to be the unique element such that

log(h%™)y = ([t1], ..., [te]) € GL(W(RG)).

Since k is algebraically closed, & is banal, given by some ug € LT G(k), and the
inclusion W (k) < Rg allows us to view ug as an element of LT G(Rg). Define

™ = (W) g € LTG(Ro),

and let 22"V denote the Tannakian (G, u)-display over W (Rg) defined by u‘g‘iv.
By the results of [3, 3.5.9], the ring R prorepresents Def(F), and 22"V defines
the universal deformation of &2 over R¢.

If G = GLy, i = pa,n, and & corresponds to a nilpotent Zink display P,
then this recovers the deformation theory of [30, 2.2] because any lift of P to a
Zink display over a local Artin W (k)-algebra is nilpotent by [30, Lem. 21].

Suppose now G = (G, u, A, n,s) is a local Hodge embedding datum, and
suppose that we can choose a basis for Ay, such that n o u = pg . Let
RGL := RGL(a), so that Spf(RgL) is the formal completion of UéL( A) Qw (kg) W (k)
at the origin, where U&L( A) is the opposite unipotent subgroup of GL(A) defined
by n o u. Then U — UéL( A) induces a surjection Rgr — Rg, which
we denote by m. Notice that Rgr is non-canonically isomorphic to the power
series ring W(k)[[11, ..., tacqi—a)]]. We choose coordinates for Rg so that Rg =
R/(trt1, - -, lah—a))-

Let &) be a Tannakian (G, p)-display over k which is nilpotent with respect
to n, and write Def(Pp) for the associated Zink display over k. Write defn(Pp) for
the deformation functor of (GL(A), n o u)-displays for P,. Then by the above
paragraph Def(Pp) is prorepresentable by Rgr, with universal deformation PUniv
having standard representation (A ®wky) W(RGL), Al ®wkg) W(RGL), d>umV
where

DIV = (hEV) " n(up) o (ida ® f).

Lemma 5.27. If "™ is the universal deformation of P as a Tannakian (G, )-
display over W(Rg), then

PN ) = (P g

Proof. Given the explicit descriptions of the universal deformations above, it is
enough to show

W(T[)( umv) — r’( umv)

The embedding 7 induces an embedding Ug < Ug; , which we also denote by 7,
as well as amap dn : Lie U3 — Lie Ug; . With the above choice of coordinates,

Wa)(nl, ... ltagn-a) = (1], ..., [£:1,0,...0) =dn(u], ..., [1:].
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From the explicit description of the log map given in [24, Lem. 6.3.2] we see that
log o n = dn olog as maps U; — V(Lie Ug; ). Hence W (rr)(hg;") and n(h5™)
agree after applying log, so the result follows because log is an isomorphism. O

Let (Xo, 1p) be a formal p-divisible group with (s, u)-structure over k, and
let # be the Tannakian (G, w)-display over W (k) corresponding to (Xo, ty) by
Theorem 5.17. We will apply our results to the deformation theory of (Xo, fo).
Denote by Def(Xo) the functor of deformations of the p-divisible group Xy, so for
R € Artw ), Def(Xo)(R) is the set of isomorphism classes of p-divisible groups
X over R together with an isomorphism X ®g k = Xo. If Py is the nilpotent Zink
display corresponding to X, then by the equivalence of Zink and Lau (or by [15,
Cor. 4.8(1)]) it follows that Rgy, prorepresents Def(Xo) with universal deformation
given by BT g, (P""Y) over RgL..

Corollary 5.28. Let R € Arty ), such that R/pR admits a p-basis étale locally,
and choose a p-divisible group X over R which lifts Xo. Let @ : RgL — R be
the homomorphism induced by X. Then @w factors through R if and only if there
exists an (s, w)-structure on D(X) lifting the one on D(Xy).

Proof. First note that X is infinitesimal since the same is true for X, and the
property can be checked at geometric points in characteristic p (see [26, II Prop.
4.4)). Let P be the nilpotent Zink display associated with X, so P = e* PV,
The result will follow from Theorem 5.17 if we can show that @ factors through
Rgifandonly if P = (A, n) for some Tannakian (G, u)-display & over W (R).
If w factors as vorr forsome v : Rg — R,then P = wo* PV = p*(* PU"V) But
then by Lemma 5.27 we have P = (v* 2"V)(A, ). Conversely, if P = P2 (A, n)
for some Tannakian (G, p)-display &, then & is a deformation of Z, so there is
some v : Rg — R such that & = v* 2"V Then again Lemma 5.27 implies that
P = v*r* PV 50 v o = w by prorepresentability of Rgr and universality of
PU]’I]V. O
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Appendix A: Descent
A.l. Semi-frames and Witt vectors

For our purposes we find it useful to develop a slightly weaker notion than that of
a frame, which we call a semi-frame.

Definition A.1. A semi-frame is a pair S = (S, t), where S is a Z-graded ring

s=EPs.

nez
and T : S — Sp is a ring homomorphism, such that the following conditions hold:

e The endomorphism 7y of Sy is the identity, and 7_, : S_, — Sp is a bijection
foralln > 1.
e The image of S; under 7 is contained in the Jacobson radical of Sp, Rad(Sp).

We say (S, 1) is a semi-frame for R = So/t(S1).

Asin 2.1, we write T(S1) = ¢S] since t acts on 7 as multiplication by 7.

Remark A.2. As in [9, 2.1] we note that a semi-frame is equivalent to a pair
(@nzo S, (th)n>0) where S>q is a Zsp-graded ring and (#,),>0 is a collection
of S>o-linear maps t, : Sp+1 — S, such that #(S1) € Rad(Sp).

Lemma A.3. Let S = (S, o, t) be a frame. Then tS; € Rad(Sp).

Proof. This is proved as part of [24, Lemma 3.1.1]. Let us repeat the proof here.
Leta € tS;. Then o (a) € pSp. Since o lifts the p-power Frobenius of So/pSo, it
follows that a”? € pSp. But p € Rad(Sp) by assumption, so a € Rad(Sp) as well.
O

It follows from Lemma A.3 that the assignment (S, o, 1) — (S, 7) defines a
forgetful functor from the category of frames to the category of semi-frames. The
following lemma provides a way to check that certain quotients of frames are semi-
frames.

Lemma A4. Let S’ be a Z-graded ring S' = @, ., S, and t’ be a ring homomor-
phism t' : S — S| such that the pair (S', t') satisfies the first bullet in Definition
A.1. If there exists a frame (S, o, T) and a surjective homomorphism of graded
rings ¢ : S — 8" such that t" o ¢ = ¢ o 7, then T'(S]) € Rad(Sy), i.e., (§', ') is
a semi-frame.

Proof. Since S — S’ is surjective, the image of Rad(Sp) is contained in Rad(S(’)).
Let ¢’ be the unique element in S” | with v/ (¢") = 1. Then ¢ () = ¢, and surjectivity
of ¢ implies that ¢ (tS) = t’S;. Therefore, by Lemma A.3,

1'S; = @(tS)) € p(Rad(Sp)) < Rad(Sp).
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Let R be a ring. Then for every m > 1 we attach to R the ring of m-truncated
p-typical Witt vectors W, (R). These rings are equipped with a Frobenius f, g :
Win+1(R) = W, (R) which is a ring homomorphism, and a Verschiebung vy, g :
W (R) — Wy+1(R) which is additive. We will suppress the subscripts on the
Frobenius and the Verschiebung when m and R are clear from context.

Let I,,(R) = v(W,,,—1(R)) = ker(W,,(R) — R), and let I(R) = v(W(R)) C
W (R). For every finite m, the truncation map r,, : W(R) — W, (R) induces an
isomorphism W(R)/v™(W(R)) = W,,(R), and these combine to give an isomor-
phism

W (R) = lim Wy (R).

Hence W (R) is complete and separated with respect to the topology defined by the
ideals v (W (R)). We will refer to this as the v-adic topology.

For every non-negative integer m we have the following truncated variant of the
Witt frame.

Example A.5. (Truncated Witt semi-frames) For a p-adic ring R and a non-negative
integer m, let W,,,(R)® be the quotient of W (R)® by the graded ideal

Vi (R) = Q" (W(R) -7 & P v" (W(R)).

n>0 n>1

To be precise, forn > 1, V,,,(R), = v"(W(R)) is viewed as a W (R)-submodule
of y(W(R)) = I(R) = W(R)f‘f. The map 7 : W(R)® — W(R) extends to a map
™ Wy (R)® — W, (R), so by Lemma A .4 the pair (W,,(R)®, 7) constitutes a
semi-frame, called the m-truncated Witt semi-frame for R.

Remark A.6. The truncated Witt semi-frames are not associated with frames in
general. Indeed, the Frobenius f on W, (R) has image in the smaller ring W,,_1 (R),
and does not determine an endomophism of W,,(R) unless pR = 0. In the latter
case the semi-frame (W,,(R)®, 1) is associated with a frame, but this frame differs
slightly from the truncated Witt frame given in [24, Example 2.1.6], which uses
Iy+1(R) for each graded piece above zero.

Example A.7. (Truncated relative Witt semi-frames) Let m be anon-negative integer
and let B — A be a PD-thickening of p-adic rings. Let W,, (B/A)® be the quotient
of W(B/A)® by the graded ideal

Vi (B/A) = EDv" (W (B)) - 17" & @) v" (W(B)).

n>1 n>0

where v (W (B)) is embedded into /(B) & J via the first factor. Define maps
ty : (Win(B/A)®), 11 — (W, (B/A)®), as follows: for n > 1, t, is multiplication
by p on the first component and the identity on J, and 7 is the map

t0: In(B) ® J — Wy (B), (v(a), x) > ru(v(@)) + ru(log'[x,0,...1),
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where r,, : W(B) — W,,(B) is the truncation homomorphism. These maps deter-
mine a pair Wy, (B/A) = (Wy (B/A)®, ) by Remark A.2, which constitutes a
semi-frame by Lemma A.4. Since we have an isomorphism

Win(B)/t(In(B) ® J) = A,

W (B/A) defines a semi-frame over A, which we call the m-truncated relative
Witt semi-frame for B — A.

We close this section by giving a Nakayama lemma for finite graded modules
over the graded ring associated with a semi-frame, following [24, Lemma 3.1.1,
Corollary 3.1.2]. Let (S, 7) be a semi-frame over a ring R. Denote by v : § — R
the ring homomorphism which extends the natural projection Sy — R by zero on
all graded pieces away from Sy.

Lemma A.8. Let (S, t) be a semi-frame, and let M be a finite graded S-module.

(i) If M ®s., R =0, then M = 0.

(ii) Let N be another finite graded S-module, and suppose M is projective. Then a
homomorphism f : N — M of graded S-modules is bijective if and only if its
reduction f N ®sy R — M ®s., R is bijective.

Proof. The proof of (i) is identical to the proof of [24, Lemma 3.1.1] since ¢S1 <
Rad(Sp). Part (ii) is an immediate consequence of (i), as in [24, Corollary 3.1.2]. O

A.2. Complete semi-frames

In this section we develop a technical framework for frames which arise as the limit
of a sequence of semi-frames, in a sense which we will make precise. This will be
used in the next section to prove descent for displays over relative Witt frames.

For this section, let S be a Z-graded ring, and let V'* be a sequence of graded ideals

v =y
nez

in S such that V,:”H C V" for all m, n. For every m, denote by S the quotient
S/ V™. Explicitly,

" = P Sa/ Vi

nez

If M is a finite projective graded S-module, then for every m, the quotient M/ V"' M
is a finite projective graded S™-module, with graded pieces

(M/V"M), = My, /(M N\ V" M).

Definition A.9. Let S and V* be as above, and let M be a graded S-module.
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(a) The graded completion of S with respect to V* is

"= (l(in Sn/v,;") .

nezZ \m

The graded ring S is V*®-adic if the natural homomorphism of graded rings
S — S§” is an isomorphism.
(b) The graded completion of M with respect to V*® is

M" = EB (1(@ M,/ (M, N V’”M)) .
nez m

We say M is V*-adic if the natural graded S-module homomorphism ¢y :
M — M” is an isomorphism.

Lemma A.10. Let S be V*-adic, and suppose that M is a finite projective graded
S-module. Then M is V*-adic.

Proof. The proof reduces to the case where M is a finite free graded S-module,
which is immediate. m]

Definition A.11. Let S and V* be as above. Define PGrMod((S™),,,) to be the cat-
egory whose objects are systems (M™),,cn of finite projective graded S -modules
equipped with graded $”*!-module homomorphisms

o™ . MM 5 pmm

which induce isomorphisms M™+! Qgmt1 S™ =S mMmaf (M™)en and (N™) eN
are two objects in PGrMod((S™),,), then a morphism between them is a collection
of graded S™-module homomorphisms M™ — N™ which are compatible with the
6™ -maps.

If M is an object in PGrMod(S), then for every m, M/V™M is an object in
PGrMod(S™). This assignment determines a functor

PGrMod(S) — PGrMod((S™)). (A.1)

Proposition A.12. Let (S, t) be a semi-frame for R, and let V® = (V™),,eN be a
sequence of graded ideals in S such that S is V*-adic. Suppose

(i) For each m, there exists a ring homomorphism t™ : §" — S(’)” such that
(8™, t'™) is a semi-frame and such that the natural homomorphism of graded
rings S — S™ induces a morphism of semi-frames (S, t) — (8", ™).

(ii) For every m, Sy’ /tS{' = R, and the homomorphisms Sy — S(' lift the identity
on R.

(iii) For every finite projective R-module M there exists a finite projective So-module
M’ along with an isomorphism of R-modules M' @s, R = M.

Then the functor (A.1) is an equivalence of categories.
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Proof. We define an quasi-inverse functor as follows: Let (M™),,cn be an object
in PGrMod(($"™)), so M™ = @, ., M, for every m, and define M = Q M,,,
where M, = lim M,". Here the transition maps MMl — M™ are given by
0", i.e. by the nth graded piece of 6”. We claim M is a finite projective graded
S-module.

Consider the finite projective graded R-module L := M' ® st 1 R. By (ii), there is
afinite projective graded Sp-module L such that L&g, R = L.DefineN :=L® SoS-
Then N is a finite projective graded S-module. Because the maps 6™ : M1 —
M™ are surjective for every m, we see that the induced map M — M* sending
@)m € My =Tlim M to a* e M} is also surjective, and therefore so too

is the homomorphism M — L = M' ®gi 1 R. Then the identity of L lifts to
a homomorphism of graded S-modules ¢ : N — M. Note that conditions (i)
and (ii) imply that v : § — R factors through S for every m, so, in particular,
V™ C ker(v : S — R) forevery m. Letus denote by v the induced map S — R.
The composition N — M — M™ factors through N/ V™ N, inducing a graded
$™-module homomorphism v, : N/V"*N — M™ for every m. Further, N — L
factors through N/V™N since V" C ker(v : S — R), and M — L factors
through M™, so ¥, also lifts the identity of L. Therefore (N/V™N) ®gm ym R —
M"™ @gm ,m R is an isomorphism, and by Lemma A.8 (ii), ¥, is an isomorphism of
graded S -modules. By definition these isomorphisms satisfy 0™ o ¥, 41 = ¥y, ©
(0)", where (9')™ is the natural surjection N/V™"TIN — N/V™N. Altogether
we see

lim N,/ (V"N O N,)) = lim M
m m

for every n, so M = N as graded S-modules by Lemma A.10, and M is indeed a
finite projective graded S-module. Also, Lemma A.10 and the isomorphism

M/V"M=N/V"N = M"
show that these functors are quasi-inverse to one another. O

Let A, B and R be p-adic rings, and let B — A be a PD-thickening with kernel J.
Recall the graded ideals V3 = (V,;,(R))m>1 and VI;/A = (Vin(B/A))m>1 defined
in Example A.7.

Lemma A.13. The frames W(R) and W(B/A) defined in the previous section
satisfy conditions (i) - (iii) in Proposition A.12.

Proof. Letus first prove that condition (iii) is satisfied. Since R is p-adic, it follows
from [30, Proposition 3] that W (R) is complete and separated with respect to 1 (R).
Then every finite projective R-module lifts to a finite projective W (R)-module.
Similarly every finite projective B-module lifts to W (B), and every finite projective
A-module lifts to B since J is a locally nilpotent ideal.

Now, W(R)® is graded complete with respect to the ideals V,,(A) because
both W(R) and I (R) are complete with respect to the ideals v (W (R)). Sim-
ilarly W(B/A)® is graded complete with respect to V,,(B/A). For the semi-
frames (8™, t) we take (W,,(R)®, t™) in the case of (W(R)®, 1), and we take
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(W, (B/A)®, t™) in the case of (W(B/A)®, ). Conditions (i) and (ii) of Propo-
sition A.12 are easily verified in each of these cases. O

A.3. Descent for the relative Witt frame

As R varies, the frame W (R) is naturally a functor of R. In fact, this associa-
tion determines an fpqc sheaf in frames because the functors R +— W(R) and
R +— I(R) both determine fpqc sheaves of abelian groups. Denote by PGrModw
the fibered category over NilpZP whose fiber over R in NilpZP is the category
PGrMod(W (R)). By [24, Lemma 4.3.2], PGrMody is an fpqc stack over NilpZP.

The goal of this section is to prove the analog of this statement, replacing W (R)®
with W(B/A)®. We need to be a little careful here, because the behavior of the
relative Witt frame differs from that of the Witt frame. In particular, we must replace
the fpqc topology with the étale topology.

Let us begin by checking some étale-local properties of finite projective graded
modules over semi-frames. The following lemma is analogous to [9, Lemmas 2.10
-2.12].

Lemma A.14. Suppose S is an étale sheaf of semi-frames on Spec R, with the
propertythat S(R') = (S(R'), t(R")) is asemi-frame for R for all étale R-algebras
R'.IfR — R’ is afaithfully flat étale ring homomorphism, then the following hold:

(i) If M is a finite projective graded S(R)-module, then there is an exact sequence
0> M — MQsk S(R) 2 M Qsr) S(R®r R)
where the arrows are induced by applying S to the usual exact sequence
0> R >R =R QrR

(ii) A finite projective graded S(R)-module M is of type I = (i1, ...,i,) if and
only if Mgry is of type 1.

(iii) A sequence 0 — M — N — P — 0 of finite projective graded S(R)-modules
is exact if and only if it is exact after base change to S(R').

(iv) Suppose additionally that S is a sheaf of frames on Spec R. If M = (M, F) and
M' = (M’', F') are displays over S, then a homomorphism v : M — M’ of
graded S(R)-modules is a morphism of displays if and only if \g' is a morphism
of displays.

Proof. For (i), since M is finite projective we can reduce to the case where M is
finite free as a graded S(R)-module. This in turn reduces to the case M = S(R),
for which the result holds because S is an étale sheaf of Z-graded rings.

The proof for (ii) follows from the fact that the rank of a finite projective module
is invariant under base change.

The proof of (iii) is formally the same as that of [9, Lemma 2.12]. The only nontrivial
assertion is that if the sequence is exact after base change, then M — P is surjective.
But since S is a sheaf of semi-frames, Nakayama’s lemma (Lemma A.8) applies,
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soitis enough to check M ®@g(r),» R — P ®s(r),v R is surjective. But this follows
from surjectivity of Mgy — Ps(g'y and faithful flatness of R — R'.

Let us prove (iv). If ¥ is a morphism of displays then g/ is as well. For the
converse, we need to prove (F')? o o*y and 71 o F? agree as homomorphism of
finite projective S(R)o-modules. We know this holds after base change to S(R')o,
soitis enough to prove the base change functor from the category of finite projective
S(R)p-modules to the category of finite projective S(R’)g-modules is faithful. But
this is easy to see because by (i) the homomorphism M — M ®g(gr), S(R')o is
injective. O

Now we narrow our focus to the relative Witt frame. Let A be a ring in NilpZP,
and let B — A be a PD-thickening. In order to treat the finite and infinite cases
uniformly, denote by Woo(B/A) the frame W (B/A). If A’ is any étale A-algebra,
then there exists a unique étale B-algebra B’ along with a isomorphism of A-
algebras B’ @3 A = A’ (see [27, Tag 039R], for example). Moreover, if J =
ker(B — A), then ker(B" — A’) = JB’, and by flatness the divided powers on
B — Aextendto B — A’, see [27, Tag 07H1]. In this way the assignment

A" W (B'/A") (A2)

becomes a functor from the category of étale A-algebras to the category of semi-
frames for any m > 1 (including 00).

Lemma A.15. Let 1 < m < oco. The functor (A.2) defines an étale sheaf of semi-
frames over Ety.

Proof. Let A — A’ be a faithfully flat étale morphism with B’ — A’ lifting
B — A.Define A” = A’®4 A’,and let B” = B’ ®p B’, which is the unique étale
B’-algebra lifting A”. Let J = ker(B — A) and define J’ and J” analogously.
Then the proof reduces to showing that

0= I,B®J - 1,BYeJ =1,B®J’
is exact, which follows from étale descent for B-modules. O

Remark A.16. The frame W (B/A) over A is a p-adic frame in the sense of [24,
Def. 4.2.1], so by [24, Lem. 4.2.3], we can associate to it an étale sheaf of frames S
such that S(A) = W(B/A). However, by [24, Ex. 4.2.7], this sheaf will not agree
in general with the étale sheaf of frames A’ —> W (B’/A’) described above.

For 1 < m < oo, denote by PGrMod’g /A the fibered category over Et A whose fiber

over an étale A-algebra A’ is PGrMod(W,,(B’/A’)®), where B’ is the unique étale
B-algebra with B’ ® A = A’. Before we prove that PGrMod'} /A is a stack, let us
first prove a useful lemma.

Lemma A.17. Let | < m < oo. Suppose B — A is a PD-thickening in Nilpr,
and suppose A — A’ is étale with lift B — B'.


https://stacks.math.columbia.edu/tag/039R
https://stacks.math.columbia.edu/tag/07H1
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(i) The natural graded ring homomorphism W,,,(B/A)® — W,,(B'/A"® induces
an isomorphism

W (B/A)® ®w,, ) Wmn(B') = Wy (B'/A)®.

(ii) Let A” = A’ @4 A’ and B” = B’ @ B'. Then the natural homomorphism of
graded rings

Wi (B'/AN® @, 8/aye Wi (B'/AN® — W, (B"/A")®

is an isomorphism.
(iii) Let A” = A’ @4 A’ @4 A’ and B" = B’ ®p B’ @p B'. Then the natural
homomorphism of graded rings

Wi (B'/AN® ®w,, 8742 Win(B'/AN® @w,,8/4)® Win(B'/AN® — W, (B" |A")®

is an isomorphism.
(iv) If A — A’ isfaithfully flat étale, then W,,(B/A)® — W,,(B'/A")® is faithfully
flat.

Proof. For (i), since tensor products commute with direct sums, it is enough to
prove this for each graded piece of W, (B’/A’)®. For graded pieces with n < 0
this is clear, so we need only prove

(In(B) ® J) ®w,,8) Wn(B") = Ln(B) ® J'.

This further reduces to proving the statement for 1,,,(B’) and for J'. By [25, Proposi-
tion A.8], the homomorphism W,,,(B) — W,,(B’) is étale, and wg : W,,(B’) — B’
induces an isomorphism

B Qw,,8) Wm(B') = B'. (A.3)

Then by taking the tensor product of 0 — [,,(B) — W,,(B) - B — 0 with
W, (B') and applying the five lemma we obtain 1, (B) ®w,,8) Win (B’) = I,,(B).
Finally, flatness of W,,(B’) over W,,(B) implies J Qw,,(5) Wi (B') = W,,(B")J,
and by definition of the W,, (B) action on J, we have W,,,(B’)J = B'J. Hence

J Qw,, 8y Wn(B) =W, (B)J =B'J=JQ®pB.

The result follows since J @ g B’ = J'.

To prove (ii) and (iii) we first prove an auxiliary statement. Let A — A and A —
Aj be étale ring homomorphisms with lifts B — Bj and B — B;. Then B; ®p B>
is an étale B-algebra lifting A1 ®4 A,. We claim the natural homomorphism of
graded rings

Wi (B1/AD® @w,, /a0 Win(B2/A2)® — W, (B ®p B2/A1 ®4 A2)®
(A4)

is an isomorphism. Granting (A.4) for the moment, we can prove (ii) and (iii).
Indeed, (ii) follows immediately by taking A; = A, = A’, and (iii) follows by
combining (ii) with (A.4) for Ay = A” and A, = A’.
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Now let us prove (A.4). For the sake of brevity let us write § = W,,(B/A)®,
S'= Wi (B1/AD®, 52 = Wy (B2/A2)®,and S = W,,(B1®p B2/ A1®4 A2)®.
By [4, Cor. 9.4] (take R = Z, and E = pZ to obtain the p-typical Witt vectors in
loc. cit.), since B — By and B — B, are étale, the natural map W,,(B1) ®w,, ()
Wi (B2) — W, (B ®p B») is an isomorphism. Combining this with part (i), we
have a chain of isomorphisms

ST ®s 52 5 S ®s, (Sh ®s, S2) = S ®s, Sy

Butsince A — A ®4 A is étale with lift B — By ®p B>, we have § ®g, Sé‘z =

$1-2 by part (i) again. One checks that the composition S! ®g $2 — S'2 is the
desired map.

Now, for (iii), to show W,,(B/A)® — W,,(B’/A")® is faithfully flat it is enough to
prove the same is true of W,,,(B) — W,,,(B’), by part (i). But W,,,(B) — W,,(B’)
is étale by [25, Proposition A.8] and Spec W,,,(B’) — Spec W,,(B) is surjective
because B — B’ is faithfully flat and W,,(B) — B and W,,(B’) — B’ are
PD-thickenings for A in NilpZP. O

Proposition A.18. For 1 < m < oo, the fibered category PGrMod'y /A is an étale

stack over EtA.

Proof. This proof is similar to the proof of [24, Lemma 4.3.1]. Indeed, that the
morphisms form a sheaf follows from Lemma A.14 (i) by the arguments in loc. cit.
Let us first prove that objects descend in the case where m is finite. Let A — A’ be
an étale faithfully flat homomorphism, and let B’ be the unique étale B-algebra such
that B’®p A = A’. Note that B — B’ is then also faithfully flat. Let A” = A’®@4 A’,
and B” = B’ ®@p B’. Suppose M’ is a finite projective graded W,,(B’/A")®-
module equipped with a descent datum over W,,(B”/A")®. By parts (ii), (iii),
and (iv) of Lemma A.17, we may apply faithfully flat descent for graded modules
over graded rings (see, e.g. [8, Corollary III.1.4]) to obtain a graded W,,(B/A)®-
module M such that M ®y, (/a2 Wnu(B'/A)® = M'. Additionally, faithful
flatness of W,,(B/A)® — W,,(B’/A")® implies that M is finite and projective as
an W, (B/A)®-module, hence it is finite and projective as a graded W,,(B/A)®-
module by [24, Lemma 3.0.1]. This completes the proof of descent for finite m.

Now let S = W(B/A)®, 8" = W(B'/A")®, and " = W(B"/A")®. For every
finite m, let V" = V,,(B/A), S™ = §/V™, and define the variants for S" and
S” in the obvious way. Let p; : &' — S§”, resp. po : S’ — S” be the map
inducedbya = a® lresp.a — 1 ® a from A’ to A’ ® 4 A’. Define similarly
P, Py ()™ — (8”)™. Denote by PGrMod(S — ') the category of finite
projective graded S modules M’ equipped with descent data, i.e., equipped with
isomorphisms o : pf(M’) 5 P53 (M) whichssatisfy the cocycle condition. We must
show that the natural functor PGrMod(S) — PGrMod(S — §’) is an equivalence.
Define the category PGrMod((§" — (S)™),,) consisting of systems (M™)
of finite projective graded (S’)™-modules M™ along with isomorphisms 6™ :

M ®(grym+1 (8™ S M™ and descent data o : (M™)P1 S (M™)P% such
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that @™ 0 0™ = 6" o (" ® id(grym) for all m. Then the first part of the proof
implies that the natural functor

PGrMod((S™)mm) — PGrMod((S™ — (S")™)m) (A.5)

is an equivalence of categories. Further, it is straightforward to check that the functor
(A.1) respects descent data, and that the equivalence in Proposition A.12 extends
to an equivalence

PGrMod(S — S') = PGrMod((S™ — (8)™")m). (A.6)
The result follows by combining the equivalence PGrMod(S) = PGrMod((S™),,)
with (A.5) and (A.6). O
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