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1. Introduction

Let G be a finite group acting linearly on a finite-dimensional rational vector space 

V , and let P = P (V ) denote the projective space of V . In this paper we study heights 

of rational points on P/G.

Our main result is that for V the regular representation of G and a certain open 

subset X of P/G, the height of any rational point P on X can be expressed in terms 

of certain objects attached to P . We show that P determines, and is determined by, a 

Galois Q-algebra L with Galois group G and a trace-one normal element x of L up to 

Galois conjugacy. The Galois algebra L is isomorphic to K × · · · × K for a number field 

K. The images of the Galois conjugates of x in K generate a fractional K-ideal J . Let 

||·||∞ denote the canonical norm on Minkowski space LR.

Theorem 1.1. Let φ : P/G → P N be a non-constant morphism. Let dφ be the degree of 

the composite map P → P/G 
φ
−→ P N . Then for all P = (L, x) ∈ X (Q),

h(φ(P )) = dφ log ||x||∞ −
dφ

[K : Q]
log N(J) + O(1) (1)

for a bounded function O(1).

To prove this theorem we use the method of descent to construct an ample line bundle 

L on P/G which is linearly equivalent to the anticanonical divisor of P/G up to torsion 

in the divisor class group. We show that L is globally generated and its global sections 

restrict to an immersion on X . These geometric results are used to prove Theorem 1.1

in §4.

In the last section we give a sharper result. We prove that the function

hAC(L, x) = |G| log ||x||∞ −
|G|

[K : Q]
log N(J)

(with no O(1)) is actually the height function hAC associated with a natural adelic metric 

on L .

1.1. Self-dual elements

In addition to normal elements, we also consider self-dual elements. Recall an element 

x ∈ L is self-dual if for all g ∈ G we have

trL
Q(xg(x)) =

{

1 if g = 1,

0 otherwise.

Here we assume that G has odd order since this guarantees the existence of self-dual 

elements by a theorem of Bayer-Fluckiger–Lenstra [2].
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The formula (1) indicates that rational points of X corresponding to self-dual elements 

are of particular interest. Suppose L = K for simplicity, and let x ∈ K be any self-dual 

element. The first indication is that

||x||∞ =
√

trK
Q(x2) = 1.

Indeed the left equality holds since K is totally real, and the right since x is self-dual. 

The second indication involves the norm term N(J). Recall the basic formula relating 

norms and discriminants:

N(J) = [OK : J ] =
√

dJd−1
K .

In particular, if J is unimodular, then dJ = 1 and we have the appealing formula

hAC(K, x) = log
√

dK .

Naturally it would be of interest to have a direct relationship between heights and dis-

criminants (cf. e.g. [7], [23]) so we should like to understand the extent to which J fails 

to be unimodular. As x is self-dual the smaller lattice

I :=
∑

g∈G

Zg(x)

is unimodular, however in general

∑

g∈G

Zg(x) �=
∑

g∈G

OKg(x) = J.

Thus we ask whether there is a relationship between N(I) and N(J). In this direction 

we prove the following result. Let K/Q be a Galois field extension with Galois group G

and let x be a normal element of K, not necessarily self-dual. For each integer D ≥ 1

consider the following order of K:

TD = {a ∈ K : aID ⊂ ID}.

These orders increase with D and stabilize, and we call

T∞ := lim
D→∞

TD

the stable multiplier order of I. We prove two stability results and also find another 

interpretation for T∞.

Theorem 1.2.
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(1) T∞ = TD if D ≥ |G| − 1.

(2) N(ID) = N(JD) if D ≥ |G| − 1.

(3) Spec T∞ is isomorphic to the fiber of P → P/G over the integral point of P/G

determined by (K, x).

2. Construction of orbit parametrizations

In this section we construct orbit parametrizations for G-algebras equipped with nor-

mal and self-dual bases. If R is a commutative ring and Spec S is a G-torsor over Spec R

in the étale topology, then we call S together with its natural G-action a G-algebra 

over R.

Remark 1. The normal basis theorem guarantees the existence of normal elements if S is 

a field, however normal elements need not exist for an arbitrary G-algebra (e.g. S might 

not be free as an R-module or there may be local obstructions due to wild ramification). 

Self-dual elements exist for Galois field extensions of odd degree in any characteristic [2], 

[1] but even degree field extensions may not have self-dual elements (e.g. quadratic field 

extensions with characteristic �= 2).

For fixed R, we consider pairs (S, x), where S/R is a G-algebra and x ∈ S is a 

normal element. An isomorphism between pairs (S, x) and (S′, x′) is a G-equivariant 

R-algebra isomorphism ϕ : S
∼
−→ S′ satisfying ϕ(x) = x′. Given a G-algebra S and a ring 

homomorphism f : R → R′, the base extension S ⊗ R′ is a G-algebra over R′. If x ∈ S

is normal (resp. self-dual), then x ⊗ 1 ∈ S ⊗ R′ is normal (resp. self-dual).

Definition 2.1. M is the functor taking a commutative ring R to the set of isomorphism 

classes of pairs (S, x), where S/R is a G-algebra and x ∈ S is a normal element. We 

define N similarly but with x self-dual.

These functors are representable by affine schemes over Z, which we construct as 

subquotients of the group of units in the group algebra of G. The functor of commutative 

rings

R �→

§

¨

©

u =
∑

g∈G

ag[g] ∈ R[G]× :
∑

g∈G

ag = 1

«

¬

­

is representable by an affine group scheme of finite type over Z, which we denote by G. 

There is an anti-involution u �→ ū of G, given by 
∑

g∈G ag[g] =
∑

g∈G ag[g−1], and we 

also consider the subgroup scheme H ⊂ G of norm-one units given by

H(R) = {u ∈ G(R) : uū = 1} .
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The coordinate ring A of G is the quotient of Z[Xg : g ∈ G][∆−1
G ] by the principal ideal 

generated by (
∑

g∈G Xg − 1) where ∆G is the determinant of the matrix with rows and 

columns indexed by G whose g, h component is Xgh. The coordinate ring B of H is the 

quotient of A by the ideal (
∑

h∈G XghXh − δg,1 : g ∈ G).

Lemma 2.2. Suppose S/R is a G-algebra. Then there is a bijection from the set of G-

equivariant ring homomorphisms ϕ : A → S to the set of normal elements of S/R, taking 

ϕ to ϕ(X1). Moreover, ϕ factors through B if and only if ϕ(X1) is self-dual.

Proof. There is a bijection from the set of G-equivariant ring homomorphisms 

ϕ : Z[{Xg}g∈G] → S to the set of elements of S, given by ϕ �→ ϕ(X1). Fix such a 

ϕ, and set x := ϕ(X1) ∈ S. Then ϕ(Xg) = g−1(x), and ϕ(∆G)2 is the discriminant of 

the set {ϕ(Xg)}g = {g(x)}g. This discriminant is a unit if and only if {g(x)}g is a basis 

for S/R, and ϕ kills 
∑

g Xg −1 if and only if trS/R(x) = 1. This proves the first assertion 

of the lemma.

To prove the second, observe that ϕ factors through B if and only if

∑

h∈G

hg(x)h(x) =

{

1 if g = 1,

0 otherwise

for all g ∈ G, which is precisely the condition that x is self-dual. �

The group G is naturally identified with a constant subgroup scheme of H, and thereby 

acts freely on H and G.

Definition 2.3. X is the quotient scheme G/G, Y is the quotient scheme H/G.

The following theorem says that the scheme X is a fine moduli space for G-algebras 

equipped with a normal element, and Y is a fine moduli space for G-algebras equipped 

with a self-dual element.

Proposition 2.4. For any commutative ring R there are bijections X (R) 
∼
−→ M(R) and 

Y(R) 
∼
−→ N(R) which are functorial in R.

First proof of Proposition 2.4. The scheme X = G/G represents the stack quotient 

[G/G] as the G-action is free. An R-point of [G/G] is, by definition, a G-torsor 

Spec S → Spec R together with a G-equivariant morphism Spec S → G. The G-

equivariant morphisms Spec S → G are in bijection with G-equivariant ring homo-

morphisms O(G) = A → S, which are in bijection with normal elements of S/R by 

Lemma 2.2. �

Here is a more elementary proof.
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Second proof of Proposition 2.4. Since G → X is a G-torsor, A/AG is a G-algebra. Then 

Lemma 2.2 applied to the identity map A → A implies X1 ∈ A is a normal element.

Now, fix a ring R. There is a function

γ1 : Hom(AG, R) → M(R)

f �→
(

A ⊗AG,f R, X1 ⊗ 1
)

.

We also define a function γ2 : M(R) → Hom(AG, R) as follows. Given (S, x) ∈ M(R), 

Lemma 2.2 implies there is a unique G-equivariant homomorphism f : A → S such that 

f(X1) = x. Then f takes AG into SG = R, and we define γ2(S, x) = f
∣

∣

AG . We claim 

that γ1 and γ2 are inverses.

In one direction, given f : AG → R, we see directly that the natural map A → A ⊗AG,f

R is G-equivariant and takes X1 to X1 ⊗ 1. It follows that γ2(γ1(f)) is the natural 

map AG → AG ⊗AG,f R = R, so that γ2(γ1(f)) = f . In the other direction, given 

(S, x) ∈ M(R), let f : A → S be the G-equivariant homomorphism satisfying f(X1) = S. 

Then

γ1(γ2(S, x)) =
(

A ⊗AG,f |AG R, X1 ⊗ 1
)

.

Now, S is an R-algebra, so f extends uniquely to an R-algebra homomorphism

f̃ : A ⊗AG,f |AG R → S.

One sees directly that f̃ is G-equivariant, and that f̃(X1 ⊗1) = f(X1) = x. Finally, every 

G-equivariant morphism of torsors is an isomorphism, so we conclude γ1(γ2(S, x)) 	

(S, x). This proves that γ1 and γ2 are inverse bijections. Moreover, it is clear that γ1 and 

γ2 are natural in R.

To prove the statement about Y(R), we observe that γ1 takes Hom(BG, R) into N(R)

because X1 ∈ B is self-dual, and γ2 takes N(R) into Hom(BG, R) by Lemma 2.2. �

Remark 2. Gundlach [9] independently constructed X and its orbit parametrization for 

G-algebras with a normal element. Gundlach’s construction uses the constraints on the 

structure constants of a G-algebra to cut out X inside A|G|2

. In special cases the varieties 

X have appeared before in the literature [20, §VI.2], [21], [15], [6], [22], [3], [4] and [5]. 

See also [19] for a related construction.

It is well-known that a G-torsor is trivial if and only if it admits a section. For G-

torsors S/R obtained by pulling back G → X along an R-point (S, x) of X , the next 

proposition gives a formula for such a section after a suitable base change.

Proposition 2.5. Let (S, x) ∈ X (R). Let R′ be an R-algebra and suppose there is an 

R-algebra homomorphism ϕ : S → R′. We have the following diagram:
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Spec S G

Spec R′ Spec R X .
(S,x)

Then (S ⊗R R′, x ⊗ 1) ∈ X (R′) is the image of the R′-valued unit

u =
∑

g∈G

ϕ(g(x))[g−1] ∈ G(R′)

under the natural morphism G → X .

For the proof, we will use the natural action of G on the homogeneous space G/G = X . 

For u =
∑

g ag[g] ∈ G(R) and (S, x) ∈ X (R) this action is given by

u(S, x) =

⎛

¿S,
∑

g∈G

agg(x)

À

⎠ .

Proof. The set of morphisms Spec R′ → Spec S over Spec R is in bijection with the 

set of sections of Spec S ×R Spec R′ → Spec R′ by the universal property of the fiber 

product. Thus the existence of ϕ implies that the pullback of the G-torsor S/R to R′

is isomorphic to the trivial G-torsor over R′. Recall the coordinate ring of the trivial 

G-torsor over R′ is the R′-algebra Aspl
R′ of set-theoretic functions f : G → R′ under 

pointwise operations with G-action given by g(f)(h) = f(hg). We have the isomorphism 

of G-algebras over R′ given by

S ⊗R R′ ∼
−→ Aspl

R′

x ⊗ r �→
[

g �→ rϕ(g(x))
]

.

This isomorphism maps x ⊗ 1 to the function g �→ ϕ(g(x)), which is equal to uχ{1}

where u is the R′-valued unit given by u =
∑

g∈G ϕ(g(x))[g−1] ∈ G(R′) and χ{1} is the 

characteristic function of the singleton {1} containing the identity element 1 ∈ G. In 

terms of points of X , this means that

(S ⊗R R′, x ⊗ 1) =
(

Aspl
R′ , g �→ ϕ(g(x))

)

= u
(

Aspl
R′ , χ{1}

)

.

The result now follows from the fact that (Aspl
R′ , χ{1}) ∈ X (R′) is the image of 1 ∈ G(R′)

under the G-equivariant quotient morphism G → X . �

3. Descent for G-line bundles

In this section we prove there is a unique line bundle L over P/G whose pullback 

to P is equal to −KP (Theorem 3.5). We show that Pic(P/G) ∼= Z and L generates 
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the subgroup of index n/e where n (resp. e) denotes the order (resp. exponent) of G

(Theorem 3.7). We also prove that L is globally generated and its global sections define 

an immersion of X into projective space (Theorem 3.8).

3.1. Descent for G-line bundles

Let Y denote a projective variety equipped with an action by a finite group G, all 

defined over a characteristic zero field K. We assume the G-action on the structure sheaf 

of Y is O(Y )-linear. Suppose Y admits the action of another finite group Γ commuting 

with the action of G. Consider a G-line bundle L over Y/Γ. When is L isomorphic to 

the pullback of a line bundle from Y/(G × Γ)? Equivalently, when does L vanish under 

the map

PicG(Y/Γ) →
PicG(Y/Γ)

im(Pic(Y/(G × Γ)) → PicG(Y/Γ))
?

If Γ acts freely on Y/G, the next lemma shows this can be determined by pulling back 

to Y → Y/G and resolving the question there.

Lemma 3.1. Suppose Y/G → Y/(G × Γ) is a Galois covering with Galois group Γ. Then 

a G-line bundle on Y/Γ descends to Y/(G × Γ) if and only if its pullback to Y descends 

to Y/G.

Equivalently, the following natural map is injective:

PicG(Y/Γ)

im(Pic(Y/(G × Γ)) → PicG(Y/Γ))
→

PicG(Y )

im(Pic(Y/G) → PicG(Y ))
(2)

Proof. Let L be a G-line bundle over Y/Γ which represents some class in the kernel of 

(2). We have diagrams:

Y

Y/G Y/Γ

Y/(G × Γ)

L1

L2 L4

L3

where L1 is the pullback of L , L2 is any line bundle which pulls back to L1, L3

is the quotient of L2 by Γ, and L4 is the pullback of L3 (the quotient of L2 is for 

its Γ-linearization coming from L1, and the quotient exists by descent along torsors 

since Γ acts freely). As the left diagram commutes, L4 pulls back to L1 in PicG(Y ); 

however L also pulls back to L1, so to prove (2) is injective it suffices to show that 

PicG(Y/Γ) → PicG(Y ) is injective.
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There is a commutative diagram with exact rows [13, 2.2]:

H1(G, O(Y/Γ)×) PicG(Y/Γ) Pic(Y/Γ)

H1(G, O(Y )×) PicG(Y ) Pic(Y ).

The action of G on O(Y )× and O(Y/Γ)× is trivial by assumption. Thus the left column 

is injective, so it now suffices to show that Pic(Y/Γ) → Pic(Y ) is injective. Now the 

Hochschild–Serre spectral sequence

Hp(Γ, Hq
et(Y, Gm)) ⇒ Hp+q

et (Y/Γ, Gm)

yields the exact sequence

1 −→ H1(Γ, O(Y )×) −→ Pic(Y/Γ) −→ Pic(Y )Γ −→ H2(Γ, O(Y )×) −→ · · · .

From this it suffices to show that H1(Γ, O(Y )×) = 1. As Y is projective, O(Y )/O(Y/Γ)

is a field extension with Galois group Γ, so H1(Γ, O(Y )×) = 1 by Hilbert’s theorem 

90. �

Using the lemma we can give a simple criterion for descent for line bundles even when 

the group action is not free.

Proposition 3.2. The image of Pic(Y/G) → PicG(Y ) is the subset of isomorphism classes 

of G-line bundles L over Y satisfying the following condition:

(∗) the stabilizer subgroup GP acts trivially on LP for every P ∈ Y (K).

Remark 3. A result of Mumford [16, Cor. 1.6] says that if Y is normal and proper, with 

an action of a connected linear group G, and L is a G-line bundle on Y , then some 

positive power L ⊗e is G-linearizable. Proposition 3.2 is the analogous result for finite 

G, with e the exponent of G.

Proof. In the algebraically closed setting this is [13, Prop. 4.2]. We will reduce to this 

case using Lemma 3.1. Pulling back L to YK shows the condition (∗) is clearly satisfied 

if L descends to Y/G.

We first observe that YL/G = (Y/G)L for any K-algebra L. Indeed YL → (Y/G)L is 

G-invariant so we get a map YL/G → (Y/G)L. To show this affine map is an isomorphism 

we must show that O(Y/G)L
→ OYL/G is an isomorphism of O(Y/G)L

-algebras. In fact 

these sheaves are already equal on the level of presheaves, namely the presheaves U �→

H0(G, OY (π−1(U))) ⊗ L and U �→ H0(G, OY (π−1(U)) ⊗ L) sheafify to O(Y/G)L
and 
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OYL/G, respectively, and these are isomorphic by the universal coefficient theorem: for 

any G-module N and n ≥ 0 we have the exact sequence [11, Prop. 4.18]:

0 −→ Hn(G, N) ⊗ L −→ Hn(G, N ⊗ L) −→ TorK
1 (Hn+1(G, N), L)

=
−→ 0.

Now if (∗) holds then L ⊗ K is the pullback of a line bundle on YK/G. This bundle 

on YK/G = (Y/G)K descends to (Y/G)L = YL/G for some finite Galois extension L/K. 

Applying Lemma 3.1 to YL (regarded over K via the structure map YL → Spec K →

Spec K) and Γ = Gal(L/K) shows L is in the image of Pic(Y/G) → PicG(Y ). �

When the action of G on Y is free, the proof of Lemma 3.1 shows that Pic(Y/G) →

Pic(Y ) is injective. Unfortunately the spectral sequence there is unavailable for non-free 

actions, but there is nonetheless an easily checked criterion for injectivity.

Lemma 3.3. Assume that Y is geometrically integral. Suppose that for each nontrivial 

character c : G → K× there is a point P ∈ Y (K) with c(GP ) �= 1. Then the homomor-

phism

Pic(Y/G) → Pic(Y )

is injective.

The hypothesis holds for instance if Y → Y/G has a totally ramified K-point.

Proof. The pullback homomorphism Pic(Y/G) → PicG(Y ) is injective (since the G-

linearization suffices to undo the pullback), while the kernel of the homomorphism 

PicG(Y ) → Pic(Y ) which forgets the G-linearization can be identified with the group of 

G-linearizations of the trivial bundle, namely H1(G, O(Y )×) [13, (2.2)]. As Y is proper 

and geometrically integral, this group can be identified with Hom(G, K×). However the 

pullback of a line bundle on Y/G to Y carries a unique G-linearization for which it de-

scends. Indeed, if L is a G-line bundle on Y which descends to Y/G, and c is a nontrivial 

K-valued character, then the GP -action on (L ⊗ c)P is nontrivial, so L ⊗ c does not 

descend to Y/G (Proposition 3.2). �

3.2. Quotient of the regular representation

Let V denote the regular representation of G, and write P for the projective space 

P (V ) = Proj Sym V ∨ of V regarded as a variety over Q. Let π denote the quotient map 

P → P/G.

Proposition 3.4. π∗KP/G = KP if |G| �= 2 and π∗KP/G = 2KP if |G| = 2.
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Proof. First observe P/G is normal since it is the quotient of a normal variety by a 

finite group. Now suppose P → P/G is not étale in codimension one, i.e. there is some 

irreducible codimension one subvariety D in the support of Ω1
P→P/G. Then some g �= 1

fixes the generic point η of D. In fact D is a hyperplane since otherwise g would fix 

|G| − 1 linearly independent vectors in the affine cone of D, any line passing through 

0 ∈ V would intersect the affine cone of D at a nonzero point, and g would be 1. We 

see that g fixes a codimension one hyperplane (the affine cone of D), so G contains a 

pseudoreflection.

Suppose |G| �= 2. Then the regular representation contains no pseudoreflections and 

so P → P/G is étale in codimension one. We may take an open subset U ⊂ P whose 

complement has codimension at least two such that π|U is étale and π(U) is contained 

in the smooth locus V of P/G. Then π∗Ω1
V/Q

and Ω1
P/Q

are isomorphic over U which 

means π∗Ω
|G|−1
(P/G)/Q

and Ω
|G|−1
P/Q

are isomorphic over U . This shows their supports π∗KP/G

and KP are equal away from a codimension two closed subset and are therefore equal 

everywhere.

For |G| = 2 the map P → Proj Q[u, v] given by (u, v) = ((x + y)2, (x − y)2) induces 

an isomorphism P/G ∼= Proj Q[u, v], and the anticanonical bundle on Proj Q[u, v] pulls 

back to −2KP . �

Theorem 3.5. There is a line bundle L on P/G, unique up to isomorphism, satisfying 

π∗L = −KP . If |G| �= 2 then L + KP/G is torsion in the divisor class group of P/G

and if |G| = 2 then 2L = −KP/G.

Proof. Let e be the exponent of G. Then Pic(P )×e is contained in the image of 

Pic(P/G) → Pic(P ) by Proposition 3.2, and we conclude the existence of L . Uniqueness 

follows from the existence of the totally ramified point [1 : · · · : 1] for π and Lemma 3.3. 

For the second assertion note that KP/G is Q-Cartier [14, Prop. 5.20] so if nKP/G is 

Cartier and |G| �= 2 then

π∗(n(L + KP/G)) = 0.

However π is totally ramified at [1 : · · · : 1] so π∗ is injective (Lemma 3.3). �

Remark 4. With a bit more work one can show that L + KP/G is 2-torsion and that 

L +KP/G is trivial if the Sylow 2-subgroup of G is trivial or non-cyclic. This shows that 

P/G is Q-Gorenstein of index ≤ 2.

Corollary 3.6. The Picard group of P/G is Z.

Proof. π has a totally ramified point so Pic(P/G) → Pic(P ) is injective by Lemma 3.3, 

however the pullback of L to P is nontrivial. �

Let n (resp. e) denote the order (resp. exponent) of G.
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Theorem 3.7. Let L0 be the ample generator of Pic(P/G). Then L
n
e

0 = L .

Proof. The pullback of L0 to P will be O(t) for the smallest positive integer t such 

that O(t) descends to Pic(P/G) for some G-linearization. First equip O(t) with the G-

linearization coming from the natural G-action on O(1). If c is any nontrivial character 

of G, then G will act on the fiber of O(t) ⊗ c over [1 : · · · : 1] by c so O(t) ⊗ c cannot 

descend (Proposition 3.2). This means that if O(t) descends for some G-linearization 

it must be its natural G-linearization. Now if g is an element of G with order d then 

〈g〉 acts as ζ−1 on the line spanned by 
∑d−1

j=0 ζj [gj ] (ζ a primitive dth root of unity), so 

g fixes the corresponding point of P (K) and acts by ζt on the fiber of O(t) over this 

point. The only way that ζt = 1 for all g ∈ G is if e divides t, and this condition is also 

sufficient for descent. We conclude that O(e) descends to a line bundle L0 on P/G and 

L
n
e

0 = L . �

3.3. L determines an immersion of X

Theorem 3.8. L is globally generated and its global sections restrict to an immersion of 

X into P N , where N + 1 is the dimension of the linear subspace of homogeneous degree 

|G| G-invariants in Sym V ∨.

Remark 5. Using Molien’s theorem one can show that N + 1 is equal to the sum over 

divisors d of |G| of |G|−1
(

2d−1
d

)

#{g ∈ G : g has order |G|/d}.

Proof. To show that the rational map ϕ : P/G ��� P N determined by L is defined on 

all of P/G, we may assume without loss of generality that K is algebraically closed. 

Furthermore, as the property of being a quasi-compact immersion is stable under faith-

fully flat descent we may also assume that K is algebraically closed for the claim that ϕ

restricts to an immersion on X .

Let n denote the order of G. We will show that for any two distinct closed points of 

P/G there exists a global section of L vanishing at one point but not the other. Since 

pullback along π induces an isomorphism H0(P/G, L ) 
∼
−→ H0(P , O(n))G, it is the same 

to find a G-invariant global section of O(n) separating two arbitrary closed G-orbits in 

P . Suppose P , Q ∈ P (K) are not in the same G-orbit. Choose a hyperplane H ⊂ P

passing through P but disjoint from the orbit of Q, and let t be a global section of O(1)

whose zero locus is H. Then

∏

g∈G

gt

is a G-invariant global section of O(n) vanishing at P but not at Q. The existence of 

such sections also shows that L is globally generated so ϕ is defined on all of P/G. The 

same fact shows that ϕ is injective on closed points of P/G.
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We next show that ϕ separates tangent vectors away from isotropy. It is equivalent to 

show ϕ̃ separates tangent vectors away from isotropy since the quotient map P → P/G

is an isomorphism on tangent spaces away from isotropy. Suppose P ∈ P (K) has trivial 

isotropy group and 0 �= v ∈ TP (P ). Choose a hyperplane H ⊂ P passing through P , 

disjoint from {g(P ) : g ∈ G − {1}}, and not tangent to v. Let t be a global section of 

O(1) whose zero locus is H. Then

∏

g∈G

gt

is a G-invariant global section of O(n) vanishing at P such that v is not tangent to its 

zero locus. This implies ϕ̃∗v is not zero (cf. Remark II.7.8.2 of [10]). We conclude ϕ̃∗

is injective on TP (P ). Since G acts freely on G we conclude that ϕ separates tangent 

vectors on X .

To conclude the proof it suffices to show that the restriction ϕ|X : X → ϕ(X ) of ϕ to 

X is proper and that ϕ(X ) is a locally closed subset of P N . This will imply that ϕ|X is 

a closed immersion of X into an open subset of P N by [8, Prop. 12.94], obtaining the 

desired conclusion that the composition X → ϕ(X ) → P N is an immersion. Observe 

that

X P/G

ϕ(X ) P N

⊂

ϕ|X ϕ

⊂

is a pullback diagram because ϕ is injective. As the property of being proper is preserved 

under basechange this shows that ϕ|X is proper. To see that ϕ(X ) is locally closed we 

first observe that the subset of P where the group determinant ∆G is invertible is equal 

to G. As G is a G-stable affine open subset, its quotient X is an open subset of P/G. 

Then we have that ϕ(X � X c) = ϕ(X ) � ϕ(X c) which shows that

ϕ(X ) = ϕ(P/G) ∩ (P N − ϕ(X c)). (3)

As ϕ is a proper morphism it is closed so (3) shows ϕ(X ) is locally closed. �

4. Height formulas

In this section we prove Theorem 1.1 and Theorem 1.2. For each rational prime p

let | · |p denote the norm on Qp satisfying |p|p = 1/p and let | · |∞ denote the usual 

complex absolute value. If K/Q is any finite extension, then the set of places w of K

over a fixed place v of Q is naturally in bijection with field homomorphisms j : K → Qv

up to isometry, and we write | · |w for |j(·)|v. We write ||·||∞ for the canonical norm on 

Minkowski space KR. For any y ∈ K ⊂ KR it is given by
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||y||∞ =

⎛

¿

∑

j:K→C

dj |j(y)|2∞

À

⎠

1/2

where j runs over the complex embeddings of K up to isometry (one j for each pair of 

complex embeddings) and dj is 1 if j is real and 2 if j is complex (cf. [17]). For a product 

L = K × · · · × K we extend the norm to LR by setting

||y||∞ =

(

dimK L
∑

i=1

||yi||
2
∞

)1/2

.

Theorem (Theorem 1.1). Let φ : P/G → P N be a non-constant morphism. Let dφ be the 

degree of the composite map P → P/G 
φ
−→ P N . Then for all P = (L, x) ∈ X (Q),

h(φ(P )) = dφ log ||x||∞ −
dφ

[K : Q]
log N(J) + O(1)

for a bounded function O(1).

Proof. Recall that P/G has Picard rank one (Corollary 3.6). As we are only proving 

(1) up to O(1), the claimed formula follows for any morphism φ once we have proven it 

for a single morphism φ. We use L to determine such a φ as L is globally generated 

(Theorem 3.8). Then dφ = |G| and the formula to be shown is that

h(φ(P )) = |G| log ||x||∞ −
|G|

[K : Q]
log N(J) + O(1).

Let ϕ : L → C be any Q-algebra homomorphism. By Proposition 2.5, the fiber of π

over (L, x) consists of the G-translates of the unit given by

u =
∑

g∈G

ϕ(g(x))[g−1] ∈ G(K).

We will use the Weil height H on P (Q) associated to O(1) for which H(u) is

∏

w∈M∞

K

⎛

¿

∑

g∈G

|ϕ(g(x))|
2
w

À

⎠

dw/(2[K:Q])
∏

w∈Mf
K

max
g∈G

|ϕ(g(x))|
dw/[K:Q]
w = H∞(u)Hf (u)

where dw is the local degree of K at w. (We call this the standard metric on O(1).) By 

the theory of heights,

h(φ(L, x)) = |G| log H(u) + O(1)
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for a bounded function O(1).

Let d∞ be the local degree of K at any of its infinite places. The infinite component 

H∞ of the height is none other than the canonical norm on Minkowski space KR (when 

evaluated on a unit of the form u). Indeed, H∞(u) is equal to

∏

w∈M∞

K

⎛

¿

∑

g∈G

|ϕ(g(x))|
2
w

À

⎠

d∞

2[K:Q]

=
∏

j:K→C

⎛

¿

∑

g∈G

|j(ϕ(g(x)))|
2
∞

À

⎠

d∞

2[K:Q]

=
∏

j:K→C

⎛

¿

dimK L
∑

i=1

∑

g∈Gal(K/Q)

|j(g(xi))|
2
∞

À

⎠

d∞

2[K:Q]

=
∏

j:K→C

⎛

¿

dimK L
∑

i=1

∑

j′:K→C

d∞ |j′(xi)|
2
∞

À

⎠

d∞

2[K:Q]

=

⎛

¿

dimK L
∑

i=1

∑

j:K→C

d∞ |j(xi)|
2
∞

À

⎠

1
2

= ||x||∞.

For the finite components observe that Hf (u) is equal to

∏

w∈Mf
K

max
g∈G

|ϕ(g(x))|
dw/[K:Q]
w =

∏

w∈Mf
K

max
y∈J

|y|dw/[K:Q]
w = N(J)−1/[K:Q]. �

Let T∞ = lim
D→∞

TD denote the stable multiplier order of K attached to a rational 

point (L, x) of X .

Theorem (Theorem 1.2).

(1) Spec T∞ � · · · � Spec T∞ for dimK L many copies are isomorphic to the fiber of 

P → P/G over the Z-point (L, x) → P/G.

(2) T∞ = TD if D ≥ |G| − 1.

Proof. Let Spec A denote the fiber over P → P/G over (L, x) ∈ X (Q), where we regard 

(L, x) as a Z-point of P/G by the valuative criterion of properness. Let q : Spec A → P

denote the natural projection map. We have identifications

H0(P , O(D)) =
⊕

m∈MonD

Zm

and
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H0(Spec A, q∗O(D)) =
∑

m∈MonD

Am({g(x)}g).

We claim the natural map

φ : H0(P , O(D)) → H0(Spec A, q∗O(D))

is surjective if D ≥ |G| − 1. Indeed its cokernel C is finite, since its image and codomain 

are both lattices (full rank abelian groups) of L. However C also has trivial p-torsion for 

each prime p by [18, Lemma 2.1]. Thus C = 0. We see that

im φ =
∑

m∈MonD

Zm({g(x)}g) =
∑

m∈MonD

Am({g(x)}g). (4)

This equality shows that im φ is closed under multiplication by A. Since q∗O(D) is a line 

bundle over Spec A, the A-module im φ is projective.

Now apply ϕ to both sides of (4) where ϕ : L → K is any Q-algebra homomorphism. 

The homomorphism im φ → ϕ(im φ) = ID splits, which implies that ID is a direct 

summand of im φ and is therefore projective as an A-module. The action of A on ID

factors through ϕ(A), which shows ID is a projective ϕ(A)-module. This implies that 

ϕ(A) = (ID : ID) by localization. As T∞ = limD→∞(ID : ID) we have ϕ(A) = T∞. 

Since A ∼= ϕ(A)dimK L the result follows. �

Corollary 4.1. For any integer D ≥ |G| − 1, N(ID) = N(JD).

Proof. ID is the module of global sections of the line bundle on Spec T∞ obtained by 

pullback of O(D) along Spec T∞ → P and is therefore an invertible T∞-module. By 

localization we see that

N(ID) = [T∞ : ID] = [OK : OKID] = [OK : JD] = N(JD). �

Remark 6. An elementary argument shows that N(J)N(I)−1 is bounded from above by 

the index of T1 in OK and from below by 1.

5. Descent for metrics

In this final section we take up the problem of descending metrized line bundles 

through finite quotient maps. As is well-known, the theory of metrized line bundles 

refines the theory of heights and is important for comparing height functions not just up 

to an O(1). With an eye towards future applications, we take a step in this direction. The 

main result in this section is Theorem 5.4, which implies a refinement of Theorem 1.1. 

Let Y be a projective G-variety over Q. Our result says that if E is any metrized G-line 

bundle over Y for which G acts by isometries, then E ⊗|G| descends to a metrized line 

bundle L on Y/G such that the associated height functions satisfy
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hL (x) = |G|hE (y)

where y is any preimage of x ∈ (Y/G)(Q).

Defining this metric on L as a set-theoretic function is easy: the fiber x∗L can 

be identified with the fiber of E ⊗|G| over any preimage of x and inherits the metric 

we already have there. This will be independent of the choice of preimage if G acts 

by isometries on the metric on E . The difficulty is showing that this function satisfies 

standard technical requirements on metrics, specifically the so-called adelic compatibility 

condition (see (3) in the definition below).

Definition 5.1. A v-adic metric on E is a collection || · ||v = (|| · ||v,y)y∈Y (Qv) where || · ||v,y

is a norm on y∗E satisfying ||cu||v,y = |c|v||u||v,y for all c ∈ Qv and u ∈ y∗E . A collection 

(|| · ||v)v∈MQ
of v-adic metrics is called an adelic metric on E if the following conditions 

are satisfied for all v ∈ MQ and y ∈ Y (Qv):

(1) (y∗E , || · ||v,y) 
σ
−→ ((σy)∗E , || · ||v,σy) is an isometry for every σ ∈ Gal(Qv/Qv),

(2) U(Qv) → R : y �→ ||s(y)||v,y is continuous for any open subset U of Y and s ∈ E (U),

(3) E admits a generating set of global sections {s1, . . . , sm}, independent of y and v, 

with the property that for all but finitely many v ∈ MQ,

||s(y)||v,y =

(

max
1≤j≤m

∣

∣

∣

∣

sj(y)

s(y)

∣

∣

∣

∣

v

)−1

(5)

for any local section s that is nonzero at y.

When there is no need for disambiguation we write ||·||v for ||·||v,y.

Now let K/Q be a number field. The set of places w of K over a fixed place v of Q is 

naturally in bijection with the set of field homomorphisms j : K → Qv up to isometry. 

Given a point y ∈ Y (K) let j(y) ∈ Y (Qv) denote the point Spec Qv → Spec K
y
−→ Y . 

Let us write ||·||w,y for the norm obtained on the fiber y∗L (non-canonically isomorphic 

with K) by pulling back ||·||v,j(y) along the natural map

y∗
L → y∗

L ⊗j Qv = j(y)∗
L .

The height of y ∈ Y (Q) is defined by

HL (y) =
∏

w∈MK

||s(y)||
−dw/[K:Q]
w,y

where s ∈ L is any local section that is nonzero at y and K/Q is any finite extension 

which s and y are defined over. (The dw in the exponent ensures this is independent of 

s by the product formula and the [K : Q] ensures this is independent of K.)

The following lemma helps with finding global sections which satisfy (5).
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Lemma 5.2. Let || · ||v be a v-adic metric on L . If {s1, . . . , sm} is a set of global sections 

of L satisfying

max
1≤i≤m

||si(x)||v = 1 (6)

for all x ∈ Y (Qv), then {s1, . . . , sm} globally generates L . Furthermore, for any local 

section s that is nonzero at x,

||s(x)||v =

(

max
1≤i≤m

∣

∣

∣

∣

si(x)

s(x)

∣

∣

∣

∣

v

)−1

.

Proof. It is clear that the {s1, . . . , sm} globally generate L from (6). For any i ∈

{1, . . . , m} with si(x) �= 0 we have

||s(x)||v =

∣

∣

∣

∣

s(x)

si(x)

∣

∣

∣

∣

v

||si(x)||v ≤

∣

∣

∣

∣

s(x)

si(x)

∣

∣

∣

∣

v

.

By (6), equality is obtained for some i and therefore

||s(x)||v = min
i:si(x) �=0

∣

∣

∣

∣

s(x)

si(x)

∣

∣

∣

∣

v

=

(

max
1≤i≤m

∣

∣

∣

∣

si(x)

s(x)

∣

∣

∣

∣

v

)−1

. �

Let E be a metrized G-line bundle over Y .

Definition 5.3. We say that G acts by isometries if for all v ∈ MQ, g ∈ G, and x ∈ Y (Qv), 

the linear map on fibers

(x∗
E , || · ||w,x)

g
−→ ((xg)∗

E , || · ||w,xg)

is an isometry.

Let π : Y → Y/G denote the quotient map. By Proposition 3.2, there is a unique line 

bundle L on Y/G such that

π∗
L ∼= E

⊗|G|

as G-line bundles. Since E ⊗|G| carries a natural metric induced from E , we can ask 

whether this metric descends to L .

Theorem 5.4. Suppose G acts by isometries on E . Then there is a unique adelic metric 

on L which pulls back to the induced metric on E ⊗|G|.

Thus if x ∈ (Y/G)(Q) and y ∈ Y (Q) is any preimage, then HL (x) = HE (y)|G|.
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Remark 7. The reason for descending the metric on the |G|-fold tensor product rather 

than the original metric is that the global sections in (5) have no reason to be G-invariant. 

Our remedy is to symmetrize the global sections by taking the product (11) over their 

G-orbits which necessitates replacing E with E ⊗|G|. This suffices for our application to 

E = O(1) and the line bundle L constructed in §3.

Proof. Let x ∈ (Y/G)(Qv). Let s be any local nonvanishing section at x and suppose 

y ∈ Y (Qv) maps to x. In order for the metric on L to pull back to the metric on E ⊗|G|

it is clear that we must define the norm on x∗L to be

||s(x)||v,x := ||(π∗s)(y)||v,y,

and so uniqueness is clear. This is independent of the choice of y since G acts by isome-

tries. It is straightforward to show that the collection of v-adic metrics this defines 

satisfies the first two conditions (Galois invariance and continuity) of an adelic metric.

For the third condition we will construct a generating set of global sections 

{s1, . . . , sm} of L such that

||(π∗s)(y)||v,y =

(

max
1≤i≤m

∣

∣

∣

∣

si(x)

s(x)

∣

∣

∣

∣

v

)−1

(7)

Let {t1, . . . , tn} ⊂ H0(Y, E ) be a generating set of global sections that defines by (5) the 

v-adic components of the adelic metric on E for all places v /∈ S, where S ⊂ MQ is any 

finite set containing the archimedean place. Fix a place v /∈ S and a point y ∈ Y (Qv). 

Then

max
1≤i≤n

||ti(y)||v = max
i:ti(y) �=0

min
j:tj(y) �=0

∣

∣

∣

tj(y)
ti(y)

∣

∣

∣

v
= 1. (8)

Consider the set

Ay := {(i, g) ∈ [n] × G : ||(gti)(y)||v = 1}. (9)

Since G acts by isometries,

||(gti)(y)||v = ||g(ti(g
−1y))||v,y = ||ti(g

−1y)||v,g−1y

so from (8),

max
i,g

||(gti)(y)||v,y = max
i,g

||ti(g
−1y)||v,g−1y = 1. (10)

This shows Ay is not empty so let i be any fixed element of [n] with (i, g) ∈ Ay for some 

g ∈ G. Now define the sets
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By := {g : (i, g) ∈ Ay}, Hy := {h : Byh = By}.

For each orbit gHy ∈ By/Hy choose a positive integer agHy
subject to the condition that

∑

gHy∈By/Hy

agHy
= [G : Hy].

This is always possible since Hy acts freely on By. It is easily verified that

∏

h∈By

(hti)
a

h−1Hy

is an Hy-invariant global section of E ⊗|G|. We define the global section

s′
y :=

∑

gHy∈G/Hy

∏

h∈By

(ghti)
a

h−1Hy (11)

which is manifestly G-invariant. Since H0(Y, E ⊗|G|)G ∼= H0(Y/G, L ) (by pulling back 

along π) the section s′
y determines a unique global section s′′

y of L such that π∗s′′
y = s′

y. 

A priori the section s′′
y depends on y, i, v, and the integers (agHy

)gHy∈By/Hy
, but as y

varies over Y (Qv) for all v /∈ S there are only finitely many possibilities for Ay, i, and 

the (agHy
)gHy∈By/Hy

, and these suffice to determine s′′
y . Let {s1, . . . , sm} denote the set 

of global sections of L arising in this way.

Let s′
i = π∗si for 1 ≤ i ≤ m. First note that si(x)

s(x) =
s′

i(y)
(π∗s)(y) and thus

max
1≤i≤m

∣

∣

∣

∣

si(x)

s(x)

∣

∣

∣

∣

v

= max
1≤i≤m

∣

∣

∣

∣

s′
i(y)

(π∗s)(y)

∣

∣

∣

∣

v

.

Thus by Lemma 5.2, if

max
1≤i≤m

||s′
i(y)||v = 1

for all y ∈ Y (Qv) then (7) holds. By construction, for each s′ ∈ {s′
1, . . . , s′

m} there is a 

global section t ∈ {t1, . . . , tn}, a subset B ⊂ G, and a subgroup H ≤ G acting freely on 

B, and integers agH for each coset gH ∈ B/H such that

s′ =
∑

gH∈G/H

∏

h∈B

(ght)a
h−1H . (12)

Since the set Ay defined by (9) is nonempty, there are g ∈ By and 1 ≤ i ≤ n such that 

||(gti)(y)||v = 1. By (10), ||(gti)(y)||v < 1 for any g /∈ By, and therefore a single monomial 

in the sum (12) realizes the maximum. By the ultrametric inequality we have

max
1≤i≤m

||s′
i(y)||v =

∏

h∈By

∣

∣

∣

∣(hti)(y)
∣

∣

∣

∣

a
h−1Hy

v
= 1. �
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Let L denote the line bundle on P/G constructed in §3.

Corollary 5.5. There is a unique adelic metric on L which pulls back to the standard 

metric on O(1)⊗|G|. The height hAC induced by this metric satisfies

hAC(L, x) = |G| log ||x||∞ −
|G|

[K : Q]
log N(J)

on any rational point (L, x) ∈ X (Q).

Proof. The proof of Theorem 1.1 shows that if u ∈ G is any preimage of (L, x), then

h(u) = log ||x||∞ −
1

[K : Q]
log N(J)

where h is the height on P associated to the standard metric on O(1). By the last theorem 

there is a unique adelic metric on L which pulls back to the metric on O(1)⊗|G| and the 

associated height hAC will satisfy hAC(L, x) = |G|h(u). �

In the next two examples we take HAC = ehAC .

Example 1 (T Gorenstein, L = K). If T = (I : I) is Gorenstein, then I is T -projective 

(cf. e.g. [12, 4.2]). (For instance, if T is monogenic then it is Gorenstein. More generally, 

T is Gorenstein if and only if its different is invertible.) Then N(I) = [T : I] =
√

dId−1
T

and

HAC(L, x) = ||x||
|G|
∞

√

dT d−1
I .

If additionally L is totally real and x is self-dual, then

HAC(L, x) =
√

dT .

Example 2 (L = Q × · · · × Q). T = Z and I = �Z for some � ∈ Q>0. Then

HAC(Q × · · · × Q, x) =

⎛

¿

√

x2
1 + · · · + x2

|G|

�

À

⎠

|G|

.
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