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1. Introduction

Let G be a finite group acting linearly on a finite-dimensional rational vector space
V, and let P = P(V) denote the projective space of V. In this paper we study heights
of rational points on P/G.

Our main result is that for V' the regular representation of G and a certain open
subset X of P /G, the height of any rational point P on X can be expressed in terms
of certain objects attached to P. We show that P determines, and is determined by, a
Galois Q-algebra L with Galois group G and a trace-one normal element x of L up to
Galois conjugacy. The Galois algebra L is isomorphic to K X --- x K for a number field
K. The images of the Galois conjugates of x in K generate a fractional K-ideal J. Let
||, denote the canonical norm on Minkowski space Lg.

Theorem 1.1. Let ¢: P/G — P be a non-constant morphism. Let dy be the degree of
the composite map P — P /G 2, PN, Then for all P = (L,z) € X(Q),

MO(P)) = dylog ol — e 0a V() + O(1) 1)

for a bounded function O(1).

To prove this theorem we use the method of descent to construct an ample line bundle
Z on P /G which is linearly equivalent to the anticanonical divisor of P /G up to torsion
in the divisor class group. We show that .Z is globally generated and its global sections
restrict to an immersion on X. These geometric results are used to prove Theorem 1.1
in §4.

In the last section we give a sharper result. We prove that the function

G
hac(L.a) = [Glioglol., - 10w V()

(with no O(1)) is actually the height function k4 associated with a natural adelic metric
on.Z.

1.1. Self-dual elements

In addition to normal elements, we also consider self-dual elements. Recall an element
x € L is self-dual if for all g € G we have

ik (ag(x)) = {1 ro=1,

0 otherwise.

Here we assume that G has odd order since this guarantees the existence of self-dual
elements by a theorem of Bayer-Fluckiger—Lenstra [2].
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The formula (1) indicates that rational points of X corresponding to self-dual elements
are of particular interest. Suppose L = K for simplicity, and let x € K be any self-dual
element. The first indication is that

ol = /trg (%) = 1.

Indeed the left equality holds since K is totally real, and the right since x is self-dual.
The second indication involves the norm term N(J). Recall the basic formula relating

N(J) =[Ok : J] = \/dsdg".

In particular, if J is unimodular, then d; = 1 and we have the appealing formula

norms and discriminants:

hac(K,z) =logVdk.

Naturally it would be of interest to have a direct relationship between heights and dis-
criminants (cf. e.g. [7], [23]) so we should like to understand the extent to which J fails
to be unimodular. As x is self-dual the smaller lattice

I:= Z Zg(x)

geG

is unimodular, however in general

> Zg(x) # Y Oxglx) =J.

geG geqG

Thus we ask whether there is a relationship between N(I) and N(.J). In this direction
we prove the following result. Let K/Q be a Galois field extension with Galois group G
and let z be a normal element of K, not necessarily self-dual. For each integer D > 1
consider the following order of K:

Tp ={a € K :aIP C IP}.
These orders increase with D and stabilize, and we call

T = lim Tp

D—o0

the stable multiplier order of I. We prove two stability results and also find another
interpretation for 7.

Theorem 1.2.
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(1) Too=Tp if D > |G| — 1.

(2) NUIP)=NJP) if D > |G| - 1.

(3) Spec Two is isomorphic to the fiber of P — P /G over the integral point of P/G
determined by (K, x).

2. Construction of orbit parametrizations

In this section we construct orbit parametrizations for G-algebras equipped with nor-
mal and self-dual bases. If R is a commutative ring and Spec S is a G-torsor over Spec R
in the étale topology, then we call S together with its natural G-action a G-algebra
over R.

Remark 1. The normal basis theorem guarantees the existence of normal elements if S is
a field, however normal elements need not exist for an arbitrary G-algebra (e.g. S might
not be free as an R-module or there may be local obstructions due to wild ramification).
Self-dual elements exist for Galois field extensions of odd degree in any characteristic [2],
[1] but even degree field extensions may not have self-dual elements (e.g. quadratic field
extensions with characteristic # 2).

For fixed R, we consider pairs (S,z), where S/R is a G-algebra and x € S is a
normal element. An isomorphism between pairs (S,z) and (S’,2') is a G-equivariant
R-algebra isomorphism ¢: S = S’ satisfying ¢(z) = 2’. Given a G-algebra S and a ring
homomorphism f: R — R’, the base extension S ® R’ is a G-algebra over R'. If z € S
is normal (resp. self-dual), then x ® 1 € S ® R’ is normal (resp. self-dual).

Definition 2.1. 97 is the functor taking a commutative ring R to the set of isomorphism
classes of pairs (S,z), where S/R is a G-algebra and = € S is a normal element. We
define 91 similarly but with = self-dual.

These functors are representable by affine schemes over Z, which we construct as
subquotients of the group of units in the group algebra of G. The functor of commutative
rings

R—<u= Zag[g] € R[G]* : Zagzl
9eG 9€@G

is representable by an affine group scheme of finite type over Z, which we denote by G.
There is an anti-involution u — @ of G, given by > s aglgl = 3_ cc ag[g™], and we
also consider the subgroup scheme H C G of norm-one units given by

H(R)={ueG(R):uu=1}.
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The coordinate ring A of G is the quotient of Z[X, : g € G][Ag'] by the principal ideal
generated by (3,5 Xy — 1) where Ag is the determinant of the matrix with rows and
columns indexed by G whose g, h component is Xgp,. The coordinate ring B of H is the
quotient of A by the ideal (3, XgnXn —dg,1:9 € G).

Lemma 2.2. Suppose S/R is a G-algebra. Then there is a bijection from the set of G-
equivariant ring homomorphisms @: A — S to the set of normal elements of S/R, taking
© to (X1). Moreover, ¢ factors through B if and only if (X1) is self-dual.

Proof. There is a bijection from the set of G-equivariant ring homomorphisms
0: Z[{Xg}gea] — S to the set of elements of S, given by ¢ — ¢(X;). Fix such a
¢, and set z := @(X;) € S. Then ¢(X,) = g~ '(z), and ¢(Ag)? is the discriminant of
the set {p(X,)}y = {9(x)},. This discriminant is a unit if and only if {g(z)}, is a basis
for S/R, and ¢ kills 3 X, —1if and only if trg/r(2) = 1. This proves the first assertion
of the lemma.

To prove the second, observe that ¢ factors through B if and only if

S hg(a)h(z) = {1 ro=1,

hew 0 otherwise
for all g € G, which is precisely the condition that z is self-dual. O

The group G is naturally identified with a constant subgroup scheme of 4, and thereby
acts freely on H and G.

Definition 2.3. X is the quotient scheme G/G, Y is the quotient scheme #H/G.

The following theorem says that the scheme X is a fine moduli space for G-algebras
equipped with a normal element, and ) is a fine moduli space for G-algebras equipped
with a self-dual element.

Proposition 2.4. For any commutative ring R there are bijections X (R) = IM(R) and
Y(R) = N(R) which are functorial in R.

First proof of Proposition 2.4. The scheme X = G/G represents the stack quotient
[G/G] as the G-action is free. An R-point of [G/G] is, by definition, a G-torsor
Spec S — Spec R together with a G-equivariant morphism Spec S — G. The G-
equivariant morphisms Spec S — G are in bijection with G-equivariant ring homo-
morphisms O(G) = A — S, which are in bijection with normal elements of S/R by
Lemma 2.2. O

Here is a more elementary proof.
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Second proof of Proposition 2.4. Since G — X is a G-torsor, A/A% is a G-algebra. Then
Lemma 2.2 applied to the identity map A — A implies X; € A is a normal element.
Now, fix a ring R. There is a function

v1: Hom(A%, R) — M(R)
f|—> (A®Ac,f R,X1®1)

We also define a function v2: M(R) — Hom(A%, R) as follows. Given (S,z) € M(R),
Lemma 2.2 implies there is a unique G-equivariant homomorphism f: A — S such that
f(X1) = 2. Then f takes A% into S® = R, and we define v2(S,z) = f|AG. We claim
that 1 and ~9 are inverses.

In one direction, given f: A® — R, we see directly that the natural map A — A®ya ¢
R is G-equivariant and takes X; to X; ® 1. It follows that ~2(y1(f)) is the natural
map A% — A% ®46; R = R, so that 72(v1(f)) = f. In the other direction, given
(S,z) € M(R), let f: A — S be the G-equivariant homomorphism satisfying f(X;) = S.
Then

Y1 (72(S, 7)) = (A®ac fjac R, X1 ©1).

Now, S is an R-algebra, so f extends uniquely to an R-algebra homomorphism

f: A®AG7f|AGR—>S.

One sees directly that f is G-equivariant, and that f(X;®1) = f(X;) = . Finally, every
G-equivariant morphism of torsors is an isomorphism, so we conclude 7 (y2(S,z)) =~
(S, x). This proves that 7 and 2 are inverse bijections. Moreover, it is clear that v; and
~2 are natural in R.

To prove the statement about J(R), we observe that v; takes Hom(B%, R) into 91(R)
because X; € B is self-dual, and 72 takes M(R) into Hom(BY, R) by Lemma 2.2. 0O

Remark 2. Gundlach [9] independently constructed X and its orbit parametrization for
G-algebras with a normal element. Gundlach’s construction uses the constraints on the
structure constants of a G-algebra to cut out X inside AlGP In special cases the varieties
X have appeared before in the literature [20, §VI1.2], [21], [15], [6], [22], [3], [4] and [5].

See also [19] for a related construction.

It is well-known that a G-torsor is trivial if and only if it admits a section. For G-
torsors S/R obtained by pulling back G — X along an R-point (S,z) of X, the next
proposition gives a formula for such a section after a suitable base change.

Proposition 2.5. Let (S,xz) € X(R). Let R’ be an R-algebra and suppose there is an
R-algebra homomorphism p: S — R'. We have the following diagram:
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Spec S —— G

T

Spec R —— Spec R M X.

Then (S®gr R',x ®1) € X(R') is the image of the R'-valued unit

u—Zgo e g(R)

geG

under the natural morphism G — X.

For the proof, we will use the natural action of G on the homogeneous space G/G = X.
For u =3} a4[g] € G(R) and (S,z) € X(R) this action is given by

u(S, x) S’Zagg

geG

Proof. The set of morphisms Spec R' — Spec S over Spec R is in bijection with the
set of sections of Spec S x g Spec R' — Spec R’ by the universal property of the fiber
product. Thus the existence of ¢ implies that the pullback of the G-torsor S/R to R’
is isomorphic to the trivial G-torsor over R’. Recall the coordinate ring of the trivial
G-torsor over R’ is the R’-algebra As};} of set-theoretic functions f: G — R’ under
pointwise operations with G-action given by g(f)(h) = f(hg). We have the isomorphism

of G-algebras over R’ given by
S®r R = A
TRT [g — rcp(g(x))].

This isomorphism maps 2 ® 1 to the function g + ¢(g(x)), which is equal to ux(i}
where u is the R'-valued unit given by u =} ©(g9(x)[g7'] € G(R') and (13 is the
characteristic function of the singleton {1} containing the identity element 1 € G. In
terms of points of X', this means that

(Ser R, vo1) = (AF.g elg@) =u (AR xay) -

The result now follows from the fact that (ASR?}, X{1}) € X(R') is the image of 1 € G(R’)
under the G-equivariant quotient morphism G — X. O

3. Descent for G-line bundles

In this section we prove there is a unique line bundle £ over P /G whose pullback
to P is equal to —Kp (Theorem 3.5). We show that Pic(P/G) = Z and £ generates
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the subgroup of index n/e where n (resp. e) denotes the order (resp. exponent) of G
(Theorem 3.7). We also prove that .Z is globally generated and its global sections define
an immersion of X into projective space (Theorem 3.8).

3.1. Descent for G-line bundles

Let Y denote a projective variety equipped with an action by a finite group G, all
defined over a characteristic zero field K. We assume the G-action on the structure sheaf
of Y is O(Y)-linear. Suppose Y admits the action of another finite group I" commuting
with the action of G. Consider a G-line bundle .Z over Y/T'. When is .£ isomorphic to
the pullback of a line bundle from Y/(G x I')? Equivalently, when does £ vanish under
the map

Picq(Y/T) )
m(Pic(Y/(G x T)) — Picg(Y/T))

Picg(Y/T) —

If T acts freely on Y/G, the next lemma shows this can be determined by pulling back
to Y — Y/G and resolving the question there.

Lemma 3.1. Suppose Y/G — Y /(G xT) is a Galois covering with Galois group T'. Then
a G-line bundle on Y/T' descends to Y/(G x I') if and only if its pullback to'Y descends
to Y/G.

Equivalently, the following natural map is injective:

PiCG(Y/F) . PiCG(Y) (2)
m(Pic(Y/(G x I)) — Picg(Y/T))  im(Pic(Y/G) — Picg(Y))

Proof. Let .Z be a G-line bundle over Y/T" which represents some class in the kernel of
(2). We have diagrams:

/Y\/F /\
N \/

Y/(G xT)

where £ is the pullback of &, % is any line bundle which pulls back to %, %5
is the quotient of % by I', and % is the pullback of %5 (the quotient of %, is for
its I'-linearization coming from %, and the quotient exists by descent along torsors
since T' acts freely). As the left diagram commutes, %, pulls back to £ in Picg(Y);
however % also pulls back to .23, so to prove (2) is injective it suffices to show that
Picg(Y/T') — Picg(Y) is injective.
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There is a commutative diagram with exact rows [13, 2.2]:

HY(G,0(Y/T)*) — Picg(Y/T) —— Pic(Y/T)

l | |

HY(G,O(Y)*) —— Picg(Y) —— Pic(Y).

The action of G on O(Y)* and O(Y/I')* is trivial by assumption. Thus the left column
is injective, so it now suffices to show that Pic(Y/T') — Pic(Y) is injective. Now the
Hochschild—Serre spectral sequence

Hp(r, Hgt (Ya GM)) = H5t+q (Y/F’ Gm)
yields the exact sequence
1 — HYT,0(Y)*) — Pic(Y/T') — Pic(Y)'' — H*([,O(Y)*) — ---

From this it suffices to show that H*(I', O(Y)*) = 1. As Y is projective, O(Y)/O(Y/T)
is a field extension with Galois group I, so HY(T',O(Y)*) = 1 by Hilbert’s theorem
90. O

Using the lemma we can give a simple criterion for descent for line bundles even when
the group action is not free.

Proposition 3.2. The image of Pic(Y/G) — Picg(Y) is the subset of isomorphism classes
of G-line bundles £ over'Y satisfying the following condition:

(x) the stabilizer subgroup Gp acts trivially on Lp for every P € Y (K).

Remark 3. A result of Mumford [16, Cor. 1.6] says that if Y is normal and proper, with
an action of a connected linear group G, and £ is a G-line bundle on Y, then some
positive power .£®¢ is G-linearizable. Proposition 3.2 is the analogous result for finite
G, with e the exponent of G.

Proof. In the algebraically closed setting this is [13, Prop. 4.2]. We will reduce to this
case using Lemma 3.1. Pulling back .Z to Y% shows the condition (%) is clearly satisfied
if . descends to Y/G.

We first observe that Y, /G = (Y/G), for any K-algebra L. Indeed Yz, — (Y/G)y is
G-invariant so we get a map Y7,/G — (Y/G)r. To show this affine map is an isomorphism
we must show that O(y,/q), — Oy, /g is an isomorphism of Oy q), -algebras. In fact
these sheaves are already equal on the level of presheaves, namely the presheaves U —
HY(G,0y(r~'(U))) ® L and U — H°(G,Oy(x~*(U)) ® L) sheafify to Oy /¢, and
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Oy, ja, respectively, and these are isomorphic by the universal coefficient theorem: for
any G-module N and n > 0 we have the exact sequence [11, Prop. 4.18]:

0— H"(G,N)® L — H"(G,N & L) — Torf (H""(G,N), L) — 0.

Now if (*) holds then .# ® K is the pullback of a line bundle on Y%/G. This bundle
on Y5 /G = (Y/G)g descends to (Y/G) = Yy /G for some finite Galois extension L/K.
Applying Lemma 3.1 to Yy, (regarded over K via the structure map Y, — Spec K —
Spec K) and I = Gal(L/K) shows .Z is in the image of Pic(Y/G) — Picg(Y). O

When the action of G on Y is free, the proof of Lemma 3.1 shows that Pic(Y/G) —
Pic(Y) is injective. Unfortunately the spectral sequence there is unavailable for non-free
actions, but there is nonetheless an easily checked criterion for injectivity.

Lemma 3.3. Assume that Y is geometrically integral. Suppose that for each nontrivial

character c: G — K> there is a point P € Y(K) with ¢(Gp) # 1. Then the homomor-
phism

Pic(Y/G) — Pic(Y)
1S injective.
The hypothesis holds for instance if Y — Y/G has a totally ramified K-point.

Proof. The pullback homomorphism Pic(Y/G) — Picg(Y) is injective (since the G-
linearization suffices to undo the pullback), while the kernel of the homomorphism
Picg(Y) — Pic(Y') which forgets the G-linearization can be identified with the group of
G-linearizations of the trivial bundle, namely H!(G,O(Y)*) [13, (2.2)]. As Y is proper
and geometrically integral, this group can be identified with Hom(G, K*). However the
pullback of a line bundle on Y/G to Y carries a unique G-linearization for which it de-
scends. Indeed, if . is a G-line bundle on Y which descends to Y/G, and c is a nontrivial
K-valued character, then the Gp-action on (£ ® ¢)p is nontrivial, so .Z ® ¢ does not
descend to Y/G (Proposition 3.2). O

3.2. Quotient of the regular representation

Let V denote the regular representation of G, and write P for the projective space
P(V) = Proj Sym V" of V regarded as a variety over Q. Let m denote the quotient map
P - P/G.

Proposition 3.4. 7*Kp ¢ = Kp if |G| # 2 and n*Kp ;¢ = 2Kp if |G| = 2.
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Proof. First observe P/G is normal since it is the quotient of a normal variety by a
finite group. Now suppose P — P /G is not étale in codimension one, i.e. there is some
irreducible codimension one subvariety D in the support of Qﬁ,, LP/G Then some g # 1
fixes the generic point 1 of D. In fact D is a hyperplane since otherwise g would fix
|G| — 1 linearly independent vectors in the affine cone of D, any line passing through
0 € V would intersect the affine cone of D at a nonzero point, and g would be 1. We
see that g fixes a codimension one hyperplane (the affine cone of D), so G contains a
pseudoreflection.

Suppose |G| # 2. Then the regular representation contains no pseudoreflections and
so P — P /G is étale in codimension one. We may take an open subset U C P whose
complement has codimension at least two such that 7|y is étale and 7 (U) is contained

in the smooth locus V of P/G. Then W*Q%//Q and Qﬁ)/@ are isomorphic over U which

means W*Q‘(g‘/_Gl) /Q and QJ@B are isomorphic over U. This shows their supports 7* Kp /¢

and Kp are equal away from a codimension two closed subset and are therefore equal
everywhere.

For |G| = 2 the map P — Proj Q[u,v] given by (u,v) = ((x + y)?, (x — y)?) induces
an isomorphism P /G = Proj Q[u, v], and the anticanonical bundle on Proj Q[u, v] pulls
back to —2Kp. O

Theorem 3.5. There is a line bundle £ on P /G, unique up to isomorphism, satisfying
1%L = —Kp. If |G| # 2 then £ + Kp,q is torsion in the divisor class group of P /G
and if |G| = 2 then 2.2 = —Kpq.

Proof. Let e be the exponent of G. Then Pic(P)*¢ is contained in the image of
Pic(P/G) — Pic(IP) by Proposition 3.2, and we conclude the existence of .Z. Uniqueness
follows from the existence of the totally ramified point [1: ---: 1] for 7 and Lemma 3.3.
For the second assertion note that Kp,; is Q-Cartier [14, Prop. 5.20] so if nKp ¢ is
Cartier and |G| # 2 then

F*(n(f + K]P’/G)) =0.
However 7 is totally ramified at [1:---: 1] so 7* is injective (Lemma 3.3). O

Remark 4. With a bit more work one can show that £ + Kp,q is 2-torsion and that
2+ Kp g is trivial if the Sylow 2-subgroup of G is trivial or non-cyclic. This shows that
P /G is Q-Gorenstein of index < 2.

Corollary 3.6. The Picard group of P/G is Z.

Proof. 7 has a totally ramified point so Pic(P/G) — Pic(P) is injective by Lemma 3.3,
however the pullback of .Z to P is nontrivial. O

Let n (resp. e) denote the order (resp. exponent) of G.
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n
e

Theorem 3.7. Let % be the ample generator of Pic(P/G). Then Ly = Z.

Proof. The pullback of % to P will be O(t) for the smallest positive integer ¢ such
that O(t) descends to Pic(P/G) for some G-linearization. First equip O(t) with the G-
linearization coming from the natural G-action on O(1). If ¢ is any nontrivial character
of G, then G will act on the fiber of O(t) ® c over [1: ---: 1] by ¢ so O(t) ® ¢ cannot
descend (Proposition 3.2). This means that if O(¢) descends for some G-linearization
it must be its natural G-linearization. Now if ¢ is an element of G with order d then
(g) acts as (™! on the line spanned by Z;té ¢/1¢?] (¢ a primitive dth root of unity), so
g fixes the corresponding point of P(K) and acts by ¢* on the fiber of O(t) over this
point. The only way that ¢* =1 for all g € G is if e divides ¢, and this condition is also
sufficient for descent. We conclude that O(e) descends to a line bundle %) on P /G and
Ly =%. O

3.8. % determines an immersion of X

Theorem 3.8. .Z is globally generated and its global sections restrict to an immersion of
X into PN, where N + 1 is the dimension of the linear subspace of homogeneous degree
|G| G-invariants in Sym V" .

Remark 5. Using Molien’s theorem one can show that N 4 1 is equal to the sum over
divisors d of |G| of |G|7* (**;")#{g € G : g has order |G|/d}.

Proof. To show that the rational map ¢: P/G --» P¥ determined by .# is defined on
all of P/G, we may assume without loss of generality that K is algebraically closed.
Furthermore, as the property of being a quasi-compact immersion is stable under faith-
fully flat descent we may also assume that K is algebraically closed for the claim that ¢
restricts to an immersion on X.

Let n denote the order of G. We will show that for any two distinct closed points of
P /G there exists a global section of . vanishing at one point but not the other. Since
pullback along 7 induces an isomorphism H(P/G,.Z) = H°(P,O(n))%, it is the same
to find a G-invariant global section of O(n) separating two arbitrary closed G-orbits in
P. Suppose P, Q@ € P(K) are not in the same G-orbit. Choose a hyperplane H C P
passing through P but disjoint from the orbit of @, and let ¢ be a global section of O(1)
whose zero locus is H. Then

I

geG

is a G-invariant global section of O(n) vanishing at P but not at Q. The existence of
such sections also shows that £ is globally generated so ¢ is defined on all of P/G. The
same fact shows that ¢ is injective on closed points of P /G.
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We next show that ¢ separates tangent vectors away from isotropy. It is equivalent to
show ¢ separates tangent vectors away from isotropy since the quotient map P — P /G
is an isomorphism on tangent spaces away from isotropy. Suppose P € P(K) has trivial
isotropy group and 0 # v € Tp(P). Choose a hyperplane H C P passing through P,
disjoint from {g(P) : g € G — {1}}, and not tangent to v. Let ¢ be a global section of

O(1) whose zero locus is H. Then

IR

geG

is a G-invariant global section of O(n) vanishing at P such that v is not tangent to its
zero locus. This implies @,v is not zero (cf. Remark I1.7.8.2 of [10]). We conclude ¢,
is injective on Tp(P). Since G acts freely on G we conclude that ¢ separates tangent
vectors on X

To conclude the proof it suffices to show that the restriction ¢|y: X — ¢(X) of ¢ to
X is proper and that ¢(X) is a locally closed subset of PY. This will imply that ¢|x is
a closed immersion of X into an open subset of PV by [8, Prop. 12.94], obtaining the
desired conclusion that the composition X — ¢(X) — P is an immersion. Observe
that

X —<~—-P/G

Jm }o

p(X) —=— PV

is a pullback diagram because ¢ is injective. As the property of being proper is preserved
under basechange this shows that ¢|x is proper. To see that ¢(X) is locally closed we
first observe that the subset of P where the group determinant Ag is invertible is equal
to G. As G is a G-stable affine open subset, its quotient X is an open subset of P/G.
Then we have that (X U X°) = ¢o(X) Ue(X°) which shows that

p(X) = p(P/G) N (PN — p(X°)). (3)
As ¢ is a proper morphism it is closed so (3) shows p(X) is locally closed. O
4. Height formulas

In this section we prove Theorem 1.1 and Theorem 1.2. For each rational prime p
let | - |, denote the norm on Q, satisfying |p|, = 1/p and let | - | denote the usual
complex absolute value. If K/Q is any finite extension, then the set of places w of K
over a fixed place v of Q is naturally in bijection with field homomorphisms j: K — Q,
up to isometry, and we write | - |, for [j(-)|,. We write ||, for the canonical norm on
Minkowski space Kg. For any y € K C Kp it is given by
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1/2
Iyl = | D diliw)li

7 K—C

where j runs over the complex embeddings of K up to isometry (one j for each pair of
complex embeddings) and d; is 1 if j is real and 2 if j is complex (cf. [17]). For a product
L =K x---x K we extend the norm to Lg by setting

dimg L 1/2

2

Iyl = ( > |yi||oo> :
=1

Theorem (Theorem 1.1). Let ¢: P/G — PY be a non-constant morphism. Let dy be the
degree of the composite map P — P /G 2y PN Then forall P=(L,x) € X(Q),

HO(P) = dylog o], — e 0g N () + O(1)

for a bounded function O(1).

Proof. Recall that P/G has Picard rank one (Corollary 3.6). As we are only proving
(1) up to O(1), the claimed formula follows for any morphism ¢ once we have proven it
for a single morphism ¢. We use .Z to determine such a ¢ as £ is globally generated
(Theorem 3.8). Then dy = |G| and the formula to be shown is that

h@(P)) = 6108 ol ~ 1% 108 V() + O().

Let ¢: L — C be any Q-algebra homomorphism. By Proposition 2.5, the fiber of =
over (L, z) consists of the G-translates of the unit given by

u=3" olg(@)lg~"] € G(K).

geG

We will use the Weil height H on P(Q) associated to O(1) for which H(u) is

dw /(2[K:Q])

I (D leta@)l, max |p(g(x))

e /19 = Ho () Hy ()
weMy \geG wenf ’

where d,, is the local degree of K at w. (We call this the standard metric on O(1).) By
the theory of heights,

Wo(L,z)) = |G|log H (u) + O(1)
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for a bounded function O(1).

Let ds be the local degree of K at any of its infinite places. The infinite component
H, of the height is none other than the canonical norm on Minkowski space Kg (when
evaluated on a unit of the form u). Indeed, H(u) is equal to

2 . 2
I D leta@)l, =TI (> litetg@)))Z
weMg? \geG j:K—C \geG
doo
dimg L 2[K:Q]

=10 1 Y 3 e

JE—C \ i=1 geGal(K/Q)

dimK L %
. 2
= 11 | X X deli'@l
j:K—C i=1 j:K—C
1
dimg L 2
. 2
=1 Y > delit@)l
i=1 j:K—C
= 2] -
For the finite components observe that H(u) is equal to
dy [[K: w : _ — :
max fp(g (o)l = T max fyl/ 199 = N(7)~HI9L o
wGMIJz wEM};
Let T, = Dlim Tp denote the stable multiplier order of K attached to a rational
— 00

point (L,z) of X.
Theorem (Theorem 1.2).

(1) Spec Too U -+ U Spec T, for dimg L many copies are isomorphic to the fiber of
P — P/G over the Z-point (L,x) — P/G.
(2) Too=Tp if D > |G| — 1.

Proof. Let Spec A denote the fiber over P — P /G over (L, z) € X(Q), where we regard
(L,z) as a Z-point of P/G by the valuative criterion of properness. Let g: Spec A — P
denote the natural projection map. We have identifications

H'P,0D)= & zZm

meMonp

and
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H°(Spec A,q*O(D)) = > Am({g(x)},)-

meMonp

We claim the natural map
¢: H'(P,O(D)) — H°(Spec A, ¢*O(D))

is surjective if D > |G| — 1. Indeed its cokernel C is finite, since its image and codomain
are both lattices (full rank abelian groups) of L. However C' also has trivial p-torsion for
each prime p by [18, Lemma 2.1]. Thus C' = 0. We see that

m¢= Y Zm({g@)})= Y Am({g()}). (4)

meMonp meMonp

This equality shows that im ¢ is closed under multiplication by A. Since ¢*O(D) is a line
bundle over Spec A, the A-module im ¢ is projective.

Now apply ¢ to both sides of (4) where ¢: L — K is any Q-algebra homomorphism.
The homomorphism im¢ — (im¢) = I splits, which implies that I'” is a direct
summand of im ¢ and is therefore projective as an A-module. The action of A on I”
factors through ¢(A), which shows I” is a projective ¢(A)-module. This implies that
o(A) = (I : IP) by localization. As T, = imp_,oo(I” : IP) we have p(A) = Tw.
Since A = p(A)4mx L the result follows. 0O

Corollary 4.1. For any integer D > |G| — 1, N(IP) = N(JP).

Proof. I” is the module of global sections of the line bundle on Spec T, obtained by
pullback of O(D) along Spec To, — P and is therefore an invertible T\,-module. By
localization we see that

N(IP) = [T : IP] = [Ok : OxIP] =[Ok : JP] = N(JP). O

Remark 6. An elementary argument shows that N(J)N(I)~! is bounded from above by
the index of 77 in Ok and from below by 1.

5. Descent for metrics

In this final section we take up the problem of descending metrized line bundles
through finite quotient maps. As is well-known, the theory of metrized line bundles
refines the theory of heights and is important for comparing height functions not just up
to an O(1). With an eye towards future applications, we take a step in this direction. The
main result in this section is Theorem 5.4, which implies a refinement of Theorem 1.1.
Let Y be a projective G-variety over Q. Our result says that if & is any metrized G-line
bundle over Y for which G acts by isometries, then &®IG! descends to a metrized line
bundle .Z on Y/G such that the associated height functions satisfy
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he(x) = |Glhs(y)

where y is any preimage of z € (Y/G)(Q).

Defining this metric on .Z as a set-theoretic function is easy: the fiber x*.Z can
be identified with the fiber of &®IG! over any preimage of # and inherits the metric
we already have there. This will be independent of the choice of preimage if G acts
by isometries on the metric on &. The difficulty is showing that this function satisfies
standard technical requirements on metrics, specifically the so-called adelic compatibility
condition (see (3) in the definition below).

Definition 5.1. A v-adic metric on & is a collection |- |, = (|-, ,),ey @) where |-,

is a norm on y*& satisfying |cul, , = |c[v]ul, , for all c € Q, and u € y*&. A collection
(I - 1,)ventq of v-adic metrics is called an adelic metric on & if the following conditions

are satisfied for all v € Mg and y € Y(Q,):
(1) WE.1-1,,) % (096, 1-1,,,,) is an isometry for every o € Gal(@y/Qu)

(2) U(Qv) = R:y—|s(y)],,, is continuous for any open subset U of Y and s € &(U),
(3) & admits a generating set of global sections {s1,..., S}, independent of y and v,

with the property that for all but finitely many v € Mg,

)

55 (y)
s(y)

Il =

1<j<m

for any local section s that is nonzero at y.

When there is no need for disambiguation we write |-[, for |-[, .

Now let K/Q be a number field. The set of places w of K over a fixed place v of Q is
naturally in bijection with the set of field homomorphisms j: K — Q, up to isometry.
Given a point y € Y(K) let j(y) € Y(Q,) denote the point Spec Q, — Spec K Ly,
Let us write |-|,, , for the norm obtained on the fiber y*.#’ (non-canonically isomorphic

with K) by pulling back |-, j(y) 2long the natural map

)
YL =y L@ Qu=(y)" L.
The height of y € Y(Q) is defined by

—dy [[K:
Hy(y)= [] sl o/
wEMg

where s € £ is any local section that is nonzero at y and K/Q is any finite extension
which s and y are defined over. (The d,, in the exponent ensures this is independent of
s by the product formula and the [K : Q] ensures this is independent of K.)

The following lemma helps with finding global sections which satisfy (5).
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Lemma 5.2. Let |- |, be a v-adic metric on L. If {s1,...,Sm} is a set of global sections
of £ satisfying

max |s;(z)], =1 (6)

1<i<m v

for all x € Y(Qy,), then {s1,...,Sm} globally generates £. Furthermore, for any local
si(z)

s(x) ) R

Proof. Tt is clear that the {si,...,8,} globally generate £ from (6). For any i €
{1,...,m} with s;(z) # 0 we have

section s that is nonzero at x,

|s(2)

|, = (| max
1<i<m

s(z)

By (6), equality is obtained for some ¢ and therefore

V)

@), = i), <

v

s(z)

si(z) |,

Let & be a metrized G-line bundle over Y.

s(x = min
ls(@)l, = min

Definition 5.3. We say that G acts by isometries if for allv € Mg, g € G,and z € Y(Q,),
the linear map on fibers

@& ye) = (29)°6,1-

w,xg)
is an isometry.

Let m: Y — Y/G denote the quotient map. By Proposition 3.2, there is a unique line
bundle £ on Y/G such that

™ = £9I6

as G-line bundles. Since &®IG! carries a natural metric induced from &, we can ask
whether this metric descends to .Z.

Theorem 5.4. Suppose G acts by isometries on &. Then there is a unique adelic metric

on & which pulls back to the induced metric on &G,

Thus if z € (Y/G)(Q) and y € Y(Q) is any preimage, then He () = He(y)Cl.
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Remark 7. The reason for descending the metric on the |G|-fold tensor product rather
than the original metric is that the global sections in (5) have no reason to be G-invariant.
Our remedy is to symmetrize the global sections by taking the product (11) over their
G-orbits which necessitates replacing & with &®!¢!. This suffices for our application to
& = O(1) and the line bundle .Z constructed in §3.

Proof. Let » € (Y/G)(Q,). Let s be any local nonvanishing section at x and suppose
y € Y(Q,) maps to x. In order for the metric on £ to pull back to the metric on &®IGI
it is clear that we must define the norm on x*.Z to be

ls(@)], o = 1T 8) (W)l >

and so uniqueness is clear. This is independent of the choice of y since G acts by isome-
tries. It is straightforward to show that the collection of v-adic metrics this defines
satisfies the first two conditions (Galois invariance and continuity) of an adelic metric.
For the third condition we will construct a generating set of global sections
{51,-..,8m} of Z such that
-1
) @)
v

Let {t1,...,t,} C H°(Y,&) be a generating set of global sections that defines by (5) the
v-adic components of the adelic metric on & for all places v ¢ S, where S C Mg is any

[(7*s)(y)

= | max
|”’y <1<i<m

finite set containing the archimedean place. Fix a place v ¢ S and a point y € Y(Q,).
Then

. - ; L@ |
max [t(w)l, = mox  min |30 =1 (8)
Consider the set
Ay ={(i,9) € [n] x G |(*t:)(W)], = 1}. (9)

Since G acts by isometries,

[t W, = lati(g™ v, = lti(g™ P, g,

so from (8),

max [(76)(9)],,, = max (™), g0, = L (10)

This shows A, is not empty so let ¢ be any fixed element of [n] with (i, g) € A, for some
g € G. Now define the sets
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By = {g : (ivg) € Ay}v Hy = {h : Byh = By}

For each orbit gH, € B,/H, choose a positive integer a,p, subject to the condition that

Z agr, =[G+ Hy.

gH,€By/H,

This is always possible since H, acts freely on B,,. It is easily verified that

[T (o)

heB,

is an H,-invariant global section of & ®IG1, We define the global section

= 2 [ et (1)

gHy€G/H, heBy

which is manifestly G-invariant. Since HO(Y, &®ICNHG =~ HO(Y/G Z) (by pulling back

along 7) the section s determines a unique global section s, of £ such that 7*s; = s .

A priori the section s depends on y, i, v, and the mtegers (agm,)gm,eB, /m,> but as y
varies over Y (Q,) for all v ¢ S there are only finitely many possibilities for A,, ¢, and

the (agm,)gm,eB, m,, and these suffice to determine s Let {s1,..., 5, } denote the set
of global sections of £ arising in this way.
Let st = 7*s; for 1 < i < m. First note that si(@) _ s,} and thus
g s(xz) — (m*s)(y)
/
S; g
max (@) = max 5iy)
1<i<m | s(x) 1<i<m | (1%5)(y) |,

Thus by Lemma 5.2, if

max |si(y)l, =1
for all y € Y(Q,) then (7) holds. By construction, for each s’ € {s,...,s’ } there is a
global section ¢ € {t,...,t,}, a subset B C G, and a subgroup H < G acting freely on
B, and integers ayp for each coset gH € B/H such that

P § GO R (12)

gHeG/H heB

Since the set A, defined by (9) is nonempty, there are g € B, and 1 < ¢ < n such that
1(9t:) ()|, = 1. By (10), |(“t:)(v)], < 1 for any g ¢ B,, and therefore a single monomial
in the sum (12) realizes the maximum. By the ultrametric inequality we have

max |s;(y H ("t ity =1, O
1<i<m
heB,
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Let . denote the line bundle on P /G constructed in §3.

Corollary 5.5. There is a unique adelic metric on £ which pulls back to the standard
metric on O(1)®IG|. The height hac induced by this metric satisfies

G
hac(Loa) = [6l1og ol ~ % e log N ()

on any rational point (L,x) € X(Q).

Proof. The proof of Theorem 1.1 shows that if u € G is any preimage of (L, z), then

hu) =log ] ~ 7 gr & V()

where h is the height on P associated to the standard metric on O(1). By the last theorem
there is a unique adelic metric on .# which pulls back to the metric on O(1)®I¢l and the
associated height hac will satisfy hac(L,z) = |G|h(u). O

In the next two examples we take H 4o = ehac

Example 1 (T Gorenstein, L = K ). If T'= (I : I) is Gorenstein, then I is T-projective
(cf. e.g. [12, 4.2]). (For instance, if T' is monogenic then it is Gorenstein. More generally,

T is Gorenstein if and only if its different is invertible.) Then N(I) = [T : I] = \/drd;"

and
Hac(L,x) = 2] /drd ™.

If additionally L is totally real and x is self-dual, then

Hac(L,x) = +/dr.
Example 2 (L=Q x --- x Q). T = Z and I = {Z for some ¢ € Q>°. Then
3 3 |G|
l

Hpac(Q x---xQ,z) =
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