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We study real double covers of P! x P? branched over a (2, 2)-divisor, which are conic
bundles with smooth quartic discriminant curve by the second projection. In each
isotopy class of smooth plane quartics, we construct examples where the total space
is R-rational. For five of the six isotopy classes, we construct C-rational examples with
obstructions to rationality over R, and for the sixth class, we show that the models we
consider are all rational. Moreover, for three of the five classes with irrational members,
we characterize rationality using the real locus and the intermediate Jacobian torsor
obstruction of Hassett-Tschinkel and Benoist-Wittenberg. These double cover models
were introduced by Frei, Sankar, Viray, Vogt, and the first author, who determined explicit

descriptions for their intermediate Jacobian torsors.

1 Introduction

A fundamental question in algebraic geometry is the birational classification of algebraic
varieties. The simplest varieties are those that are rational, that is, birational to
projective space. In this paper, we consider rationality over the field R of real numbers,
and when we write (stable/uni-)rationality without reference to the ground field, we will

mean over R. We study the rationality of real conic bundle three-folds over P2,
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116 L.Jiand M. Ji

The discriminant double cover A — A C P? parametrizing the singular fibers of
a conic bundle X — P? is an important invariant that determines many of the properties
of X. If deg A < 3 and X(R) # ¢, then results of Iskovskikh show X is rational, and if
deg A > 6, then X is irrational by the work of Beauville (see Section 2.1). In this paper, we
consider the case when deg A = 4. In this setting, X is C-rational [16], but in general, the
geometric rationality construction need not descend to R, even if X(R) # . It is natural
to ask about the relationship between the real properties of A — A and the rationality
of X. The classification of real smooth plane quartics A has been the subject of classical
interest: Klein showed that in the moduli space of real plane quartics, the complement
of the locus of singular quartics has six connected components, each corresponding to
a real isotopy class [18]. These six real isotopy classes had earlier been classified by
Zeuthen—empty, one oval, two nested ovals, two non-nested ovals, three ovals, and four
ovals—who showed that curves in these classes have 4, 4, 4, 8, 16, and 28 real bitangents,
respectively [27]. We exhibit the following rationality behavior of the three-fold X for

different real isotopy classes of the quartic A:

Theorem 1.1. Let (x%/%) denote the set of geometrically standard conic bundles X — P?
over R with smooth quartic discriminant curve A of topological type * and discriminant

cover A of topological type sx.

1. (¥/¥) contains rational members, irrational members with points, and point-
less members;
(?/1 oval) contains both rational members and irrational members;
(¥/2 non-nested ovals) contains rational members, irrational members with
connected real loci, and irrational members with disconnected real loci;

4. (/2 nested ovals) and (/3 ovals) each contain both rational members and
irrational members with disconnected real loci;
(¥/4 ovals) contains rational members; and

6. If A(R) # ¢, then every member of (x  /x) is rational.

The irrational example in Theorem 1.1(2) and the disconnected example in (3)
were constructed in [12, Theorem 1.3]; our contribution in these two cases is the con-
struction of rational examples and an irrational connected example in (3). Theorem 1.1(6)
is [12, Proposition 6.1]. All members with real points are unirational by [12, Proposition
6.1], and the disconnected ones are not stably rational.

Conic bundles X — P? with quartic discriminant curve were previously studied
by the first author, together with S. Frei, S. Sankar, B. Viray, and I. Vogt in [12]. When
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On Rationality of Real Degree 4 Conic Bundles 117

deg A = 4, then X is C-rational, and many obstructions to rationality vanish over R
[12, Section 1.1]; however, they constructed examples of irrational such X where the
geometric rationality construction does not descend to R (irrational examples also
appeared implicitly in earlier work of Hassett-Tschinkel on real complete intersections
of quadrics [15, Remark 13 and Section 11.6]). To study rationality in the degree 4 case,
Frei-Ji-Sankar-Viray—Vogt introduced a particular model of these conic bundles that

admits the structure of a double cover of P! x P? branched over a divisor of bidegree (2, 2):
z? = tcz)al(u,v, w) + 2t5t;Q5(w, v, w) + tfas(u,v, w), (1)

where Q; € Rlu, v, w] are quadratic forms. These double cover models admit the addi-
tional structure of a quadric surface bundle via the first projection. Using work of Bruin
[5] on étale double covers A — A of smooth plane quartics, [12] showed that any such
A — A canbe realized as the discriminant cover of a conic bundle defined by an equation
of the form (1). The Artin—-Mumford sequence implies that up to a constant Brauer class,
the discriminant double cover determines the birational isomorphism class of a conic
bundle [24, Section 6.9.6]; thus, up to a class in BrR = Z/2, any conic bundle over P? with
smooth quartic discriminant curve is birational over P? to such a double cover of P! x P2,

[12] use the model (1) to construct examples of irrational conic bundles Y whose
discriminant curves A have real isotopy class one oval or two non-nested ovals. In each
of these cases, irrationality is witnessed by a different obstruction. In the one oval
example [12, Theorem 1.3(2)] Y(R) # @ is connected, and irrationality is shown using the
intermediate Jacobian torsor (IJT) obstruction. This obstruction to rationality is a refinement
over non-closed fields of the intermediate Jacobian obstruction of Clemens-Griffiths
[6], and was recently introduced by Hassett-Tschinkel [14, 15] and Benoist-Wittenberg
[2] (see Section 2.3). However, the two non-nested ovals example [12,Theorem 1.3(1)] has
no IJT obstruction to rationality but Y(R) is disconnected; hence Y is irrational. Thus,
[12] show that in general, neither the IJT obstruction nor the topological obstruction to
rationality alone is sufficient to characterize rationality for conic bundle three-folds of
the form (1).

For four of the six isotopy classes of the discriminant curve A, we prove the

following characterizations of rationality for the double covers (1):

Theorem 1.2. Over R, let ¥ — P! x P2 be a double cover branched over a bidegree (2,2)
divisor, and assume that the discriminant cover A — A of the conic bundle obtained

from the second projection is an étale double cover of a smooth quartic.
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118 L.Jiand M. Ji

1. If A(R) = ¢, then Y is rational if and only if Y(R) # ¢ and the IJT obstruction
vanishes.

2. If Aistwonon-nested ovals, then Y is rational if and only if Y(R) is connected
and the IJT obstruction vanishes. Neither condition alone is sufficient to
guarantee rationality.

3. If A is three ovals, then Y is rational if and only if Y(R) is connected.

4. If A is four ovals, then Y is rational.

In each of these cases, Y is rational if and only if the quadric surface bundle

Y — P! admits a section.

We do not know if the IJT obstruction is sufficient to characterize rationality in
the one oval and two nested ovals cases. For two nested ovals case, the vanishing of the
1JT obstruction implies Y(R) is connected (Corollary 3.12). In the case of one oval, the
topological obstruction vanishes (Corollary 2.11), and Frei—Ji-Sankar-Viray-Vogt have
constructed an example where the IJT obstruction vanishes, but rationality is unknown
[12, Example 1.5], see also Remark 3.10. Necessity of both conditions in part (2) is in
Remark 3.14.

As shown in [12, Theorem 1.2], an underlying reason for the failure of the IJT
obstruction to characterize rationality in this setting comes from the nontriviality of
BrRR. We study a certain quadratic twist to show that under certain assumptions, the IJT
obstruction does characterize rationality. Specifically, the bitangents of a plane quartic
A = (f = 0) are intimately related to the lines on the associated degree two del Pezzo
surfaces (t> = f) and (t* = —f). The work of Comessatti [8] shows that all the real
bitangents split in one of these del Pezzo surfaces, and none of them split in the other,
and this splitting is determined by the sign of the defining equation f. For f = Q, Q5 — O%,
the del Pezzo surface (t> = —f) is the branch locus of (1), and the image of its real points
in P? is the locus where f < 0. We use this to show that if Q;Q; — Q% < 0 outside A
(which is precisely when the real bitangents split), then the IJT obstruction characterizes
rationality (Proposition 3.8). We apply this result to construct irrational examples with
no topological obstruction to rationality.

In contrast, when Q;Q5 — Q% < O inside A, the IJT obstruction does not
characterize rationality, as shown by the two non-nested ovals example of [12, Theorem
1.3(1)]. On our way to proving Theorem 1.1, several of the examples that we construct
show that this failure persists for other real isotopy classes of A. Namely, we construct
a A(R) = ¢ example and a three ovals example where the IJT obstruction vanishes, but

the real locus of Y exhibits an obstruction to (stable) rationality (Proposition 4.9). These
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On Rationality of Real Degree 4 Conic Bundles 119

three isotopy classes of A are the only ones for which this is possible (Corollaries 2.11
and 3.12).

We also construct a rational example in each isotopy class of A. Since a real point
on A gives a rationality construction for ¥ [12, Proposition 4.1(5)], we primarily focus on
the case when A(R) = #. In particular, in the two nested ovals case, we give an example
where 7, is surjective on real points and hence has a section by a result of Witt [26], but
this section does not come from any known construction (Example 4.12(1)). We are not
able to construct a similar example when A is one oval, and we pose the following two

questions:

Question 1.3 (See Remark 4.18). Does there exist a rational three-fold Y defined as in
(1) such that the real isotopy class of A is one oval, Q;Q5 — Q% < 0 inside the oval, and
AR) = @2

Question 1.4 (See Corollary 3.12). If Y is as in (1) and A(R) is two nested ovals, then
rationality of Y — the IJT obstruction vanishes — Y(R) is connected. Do any of the

reverse implications hold?

1.1 Outline

In Section 2, we review background and context for conic bundles over P2 and rationality,
key features of the double cover construction of [12], and the intermediate Jacobian
torsor obstruction. We also make some observations relating the real topology of the
double cover to that of the quartic curve. We prove Theorem 1.2 in Section 3: we first
study the associated degree 2 del Pezzo surface, and we then show the sufficiency of the
intermediate Jacobian torsor obstruction in the case when Q,Q; — Q3 < 0 outside the
ovals. In Section 4, we apply our earlier results to give explicit examples of irrational

and rational examples and prove Theorem 1.1.

2 Preliminaries

We will first recall relevant definitions and background on rationality of conic bundle
three-folds in Section 2.1. In Section 2.2, we describe the double cover models ¥ — P! x
P2 of quartic conic bundles introduced in [12], which will be the models that we use
throughout this paper. Next, in Section 2.3, we review the intermediate Jacobian torsor
obstruction and results from [12] on the intermediate Jacobian torsors for the double
cover models. In Section 2.4, we recall some facts about the real topology of even degree

plane curves, and we make some observations relating Y(R) and A(R).
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120 L.Jiand M. Ji

2.1 Rationality of standard conic bundles over P2

We first review some preliminary notions about conic bundle three-folds and rationality.
For more details on conic bundle three-folds, see [25, Section 3].

Let k be a field of characteristic # 2. A conic bundle over P? is a proper flat k-
morphism 7 : X — P? whose generic fiber is a smooth conic over k(P?). The discriminant
cover w: A — A parametrizes the components of the singular fibers of . A conic bundle
is geometrically standard if X is smooth and p(XE/IE”%) = 1. The models we work with will
have the property that A is smooth and 7: X — P? is geometrically standard, and = is
an étale double cover. In particular, 7 has reduced fibers. We will introduce these models
in Section 2.2.

Let W be a smooth projective variety of dimension n over k. Recall that W is said
to be rational over k (or k-rational) if there is a birational map W --» P" defined over k,
stably rational over k if W x P™ is k-rational for some m, and unirational over k if there
is a dominant rational map P" --s W defined over k. If k C k' is a field extension, then
k-(stable/uni-)rationality implies k’-(stable/uni-)rationality, but the converse need not
hold, as demonstrated by a pointless real conic. We say that W is geometrically rational if
the base change Wy to the algebraic closure of k is k-rational.

For the majority of this article, we work over R. As mentioned in the introduction,
when we say that a variety is rational without specifying the ground field, we mean R-
rationality, not C-rationality.

In order to show that a variety is not rational, one must show that it has an
obstruction to rationality. One obstruction is given by the Lang-Nishimura lemma, which
implies that if W is k-rational (or even k-unirational), then it must contain a k-point.
Over the real numbers, the locus W(R) of real points also provides an obstruction
to rationality: the number of real connected components is a birational invariant of
smooth projective real varieties [4, Theorem 3.4.12]. So if W(R) is disconnected, then W
has an obstruction to stable rationality over R (see also [7] for an interpretation using
unramified cohomology).

Over the complex numbers, rationality of conic bundles over P? is well under-
stood. Namely, let X — P? be a geometrically standard conic bundle with smooth
discriminant curve A. Then X is C-rational if and only if degA < 4, or degA = 5
and A — A is defined by an even theta characteristic. Rationality is proven in the
deg A < 4 case using rationality results of Iskovskikh on conic bundle surfaces with
low degree discriminant, by applying his surface classification to the generic fiber of

a pencil of rational curves in P2 [16, Theorem 1]. In the degree 4 case, one needs to
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On Rationality of Real Degree 4 Conic Bundles 121

blow down a divisor coming from a singular fiber of = to reduce to the degree 3 conic
bundle surface case. The higher degree results are due to the combined work of Tyurin,
Masiewicki, Panin (deg A = 5), and Beauville (deg A > 6); in the C-irrational cases, X
has an intermediate Jacobian obstruction to C-rationality. In addition, if deg A < 8, then
X is C-unirational. We refer the reader to [25, Theorem 9.1 and Corollary 14.3.4] for an
overview of these results.

Over the real numbers, we recall [12, Proposition 6.1], which in particular
contains Theorem 1.1(6). If deg A < 3, then X is rational if and only if X(R) # @ (e.g.,
this holds if A(R) # #): the Lang-Nishimura lemma shows necessity of an R-point, and
if X admits an R-point then a modification of the proof over C shows that X is rational.
In degree 4, the proof of geometric rationality does not always descend, even if X(R) # ¢,
because the singular fibers of 7 need not be split over R. When A(R) # ), however, the
argument over C goes through if the pencil is chosen through the image of a point of
A(R). Similarly, if X has an R-point away from X, := X xpz A, then X is unirational by
a modification of the argument over C. (These results hold more generally over any field

of characteristic # 2, see [12, Section 6.1].)

2.2 Conic bundle three-folds realized as double covers of P! x P2

We recall the following models of conic bundles, which were studied by Frei-Ji-Sankar—
Viray-Vogt [12]. These are the models that we will study throughout the paper, and we
will work over the real numbers. First, we recall a result of Bruin that allows us express

étale double covers of smooth plane quartics in a particular form.

Theorem 2.1 ([5, Section 3]). Let @ : A — A be an étale double cover of a smooth plane
quartic. Then there exist quadratic forms Q;, Q,, Q5 € R[u, v, w] such that A — Ais of

the form

A =(Q,Q,— Q% =0),

5 (2)
A=(Q;-1*=Q,—1s=Q; —s*=0).
= . 1 2 .
Define the double cover 7: ¥ — Py, . x (.0
72 = t2Q, + 2tyt,Q, + t2Q,. (3)

The second projection 7,: ¥ — P? is a conic bundle whose discriminant double cover is
defined by (2). The isomorphism class of Y only depends on the double cover A — A, not

on the choice of the quadrics Q; (see [12, Section 4]), and so we will denote the double
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cover given above by Y; /ar OT by Y when the context is clear. We review the following

properties of Y.

Proposition 2.2 ([12, Theorem 2.6, Propositions 4.1 and 4.3]). If Y is defined as in
Equation (3), then:

1. Y is a smooth Fano three-fold, and the second projection 7,: ¥ — P? is a
geometrically standard conic bundle with discriminant cover w: A — A.In
particular, Y is C-rational, and if a smooth fiber of 7, contains a real point
then Y is unirational.

2. The first projection 7;: ¥ — P! is a quadric surface bundle. In particular, if
7, has a (real) section, then Y is rational.

3. If A(R) # §, then 7, has a (real) section.

4. The Stein factorization of the relative variety of lines is 7, (Y/P!) — I' — P!,
where M, is the symmetrix 3 x 3 matrix corresponding to Q; and I' is the genus

2 curve defined by
y? = —det(t* M, + 2tM, + My).

5. [24, Section 6.9.6] If X — P? is a geometrically standard conic bundle with
discriminant cover A — A, then [(YA/A)n] - [Xn] € Im(BrR — Brk(P?)).

In particular, Theorem 2.1 and Proposition 2.2(5) imply that, up to a constant
Brauer class, any geometrically standard conic bundle over P? with smooth quartic

discriminant curve is birational over P2 to one of the form (3).

Remark 2.3. Proposition 2.2(3) shows that a point of A gives rise to a section of x;.
However, not every section of 7; arises in this way: the rational examples constructed
in the proof of Theorem 1.1(1)—(5) all have A(R) = ¢ and admit sections of m, over R. In

Section 3, we will see another source of sections of ;.

To each étale double cover A — A, we also associate a twisted double cover of
P! x P2,

Definition 2.4. Let Q;,Q,, Q5 and A — A be as in Theorem 2.1. The twisted double cover

Y-

A-/a P! x P2 associated to A — A is defined by the equation

7% = —t3Q, + 2t,t,Q, — t3Q;.
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Since this double cover is of the form in Equation (3) obtained by replacing Q,
and Q3 with —Q, and —Q3, the three-fold Y, satisfies the properties of Proposition 2.2
(with the appropriate substitutions). In particular, Y5 A~ P? is a conic bundle with

discriminant cover w~: A~ — A, where
AT=(Q,+1r*=0,-1rs=Q3+5*=0)

is the quadratic twist of A.

The branch locus of T in Proposition 2.2(4) is defined by the equation — det(t*M; +
2tM, + M;), which gives the singular fibers of the quadric surface fibration n;. The
signature of the 4 x 4 matrix

t2M, +2tM, + My O
(e )
corresponding to the quadric surface Y};.;, is constant on each interval of P!(R) away
from the real branch points, and at each real branch point of I' the number of positive
eigenvalues changes by +1.

Note that Y},.;;(R) # ¢ if and only if the matrix corresponding to Y|..;; is indefinite.

By Witt's Decomposition Theorem [11, Section 8], Y|;.;; contains lines defined over R if and

only if Y|,.;; has signature (2, 2). We will also repeatedly use the following result of Witt

to construct sections:

Theorem 2.5 ([26, Satz 22]). Let C be a smooth projective real curve and n: X — C a
quadric bundle of relative dimension m > 1. If the induced map 7 (R): X(R) — C(R) on

real points is surjective, then 7 has a section defined over R.

2.3 The intermediate Jacobian torsor obstruction to rationality

The classical intermediate Jacobian obstruction to C-rationality, introduced by
Clemens-Grifiths in their proof of the irrationality of the cubic three-fold [6], states that
the intermediate Jacobian of a C-rational three-fold must be isomorphic to a product
of Jacobians of curves. Over non-closed fields, Hassett—-Tschinkel [15, Section 11.5]
[14, Sections 3 and 4] and Benoist-Wittenberg [2, Theorem 3.11] have recently introduced
a refinement of this obstruction involving the torsors over the intermediate Jacobian.
Assuming for simplicity that the intermediate Jacobian is isomorphic to Piclq for a curve

" of genus > 2, their refinement states that moreover for each Galois-invariant geometric
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curve class, the corresponding torsor over the intermediate Jacobian must be isomorphic
to some Picir. (See [2, Theorem 3.11] for the general statement.) Following [12], we refer
to this as the intermediate Jacobian torsor (IJT) obstruction.

Since we work over R, when we mention the IJT obstruction, we always mean the
obstruction over R.

The IJT obstruction has been used to great effect to study rationality of geo-
metrically rational three-folds over non-closed fields: Hassett-Tschinkel (over R) [15]
and Benoist-Wittenberg (over arbitrary fields) [2] showed this obstruction characterizes
rationality for smooth complete intersections of two quadrics in P°, and Kuznetsov-
Prokhorov used it for several cases of their classification of rationality for prime Fano
three-folds [21]. However, Benoist-Wittenberg also showed that the IJT obstruction is not
sufficient to characterize rationality by constructing an example of a (non-geometrically
standard) real conic bundle three-fold X — S whose intermediate Jacobian is trivial but
such that S(R) is disconnected; hence, the IJT obstruction vanishes, but X has a Brauer
obstruction to (stable) rationality over R [3, Theorem 5.7].

In [12], Frei-Ji-Sankar-Viray-Vogt studied the intermediate Jacobian torsors for
geometrically standard conic bundle three-folds, giving an explicit description using
certain torsors over the Prym variety of the discriminant cover A — A [12, Theorem 1.1].
For the double covers described in Section 2.2, [12, Theorem 1.2] and [5, Section 5] show
that the intermediate Jacobian of Y is P := Prymj} n = Pic, where I' is the genus two
curve defined in Proposition 2.2(4). Moreover, in this setting, [12, Theorem 4.4] gives an
extended description of the torsors. In particular, there are four intermediate Jacobian

torsors
PuP=o,"0,]cPict and PPV uUPY =m10,()]C Pick

satisfying P+P®1) = P as P-torsors, and P! = Pic}.. (Here w, : Pic; — Pic, is the norm
map.)

Since I' has genus two, then the IJT obstruction vanishes if PD has a point.
[12] showed that a point on PV gives a Galois-invariant geometric section of the
quadric surface bundle 7,: ¥ — P!, coming from a geometric section of a conic
bundle over the corresponding line in P? [12, Proposition 4.5]. However, in general,
this geometric section need not descend; thus, they show that the failure of the IJT
obstruction for the double covers of Section 2.2 comes from the nontriviality of the
2-torsion in the Brauer group of the ground field. (Indeed, when Brk[2] = 0, the
IJT obstruction does characterize rationality [12, Theorem 1.4].) [12,Theorem 1.3(1)]
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On Rationality of Real Degree 4 Conic Bundles 125

exploits the nontriviality of BrR to give an example of an irrational conic bundle with
PO(R) # ¢. (In fact [12, Theorem 1.3(1)] is defined over Q and has PV (Q) # @. For
this construction, they gave the following geometric interpretation [12, Section 2] of
the real points of PV as Gal(C/R)-invariant sets of four points P1:P2/P3/Pa € A(C)
such that:

1. p;, Dy, P3. P4 does not span a 2-plane in P*, and
2. w,(p, + Dy +P3+Dps) = AN for areal line ¢ C P2, (If A(R) = ¢ then ¢ does

not meet A transversely in any real points [12, Lemma 5.1].)

Note that by lower semicontinuity of rank, the property that P’ has an R-point

is an open condition.

2.4 Real connected components of Y and A

In this section, we make some observations about the real connected components of Y
and the real isotopy class of the discriminant curve A.

For a morphism ¢: V — W of quasi-projective algebraic varieties over R, we let
¢(R): V(R) - W(R) denote the induced map of topological spaces on the sets of real
points (with the Euclidean topology).

Notation 2.6. If f € Rl[u, v, w] is a homogeneous polynomial defining a smooth curve of
even degree, then the sign of f(P) for P € P?(R) is well defined. We denote by (f > O)p
the set of real points for which f(P) > 0 (similarly for >, =, <, and <). Every connected
component of (f = O)g is an oval, and the complement of (f = 0)y in P?(R) is a disjoint
union of a non-orientable set Uy and a finite number of disks [22, Section 2.7]. The non-
orientable set Uy is the outside of the curve defined by f.

In the case where f defines a smooth quartic curve A, Zeuthen [27] proved the
following classification result for the real isotopy class of A. (Recall that A has 28

complex bitangents.)

A(R) ## One oval Two nested ovals Two non-nested ovals Three ovals Four ovals

Real bitangents 4 4 4 8 16 28
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Sections 4.1 and 4.3 will contain figures illustrating all non-empty real isotopy
classes. We will sometimes denote the real locus of the plane curve A by (A = 0)i =
A(R), and we will denote the outside of A by U,.

Next, we use the maps 7; (R) and 7, (R) to relate the real connected components

of Y and the real connected components of the quartic A.

Lemma 2.7. Let Y := Yj , be as defined in Section 2.2. The number of connected
components of Y(R) is equal to the number of connected components of its image under
Y — P fori=1,2.

Proof. Since 7;: ¥ — P! is the finite morphism # composed with the projection
P! x P2 — P, it follows from [9, Theorem 4.2] and compactness of P*(R) that 7;(R)
is a continuous closed map. The claim then holds since the fibers of =; are positive-

dimensional quadrics and in particular have connected real loci. |

Lemma 2.8. If Y := YA/A is as defined in Section 2.2, then Y(R) has at most three

connected components.

Proof. By Lemma 2.7, it suffices to show that the image of =;(R) has at most three
components. The signature of the fibers of 7; can only change at the real branch points
of the genus two curve I' defined in Proposition 2.2(4), so the number of connected
components of m;(R) is at most half the number of real branch points and so is at
most % -6=3. |

Lemma 2.9. In the setting of Section 2.2, the image of 7,(R) is (Q; > 0)pU(Q,Q5—Q3 <
0)z € P2(R).

Proof. The fiber of 7, above P € P?(R) is the conic corresponding to the symmetric

matrix

Q;(P) Q) O
Qy(P) Q3(P) O
0 0 -1

so the fiber contains an R-point if and only if the top 2 x 2 submatrix is not negative
definite. By Sylvester’'s criterion, this submatrix is negative definite if and only if
Q,(P) < 0 and (Q,Q4 — Q3)(P) > 0. [
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From Proposition 2.2(1) and Lemma 2.9, it immediately follows that:

Corollary 2.10. If YA/A(R) = {, then A(R) = @. If A(R) # @, then Yi/a is unirational.

Corollary 2.11. If YA/A(R) is disconnected, then A(R) must be two or three ovals. More

precisely:

1. If YA/A(R) has three connected components, then A(R) is three ovals; and

2. If YA/A(R) has two connected components, then A(R) is two non-nested ovals

or two nested ovals.

Proof. If Q, is positive definite, then the image of 7,(R) is P2(R) by Lemma 2.9, so
we may assume that Q, is negative definite or indefinite. First suppose Q, is negative
definite. Then the image of 7,(R) is (Q;Q3 — Q% < 0)g, which can only be disconnected
if AR) is two or more ovals. If (Q,;Q5 — Q3 < 0) is disconnected, then it has the
same number of connected components as A(R) and, by Lemma 2.7, it also has the
same number of connected components as Y(R). So by Lemma 2.8, A(R) is either two or
three ovals.

It remains to consider the case when Q, is indefinite, so its real locus is one oval.
Since (Q; = 0)y C (Q;Q3 — Q% < 0)p, we have that (Q; > 0)g U(Q;Q3 — Q% < 0)y is either
equal to (Q,Q5 — O% < O)y or all of P2(R). Thus, again using Lemma 2.8 to rule out the
four ovals case when Y (R) is disconnected, we conclude that Y(R) is disconnected if and
only if A(R) is either two or three ovals, and that in the disconnected case Y(R) and A(R)

have the same number of connected components. |

Remark 2.12. All cases in Corollary 2.11 occur; see Section 4.1 and [12, Theorem 1.3(1)].

Remark 2.13. If YA/A(R) is disconnected and x; has a fiber with signature (2, 2), then
the real isotopy class of A is two nested ovals. Indeed, Corollary 2.11 implied that the
image of YA/A(R) in P?(R) is (Q,05 - O% < 0)g and that A(R) consists of two ovals. After
a coordinate change on P! [12, Theorem 2.6], we may assume Q; has signature (2,1).
Recalling that U, denotes the outside of the plane conic Q,, the signature assumption
on Q, implies Uy, = (Q; > O)g. Since U, is not orientable, it cannot be contained in a
disk, so Uy, C (Q;Q3—Qj < O) implies that U, is one of the two connected components

of (Q,Q5 — Q3 < 0)y, which implies the two ovals of A must be nested.
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We now relate the real points of A to those of the corresponding curve on the the

twisted double cover.

Lemma 2.14. Let A — A and A~ — A be as defined in Section 2.2. Then
A(R) = Im (w(R): AR) — A(R)) U Tm (w*(R): A~(R) - A(R)) ,

In particular, the map @ (R): A(R) — A(R) on real points is surjective if and only if
A=(R) = 0.

Proof. First, we note that the real points of A lie over the locus (A = Or N(Q; = O)p,
and the real points of A~ lie over (A = 0)g N (—Q; = 0)i. From the equations (2), we
see that

(A=0)zN(Q; >0z CImw(R) and (A =0)zN(—Q; >0z C Imz (R).  (4)

The intersection (Q; = 0)r N (A = 0O)g is at most a finite number of points, since
otherwise A is not smooth. Furthermore, since (Q; = O)y is connected and is contained
in (Q;Q4 — O% < O)g, it cannot cross (A = O)p, so on each oval of A(R) either Q; > 0
or —Q; > 0. Thus, each connected component from each set in (4) above is an oval
of A(R) minus a finite number of points, and each oval of A(R) contains points in
one of the two sets in (4). Both A and A~ are smooth projective curves, so their real
loci are homeomorphic to a (possibly empty) disjoint union of circles [22, Section 3.3].
Since w and @~ are finite morphisms, the induced maps @ (R) and @ (R) are closed by
[9, Theorem 4.2]. Therefore, the closure (in A(R)) of each component in the left-hand set
in (4) is in the image of @ (R), and the closure of each component in the righthand set in
(4) is in the image of @~ (R). [ |

It follows that if A(R) # ¢ and @ (R) is not surjective, then A~ has an R-point

and so Y5 /a is rational. In particular, when A(R) # ¢ we have the following:
Corollary 2.15. If A(R) # ¢4, then at least one of Yi/a0r Yz 5 is rational.

However, when A(R) = @, it is possible for both YA/A and YA—/A to be irrational,

see Example 4.2.
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3 The Degree 2 del Pezzo Surface and the Intermediate Jacobian Torsor Obstruction

In this section, we prove Theorem 1.2, which characterizes rationality for the double
covers in Section 2.2 for all but two isotopy classes of the quartic A. The key technical
input to Theorem 1.2(1)—(2) is Proposition 3.8, which shows that under an assumption
on the sign of the equation Q,Q; — Q% defining A, the intermediate Jacobian torsor
obstruction characterizes rationality.

Before proving Proposition 3.8, we first show Theorem 1.2(3)—(4). Namely, we
show that YA/A is rational if A(R) is four ovals, and that if A(R) is three ovals then

topological criterion that Y3 / A®) is connected is sufficient to guarantee rationality.

Proposition 3.1 (Theorem 1.2(3)-(4)). Let Y := Yijm — P! x P? be a double cover

constructed as in Section 2.2. Assume that either

1. The real isotopy class of A is four ovals, or

2. The real isotopy class of A is three ovals and Y(R) is connected.

Then the quadric surface bundle ¥ — P! admits a section (over R). In particular,

Y is rational (over R).

To prove Proposition 3.1, we first study an associated degree two del Pezzo
surface and use the geometry of this surface to construct certain geometric sections
of the quadric surface bundle 7,: ¥ — P! in Section 3.1. In Section 3.2, we show that
under the assumptions of Proposition 3.1, such a section exists over R.

Then, in Section 3.3, to prove Proposition 3.8, we show that whenever this degree
two del Pezzo surface contains real lines, the IJT obstruction characterizes rationality
of Y. This condition that the surface contains real lines is determined by the sign of
Q,Q4 — Q3.

Throughout, we let Q;, Q,, Q; € Rlu, v, w] be quadratic forms defining an étale
double cover of a smooth quartic as in Theorem 2.1,and Y := YA/A the associated double

cover of P! x P? defined in Section 2.2.

3.1 Lines on the associated degree 2 del Pezzo surface

The results in this section are based on ideas joint with S. Frei, S. Sankar, B. Viray, and
I. Vogt. In particular, Proposition 3.2 and the idea to use lines on the associated degree
2 del Pezzo surface to construct sections of the quadric surface bundle were obtained

during the preparation of [12].
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: . 1 2 :
Recall from Section 2.2 that the double cover Y := YA/A — ]P[to:tl] X IP’[u:V:W] is
defined by the equation z? = t2Q, (u, v, w) + 2t5t, Q,(u, v, w) + t2Q4(u, v, w). The branch

locus is the (2, 2)-divisor
W= W;,, = (tgal(u, v, W) + 2t5t;Qy(u, v, w) + t%OS(u,V, w) = 0). (5)

Letn/: W — P! x P2 — P! denote the compositions of the inclusion with the projections.

The second projection 7y: W — P2 is a double cover branched along the quartic
curve A, so W is a del Pezzo surface of degree two. Thus, W is isomorphic to the blow
up of IP’(% at seven points Py, ..., P; € P2(C) in general position. We use this description to
index the 56 (complex) lines (i.e., genus 0 curves with self-intersection —1) of W, which
map to the 28 (complex) bitangents of A: the exceptional divisors Ej, ..., E, of the blow
up; the strict transforms L;; of the line passing through P; and P; for i < j; the strict
transforms Q;; of the conic passing through the five points complementary to P;, P; for
i < j; and the strict transforms C; of the cubic passing through P;, ..., P, with multiplicity
two at P;. (See e.g., [10, Section 8.7].)

Away from the conic defined by Q,, the double cover 7;: W — IP? is locally given

by the double cover
(tQ; + Qy)* = —(Q,Q; — Q3). (6)

The first projection 7} : W — P! is a conic bundle whose discriminant divisor is
equal to the branch locus — det(t3M; + 2tyt, M, + t2M;) = O of the genus two curve I
defined in Section 2.2. Each singular fiber of 7] is a rank 2 conic, so the components of
the singular fibers of 7; make up twelve of the lines on W.

The lines on W come in pairs (¢, ¢') with ¢ - ¢’ = 2. Each pair of lines maps under
m, to the same bitangent of A. In particular, ¢ is defined over R if and only if ¢’ is. Using
the above description of the lines after identifying W with a blow up of P?, the line pairs
are (E;, C;) and (L, Qy).

Proposition 3.2. The 56 geometric lines on W have the following decomposition into

three sets:
1. 12 are the geometric components of the six singular fibers of the conic bundle
Ty

2. 12 give degree two geometric multisections of 7{; and
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3. The remaining 32 give geometric sections of n{, and hence give geometric

sections of the quadric surface bundle 7;: ¥ — P1.

Moreover, the sets (1) and (2) each contain the same even number of lines defined

over R.

Proof. Throughout this proof, we work over C. The result will be proven by computing
intersection numbers. By the action of the Weyl group W(E,) on the lines of the del Pezzo
surface, we may assume that one of the singular fibers of 7] is E; + L, [13, Section 5].

Then one computes:

1. Thelines E, {E; | i > 3}, L5, {L,; | j = 3} each have intersection 0 with E; +L,,.
These are the twelve components of the singular fibers of 7.

2. The lines Cy,{C; | i > 3}, Q;5,{Qy; | j = 3} have intersection 2 with E; + L,,.

3. The lines {Lyj | j > 3}, {Q; | i > 3},C, have intersection 1 with E; and
intersection O with L,,. The lines {Q,; | j > 3}, {L;; | i > 3}, E; have intersection
0 with E; and intersection 1 with L,,. Together, these 32 lines give sections of

‘ . 1
the conic bundle 7} : W¢ — P¢.

Since W is the branch locus of 7: Y — P! x P2, the preimage in Y of any of the 32
lines giving sections of 7;: W — P! is a section of r;. From the explicit description, we
see that each line in (1) is paired with a line in (2), so these sets contain the same number
of lines defined over R. Moreover, since the members of (1) are components of singular

fibers of the conic bundle 7{, this number must be even. [ |

3.2 Splitting of real bitangents in the del Pezzo surface

In this section, we show that when A(R) consists of four ovals, each real bitangent of
A splits into two real lines on W. Furthermore, when A(R) is three ovals and Y has
connected real locus, we show that either all of the real bitangents of A split into two
real lines on W, or A(R) # @. Combining this with Proposition 3.2 and Proposition 2.2(3)
yields the rationality construction.

Recall from Notation 2.6 that the real components of the even degree plane curve
A are all ovals, and the complement of A(R) in P?(R) is a the disjoint union of a non-
orientable set U, and a finite number of disks. If none of the ovals of A are nested, then
the set U, is either equal to (Q;Q4 — Q% < 0); or (Q,;Q5 — Q3 > 0);. Since A is a smooth
quartic, the only case for which nesting occurs is two nested ovals. In this case, either
(Q,Q3 — Q% < 0)y or (Q;Q4 — Q3 > 0); is disconnected, and the disconnected set is the

disjoint union of U, and a disk.
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Lemma 3.3 ([8], [19, Proof of Theorem 6.3]). The real bitangents of A are split in the del
Pezzo surface W defined in (5) if and only if U, C (Q,;Q5 — Q3% < O)p.

Proof, cf.[19, Proof of Theorem 6.3] A neighborhood of any line in P2 is not orientable,
so away from the points of tangency, each real bitangent of A is contained in U,. The
preimage of a real bitangent is split in W if and only if it has a smooth real point. For
a point P € P2(R) \ (Q; = 0)p, we see from equation (6) that the preimage of P under b2
splits as two real points if and only if (Q;Q; — O%)(P) <0. |

Before showing the results for three and four ovals, we note the following

consequence of Lemma 3.3, which we will use in the proof of Proposition 3.8.

Corollary 3.4. If U, C (Q,Q; — Q3 < 0)y and I has no real Weierstrass points, then the

quadric surface bundle 7; has a real section.

Proof. The branch locus of ' — P! is the discriminant locus of the conic bun-
dle n;: W — P!, so the assumption that I' has no real Weierstrass points implies
no component of a singular fiber of 7| is defined over R. W contains real lines by

Lemma 3.3, so by Proposition 3.2 they all give sections of 7; and hence x,. |
Lemma 3.5. If the real isotopy class of A is four ovals, then U, = (Q;Q3 — Q3 < 0)p.

Proof. Since A(R) is four ovals, the locus (Q;Q; — O% < 0)p is either connected or
consists of four connected components. We will show that (Q,05— O% < 0)y is connected,
and hence is equal to U, . The key input is Lemma 2.8, which guarantees that the images
of YA/A(R) and YA,/A(R) in P?(R) can have at most three connected components.

First assume that Q; is negative definite. By Lemma 2.9, the image of Y3/a®R)
under 7,(R) is the locus (Q;Q; — Q3 < 0)y; hence, using Lemma 2.8, (Q;Q; — Q% < O)y
cannot have four connected components and so must be connected. The same argument
using the twisted double cover Y;_ , shows that if Q, is positive definite, then (Q,Q; —
Q3 < 0)p is connected. So we may reduce to the case that Q, is indefinite.

Suppose for contradiction that (Q,Q; — Q3 < 0)y is not connected, and hence
consists of four connected components. Since (Q; = 0)y is contained in the closed disk
defined by one of these connected components, then either the image (Q; > 0)rU(Q;Q5—
Q3 < 0)p of Y34 (R), or the image (—-Q; > O)z U (Q;Q; — Q3 < O)p of Yx-,o(R) has four

connected components. This contradicts Lemma 2.8. |

20z 1SNBNY 80 UO JosN duIIEMSUY Jooue) JININN A EE0FE0.L/SL L/L/EZ0Z/2101E/UIWl/WOod"dNo OIS PED.//:SARY WO, PaPEojUMOC



On Rationality of Real Degree 4 Conic Bundles 133

Corollary 3.6. If A has real isotopy class four ovals, then all 56 lines on W are defined
over R. If A has real isotopy class three ovals and if U, = (Q;Q; — Q3 < 0)p, then 32 of

the lines on W are defined over R; in particular, there is a section of 7, defined over R.

Proof. This follows from Lemmas 3.3 and 3.5, since in the four ovals case all 28

bitangents of A are real, and in the three ovals case 16 of the bitangents are real. |

Remark 3.7. Corollary 3.6 follows from results in the literature after identifying the
del Pezzo surface W with one of the two possible real double covers of P? branched over
the real quartic A. Namely, if A is defined by the real equation f(u, v, w) = 0 with (f <
0)g = U,, then the two possible double covers are F{ = (t*> = f(u,v,w)) C P3(1,1,1,2)
and Fy = (2 = —f(u,v,w)) C P3(1,1,1,2), as in [19]. By [8], the preimages of the real
bitangents of A split in F, (see also [19, Section 6]).

Proof of Proposition 3.1. First suppose A(R) is four ovals. Then the conic bun-
dle nj: W — P!, and hence the quadric surface bundle n;: ¥ — P!, has a real
section by Proposition 3.2 and Corollary 3.6. In particular, Y is rational over R by
Proposition 2.2(2).

Now assume A(R) is three ovals and Y(R) is connected. If U, = (Q,Q5— O% < O)p,
then Proposition 3.2 and Corollary 3.6 imply that the conic bundle 7y : W — P!, and hence
the quadric surface bundle 7, : ¥ — P!, has a real section. So we may suppose that U,
is (Q,Q5 — Q3 > 0)i, which implies that (Q;Q; — Q3 < 0)y is disconnected. By Lemma
2.8, the locus (Q; > O)p U (Q;Q; — Q% < O)p is connected. Hence, (Q; < 0)p must be
contained in one of the disks of P?(R) \ A(R). In particular, (Q; > O)z N (Q;Q3 — Q% =
O)r # 9, so A(R) # (3. By Proposition 2.2(3), 7Y — P! has a real section and hence Y is

rational. [ |

3.3 Sufficiency of the intermediate Jacobian torsor obstruction when Q;Q3 — O% < 0

outside A

In this section, we will use the del Pezzo surface considered in the preceding sections
to prove that if Q,Q; — Q% is negative outside of the ovals of A, then the IJT obstruc-
tion characterizes rationality. The main result is Proposition 3.8, and we will obtain
Theorem 1.2(1)—(2) as corollaries.

Recall from Section 2.3 that [12] showed that the three-folds Y defined in
Section 2.2 have four intermediate Jacobian torsors P = Pic2, P, PV = Pic}, and POV,

where I' is the genus two curve associated to A — A in Proposition 2.2; and that
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P+ PV = P Thus, the vanishing of the IJT obstruction is equivalent to (at least)
one of the torsors P or P being trivial. In the latter case, [12] proved that the existence
of a point on the intermediate Jacobian torsor P() yields a Galois-invariant geometric
section of the quadric surface bundle 7;. In general, this need not descend to a real
section, since BrR is nontrivial. However, we will show that in the case Q;Q; — Q3 < 0
outside A (which happens precisely when W contains real lines), we do in fact obtain a
real section.

As in the previous sections U, denotes the outside of A (Notation 2.6). Recall that
by Lemma 3.3, the condition that U, C (Q;Q5 — O% < 0)p is equivalent to splitting of the
real bitangents on the degree two del Pezzo surface W defined in (5), which is the branch

locus of Y — P! x P2,

Proposition 3.8. Assume U, C (Q;Q; — Q3 < 0). Then the quadric surface bundle

my: Y — P! has a real section if and only if the IJT obstruction vanishes for Y.

Proof. If 7#; has a section, then Y is rational so the IJT obstruction vanishes by
[2, Theorem 3.11], so it remains to show the reverse implication. If I has no real
Weierstrass points then 7; has a section by Corollary 3.4, so we may assume I" has at
least one real Weierstrass point. Then all the intermediate Jacobian torsors are trivial
and in particular PV)(R) # @, so by [12, Proposition 4.5], there exists a real line ¢ C P2
and a Galois-invariant geometric section & of ¥, := Y xp2 £ — ¢ that maps with odd
degree to P! under ;. [12, Lemma 5.1] and the assumption that U, = (Q,Q5 — Q% < 0)y
implies that every real point on ¢ has preimage one or two real points in the del Pezzo
surface W, so Y, — { is surjective on real points and in the proof of [12, Proposition 4.5]
G may in fact be chosen to be defined over R by Theorem 2.5. By Springer’s theorem

[11, Corollary 18.5], the quadric surface bundle 7, has a real section. [ |

Remark 3.9. The condition that U, C (Q;Q; — Q3 < 0)y alone is not sufficient to
guarantee rationality. The irrational example of [12, Theorem 1.3(2)] is one oval and
has U, = (Q;Q; — Q% < 0)y, but it has an IJT obstruction; we will generalize their
example in Example 4.3 below. Example 4.5 will give a two nested ovals example with
U, C Q05— O% < 0)g (moreover, in this case, Y(R) is disconnected). In these examples,

the eight real lines on W are all contained in sets (1) and (2) of Proposition 3.2.

Remark 3.10. [12, Example 1.5] has A(R) one oval, U, ¢ (Q;Q5 — O% <O, YR) #0

connected, and no IJT obstruction. Rationality of Y is still unknown in this example.
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We have found many additional similar examples by searching for examples where I'
has two real branch points and =, (R) is not surjective, and by using the code P1tilde-
bitangents.sage in [17] to verify PV (R) # @, for example:

2—V2+W2, Q, = u2—3V2—w2, Q5 := —10u? — 10v? — w?.

Q,:=-u
We now apply Proposition 3.8 to the cases of no ovals, two nested ovals, and two

non-nested ovals.

Corollary 3.11 (Theorem 1.2(1)). If A(R) = ¢ and Y(R) # ¢, then the IJT obstruction

vanishes if and only if 7; has a section.

Proof. It suffices to show that if 7, is not surjective on real points, then ¥ has an IJT
obstruction to rationality. First, note that in the A(R) = ¥ case, we have that (Q,Q;— O% <
0)r is either empty or equal to U,. The assumptions that A(R) = ¢ and Y(R) # ¢ imply
that U, = (Q,Q; — Q% < 0); and that the image of m,(R) is P?(R): this is immediate
from Lemma 2.9 if Q, is negative definite, and follows from the containment (Q, = 0)y C
(Q,Q5 — Q% < 0)y if Q, is indefinite. If Q, is positive definite and (Q,Q5 — Q% < 0); is
empty, then using Lemma 2.9 and the PGL, action on the quadratic forms Q; described in
[12,Theorem 2.6(1)], it follows that every fiber of 7, has signature (3, 1), which contradicts
the assumption that 7 (R) is not surjective. Thus, we must have U, = (Q;Q;—Q3 < O)p =
P2(R). The claim then follows from Proposition 3.8. [ |

Corollary 3.12. Assume A(R) is two nested ovals. If the IJT obstruction vanishes, then
Y (R) is connected.
More precisely, if A(R) is two nested ovals and Y(R) is disconnected, then I'(R)

has real points but PV(R) = ¢, so PV cannot be isomorphic to Pick for any i.

Proof. Disconnectedness of Y(R) implies that (Q; > 0)p U (Q;Q5 — O% < O)g is
disconnected and contains U,. Since (Q; = 0)y C (Q,Q5 — Q3 < 0), we must have
that U, C (Q,Q3 — Q3 < 0)i. If the IJT obstruction vanishes, then Proposition 3.8
implies that the quadric surface bundle 7; has a section, which is impossible since Y(R)

is disconnected. [ |

Corollary 3.13 (Theorem 1.2(2)). If A(R) is two non-nested ovals and Y(R) is connected,

then 7, has a section if and only if the IJT obstruction vanishes.
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Proof. If U, = (Q;Q5 — Q% < 0); then the result follows from Proposition 3.8, so we
may assume that U, # (Q;Q5 — Q3 < 0)p. Then (Q,Q4 — Q3 < 0); is a disjoint union of
two disks, so connectedness of Y(R) implies (Q; > 0)z N (Q,Q5 — Q3 < 0)y # @, which
implies A(R) # 0. |

Remark 3.14. Corollary 3.13 shows that the topological criterion of connectedness
of Y(R) combined with the vanishing of the IJT obstruction is sufficient to guarantee
rationality of Y in the two non-nested ovals case. In this case, neither condition alone
is sufficient. Example 4.4 has Y(R) connected but has an IJT obstruction, and in
[12,Theorem 1.3(1)], the IJT obstruction vanishes but Y(R) is disconnected.

Remark 3.15. Throughout this section, we have assumed that Q;Q; — Q% is negative
outside the ovals. In the case when Q,Q; — Q3 is instead negative inside the ovals, we
can immediately determine rationality in several cases: if A(R) = ¢, then exactly one
of YA/A or YA*/A is rational, and the other has no real points; and if A(R) is two or
three non-nested ovals, then exactly one of YA/A or YA—/A is rational, and the other
has disconnected real locus. However, in the cases of one oval or two non-nested ovals,
rationality is less clear. In these cases, at least one of YA/A or YA—/A is rational by
Corollary 2.15. Example 4.12 shows that for two nested ovals case, it is possible for both
Yi/a and YA to be rational. For one oval, [12, Example 1.5] gives an example where

Y&*/A is rational, but rationality of YA/A is unknown; see also Remark 4.18.

4 Construction of Examples

In this section, we construct examples of conic bundles by giving equations for quadrics
Q,,0Q5,Q; and taking YV := Y;,, and A — A to be as defined in Section 2.2. Our
examples are constructed in the same manner as those of Frei-Ji-Sankar-Viray-Vogt.
The topological type of A(R) is determined using the Sage code accompanying [23].
Smoothness of A and A and the numerical claims about the signatures of the fibers
of 7, can be verified by hand or with the code Quadric-bundle-verifications.sage
in our GitHub respository [17], which is a Sage implementation of the Magma code
accompanying [12]. By deforming the coefficients in each example, one can obtain similar
examples of each type; we refer the interested reader to the Macaulay2 code Singular-
members .m2 in [17], which one can use to find singular members in such a one-parameter
family.

We first construct irrational examples in Section 4.1, where irrationality is

witnessed either by the IJT obstruction (Section 3.3) or by the real locus of Y(R). In
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Section 4.2, we show that several of these examples are irrational despite having no IJT
obstruction, further demonstrating the insufficiency of this obstruction when Q,; Q; — Q3
is negative inside A. Finally, we construct rational examples in Section 4.3.

Before giving our constructions, we first outline where they fit in by giving a

proof of Theorem 1.1:

Proof of Theorem 1.1. As mentioned in the introduction, (6) is [12, Proposition 6.1].
For (1), Example 4.10 is rational, Example 4.2 is irrational and has real points, and
Example 4.1 has no real points. For (2), Example 4.11 is rational and [12, Theorem 1.3(2)]
is irrational (Example 4.3 gives additional examples with the same obstruction). For (3),
Example 4.14 is rational, Example 4.4 is irrational and connected, and [12, Theorem
1.3(1)] is irrational and disconnected. For (4), in the two nested ovals case, Examples
4.12(1)—(2) are rational and Example 4.5 is irrational, and in the three ovals case Example

4.15 is rational and Example 4.6 is irrational. Finally, Example 4.16 shows (5). |

4.1 Construction of irrational examples

We will now construct the irrational examples of Theorem 1.1. Example 4.4 below,
together with [12, Theorem 1.3(1)], shows the necessity of both the topological and IJT
conditions in Theorem 1.2(2).

In our setting, many obstructions to rationality automatically vanish: BrY =
BrR, the intermediate Jacobian of Y is isomorphic to Piclq, and the unramified cohomol-
ogy groups are trivial whenever Y(R) is connected; see [12, Section 1.1] for details. Our
examples will use the topological and IJT obstructions: Example 4.1 has a real points
obstruction to (uni)rationality; Examples 4.2, 4.3, and 4.4 have an IJT obstruction to
rationality; and Examples 4.5 and 4.6 have a real components obstruction to (stable)

rationality.

Example 4.1 (Pointless example with A(R) = f)). Let Y be the double cover of P! x P?
constructed in Section 2.2 for the quadrics

2 2

0, =—u? —v?—w?, 02:=—u2

—v? + Wz, Q5 = —2u? — 9v? — 3w?,

Then AR) = ¢, T is defined by y? = t6 + 2¢% + 10¢* + 43 + 19¢% + 30t + 54, and I has
no real Weierstrass points. In particular, I'(R) # ¢ is connected. The fibers of 7, all have
signature (0,4), so Y(R) = ¢.
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The next three examples are unirational, and irrationality is witnessed by the
IJT obstruction.

Example 4.2 (Irrational example with A(R) = ¢ and Y(R) # #). By Corollary 3.11, if Q,
is positive definite and Q, is negative definite, and the resulting A — A is an étale cover

of a smooth curve, then both Y3 /A and Y3 have IJT obstructions to rationality. For an

-/
explicit example, one may take

2 2

01::u2+V2+W2, Q,:=u*-v", 03::—u2

—v? —9w?.
Example 4.3 (Irrational example with A(R) one oval). Let Q;, Q,, Q; be quadrics such
that the resulting A — A is an étale cover of a smooth curve and such that (Q,05— O% <
0)g is a non-orientable subset of P?(R). If 7, is not surjective on real points, then Yi/a
has an IJT obstruction by Proposition 3.8.

[12, Theorem 1.3(2)] gives an explicit example of such a choice of quadrics.
Alternatively, one may also take the following (noting that (u = 0) C (Q,Q5 — Og < O)g,

so (Q; Q4 — Q% < 0)y is not orientable):

2 2 2

Q,:=-u —V2~|—W2, Q,:=u —uV~|—3V2, 03:=—u2+v2+2Vw—10w.

Example 4.4 (Irrational, connected example with A(R) two non-nested ovals). Define

2

Q, :=-u" - vZ + Wz, Q, = u? 4+ 3v? + uw — vw, Qj:= —u? + v+ 2vw — 10W2,

and let Y be the associated double cover of P! x P2 constructed in Section 2.2. Then A(R)
is two non-nested ovals. I' is defined by y? = —t% +8t5 — 4t* — 66¢% + 116t — 36t — 11 and
has six real branch points [t : 1] with t ~ —2.9708, —0.1845, 0.7545, 1.5708,2.8152,6.0149.

The signatures of the fibers Y};.; are as follows:

t -2 0 1 2 4 7

Signature (0,4) (1,3) 2,2) (1,3) 2,2) 1,3)

In particular, Y(R) is connected and r; is not surjective on real points. This
implies A(R) = ¢ by Proposition 2.2(3), so Uy, = (Q,Q3; — Q3 < O0)g. Thus, by

Proposition 3.8, Y has an IJT obstruction to rationality.
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In the following examples, we construct conic bundles with disconnected real
loci. These examples are unirational but not stably rational. Recall from Corollary 2.11
that if Y is constructed as in Section 2.2 and has disconnected real locus, then A(R)
must be two or three ovals. The following examples, together with [12, Theorem 1.3(1)]
show these cases all occur: Frei-Ji-Sankar-Viray—Vogt gave an example where A(R) is
two non-nested ovals and Y (R) has two connected components, and here we use their

methods to give examples with two nested ovals and three ovals.

Example 4.5 (Disconnected example with A(R) two nested ovals). Define

Q, = u? +v?— wz, Q, = u? + V2, Q5 := —24u® — 15v? + wz,
and let Y be the associated double cover of P! x P2 constructed in Section 2.2. Then A(R)
is two nested ovals, and I' is defined by y? = 5 + 4t®> — 36t* — 82¢% 4 395t% + 78t — 360
and has real Weierstrass points over [t : 1] with t = —6,—5,—1, 1, 3,4. The signatures of

the fibers Y|;.;; are as follows.

t —-5.5 -3 0 2 3.5 5

Signature 1,3) (0,4) 1,3) (0,4) (1,3) 2,2)

Thus, Y(R) has two connected components by Lemma 2.7.

Example 4.6 (Disconnected example with A(R) three ovals). Let Y be as defined in

Section 2.2 for
Q, = —2u?—2uv +4duw — 2V2+6VW — 5W2, Q, :=10uv—-20uw +5V2 — 20vw +20W2,

Qg := —48u? — 48uv + 96uw — 20v? + 88vw — 92w,

Then A(R) is three ovals. The genus two curve I' is defined by y? = t5 —
56t + 784t> — 2304 and has six real Weierstrass points over t = —6, —4, —2,2,4, 6. The

signatures of the Y[, are as follows.

t -5 -3 0 3 5 7

Signature (1,3) 0,4) (1,3) 0,4) (1,3) 0,4
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Thus, Y(R) has three connected components by Lemma 2.7.

Remark 4.7. If X is a smooth complete intersection of two quadrics in P® that contains
a conic C defined over R, then projection from the conic realizes the blow up of X
along C as a conic bundle with quartic discriminant curve [15, Remark 13]. Krasnov's
topological classification of intersections of quadrics [20, Theorem 5.4] shows that a
conic bundle arising in such a way can have at most two real connected components, so
in particular the conic bundle of Example 4.6 is not birational over R to an intersection
of two quadrics. In the following section, we will also see using [12, Corollary 6.3] that
Example 4.1 cannot be obtained from an intersection of two quadrics by projection from

a conic.

Remark 4.8. When 7; is not surjective on real points, the signature sequence of the
fibers of 7, appears to dictate the properties of Y and A. The examples we have found

have all followed the following pattern:

1. Signatures (0,4), (1, 3): Experimentally, these examples behave like [12, Exam-
ple 1.5]: A(R) is one oval, Q,Q; — Q% > 0 outside A, and PV (R) # #. In this
case, we cannot determine rationality.

2. Signatures (0,4),(1,3),(2,2),(1,3): Experimentally, these examples behave
like Example 4.3: A(R) is one oval and Q,;Q; — Q5 < 0 outside A, so there
is an IJT obstruction to rationality.

3. Signatures (0,4),(1,3),(2,2),(1,3),(2,2),(1,3): Experimentally the examples
have exhibited the behavior of Example 4.4: A(R) is two non-nested ovals,
and there is an IJT obstruction.

4. Signatures (0,4),(1,3),(2,2),(3,1),(2,2),(1,3): This is the setting of Corollary
3.11. In this case A(R) is empty, the image of 7, (R) is P2(R), and there is an
1JT obstruction.

5. Signatures (0,4), (1, 3),(0,4), (1, 3): Y(R) has two connected components, and
experimentally A(R) has been two non-nested ovals and PV (R) # ¢.

6. Signatures (0,4),(1,3),(0,4),(1,3),(2,2),(1,3): Y(R) has two connected com-
ponents and A(R) must be two nested ovals by Remark 2.13. Y has both a
topological and IJT obstruction by Corollary 3.12.

7. Signatures (0,4),(1,3),(0,4),(1,3),(0,4),(1,3): Y(R) has three components,
and A(R) is necessarily three ovals by Corollary 2.11. Experimentally, P has
R-points.

20z 1SNBNY 80 UO JosN duIIEMSUY Jooue) JININN A EE0FE0.L/SL L/L/EZ0Z/2101E/UIWl/WOod"dNo OIS PED.//:SARY WO, PaPEojUMOC



On Rationality of Real Degree 4 Conic Bundles 141

We do not know if there exists a two nested ovals example with Y(R) connected
and m; not surjective on real points. If one could use the above signature sequences
to give an isotopy classification for Y, in the style of the intersection of two quadrics
situation [1, 20], one might be able to show that in the two nested ovals case Y is rational

<= Y(R) is connected <= the IJT obstruction vanishes.

4.2 Failure of the intermediate Jacobian torsor obstruction

Proposition 3.8 shows that the IJT obstruction characterizes rationality for Y if 0, Q5 —
Q3 is negative on the outside of A (which implies that Y(R) # #). However, the IJT
obstruction is no longer sufficient to show rationality when if Q,Q; — Q3 is negative
inside the ovals of A, as shown by the two non-nested ovals example of [12, Theorem
1.3(1)]. In this section, we use the techniques of [12, Theorem 1.3(1)] to show that
Examples 4.1 and 4.6 give further examples of this failure of the IJT obstruction to
characterize rationality.

Recall that A and (Q,Q; — Q3 < 0)y each have no real points in Example 4.1,
and that Y(R) and A(R) each have three connected components in Example 4.6. So
0,04 — O% is negative inside A in both of these examples. Before proving that the IJT
obstruction vanishes in these examples, we first review the strategy of [12]. Recall from
Section 2.3 that [12, Section 2] gives an explicit description of points on the intermediate
Jacobian torsor P, Applying their criterion, Frei-Ji-Sankar-Viray—-Vogt show that
IJT obstruction also fails to characterize rationality for geometrically standard conic
bundles over P? by constructing an example of a conic bundle whose real locus has two
connected components and such that there is a Galois-invariant set of four points of
A spanning a 3-plane in P* and whose pushforward under @ is A N (w = 0). Thus,
they explicitly exhibit a real point on the intermediate Jacobian torsor P, showing
that P = P = Pic2 and P = P = Pic}. (In fact, in their example I'(R) # @, so
all the intermediate Jacobian torsors are trivial over R.) We apply their methods to

Examples 4.1 and 4.6:

Proposition 4.9. All the intermediate Jacobian torsors are trivial in Examples 4.1 and
4.6. In particular, these conic bundles have no IJT obstruction to rationality, and the real

locus of Y exhibits irrationality.

We will use the line (w = 0) in Example 4.1, and the line (v = 0) in Example 4.6.
In the argument for Example 4.6 below, we exhibit a point on PV using the Sage

code P1tilde.sage in [17]; this code checks the rank of the matrix obtained from a
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Galois-invariant set of four points on A(C) mapping to A N¢ for any line ¢ defined over Q
and that meets A in four distinct complex points. In our GitHub repository [17], we also
include the code P1tilde-bitangents.sage, which does the analogous check when
¢ is a real bitangent of A; the code that computes the real bitangents of A is due to
Plaumann-Sturmfels-Vinzant and is included in the supplementary material for their

paper [23].

Proof for Example 4.1 (No ovals, Y(R) = ¢). The quartic curve A is defined by the
equation u* + 9u?v? + 7u?w? 4+ 8v* + 14v?w? + 2w* = 0, and the intersection A N (w = 0)
consists of the four complex points [-i:1:0],[i : 1:0], [—2iv/2 :1:0],[2i+/2 : 1 : 0]. One
verifies that the set

[(:1:0:0:iv7], [=i:1:0:0:—iv7], [2iv2:1:0:7:47], [=2iv/2:1:0:+7: 7]

of four points of A is Gal(C/R)-invariant and maps to A N (w = 0). Since

i 1 0 V7
-i 1 0 —iV7
det = —56+/2 £ 0,
2iv2 1 V7 V7
—2iv2 1 V7 V7
the four points above span a 3-plane in P*, so PV(R) # ¢. [ |

Proof for Example 4.6 (Three ovals, Y(R) three connected components). The quartic
curve A is defined by the equation 96u* + 192u®v + 132u?v? + 36uv? + 15v* — 384usw —
448ulvw —136uviw —96v3w+408ulw?2 +152uvw? +212viw2 —48uw? — 192vws +60w?,
and its restriction to the line (v = 0) is given by 96u* — 384u®w + 408u?w? — 48uw?® +

60w? =0, so A N (v = 0) consists of four points with approximate coordinates
[-0.01183 +0.38575:: 0: 1], [2.0118+0.385751:0:1].

One can verify by hand or using P1tilde.sage in the accompanying code [17] that
the set

[-0.01183 +0.38575i1: 0:1: —0.35355 F 2.207941 : 1.97589 + 9.48178i],

[2.0118 £0.38575i: 0: 1 : 0.35355 F 2.20794i : 1.97589 F 9.48178i]
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Fig. 1. Theregions (Q;Q3 —Q% < 0)r in blue and (Q; > O)g in red in Example 4.4 (left), Example 4.5
(center), and Example 4.6 (right), on the affine open chart (w # 0). In each example, the image of
Y(R) in P2(R) is equal to (Q;Q3 — Q% < O)g.

is a Gal(C/R)-invariant set of points on A(C) mapping to A N (v = 0), and they span a

3-plane in P* since

—0.01183+0.38575i 1 —0.35355 — 2.20794i 1.97589 +9.48178i
—0.01183—-0.38575i 1 —0.35355 + 2.20794i 1.97589 —9.48178i

det ~ —359.61663 #0.

2.0118+40.38575¢ 1 0.35355 —2.20794i 1.97589 —9.48178i
2.0118 - 0.38575¢ 1 0.35355+2.20794i 1.97589 +9.48178i

In this example, Y does not contain any real points above the line (v = 0), as
illustrated in Figure 1. Thus, one can see concretely that the Galois-invariant geometric
section constructed from the point on P(!) by [12, Proposition 4.5] does not descend to a
real section.

|

4.3 Construction of rational examples

In this section, we construct rational examples of double covers as in Section 2.2. We
will focus on two cases: (1) A has no real points, and (2) Q;Q; — Q% < 0 inside A.

Recall that if A — A is any étale double cover of a smooth plane quartic, then
Theorem 2.1 ([5]) shows that it can be realized in the form Equation (2). If A has a point,
then the corresponding double cover is automatically rational by Proposition 2.2(3).
Thus, the question is more interesting when A(R) = #.

We also consider examples where Q;Q; — Q3 < 0 inside A (Notation 2.6) because

Section 3.3 already gives a rationality criterion in the opposite case. (Recall this never
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happens for four ovals by Lemma 3.5.) At least one of Y3,a OF the twisted double cover
Yi- /A is rational. When A is two non-nested ovals or three ovals, then exactly one of
the two is rational and the other has disconnected real locus; the twisted double cover
corresponding to [12, Theorem 1.3(1)] and Example 4.6 give such examples.

When A is one oval and Q; are quadratic forms such that Yi/a has the properties
in [12, Example 1.5] (see Remark 3.10), then the twisted cover produces a rational
example with A~(R) # ¢ and 0,05 — O% < 0 inside A. However, we are not able to
construct a one oval example with A~(R) = {4, see Remark 4.18. In the two nested
ovals case, we construct examples both with and without points on A. In particular,
Example 4.12(1) exhibits an example where 7, : Y — P! has a section that does not come
from any known rationality construction: A(R) = #, and moreover the conic bundle
Y, — ¢ over any real line ¢ C P? has no real sections, so the rationality construction
does not come from Section 3.

Throughout, we will compute the signatures of the fibers of the quadric surface
bundle 7; to show that it is surjective on real points. Theorem 2.5 ([26]) then implies that
7, has a real section; thus, Y is rational. We also note that in the following examples,
with the exception of Example 4.10, both Yi/a and the twisted double cover Y-, are

rational.

Example 4.10 (Rational example with A(R) = #). Let Q;,Q,, Q5 be as in Example 4.1,
and let Y := Y&*/A be the twisted double cover defined in Definition 2.4. Then A(R) = ¢,
and I' is defined by y? = —t® + 2t5 — 10¢* + 4¢3 — 19¢? + 30t — 54. We note that I'(R) = 0,
so in particular I has no real Weierstrass points. Every fiber of 7; has signature (3, 1),
so m; has a section.

In this example (Q,Q5 — Q3 < 0); = @, and the image of Y(R) — P?(R) is (—Q, >
0)g = P2(R).

Example 4.11 (Rational example with A(R) one oval, A(R) = , 0,05 — O% < 0 outside
A). Define

Q, = —u? +uv — Wz, Q, = 3u? + uv — v2 + Wz, Qj = —u? - 2uv-— 2w2,

and let A — A and YA/A be as defined in Section 2.2. Then A(R) is one oval, and we claim
A(R) is empty.

For this, since A(R) is connected and the zero locus (Q; = O)i is contained in
(Q,Q3 — Q3 < O, so it suffices to check that A has an R-point P such that Q,(P) < 0.
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Indeed, one verifies the restriction of Q; to the line (v = 0) is negative definite, and
A(R) N (v = 0)p # ¥. Next, the genus two curve I' is defined by y? = —+¢6 + 3¢5 — 2¢% +
30t3 — 33t2 4 10t — 2 and has no real points. Every fiber of m, has signature (1, 3), and so
1 (R) is surjective and Y is rational.

The line (w = 0) is contained in (Q,Q; — Q3 < 0)g since the restriction of Q,Q4 —
Q3 to (w = 0) is the equation —8u* — 5u3v + 3u?v? + 2uv® — v*, which is always negative.
Thus (Q,Q; — Q% < 0)y cannot be orientable, so U, = (Q,Q5 — Q% < 0)g. This example is
depicted in Figure 3.

Example 4.12 (Rational examples with A(R) two nested ovals, Q,Q; — Q% <0 inside A).
1. (A(R) is empty.) Let A — A and Yi/a be as defined in Section 2.2 for the

quadrics

Q, = —4u® — 2uv — 2v? — 10uw + 4vw —4w?, Q, := u® —4uv — 3v?

—6uw + 2vw + 2w?, Q4 1= —u? — 6uv + 8uw — 6vw — 3w?.

Then A(R) is two nested ovals, and we claim that A(R) is empty (see
Figure 2).

To show A(R) = @, on the chart (w # 0) we define the box B := {(u,v) | —2 <
u < —1, 3.5 < v < 4.5}. One checks that the boundary of B is disjoint from
(A = 0)p, that the set (A = 0)p N (Q; < 0)r N B contains an R-point (u, v)
with v =4 and -2 < u < —1, and the set (A = 0)p N (Q; < 0)i contains an
R-point in the complement of B whose v-coordinate is 1. In particular, there
are points on both connected components of (A = 0)p where Q, is negative.
Since (Q; < O)g is connected and (Q; = 0)y C (Q,;Q4 — Q3 < 0)i, we have that
Q, <0on (A = 0)p.

Next, genus two curve I' is defined by y? = —58t5 — 398t5 — 677t* + 244t% +
394t? — 24t — 108 and has no real points. All fibers of 7, have signature (1, 3),
so m; (R) is surjective.

In this example, Y\ Y, does not contain any real points above a real bitangent
of A; in fact Y,(R) — ¢(R) is not surjective for any real line £ C P2. Thus, the
section of 7, is not obtained from a curve lying over Y, as in Section 3, and it
is not constructed from a point on A as in Proposition 2.2(3) since A has no

points.
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Fig. 2. The image of Y(R) on the chart (w # 0) in Example 4.11 (left), Example 4.12(1) (center), and
Example 4.12(2) (right). The region (Q;Q3 — O% < O)g is in blue, (Q; > O)R is in red, and the real
bitangents of A are shown in black.

2. (A has an R-point.) Let A — A and Y3, be as defined in Section 2.2 for the

quadrics
Q,:= —u?- 6V2—|-6W2, Q, = —u?+uv+3vi+ W2, Q5 := —2u?—6v%+ 6wl

Then A(R) is two nested ovals, the genus two curve I'; /a is defined by the
equation y?> = —36t5 — 48t> — 78t* — 4613 — 102t> — 24t — 72 and has no
real points, and every fiber of Yim — P! has signature (1,3). Figure 2
gives a visual depiction of this example. In this case, none of the real
bitangents of A give sections of 7; as in Section 3; however, A has R-points,
which can be used to construct sections of ;.

In this case, the image of @ (R) is one oval of A(R). To show this, we consider
the points Py :=[0: 0: 1] € (Q; > O, P, :=10[0:1:1] € (Q; > O,
and P, := [0 : 2 : 1] € (Q; > O)g. Since (Q;0;3 — O%)(Po) = 35 > 0,
(Q,Q; — Q3)(P)) = —16 < 0, and (Q,Q; — Q%)(P,) = 115 > 0, and since
we know that (Q, = 0) is contained in (Q;Q; — Q3 < 0)i, we conclude
that Q; is nonnegative on exactly one of the two ovals, and is nonpositive
on the other. Thus, A and A~ both have real points, so both Yx /A and
Vi, are rational. The twisted double cover Y3 /A has the property that
FA—/A has no Weierstrass points, and the fibers of YA—/A — P! all have

signature (2, 2).
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Fig. 3. The regions (Q;Q3 — O% < O)g in blue and (Q; > O)r in red, in Example 4.14 (left),

Example 4.15 (center), and Example 4.16 (right), on the chart (w # 0). The real bitangents of A
are shown in black. For each, the image of Y(R) is (Q;Q3 — O% <O)R.

Remark 4.13. One can check using Pltilde-bitangents.sage in [17] that in the
preceding Examples 4.10, 4.11, and 4.12, we have P = P() = Pic? (see Section 2.3), and
that in each example P contains points mapping to all of the real bitangents. This gives
rationality constructions for Examples 4.10 and 4.11 by the proof of Proposition 3.8, but
not for Example 4.12. The torsors P = P(1) = Pic}. are non-trivial because I'(R) = #. (By
[12, Proposition 6.4], the fact that I'(R) = ¢ also shows that in each case Y is not obtained

from an intersection of two quadrics by projection from a conic.)

Example 4.14 (Rational example with A(R) two non-nested ovals, A(R) = #). Define

2

01:=—u2—|—uv+vz+vw, 02:=—2uv—|—vw+w2, Q;:=u —V2—2uw,

and let A - A and YA/A be as defined in Section 2.2. Then A(R) is two non-nested ovals.

To show that A(R) = ¢, we work on the chart (w # 0). One can verify that the
lines (w = 0) and (2v = —1) are disjoint from (A = 0)p; that the sets A(R) N (v = 0)
and A(R) N (v = —1) are both nonempty, and that Q, is nonpositive on each of these two
sets. Since A(R) has two connected components, we conclude that Q; is nonpositive on
(A = 0)R. See Figure 3 for a visual depiction.

The genus two curve I is defined by y? = — 3¢5+ 3¢5 — 17¢* + 4% — 2¢2 + 2t — 1 and
has two real branch points, and the signatures of the fibers have sequence (2, 2), (1, 3).

Therefore ; (R) is surjective.
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Example 4.15 (Rational example with A(R) three ovals, A(R) = #). Define

Q, := —3u®+10uv —2v*— duw +4vw +w?, Q, := 5u® +8uv + 5v? +4uw —6vw —2w?,

Q; = —2u? — 8uv — 2v? + 2uw + 2vw — 3w2,

and let A > A and YA/A be as defined in Section 2.2. Then A(R) is three ovals.

To show that A(R) = @, one can argue as in Example 4.14, checking that on the
chart (w # 0) one oval is to the left of (u = —1), the two ovals to the right of (u = —1)
are separated by the line (v = 1), and that Q; < 0 on each oval. The associated genus two
curve I" has equation y? = 39t5 + 102t> — 1335¢* + 1114¢% + 47t? + 20t — 32 and has four
real Weierstrass points. The fibers of 7; have signature sequence (1, 3), (2, 2), (1, 3), (2, 2),

so m; is surjective on real points. See Figure 3.

Example 4.16 (Rational example with A(R) four ovals, A(R) = #). Define the quadrics

Q, := u? +2v?% — 2W2, Q, = 3u? — W2, Q5 := —2u® —v*+ W2,

and let A - A and YA/A be as defined in Section 2.2. Then A(R) is four ovals. To see that
A(R) = @, one can work on the chart (w # 0) and show that each quadrant of the the
(u,v) plane contains an oval, and then argue as in the previous examples. See Figure 3
for a visual depiction.

Theorem 1.2(4) implies Y is rational. One can also check this explicitly: T is
defined by y? = 4t% + 28t% + 12¢* — 34t — 3t?> + 10t — 2 and has six real branch points,

and the fibers Y[;.;; have signatures as shown below.

t -7 -3 -1 0 0.35 0.5

Signature (2,2) 1,3) 2,2) (1,3) (2,2) 1,3)

Remark4.17. If A(R)isfourovals,then I" has six real Weierstrass points by Proposition
3.2 and Corollary 3.6.

Remark 4.18. All the rational examples with A(R) = ¥ we constructed above have the
property that (Q;, = 0)y intersects every component of A(R). One may wonder if a one
oval example with Q,Q; — Q3 < 0 inside A can be constructed in a similar manner. We

have not been able to construct such a rational example: in every example we have found,
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v

Fig.4. The regions (Q;Q3 — O% < O)g in blue and (Q; > 0)r in red for the quadrics defined in
Remark 3.10, on the chart (w # 0). Rationality is unknown in this case.

I has two real Weierstrass points and ; is not surjective on real points. [12, Example
1.5] gives an explicit example. One can also take the quadrics defined in Remark 3.10:
here (Q; = 0)R and A(R) have the points [1:0: 1] and [-1 : 0 : 1] in common (see Figure
4), but Y has no real points over [t: 1] e PY(R) for 1 —+/2 <t <1+ +/2.
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