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We study real double covers of P1 × P2 branched over a (2, 2)-divisor, which are conic

bundles with smooth quartic discriminant curve by the second projection. In each

isotopy class of smooth plane quartics, we construct examples where the total space

is R-rational. For ove of the six isotopy classes, we construct C-rational examples with

obstructions to rationality over R, and for the sixth class, we show that the models we

consider are all rational. Moreover, for three of the ove classes with irrational members,

we characterize rationality using the real locus and the intermediate Jacobian torsor

obstruction of Hassett–Tschinkel and Benoist–Wittenberg. These double cover models

were introduced by Frei, Sankar, Viray, Vogt, and the orst author,who determined explicit

descriptions for their intermediate Jacobian torsors.

1 Introduction

A fundamental question in algebraic geometry is the birational classiocation of algebraic

varieties. The simplest varieties are those that are rational, that is, birational to

projective space. In this paper, we consider rationality over the oeld R of real numbers,

and when we write (stable/uni-)rationality without reference to the ground oeld, we will

mean over R. We study the rationality of real conic bundle three-folds over P2.
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The discriminant double cover �̃ → � ⊂ P2 parametrizing the singular obers of

a conic bundle X → P2 is an important invariant that determines many of the properties

of X. If deg� ≤ 3 and X(R) �= ∅, then results of Iskovskikh show X is rational, and if

deg� ≥ 6, then X is irrational by the work of Beauville (see Section 2.1). In this paper, we

consider the case when deg� = 4. In this setting, X is C-rational [16], but in general, the

geometric rationality construction need not descend to R, even if X(R) �= ∅. It is natural

to ask about the relationship between the real properties of �̃ → � and the rationality

of X. The classiocation of real smooth plane quartics � has been the subject of classical

interest: Klein showed that in the moduli space of real plane quartics, the complement

of the locus of singular quartics has six connected components, each corresponding to

a real isotopy class [18]. These six real isotopy classes had earlier been classioed by

Zeuthen—empty, one oval, two nested ovals, two non-nested ovals, three ovals, and four

ovals—who showed that curves in these classes have 4, 4, 4, 8, 16, and 28 real bitangents,

respectively [27]. We exhibit the following rationality behavior of the three-fold X for

different real isotopy classes of the quartic �:

Theorem 1.1. Let (∗∗/∗) denote the set of geometrically standard conic bundles X → P2

over Rwith smooth quartic discriminant curve � of topological type ∗ and discriminant

cover �̃ of topological type ∗∗.

1. (∅/∅) contains rational members, irrational members with points, and point-

less members;

2. (∅/1 oval) contains both rational members and irrational members;

3. (∅/2 non-nested ovals) contains rational members, irrational members with

connected real loci, and irrational members with disconnected real loci;

4. (∅/2 nested ovals) and (∅/3 ovals) each contain both rational members and

irrational members with disconnected real loci;

5. (∅/4 ovals) contains rational members; and

6. If �̃(R) �= ∅, then every member of (∗ ∗ /∗) is rational.

The irrational example in Theorem 1.1(2) and the disconnected example in (3)

were constructed in [12, Theorem 1.3]; our contribution in these two cases is the con-

struction of rational examples and an irrational connected example in (3). Theorem 1.1(6)

is [12, Proposition 6.1]. All members with real points are unirational by [12, Proposition

6.1], and the disconnected ones are not stably rational.

Conic bundles X → P2 with quartic discriminant curve were previously studied

by the orst author, together with S. Frei, S. Sankar, B. Viray, and I. Vogt in [12]. When
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deg� = 4, then X is C-rational, and many obstructions to rationality vanish over R

[12, Section 1.1]; however, they constructed examples of irrational such X where the

geometric rationality construction does not descend to R (irrational examples also

appeared implicitly in earlier work of Hassett–Tschinkel on real complete intersections

of quadrics [15, Remark 13 and Section 11.6]). To study rationality in the degree 4 case,

Frei–Ji–Sankar–Viray–Vogt introduced a particular model of these conic bundles that

admits the structure of a double cover of P1×P2 branched over a divisor of bidegree (2, 2):

z2 = t20Q1(u,v,w) + 2t0t1Q2(u,v,w) + t21Q3(u,v,w), (1)

where Qi ∈ R[u,v,w] are quadratic forms. These double cover models admit the addi-

tional structure of a quadric surface bundle via the orst projection. Using work of Bruin

[5] on étale double covers �̃ → � of smooth plane quartics, [12] showed that any such

�̃ → � can be realized as the discriminant cover of a conic bundle deoned by an equation

of the form (1). The Artin–Mumford sequence implies that up to a constant Brauer class,

the discriminant double cover determines the birational isomorphism class of a conic

bundle [24, Section 6.9.6]; thus, up to a class in BrR ∼= Z/2, any conic bundle over P2 with

smooth quartic discriminant curve is birational over P2 to such a double cover of P1×P2.

[12] use the model (1) to construct examples of irrational conic bundles Y whose

discriminant curves � have real isotopy class one oval or two non-nested ovals. In each

of these cases, irrationality is witnessed by a different obstruction. In the one oval

example [12, Theorem 1.3(2)] Y(R) �= ∅ is connected, and irrationality is shown using the

intermediate Jacobian torsor (IJT) obstruction. This obstruction to rationality is a reonement

over non-closed oelds of the intermediate Jacobian obstruction of Clemens–Grifoths

[6], and was recently introduced by Hassett–Tschinkel [14, 15] and Benoist–Wittenberg

[2] (see Section 2.3). However, the two non-nested ovals example [12,Theorem 1.3(1)] has

no IJT obstruction to rationality but Y(R) is disconnected; hence Y is irrational. Thus,

[12] show that in general, neither the IJT obstruction nor the topological obstruction to

rationality alone is sufocient to characterize rationality for conic bundle three-folds of

the form (1).

For four of the six isotopy classes of the discriminant curve �, we prove the

following characterizations of rationality for the double covers (1):

Theorem 1.2. Over R, let Y → P1 ×P2 be a double cover branched over a bidegree (2, 2)

divisor, and assume that the discriminant cover �̃ → � of the conic bundle obtained

from the second projection is an étale double cover of a smooth quartic.
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1. If �(R) = ∅, then Y is rational if and only if Y(R) �= ∅ and the IJT obstruction

vanishes.

2. If � is two non-nested ovals, then Y is rational if and only if Y(R) is connected

and the IJT obstruction vanishes. Neither condition alone is sufocient to

guarantee rationality.

3. If � is three ovals, then Y is rational if and only if Y(R) is connected.

4. If � is four ovals, then Y is rational.

In each of these cases, Y is rational if and only if the quadric surface bundle

Y → P1 admits a section.

We do not know if the IJT obstruction is sufocient to characterize rationality in

the one oval and two nested ovals cases. For two nested ovals case, the vanishing of the

IJT obstruction implies Y(R) is connected (Corollary 3.12). In the case of one oval, the

topological obstruction vanishes (Corollary 2.11), and Frei–Ji–Sankar–Viray–Vogt have

constructed an example where the IJT obstruction vanishes, but rationality is unknown

[12, Example 1.5], see also Remark 3.10. Necessity of both conditions in part (2) is in

Remark 3.14.

As shown in [12, Theorem 1.2], an underlying reason for the failure of the IJT

obstruction to characterize rationality in this setting comes from the nontriviality of

BrR.We study a certain quadratic twist to show that under certain assumptions, the IJT

obstruction does characterize rationality. Speciocally, the bitangents of a plane quartic

� = (f = 0) are intimately related to the lines on the associated degree two del Pezzo

surfaces (t2 = f ) and (t2 = −f ). The work of Comessatti [8] shows that all the real

bitangents split in one of these del Pezzo surfaces, and none of them split in the other,

and this splitting is determined by the sign of the deoning equation f . For f = Q1Q3−Q2
2,

the del Pezzo surface (t2 = −f ) is the branch locus of (1), and the image of its real points

in P2 is the locus where f ≤ 0. We use this to show that if Q1Q3 − Q2
2 < 0 outside �

(which is preciselywhen the real bitangents split), then the IJT obstruction characterizes

rationality (Proposition 3.8). We apply this result to construct irrational examples with

no topological obstruction to rationality.

In contrast, when Q1Q3 − Q2
2 < 0 inside �, the IJT obstruction does not

characterize rationality, as shown by the two non-nested ovals example of [12, Theorem

1.3(1)]. On our way to proving Theorem 1.1, several of the examples that we construct

show that this failure persists for other real isotopy classes of �. Namely, we construct

a �(R) = ∅ example and a three ovals example where the IJT obstruction vanishes, but

the real locus of Y exhibits an obstruction to (stable) rationality (Proposition 4.9). These
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three isotopy classes of � are the only ones for which this is possible (Corollaries 2.11

and 3.12).

We also construct a rational example in each isotopy class of �. Since a real point

on �̃ gives a rationality construction for Y [12, Proposition 4.1(5)], we primarily focus on

the case when �̃(R) = ∅. In particular, in the two nested ovals case, we give an example

where π1 is surjective on real points and hence has a section by a result of Witt [26], but

this section does not come from any known construction (Example 4.12(1)). We are not

able to construct a similar example when � is one oval, and we pose the following two

questions:

Question 1.3 (See Remark 4.18). Does there exist a rational three-fold Y deoned as in

(1) such that the real isotopy class of � is one oval, Q1Q3 − Q2
2 < 0 inside the oval, and

�̃(R) = ∅?

Question 1.4 (See Corollary 3.12). If Y is as in (1) and �(R) is two nested ovals, then

rationality of Y �⇒ the IJT obstruction vanishes �⇒ Y(R) is connected. Do any of the

reverse implications hold?

1.1 Outline

In Section 2,we review background and context for conic bundles over P2 and rationality,

key features of the double cover construction of [12], and the intermediate Jacobian

torsor obstruction. We also make some observations relating the real topology of the

double cover to that of the quartic curve. We prove Theorem 1.2 in Section 3: we orst

study the associated degree 2 del Pezzo surface, and we then show the sufociency of the

intermediate Jacobian torsor obstruction in the case when Q1Q3 − Q2
2 < 0 outside the

ovals. In Section 4, we apply our earlier results to give explicit examples of irrational

and rational examples and prove Theorem 1.1.

2 Preliminaries

We will orst recall relevant deonitions and background on rationality of conic bundle

three-folds in Section 2.1. In Section 2.2, we describe the double cover models Y → P1 ×
P2 of quartic conic bundles introduced in [12], which will be the models that we use

throughout this paper. Next, in Section 2.3, we review the intermediate Jacobian torsor

obstruction and results from [12] on the intermediate Jacobian torsors for the double

cover models. In Section 2.4, we recall some facts about the real topology of even degree

plane curves, and we make some observations relating Y(R) and �(R).
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2.1 Rationality of standard conic bundles over P2

We orst review some preliminary notions about conic bundle three-folds and rationality.

For more details on conic bundle three-folds, see [25, Section 3].

Let k be a oeld of characteristic �= 2. A conic bundle over P2 is a proper nat k-

morphism π : X → P2 whose generic ober is a smooth conic over k(P2). The discriminant

cover � : �̃ → � parametrizes the components of the singular obers of π . A conic bundle

is geometrically standard if X is smooth and ρ(Xk/P
2
k
) = 1. The models we work with will

have the property that � is smooth and π : X → P2 is geometrically standard, and � is

an étale double cover. In particular, π has reduced obers.We will introduce these models

in Section 2.2.

LetW be a smooth projective variety of dimension n over k. Recall thatW is said

to be rational over k (or k-rational) if there is a birational map W ��� Pn deoned over k,

stably rational over k if W × Pm is k-rational for some m, and unirational over k if there

is a dominant rational map Pn ��� W deoned over k. If k ⊂ k′ is a oeld extension, then

k-(stable/uni-)rationality implies k′-(stable/uni-)rationality, but the converse need not

hold, as demonstrated by a pointless real conic. We say thatW is geometrically rational if

the base change Wk to the algebraic closure of k is k-rational.

For the majority of this article,we work over R. As mentioned in the introduction,

when we say that a variety is rational without specifying the ground oeld, we mean R-

rationality, not C-rationality.

In order to show that a variety is not rational, one must show that it has an

obstruction to rationality.One obstruction is given by the Lang–Nishimura lemma,which

implies that if W is k-rational (or even k-unirational), then it must contain a k-point.

Over the real numbers, the locus W(R) of real points also provides an obstruction

to rationality: the number of real connected components is a birational invariant of

smooth projective real varieties [4, Theorem 3.4.12]. So if W(R) is disconnected, then W

has an obstruction to stable rationality over R (see also [7] for an interpretation using

unramioed cohomology).

Over the complex numbers, rationality of conic bundles over P2 is well under-

stood. Namely, let X → P2 be a geometrically standard conic bundle with smooth

discriminant curve �. Then X is C-rational if and only if deg� ≤ 4, or deg� = 5

and �̃ → � is deoned by an even theta characteristic. Rationality is proven in the

deg� ≤ 4 case using rationality results of Iskovskikh on conic bundle surfaces with

low degree discriminant, by applying his surface classiocation to the generic ober of

a pencil of rational curves in P2 [16, Theorem 1]. In the degree 4 case, one needs to
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blow down a divisor coming from a singular ober of π to reduce to the degree 3 conic

bundle surface case. The higher degree results are due to the combined work of Tyurin,

Masiewicki, Panin (deg� = 5), and Beauville (deg� ≥ 6); in the C-irrational cases, X

has an intermediate Jacobian obstruction to C-rationality. In addition, if deg� ≤ 8, then

X is C-unirational. We refer the reader to [25, Theorem 9.1 and Corollary 14.3.4] for an

overview of these results.

Over the real numbers, we recall [12, Proposition 6.1], which in particular

contains Theorem 1.1(6). If deg� ≤ 3, then X is rational if and only if X(R) �= ∅ (e.g.,

this holds if �(R) �= ∅): the Lang–Nishimura lemma shows necessity of an R-point, and

if X admits an R-point then a modiocation of the proof over C shows that X is rational.

In degree 4, the proof of geometric rationality does not always descend, even if X(R) �= ∅,
because the singular obers of π need not be split over R. When �̃(R) �= ∅, however, the

argument over C goes through if the pencil is chosen through the image of a point of

�̃(R). Similarly, if X has an R-point away from X� := X ×P2 �, then X is unirational by

a modiocation of the argument over C. (These results hold more generally over any oeld

of characteristic �= 2, see [12, Section 6.1].)

2.2 Conic bundle three-folds realized as double covers of P1 × P2

We recall the following models of conic bundles, which were studied by Frei–Ji–Sankar–

Viray–Vogt [12]. These are the models that we will study throughout the paper, and we

will work over the real numbers. First, we recall a result of Bruin that allows us express

étale double covers of smooth plane quartics in a particular form.

Theorem 2.1 ([5, Section 3]). Let � : �̃ → � be an étale double cover of a smooth plane

quartic. Then there exist quadratic forms Q1,Q2,Q3 ∈ R[u,v,w] such that �̃ → � is of

the form

� = (Q1Q3 −Q2
2 = 0),

�̃ = (Q1 − r2 = Q2 − rs = Q3 − s2 = 0).
(2)

Deone the double cover π̃ : Y → P1
[t0:t1]

× P2
[u:v:w]:

z2 = t20Q1 + 2t0t1Q2 + t21Q3. (3)

The second projection π2 : Y → P2 is a conic bundle whose discriminant double cover is

deoned by (2). The isomorphism class of Y only depends on the double cover �̃ → �, not

on the choice of the quadrics Qi (see [12, Section 4]), and so we will denote the double
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cover given above by Y�̃/�, or by Y when the context is clear. We review the following

properties of Y.

Proposition 2.2 ([12, Theorem 2.6, Propositions 4.1 and 4.3]). If Y is deoned as in

Equation (3), then:

1. Y is a smooth Fano three-fold, and the second projection π2 : Y → P2 is a

geometrically standard conic bundle with discriminant cover � : �̃ → �. In

particular, Y is C-rational, and if a smooth ober of π2 contains a real point

then Y is unirational.

2. The orst projection π1 : Y → P1 is a quadric surface bundle. In particular, if

π1 has a (real) section, then Y is rational.

3. If �̃(R) �= ∅, then π1 has a (real) section.

4. The Stein factorization of the relative variety of lines is F1(Y/P1) → � → P1,

whereMi is the symmetrix 3×3matrix corresponding toQi and � is the genus

2 curve deoned by

y2 = −det(t2M1 + 2tM2 +M3).

5. [24, Section 6.9.6] If X → P2 is a geometrically standard conic bundle with

discriminant cover �̃ → �, then [(Y�̃/�)η] − [Xη] ∈ Im(BrR → Brk(P2)).

In particular, Theorem 2.1 and Proposition 2.2(5) imply that, up to a constant

Brauer class, any geometrically standard conic bundle over P2 with smooth quartic

discriminant curve is birational over P2 to one of the form (3).

Remark 2.3. Proposition 2.2(3) shows that a point of �̃ gives rise to a section of π1.

However, not every section of π1 arises in this way: the rational examples constructed

in the proof of Theorem 1.1(1)–(5) all have �̃(R) = ∅ and admit sections of π1 over R. In

Section 3, we will see another source of sections of π1.

To each étale double cover �̃ → �, we also associate a twisted double cover of

P1 × P2.

Deonition 2.4. Let Q1,Q2,Q3 and �̃ → � be as in Theorem 2.1. The twisted double cover

Y�̃−/� → P1 × P2 associated to �̃ → � is deoned by the equation

z2 = −t20Q1 + 2t0t1Q2 − t21Q3.
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Since this double cover is of the form in Equation (3) obtained by replacing Q1

andQ3 with−Q1 and−Q3, the three-foldY�̃−/� satisoes the properties of Proposition 2.2

(with the appropriate substitutions). In particular, Y�̃−/� → P2 is a conic bundle with

discriminant cover �− : �̃− → �, where

�̃− = (Q1 + r2 = Q2 − rs = Q3 + s2 = 0)

is the quadratic twist of �̃.

The branch locus of � in Proposition 2.2(4) is deoned by the equation−det(t2M1+
2tM2 + M3), which gives the singular obers of the quadric surface obration π1. The

signature of the 4 × 4 matrix

(

t2M1 + 2tM2 +M3 0

0 −1

)

corresponding to the quadric surface Y[t:1] is constant on each interval of P1(R) away

from the real branch points, and at each real branch point of � the number of positive

eigenvalues changes by ±1.

Note that Y[t:1](R) �= ∅ if and only if thematrix corresponding to Y[t:1] is indeonite.

ByWitt’s Decomposition Theorem [11, Section 8],Y[t:1] contains lines deoned overR if and

only if Y[t:1] has signature (2, 2). We will also repeatedly use the following result of Witt

to construct sections:

Theorem 2.5 ([26, Satz 22]). Let C be a smooth projective real curve and π : X → C a

quadric bundle of relative dimension m ≥ 1. If the induced map π(R) : X(R) → C(R) on

real points is surjective, then π has a section deoned over R.

2.3 The intermediate Jacobian torsor obstruction to rationality

The classical intermediate Jacobian obstruction to C-rationality, introduced by

Clemens–Grioths in their proof of the irrationality of the cubic three-fold [6], states that

the intermediate Jacobian of a C-rational three-fold must be isomorphic to a product

of Jacobians of curves. Over non-closed oelds, Hassett–Tschinkel [15, Section 11.5]

[14, Sections 3 and 4] and Benoist–Wittenberg [2, Theorem 3.11] have recently introduced

a reonement of this obstruction involving the torsors over the intermediate Jacobian.

Assuming for simplicity that the intermediate Jacobian is isomorphic to Pic0� for a curve

� of genus ≥ 2, their reonement states that moreover for each Galois-invariant geometric
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curve class, the corresponding torsor over the intermediate Jacobianmust be isomorphic

to some Pici�. (See [2, Theorem 3.11] for the general statement.) Following [12], we refer

to this as the intermediate Jacobian torsor (IJT) obstruction.

Since we work over R, when we mention the IJT obstruction, we always mean the

obstruction over R.

The IJT obstruction has been used to great effect to study rationality of geo-

metrically rational three-folds over non-closed oelds: Hassett–Tschinkel (over R) [15]

and Benoist–Wittenberg (over arbitrary oelds) [2] showed this obstruction characterizes

rationality for smooth complete intersections of two quadrics in P5, and Kuznetsov–

Prokhorov used it for several cases of their classiocation of rationality for prime Fano

three-folds [21].However,Benoist–Wittenberg also showed that the IJT obstruction is not

sufocient to characterize rationality by constructing an example of a (non-geometrically

standard) real conic bundle three-fold X → S whose intermediate Jacobian is trivial but

such that S(R) is disconnected; hence, the IJT obstruction vanishes, but X has a Brauer

obstruction to (stable) rationality over R [3, Theorem 5.7].

In [12], Frei–Ji–Sankar–Viray–Vogt studied the intermediate Jacobian torsors for

geometrically standard conic bundle three-folds, giving an explicit description using

certain torsors over the Prym variety of the discriminant cover �̃ → � [12, Theorem 1.1].

For the double covers described in Section 2.2, [12, Theorem 1.2] and [5, Section 5] show

that the intermediate Jacobian of Y is P := Prym�̃/�
∼= Pic0�, where � is the genus two

curve deoned in Proposition 2.2(4). Moreover, in this setting, [12, Theorem 4.4] gives an

extended description of the torsors. In particular, there are four intermediate Jacobian

torsors

P � P̃ = �−1
∗ [O�] ⊂ Pic0

�̃
and P(1) � P̃(1) = �−1

∗ [O�(1)] ⊂ Pic4
�̃

satisfying P̃+P(1) = P̃(1) as P-torsors, and P(1) ∼= Pic1�. (Here �∗ : Pic�̃ → Pic� is the norm

map.)

Since � has genus two, then the IJT obstruction vanishes if P̃(1) has a point.

[12] showed that a point on P̃(1) gives a Galois-invariant geometric section of the

quadric surface bundle π1 : Y → P1, coming from a geometric section of a conic

bundle over the corresponding line in P2 [12, Proposition 4.5]. However, in general,

this geometric section need not descend; thus, they show that the failure of the IJT

obstruction for the double covers of Section 2.2 comes from the nontriviality of the

2-torsion in the Brauer group of the ground oeld. (Indeed, when Brk[2] = 0, the

IJT obstruction does characterize rationality [12, Theorem 1.4].) [12,Theorem 1.3(1)]
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exploits the nontriviality of BrR to give an example of an irrational conic bundle with

P̃(1)(R) �= ∅. (In fact [12, Theorem 1.3(1)] is deoned over Q and has P̃(1)(Q) �= ∅. For
this construction, they gave the following geometric interpretation [12, Section 2] of

the real points of P̃(1) as Gal(C/R)-invariant sets of four points p1,p2,p3,p4 ∈ �̃(C)

such that:

1. p1,p2,p3,p4 does not span a 2-plane in P4, and

2. �∗(p1 + p2 + p3 + p4) = � + � for a real line � ⊂ P2. (If �̃(R) = ∅ then � does

not meet � transversely in any real points [12, Lemma 5.1].)

Note that by lower semicontinuity of rank, the property that P̃(1) has an R-point

is an open condition.

2.4 Real connected components of Y and �

In this section, we make some observations about the real connected components of Y

and the real isotopy class of the discriminant curve �.

For a morphism φ : V → W of quasi-projective algebraic varieties over R, we let

φ(R) : V(R) → W(R) denote the induced map of topological spaces on the sets of real

points (with the Euclidean topology).

Notation 2.6. If f ∈ R[u,v,w] is a homogeneous polynomial deoning a smooth curve of

even degree, then the sign of f (P) for P ∈ P2(R) is well deoned. We denote by (f > 0)R

the set of real points for which f (P) > 0 (similarly for ≥,=,≤, and <). Every connected

component of (f = 0)R is an oval, and the complement of (f = 0)R in P2(R) is a disjoint

union of a non-orientable set Uf and a onite number of disks [22, Section 2.7]. The non-

orientable set Uf is the outside of the curve deoned by f .

In the case where f deones a smooth quartic curve �, Zeuthen [27] proved the

following classiocation result for the real isotopy class of �. (Recall that � has 28

complex bitangents.)

�(R) ∅ One oval Two nested ovals Two non-nested ovals Three ovals Four ovals

Real bitangents 4 4 4 8 16 28
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Sections 4.1 and 4.3 will contain ogures illustrating all non-empty real isotopy

classes. We will sometimes denote the real locus of the plane curve � by (� = 0)
R

:=
�(R), and we will denote the outside of � by U�.

Next, we use the maps π1(R) and π2(R) to relate the real connected components

of Y and the real connected components of the quartic �.

Lemma 2.7. Let Y := Y�̃/� be as deoned in Section 2.2. The number of connected

components of Y(R) is equal to the number of connected components of its image under

πi : Y → Pi for i = 1, 2.

Proof. Since πi : Y → Pi is the onite morphism π̃ composed with the projection

P1 × P2 → Pi, it follows from [9, Theorem 4.2] and compactness of Pn(R) that πi(R)

is a continuous closed map. The claim then holds since the obers of πi are positive-

dimensional quadrics and in particular have connected real loci. �

Lemma 2.8. If Y := Y�̃/� is as deoned in Section 2.2, then Y(R) has at most three

connected components.

Proof. By Lemma 2.7, it sufoces to show that the image of π1(R) has at most three

components. The signature of the obers of π1 can only change at the real branch points

of the genus two curve � deoned in Proposition 2.2(4), so the number of connected

components of π1(R) is at most half the number of real branch points and so is at

most 1
2 · 6 = 3. �

Lemma 2.9. In the setting of Section 2.2, the image of π2(R) is (Q1 ≥ 0)
R

, (Q1Q3 −Q2
2 ≤

0)
R

⊆ P2(R).

Proof. The ober of π2 above P ∈ P2(R) is the conic corresponding to the symmetric

matrix

»

¼

¼

½

Q1(P) Q2(P) 0

Q2(P) Q3(P) 0

0 0 −1

¾

¿

¿

À

so the ober contains an R-point if and only if the top 2 × 2 submatrix is not negative

deonite. By Sylvester’s criterion, this submatrix is negative deonite if and only if

Q1(P) < 0 and (Q1Q3 −Q2
2)(P) > 0. �
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From Proposition 2.2(1) and Lemma 2.9, it immediately follows that:

Corollary 2.10. If Y�̃/�(R) = ∅, then �(R) = ∅. If �(R) �= ∅, then Y�̃/� is unirational.

Corollary 2.11. If Y�̃/�(R) is disconnected, then �(R) must be two or three ovals. More

precisely:

1. If Y�̃/�(R) has three connected components, then �(R) is three ovals; and

2. If Y�̃/�(R) has two connected components, then �(R) is two non-nested ovals

or two nested ovals.

Proof. If Q1 is positive deonite, then the image of π2(R) is P2(R) by Lemma 2.9, so

we may assume that Q1 is negative deonite or indeonite. First suppose Q1 is negative

deonite. Then the image of π2(R) is (Q1Q3 − Q2
2 ≤ 0)R, which can only be disconnected

if �(R) is two or more ovals. If (Q1Q3 − Q2
2 ≤ 0)

R
is disconnected, then it has the

same number of connected components as �(R) and, by Lemma 2.7, it also has the

same number of connected components as Y(R). So by Lemma 2.8, �(R) is either two or

three ovals.

It remains to consider the case when Q1 is indeonite, so its real locus is one oval.

Since (Q1 = 0)
R

⊂ (Q1Q3 −Q2
2 ≤ 0)

R
, we have that (Q1 ≥ 0)

R
, (Q1Q3 −Q2

2 ≤ 0)
R
is either

equal to (Q1Q3 − Q2
2 ≤ 0)

R
or all of P2(R). Thus, again using Lemma 2.8 to rule out the

four ovals case when Y(R) is disconnected, we conclude that Y(R) is disconnected if and

only if �(R) is either two or three ovals, and that in the disconnected case Y(R) and �(R)

have the same number of connected components. �

Remark 2.12. All cases in Corollary 2.11 occur; see Section 4.1 and [12, Theorem 1.3(1)].

Remark 2.13. If Y�̃/�(R) is disconnected and π1 has a ober with signature (2, 2), then

the real isotopy class of � is two nested ovals. Indeed, Corollary 2.11 implied that the

image of Y�̃/�(R) in P2(R) is (Q1Q3 −Q2
2 ≤ 0)

R
and that �(R) consists of two ovals. After

a coordinate change on P1 [12, Theorem 2.6], we may assume Q1 has signature (2, 1).

Recalling that UQ1
denotes the outside of the plane conic Q1, the signature assumption

on Q1 implies UQ1
= (Q1 > 0)R. Since UQ1

is not orientable, it cannot be contained in a

disk, so UQ1
⊂ (Q1Q3−Q2

2 ≤ 0)
R
implies that U� is one of the two connected components

of (Q1Q3 −Q2
2 < 0)

R
, which implies the two ovals of � must be nested.
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We now relate the real points of �̃ to those of the corresponding curve on the the

twisted double cover.

Lemma 2.14. Let �̃ → � and �̃− → � be as deoned in Section 2.2. Then

�(R) = Im
(

�(R) : �̃(R) → �(R)

)

� Im
(

�−(R) : �̃−(R) → �(R)

)

.

In particular, the map �(R) : �̃(R) → �(R) on real points is surjective if and only if

�̃−(R) = ∅.

Proof. First, we note that the real points of �̃ lie over the locus (� = 0)R + (Q1 ≥ 0)R,

and the real points of �̃− lie over (� = 0)R + (−Q1 ≥ 0)R. From the equations (2), we

see that

(� = 0)R + (Q1 > 0)R ⊂ Im�(R) and (� = 0)R + (−Q1 > 0)R ⊂ Im�−(R). (4)

The intersection (Q1 = 0)R + (� = 0)R is at most a onite number of points, since

otherwise � is not smooth. Furthermore, since (Q1 = 0)R is connected and is contained

in (Q1Q3 − Q2
2 ≤ 0)R, it cannot cross (� = 0)R, so on each oval of �(R) either Q1 ≥ 0

or −Q1 ≥ 0. Thus, each connected component from each set in (4) above is an oval

of �(R) minus a onite number of points, and each oval of �(R) contains points in

one of the two sets in (4). Both �̃ and �̃− are smooth projective curves, so their real

loci are homeomorphic to a (possibly empty) disjoint union of circles [22, Section 3.3].

Since � and �− are onite morphisms, the induced maps �(R) and �(R) are closed by

[9, Theorem 4.2]. Therefore, the closure (in �(R)) of each component in the left-hand set

in (4) is in the image of �(R), and the closure of each component in the righthand set in

(4) is in the image of �−(R). �

It follows that if �(R) �= ∅ and �(R) is not surjective, then �̃− has an R-point

and so Y�̃−/� is rational. In particular, when �(R) �= ∅ we have the following:

Corollary 2.15. If �(R) �= ∅, then at least one of Y�̃/� or Y�̃−/� is rational.

However, when �(R) = ∅, it is possible for both Y�̃/� and Y�̃−/� to be irrational,

see Example 4.2.
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3 The Degree 2 del Pezzo Surface and the Intermediate Jacobian Torsor Obstruction

In this section, we prove Theorem 1.2, which characterizes rationality for the double

covers in Section 2.2 for all but two isotopy classes of the quartic �. The key technical

input to Theorem 1.2(1)–(2) is Proposition 3.8, which shows that under an assumption

on the sign of the equation Q1Q3 − Q2
2 deoning �, the intermediate Jacobian torsor

obstruction characterizes rationality.

Before proving Proposition 3.8, we orst show Theorem 1.2(3)–(4). Namely, we

show that Y�̃/� is rational if �(R) is four ovals, and that if �(R) is three ovals then

topological criterion that Y�̃/�(R) is connected is sufocient to guarantee rationality.

Proposition 3.1 (Theorem 1.2(3)–(4)). Let Y := Y�̃/� → P1 × P2 be a double cover

constructed as in Section 2.2. Assume that either

1. The real isotopy class of � is four ovals, or

2. The real isotopy class of � is three ovals and Y(R) is connected.

Then the quadric surface bundle Y → P1 admits a section (over R). In particular,

Y is rational (over R).

To prove Proposition 3.1, we orst study an associated degree two del Pezzo

surface and use the geometry of this surface to construct certain geometric sections

of the quadric surface bundle π2 : Y → P1 in Section 3.1. In Section 3.2, we show that

under the assumptions of Proposition 3.1, such a section exists over R.

Then, in Section 3.3, to prove Proposition 3.8, we show that whenever this degree

two del Pezzo surface contains real lines, the IJT obstruction characterizes rationality

of Y. This condition that the surface contains real lines is determined by the sign of

Q1Q3 −Q2
2.

Throughout, we let Q1,Q2,Q3 ∈ R[u,v,w] be quadratic forms deoning an étale

double cover of a smooth quartic as in Theorem 2.1, and Y := Y�̃/� the associated double

cover of P1 × P2 deoned in Section 2.2.

3.1 Lines on the associated degree 2 del Pezzo surface

The results in this section are based on ideas joint with S. Frei, S. Sankar, B. Viray, and

I. Vogt. In particular, Proposition 3.2 and the idea to use lines on the associated degree

2 del Pezzo surface to construct sections of the quadric surface bundle were obtained

during the preparation of [12].
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Recall from Section 2.2 that the double cover Y := Y�̃/� → P1
[t0:t1]

× P2
[u:v:w] is

deoned by the equation z2 = t20Q1(u,v,w) + 2t0t1Q2(u,v,w) + t21Q3(u,v,w). The branch

locus is the (2, 2)-divisor

W := W�̃/� :=
(

t20Q1(u,v,w) + 2t0t1Q2(u,v,w) + t21Q3(u,v,w) = 0
)

. (5)

Let π ′
i
: W ↪→ P1 ×P2 → Pi denote the compositions of the inclusion with the projections.

The second projection π ′
2 : W → P2 is a double cover branched along the quartic

curve �, so W is a del Pezzo surface of degree two. Thus,WC is isomorphic to the blow

up of P2
C
at seven points P1, . . . ,P7 ∈ P2(C) in general position.We use this description to

index the 56 (complex) lines (i.e., genus 0 curves with self-intersection −1) ofW
C
, which

map to the 28 (complex) bitangents of �: the exceptional divisors E1, . . . ,E7 of the blow

up; the strict transforms Lij of the line passing through Pi and Pj for i < j; the strict

transforms Qij of the conic passing through the ove points complementary to Pi,Pj for

i < j; and the strict transforms Ci of the cubic passing through P1, . . . ,P7 withmultiplicity

two at Pi. (See e.g., [10, Section 8.7].)

Away from the conic deoned by Q1, the double cover π ′
2 : W → P2 is locally given

by the double cover

(tQ1 +Q2)
2 = −(Q1Q3 −Q2

2). (6)

The orst projection π ′
1 : W → P1 is a conic bundle whose discriminant divisor is

equal to the branch locus −det(t20M1 + 2t0t1M2 + t21M3) = 0 of the genus two curve �

deoned in Section 2.2. Each singular ober of π ′
1 is a rank 2 conic, so the components of

the singular obers of π ′
1 make up twelve of the lines on WC.

The lines onWC come in pairs (�, �′) with � · �′ = 2. Each pair of lines maps under

π ′
2 to the same bitangent of �. In particular, � is deoned over R if and only if �′ is. Using

the above description of the lines after identifyingW
C
with a blow up of P2, the line pairs

are (Ei,Ci) and (Lij,Qij).

Proposition 3.2. The 56 geometric lines on WC have the following decomposition into

three sets:

1. 12 are the geometric components of the six singular obers of the conic bundle

π ′
1;

2. 12 give degree two geometric multisections of π ′
1; and
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3. The remaining 32 give geometric sections of π ′
1, and hence give geometric

sections of the quadric surface bundle π1 : Y → P1.

Moreover, the sets (1) and (2) each contain the same even number of lines deoned

over R.

Proof. Throughout this proof, we work over C. The result will be proven by computing

intersection numbers. By the action of the Weyl groupW(E7) on the lines of the del Pezzo

surface, we may assume that one of the singular obers of π ′
1 is E1 + L12 [13, Section 5].

Then one computes:

1. The lines E1, {Ei | i ≥ 3},L12, {L2j | j ≥ 3} each have intersection 0 with E1+L12.

These are the twelve components of the singular obers of π ′
1.

2. The lines C1, {Ci | i ≥ 3},Q12, {Q2j | j ≥ 3} have intersection 2 with E1 + L12.

3. The lines {L1j | j ≥ 3}, {Qij | i ≥ 3},C2 have intersection 1 with E1 and

intersection 0 with L12. The lines {Q1j | j ≥ 3}, {Lij | i ≥ 3},E2 have intersection
0 with E1 and intersection 1 with L12. Together, these 32 lines give sections of

the conic bundle π ′
1 : WC → P1

C
.

SinceW is the branch locus of π̃ : Y → P1 ×P2, the preimage in Y of any of the 32

lines giving sections of π ′
1 : W → P1 is a section of π1. From the explicit description, we

see that each line in (1) is paired with a line in (2), so these sets contain the same number

of lines deoned over R. Moreover, since the members of (1) are components of singular

obers of the conic bundle π ′
1, this number must be even. �

3.2 Splitting of real bitangents in the del Pezzo surface

In this section, we show that when �(R) consists of four ovals, each real bitangent of

� splits into two real lines on W. Furthermore, when �(R) is three ovals and Y has

connected real locus, we show that either all of the real bitangents of � split into two

real lines onW, or �̃(R) �= ∅. Combining this with Proposition 3.2 and Proposition 2.2(3)

yields the rationality construction.

Recall from Notation 2.6 that the real components of the even degree plane curve

� are all ovals, and the complement of �(R) in P2(R) is a the disjoint union of a non-

orientable set U� and a onite number of disks. If none of the ovals of � are nested, then

the set U� is either equal to (Q1Q3 −Q2
2 < 0)

R
or (Q1Q3 −Q2

2 > 0)
R
. Since � is a smooth

quartic, the only case for which nesting occurs is two nested ovals. In this case, either

(Q1Q3 − Q2
2 < 0)R or (Q1Q3 − Q2

2 > 0)R is disconnected, and the disconnected set is the

disjoint union of U� and a disk.
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Lemma 3.3 ([8], [19, Proof of Theorem 6.3]). The real bitangents of � are split in the del

Pezzo surface W deoned in (5) if and only if U� ⊂ (Q1Q3 −Q2
2 < 0)

R
.

Proof, cf. [19, Proof of Theorem 6.3] A neighborhood of any line in P2 is not orientable,

so away from the points of tangency, each real bitangent of � is contained in U�. The

preimage of a real bitangent is split in W if and only if it has a smooth real point. For

a point P ∈ P2(R) \ (Q1 = 0)R, we see from equation (6) that the preimage of P under π ′
2

splits as two real points if and only if (Q1Q3 −Q2
2)(P) ≤ 0. �

Before showing the results for three and four ovals, we note the following

consequence of Lemma 3.3, which we will use in the proof of Proposition 3.8.

Corollary 3.4. If U� ⊂ (Q1Q3 −Q2
2 < 0)

R
and � has no real Weierstrass points, then the

quadric surface bundle π1 has a real section.

Proof. The branch locus of � → P1 is the discriminant locus of the conic bun-

dle π ′
1 : W → P1, so the assumption that � has no real Weierstrass points implies

no component of a singular ober of π ′
1 is deoned over R. W contains real lines by

Lemma 3.3, so by Proposition 3.2 they all give sections of π ′
1 and hence π1. �

Lemma 3.5. If the real isotopy class of � is four ovals, then U� = (Q1Q3 −Q2
2 < 0)R.

Proof. Since �(R) is four ovals, the locus (Q1Q3 − Q2
2 ≤ 0)R is either connected or

consists of four connected components.Wewill show that (Q1Q3−Q2
2 ≤ 0)R is connected,

and hence is equal to U�. The key input is Lemma 2.8, which guarantees that the images

of Y�̃/�(R) and Y�̃−/�(R) in P2(R) can have at most three connected components.

First assume that Q1 is negative deonite. By Lemma 2.9, the image of Y�̃/�(R)

under π2(R) is the locus (Q1Q3 − Q2
2 ≤ 0)R; hence, using Lemma 2.8, (Q1Q3 − Q2

2 ≤ 0)R

cannot have four connected components and so must be connected. The same argument

using the twisted double cover Y�̃−/� shows that if Q1 is positive deonite, then (Q1Q3 −
Q2

2 ≤ 0)
R
is connected. So we may reduce to the case that Q1 is indeonite.

Suppose for contradiction that (Q1Q3 − Q2
2 ≤ 0)R is not connected, and hence

consists of four connected components. Since (Q1 = 0)R is contained in the closed disk

deoned by one of these connected components, then either the image (Q1 ≥ 0)R,(Q1Q3−
Q2

2 ≤ 0)
R
of Y�̃/�(R), or the image (−Q1 ≥ 0)

R
, (Q1Q3 − Q2

2 ≤ 0)
R
of Y�̃−/�(R) has four

connected components. This contradicts Lemma 2.8. �
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Corollary 3.6. If � has real isotopy class four ovals, then all 56 lines onW
C
are deoned

over R. If � has real isotopy class three ovals and if U� = (Q1Q3 − Q2
2 < 0)

R
, then 32 of

the lines on WC are deoned over R; in particular, there is a section of π1 deoned over R.

Proof. This follows from Lemmas 3.3 and 3.5, since in the four ovals case all 28

bitangents of � are real, and in the three ovals case 16 of the bitangents are real. �

Remark 3.7. Corollary 3.6 follows from results in the literature after identifying the

del Pezzo surfaceW with one of the two possible real double covers of P2 branched over

the real quartic �. Namely, if � is deoned by the real equation f (u,v,w) = 0 with (f <

0)R = U�, then the two possible double covers are F+
� = (t2 = f (u,v,w)) ⊂ P3(1, 1, 1, 2)

and F−
� = (t2 = −f (u,v,w)) ⊂ P3(1, 1, 1, 2), as in [19]. By [8], the preimages of the real

bitangents of � split in F−
� (see also [19, Section 6]).

Proof of Proposition 3.1. First suppose �(R) is four ovals. Then the conic bun-

dle π ′
1 : W → P1, and hence the quadric surface bundle π1 : Y → P1, has a real

section by Proposition 3.2 and Corollary 3.6. In particular, Y is rational over R by

Proposition 2.2(2).

Now assume �(R) is three ovals and Y(R) is connected. If U� = (Q1Q3−Q2
2 < 0)R,

then Proposition 3.2 and Corollary 3.6 imply that the conic bundle π ′
1 : W → P1, and hence

the quadric surface bundle π1 : Y → P1, has a real section. So we may suppose that U�

is (Q1Q3 − Q2
2 > 0)

R
, which implies that (Q1Q3 − Q2

2 ≤ 0)
R
is disconnected. By Lemma

2.8, the locus (Q1 ≥ 0)R , (Q1Q3 − Q2
2 ≤ 0)R is connected. Hence, (Q1 < 0)R must be

contained in one of the disks of P2(R) \ �(R). In particular, (Q1 > 0)R + (Q1Q3 − Q2
2 =

0)R �= ∅, so �̃(R) �= ∅. By Proposition 2.2(3), π1 : Y → P1 has a real section and hence Y is

rational. �

3.3 Sufociency of the intermediate Jacobian torsor obstruction when Q1Q3 − Q2
2 < 0

outside �

In this section, we will use the del Pezzo surface considered in the preceding sections

to prove that if Q1Q3 − Q2
2 is negative outside of the ovals of �, then the IJT obstruc-

tion characterizes rationality. The main result is Proposition 3.8, and we will obtain

Theorem 1.2(1)–(2) as corollaries.

Recall from Section 2.3 that [12] showed that the three-folds Y deoned in

Section 2.2 have four intermediate Jacobian torsors P ∼= Pic0�, P̃, P
(1) ∼= Pic1�, and P̃(1),

where � is the genus two curve associated to �̃ → � in Proposition 2.2; and that
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P̃ + P(1) = P̃(1). Thus, the vanishing of the IJT obstruction is equivalent to (at least)

one of the torsors P̃ or P̃(1) being trivial. In the latter case, [12] proved that the existence

of a point on the intermediate Jacobian torsor P̃(1) yields a Galois-invariant geometric

section of the quadric surface bundle π1. In general, this need not descend to a real

section, since BrR is nontrivial. However, we will show that in the case Q1Q3 − Q2
2 < 0

outside � (which happens precisely when W contains real lines), we do in fact obtain a

real section.

As in the previous sectionsU� denotes the outside of � (Notation 2.6). Recall that

by Lemma 3.3, the condition that U� ⊂ (Q1Q3 −Q2
2 < 0)R is equivalent to splitting of the

real bitangents on the degree two del Pezzo surfaceW deoned in (5), which is the branch

locus of Y → P1 × P2.

Proposition 3.8. Assume U� ⊂ (Q1Q3 − Q2
2 < 0)R. Then the quadric surface bundle

π1 : Y → P1 has a real section if and only if the IJT obstruction vanishes for Y.

Proof. If π1 has a section, then Y is rational so the IJT obstruction vanishes by

[2, Theorem 3.11], so it remains to show the reverse implication. If � has no real

Weierstrass points then π1 has a section by Corollary 3.4, so we may assume � has at

least one real Weierstrass point. Then all the intermediate Jacobian torsors are trivial

and in particular P̃(1)(R) �= ∅, so by [12, Proposition 4.5], there exists a real line � ⊂ P2

and a Galois-invariant geometric section S of Y� := Y ×P2 � → � that maps with odd

degree to P1 under π1. [12, Lemma 5.1] and the assumption that U� = (Q1Q3 −Q2
2 < 0)R

implies that every real point on � has preimage one or two real points in the del Pezzo

surfaceW, so Y� → � is surjective on real points and in the proof of [12, Proposition 4.5]

S may in fact be chosen to be deoned over R by Theorem 2.5. By Springer’s theorem

[11, Corollary 18.5], the quadric surface bundle π1 has a real section. �

Remark 3.9. The condition that U� ⊂ (Q1Q3 − Q2
2 < 0)R alone is not sufocient to

guarantee rationality. The irrational example of [12, Theorem 1.3(2)] is one oval and

has U� = (Q1Q3 − Q2
2 < 0)

R
, but it has an IJT obstruction; we will generalize their

example in Example 4.3 below. Example 4.5 will give a two nested ovals example with

U� ⊂ (Q1Q3 −Q2
2 < 0)R (moreover, in this case, Y(R) is disconnected). In these examples,

the eight real lines on W are all contained in sets (1) and (2) of Proposition 3.2.

Remark 3.10. [12, Example 1.5] has �(R) one oval, U� �⊂ (Q1Q3 − Q2
2 < 0)

R
, Y(R) �= ∅

connected, and no IJT obstruction. Rationality of Y is still unknown in this example.
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We have found many additional similar examples by searching for examples where �

has two real branch points and π1(R) is not surjective, and by using the code P1tilde-

bitangents.sage in [17] to verify P̃(1)(R) �= ∅, for example:

Q1 := −u2 − v2 +w2, Q2 := u2 − 3v2 −w2, Q3 := −10u2 − 10v2 −w2.

We now apply Proposition 3.8 to the cases of no ovals, two nested ovals, and two

non-nested ovals.

Corollary 3.11 (Theorem 1.2(1)). If �(R) = ∅ and Y(R) �= ∅, then the IJT obstruction

vanishes if and only if π1 has a section.

Proof. It sufoces to show that if π1 is not surjective on real points, then Y has an IJT

obstruction to rationality. First, note that in the �(R) = ∅ case,we have that (Q1Q3−Q2
2 <

0)
R
is either empty or equal to U�. The assumptions that �(R) = ∅ and Y(R) �= ∅ imply

that U� = (Q1Q3 − Q2
2 < 0)

R
and that the image of π2(R) is P2(R): this is immediate

from Lemma 2.9 if Q1 is negative deonite, and follows from the containment (Q1 = 0)R ⊂
(Q1Q3 − Q2

2 ≤ 0)R if Q1 is indeonite. If Q1 is positive deonite and (Q1Q3 − Q2
2 < 0)R is

empty, then using Lemma 2.9 and the PGL2 action on the quadratic formsQi described in

[12,Theorem 2.6(1)], it follows that every ober of π1 has signature (3, 1),which contradicts

the assumption that π1(R) is not surjective. Thus,wemust have U� = (Q1Q3−Q2
2 < 0)R =

P2(R). The claim then follows from Proposition 3.8. �

Corollary 3.12. Assume �(R) is two nested ovals. If the IJT obstruction vanishes, then

Y(R) is connected.

More precisely, if �(R) is two nested ovals and Y(R) is disconnected, then �(R)

has real points but P̃(1)(R) = ∅, so P̃(1) cannot be isomorphic to Pici� for any i.

Proof. Disconnectedness of Y(R) implies that (Q1 ≥ 0)R , (Q1Q3 − Q2
2 ≤ 0)R is

disconnected and contains U�. Since (Q1 = 0)R ⊂ (Q1Q3 − Q2
2 ≤ 0)R, we must have

that U� ⊂ (Q1Q3 − Q2
2 < 0)

R
. If the IJT obstruction vanishes, then Proposition 3.8

implies that the quadric surface bundle π1 has a section, which is impossible since Y(R)

is disconnected. �

Corollary 3.13 (Theorem 1.2(2)). If �(R) is two non-nested ovals and Y(R) is connected,

then π1 has a section if and only if the IJT obstruction vanishes.
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Proof. If U� = (Q1Q3 − Q2
2 < 0)

R
then the result follows from Proposition 3.8, so we

may assume that U� �= (Q1Q3 − Q2
2 < 0)

R
. Then (Q1Q3 − Q2

2 < 0)
R
is a disjoint union of

two disks, so connectedness of Y(R) implies (Q1 > 0)R + (Q1Q3 − Q2
2 < 0)R �= ∅, which

implies �̃(R) �= ∅. �

Remark 3.14. Corollary 3.13 shows that the topological criterion of connectedness

of Y(R) combined with the vanishing of the IJT obstruction is sufocient to guarantee

rationality of Y in the two non-nested ovals case. In this case, neither condition alone

is sufocient. Example 4.4 has Y(R) connected but has an IJT obstruction, and in

[12,Theorem 1.3(1)], the IJT obstruction vanishes but Y(R) is disconnected.

Remark 3.15. Throughout this section, we have assumed that Q1Q3 − Q2
2 is negative

outside the ovals. In the case when Q1Q3 − Q2
2 is instead negative inside the ovals, we

can immediately determine rationality in several cases: if �(R) = ∅, then exactly one

of Y�̃/� or Y�̃−/� is rational, and the other has no real points; and if �(R) is two or

three non-nested ovals, then exactly one of Y�̃/� or Y�̃−/� is rational, and the other

has disconnected real locus. However, in the cases of one oval or two non-nested ovals,

rationality is less clear. In these cases, at least one of Y�̃/� or Y�̃−/� is rational by

Corollary 2.15. Example 4.12 shows that for two nested ovals case, it is possible for both

Y�̃/� and Y�̃−/� to be rational. For one oval, [12, Example 1.5] gives an example where

Y�̃−/� is rational, but rationality of Y�̃/� is unknown; see also Remark 4.18.

4 Construction of Examples

In this section, we construct examples of conic bundles by giving equations for quadrics

Q1,Q2,Q3 and taking Y := Y�̃/� and �̃ → � to be as deoned in Section 2.2. Our

examples are constructed in the same manner as those of Frei–Ji–Sankar–Viray–Vogt.

The topological type of �(R) is determined using the Sage code accompanying [23].

Smoothness of � and �̃ and the numerical claims about the signatures of the obers

of π1 can be verioed by hand or with the code Quadric-bundle-verifications.sage

in our GitHub respository [17], which is a Sage implementation of the Magma code

accompanying [12]. By deforming the coefocients in each example, one can obtain similar

examples of each type; we refer the interested reader to the Macaulay2 code Singular-

members.m2 in [17],which one can use to ond singular members in such a one-parameter

family.

We orst construct irrational examples in Section 4.1, where irrationality is

witnessed either by the IJT obstruction (Section 3.3) or by the real locus of Y(R). In
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Section 4.2, we show that several of these examples are irrational despite having no IJT

obstruction, further demonstrating the insufociency of this obstruction when Q1Q3−Q2
2

is negative inside �. Finally, we construct rational examples in Section 4.3.

Before giving our constructions, we orst outline where they ot in by giving a

proof of Theorem 1.1:

Proof of Theorem 1.1. As mentioned in the introduction, (6) is [12, Proposition 6.1].

For (1), Example 4.10 is rational, Example 4.2 is irrational and has real points, and

Example 4.1 has no real points. For (2), Example 4.11 is rational and [12, Theorem 1.3(2)]

is irrational (Example 4.3 gives additional examples with the same obstruction). For (3),

Example 4.14 is rational, Example 4.4 is irrational and connected, and [12, Theorem

1.3(1)] is irrational and disconnected. For (4), in the two nested ovals case, Examples

4.12(1)–(2) are rational and Example 4.5 is irrational, and in the three ovals case Example

4.15 is rational and Example 4.6 is irrational. Finally, Example 4.16 shows (5). �

4.1 Construction of irrational examples

We will now construct the irrational examples of Theorem 1.1. Example 4.4 below,

together with [12, Theorem 1.3(1)], shows the necessity of both the topological and IJT

conditions in Theorem 1.2(2).

In our setting, many obstructions to rationality automatically vanish: BrY ∼=
BrR, the intermediate Jacobian of Y is isomorphic to Pic0�, and the unramioed cohomol-

ogy groups are trivial whenever Y(R) is connected; see [12, Section 1.1] for details. Our

examples will use the topological and IJT obstructions: Example 4.1 has a real points

obstruction to (uni)rationality; Examples 4.2, 4.3, and 4.4 have an IJT obstruction to

rationality; and Examples 4.5 and 4.6 have a real components obstruction to (stable)

rationality.

Example 4.1 (Pointless example with �(R) = ∅). Let Y be the double cover of P1 × P2

constructed in Section 2.2 for the quadrics

Q1 := −u2 − v2 −w2, Q2 := −u2 − v2 +w2, Q3 := −2u2 − 9v2 − 3w2.

Then �(R) = ∅, � is deoned by y2 = t6 + 2t5 + 10t4 + 4t3 + 19t2 + 30t + 54, and � has

no real Weierstrass points. In particular, �(R) �= ∅ is connected. The obers of π1 all have

signature (0, 4), so Y(R) = ∅.
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The next three examples are unirational, and irrationality is witnessed by the

IJT obstruction.

Example 4.2 (Irrational example with �(R) = ∅ and Y(R) �= ∅). By Corollary 3.11, if Q1

is positive deonite and Q3 is negative deonite, and the resulting �̃ → � is an étale cover

of a smooth curve, then both Y�̃/� and Y�̃−/� have IJT obstructions to rationality. For an

explicit example, one may take

Q1 := u2 + v2 +w2, Q2 := u2 − v2, Q3 := −u2 − v2 − 9w2.

Example 4.3 (Irrational example with �(R) one oval). Let Q1,Q2,Q3 be quadrics such

that the resulting �̃ → � is an étale cover of a smooth curve and such that (Q1Q3 −Q2
2 ≤

0)R is a non-orientable subset of P2(R). If π1 is not surjective on real points, then Y�̃/�

has an IJT obstruction by Proposition 3.8.

[12, Theorem 1.3(2)] gives an explicit example of such a choice of quadrics.

Alternatively, one may also take the following (noting that (u = 0) ⊂ (Q1Q3 − Q2
2 < 0)

R
,

so (Q1Q3 −Q2
2 < 0)

R
is not orientable):

Q1 := −u2 − v2 +w2, Q2 := u2 − uv + 3v2, Q3 := −u2 + v2 + 2vw − 10w2.

Example 4.4 (Irrational, connected example with �(R) two non-nested ovals). Deone

Q1 := −u2 − v2 +w2, Q2 := u2 + 3v2 + uw − vw, Q3 := −u2 + v2 + 2vw − 10w2,

and let Y be the associated double cover of P1 ×P2 constructed in Section 2.2. Then �(R)

is two non-nested ovals. � is deoned by y2 = −t6 +8t5 −4t4 −66t3 +116t2 −36t−11 and

has six real branch points [t : 1] with t ≈ −2.9708,−0.1845, 0.7545, 1.5708, 2.8152, 6.0149.

The signatures of the obers Y[t:1] are as follows:

t −2 0 1 2 4 7

Signature (0, 4) (1, 3) (2, 2) (1, 3) (2, 2) (1, 3)

In particular, Y(R) is connected and π1 is not surjective on real points. This

implies �̃(R) = ∅ by Proposition 2.2(3), so U� = (Q1Q3 − Q2
2 < 0)R. Thus, by

Proposition 3.8, Y has an IJT obstruction to rationality.
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In the following examples, we construct conic bundles with disconnected real

loci. These examples are unirational but not stably rational. Recall from Corollary 2.11

that if Y is constructed as in Section 2.2 and has disconnected real locus, then �(R)

must be two or three ovals. The following examples, together with [12, Theorem 1.3(1)]

show these cases all occur: Frei–Ji–Sankar–Viray–Vogt gave an example where �(R) is

two non-nested ovals and Y(R) has two connected components, and here we use their

methods to give examples with two nested ovals and three ovals.

Example 4.5 (Disconnected example with �(R) two nested ovals). Deone

Q1 := u2 + v2 −w2, Q2 := u2 + v2, Q3 := −24u2 − 15v2 +w2,

and let Y be the associated double cover of P1 ×P2 constructed in Section 2.2. Then �(R)

is two nested ovals, and � is deoned by y2 = t6 + 4t5 − 36t4 − 82t3 + 395t2 + 78t − 360

and has real Weierstrass points over [t : 1] with t = −6,−5,−1, 1, 3, 4. The signatures of

the obers Y[t:1] are as follows.

t −5.5 −3 0 2 3.5 5

Signature (1, 3) (0, 4) (1, 3) (0, 4) (1, 3) (2, 2)

Thus, Y(R) has two connected components by Lemma 2.7.

Example 4.6 (Disconnected example with �(R) three ovals). Let Y be as deoned in

Section 2.2 for

Q1 := −2u2− 2uv + 4uw − 2v2+6vw − 5w2, Q2 := 10uv−20uw +5v2 − 20vw +20w2,

Q3 := −48u2 − 48uv + 96uw − 20v2 + 88vw − 92w2.

Then �(R) is three ovals. The genus two curve � is deoned by y2 = t6 −
56t4 + 784t2 − 2304 and has six real Weierstrass points over t = −6,−4,−2, 2, 4, 6. The

signatures of the Y[t:1] are as follows.

t −5 −3 0 3 5 7

Signature (1, 3) (0, 4) (1, 3) (0, 4) (1, 3) (0, 4)
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Thus, Y(R) has three connected components by Lemma 2.7.

Remark 4.7. If X is a smooth complete intersection of two quadrics in P5 that contains

a conic C deoned over R, then projection from the conic realizes the blow up of X

along C as a conic bundle with quartic discriminant curve [15, Remark 13]. Krasnov’s

topological classiocation of intersections of quadrics [20, Theorem 5.4] shows that a

conic bundle arising in such a way can have at most two real connected components, so

in particular the conic bundle of Example 4.6 is not birational over R to an intersection

of two quadrics. In the following section, we will also see using [12, Corollary 6.3] that

Example 4.1 cannot be obtained from an intersection of two quadrics by projection from

a conic.

Remark 4.8. When π1 is not surjective on real points, the signature sequence of the

obers of π1 appears to dictate the properties of Y and �. The examples we have found

have all followed the following pattern:

1. Signatures (0, 4), (1, 3): Experimentally, these examples behave like [12, Exam-

ple 1.5]: �(R) is one oval, Q1Q3 − Q2
2 > 0 outside �, and P̃(1)(R) �= ∅. In this

case, we cannot determine rationality.

2. Signatures (0, 4), (1, 3), (2, 2), (1, 3): Experimentally, these examples behave

like Example 4.3: �(R) is one oval and Q1Q3 − Q2
2 < 0 outside �, so there

is an IJT obstruction to rationality.

3. Signatures (0, 4), (1, 3), (2, 2), (1, 3), (2, 2), (1, 3): Experimentally the examples

have exhibited the behavior of Example 4.4: �(R) is two non-nested ovals,

and there is an IJT obstruction.

4. Signatures (0, 4), (1, 3), (2, 2), (3, 1), (2, 2), (1, 3): This is the setting of Corollary

3.11. In this case �(R) is empty, the image of π2(R) is P2(R), and there is an

IJT obstruction.

5. Signatures (0, 4), (1, 3), (0, 4), (1, 3): Y(R) has two connected components, and

experimentally �(R) has been two non-nested ovals and P̃(1)(R) �= ∅.

6. Signatures (0, 4), (1, 3), (0, 4), (1, 3), (2, 2), (1, 3): Y(R) has two connected com-

ponents and �(R) must be two nested ovals by Remark 2.13. Y has both a

topological and IJT obstruction by Corollary 3.12.

7. Signatures (0, 4), (1, 3), (0, 4), (1, 3), (0, 4), (1, 3): Y(R) has three components,

and �(R) is necessarily three ovals by Corollary 2.11. Experimentally, P̃(1) has

R-points.
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We do not know if there exists a two nested ovals example with Y(R) connected

and π1 not surjective on real points. If one could use the above signature sequences

to give an isotopy classiocation for Y, in the style of the intersection of two quadrics

situation [1, 20], one might be able to show that in the two nested ovals case Y is rational

⇐⇒ Y(R) is connected ⇐⇒ the IJT obstruction vanishes.

4.2 Failure of the intermediate Jacobian torsor obstruction

Proposition 3.8 shows that the IJT obstruction characterizes rationality for Y if Q1Q3 −
Q2

2 is negative on the outside of � (which implies that Y(R) �= ∅). However, the IJT

obstruction is no longer sufocient to show rationality when if Q1Q3 − Q2
2 is negative

inside the ovals of �, as shown by the two non-nested ovals example of [12, Theorem

1.3(1)]. In this section, we use the techniques of [12, Theorem 1.3(1)] to show that

Examples 4.1 and 4.6 give further examples of this failure of the IJT obstruction to

characterize rationality.

Recall that � and (Q1Q3 − Q2
2 < 0)

R
each have no real points in Example 4.1,

and that Y(R) and �(R) each have three connected components in Example 4.6. So

Q1Q3 − Q2
2 is negative inside � in both of these examples. Before proving that the IJT

obstruction vanishes in these examples, we orst review the strategy of [12]. Recall from

Section 2.3 that [12, Section 2] gives an explicit description of points on the intermediate

Jacobian torsor P̃(1). Applying their criterion, Frei–Ji–Sankar–Viray–Vogt show that

IJT obstruction also fails to characterize rationality for geometrically standard conic

bundles over P2 by constructing an example of a conic bundle whose real locus has two

connected components and such that there is a Galois-invariant set of four points of

�̃ spanning a 3-plane in P4 and whose pushforward under � is � + (w = 0). Thus,

they explicitly exhibit a real point on the intermediate Jacobian torsor P̃(1), showing

that P ∼= P̃(1) ∼= Pic0� and P̃ ∼= P(1) ∼= Pic1�. (In fact, in their example �(R) �= ∅, so
all the intermediate Jacobian torsors are trivial over R.) We apply their methods to

Examples 4.1 and 4.6:

Proposition 4.9. All the intermediate Jacobian torsors are trivial in Examples 4.1 and

4.6. In particular, these conic bundles have no IJT obstruction to rationality, and the real

locus of Y exhibits irrationality.

We will use the line (w = 0) in Example 4.1, and the line (v = 0) in Example 4.6.

In the argument for Example 4.6 below, we exhibit a point on P̃(1) using the Sage

code P1tilde.sage in [17]; this code checks the rank of the matrix obtained from a
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Galois-invariant set of four points on �̃(C) mapping to �+� for any line � deoned over Q

and that meets � in four distinct complex points. In our GitHub repository [17], we also

include the code P1tilde-bitangents.sage, which does the analogous check when

� is a real bitangent of �; the code that computes the real bitangents of � is due to

Plaumann–Sturmfels–Vinzant and is included in the supplementary material for their

paper [23].

Proof for Example 4.1 (No ovals, Y(R) = ∅). The quartic curve � is deoned by the

equation u4 +9u2v2 +7u2w2 +8v4 +14v2w2 +2w4 = 0, and the intersection �+ (w = 0)

consists of the four complex points [−i : 1 : 0], [i : 1 : 0], [−2i
√
2 : 1 : 0], [2i

√
2 : 1 : 0]. One

verioes that the set

[i : 1 : 0 : 0 : i
√
7], [−i : 1 : 0 : 0 : −i

√
7], [2i

√
2 : 1 : 0 :

√
7 :

√
7], [−2i

√
2 : 1 : 0 :

√
7 :

√
7]

of four points of �̃ is Gal(C/R)-invariant and maps to � + (w = 0). Since

det













i 1 0 i
√
7

−i 1 0 −i
√
7

2i
√
2 1

√
7

√
7

−2i
√
2 1

√
7

√
7













= −56
√
2 �= 0,

the four points above span a 3-plane in P4, so P̃(1)(R) �= ∅. �

Proof for Example 4.6 (Three ovals, Y(R) three connected components). The quartic

curve � is deoned by the equation 96u4 + 192u3v+ 132u2v2 + 36uv3 + 15v4 − 384u3w−
448u2vw−136uv2w−96v3w+408u2w2+152uvw2+212v2w2−48uw3−192vw3+60w4,

and its restriction to the line (v = 0) is given by 96u4 − 384u3w + 408u2w2 − 48uw3 +
60w4 = 0, so � + (v = 0) consists of four points with approximate coordinates

[−0.01183 ± 0.38575i : 0 : 1], [2.0118 ± 0.38575i : 0 : 1].

One can verify by hand or using P1tilde.sage in the accompanying code [17] that

the set

[−0.01183 ± 0.38575i : 0 : 1 : −0.35355 ∓ 2.20794i : 1.97589 ± 9.48178i],

[2.0118 ± 0.38575i : 0 : 1 : 0.35355 ∓ 2.20794i : 1.97589 ∓ 9.48178i]



On Rationality of Real Degree 4 Conic Bundles 143

Fig. 1. The regions (Q1Q3−Q2
2 ≤ 0)R in blue and (Q1 ≥ 0)R in red in Example 4.4 (left), Example 4.5

(center), and Example 4.6 (right), on the afone open chart (w �= 0). In each example, the image of

Y(R) in P2(R) is equal to (Q1Q3 −Q2
2 ≤ 0)R.

is a Gal(C/R)-invariant set of points on �̃(C) mapping to � + (v = 0), and they span a

3-plane in P4 since

det













−0.01183+0.38575i 1 −0.35355 − 2.20794i 1.97589 +9.48178i

−0.01183−0.38575i 1 −0.35355 + 2.20794i 1.97589 −9.48178i

2.0118 + 0.38575i 1 0.35355 − 2.20794i 1.97589 −9.48178i

2.0118 − 0.38575i 1 0.35355 + 2.20794i 1.97589 +9.48178i













≈−359.61663 �=0.

In this example, Y does not contain any real points above the line (v = 0), as

illustrated in Figure 1. Thus, one can see concretely that the Galois-invariant geometric

section constructed from the point on P̃(1) by [12, Proposition 4.5] does not descend to a

real section.

�

4.3 Construction of rational examples

In this section, we construct rational examples of double covers as in Section 2.2. We

will focus on two cases: (1) �̃ has no real points, and (2) Q1Q3 −Q2
2 < 0 inside �.

Recall that if �̃ → � is any étale double cover of a smooth plane quartic, then

Theorem 2.1 ([5]) shows that it can be realized in the form Equation (2). If �̃ has a point,

then the corresponding double cover is automatically rational by Proposition 2.2(3).

Thus, the question is more interesting when �̃(R) = ∅.
We also consider examples where Q1Q3 −Q2

2 < 0 inside � (Notation 2.6) because

Section 3.3 already gives a rationality criterion in the opposite case. (Recall this never
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happens for four ovals by Lemma 3.5.) At least one of Y�̃/� or the twisted double cover

Y�̃−/� is rational. When � is two non-nested ovals or three ovals, then exactly one of

the two is rational and the other has disconnected real locus; the twisted double cover

corresponding to [12, Theorem 1.3(1)] and Example 4.6 give such examples.

When � is one oval and Qi are quadratic forms such that Y�̃/� has the properties

in [12, Example 1.5] (see Remark 3.10), then the twisted cover produces a rational

example with �̃−(R) �= ∅ and Q1Q3 − Q2
2 < 0 inside �. However, we are not able to

construct a one oval example with �̃−(R) = ∅, see Remark 4.18. In the two nested

ovals case, we construct examples both with and without points on �̃. In particular,

Example 4.12(1) exhibits an example where π1 : Y → P1 has a section that does not come

from any known rationality construction: �̃(R) = ∅, and moreover the conic bundle

Y� → � over any real line � ⊂ P2 has no real sections, so the rationality construction

does not come from Section 3.

Throughout, we will compute the signatures of the obers of the quadric surface

bundle π1 to show that it is surjective on real points. Theorem 2.5 ([26]) then implies that

π1 has a real section; thus, Y is rational. We also note that in the following examples,

with the exception of Example 4.10, both Y�̃/� and the twisted double cover Y�̃−/� are

rational.

Example 4.10 (Rational example with �(R) = ∅). Let Q1,Q2,Q3 be as in Example 4.1,

and let Y := Y�̃−/� be the twisted double cover deoned in Deonition 2.4. Then �(R) = ∅,
and � is deoned by y2 = −t6 + 2t5 − 10t4 + 4t3 − 19t2 + 30t− 54. We note that �(R) = ∅,
so in particular � has no real Weierstrass points. Every ober of π1 has signature (3, 1),

so π1 has a section.

In this example (Q1Q3 −Q2
2 ≤ 0)R = ∅, and the image of Y(R) → P2(R) is (−Q1 ≥

0)R = P2(R).

Example 4.11 (Rational example with �(R) one oval, �̃(R) = ∅, Q1Q3 − Q2
2 < 0 outside

�). Deone

Q1 := −u2 + uv −w2, Q2 := 3u2 + uv − v2 +w2, Q3 := −u2 − 2uv − 2w2,

and let �̃ → � and Y�̃/� be as deoned in Section 2.2. Then �(R) is one oval, and we claim

�̃(R) is empty.

For this, since �(R) is connected and the zero locus (Q1 = 0)R is contained in

(Q1Q3 − Q2
2 ≤ 0)R, so it sufoces to check that � has an R-point P such that Q1(P) < 0.
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Indeed, one verioes the restriction of Q1 to the line (v = 0) is negative deonite, and

�(R) + (v = 0)
R

�= ∅. Next, the genus two curve � is deoned by y2 = −1
4 t

6 + 3
2 t

5 − 29
2 t

4 +
30t3 − 33t2 + 10t− 2 and has no real points. Every ober of π1 has signature (1, 3), and so

π1(R) is surjective and Y is rational.

The line (w = 0) is contained in (Q1Q3 −Q2
2 < 0)R since the restriction of Q1Q3 −

Q2
2 to (w = 0) is the equation −8u4 −5u3v+3u2v2 +2uv3 −v4, which is always negative.

Thus (Q1Q3 −Q2
2 < 0)

R
cannot be orientable, so U� = (Q1Q3 −Q2

2 < 0)
R
. This example is

depicted in Figure 3.

Example 4.12 (Rational examples with �(R) two nested ovals,Q1Q3 −Q2
2<0 inside �).

1. (�̃(R) is empty.) Let �̃ → � and Y�̃/� be as deoned in Section 2.2 for the

quadrics

Q1 := −4u2 − 2uv − 2v2 − 10uw + 4vw − 4w2, Q2 := u2 − 4uv − 3v2

−6uw + 2vw + 2w2,Q3 := −u2 − 6uv + 8uw − 6vw − 3w2.

Then �(R) is two nested ovals, and we claim that �̃(R) is empty (see

Figure 2).

To show �̃(R) = ∅, on the chart (w �= 0) we deone the box B := {(u,v) | − 2 ≤
u ≤ −1, 3.5 ≤ v ≤ 4.5}. One checks that the boundary of B is disjoint from

(� = 0)
R
, that the set (� = 0)

R
+ (Q1 < 0)

R
+ B contains an R-point (u,v)

with v = 4 and −2 < u < −1, and the set (� = 0)
R

+ (Q1 < 0)
R
contains an

R-point in the complement of B whose v-coordinate is 1. In particular, there

are points on both connected components of (� = 0)R where Q1 is negative.

Since (Q1 ≤ 0)
R
is connected and (Q1 = 0)

R
⊂ (Q1Q3 −Q2

2 ≤ 0)
R
, we have that

Q1 ≤ 0 on (� = 0)
R
.

Next, genus two curve � is deoned by y2 = −58t6 − 398t5 − 677t4 + 244t3 +
394t2 − 24t− 108 and has no real points. All obers of π1 have signature (1, 3),

so π1(R) is surjective.

In this example,Y \Y� does not contain any real points above a real bitangent

of �; in fact Y�(R) → �(R) is not surjective for any real line � ⊂ P2. Thus, the

section of π1 is not obtained from a curve lying over Y� as in Section 3, and it

is not constructed from a point on �̃ as in Proposition 2.2(3) since �̃ has no

points.
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Fig. 2. The image of Y(R) on the chart (w �= 0) in Example 4.11 (left), Example 4.12(1) (center), and

Example 4.12(2) (right). The region (Q1Q3 − Q2
2 ≤ 0)R is in blue, (Q1 ≥ 0)R is in red, and the real

bitangents of � are shown in black.

2. (�̃ has an R-point.) Let �̃ → � and Y�̃/� be as deoned in Section 2.2 for the

quadrics

Q1 := −u2− 6v2+6w2, Q2 := −u2+ uv +3v2+w2, Q3 := −2u2−6v2+ 6w2.

Then �(R) is two nested ovals, the genus two curve ��̃/� is deoned by the

equation y2 = −36t6 − 48t5 − 78t4 − 46t3 − 102t2 − 24t − 72 and has no

real points, and every ober of Y�̃/� → P1 has signature (1, 3). Figure 2

gives a visual depiction of this example. In this case, none of the real

bitangents of � give sections of π1 as in Section 3; however, �̃ has R-points,

which can be used to construct sections of π1.

In this case, the image of �(R) is one oval of �(R). To show this, we consider

the points P0 := [0 : 0 : 1] ∈ (Q1 > 0)
R
,P1 := [0 : 1 : 1] ∈ (Q1 > 0)

R
,

and P2 := [0 : 2 : 1] ∈ (Q1 > 0)
R
. Since (Q1Q3 − Q2

2)(P0) = 35 > 0,

(Q1Q3 − Q2
2)(P1) = −16 < 0, and (Q1Q3 − Q2

2)(P2) = 115 > 0, and since

we know that (Q1 = 0)R is contained in (Q1Q3 − Q2
2 ≤ 0)R, we conclude

that Q1 is nonnegative on exactly one of the two ovals, and is nonpositive

on the other. Thus, �̃ and �̃− both have real points, so both Y�̃/� and

Y�̃−/� are rational. The twisted double cover Y�̃−/� has the property that

��̃−/� has no Weierstrass points, and the obers of Y�̃−/� → P1 all have

signature (2, 2).
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Fig. 3. The regions (Q1Q3 − Q2
2 ≤ 0)R in blue and (Q1 ≥ 0)R in red, in Example 4.14 (left),

Example 4.15 (center), and Example 4.16 (right), on the chart (w �= 0). The real bitangents of �

are shown in black. For each, the image of Y(R) is (Q1Q3 −Q2
2 ≤ 0)R.

Remark 4.13. One can check using P1tilde-bitangents.sage in [17] that in the

preceding Examples 4.10, 4.11, and 4.12, we have P ∼= P̃(1) ∼= Pic0� (see Section 2.3), and

that in each example P̃(1) contains points mapping to all of the real bitangents. This gives

rationality constructions for Examples 4.10 and 4.11 by the proof of Proposition 3.8, but

not for Example 4.12. The torsors P̃ ∼= P(1) ∼= Pic1� are non-trivial because �(R) = ∅. (By
[12, Proposition 6.4], the fact that �(R) = ∅ also shows that in each case Y is not obtained

from an intersection of two quadrics by projection from a conic.)

Example 4.14 (Rational example with �(R) two non-nested ovals, �̃(R) = ∅). Deone

Q1 := −u2 + uv + v2 + vw, Q2 := −2uv + vw +w2, Q3 := u2 − v2 − 2uw,

and let �̃ → � and Y�̃/� be as deoned in Section 2.2. Then �(R) is two non-nested ovals.

To show that �̃(R) = ∅, we work on the chart (w �= 0). One can verify that the

lines (w = 0) and (2v = −1) are disjoint from (� = 0)R; that the sets �(R) + (v = 0)

and �(R) + (v = −1) are both nonempty, and that Q1 is nonpositive on each of these two

sets. Since �(R) has two connected components, we conclude that Q1 is nonpositive on

(� = 0)
R
. See Figure 3 for a visual depiction.

The genus two curve � is deoned by y2 = −1
4 t

6 + 3
2 t

5 − 17
4 t

4 +4t3 −2t2 +2t−1 and

has two real branch points, and the signatures of the obers have sequence (2, 2), (1, 3).

Therefore π1(R) is surjective.
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Example 4.15 (Rational example with �(R) three ovals, �̃(R) = ∅). Deone

Q1 := −3u2+10uv −2v2− 4uw +4vw +w2, Q2 := 5u2 +8uv + 5v2 +4uw −6vw −2w2,

Q3 := −2u2 − 8uv − 2v2 + 2uw + 2vw − 3w2,

and let �̃ → � and Y�̃/� be as deoned in Section 2.2. Then �(R) is three ovals.

To show that �̃(R) = ∅, one can argue as in Example 4.14, checking that on the

chart (w �= 0) one oval is to the left of (u = −1), the two ovals to the right of (u = −1)

are separated by the line (v = 1), and that Q1 ≤ 0 on each oval. The associated genus two

curve � has equation y2 = 39t6 + 102t5 − 1335t4 + 1114t3 + 47t2 + 20t− 32 and has four

real Weierstrass points. The obers of π1 have signature sequence (1, 3), (2, 2), (1, 3), (2, 2),

so π1 is surjective on real points. See Figure 3.

Example 4.16 (Rational example with �(R) four ovals, �̃(R) = ∅). Deone the quadrics

Q1 := u2 + 2v2 − 2w2, Q2 := 3u2 −w2, Q3 := −2u2 − v2 +w2,

and let �̃ → � and Y�̃/� be as deoned in Section 2.2. Then �(R) is four ovals. To see that

�̃(R) = ∅, one can work on the chart (w �= 0) and show that each quadrant of the the

(u,v) plane contains an oval, and then argue as in the previous examples. See Figure 3

for a visual depiction.

Theorem 1.2(4) implies Y is rational. One can also check this explicitly: � is

deoned by y2 = 4t6 + 28t5 + 12t4 − 34t3 − 3t2 + 10t − 2 and has six real branch points,

and the obers Y[t:1] have signatures as shown below.

t −7 −3 −1 0 0.35 0.5

Signature (2, 2) (1, 3) (2, 2) (1, 3) (2, 2) (1, 3)

Remark 4.17. If�(R) is four ovals, then � has six realWeierstrass points by Proposition

3.2 and Corollary 3.6.

Remark 4.18. All the rational examples with �̃(R) = ∅ we constructed above have the

property that (Q1 = 0)
R
intersects every component of �(R). One may wonder if a one

oval example with Q1Q3 − Q2
2 < 0 inside � can be constructed in a similar manner. We

have not been able to construct such a rational example: in every example we have found,
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Fig. 4. The regions (Q1Q3 − Q2
2 ≤ 0)R in blue and (Q1 ≥ 0)R in red for the quadrics deoned in

Remark 3.10, on the chart (w �= 0). Rationality is unknown in this case.

� has two real Weierstrass points and π1 is not surjective on real points. [12, Example

1.5] gives an explicit example. One can also take the quadrics deoned in Remark 3.10:

here (Q1 = 0)R and �(R) have the points [1 : 0 : 1] and [−1 : 0 : 1] in common (see Figure

4), but Y has no real points over [t : 1] ∈ P1(R) for 1 −
√
2 < t < 1 +

√
2.
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