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Abstract. Supercuspidal representations are usually infinite-dimensional, so the size of such a
representation cannot be measured by its dimension; the formal degree is a better alternative. Hiraga,
Ichino, and Ikeda conjectured a formula for the formal degree of a supercuspidal in terms of its
L-parameter only. Our first main result is to compute the formal degrees of the supercuspidal
representations constructed by Yu. Our second result, using the first, is to verify that Kaletha’s regular
supercuspidal L-packets satisfy the conjecture.
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Introduction

Let G be a reductive algebraic group over a nonarchimedean local field k. In the study of
the representation theory of the topological group G (k), the supercuspidal representations
are fundamental: there is a precise sense in which all irreducible (smooth or unitary)
representations can be constructed from supercuspidals. Much recent work has thus focused
on the construction and study of supercuspidal representations.

In 2001, Yu [58], building on earlier work of Howe [34] and Adler [1], gave a gen-
eral construction of supercuspidal representations when G splits over a tamely ramified
extension of k. Six years later, Kim [40] proved that Yu’s construction is exhaustive when
k has characteristic zero and the residue characteristic p of k is larger than some ineffec-
tive bound depending on G. Recently, Fintzen [18] improved Kim’s result to show that
Yu’s construction produces all supercuspidals when p does not divide the cardinality of
the absolute Weyl group. Hence Yu’s construction produces all supercuspidals for many
reductive groups, though not all of them. Moreover, the explicit nature of Yu’s construction
makes his supercuspidals amenable to close study.

The collection of irreducible unitary representations of G (k) carries a natural topology,
the Fell topology, and a natural Borel measure, the Plancherel measure. The Fell topology
is canonical but the Plancherel measure depends on a choice of Haar measure on G (k).
When G is semisimple, every supercuspidal representation i is unitary and thus appears
as a point of the unitary dual. Since supercuspidal representations of semisimple groups
are discrete series, this point is isolated. We may thus ask for the measure of the point, an
interesting numerical invariant of 7 called the formal degree.

When G is not semisimple it is no longer necessarily the case that all supercuspidal
representations are unitary. Nonetheless, we can define the formal degree of an arbitrary
supercuspidal representation in a way that generalizes the formal degree of a unitary
supercuspidal. The definition, given in Section 3.2, makes no reference to the unitary dual,
so we may forget about the unitary representations of G (k) and focus our attention on the
supercuspidal ones.

Our first main result (Theorem A) is to compute the formal degrees of Yu’s supercus-
pidal representations. The formula uses some notation that we must briefly recall for its
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statement to be intelligible. Yu’s construction takes as input a 5-tuple W. The first member
of W is an increasing sequence (Gi)oggd of twisted Levi subgroups; let R; denote the
absolute root system of G*. The second member is a certain point y in the Bruhat—Tits
building B(G). The third member is an increasing sequence (r;)o<j<4 Of nonnegative
real numbers. The fourth member is a certain irreducible representation p of the stabilizer
GO(k)(y) of the image [y] of y in B™Y(G). We compute the formal degree with respect
to a certain Haar measure p constructed by Gan and Gross and discussed later in the
introduction. Gan and Gross’s measure depends on a choice of additive character and in
the formula we choose a level-zero character. For simplicity of exposition we assume in
our discussion of the formula that G is semisimple, though this assumption is relaxed in
the paper proper. Finally, let exp, () := q’.

Theorem A. Let G be a semisimple k-group and let ¥V be a generic cuspidal G-datum
with associated supercuspidal representation . Then the formal degree of 7w with respect
to uis

dim p
[GO(K)pyy = GOk)y,0+]

The proof of Theorem A boils down, after several reductions, to computations in Bruhat
—Tits theory. Yu’s supercuspidals are compactly induced from a certain finite-dimensional
irreducible representation t of a certain compact-open subgroup K. There is a general
formula for the formal degree of a compact induction which specializes, in this case, to the
ratio dim 7 /vol(u, K). The main difficulty is to compute the volume of K. We first situate
K as a finite-index subgroup of a group of known measure; this step reduces the problem
to computing the index. Using the theory of the Moy—Prasad filtration, we can translate the
computation of this index into the computation of the length of a certain subquotient of the
Lie algebra. The length computation, Theorem 3.24, is our key technical result in the proof
of the formal-degree formula.

‘We can thus compute the formal degree of a broad class of supercuspidal representa-
tions. The other main result of the paper synthesizes this computation with Langlands’s
arithmetic parameterization of supercuspidals.

It is expected that the set I1(G) of smooth irreducible representations of G(k) is
classified by certain homomorphisms ¢ : W/ — LG, called L-parameters. Here Wy is the
Weil group of k, W) := SL,(C) x W is the Weil-Deligne group of k, and LG =G x W
is the (Weil form of the) L-group of G. The expected classification consists in a partition

(G) = || M,(6)
¢

d—1
equ(% dimG + 2dim G g0y + 1Y ri(|Risa] — |Ri|)).
i=0

of I1(G) into finite subsets I1,(G), called L-packets, indexed by (equivalence classes of)
L-parameters ¢. The sets I1,(G) are supposed to satisfy many compatibility conditions,
the simplest of which are summarized in Borel’s Corvallis article [6, Section 10.3]. The
resulting partition of I1(G) is called a local Langlands correspondence. Although a
local Langlands correspondence has been constructed for many classes of groups and
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representations, the full correspondence remains a conjecture. Even after fixing the group G,
it is usually quite difficult to establish the correspondence for the entirety of I1(G). Recent
work has thus focused on constructing the L-packets of particular L-parameters.

Refining the outline of the correspondence, Langlands [42, Chapitre IV] suggested
that the elements of the L-packet I1,(G) are parameterized by representations of a certain
finite group attached to ¢. Refining Langlands’s proposal, Vogan [57, Section 9] enhanced
L-parameters to pairs (¢, p) consisting of an L-parameter ¢ and an irreducible representa-
tion p of the finite group mo(S,), where S, is the preimage in Gy of the centralizer in G
of ¢. Unlike ordinary L-parameters, these enhanced parameters keep track of the inner
class of G: one imposes an additional condition [32, Section 1] on the central character
of p, roughly, that it correspond to the inner class of G via Kottwitz’s classification of
inner forms. In this formulation, it is expected [4, Section 1.2] that the local Langlands
correspondence becomes a bijection, in other words, that the irreducible representations p
of S, satisfying the central character condition parameterize the L-packet I1,(G).

Using Vogan’s enhanced L-parameters, Hiraga, Ichino, and Ikeda [32,33] predicted
that the formal degree of an essentially discrete series representation can be computed in
terms of its L-parameter. They verified the conjecture in many cases, in particular, for real
reductive groups and for inner forms of SL,, and GL,,. We will state their conjecture in a
moment after reviewing two of its inputs.

First, in a paper attaching motives to reductive groups, Gross [23, Section 4] constructed
a certain Haar measure yt = py on G(k) depending on an additive character ¥ of k.
Two years later, he and Gan [25, Section 5] constructed a closely related measure that
conjecturally agrees with the original one. Hiraga, Ichino, and Ikeda originally predicted
that Gross’s measure was the right one for their conjecture, but realized later [33] that one
should use Gross and Gan’s measure instead.

Second, one can attach to the parameter ¢ and additional data — a finite-dimensional
representation 7 of ©G and a nontrivial additive character v of k —a meromorphic function
v(s, @, r, ) of the complex variable s, called a y-factor of ¢. The y-factor is a product of
L- and e-factors; Section 4.1 recalls the precise formula. For the representation r of £ G we
choose the adjoint representation Ad of G on §/3 T, where § and 3 are the Lie algebras
of G and of its center and where I is the absolute Galois group of k. Division by 3 Tk
ensures that the y-factor is defined at s = 0. We call the factor y(0, ¢, Ad, ¥) appearing in
the conjecture the adjoint y-factor of ¢.

We can now state the conjecture of Hiraga, Ichino, and Ikeda [32, Conjecture 1.4] on
the formal degree, referred to in this paper as the “formal degree conjecture” for the sake of
brevity. Let Sg denote the centralizer of ¢ in G3, where G* := G/ A with A the maximal
split central torus of G.

Conjecture 0.1. Let  be an essentially discrete series representation of G(k), let (¢, p)
be the enhanced parameter of w, let  be an additive character of k, and let |1y, be the
Gross—Gan measure on G (k) attached to . Then

deg(m. i) = —P 10, 9. A, V).
(D)
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Hiraga, Ichino, and Ikeda verified their conjecture in several cases, building on work
of many others: for an archimedean base field, using Harish-Chandra’s theory of discrete
series [29]; for inner forms of GL,, and SL,,, using work of Silberger and Zink [54,61]; for
some Steinberg representations, using work of Kottwitz [41] and Gross [23, 24]; for some
unipotent discrete series of adjoint split exceptional groups, using work of Reeder [49]; and
for some depth-zero supercuspidals of pure inner forms of unramified groups, using work
of DeBacker and Reeder [11]. In the years following the announcement of the conjecture,
it was shown to hold for Us, Sp,, and GSp, by Gan and Ichino [20]; for epipelagic
supercuspidals by Reeder and Yu [50] and Kaletha [36]; for simple supercuspidals by
Gross and Reeder [26]; for odd special orthogonal and metaplectic groups by Ichino, Lapid,
and Mao [35]; for unitary groups by Beuzart-Plessis [5]; and for unipotent representations
by Feng, Opdam, and Solleveld [15, 16].

The formal degree conjecture is a “meta-conjecture” in the sense that it depends itself
on a conjecture, the local Langlands correspondence. In order to verify the formal degree
conjecture one must first have access to a candidate local Langlands correspondence, or at
least, to candidate L-packets. Strictly speaking, the previous sentence is not entirely true
because some groups admit an analytic construction of the y-factor that bypasses the local
Langlands correspondence, though the two are expected to be compatible. The main exam-
ple is Godement—Jacquet’s [22] construction of the L- and e-factors for representations
of the general linear group, generalizing Tate’s thesis. Their construction explains how
Hiraga—Ichino-Ikeda were able to verify the formal degree conjecture for the general linear
group using work that predated the Henniart [31] and Harris—Taylor [30] constructions
of the local Langlands correspondence. Nonetheless, for the representations we consider
in this paper, an analytic theory of the y-factor is not yet available, and so we work with
L-packets.

Recently, Kaletha [37] has organized into L-packets most of Yu’s supercuspidal repre-
sentations, the “regular supercuspidal representations”. His construction passes through a
pair (S, 8) consisting of an elliptic maximal torus S of G and a character 8 of S(k). On
the Galois side, one uses the Langlands—Shelstad theory of y-data and extensions of L-
embeddings [43] to construct an L-parameter for G from (S, ). On the automorphic side,
one uses the pair (S, ) to produce an input to Yu’s construction, hence a supercuspidal
representation 7 of G(k). We can thus interpret 7 as a functorial lift of 6 with respect to
the embedding S < G. The L-packet of ¢ consists, roughly, of all & produced in this
way as we pass through the various conjugacy classes of embeddings of S in G; Section 2
reviews the construction in more detail.

Since we can compute the formal degree of Yu’s representations, and Kaletha’s L-
packets consist of such representations, it is natural to ask whether the L-packets satisfy
the formal degree conjecture. Our second main result, proved in the body of the paper as
Theorem B, is that they do.

Theorem B. Kaletha's regular L-packets satisfy the formal degree conjecture.

To prove Theorem B, we start by computing the adjoint representation attached to a
regular supercuspidal parameter: it is a direct sum of the complexified character lattice
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of S and some monomial representations constructed from 6 and the root system of S.
The y-factor of the character lattice has already been computed in the literature. As for
the monomial representations, computing their y-factors amounts to computing the depths
of the inducing characters. The inducing characters are very close to certain characters
naturally constructed from 6, and whose depth is usually easy to understand; the difficulty
in the proof is to quantify the difference between the two characters. To quantify it, we
prove that y-data satisfy a natural base change formula, Theorem 4.11, and that the
inducing characters are ramified, Lemma 4.21.

A refinement of the formal degree conjecture due to Gross and Reeder [26, Conjec-
ture 8.3] predicts the root number of the adjoint representation. In future work, I hope to
determine whether Kaletha’s regular L-packets also satisfy this refined conjecture.

The structure of this paper mirrors the formal degree conjecture. After two preliminary
sections that fix notation and review the Langlands correspondence for regular supercuspi-
dals, we compute the formal degree of a Yu representation in Section 3, we compute the
Galois side of the formal degree conjecture in Section 4, and we compare the two in the
brief Section 5.

1. Notation

1.1. Sets

Let | X| denote the cardinality of the set X. Given asubset Y C X, let1y : X — {0, 1}
denote the indicator function of Y.

Many operations on sets are expressed by superscripts or subscripts. When we have
several operations denoted this way, say X — X, and X — X}, we use a comma to denote
the concatenation: X — X, — X, 5. This expression is notationally simpler than the
longer form (X,); and should cause no confusion.

1.2. Filtrations

Suppose [ is a totally ordered index set and (X;);es is a decreasing, /-indexed filtration
of the set X. Fori € I, define

Xt =X, (L.D)

j>i
Let ] :=1 U{i+:i € I} U {oo} denote Bruhat and Tits’s extension of  [8, Section 6.4.1];

their definition is for / = R only, but it is clear how to extend it to arbitrary /. Equation (1.1)
together with the convention
Xoo := (") Xi
i

defines an extension of the given filtration to an T-indexed filtration. If in addition X = G
is a group and each X; = G; is a subgroup of G then define, fori < j in /I,

Gi;j = G,‘/Gj.
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We apply this formalism to the Moy—Prasad filtration on a p-adic group G (k) and its
Lie algebra g in Section 1.6, and to the Weil group Wy in Section 1.3. The filtrations on
G (k) and Wy, are indexed by R, and the filtrations on g are indexed by R. In Section 2.1
we consider a filtration (of a root system) that is increasing, not decreasing. When the
filtration on X is increasing, its extension to T is defined by

Xip =X, Xoo:=|JXi.
i

j>i

1.3. Fields

Let k be a nonarchimedean local field of odd residue characteristic p, let O denote the ring
of integers of k, and let ¥ denote the residue field of @. Given a finite algebraic extension £
of k, let ey denote the ramification degree and fy, the residue degree.

Remark 1.2. Many of the works this paper is built on, for instance, Kaletha’s construction
of regular supercuspidal L-packets [37], assume that p is odd. For this reason we also
assume for the rest of the paper that p is odd.

Let ordy : k* — Z denote the unique discrete valuation on k& with value group Z. We
extend ordy to a valuation on the separable closure k and denote the extension by ordy as
well. Hence the value group for a finite extension £ is ordy (£*) = ee_/lkZ.

Remark 1.3. Aesthetic reasons might lead one to consider a more general value group
for k than Z. Indeed, per our convention, the value group for an extension of k is generally
larger than Z. Most of the computations in this paper can be modified to accommodate a
different choice of value group because their defining objects inherit that choice. Many
of the depth computations of Section 3 could be modified to carry through because the
Moy—Prasad filtration inherits its jumps from the value group. Similarly, the Artin con-
ductor computations of Section 4.1 could be modified to carry through because the upper
numbering filtration inherits its jumps from the value group. However, this modification
would break the connection between the Artin conductor and the Artin representation.
Moreover, since the e-factor is defined independent of the value group, the relationship
between the Artin conductor and the e-factor, in (4.1), holds only for value group Z.

Given a finite @-module M, let len M denote the length of M. When k has positive
characteristic the module M is a k-vector space and its length is its dimension, but when k
has mixed characteristic the module M is not a vector space, and we must work instead
with its length.

Let g := ||, a power of p, let exp,(f) := q', and let log, be the functional inverse
of exp,. The function exp,, is related to the length by the equation

expy len M = |M]|.

Let Wy denote the Weil group of k, let I € Wj denote the inertia subgroup of Wy,
let Py € Iy denote the wild inertia subgroup, and for r > 0 let Wkr C W denote the rth
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subgroup of Wy in its upper numbering filtration, computed with respect to the valua-
tion ord. A representation of the Weil group is a continuous, finite-dimensional, complex
representation 7w of Wy. Given a finite extension { of k, let 7|, := 7 |w,. The depth of
is defined as

depth :=inf{r e R : n(WkH') =1}

In order to make the filtration on the Weil group compatible with the Moy—Prasad filtration,
we need to modify the upper numbering filtration on W; for a finite extension £ of k by
using the valuation ordy to define it instead of the valuation ordy,. When the extension is
tame, as is usually the case, this modification has the effect of scaling the indices of the
filtration by ee_/lk. To make the dependence on k clear, let depth;, denote the depth of a
representation of Wy where its filtration is computed using ord . The distinction is crucial
for the proof of Lemma 4.5.

1.4. Groups

Let G be a reductive k-group, let Z be the center of G, and let A be the maximal split
subtorus of Z. We reserve the symbols S and T for tori, often maximal tori of G. Let g
and 3 denote the Lie algebras of G and Z, respectively.

Remark 1.4. There are three exceptions to the notational convention that G denotes a
reductive group and S and T denote tori.

First, we sometimes need to work with «-groups instead of k-groups. This practice
cannot be avoided, but it is so rare that we did not see the need to introduce a separate
notational convention for k-groups. So G, S, and T denote «-groups in this setting, which
takes place in small portions of Sections 2.2 and 3.9.

Second, for reasons of notational clarity, in Section 3 the symbol G denotes a k-group
and the symbol G denotes the topological group of its rational points, as discussed in
Section 3.1.

Third, in Section 3.2, where we discuss the formal degree, G denotes an arbitrary
locally profinite group, the proper setting for that theory.

Given a subgroup H of G, let H* := G/A. The letter “a” abbreviates “anisotropic”.
The notation hides the dependence on the ambient group G, but the meaning should be
clear from context: typically H is a maximal torus or (twisted) Levi subgroup of G.

Let G denote the Langlands dual group of G, a complex reductive group, and let
LG = G x W denote the Weil form of the dual group.

Given an extension £ of k and an {-group H, let Resy,/x H denote the Weil restriction
of H from £ to k.

1.5. Root systems

Given a reductive k-group G and a maximal torus T of G, let R(G, T') be the absolute root
system of G with respect to T, that is, the root system of G with respect to T}, together
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with its natural Galois action. Let R(G, T') denote the set of Galois orbits of R(G, T).
I prefer to think of R(G, T') as the “functor of roots” in the sense of SGA 3 [14, Sec-
tion XIX.3], an equivalent but more elaborate perspective. Reserve the letters o, 8, ¥, . . .
for elements of R, and the underlines , 8, ¥, . . . for elements of R. Given o € R, let a(k)
denote the elements of «, a subset of R.

Given a € R, let Ty denote the stabilizer of « in Iy, and let kg := kT denote the fixed
field of I',. Given o € R, let k, denote a fixed field extension of k that is isomorphic, for
some & € a(k), to the extension ko, and let kq denote the residue field of k. We can define
kg canonically as the inverse limit of the groupoid of extensions k, with o € a(k), in the
style of Deligne and Lusztig [13, Section 1.1], but since I is nonabelian, it is impossible
to canonically identify this limit with any one k. The notation k4 helps us avoid choosing
such an «, and is reserved for expressions that depend only on the isomorphism class of
the extension, such as the degree [kq : k].

1.6. Bruhat-Tits theory

Given a reductive k-group G, let B(G) and B8™¢(G) be the extended and reduced Bruhat—
Tits buildings of G. Let [x] denote the image of x under the canonical reduction map
B(G) — B™Y(G). Given a maximal split torus T of G, let 4(G, T') and A™4(G, T') denote
the extended and reduced apartments of 7. The apartment 4 (G, T') is noncanonically
isomorphic to the building B (7). For us, the words “building” and “apartment” refer to
the extended forms.

The apartment of a maximal split torus is a classical construction, defined in Bruhat
and Tits’s original papers on buildings [8,9]. More recently, in a paper establishing tame
descent for buildings [48], Prasad and Yu showed for any tame maximal torus S of G
how to embed the building of S into the building of G. Although the embedding is not
canonical, the image of the embedding is canonical. We denote this image by A(G, S) and
call it the apartment of G in S, though that terminology is typically reserved for maximal
split tori only.

Given a point x of B(G) or 8™¢(G), let G(k), denote the stabilizer of x in G(k).
When the center of G is anisotropic the parahoric group G(k)y, is of finite index in the
stabilizer G(k)y; in general, A(k)oG(k)x,o is of finite index in G (k)x.

For each x € 8(G), Moy and Prasad [45, Sections 2 and 3] defined a canonical
decreasing R -indexed filtration of G (k) and a canonical decreasing R-indexed filtration
of g, denoted by G(k)x,, and g, , and called the Moy—Prasad filtrations. When G = S
is a torus, the point x is irrelevant and we suppress it from the notation. Although the
filtrations are defined for every G, they are particularly well-behaved when G splits over a
tame extension. In this case, for instance, there is a canonical isomorphism

Gx,r:r+ = Qx,rir+

for every r > 0, called the Moy—Prasad isomorphism. Sections 3.3 to 3.5 discuss in much
more detail these filtrations and a generalization of them due to Yu.
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The Moy—Prasad filtration is compatible with our chosen discrete valuation on k in the
sense that for r > 0,
k) :={a e k™ :ordg(a—1)>r}.

Given a finite separable extension £ of k and a reductive {-group H, we compute the
Moy-Prasad filtration on H (£) with respect to the norm ordg, not ordy. This convention
implies that the Moy—Prasad filtration is a topological invariant independent of the base
field in the following sense: the Moy—Prasad filtration on the group G({) agrees with the
Moy-Prasad filtration on the identical group (Resg/x G)(k).

The depth of an irreducible admissible representation 7w of G (k), denoted by depth;, 7,
is the smallest real number r such that for some x € B(G), the representation 7 has a
nonzero vector fixed by G(k)x,r+. The subscript k is a reminder that the depth, via the
Moy-Prasad filtration by which it is defined, depends on the base field k. It is not a priori
clear that this minimum is attained, but Moy and Prasad [46, Theorem 3.5] showed that
the depth is a nonnegative rational number. This result makes the depth an indispensable
tool in the representation theory of p-adic groups.

Remark 1.5. Most of Bruhat-Tits theory carries through when the field k is assumed
only to be Henselian. For example, the results of Sections 3.3 to 3.6 hold at this level of
generality. But once representation theory enters the picture, we must assume k is a local
field.

1.7. Base change for groups and vector spaces

Given a scheme X over a base scheme Y and a morphism Z — Y, let Xz denote the
base change of X from Y to Z, that is, the pullback X xy Z. When Z = Spec 4 is the
spectrum of a field A, we write X4 for Xz. The schemes X that we base change are in
practice always group schemes.

Similar notation can be used for base change of modules. Given a B-algebra A and an
A-module M ,let Mg == M ®4 B.

We take the position that an algebraic group carries the information of its base scheme.
This forces our terminology to differ slightly from common practice in the literature
where a k-group is thought of as a lg-group with a k-rational structure. In this common
language one can speak, given two k-groups G and H, of morphisms G — H that are not
defined over k. For us, a morphism G — H is automatically defined over k. To speak of
a morphism “not defined over k” in this common sense, we would speak of a morphism
G¢ — H; where £ is an extension of k, especially £ = k.

1.8. Base change for characters

Let S be a k-torus, let £ be a finite separable extension of k, and let 7 := Resg/x S¢. Since
X*(T) = Indg/k Resg/x X*(S), there is a canonical map X*(S) — X*(T) of Galois
lattices, the unit of the adjoint pair (Resg/x, Indg/x). The dual of this unit is a canonical
map Ny : T — S, called the norm map; we use the same name and notation for the map
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T(k) = S({) — S(k) on rational points. Given a character 6 : S(k) — C*, define the
character 6y : S({) — C* by precomposition with the norm:

Op/k =00 Ny,

We call 0y the base change of 6 from k to £. In contrast to the usual notation for base
change of schemes, the notation for base change of characters must include &, not just £,
because the base field k cannot be recovered from the topological group S (k).

The base change operation for characters realizes base change in the local Langlands
correspondence. For tori, this correspondence is a bijection between the complex character
group of S(k) and the Galois cohomology group H! (W, S ). On the Galois side, we can
restrict the L-parameter 6 of a character 6 to the Weil group W of a finite separable exten-
sion. But by the local Langlands correspondence for Sy, this parameter é| ¢ corresponds to
a character of S({). It is well known, and a formal consequence of the properties of the
local Langlands correspondence for tori, that this character is precisely the base-changed
character just defined: symbolically,

010 = 6uyx.

Yu’s Ottawa article [59] nicely summarizes the local Langlands correspondence for
tori, and proves that for tame tori, the local Langlands correspondence preserves depth [59,
Section 7.10]. He does not discuss base change, however.

We also need to understand how base change affects depth.

Lemma 1.6. Let £ be a finite separable extension of k, let S be a k-torus, and let 0 :
S(k) — C* be a character. If either

(1) £/k is unramified and depthy 6 > 0, or
(ii) £/k is tamely ramified and depth;, 6 > 0,
then depthy 6 = depthy 0.

Proof. This follows from Yu’s depth-preservation theorem and the assertion above that the
local Langlands correspondence intertwines base change with restriction. ]

2. Langlands correspondence for regular supercuspidals

In this section we review the Langlands correspondence for regular supercuspidal represen-
tations, following Kaletha’s article [37]. Many of the definitions, for instance, regularity
of L-parameters, are rather technical, and instead of restating them, we point to their
definitions in the literature. The description of regular representations and the construc-
tion of their L-parameters passes through a pair (S, 6) consisting of an elliptic maximal
torus S of G and a character 6 of S(k) satisfying certain regularity conditions reviewed in
Section 2.1. The primary goal of this section, then, is to understand, to the extent needed
to verify the formal degree conjecture, how these pairs interface with both sides of the
Langlands correspondence.
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On the automorphic side, the pair (S, #) produces an input to Yu’s construction [58]
of supercuspidals; we explain how this works in Section 2.2. In this way we produce a
supercuspidal representation (s gy of G(k). When (S, 0) is “tame elliptic regular”, the
representations that arise this way are precisely the regular supercuspidal representations.

On the Galois side, one can define a certain class of “regular supercuspidal parameters”
and show that each arises from a pair (S, 8) as the composition

Lg L LjX L
Wy — =S — =G.

Here the first map corresponds to 6 under the local Langlands correspondence for tori
and the second map is an extension of a given Galois-stable embedding ; : el
There is a general procedure, reviewed in Section 2.3, for extending f to Lj x using a
certain object y called a set of y-data. In our setting one canonically constructs such
x-data from the pair (S, 6), producing a canonical extension = jx and thus a canonical
L-parameter. Using pairs (S, 0), we organize regular supercuspidal parameters into L-
packets in Section 2.4. To first approximation a regular supercuspidal L-packet consists
of the regular supercuspidal representations 7 (g go;—1y as j ranges over G(k)-conjugacy
classes of admissible embeddings j : S < G; in reality, however, we must slightly modify

the character § o j 1.

2.1. Tame elliptic regular pairs

Pairs (S, 0), consisting of a k-torus S and a character 6 : S(k) — C* subject to certain
conditions, mediate the local Langlands correspondence for regular supercuspidals. This
subsection reviews these conditions, following the discussion in Kaletha’s article [37,
Sections 3.6 and 3.7], and uses them to compute the depths of certain auxiliary characters
that arise in Section 4.5.

The simplest condition is tameness: the pair (S, ) is tame if S is tame, that is, if S
splits over a tamely ramified extension of k. In this paper S is always assumed to be tame,
though we sometimes repeat the hypothesis for emphasis.

All other conditions on our pair require that S be embedded as a maximal torus of a
reductive group G. This requirement is extremely natural on the automorphic side, but on
the Galois side, we must reinterpret it carefully since the embedding is allowed to vary.

So assume in the rest of this subsection that S is a maximal torus of G. The pair
(S, 0) is elliptic if S is elliptic, that is, if the torus S/Z (where Z is the center of G) is
anisotropic.

For the final condition, regularity, we need to probe more deeply the relationship
between (S, 0) and G. Let R = R(G, S) and let £ be the splitting field of S. Given a real
number r > 0, consider the set of roots

R :={a e R:(Ooa”)E) =1}

The assignment r > R” is an increasing, Galois-stable, R-indexed filtration of R. Let
R™t :=J,., RS letrg_; >--->rg > 0 be the breaks of this filtration, and let 7_; = 0

s>r
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and ry = depth; . Foreach0 <i <d,let R; := RCi—D+ Tt turns out [37, Lemma 3.6.1]
that R; is a Levi subsystem of R. Let G’ be the connected reductive subgroup of G
containing S whose root system with respect to S is R;; the group G’ can be constructed
by Galois descent, for example. Let G := S.

Definition 2.1 ([37, Definition 3.7.5]). A tame elliptic pair is regular if

(i) the action of the inertia group on Ry preserves a set of positive roots,

(ii) the stabilizer of the action of the group N(G°, S)(k)/S (k) on 6]s), is trivial.
It is extra regular if, in addition,

(ii’) the stabilizer of the action of the group Q(G°, S)(k) on 0|, is trivial.

Here N(G?, S) is the normalizer of G® in § and Q(G?, S) is the Weyl group.

When we compute in Section 4 the formal degree of the regular parameter attached
to (S, 0), half of the problem (the “root summand” of Section 4.5) boils down to knowing
for each coroot ¥ the depth of the character

Oko/k 0’

here ¥ is interpreted as a homomorphism k) — S(kq). Therefore, our main goal in this
subsection is to compute the depth of this character. To carry out the computation, we
systematically decompose 6 as a product of characters of known depth using Kaletha’s
notion of a Howe factorization, after reviewing an important component of that definition,
due to Yu.

The definition of a Howe factorization relies on a definition of Yu [58, Section 9] for a
character ¢ : H(k) — C* of a twisted Levi subgroup H of G to be G-generic of depth r.
We need not concern ourselves with the precise definition of G-genericity, but we do need
one of its consequences, which approximates the full definition.

Lemma 2.2. Let G be a reductive k-group, let H be a tame twisted Levi subgroup of G, let
S C H be a tame maximal torus, and let ¢ - H(k) — C* be a character of positive depth r
whose restriction to Hy (k) is trivial. Then ¢ is G-generic if and only if for every root
« € R(G,S)\ R(H, S) and every finite tame extension { of ke, the character ¢g;i o o)
of £* has depth r.

Proof. Kaletha [37, Lemma 3.6.8] proved this lemma in the case where £ is a fixed splitting
field of S. We can deduce our result in the case where £ = k, from his result using the
naturality of the norm map, and from there, we can deduce the result in general using
naturality and Lemma 1.6. ]

Corollary 2.3. In the setting of Lemma 2.2, depthy ¢ € ord(k}) for each oc € R(G, S) \
R(H, S).

Regularity is much less restrictive than genericity, but we need to know something
about genericity in order to understand the depths of various auxiliary characters con-
structed from 6 in Section 4.5. Roughly speaking, any character, regular or not, can be
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decomposed as a product of generic characters related to the filtration of the root system.
This decomposition is called a Howe factorization.

Definition 2.4. A Howe factorization of (S, 0) is a sequence (¢; : G* (k) — (CX)E":_1 of
characters satisfying the following properties:

(M) 0 =TTy ¢ilsao-
(ii) The character ¢ is trivial on G! (k) for 0 <i <d.
(iii) The character ¢; is G i+1-generic of depth r; for 0 <i < d — 1; the character ¢ is
trivial if r4 = r4z_; and has depth r; otherwise; and the character ¢_; is trivial if
G° = S and otherwise satisfies ¢_1|sx), = 1.

It turns out [37, Proposition 3.6.7] that every tame pair admits a Howe factorization.
When o ¢ Ry, we can use this factorization to compute the depth of Oy, /x o a".

Lemma 2.5. Let (S, 0) be a tame pair and let o € R;, where 1 <i < d. Then the character
Oky/k 00 1k — C* has depth ri_;.

Proof. Let (¢; : G/ (k) — C *)4__ be a Howe factorization of (S, 6). Then

j=—1

d
Okork 00" = [ bjkosa 0.

J=-1

Since oV factors through G*, condition (ii) of a Howe factorization implies that the factors
of this product are trivial for j > i. By Lemma 2.2, the j th remaining factor has depth r;,
and since the sequence j + r; is strictly increasing, the product has depth r;_;. ]

Lemma 2.5 conspicuously omits the case where o € Ry. We have more to say about
this in Section 4.5, especially in Lemma 4.21 and Remark 4.22.

2.2. Regular representations

Yu’s seminal paper [5 8] constructs a broad class of supercuspidal representations starting
from a certain triple (G T_1, ¢) which we call, for reference, a Yu datum. This subsection
reviews these triples and explains how a tame elliptic regular pair gives rise to a Yu datum.
Later, Section 3.7 explains in more detail how to construct supercuspidal representations
from Yu data.

There are three stages of representations used in Yu’s construction, each informing
the previous one: representations of finite groups of Lie type; depth-zero supercuspidal
representations; and supercuspidal representations of arbitrary depth. Since the definition
of regular supercuspidal passes through each of these stages, we start by reviewing each
stage in turn.

The first stage is finite groups of Lie type. In this paragraph only, let G be a reductive
k-group. Representations of G(«) are well understood through the work of Deligne and
Lusztig [13]. They attached to an elliptic pair (S, 8) over « (that is, S is an elliptic
maximal torus of G) a virtual representation Rg ¢), the Deligne-Lusztig induction. If the
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character 0 of the k-torus S is regular [37, Definition 3.4.16] then =R g ) is an irreducible
representation. We say that a representation p of G (k) is regular if it is isomorphic to such
a Deligne-Lusztig representation.

Passing to the second stage, depth-zero supercuspidals, Morris [44] was the first to
realize that for a general reductive group, depth-zero supercuspidal representations could
be constructed from cuspidal representations of finite groups of Lie type. A more precise
version of Morris’s result is the following classification theorem [46, Proposition 6.8] of
Moy and Prasad: for every depth-zero supercuspidal representation 7 of G(k), there is a
vertex x € 8™4(G) such that |G (k) o contains the inflation to G(k)x,o of an irreducible
cuspidal representation p of G (k)x,0:0+. Furthermore, we can recover 7 by compact induc-
tion: there is some representation p of G (k) such that p|g), , contains the inflation of o
and such that 7 = c—IndgEi;x p. The depth-zero supercuspidal representation 7 is regular
if the representation p of G (k) 0.0+ is regular. Regular depth-zero supercuspidals = enjoy
two pleasant properties.

First, there is a canonical bijection between regular depth-zero supercuspidals and
conjugacy classes of regular tame elliptic pairs (S, 8) of depth zero in which the torus S is
maximally unramified in G [37, Definition 3.4.1]. In particular, we can recover S from 7.

Second, it turns out [37, Sections 3.4.4 and 3.4.5] that 7r(5 9y can be compactly induced
from a representation 7)(s ) of the group S(k)G(k),o. This is an improvement over Moy
and Prasad’s theorem, which uses the larger stabilizer group G(k), instead; generally
S(k)G(k)x,o is easier to understand than G (k). The fact that & is compactly induced
from this smaller group plays a crucial role in our final computation, in Section 3.9, of the
formal degree of a regular supercuspidal.

We can now discuss the third stage, Yu’s general construction of supercuspidals.

To start, we recall the definition of a Yu datum. A subgroup H of G is a twisted Levi
subgroup if there is a finite separable extension ¢ of k splitting G such that Hy is a Levi
subgroup of Gy, and H is tame if £ can be taken to be a tame extension of k. A twisted
Levi sequence in G is an increasing sequence

G=(G"SG ¢S GY

of twisted Levi subgroups of G it is tame if each of its members is tame. The first compo-
nent G of a Yu datum is a tame twisted Levi sequence; the second component 7_; of a Yu
datum is a depth-zero supercuspidal representation of G°(k); and the third component Js
of a Yu datum is a sequence of characters

¢ = (¢ : G (k) - CHL,.

These three objects are required to satisfy certain conditions that Section 3.7 spells out in
detail. In fact, in that section we work with a certain five-tuple instead of a Yu datum, but
the two objects are closely related [27, Section 3.1].

To simplify the following definition, we assume in the rest of this subsection that p
does not divide the order of the fundamental group of G. Kaletha defined regularity in
general using z-extensions [37, Section 3.7.4], but we have no need to understand how this
works.
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Definition 2.6. A Yu datum (é 1, q;) is regular if w_ is a regular depth-zero super-
cuspidal representation. A supercuspidal representation is regular if it is isomorphic to a
supercuspidal representation constructed from a regular Yu datum.

We have thus defined the supercuspidal representations of interest to us; the next matter
is to connect them to torus-character pairs.

Given a Yu datum (é, T_1, 5), we can find a maximally unramified torus S of GO and
a regular depth-zero character ¢_; of S(k) such that 7_; = (s ¢_,). Setting

d
0= ] oilsw
i=—1
then produces a tame elliptic regular pair (S, 6). Conversely, given such a pair (S, 6), with
Howe factorization (¢; : G (k) — (Cx)l__l, the triple

(G = (Goziza - T-1 = (s.p_)- b = (Bi)P—p)

is a Yu datum. It turns out [37, Proposition 3.7.8] that these assignments are bijections
modulo the appropriate equivalences. In this way, we can form a regular supercuspidal
representation (g gy from a tame elliptic regular pair (S, 6).

Warning 2.7. Fintzen [17, Section 4], and independently Spice, realized that in the
construction of supercuspidals Yu’s paper omits a certain sign. This omission traces back
to a computation in a classical paper of Gérardin [21, Theorem 2.4 (b)]. The omission
invalidates several intermediate results in Yu’s work, though not the final conclusion that
the representations he constructs are supercuspidal. The corrected signs have several further
applications in the study of such representations [19]. Consequently, in our discussion of
Yu’s work we may safely ignore these correction terms.

2.3. L-embeddings

In this subsection we explain and study a formalism of Langlands and Shelstad for extend-
ing an embedding ; : S — G with Galois-stable G- con]ugacy class to an L-embedding
Lj . LS — LG.Fix a T} -pinning of G with maximal torus 7.

The first difficulty in extending ] to £; is to reconcile the Galois actions on SandG.
Specifically, let g denote the action (homomorphism) of Wy on T through its action on G:
let s denote the action of Wy on T through its action on S, transferred using J; let N be
the normalizer of 7 in G; and let = Q(@, YA”) be the Weyl group. Given a Weil element
w € Wy, thought of as an element of S, its image under an extension ©;j has the form
nw where n € N lifts the Weyl element

ws,c(w) == ts(w)tg (W)~ € Q,

so that nw acts on T by the S-action. The lift exists precisely because the G -conjugacy
class of j is Galois-stable. To define the extension L j , then, we need only choose a specific
lift n of ws,g(w) to N.
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For many reductive groups, in particular the special linear group, the projection map
N — € does not admit a homomorphic section. Nonetheless, by finding a good way to
lift fundamental reflections, Tits [56] defined a canonical set-theoretic sectionn : Q — N,
which we call the Tits [ift. Its precise definition [43, Section 2.1] is not so important for us.
Since the Tits lift is not a homomorphism, the candidate formula

w = n(ws,g(w))w

for Lj |w, does not define a homomorphism Wy — LG. To get around this problem,
Langlands and Shelstad studied the failure of this formula to define a homomorphism as
measured by the function ¢ : Wy x Wy — T given by

t(wy, wz) = (n(wr)wy)(n(w2)wa)(n(wiwa)wiwy) L.

Using an object y called a set of y-data, whose definition we review momentarily, they
constructed a function r, : Wy — S that negates this failure in the sense that 9(j o ry) =
t~1, where 9 is the coboundary operator. Hence the modified formula

w = j(ry(w)n(ws,c(w))w

does define a homomorphism Wy — LG, and in total, the extension £ y of J is given by
the formula

Liysw) = j(s ryw))n(ws,c (w)w.

This concludes our outline of the Langlands—Shelstad procedure to extend an embed-
ding of a torus to an L-embedding. Later, in Section 4.2, we recall the definitions of y-data
and the function r.

2.4. Regular parameters

This subsection is largely an expository account of Sections 5.2 and 6.1 of Kaletha’s
article [37]. Our goal is to describe the regular supercuspidal L-parameters and their
construction from tame elliptic extra regular pairs.

The definition of regularity for L-parameters [37, Definition 5.2.3] is not important
for us, so we omit the precise statement: roughly speaking, a parameter ¢ is regular if it
takes the wild subgroup to a torus and the centralizer of the inertia subgroup is abelian (in
fact, this is the definition of a “strongly regular” parameter). Consequently, the groups S,
and S(E appearing in the statement of the formal degree conjecture are abelian, so that their
irreducible representations are one-dimensional. This means that we can ignore the factor
dim p appearing in the Galois side of the formal degree conjecture, since it equals 1.

However, we should explain the relationship between regularity and torus-character
pairs. To classify regular parameters, Kaletha introduced an auxiliary category of regular
supercuspidal L-packet data whose objects are quadruples (S, j, y, 8) consisting of

e atame torus S of dimension the absolute rank of G,
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e an embedding J : S — G of complex reductive groups whose @-conjugacy class is
Galois stable,

e a minimally ramified set of y-data for R(G, S),
e acharacter 6 : S(k) — C*.

For the meaning of minimally ramified y-data, see Definitions 4.6 and 4.15 in Section 4.2.
These objects are required to satisfy additional conditions [37, Definition 5.2.4] that do
not concern us here. One can also define a morphism of such data, organizing them into a
category in which all morphisms are isomorphisms.

In general, the @—conjugacy class of J gives rise to a Galois-stable G(lg)—conjugacy
class of embeddings S; < G whose elements are called admissible (with respect to J)
[37, Section 5.1]. Since S is elliptic, this G(IE)—conjugacy class contains embeddings
defined over k. That is, S can be embedded as a maximal torus of G. However, neither
the embedding nor its G(k)-conjugacy class is canonical, and the definition of regular
supercuspidal L-packet data makes no choice of embedding. This failure is related to the
need to organize supercuspidal representations into L-packets.

The key property of the category of regular supercuspidal L-packet data is that the iso-
morphism classes of its objects are in natural bijection with equivalence classes of regular
supercuspidal parameters. Given a regular supercuspidal L-packet datum (S, J, 6, y), its
parameter is the composition

Lj x © LQ,
where ©j y 1s the L-embedding of Section 2.3; this is the direction of the correspondence
that we need to understand when we compute, in Section 4, the absolute value of the
adjoint y-factor.

Let (S, 0) be a tame elliptic extra regular pair. Assume that there is at least one
admissible embedding j of S as a maximal torus of G. Instead of just pulling back the
character 0 to jS, we need to modify it slightly: define

jO =00 ¢

where & = &,y - €™ is a certain tamely ramified Weyl-invariant character of jS [37,
Section 5.3]. Kaletha used the character formula of Adler, DeBacker, and Spice [2, 3, 12]
to construct from (S, 6, j) a certain minimally ramified set y of y-data, which appears,
for one, in the definition of ¢. Then the L-packet corresponding to the datum (S, 7, y, 6)
consists of the set of regular supercuspidal representations

7(jS.j6"

where j : § < G ranges over the G (k)-conjugacy classes of admissible embeddings.

3. Automorphic side

In Section 2.2, we outlined Yu’s construction of supercuspidal representations. In this
section we calculate the formal degree of such a representation. This result is of independent
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interest, and could be used to verify the formal degree conjecture for broader classes of
supercuspidal representations than those considered in this paper.

The basic idea of the computation is quite simple, but various technical complications
arise in the process. As Section 3.7 explains, Yu’s representations are obtained by compact
induction of a finite-dimensional representation of a compact-open (or really, compact-
mod-center) subgroup of G (k). There is a general formula for the formal degree of such a
representation in terms of the dimension of the starting representation and the volume of
the subgroup. Section 3.2 explains this formula and reviews the notion of formal degree.
To compute the formal degree of a Yu representation, then, one need only compute two
numbers, a dimension and a volume.

The dimension comes from Deligne—Lusztig theory and is straightforward to com-
pute in our case. We work it out in Section 3.9, where we specialize the formal degree
computation to the case of a regular supercuspidal representation.

The volume comes from Bruhat-Tits theory, and is much more difficult to compute.
Still, the basic idea is clear. Computing the volume of a compact-open subgroup amounts
to computing its index in a larger group of known volume, so the volume computation
boils down to an index computation. Using the Moy—Prasad isomorphism, that index
computation, in turn, boils down to a computation of the subquotients in the Moy—Prasad
filtration on the Lie algebra.

The groups used in Yu’s construction generalize the subgroups of the Moy—Prasad
filtration. In Sections 3.3 to 3.5 we review their construction and explain various ways in
which Yu’s theory is an elaboration of the theory of Moy and Prasad [45, 46], or going
back even farther, the theory of Bruhat and Tits [8, 9]. Our goal in that lengthy section is
to generalize the Moy—Prasad isomorphism to Yu’s groups, and to understand the extent
to which the Lie algebra of one of Yu’s groups decomposes as a direct sum of root lines.
After these preliminaries, we compute the dimension of such a Lie algebra in Section 3.6.
The Moy-Prasad isomorphism then translates this dimension into the subgroup index that
we need to compute. At this point the main steps are in place, and in Section 3.8 we walk
up the staircase and finish the computation.

To make statements like Lemma 3.34 easier to read, in Section 3.1 we introduce
notation particular to Section 3 for reductive groups and their topological groups of rational
points.

3.1. Notation

It is important for many reasons to distinguish between a linear algebraic k-group and
the group of its rational points. The former is a k-scheme and the latter is just an abstract
group, a topological group if k has a topology. Many constructions are easier on the level
of schemes, but for the kind of representation theory we consider in this paper, one can
work only with the group of rational points.

It is conventional in algebraic geometry to denote a k-group by G and the group of its
rational points by G (k). Following the convention in this section, however, would create
a confusing proliferation of “(k)” suffixes. In Section 3 only, therefore, we underline,
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denoting k-groups by G, H, . .. and their groups of rational points by G, H, .. .:
G :=G(k).

In particular, we write Q for a twisted Levi sequence and G for the sequence of topological
groups obtained from it by taking k-points. The convention extends to (- and «-schemes as
well. For instance, we write G, for the smooth @-group, constructed by Yu [60, Section 8],
whose group of @-points is the Moy—Prasad group Gy ,. Similarly, G 0.0+ denotes the
maximal reductive quotient of the special fiber of G, a k-group.

3.2. Formal degree

Here we review the formal degree, following the relevant section of Renard’s monograph
on representations of p-adic groups [51, Section IV.3], then calculate the formal degree
of a compactly induced representation. In contrast to the conventions of the rest of the
paper, in this subsection only, let G be a unimodular locally profinite group, let Z be the
center of G, and let (;r, 1) be a smooth irreducible representation of G. Let A be a closed
subgroup of Z such that Z /A is compact, and let u be a Haar measure on G/A. Several
of our results use A in the statement but are independent of the choice of A.

The matrix coefficient of = with respect to v € V and v¥ € VY (where V'V is the
smooth dual of V) is the function 7, v : G — C defined by 7y v (x) = (7w(x)v, vV).
Since r is irreducible, there is a character y of Z, called the central character of , such
that 7(z) = y(z) for all z € Z. Assume that the central character is unitary. In this case,
the function x + |7, v (x)|? is constant on cosets of A, and hence defines a function
on G/A. We write |1y, ,v |iz G/ AL for the integral of this function, and say that (7, V)
is discrete series (with respect to A) if |7y v |1 2(G/a,,) < 00 forallv € Vand v € VY.
This condition is independent of A, and also of the choice of Haar measure on G/ A.

In practice, it is useful to slightly weaken the definition of a discrete series representa-
tion, and to define a representation to be essentially discrete series if it becomes discrete
series after twisting by some character of the group.

It can be shown that every discrete series representation is unitary in the sense that
it admits a positive-definite G-invariant Hermitian product.' The resulting isomorphism
between V and V'V defines a matrix coefficient my,w forv,w € V. Set my 1= my p.

For a discrete series representation (77, V'), one would hope for a relationship between
the norm of a vector and the L2-norm of its matrix coefficient. Although these norms are
not equal in general, it turns out that they differ by a multiplicative constant depending
only on 7 and the Haar measure on G/ A, not on the vector. This constant is called the
formal degree.

'Our notion of unitary is almost the same as the analogous notion of Hilbert space theory, with
the caveat that smooth unitary representations generally do not form Hilbert spaces because they are
incomplete for the induced norm.
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Definition 3.1 ([51, Section 1V.3.3]). Let (7, V') be an essentially discrete series rep-
resentation and let p be a Haar measure on G/A. If  is in addition a discrete series
representation then there exists a positive real constant deg (7, i), called the formal degree
of , such that forall v € V,

vf?

o7 i
TG4 deg(, )

In general, we define the formal degree of 7 as the formal degree of any discrete series
representation of G obtained from 7 by twisting by a character of G.

According to Harish-Chandra [28, p. 4] the definition is due to Mackey, though he did
not publish it. Evidently the formal degree scales inversely with the Haar measure used to
define it:

deg(m, cp) = ¢ deg(m, p).

Remark 3.2. Assume Z is compact in this remark for simplicity. In harmonic analysis,
one studies the set of irreducible unitary representations of G by endowing it with a
certain topology and measure, called the Plancherel measure. The measure, though not
the topology, depends on a choice of Haar measure u on G. An irreducible unitary
representation (7, V') is discrete series if and only if it is an isolated point of positive
measure, and that measure is the formal degree of 7 with respect to p. In particular, if G is
compact and we choose the Haar measure on G giving it volume 1 then the formal degree
of (, V) is just the dimension of V.

Discrete series representations are closely related to supercuspidal representations,
but neither notion implies the other. Recall that a smooth irreducible representation is
supercuspidal if its matrix coefficients have compact support modulo the center, or equiv-
alently, modulo A. If a supercuspidal representation has unitary central character then
it is certainly discrete series, since compactly supported functions are square-integrable;
but since not every compactly supported function is square-integrable, in general, there
are discrete series representations that are not supercuspidal. At the same time, since
supercuspidal representations need not have unitary central character, not all supercuspidal
representations are discrete series. However, when G is a p-adic reductive group, every
supercuspidal representation of G is essentially discrete series, and we may thus speak of
the representation’s formal degree.

Since Yu’s supercuspidal representations are compactly induced, we compute their
formal degree using a general formula for the formal degree of a compactly induced
representation. As a preliminary step, we define a natural Hermitian product on a compactly
induced representation.

Let K be an open, compact-mod-A subgroup of G (this condition is independent
of A), let (p, W) be a smooth irreducible unitary representation of K, and let (m, V)
be the representation of G compactly induced from (p, W). That is, V is the space
of smooth functions f : G — W whose support is compact-mod-K and that satisfy
f(hx) = p(h) f(x)forall h € K and x € G. The representation (7, V') is unitary; in fact,
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an invariant scalar product is given by the formula

i fo) = / ). £200) iy (). (3.3)

K\G

where (g is any positive G-invariant Radon measure on K\ G, for instance, the counting
measure.

Lemma 3.4. Let (p, W) be a finite-dimensional unitary representation of K, let (t, V') be
the compact induction of W to G, and let i be a Haar measure on G/ A. If 7t is irreducible
then

dim p
vol(K/(K N A), u)

Proof. We start by defining an isometric embedding W < V. Given a vector w € W,
define w € V by

deg(m, p) =

w(x) = 1g(x)p(x)w.
The space K\G is discrete because K is open, so we can take the measure pg\g in (3.3)
to be the counting measure. With this choice, the map W — V defined by w — w is an
isometric embedding. It follows that the matrix coefficient of w is the extension by zero of
the matrix coefficient of w, and that their LZ2-norms coincide provided that we take the
Haar measure on K /(K N A) to be the restriction of u, denoted also by . Then for any
nonzerow € W,

deg(m, u) = |w|2 : |nw|Z§(G/A,u) = |LU|2 ’ |Pw|2§(K/(K,—\A),M) = deg(p., ).

Finally, since the formal degree scales inversely to the Haar measure used to define it,

deg(p. 1) = vol(K /(K N A). j10)~" deg(p. 10)

where [1¢ is the measure on K/(K N A) assigning it total volume 1. The degree of p with
respect to this measure is just the dimension of W. ]

3.3. Concave-function subgroups: Split case

Suppose G is split with split maximal torus 7 and root system R = R(G,T), so that R = R.
In this setting, Bruhat and Tits [8, Section 6.4] showed how to construct from a function
f:RU{0} - R and point x € A(G,T) a subgroup G, r of G and a subgroup gy, ¢
in g. In this subsection we review Bruhat and Tits’s construction. The eventual goal, in
later subsections, is to explain how their construction generalizes to the construction of
subgroups that appear in Yu’s construction of supercuspidals, and to then study Yu’s
subgroups.

The definitions of G s and gy, s are quite natural. The point x defines, or is, depending
on one’s point of view, a family of additive valuations (v¥ : U%(k) — R)ger, where U%
is the root group of «. Since U? is canonically isomorphic to the root line g%, we may also
think of v¢ as a valuation g* — R. Now let

Uy, i={uelU: v >r}, g%, =1X€g”:vi(X)=>r}.
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As for the point @ = 0, we can think of 7 as the root group U° and its Lie algebra t as the
root space q°. These objects carry their own filtrations: let

T, ={teT :VyeX*(T),ord(y(t) — 1) >r}

and
t, :={X eT:VyeX*T), ord(dy(X)) > r}.

The objects 7, and t, do not depend on x, but we reserve the right to denote them by T
and ty , for uniformity of notation.

Warning 3.5. The group G° written here is unrelated to the zeroth group in a twisted Levi
sequence, even though the notation for the two is the same. The two notations never appear
in the same subsection, however, so there is little risk of confusion.

Given a function f : R U {0} — R, let

Ul =Ufw» S%f'=0%f@

for any & € R U {0}. The group G, r is then defined as the subgroup of G generated by
the subgroups U r with o € R U {0}, and the lattice g, s is defined as the subgroup of g
spanned by the subgroups g% ’ with o € R U {0}.

Remark 3.6. When r = oo the group Uy, is trivial, and when in addition & # 0 we can
recover the filtrations on the root groups and root lines as g5 , = gx,r and Uy, = Gy
where

r iff =a,

oo if not.

f(ﬂ)={

In order for the construction of G s to behave nicely’ we must assume that f is
nonnegative and concave, that is, for all finite families (¢;);e; of elements of R U {0},

F(Cw) =Y f@
iel iel
whenever ) ;; o; € R U {0}. We can define g, r for any f whatsoever, but when f is
concave, gy, y is a Lie subalgebra of g.
This completes our discussion of the split case. We next generalize the split case to the
tame case, a simple exercise in Galois descent.

Remark 3.7. The exact nature and history of these definitions is rather complex. When
f(0) = 0, Bruhat and Tits defined concave-function subgroups not just for split reductive
groups but for any reductive group with a chosen maximal split torus. In fact, they gave
the construction in even greater generality, for a certain object called a valuation of a root
datum. The construction appeared in their first paper on buildings [8]. In their second [9],

2By “behave nicely” we mean at least that the root subgroups of Gy, s are not larger than
expected, in other words, that G, s NU% = UY ,
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they showed that a reductive group gives rise to a valuation of a root datum, thereby
completing the construction of the concave-function subgroups of reductive groups.

Bruhat and Tits did not define a filtration on tori, however, and in its absence, they were
unable to handle the case f(0) > 0. Prasad and Raghunathan [47, Section 2] overcame this
difficulty, defining a filtration on any parahoric subgroup of a simply-connected, absolutely
quasi-simple group. Ten years later, Moy and Prasad [45, Section 2] realized that it was
more natural to vary the indexing of the filtration, though not the underlying subgroups,
using points of the building. Soon thereafter, Schneider and Stuhler [52, Chapter I] gener-
alized the filtration to an arbitrary reductive group over a local field. The common name
for this filtration on parahoric subgroups, the Moy—Prasad filtration, refers to only two of
these authors.

Finally, motivated by his construction of supercuspidals, Yu [60, Section 8] showed how
to combine the Moy—Prasad filtration with Bruhat and Tits’s concave-function subgroups,
thereby handling the case where f(0) > 0.

3.4. Concave-function subgroups: Tame case

We no longer assume that G is split, only that it is split over a tamely ramified extension.
Hence we must distinguish between R := R(G,T) and R := R(G,T). In this setting,
Yu constructed for each concave function f : R U {0} — R and point x € A(G,T)
a subgroup Gy, r, generalizing the construction of the previous subsection.

Let £ 2 k be some fixed tame Galois extension of k splitting the maximal torus 7" and
let I'; /¢ be the Galois group of £ over k. A function f : RU {0} — R can be interpreted
as a Galois-invariant function R U {0} — R, and we say that f is concave if the associated
Galois-invariant function is concave.

Since f is Galois-invariant, the subgroups (g¢)x, s and G({),, s are Galois-invariant
and we define

Gxs = @0, F " Guyi= GO
These groups do not depend on the choice of £. We need not assume that f is concave to
define these objects, although they are best-behaved in that case. We can also construct for
each @ in R U {0} aroot space

Leyk
o =(Pat) "
aca(k)

When o = 0, the root space q° is just the Lie algebra of 7. Combining this construction
with Remark 3.6, we see that each root space g¢ admits a natural filtration: define

Te/k
a5 ;= ( b (g‘é‘)x,f) :
aca(k)
It follows immediately from the definitions that

Qx,f = @ Q%,f-

a€RU{0}
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More generally, given a subset " € R U {0}, let

of=Pa oF, =P,

a€R’ a€R’

Warning 3.8. In contrast to the function of Remark 3.6, the function f : R U {0} — R

defined, for a fixed ¢ € R, by
r o if ﬁ =q,
oo if not,

ﬂ@={

is generally not concave. Failure of concavity relates to the fact that when 7 is not split,
there is generally no “root group” (or even “root variety”) U%* whose Lie algebra is g%.

Remark 3.9. If we assume that f is finite, or without loss of generality, that f takes
values in R, then the group G s can be interpreted as the integral points of an @-group:
that is, there is a canonical @-group G, r, an integral model of G, such that

Gy r(0) =Gyy
as subgroups of G. The construction is due to Yu [60, Section 8].

Having defined the group G r and Lie algebra g, ¢, we now study them. There are
three areas of interest for our later applications.

First, in our calculation of the formal degree, it greatly simplifies notation to reduce to
the case where G has anisotropic center. We record here the lemma effecting this reduction.

Lemma 3.10. Let G be a reductive k-group, let T be a tame maximal torus of G, let
f:RG,T)— R be a positive concave function, let A C T be a split central torus of G,
and let y € A(T, G). Then the groups G, /(AN Gy, r) and (G/A), s are identical
subgroups of G/ A.

Proof. This follows in the split case using Hilbert’s Theorem 90, and the general case
follows immediately from the split case by taking Galois invariants. ]

Second, when we compute certain subgroup indices in Section 3.8, we need to under-
stand how the groups of the form G _¢ intersect for fixed x.

Lemma 3.11. Let f,g: RU{0} — R be positive concave functions. Then

Gx,f N Gx,g = Gx,max(f,g)'

Proof. In the case where G is split, a classical result of Bruhat and Tits [8, Proposi-
tion 6.4.48] can be used to show [60, Section 8.3.1] that the natural multiplication map

[T U¢sw = Gur
aeRU{0}

is a bijection for a certain ordering of the factors. Using tame descent, this observation
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reduces the proof to the obvious fact (still in the split case) that

U, NuZ, = U "

x,max(r,s)"

Third and lastly, we compare subgroup indices between G and g, generalizing the Moy—
Prasad isomorphism. In Section 3.8, this comparison reduces a volume computation to a
length computation, which we carry out in Section 3.6. Given functions f, g : RU {0} — R
with f < g, let

Ax,f:g = Qx,f/gx,g'
Lemma 3.12. Let f,g: RU {0} — R be positive concave functions such that f < g.
Assume in addition that is satisfied:

gla) <> fla)+Y_ fby)
iel jeJ
for all nonempty finite sequences (a;)icr and (b;);ey of elements of R U {0} such that
a:=3)cr @i+ ;e;bj € RU{0}. Then
(i) Gy, 5 normalizes Gy g, so that the quotient Gy f.o := Gy, r/Gx.g is a group,
(ii) [Gx,f.Gx,r] C Gyx,g, so that the group Gy r.q is abelian,
(iii) there is a canonical isomorphism gy, r.g = Gy r.¢ of abelian groups.

Proof. This follows from [8, Propositions 6.4.43, 6.4.44, 6.4.48] in the split case and
[60, Section 2] in general. [

Remark 3.13. In Lemma 3.12, it is tempting to instead impose the simpler condition
that g(a) < Y,;<; f(a;) for all nonempty finite sequences (a;)ies such that )", ; a; = a.
However, this stronger condition would significantly weaken the conclusion: the condition
implies, by taking the constant sequence, that g < f,sothat g = f.

Corollary 3.14. Let f,g : R U {0} — R be positive concave functions such that f < g,
and suppose there is a chain of concave functions

f=fozh=z=fi=g¢g
such that for each i with 1 <i < n, the pair (fi—1, f;) satisfies the conditions of

Lemma 3.12. Then
|Gx,f:g| = |gx,f:g|~

3.5. Yu’s groups

In our application, it is enough to work with the subgroups constructed from a certain
restricted class of concave functions, those constructed from admissible sequences and
tame twisted Levi sequences. The construction specializes that of Section 3.4, so we work
in the same setting. After reviewing Yu’s construction of these groups, we specialize the
theory of Section 3.4 to show that they admit a Moy—Prasad isomorphism.
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A sequence F = (ri)id=0 in R is admissible if there is some j with 0 < j <d such
that0 <rp =--- =r; and %rj <rjt1 <--- < rq. The admissible sequence is weakly
increasing if, in addition, r; < rj4q foralli with0 <i <d — 1.

Recall the definition of a (tame) twisted Levi sequence Q from Section 2.2. We assume
that the tame maximal torus 7 of G is contained in G°, so that x € B(G") for each i. For
eachi with0 <i < d,let R; := R(G',T).

It is sometimes necessary to work with truncated twisted Levi sequences. Given integers
aand b suchthat0 <a <b <d, let

= [a,b
"= @ g g gty:
. . .. . > (i) - [0,i]
given an integer i with0 <i <d,defineG =G .

Given an admissible sequence 7 and a twisted Levi sequence Q of the same length d,
define the function f; : R — R by

ro ifa € Ro U {0},

() .=
) {ri ife € Ri\Ri—1. 1 <i <d.

Since 7 is admissible, the function f is concave [58, Lemma 1.2]. Hence we may define

Gyj = Gux for 8y = Gx.fr-

Given a second admissible sequence § of length d with r; < s; for all i, define
Gx,?:E = GX,f;! 30 éx,?:E = O, feifse

Remark 3.15. The group éx,; depends only on Q, x, and 7; in particular, it is independent
of the choice of the torus T provided that x € B(T) [58, Section 1]. The same cannot
necessarily be said for a general group of the form G, s, however, because the domain
of definition of f knows something about the torus 7', namely, the Galois action on the
root system. It may be possible to formulate an independence result in this more general
setting, but one would have to find an object, like Yu’s twisted Levi sequence, common to
the various elliptic maximal tori whose buildings are a given fixed subset of B(G).

In this setting, Yu [58, Lemma 1.3 and Corollary 2.4] generalized the Moy—Prasad
isomorphism.

Lemma 3.16. Let é be a tame Levi sequence of length d and let ¥ and § be admissible
sequences of length d such that for all i,

0<r; <s; <min(ry,...,rqg) + min(F). 3.17)
Then éx’;:g is an abelian group canonically isomorphic to éx’;.’:&'.

Proof. Condition (3.17) implies that ( f;, f3) satisfies the conditions of Lemma 3.12. m
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Corollary 3.18. Let é be a tame Levi sequence of length d and let ¥ and s be weakly
increasing admissible sequences of length d such that 0 < r; < s; < oo foralli. Then

|Gx,?:§| = |§x,?:§|'
Proof. Since F is weakly increasing, condition (3.17) simplifies to
s; € [ri,ri +1r9] foralli. (3.19)

It is now an elementary but tedious exercise to construct a chain (5 ¢))o< j<n of weakly
increasing admissible sequences 5§ /) = (s(()j ) <...< s;j )), where N > 0, such that
s© =7 and s@ =5, such that si(j) < si(jH) for all i and j with0 < j < N — 1,
and such that each pair (5 V1,5 () satisfies condition (3.17) of Lemma 3.16. After
completing this exercise, we invoke Corollary 3.14. ]

We need the corollary in the following special case only.

Corollary 3.20. Let Q be a tame Levi sequence of length d and let T be a weakly increasing
admissible sequence of length d. Then

-

|Gx,o+:?| = |gx,0+:r .

3.6. Length computation

Retaining the notation of Section 3.4, let f : R — R be a positive function and let R" C R
be a subset. Our goal in this subsection is to compute the length of the @-module Qf,/o gif
culminating in Theorem 3.24.

We start by studying the jumps in the filtration on g%. For & € R, consider the set

ordy o :={t eR: Q%,z:z+ # 0}

of jumps in the Moy—Prasad filtration of g%, defined and studied by DeBacker and Spice
[12, Definition 3.6]. A full description of ord, « requires an understanding of the point x,
and thus the way in which 8(7T) embeds in B(G). This is quite difficult in general. But
for us it is enough to know several weak properties of these sets.

Lemma 3.21. Let T be a tame maximal torus of G, let x € A(G,T), and let & € R. Then
(i) ordy(—a) = —ordy a,

(i) ordy « is an ord (kg )-torsor,

(iii) len Q%,z:m = (kg 1 K] Lo, o (7).

Proof. Property (i) follows from a PGL, calculation [12, Corollary 3.11]. As for the other
properties, earlier we mentioned that g¢ was isomorphic to kg, though not canonically.
Choose one such isomorphism ¢ : kg — go. This isomorphism is compatible with the
Moy—Prasad filtration in the following sense: there is a real number rq such that for all

r € R, the isomorphism ¢ restricts to an isomorphism kq r4r, =~ Gq,r of @-modules.
Properties (ii) and (iii) now follow immediately. ]
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Corollary 3.22. Let T be a tame maximal torus of G, let x € A(G,T), let f: RU{0} > R
be a positive function, and let R* C R. Then

R/
leng . .= Z Z (Kot K] Lordy (7).

aeR’ 0<t<f(a)

Proof. Tt suffices to prove the corollary in the case where R’ = {&}. Then both sides equal

o
Z lengy .y

teordy X

o<r<f(a)
by Lemma 3.21 (iii). [
To simplify the sum in Corollary 3.22 we prove a more general result about summation
of discretely supported functions # : R — N. Given a lattice A C R, that is, a nontrivial

cyclic subgroup, say that & is A-periodic if h(t + A) = h(t) forallt € R and A € A. Given
a bounded interval / C R with endpoints a < b, define

Z h = Z h(ty = > h(t)+ 3la € INh(a) + 3[b € I]h(b).
tel a<t<b

where [-] is the Iverson bracket. Because of the normalization at the endpoints, this summa-
tion operator enjoys the property that

Zh+2h—2h

whenever I, J, and I U J are compact intervals.

Lemma 3.23. Let A C R be a free abelian group of rank 1, let 1o := min(A N R~y), let
h : R — N be a discretely supported function, and let H(s) := Z;)stss h(t) for s > 0.
Suppose h is even and A-periodic. Then for all s € %A N R,

H(s) = —H (Ao)-
Proof. Since H(s + A) = H(s) + H(X), induction reduces the proof to the case where
s =Agors = %/\0. The first case is obvious; for the second, use i(t) = h(Ag —¢). =

We can now compute a certain sum that appears in the formal degree.

Theorem 3.24. Let T be a tame maximal torus of G, let x € A(G,T), let f : RU{0} > R
be a positive even function, and let R C R be a subset closed under negation. Suppose
that f(a) € %ord(k;)for alla € R. Then

R R’ R
len(@y 1. ;) + 3 1en(8x004) + 3 len(gy 4. r) = Y ko 1 k] f(@).

a€R’
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Proof. By Corollary 3.22, the left-hand side of the formula is

R’ R R’ /
len(g, 4. 7) + %len(g;’OZ(H_) + %len(g;’f:f+) = Z Z [k @ K] Lord, o (2)-
aeR 0=r<f(a)

Since f is even and k4 = Kk—_q, the right-hand side above is

Z Z [Ka ordxgt(t) + ILord)((—gt) (Z))

a€R0<t=<f(a)

By Lemma 3.21, the function Lo, ¢ + Lord, () is €ven and ord(k)-periodic. Hence we
may apply Lemma 3.23 to conclude that

3 et € (Loray () + Loy cay (1) = Tk < K1/ (@),
0<t<f()

using the fact that

Z o : KMoy a() = Y kg K] lora, (1) = [kg : k] ordg (k) = [kg : k]. m

0<t<l1 o<r<l1

3.7. Yu’s construction

In this subsection we describe Yu’s supercuspidal representations, following Hakim and
Murnaghan’s expanded exposition [27, Section 3] of Yu’s original paper [58]. Yu’s full
construction is quite elaborate, but fortunately, it is enough for us to understand only the
parts of the construction needed to calculate the formal degree.
A cuspidal G-datum is a 5-tuple ¥ = (Q, Y, T, p, q;) consisting of
e atame twisted Levi sequence Q such that Z°/ Z is anisotropic, where Z is the center
of G and Z° is the center of G,

e apoint y in the apartment of a tame maximal torus of G°,

e an increasing sequence F = (0 < rg <ry <.+ <rq_; <rg) of real numbers (if d = 0
then we only require that 0 < ry),

e an irreducible representation p of Gf’y] whose restriction to G;’ o4 is 1-isotypic and for

which the compact induction c-Indgg p is irreducible (hence supercuspidal),

e asequence dj = (¢po. . .., Ppq) of characters, with ¢; a character of G’, such that ¢y = 1
if r; = rgz—1 and otherwise ¢; has depth r; for all i.

The datum is generic if for each i # d the character ¢; of G’ is G'*!-generic in the
sense of Section 2.1, and the datum is regular if, in addition, the depth-zero supercuspidal
representation c-IndIG(g p is regular.

Many of the objects used in Yu’s construction and built from a cuspidal G-datum do
not depend on the representations p and ¢; To make this independence explicit, we define
a cuspidal G-datum without representations to be a 3-tuple @, y,F) consisting of the first
three components of a cuspidal G-datum.
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Let ¥ = ((j, 7, y) be a cuspidal G-datum without representations. From ¥ we can
construct the following subgroups:

0 __ 0 0 _ 0
K" = G[y]’ KL= Gy,0+’
i+1 _ p0A3GE+1) i+1 _ A3+
K =K Gy,(0+,S0,-~-,Si)’ K"" - Gy,(0+,s0+,...,si+)’

T = (GG s)s I = (GG i)
R d .__ d—+1 I d .__ d+1
K := K% := K", Ky :=K{:=K{H

Here 0 <i <d — 1 and s; := r; /2. Generally the dependence of these objects on W is
implicit, but if we wish to make the dependence explicit we indicate it with a subscript,
for instance, K = Kg. When W is regular, an additional group can be constructed: the
maximal torus S of Section 2.2, maximally unramified in G°. The groups K'*! and K,
are particularly important; later on, we need to express them in the following alternative
ways:

i+1 _ g0 A[1,i+1 i+1 _ 0 AlLi+1]
K™ =K G)[),SL,...}SI-’ K; - K+Gy,slo+,-~~ssi+’ (3.25)
Ki+1 — KiJH_lv Ki——H — Kfi-JH_l' (326)

We can now outline Yu’s construction. Let ¥ = (Q Y. F,p, q§) be a generic cuspidal
G-datum. For each 0 < i < d — 1 there is a certain finite-dimensional irreducible repre-
sentation’ p; of K'*! constructed from ¢;. To specify p; precisely one uses the theory
of the Weil-Heisenberg representation. For our purposes, it is enough to know that the
quotient W; := Ji*1/J j_+1 is a finite-dimensional symplectic vector space over [F,, and
the underlying complex vector space of p; can be realized as the complex-valued functions
on a maximal isotropic subspace Wi0 of W;. Since dimp, (Wio) = % dimg, (W;), so that
WO = |W; |12, it follows that

dim p; = [Ji+1 : Jfl]l/z-

The representation p; is then inflated to a representation® t; of K. Section 3.9 explains in
more detail how the inflation procedure works, but at the moment, it is enough to know that

the inflation procedure preserves dimension. In the edge case i = —1 take 7_; to be the
inflation (by the same procedure) of p to K, and in the edge case i = d take 7,4 to be the
restriction of ¢4 to K; we could also handle the case i = —1 in the same way as the case

0 <i <d — 1 by defining p_; := p. Finally, define the supercuspidal representation
attached to W as the compact induction

r=chdér, 1:=11@® -1y

30ur p; is Hakim and Murnaghan’s qﬁlf .
40ur 7; is Hakim and Murnaghan’s ;.
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In summary, then, by Lemma 3.4 the formal degree of the supercuspidal representa-
tion 7 attached to a cuspidal generic Yu datum W has formal degree
dimp - l—[;iz—ol[_]i—i-l . JJir+1]1/2

vol(K /A, )

deg(my, ) = (3.27)
where A is the maximal split central subtorus of G and w is a Haar measure on G/ A.

It greatly simplifies the notation in our computation of the formal degree to reduce
to the case where the center of G is anisotropic, that is, A = 1. Given a generic cuspidal

- N J— —_ N .

G-datum without representations ¥ = (G, y, r), let ¥ = (G?, y, r ) denote the reduction
of U modulo 4, that is, G := G'* = G/A.
Lemma 3.28. Let ¥ be a generic cuspidal G-datum without representations and let W be
the reduction of ¥ modulo A. Then
(i) the groups K and Ky /A are identical as subgroups of G/ A,

() [Jg™ Tyl = g It forall0 <i <d —1.

Proof. For (i), since

0 ~(d) 0 = (d)
Ko _ ﬂ . m _ G ) Gy otd
A A ~(d) A = (d) >
Gy,(0+,§) Gy,(0+,§) nA4

it suffices by Lemma 3.10 to show that
G[Oy]/A = (GO/A)[y]»

and this follows immediately from the surjectivity of the map G (k) — (G /A)(k) and the
natural identification of the reduced buildings of G and G /A.
(ii) follows by an argument similar to the proof of Lemma 3.10. ]

3.8. Degree computation

In this subsection we compute the formal degree of Yu’s supercuspidal representation. Let
G be a reductive k-group, let ¥ = @ y.F,p, q§) be a cuspidal G-datum, let A be the
maximal split central subtorus of G, and let u be the Haar measure on G/A attached by
Gan and Gross [25,33] to a level-zero additive character of k.

Starting from (3.27), we will reduce the problem of computing the formal degree to
the problem of computing certain subgroup indices. We will then be in a position to apply
Theorem 3.24, finishing the calculation. By Lemma 3.28, we may assume for now that the
center of G is anisotropic, though of course this restriction will have to be relaxed in the
final formula.

We will start by simplifying the volume of K. To begin,

[KGy.o4 : K]
[KGy o+ : Gyo+] '

vol(K, 1) ™! = vol(Gy o4, )" (3.29)
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Lemma 3.30. Let G be a group, let H be a subgroup of G, and let N S M be subgroups
of G normalized by H.’ Then

[M : N]
[MNH:NNH]

provided that all three indices in the expression are finite.

[MH : NH] =

Proof. The inclusion M N H < M induces an injective map M N H/N N H — M/N
which we can use to interpret the former as a subgroup of the latter. The group M/ N acts
transitively by left multiplication on the coset space M H/N H . Consider the stabilizer
of the identity coset under this action. Clearly M N H/N N H lies in the stabilizer, and
conversely, it is easy to see that any representative of an element of the stabilizer can be
translated by an element of N toliein M N H.So M N H/N N H is the stabilizer of the
identity element, and the orbit-stabilizer theorem concludes the proof. ]

By (3.25) and Lemmas 3.11 and 3.30,

.....

Y5(805-s8q—14 T [Gy0+ G}?so]

. ~ld]
P [G O+ ¢ G ]
[KGy0+ : K] = [KOGy’(H_ 0G0Ld] y yiGs0.ssa—1))

(3.31)
It follows from Lemma 3.11 again that [KGy 0+ : Gy o+] = [K?: Ki]. Combining this
calculation with (3.29) and (3.31) yields

[ »,0+ - Gy (so ..... Sd—l)]

vol(K. ™! = vol(Gyo )7 g

[y] y So]

The volume of Gy o4 has been computed in the literature.
Lemma 3.32. Let x € B(G). If G is tame then vol(G o4, )" = g9 /2|q o904 [1/2.

Proof. DeBacker and Reeder [11, Section 5.1] defined a Haar measure v on G such that
for any x € B(G),

G
VOl(G(K)x o, v) = Cx00+] .

lgx,0:04 12
in particular, v does not depend on x. Kaletha [36, Lemma 5.15] used the tameness of G
to show that v = ¢@mG)/2;;, Combining these results proves the lemma. ]

At this point we know that

dim p .
deg(m, ) = ——t_g(dimG)/2 12
g(m, 1) [G{)y]:GyO,OJr]q |8y.0:0+|
. ohdl d—1
[Gyo+ - G Y5(805-+-8d— 1)] H[Jz+1 Jz+1]1/2 (3.33)
[Gy0+ G;/)So] i=0

and we can use our earlier results on concave functions to simplify the expression.

5This condition implies that the product sets M H and NH are groups.
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Lemma 3.34.
. Ald]
[Gy0+ G (s S )]
|gy’0:0+|1/2 Y5(505-s8a—1 [J1+l Jz+1]1/2
[Gy 0+ GJ(’)SO] zl_!)
d—1
= exp, (S len g gor +3 D ri(IRiil = |RiD).
i=0

>[1,d
Proof. Let f = f,....,s,_,) for the twisted Levi sequence Q[ ]. By Lemma 3.16,
[Ji+1 : Ji+l] = |(gi gi+l)y (ri,s;):(r; si+)|

= (g ’“)y’;'sl\R | = equ( Z lengi,f:f+).

a€R; 11\ R;
By Corollary 3.20,
. olnd] _10d]
[Gyo+ : Gy,(so ..... sdfl)] - |Gy,(0+ ..... 0+):(505-,5a — 1)|
d—1
=exp, (lenaf oy + 3 D lenal)

i=0 R; 1\ R;

and [G) o, : Gy (] = exp, leng .. . so that

Gy : 6L

d—1
V(50,58 — )] _ o _ o
[G . TN 1 —equ(Z Z lengy,():f)—equ( Z lengy’OZf),
v,

Y,50 i=0 R; 1\ R; @€R\ Rg

We now recognize that

~[1,d]
|Qy,0:0+|1/2 [Gy .0+ : Gy(So, Sd— 1)]1—[[Jz+1 Jz+1]1/2

|€(2,0:0+|1/2 [Gy 0+ - G;)SO] i=0

equals exp, of

Z Z/ len g%,t:t-ﬁ-'

a€R\ Rp0=<t=< f(a)

By Corollary 2.3 the hypotheses of Theorem 3.24 are satisfied, and the expression above
becomes

d—1
2D rilRiga] = |Ri).
i=0
The proof is finished by recalling that |g2,0:0+ |12 = equ(% len(gg’OZOJr)). L]

We now make the reduction promised in Lemma 3.28. Recall the notation for W defined
immediately before Lemma 3.28.
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Theorem A. Let G be a reductive k-group and let V be a generic cuspidal G-datum with
associated supercuspidal representation . Then

. d—1
dim . .
degr) = —goby equ(%dmg +%dlmg;’,%m+%Zri(|R,-+1|—|R,-|)).
[ 1 - y,0+] i=0

Proof. When A = 1, the formula follows from (3.33), Lemma 3.34, and the fact that
93,0:0 . is the Lie algebra of Q;’,(()):o .- In general, according to (3.27), with the exception
of the factor dim p, the formal degree depends only on the underlying G-datum with-
out representations W = @ y. 7). It now suffices to observe that by Lemma 3.28, the
expression
H;iz—ol [Jit1: Jiﬂ]l/z
vol(K /A, )

is the same for both W and the reduced datum ¥ := (Q_Z y.F). ]

3.9. Regular supercuspidals

In the special case where the supercuspidal representation is regular, we can further simplify
the expression for its formal degree. We have already seen, in Section 2.2, the source of this
simplification: an arbitrary depth-zero supercuspidal  is compactly induced from a finite-
dimensional representation p of the group Gy, but when the supercuspidal 7 is regular,
we can recover a maximal torus S from 7, and 7 is induced from a finite-dimensional
representation 7 of the smaller group S Gy o. In fact, the former representation is induced
from the latter:

p=Indg8! n. (3.35)

In the depth-zero case, replacing p by 7 in the formula for the formal degree thus
multiplies the rest of the formula by the index [G[,] : SG, o]. And since 7 is an extension
of a Deligne—Lusztig representation, the literature provides a formula for its dimension.
These observations simplify the formal degree for depth-zero regular supercuspidals.

When the regular supercuspidal has positive depth, however, there is a slight compli-
cation: Equation (3.35) must be propagated from G, = K 0 to K. And to propagate the
formula, we need to understand the inflation procedure mentioned in passing in Section 3.7.
Nonetheless, inflation is compatible with induction in the most straightforward way, and in
the end, the effect on the formula for the formal degree is the same.

Yu’s inflation procedure is quite simple; we explain it following Hakim and Murnaghan
[27, Section 3.4]. Recall equation (3.26), that K**1 = K? Ji*1 Suppose we are given a
representation p of K satisfying the following condition:

the restriction of p to K’ N J**! is l-isotypic. (3.36)

Ultimately we will apply the following analysis to the representation p;, which satisfies
condition (3.36). Hence p may be interpreted as (the inflation of) a representation of
the quotient group K’ /(K N Ji*1). Since K’ normalizes J*!, the decomposition of
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(3.26) becomes a semidirect product after dividing by K* N J'*1. We can now inflate this
representation of the quotient first to the semidirect product K1 /(K* N Ji*1), then to
the full group K +1. Let .
Infg-Jrl o
denote the resulting representation. Since this representation is 1-isotypic on J*1, and
since Kit1 N Ji+2 C Ji*1 the representation satisfies condition (3.36) with i replaced
by i + 1. By induction, we can therefore define for any j > i + 1, and in particular for
j =d (ifi < d), the inflated representation

K’

f§’ p:= ek, ek p

Lemma 3.37. Let W be a cuspidal G-datum; recall the notations of Section 3.7 for the
various objects attached to V. Let H' := SG;)’OKQ_ and let H := H?. Suppose that
there is a (necessarily irreducible) representation n of H® such that p := Indgg n. Then
o_1:= Infgo n is defined and there is a canonical identification

r = Indj(0-1 ® Tolg ® -+ ® T4lH)

of representations of K.

Proof. The notation Ian,-j mimics IanIg : the same construction works if the symbol K is
replaced everywhere by H. Since p is 1-isotypic on J !, so is 7; hence 0_; := infg(J nis
defined. There is a canonical identification

Indg Infgo n= Infllgo Indfl[(), n,

so that T = (Indg 0-1) ® 79 ® -+ ® t4. The result now follows from the well-known
formula (Indg 1) ® 1p = Indg (1 ® (m2|g)), where 7y is a representation of H and
7, is a representation of K [51, Section II1.2.11]. [

Kaletha [37, Section 3.4.4, proof of Lemma 3.4.20] showed that for a regular Yu
. . . . K©
datum, the finite-dimensional representation p has the property that p = Ind sgo N where
y.0

n extends the inflation to GJ?’O of a Deligne—Lusztig induced representation of the group
G;),o:o - We can thus compute dim n using Deligne-Lusztig theory.

Let us briefly recall the dimension formula for a Deligne—Lusztig induction. In this
paragraph only, let G be a reductive x-group, let S be a maximal elliptic torus of G, and
let 8 : S — C* be a character. Deligne and Lusztig computed the dimension of the virtual
representation Rg g¢) in their original paper [13, Corollary 7.2]; it is

[G: 5]
dim Stg

dimRs 9y =

where Stg is the Steinberg representation of G. In his classical book on representations
of finite groups of Lie type, Carter [10, Corollary 6.4.3] computed the dimension of the
Steinberg representation; it is

log, dimStg = (dim G — dim S).
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We can now assemble these results to give our final formula. Recall the notation of
Theorem A.

Corollary 3.38. Let WV be a regular generic cuspidal G-datum with resulting supercuspidal
representation w and let S be the maximally unramified maximal torus of G° resulting
from \V, as explained in Section 2.2. Then

d-1
deg(, ) = Sg.0, 17" equ(% dimG* + 3 rank G300, + Y si(|Riy1| - |Ri|))~
i=0
(3.39)

Proof. By Lemma 3.37, Lemma 3.4, and Kaletha’s description of p, the formula of
Theorem A remains true if dim p is replaced by

[K?: SG) oldimn =[G}, : S*Gy 3] dim 7.
The dimension formula for n discussed in the paragraph above shows that

. . . -1
dimn = [GJ(,),0 : SOG;),(H] equ(%(dlmgg’omr — d1m§0:0+))
. . -1
=[Gyl : S§Gy04) expy (3 (dim G, —rank Gyo,,)) -

The formula now follows. [ ]

4. Galois side

Let (S, 0) be a tame elliptic pair. We saw in Section 2.4 that when 6 is extra regular, such
a pair can be extended to a regular supercuspidal L-packet datum (S, J, x, 6), and that the
resulting set of y-data can then be used to form the regular supercuspidal parameter

0(s,0) ‘= ij o L@.

Moreover, every regular supercuspidal parameter arises in this way. Our goal in this section
is to compute the Galois side of the formal degree conjecture for the parameter ¢ = ¢(s,g)-.
As we mentioned in Section 2.4, the group S(E, is abelian and thus has only one-dimensional
irreducible representations, so that the Galois side of the conjecture simplifies to

ly(0, 0, Ad, ¥)| '
|70 (Sp)|

Moreover, the factor | g (S(E,)| has been computed in the literature. So our task is to compute
the absolute value |y (0, ¢, Ad, V)| of the adjoint y-factor.

We start by reviewing in Section 4.1 the general definition of the y-factor. As a second
preliminary step, we work out in Section 4.2 how to base change the function r, used to
solve the extension problem of Section 2.3.
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To compute the adjoint y-factor, we give an explicit description of the adjoint represen-
tation attached to the L-parameter ¢. It turns out that this representation decomposes as a
direct sum of two representations, one coming from the maximal torus of the dual group
and the other from its root system. We can thus compute the adjoint y-factors separately,
in Sections 4.4 and 4.5, and multiply them together for the final answer, in Section 4.6.
Beginning in Section 4.3, the start of the y-factor computation proper, we must fix j and y
in the L-packet datum (S, J, x, ) extending (S, 6).

4.1. Review of L-, e- and y-factors
The y-factor of a representation (i, V') of the Weil group Wy is defined by the formula

LA —-s,7Y
)’(SJT,W,M) = 8(5'5”"0’”)%

where ¥ is a nontrivial additive character of k and p is an additive Haar measure on k.
Hence the y-factor is built from two quantities, the L-factor and the e-factor.

In this subsection we recall the definitions of the L-factor and the e-factor, following
Tate’s Corvallis notes [55]. Roughly speaking, the L-factor carries information about the
unramified part of the representation and the e-factor carries information about the ramified
part. Since computing the absolute value of an e-factor amounts to computing an Artin
conductor, we also explain how to compute this quantity in our application, following
Serre [53, Chapter VI].

The L-factor of & is the meromorphic function

L(s, ) := det(1 — ¢~*m(Frob) | VI")_1

where I, C Wy is the inertia group and Frob € Wy is a Frobenius element. Later, we use
the fact that the L-factor is inductive: if £ D k is a field extension of k and (7, V) is a
finite-dimensional complex representation of W then

L(s,Indg g (7)) = L(s, ), TIndgy := Ind% .

The e-factor is more subtle to define than the L-factor, and most of the subtlety resides
in its complex argument. Fortunately, since we are interested in only the absolute value
of the y-factor, not its complex argument, we content ourselves with a description of the
absolute value of the e-factor instead.

Changing s, ¥, or u scales the e-factor by a known quantity. We may thus define with
no loss of information the simplified e-factor

8(77) = 8(Oa T, W» /’L)

where ¥ has level zero, that is, max {n : ¥ (77" @) = 1} = 0, and where the Haar measure
1 is self-dual with respect to . With these conventions, the absolute value of the e-factor
is

le(m)* = =" 1)
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where cond 7 is the Artin conductor of 7. So computing the absolute value of the e-factor
amounts to computing the Artin conductor.

The Artin conductor is defined by the following procedure. Given a Galois representa-
tion (7, V'), choose a Galois extension £ of k such that x|y, is trivial, and let I';/x be the
Galois group of £ over k. Then the Artin conductor satisfies the formula

cond Z codim(V 1)
T =
(Te/k,0 : Loyl

i>0

where i > T'g/k; is the lower numbering filtration. This formula is independent of the
choice of £. We can now extend the definition to all complex representations of the Weil
group, not necessarily those of Galois type, by stipulating that the Artin conductor be
unchanged by unramified twists. In particular, cond # = 0 if and only if 7 is unramified,
and

cond 7 = codim V1% “4.2)

if 7 is tamely ramified. Heuristically, the numerical invariant cond 7 is an enhancement of
equation (4.2) that takes wild ramification into account and measures the extent to which
7 ramifies.

When 7 is irreducible, this heuristic is made precise by the formula

condwr = (dimw)(1 + depthy, 7). 4.3)

In particular, (4.3) holds if 7 is a character. For our application, we need only understand
how to compute the Artin conductor of a tamely induced representation. Unlike the L-
factor, the Artin conductor is not invariant under induction. The best we can say in general is
that given a finite extension £ of k and a representation 7 of Wj, the induced representation
has conductor

condIndyx w = ordg (discg ) dimm + fy/x cond “4.4)

where discy is the discriminant of £ over k. But when { is tamely ramified over k and
m = x is a character, the formula simplifies considerably, even if, unlike in (4.3), the
induced representation is reducible.

Lemma 4.5. Let £ D k be a finite tame extension and let x : Wy — C* be a character.
Then
condIndg/x x = [€ : k](1 + depthy x).

Proof. Check, using the tameness of the extension, that ordg discg/x = [€ : k] — fo/x. This
computation together with (4.3) and (4.4) yields

condIndg/x x = [€: k] + fi/x depthy x.

Now use the fact that
depthy y = eg/i depthy, . ]
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The L-factor, e-factor, and Artin conductor are additive in the sense that
L(s,m) = L(s,m)L(s,m2), &(x)=e(m)e(my), condw = condm; + condrn,

where m = 71 @ m,. Hence the y-factor is additive as well. This simple but crucial fact
allows us to restrict our attention to summands of the adjoint representation.

4.2. Base change for y-data

The main goal of this subsection is to determine how y-data behave under base change, that
is, restriction to the Weil group of a finite separable extension of k. Once we understand
the effect of base change for arbitrary y-data, we study its effect on minimally ramified
x-data.

Most of the definitions of this subsection are due to Langlands and Shelstad [43,
Section 2.5], but our treatment is also influenced by Kaletha’s recent reinterpretation of
Langlands and Shelstad’s formalism [38].

Let £ be a separable quadratic extension of k. Local class field theory shows that the
quotient k> /Ny (£*) is cyclic of order 2. The quadratic sign character of the extension
£ D k is the character k* — {41} given by projection onto this quotient.

Aroota € R(G, S) is symmetric if it is Galois-conjugate to —«, and is asymmetric
otherwise. Letting k1o denote the fixed field of the stabilizer in I of {Z«}, the extension
k1o C kq has degree 2 if o is symmetric and degree 1 if « is asymmetric. A symmetric
root « is unramified if the quadratic extension ky D ki is unramified, and is ramified
otherwise.

Definition 4.6. Let R = R(G, S). A set of y-data for (S, G) (or just S if G is understood)
is a collection y = (o : ky — C*)qer of characters satisfying the following properties:
@) X-a=xa'

(i) fou = o oo !forallo € IY.

(iii) If o is symmetric then y, extends the quadratic sign character of ko D kiq.
Kaletha [38, Section 3] has interpreted a set of y-data as giving rise to a character of a

certain double cover of a torus, and the function r, as the L-parameter of this character.

In light of that interpretation, we would expect that restricting r, to an extension of k

corresponds to composing the y-data with the norm map, in analogy with the discussion
from Section 1.8. This turns out to be the case, as Theorem 4.11 shows.

Definition 4.7. Let y be a set of y-data and let £ be a finite separable extension of k. The
base change of y to £ is the y-datum y, defined by ¢ o ‘= Xa,t,/ke-

The definition of base change makes sense only if the formula for y, defines a y-datum.
We should immediately check this.

Lemma 4.8. The function y; of Definition 4.7 is a set of y-data.
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Proof. Negation equivariance is clear. Compatibility with the Galois group follows from
the easily verified formula

0_1 °© Neaa/kaa = Nea/kot °© 6_1‘
As for the third property, if o is symmetric over £ then it is also symmetric over k and
the canonical map Iy, /¢, — 'k, k., is an isomorphism. Now recall [S5, (1.2.2)] that
the local class field theory homomorphism W), — k> (whose abelianization is the Artin
reciprocity isomorphism) intertwines the inclusion Wy < Wj, with the norm map £* — k*.
It follows that the canonical map

Neo/ko €a)/ N ko (Uig) = kg [ kg
is an isomorphism, and hence y; o, extends the quadratic sign character of £y, D £4o. ®

It is time to start defining the function r,. The definition requires a brief preliminary
discussion of abstract group theory. Let G be a group and K a subgroup. A section u :
K\G — G of the projection G — K\ G - in other words, a choice of coset representatives
— gives rise to a K\ G-indexed family of set maps u, : G — K for x € K\G. To define the
maps u,, we write down the element u(x)g and decompose it as a product of an element
of K followed by its coset representative in K\ G that is, u, is defined by the equation

ux(gu(xg) = u(x)g.

Before defining r,, a word is in order on the exact nature of the object we are defining,
since that object depends on many arbitrary choices. A gauge is a function p : R — {£1}
such that p(—a) = —p() for all @ € R. Our construction produces for each gauge p a
cohomology class ry, , of 1-cochains Wy — S. As the gauge p varies, the cohomology
classes ry, , are not identical. However, there is a canonical means of relating one class to
the other. For any two gauges p and ¢, Langlands and Shelstad constructed a canonical
1-cochain s4,,, depending only on R and not on the choice of y-data. By definition, the
cohomology classes ry, , are related by the equation

Tv.a = Sq/p"x.p> 4.9

and the 1-cochains s, satisfy the right compatibility conditions to make these equations
consistent [43, Corollary 2.4.B]. In the construction that follows we therefore define ry,
for a particular choice of gauge, and equation (4.9) then defines r, 4 for any other g.

We can now write down the formula defining r,, making several arbitrary choices
along the way. First, choose

(i) asection [¢] — o of the orbit map R — R/{+£1}.

Each [o¢] € R/{+£]1} thus gives rise to two subgroups W, and W, the stabilizers of «
and {£«a} in Wy. For each [«], choose in addition
(i1) asection u® : Wy \Wi — W,

(iii) a section v¥ : Wo\Wiq — Waig.
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What we call “choosing a section” is more commonly called “choosing coset representa-
tives”. Using these choices, define the element r, (w) of § = X*(§)c by

ryw) = [] ta@§ @) @7 [a] € R/ED}. x € Wi\ Wi (4.10)
[e],x

We still have to explain the dependence on the gauge. Use choices (i) and (ii) above to
define the gauge p : R — {#£1} by setting p(8) = 1 if and only if 8 = u%*(x) '« for
some x € Wio\Wg. Then (4.10) defines ry, , := r,. Now use (4.9) to extend the definition
to all gauges.

Theorem 4.11. Let p : R — {£1} be a gauge, let y be a set of x-data for S, and let £ be
a finite separable extension of k. Then

Fyple = Tyep
for some set of auxiliary choices ((i)—(iii) above) in the definition of ry and ry,.

Proof. First, some preliminary notation on group actions. Given a right G-set X and
elements x, y € X that lie in the same G-orbit, let x1 y, the transporter from x to y,
denote the set of elements of G taking x to y. If y = gx then x~!y = G,g where Gy is
the stabilizer of x in G.

Let W := W), and W’ := W,. It suffices to consider the case where R is a transitive
(I'e x {£1})-set. The plan of the proof is to make choices (i)—(iii) for r,, and for r,, so
that the equation ry, ,|¢ = ry,,p holds on the nose, not up to cohomology. To get equality,
not just cohomology, some of our choices depend on other choices.

Fix o € R (choice (i) for ry). The double cosets z € Wio\W/W' index the W'-
orbits of R/{=£1}. Choose a section ¢ : Wy, \W/W’' — W, and for each double coset z
let oy := c(z)"'a (choice (i) for T'ye)» SO that the a; form a set of representatives for
the W'-orbits of R/{#1}. Choose sections u® : Wi \W' — W' (choice (ii) for ry,)
and v : Wy\Wiq — Wiy (choice (iii) for r,), and use them to define sections v* :
Wy \W4 w = Wy «. (choice (iii) for ry, ) by the formula

vE(y) = c(2) " u(e(@)ye(z)Te().

Define the section u : Wi o \W — W (choice (ii) for ry) by u(x) := c(z)u?(y) where
z=xW'and y = (Kc(z)) 'x.

We have now made all necessary choices to define r, and ry,. It remains to check that
these choices define the same gauge p and that ry ,|¢ = 1y, p.

To check that the gauges agree, first check that the assignment x — (z, y) is a bijection
from Wi \W to the set of pairs (z, y) with z € W o \W/W'and y € WL, \W’. In the
rest of the proof, we assume that x is related to (y, z) by this bijection. Hence a root is
of the form u(x)™'a with x € W, \W if and only if it is of the form u?(y)™'a, with
z € Weo\W/W'andy € Wi, \W'.
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Recall that for each x € Wy, \W, there is a function u, : W — Wi, obtained from u
by the equation
u()w = ux(wu(xw);

similarly, for each z € Wa.o \W/W' and and y € WL, \W’, there is a function uj :

W' — Wi «, Obtained from u? by the equation

w ()’ = (W' (yw'),
These two constructions are related in the following way.
Claim 4.12. Let w € W'. Then ux(w') = c(2)u3(w")c(z)~".

Proof. Letx’ =xw',letz’ = x'W’ andlet y’ = (Kc(z'))~'x’, so that (z’, y') is obtained
from x’ in the same way as (z, y) was obtained from x. Expand the defining equation of
U (w'):

(@ (' = ux(w)e ) ().

Since z = z’ and y’ = yw’,

() ux (y)e @ (yw') = u (y)w'. m

Use the sections u and v to compute the L-parameter of y:

ry ) = [ Ao (wolux))™@ 7' x € Weg\W.

Assume now that w = w’ € W’. Use Claim 4.12 to simplify the expression to

ryw') = [ ta(olc @ w)e@) ™)@ (z € Wel\W/ W', y € Wi, \W)

Zﬂy
=[] xa(c@ 0505 @NeE@N @™ = [ e (v3 0 (w')) @0 =,
z,y z,y

To complete the argument, use the property cited above that the local class field theory
homomorphism intertwines inclusion with the norm map. ]

Remark 4.13. Unlike most of the other parts of this paper, Theorem 4.11 and the defini-
tions preceding it do not require the torus S to split over a tamely ramified extension; they
hold for any torus whatsoever.

We can use the base change formula to bound the ramification of r,.

Corollary 4.14. Let y be a set of y-data for a tamely ramified torus S. If each x is
tamely ramified of finite order then ry is tamely ramified of finite order.

To be clear, since ry is not a character, by “order” we mean order as a cochain and by
“tamely ramified” we mean trivial on Py.
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Proof. By hypothesis, there is a finite tamely ramified extension £ of k such that for
each o the character y, ¢ is trivial, so that yy is trivial. Then r, restricts trivially to £ by
Theorem 4.11 and is therefore tamely ramified of finite order. |

To conclude this subsection we define minimally ramified y-data following Kaletha
[37, Definition 4.6.1]. The definition is relevant to this subsection because a minimally
ramified set of y-data satisfies the hypotheses, and thus the conclusion, of Corollary 4.14;
we use this observation in the proof of Lemma 4.17.

Definition 4.15. A y-datum y for S is minimally ramified if S is tame and in addition y
is trivial for asymmetric «, unramified for unramified symmetric o, and tamely ramified
for ramified symmetric o.

4.3. Adjoint representation

Our goal in this subsection is to describe the adjoint representation of a regular parameter,
specifically, its decomposition into a “toral summand” coming from the torus S and a “root
summand” coming from the root system R(G, S). In subsequent subsections, we compute
the e-factor of both summands.

Recall from Section 2.3 that the regular parameter ¢ (s g) is given by the formula

05,00 (W) = F(O(w)ry(w))n(ws,g(w))w

where J : S — G is an admissible embedding with image a Galois-stable maximal torus T
and y is a certain (carefully chosen) set of minimally ramified y-data. We obtain the
adjoint representation from ¢ = ¢s ¢y by composing it with the adjoint homomorphism
LG — GL(V) where V := §/3". The representation decomposes as a direct sum

V' = Viorat ® Vioot

where Vigra 1= t/3T% and

Vioot 1= @ @oz-

a€R(G,S)

Here g, is the usual ¥ -eigenline for the action of S on @, where oV is interpreted, via
and the canonical identification X *(f”) = X«(T), as aroot of X *(YA"). We call Vigq the
toral summand and Voo the root summand. From our formula for ¢ we can work out the
adjoint Weil actions on these summands.

4.4. Toral summand

For the toral summand, it is useful to momentarily consider the vector space 17mra1 = Lie(f)
equipped with the adjoint Weil action of ¢, so that the projection ‘Zoral — Vioral 1s Weil-
equivariant. In general, for any complex torus 7' the natural inclusion X« (7) < Lie(T)
gives rise to a canonical identification X.(7T)c >~ Lie(T"). The representation Izoral of the
Weil group W is therefore the complexification of the lattice A = X, (f), isomorphic to
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X*(S) by X*() and the canonical identification X (f) = X*(T). The Galois action on
the lattice A is transferred via this chain of identifications from the Galois action on X *(S)
arising from the structure of S as a torus over k. To summarize, there is an identification
of representations

IM/'loral x~ X*(S)C .

Although X *(S?) is a sublattice of X *(S), not a quotient, since X *(S?) = X*(S)™* the
smaller lattice becomes a canonical quotient of the larger after complexifying both. We
thus have a second identification

Vioral = X*(Sa)(C~
We can now compute the toral y-factor using the lattice
M = X*(SH',

whose complexification is the vector space used to compute the L-factor of Vigpy.

|MFrob|

_ 1, 4: .
Lemma 4.16. |}/(0, I/tora])| = equ (E(dlm S? + dim M)) m.

Proof. We omit several details because the calculation closely follows Kaletha’s earlier
work on epipelagic representations [36, Section 5.4].
It is easy to dispense with the L-factor at s = 0:

L (0. Viora) ™" = det(1 — Frob | Mc) = |Mrial.
where Mg, denotes the coinvariants of Frobenius. The L-factor ats = 1 is
L1, Viera) ™' = det(1 — ¢~ 'Frob | Mc) = (—¢)~ ™M det(1 — gFrob™! | Mc¢).
The determinantal factor in the last equation can be rewritten as
det(1 — gFrob™! | Mc) = det(1 — gFrob | M) = |(K* ® M )P,

meaning that L(1, Vigra) ™' = ¢~ ™M . |(¥* @ MY)F°|. Collecting the two L-factors
gives

‘ L(lv Vtoral) _ dimM |MFrob|

L(O’ Vloral) B |(EX ® MV)Frobl'

Since S is tamely ramified, (4.2) shows that the Artin conductor of the toral summand
is just

cond Vigrar = dim(Vigrar/ V.25 ) = dim §* — dim M.
By our formula (4.1) relating the Artin conductor and the e-factor,

le(Vioral)| = equ(%(dim S§?% —dim M)) [ ]
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4.5. Root summand

The root summand is a direct sum of representations induced from characters of closed,
finite-index subgroups of Wy. An element w € Wy acts on V;o through ¢ as follows. First,
the action of W on X*(§) (= X«(S)) induces an action on the root system R = R(G, S),
and the element w permutes the root lines by this action. Second, the toral element

tw == J(OW)ry(w)) € T

scales each root line dy by a(fy ), where ¥ € RY(G, S) is interpreted as a character
of T using j. It follows that Vo is a direct sum of monomial representations. That is, for
each Galois orbit @ € R(G, §) the subrepresentation

is monomial and V. is the direct sum (over R(G, S)) of these representations. Further,
after choosing a representative o € gz(lg), we can identify V, with the representation
induced from a certain character v, by which W, acts on §4. The essential matter, then, is
to understand these characters v, and specifically, as it turns out, their depths.

Although the factor n(ws,g (w))w stabilizes the line g4, it may fail to centralize it:
instead, the factor scales the line by a certain sign dy(w) € {£1}. It follows that v, is the
product of two characters:

Va(w) = (de()(@”, jry))) - (@, ( o )(w))

where (—, —) denotes the evaluation pairing X “T)y® T — C*. Although neither factor
of the first character above is a character, their product is.

There are two essential cases in the analysis of the character v, depending on
whether or not the character (", (J o é))|Wa has positive depth. By the local Lang-
lands correspondence the depth of this character is the same as the depth of the character
Ok, sk 0 1k — C*, and we know something about these depths from Section 2.1.

Lemma 4.17. The character (dy - (&, ] o ry))|w, of Wy is tamely ramified.

Proof. The function d, takes values in {#£1}. Since p is odd (see Remark 1.2), d,, is trivial
on Py. By Corollary 4.14, the character dy, - {«", j o ry) is trivial on Py and has finite
order. ]

From this we can immediately deduce the following corollary.
Corollary 4.18. If depth(k,/x o @) > 0 then depth(k, /x 0 ) = depth(V).

It remains to analyze the case where the depth of 6, /x o " is not positive. We first
assume that S is maximally unramified in G, then remove this assumption.

Lemma 4.19. If S is maximally unramified and depth(6g,, /x o o) < 0 then depth /o = 0.
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Proof. 1t is clear from Lemma 4.17 that depth v, < 0, so we need only show that v,
is ramified. Using the assumption that 6 is extra regular, Kaletha [37, Proposition 5.2.7]
proved that the parameter ¢ = ij o L9 is regular [37, Definition 5.2.3], meaning in
particular that the connected centralizer of the inertia subgroup I in G is abelian. So
although the full centralizer of inertia may not be abelian, it does at least have the property
that all of its elements are semisimple. Our proof proceeds by contradiction: assuming that
Yy is unramified, we show that the centralizer of inertia contains a nontrivial unipotent
element, a contradiction.

Since 6 is regular (Definition 2.1), the roots o with depth(6k,,/x © ) < 0 form a root
subsystem Ry of R = R(T, é), and the action of inertia on Ry preserves a set R(J{ of
positive roots. Let H := Ad(¢(/x)), let Ha denote the H -orbit of @ € R, and let U,, C G
be the root group for & € R. Since Iy N W, is the inertia group of ky and P BeHa ag
is a monomial representation of /; induced from v, the character ¥, is unramified if
and only if the following three groups coincide: the stabilizer of U, in H, the centralizer
of Uy in H, and the centralizer of o in H . Moreover, v/, is unramified if and only if ¥4 is
unramified for each § € Ha. Assume o € Rg’ satisfies these equivalent properties and has
maximal length among all such roots. The proof works just as well if « € Ry, so we focus
on the positive roots.

First, suppose the roots in the H-orbit Ho of o are pairwise orthogonal. Choose a
nontrivial element u, € Uy. For each 8 € Ha, choose x € H such that § = x«, and let
ug = Xuq. The element ug depends only on u, and B and not on x. Consider the product

U= l_[ ug.
BeHa

Then u is invariant under H, hence centralizes inertia. But at the same time u is not
semisimple because the H -orbit of o consists of positive roots, contradicting regularity.

In the remaining case, when the roots in the H -orbit of « are not pairwise orthogonal,
a slight elaboration of the previous argument yields a contradiction. In this case the H -
orbit of & admits an involution B — f such that (8, y) # 0 (for B,y € He) if and only
if y € {B, B}. From each pair {8, B} with B € Ha choose one element, including the
element o, and let (Ha)4 be the resulting set of orbit representatives, so that Ho =
(Ha)+ U (Ha)+. Choose a nontrivial element u, € Uy, choose x € H such that xa = &,
and define the element ugz := xuq, independent of the choice of x. The commutator
subgroup Uy 44 = [Uy, Ug] is stabilized by x, and since we assumed that o« had maximal
length among the possible counterexamples to our theorem, it is not centralized by x. (In
fact, x must act by inversion on this group because xugz = u,.) Hence there is an element
Ug+a € Ua+5[ with

-1 .
Uyyg  XUg+a = [Ug,ug], thatis, ugigUaUs = X (Ug+aUeUa).

For each 8 € (Ha)4 choose x € H such that 8 = xa, let ug := xug, and let Ug = XUg;
these elements are independent of the choice of x. As before, define the element

u = l_[ uﬁ+5uﬂu5.
Be(Ha) 4
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Since the action Ad o ¢ of wild inertia on GO is trivial, the group H acts on the factors
of u through some abelian quotient. Hence u centralizes inertia but is not semisimple,
contradicting regularity. ]

Remark 4.20. Kaletha [39] defines an L-parameter to be forally wild if it takes wild
inertia to a maximal torus of G, and shows that torally wild L-parameters factor through
the L-group of a tame maximal torus. The proof of Lemma 4.19 shows that this larger
class of parameters satisfies the conclusion of the lemma.

Lemma 4.21. If depth(6g,,/x o @) < 0 then depth /o = 0.

Proof. Recall from Section 2.1 that there is a twisted Levi subgroup G° of G such that
a € R(S,GY) if and only if depth(6k, /x © «¥) < 0, and that S is maximally unramified
in G. Lemma 4.19 handles the case where G = G°, so we assume that G° cG.

To deal with the general case we factor the L-embedding S — LG through £ G°.
Kaletha [37, Lemmas 5.2.9, 5.2.8] showed that there is an L-embedding LjGo’G :
LGY — LG with the following property: the composite parameter Wy, — LS — LG
is given by the formula

w > [ (B ()8 (w)ry(w))n(ws,(w)w

where 6y, : S(k) — C* is tamely ramified and (S, G°)T* -invariant. Furthermore, from
the construction of © JGo,g itis clear that the embedding q% — qist JGo,G-equivariant. In
this way we reduce to the previous case of G = G° but with 6 replaced by 6 - 0, 1. This
replacement does not affect the validity of the reduction: since 8, is (S, G®) % -invariant,
the character 6’ = 0 - Hb_ s still regular [37, Fact 3.7.6], and since 6, is tamely ramified,
we still have depth(@,’ca/,C oaY) <0. [

Remark 4.22. Unlike Corollary 4.18, Lemma 4.21 does not assert that ¥ and 6, /¢ o o
have the same depth when the former has depth zero. I expect this stronger assertion to
be true. It would be enough to prove that if 6 is extra regular then depth(6g,,/x o a") > 0.
But I was unable to prove the stronger assertion and a weaker statement sufficed.

In summary, the root summand decomposes as a direct sum

Vroot = @ Vg

a€R(G,S)

where, for any o € ge(lg), the representation Vj is induced from a character ¥, of Wy
with known depth. We can now easily compute the y-factor. Recall the Galois sets R; and
depths r; > 0 of Section 2.1.

d—1
Lemma 4.23. [y(0, Vioo)| = expy (IR + 3 3 ri((Resal = |RiD)-

i=0

Proof. Suppose thata € R; 41 for0 <i <d — 1. Lemmas 2.5 and 4.21 and Corollary 4.18
show that depth;, ¥, = r;. Since L-factors are inductive, L(s, Vo) = L(s, Vo), and since
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V¥, 1s ramified, its L-factor is trivial. As for the absolute value of the e-factor, since the
extension ky 2 k is tame, Lemma 4.5 shows that cond Vy, = (1 + r;)|a(k)|, so that

e(Va) = expy (5(1 + ri)la(k)]).

Summing over ¢ € R(G, S) finishes the proof. |

4.6. Summary

Let A be the maximal split central subtorus of G, let G* := G/A, let §* := S/A, and
let M := X*(S*)7x. Lemmas 4.16 and 4.23 show that the absolute value of the adjoint
y-factor is

d-1
| Mxob| . .
ly(0. V)| = 1 ® MOv)Frob| equ(% dim G* + 3 dim M + 3 Zri(|Ri+1| - |Ri|)>'
i=0

Finally, since |710(S,E,)| = | X« (S*)r, | by [36, Lemma 5.13], the Galois side of the formal
degree conjecture is

d—1
|MFr0b| 11 a 1 .
' < €Xp (-dlmG + 5dimM + 5 ri(|Ris1] — |Ri])).
|X*(Sd)rk|-|(KX®MV)Frob| q\ 2 2 2; i i i )

(4.24)

5. Comparison

In this short final section we combine our work from Sections 3 and 4 with several results
from the literature to show that the automorphic and Galois sides of the formal degree
conjecture are equal.

Theorem B. Kaletha’s regular L-packets satisfy the formal degree conjecture.

Let (S, 8) be a tame elliptic regular pair and let ¢ = ¢s,9) be the L-parameter attached
to this pair by the constructions of Section 2.4. The Galois side of the formal degree
conjecture for ¢ is expressed in (4.24). Recall the notation of Section 4.6.

The supercuspidal representations in the L-packet for ¢ are of the form (g, jgr) as
described in Section 2.4, where j ranges over conjugacy classes of admissible embeddings
j 18 < G.Since j#’ and 6 o j ! differ by a tamely ramified character, the formal degrees
of m(s,0) and 7(;s, 67y, as expressed in (3.39), agree. So on the automorphic side, we can
assume for the purpose of computing the formal degree that the relevant pair is (S, 6),
even though it is actually (jS, j6').

To compute the dimension of the lattice M := X *(S?)’* from Section 4.6, we prove
an analogue for tori of the Néron—-Ogg—Shafarevich criterion for abelian varieties.

Lemma 5.1. Let k be a Henselian, discretely-valued field with residue field k and let T be
a tame k-torus. Then there is a canonical identification X*(T)'* = X*(To.0+).
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Here 7.0+ denotes the maximal reductive quotient of Tp, that is, the reductive k-group
whose i points are T (k™)g.0+ where k™ is the maximal unramified extension of k.

Proof. Since X*(T)' = X*(T)xn we can use étale descent for the Moy—Prasad filtration
[60, Section 9.1] to reduce the proof to the case where « is separably closed. Let 7° C T be
the maximal split subtorus, so that X *(T)/x = X*(T*) = X*(Tg.9) since now I = I.

It suffices to prove that the canonical inclusion 7., <> To:0+ is an isomorphism. The
proof rests on two facts from SGA 3. Since Sy is smooth and affine, the moduli space of
its maximal tori is represented by a smooth @-scheme [14, Exposé XII, Corollaire 1.10].
By Hensel’s Lemma [14, Exposé X1, Corollaire 1.11], every «-point of this moduli space
lifts to an (9-point. |

At this point, we know that the exp, factors in (3.39) and (4.24) are equal.
Lemma 5.2 ([36, Lemma 5.17]). [S%(k) : S*(k)o+] = | X« (Sa)§;°b| (@ MV)Frob),

Let us now compare the remaining factors outside of exp,. On the automorphic side
we have [S?(k) : S%(k)o+]!; on the Galois side we have

|MFr0b|
| X« (SH)ry | - [(™ @ M V)Freb|”

The ratio of one to the other is

| X (S| - | Xu (S
| X (S |

using the fact that M = X, (S?)’*. This ratio equals 1 [36, Lemma 5.18].
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