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We construct a moduli space LP; of SL,-parameters over Q, and show that it has good
geometric properties (e.g., explicitly parametrized geometric connected components and
smoothness). We construct a Jacobson-Morozov morphism JM: LP; — WDP (where
WDP, is the moduli space of Weil-Deligne parameters considered by several other
authors). We show that JM is an isomorphism over a dense open of WDP, that it
induces an isomorphism between the discrete loci LP35¢ — WDPYs¢, and that for any
Q-algebra A it induces a bijection between Frobenius semi-simple equivalence classes
in LP;(A) and Frobenius semi-simple equivalence classes in WDP;(4) with constant (up

to conjugacy) monodromy operator.

1 Introduction

Motivation. A problem of fundamental importance in the study of harmonic analysis is
the classification of irreducible complex admissible representations of G(F) where F is
a non-archimedean local field, and G is a reductive group over F. The local Langlands
correspondence, a guiding principle for many areas of number theory in the past
40 years, posits a parameterization of such admissible representations in terms of
equivalence classes of parameters related to the Galois theory of F. These parameters
come in several forms. Chief among these are the complex L-parameters, which are
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The Jacobson-Morozov Morphism 5101

homomorphisms ¥ : Wy x SL,(C) — IG(C) satisfying certain properties (cf. [41, §3]),
and complex Weil-Deligne parameters, which are pairs (¢, N) where ¢: Wy — IG(C) is
a homomorphism and N is a nilpotent element of the Lie algebra of G(C), satisfying
certain properties (cf. [21, §2.1]). The notion of equivalence in both cases is that of E-’(C)—
conjugacy.

The classical theorem of Jacobson—Morozov (cf.[28, §II1.11, Theorem 17]) asserts

that the Jacobson-Morozov map 6 +— do ((J})) gives a surjection

M Algebraic homomorphisms Nilpotent elements
: N — R
6: SL,(C) — G(C) N € Lie(G(C))

which becomes a bijection on the level of @(C)—quotients. One may extend this to a

Jacobson-Morozov map

M ComplexL-parameters Complex Weil-Deligne parameters
: — .
¥ Wy x SLy(C) — G(C) (¢, )

This map is not a bijection, even up to equivalence and, in fact, is not even surjective
(see Example 3.5). However, the Jacobson-Morozov map does give a bijection between
equivalence classes of Frobenius semi-simple parameters (see [21, Proposition 2.2] or
[27, Proposition 1.13]), those that feature most prominently in the local Langlands
correspondence. Therefore, in practice, the Jacobson-Morozov map allows one to pass
fairly freely between these two notions of parameter and to treat them as essentially
equivalent. This is useful as each of these perspectives has its own advantages (e.g., as
illustrated quite well in [21]).

The goal of this article is to put the above results on a moduli-theoretic footing.
Namely we define and study a moduli space of L-parameters, and construct a Jacobson-

Morozov morphism
JM: LP, -~ WDP,

between the moduli space of L-parameters and the moduli space of Weil-Deligne param-
eters. We then show that there is a natural stratification of the moduli space of Weil-
Deligne parameters with the property that over each stratum the Jacobson-Morozov
morphism takes a particularly simple form. Using this, we show that the Jacobson-
Morozov morphism satisfies some birational-like properties, is an isomorphism over
the discrete locus, and that a version of the above bijection between equivalence
classes of complex Frobenius semi-simple parameters has an analogue over an arbitrary

Q-algebra.

20z 1SNBNY 8 UO Jasn duIlIaMSUY Jaoued DININN A 290.22/2/001S/9/4202/10n4e/ulwl/wod dno-olwspese)/:sdjy wolj papeojumoq



5102 A. Bertoloni Meli et al.

Remark. The reason we do not restrict our attention to semi-simple parameters is that
they do not form a representable presheaf. Thus, to do geometry, we are required to work

with arbitrary parameters.

Statement of main results. Let F be a non-archimedean local field and G a reductive
group over F.In §6.1, we define the moduli space of L-parameters for G, which we denote
LP,.

Proposition 1 (see Corollary 6.8). The moduli space LP; is smooth over Q and has

explicitly parameterized affine connected components.

On the other hand, let WDP; denote the moduli space of Weil-Deligne parameters

(e.g., as in [44, §3.1]). In §6.3, we define the Jacobson-Morozov morphism
JM: LP; — WDP,.

Our major result may then be stated as follows.

Theorem 1 ( see Theorem 7.9 and Theorem 7.13). The Jacobson-Morozov morphism is

weakly birational and induces an isomorphism LP&5¢ = WDPYs¢ gver the discrete loci.

Here we say a morphism of schemes f: Y — X is weakly birational if there
exists a dense open subset U C X such that f: f~1(U) — U is an isomorphism. A weakly
birational map f is birational if and only if f induces a bijection at the level of irreducible
components. Also, the discrete loci inside of LP; and WDP, are defined, at least when G
is semi-simple, as the locus of points where the centralizer of the universal parameter is
quasi-finite over the base (see Definition 7.3 and Definition 7.11 for general definitions).

To prove Theorem 1, we stratify WDP, by its nilpotent orbits. Denote by N the
nilpotent variety for G and form the stratification NV := Ly On by its G-orbits, which
we treat as a disconnected scheme over Q. We then obtain a stratification WDPg by
pulling back A'” along the natural map WDP,; — N. We give an explicit description

of the structure of this variety.

Proposition 2 (see Corollary 5.17). The moduli space WDP¢ is smooth over Q and has

explicitly parameterized connected components.

The Jacobson-Morozov morphism factorizes through WDP and interacts well
with the explicit decompositions indicated in Proposition 1 and Proposition 2. Utilizing

this we show the following, which implies the weakly birational portion of Theorem 1.
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Proposition 3 (see Theorem 7.9). The morphism JM: LP; — WDP is birational.

A key component of our proof of Proposition 3 is a relative version of the
bijection between equivalence classes of complex Frobenius semi-simple parameters.
Here, Frobenius semi-simplicity is somewhat delicate and defined in Definition 5.10 and
Definition 6.11.

Theorem 2 (see Theorem 6.16). For any QQ-algebra A, the map
JM: LP;(A)/G(A) — WDPZ(A)/G(A)

is a bijection on Frobenius semi-simple elements.

We finally mention that another important ingredient in our proof of Proposi-
tion 3 is a result that may be interpreted as a stronger version of the isomorphy of the
Jacobson-Morozov morphism over the discrete loci, as stated in Theorem 1. Namely, in
Proposition 7.8, we show that the Jacobson-Morozov morphism is an isomorphism over
the locus of points of WDP; whose centralizer has reductive identity component. The
relationship to birationality comes from Proposition 7.7, which shows that the locus of
such points is dense in WDP and thus, a fortiori, dense in WDP'é (the same holds true
for LPg).

As the moduli space of Weil-Deligne parameters has featured quite prominently
in recent developments in the Langlands program and adjacent fields (e.g., see [2], [15],
[44], and [17]), we feel that these results will be valuable in the study of the fine structure
of the space WDP,. In particular, one may in theory reduce many questions involving
“generic” geometric structure of WDP, to the study of LP;. More specifically, we have
stratified the geometric space WDP; into pieces such that each stratum is smooth and
(essentially) like a homogenous space for a group, and thus simple geometrically (cf.
Theorem 5.16). Moreover, each of these strata is birational to similarly defined strata
in the representation-theoretically simpler space LP. In fact, such ideas have already
implicitly appeared in several important geometric results concerning WDP,; (e.g., see
[2,§2.3)).

In addition to its potential uses to study the geometry of WDP, we believe that
these moduli-theoretic results are clarifying in several other ways. Namely, the weak
birationality of the Jacobson—-Morozov morphism helps qualify in the classical setting
that almost every complex Weil-Deligne parameter is in the image of the Jacobson-

Morozov map. Moreover, the isomorphy over the discrete locus may also be used to
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5104 A. Bertoloni Meli et al.

deduce results of interest even in this classical case (e.g., see Proposition 3.18). Finally,
we feel that our explicit description of the moduli space of L-parameters (e.g., its set of
connected components) helps explain some phenomena differentiating LP, from WDP,

as previously observed by others (cf. the introduction to [15]).

Future directions. While our results are written over Q, it is clear that they extend
over Z[Zl\,] for sufficiently divisible N. Evidently, one cannot hope to extend our results
over all of Z[Il?] as currently written. But, as in op. cit. (and [25]), the correct analogue of
WDP over Z[Il)] does not directly involve Weil-Deligne parameters but, instead, involves
a scheme of 1-cocycles for the discretization Wg of the tame inertia group. One may then
ask whether there is an analogous description of LP;, which allows our results to work
over Z[%].

Also, as the morphism JM: LP; — WDP, is weakly birational, there exists a
dense open subset U of WDP, such that JM: JM~}(U) — U is an isomorphism. In
Proposition 3.15 below, we essentially show that the analytication JM_l(U)%n contains
all (essentially) tempered L-parameters. From a geometric perspective (e.g., from the
perspective of [17]), it is more natural to consider ¢£-adic L-parameters instead of complex
ones. One is then naturally led to the ask whether JM_I(U)SZ contains the analogue of
(essentially) tempered representations, which are the (essentially) v-tempered represen-
tations of Dat (see [12]).

Notation and conventions

e Fis a non-archimedean local field with residue field of characteristic p and
size g,

* Wy is the Weil group of F,

e for a Galois extension of fields k'/k, we write the Galois group as I'y/ and we
write I'; for the absolute Galois group of k,

e for a ring R we shall denote by Algy the category of R-algebras,

e we shall frequently abuse terminology and call a covariant functor Algg — C
a C-valued presheaf,

¢ areductive group S-scheme H will always have connected fibers,

e we use the notation Int(g) for the inner automorphisms associated to an
element g of a group,

e for a set X we shall denote by X the associated constant scheme over Q.
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The Jacobson-Morozov Morphism 5105
2 Some Group Theoretic Preliminaries

In this section, we establish some notation, definitions, and basic well-known results
that we shall often use without comment in the sequel. We encourage the reader to skip

this section on first reading, referring back only when necessary.

2.1 The nilpotent variety, unipotent variety, and exponential map

Let us fix k to be a field of characteristic 0 and H to be a reductive group over k. We denote
by b the Lie algebra of H thought of both as a vector k-space and as a k-scheme.

Let A be a k-algebra and x an element of h,. Recall then that as in [14, II, §6, N23]
one may associate an element exp(Tx) in H(A[T]) to x. We then say that x is nilpotent if

it satisfies any of the following equivalent conditions.

Proposition 2.1. The following are equivalent:

(1) for all finite-dimensional representations p: H — GL(V) the endomorphism
dp(x) of V, is nilpotent,

(2) there exists a faithful finite-dimensional representation p: H — GL(V) such
that the endomorphism dp(x) of V, is nilpotent,

(3) exp(Tx) belongs to H(AIT)),

(4) there exists a morphism of group A-schemes o: G, , — H, such that x =
da(l),

if A is in addition reduced, then (1)-(4) are equivalent to

(5) x belongstoh

ger and ad(x) is a nilpotent transformation of b

der
A -

Proof. The equivalence of (1)-(4) is given by [14, II, §6, N23, Corollaire 3.5]. To see the
equivalence of (1) and (5), in the case when A is reduced, we may assume that A is a field.
Let o: H/Z(H%") — GL(W) be the faithful representation given by taking a direct sum
of Ad: H — GL(h%") and the composition of H — H2" with a faithful representation of
H®P_ Tt is clear that applying (1) to o shows that (5) holds. Conversely, suppose that (5)
holds, so then do (x) is nilpotent. Let p be as in (1). We may assume that p is irreducible.
We put n = |Z(H%T)|. Then p®": H — GL(V®") factors through H/Z(H9"). Hence by [13,
Proposition 3.1 (a)l, dp®"(x) is nilpotent. This implies that do(x) is nilpotent. |

Let us consider the symmetric algebra on h* (resp. the graded ideal of positive

degree tensors)

S(h*) = €P s%(h*) = Hom(h, Ap), (resp. StH*) = @Sd(h*)).

d>0 d>0
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5106 A. Bertoloni Meli et al.

Let S(h*)H be the k-subalgebra of S(h*), which is invariant for the adjoint action of H on

b (in the sense of [34, Definition 0.5 i)]). Let us then consider the radical ideal
ST =5t " NSO
The nilpotent variety of H is the closed subscheme of h given by N := V (St (h*)¥) (or

Ny when we want to emphasize H). This name is justified as for any extension k' of k we

have
N(k') = {x € by, : x is nilpotent}

(cf. [29, §6.1, Lemmal]). In particular, N is the unique reduced subscheme of h whose k-
points consist of the nilpotent elements of hz.

The nilpotent variety N is an integral (cf. [29, §6.2, Lemmal]) finite type affine
k-scheme of dimension dim(H) — r where r is the geometric rank of H (see [29, §6.4]).
In fact, as k is of characteristic 0, it is normal by the results of [32]. Observe that the
nilpotent variety is stable under the adjoint action of H. Also observe that if f: H — H’
is a morphism of reductive groups over k it induces a morphism df: Ny — Ny and

satisfies df (Ad(h)(x)) = Ad(f(h))(df (x)).

Example 2.2. Let Mat, ; be the scheme of n-by-n matrices over k, and let I € O(Mat,, ;)
be generated by those polynomials corresponding to (aij)" = 0. Then, NGLnk = V(1.

From this example, and the functoriality of the nilpotent variety, it's easy to see

that if A is a k-algebra, then one has the containment
N(A) C {x € h, : x is nilpotent},

which is an equality if A is reduced, but can differ otherwise. From this containment, we
see that for any element x of N'(4), we may define an element exp(x) of H(A) as in [14, II,
§6, N23, 3.7]. As this association is functorial, we obtain an H-equivariant morphism of
schemes V' — H called the exponential morphism and denoted by exp (or expy when we
want to emphasize H), which is functorial in H. We would now like to describe the image
of exp.

To this end, note that there exists a unique reduced closed subscheme U (or Uy

when we want to emphasize H) of H such that
UKK') = {h € H(K') : his unipotent},

for all extensions k' of k (see [39, Proposition 1.1]). We call U/ the unipotent variety

associated to H. It is an integral finite type affine k-scheme of dimension dim(H) — r,
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which is stable under the conjugation action of H (see loc. cit.). Moreover, as k is of
characteristic 0, it is normal (see [39, Proposition 1.3]). We observe that I/ is stable under
the conjugation action of H.

Observe that exp factorizes through i, as both are reduced, and so this may be
checked on the level of k-points. We have the following omnibus result concerning the

exponential morphism.

Proposition 2.3. Let H be a reductive group over a characteristic 0 field k. Then,

(1) the exponential map exp: Ny — Uy is an H-equivariant isomorphism,

(2) for any k-algebra A and any x in N (A), Ad(exp(x)) is equal to > 2, % ad(x)?,

(3) for any k-algebra A and any nilpotent Lie subalgebra n of h, contained in
N(A) the subset exp(n) € H(A) is a subgroup. If the functor n — n®, B
is representable by a closed subgroup scheme of N, then exp(n) is actually
a closed subgroup scheme of H, such that exp(n), is unipotent for all x in
Spec(4).

Proof. For (1), as Ny and Uy are connected and normal, and exp may be checked to be a
bijection on k-points, this follows from Zariski’'s main theorem as k is of characteristic
0. Claim (2) follows by the functoriality of the exponential map (cf. [14, II, §6, N°3,
3.7]). Finally, (3) may be deduced by the Campbell-Hausdorff series (see [5, II, §6, N°4,
Théoreme 2]). |

2.2 The L-group and C-group

Fix F to be a non-archimedean local field, and let G be a reductive group over F. In this
subsection, we define the C-group of G, which is a modification of the L-group of G that
will be used to construct a moduli space of Weil-Deligne parameters over Q without
choosing a square root of g (see §5.1).

To begin, let W(G) denote the canonical based root datum of Gz (see [33, §1.1]
and [35, §21.42]), which comes equipped with an action of I'y. We fix once and for all a
Langlands dual group of G by which we mean a pinned reductive group G,B, T, {x,})
over QQ (see [35, §23.d]) together with an isomorphism between \IJ(@,E, ?) and ¥ (G)Y. We
denote by § the Lie algebra of G, and by N the nilpotent variety of G.

Next, let Wy denote the Weil group scheme over Q associated to F as in [42,
(4.1)]. For a Q-algebra A, one may identify Wy(A) with the set of continuous maps
f 1 my(Spec(A)) — Wy where here ny(Spec(4)) is thought of as a profinite space (cf. [40, Tag
0906]) and Wy is given its usual topology. In particular, Wr(A) = Wy(A) when ,(Spec(4))
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5108 A. Bertoloni Meli et al.

is discrete (e.g., if A is connected or Noetherian), but can differ otherwise. For w in Wy,
we shall occasionally abuse notation and use w to also denote its image in Wy (4).
Note that if d: Wy — Z is the degree map sending a lift of arithmetic Frobenius
to —1, then there is a morphism of Q-group schemes d: Wy — Z, which takes a map f to
dof.Observe that Z admits an embedding of group Q-schemes into G, ( corresponding

tolr g !

and we denote the composition of d with this map by |- [|: Wr — G,,, 4. We
define 7, = ker(| - ||), which is an affine scheme equal to L&nlﬁ as K travels over all
finite extensions of F. Note that if A is a Q-algebra and X an A-scheme locally of finite
presentation then any morphism of A-schemes 7 , — X must factorize through Ip/Ix

for some K (cf. [40, Tag 01ZC]).

Remark 2.4. One reason to prefer Wy over the constant group scheme Wy is that the

topological group m(Wy) is equal to Wy with its usual topology, and similarly for Z.

Returning to G, note that the action of I'y; on W(G) gives rise to an action of I'y
on (@,ﬁ,f, {x,}) and, in particular, on G as a group Q-scheme. We define a finite Galois
extension F* of F characterized by the equality I'p. = ker(Wy — Aut(G)). Equivalently,
F*is the minimal field splitting G*, the quasi-split inner form of G. We write I', for I'g. 5.
As T, acts on G and Wy admits I', as a quotient, we obtain an action of Wy on G. Define
the?—group scheme of G to be th_e group Q-scheme G = G x Wr. Observe that there is
a natural inclusion G <> G, which identifies G as a normal subgroup scheme of XG. In
particular, there is a natural conjugation action of G on G, which in turn induces an
adjoint action of G on .

As the action of Wy on G factorizes through a finite quotient, we see by Lemma 2.5
below that the group presheaf associating a Q-algebra A to Zo(@)(A) = Z(G)(A)WVF@A g

representable.

Lemma 2.5. Let A be a Q-algebra, H a reductive group over A, and ¥ a finite group
acting on H by group A-scheme automorphisms. Then, the group functor

H*:Alg, - Grp, B+ H(B)*
is represented by a subgroup scheme of H smooth over A, with (H¥)° reductive over A,

and such that for all A-algebras B one has the equality Lie(H*)(B) = Lie(H)(B)*.

Proof. Write H = Spec(R), then one easily verifies that Spec(Ry.), where Ry, is the ring

of coinvariants, represents H* As A is a Q-algebra, it is evident that Ry is a direct
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summand of R and thus H? is flat over A, and thus smooth. By [37, Exposé VIB, Corollaire
4.4], we know that (H*)° is representable and smooth over A, and it is then reductive by
[36, Theorem 2.1]. The claim about Lie algebras is clear as the functor of X-invariants

preserves kernels. [ ]

Let X* denote the cocharacter component of W(G) and R" the positive root
component, and define § to be the element of X* given by the sum over the elements
of R™. By our identification between U(G,B,T) and V(G)Y, we see that § corresponds to
an element of X, (T), which we also denote by 8. Let us set z; 1= 8§(—1) € TQ)[2). By the
proof of [1, Proposition 5.39], z lies in Z,(G)(Q). Thus, the action of Wy on G x Gm,0
(with trivial action on the second component) fixes the pair (z;, —1). Therefore, Wy acts
on G := (G x Gyn,0)/{(zg, —1)). We then define the C-group scheme of G to be G =0Gx Wsg.
Note that by [1, Proposition 5.39] there exists a central extension G of G such that G
is naturally isomorphic to ZG, which is the definition of the C-group as in [1, Definition
5.38].

The group G admits a natural embedding into G, with normal image, via the first
factor, and therefore we obtain a conjugation action of “G on G, and thus an adjoint action

of G on §. Also, the morphism
(G X G X Wp = Gpg x Wi, (g,2,w) > (2%, w)
annihilates ((z;, —1)), and thus induces a morphism

pc= (me,pWF): G — Gm,@ x Wk.

Finally, we observe that if k is an extension of QQ, and c is any element of k such that

c? = q, then there is a morphism i,: G, — G, obtained as the composition

(gw)r>(g,c~4™) ,w)

LGk (@k X Gm,k) X WF,k — CGk.

2.3 Scheme of homomorphisms and cross-section homomorphisms

We establish here some terminology and basic results concerning the scheme of homo-
morphisms as well as the scheme of cross-section homomorphisms (in the sense of [15,

Appendix Al]). Throughout the following, we fix k to be field of characteristic 0.
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5110 A. Bertoloni Meli et al.

Scheme of homomorphisms. Let H and H' be reductive groups over k with Lie algebras
hand b'. For a k-algebra A, denote by Hom(H,, H)) the set of group A-scheme morphisms

H, — H,.Consider the following functor:
Hom(H,H'): Alg, — Set, A — Hom(H,, Hy),

and define the functor Hom(h, h’) similarly, both of which carry a natural H'-conjugation

action.

Proposition 2.6. The following statements hold true.

(1) The functor Hom(H, H') is representable by a smooth k-scheme for which the

map
0: H x Hom(H,H') - Hom(H,H') x Hom(H, H'), (h,f)~ (hfh~L,f)

is smooth,
(2) if H is semi-simple then Hom(H, H') is affine, and if H furthermore simply

connected, then the map
Hom(H,H') — Hom(h, h"), [ df,

is an H’-equivariant isomorphism,

(3) for any k-algebra A, the natural map
Hom(H,, H,) — Hom(H(A),H'(A))

is injective.

Proof. Statements (1) and (2) follow from [7, Theorem 2] and [19, Exp. XXIV, Proposition
7.3.1], respectively. Statement (3) follows from Proposition 2.7 below as H and H' are

integral and unirational (see [35, Summary 1.36, Theorem 3.23, and Theorem 17.93]). W

Proposition 2.7. Suppose that X and Y are finite type integral k-schemes with X

unirational. Then for any k-algebra A, the natural map
Hom(X,,Y,) - Hom(X(4), Y(A4))

is injective.
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Proof. Letf and gbetwo different A-morphisms X, — Y,.Note that the claim is clearly
local on Y, and so we may assume that Y is affine. It is also clear that by embedding Y
into A}, and checking coordinate-by-coordinate we may further assume that ¥ = A}C.
It also suffices to check locally on X, and so using the unirationality of X we may then
further assume that X = D(w) C AZ for win klx,, ..., x,]. With this, we may interpret f
and g as elements of Alx,, ..., x,][w~!]. Taking the difference of f and g and multiplying
by an appropriate power of w allows us to further assume that f lies in Alx;,...,x,] and
g is the zero map. By considering the map X (k) — X(A4), we will be done if we can show
that f does not vanish identically on D(w) (k). If {a;};.; is a basis of A as a k-vector space,
then we may write f = > ;.; a;f; where f; € klx,...,x,]l. As f is non-zero, there exists
some i such that f; is non-zero. As D(w)(k) is Zariski dense in AZ as k is infinite, there
then exists some x in D(w)(k) such that f;(x) # 0. Then, by setup, f(x) # 0. |

In the future, we call a homomorphism of groups H(A) — H'(A) algebraic if it is

the map on A-points of a morphism (necessarily unique) of group A-schemes H, — H),.

Schemes of cross-section homomorphisms. Fix an abstract group X and a reductive

group H over k. We then consider the presheaf
Hom(X, H): Alg; — Set, Hom(X,H(A)) = Hom(X 4, Hy).

This presheaf clearly carries an H-conjugation action. If, in addition, ¥ acts on H by
group k-scheme morphisms then for a k-algebra A we say a homomorphism f: ¥, —
H, x X, is a cross-section homomorphism over A if p,(f(0)) = o for all o, where p,: H,
X, — X, is the scheme-theoretic projection. We denote by Z!(X, H)(A) the set of cross-
section homomorphisms over A, which is clearly a presheaf on k-algebras that carries

an H-conjugation action.

Remark. The notation Z!(Z,H) is used as this object is equal to the scheme of 1-

cocycles in [15, Appendix A].

Proposition 2.8 ([15, Lemma A.1 and Corollary A.2]). Suppose that ¥ is finite. Then,
Hom(X,H) (resp. Z!(%,H)) is represented by a finite type smooth affine k-scheme.
Moreover, for all k-algebras A, and all f in Hom(Z, H)(A) (resp. Z1(Z,H)(A)), the orbit

map

pr: Hy — Hom(X, H)y, (resp. /Lf:HA—>Z1(E,H)A)

is smooth.
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2.4 Transporter and centralizer schemes

Let R be a ring, H a group-valued functor on Algg, and X a set-valued functor on Algg.
Then, for an R-algebra S and two elements « and 8 of X(S), we define the transporter set
to be

Transpy (o, B) :={h € HS) : h-a = B}.
We then define the transporter presheaf to be the presheaf
Transp, (a, B): Algs — Set, T +— Transpg(ag, Br).

We abbreviate Transp . (8, B) to Zy(B) and call it the centralizer presheaf, which is clearly

a group presheaf. We then have the following obvious proposition.

Proposition 2.9. Suppose that H is a group R-scheme and that X is a separated R-
scheme of finite presentation. Then, for any R-algebra S and any elements « and 8 of X(S),
the presheaves Transp, (a, ) and Z;(B) are representable by closed finitely presented

subschemes of H. Moreover, for any S-algebra T, one has the natural equalities

TI‘aIlSpH(oe, B = TI‘aIlSpH(OlT, Br), Zg(B)r = Zg(Br).

2.5 Eigenvalue decomposition of Lie algebras

We record here the following result, which, for a cocharacter of a smooth group scheme,

relates a character decomposition and an eigenvalue decomposition of the Lie algebra.

Lemma 2.10. Let S be a scheme and H a smooth group S-scheme with Lie algebra h. Let
p: Gy, s — H be a morphism of group S-schemes. Set h = dp(1), and for an integer i, we

set
hyi=1{xebh:Ad(p(2)x = z'x for all z}, bpi = {x € b:adh)(x) = ix}.

Then we have b, ; € by ;. This is an equality if S is a Q-scheme.

Proof. We have d(Adop)(1) = ad(h) under the identification of the Lie algebra of GL(h)
with End(h). By taking the weight decomposition of h under Ad op (cf. [10, Lemma A.8.8]),
we obtain the claim from the fact that the derivative of the i*"-power map Gns = Gus
is the multiplication-by-i map. The last claim follows from h = ;. b, ; and that b, ; for

i € Z are linearly independent if S is a Q-scheme. |
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3 The Classical Setting

In this section, we recall the Jacobson-Morozov theorem and the Jacobson-Morozov
theorem for parameters in their classical settings. This will not only serve to emphasize
the results we wish to geometrize, but will play an important role in the proof of these
more general results.

3.1 The Jacobson-Morozov theorem

Let k be a field of characteristic 0 and H an algebraic group over k such that H® is

reductive. It will be useful to explicitly name the matrices

0 1 1 0 0 0
eoz(o o)' hoz(o —1)' fo:(l o)'

which form a k-basis of the Lie algebra sl, ;. We then have the Jacobson-Morozov

Theorem as follows.

Theorem 3.1 (cf.[6, VIII, §11, N°2, Proposition 2 and Corollaire]). The map
JM: Hom(SL, ., H) — N(k), 0 — db(ey)
is an H(k)-equivariant surjection, and induces a bijection

Hom(SLy ., H)/H(k) — N (k)/H(k).

Let us call a triple (e, h, f) of elements an sl,-triple in § if the following equalities
hold

[hr e] = 26, [hrf] = _zfr [erf] = h~

Let us denote by 7 (k) (or 75 (k) when we want to emphasize H), the set of sl,-triples in b.
The natural adjoint action of H(k) on h induces an action of H(k) on 7 (k).

Theorem 3.2. The following diagram is commutative and each arrow is a bijection

Hom(SLy ;. H) /H (k) e Hom(sly ., b)/H (k)

M vi— (v(eo),v(ho),v(fo))

e <—i(eh,f)
N (k)/H (k) T (k)/H (k).
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We end this subsection by explaining the relationship between the centralizers
of 6 and N = JM(0). Namely, let us set

V' = im(ad()) N ker(ad(V)), UY = exp®).

Then, we have the following Levi decomposition statement.

Proposition 3.3. The equality Z; (V) = UY % Zy(0) holds. Further, we have
Lie(Zy(0)) = Lie(Zy(N))y,  Lie(U") = @P Lie(Zy());,
i>0

where for an integer i, we set
Lie(Zy(V)); = {x € LieZz (V) : Ad (9 ((g 291 ))) x = zZ'x).

Proof. The first claim is proved in the same way as [8, Proposition 2.4]. The second

follows from [16, Lemma 5.1] by taking the derived group of H°. |

3.2 The Jacobson-Morozov theorem for parameters

We now recall the analogue of the Jacobson-Morozov theorem for parameters. We use

the notation from §2.2.

Definition 3.4. Topologize ZG(C) by giving G(C) the classical topology.

(1) A (complex) Weil-Deligne parameter for G is a pair (¢, N) where

o ¢ Wp— IG(C) is a continuous cross-section homomorphism,
e Ne€ JV((C) is such that Ad(¢(w))(IV) = ||w||N for all w € Wy.

(2) A (complex) L-parameter for G is a map
¥ Wy x SL,(C) — LG(C),

such that

* Vlw,: Wgp— IG(C) is a continuous cross-section homomorphism,
* Ylsryc) ! SLe(C) — IG(C) takes values in @((C) and is algebraic.
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For t € {L,WD} let us denote by CDZ;'D the set of complex r-parameters for G.
Recall that a Weil-Deligne parameter (¢, N) (resp. an L-parameter ) is called Frobenius
semi-simple if for one (equiv. for any) lift w of arithmetic Frobenius the element ¢(w,)
(resp. ¥ (wy)) is semi-simple (in the sense of [4, §8.2]). We denote by QESS'D the subset
of Frobenius semi-simple r-parameters. For each t, there is a natural action of G(C) on
dbf;’D, which stabilizes the subset d)f;'ss'm. We then define @}, := d%’D/@(C) and 7 =
CI)TG'SS'D/@((C). For an element  of GDLG'D, we denote by 6 (or 6, when we want to emphasize
¥) the morphism ¥|g, ¢): SLp(C) — G(O).

To upgrade Theorem 3.1 to the parameter setting, we need to associate a Weil-
Deligne parameter to any L-parameter. To this end, let us define a morphism of groups

i=(i,ip): Wy = Wp x SLy(C), wr— (w, ('W'é 0 1))

0 fwl 2

We then define the Jacobson-Morozov map to be the G(C)-equivariant map

IM: oED 5 @WPH -y s (g o d, doey)).

It is easy to check that JM ™! (d)‘(’;VD’SS'D) is precisely @Igssﬂ. As the Jacobson-Morozov map

is G(C)-equivariant, it induces maps ®% — ®WP and &% — @'P5s,
The Jacobson-Morozov map is not a bijection as the following example illus-

trates.

Example 3.5. Set G = GL, and as G is split we may replace LG(C) with @(C) = GL4(C).
Consider the Weil-Deligne parameter (¢, N) given as follows:

d(w)

Q
N

o O+

q
0

o O O

o O o
— O O O
o O O O
o O O O
o O ~= O

0

Suppose for contradiction that (¢, N) = JM(y) for some v in @ZD. Then, ¢ is of the form
p X Std, where p is a representation of Wy and Std is the standard representation of

SL,(C). Indeed, as N is conjugate to

o O O o
S O O +~
o O O o
o ~ O O
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we see from the Jacobson-Morozov theorem that as an SL,(C) representation C* is

isomorphic to Std®?. One may then check that the morphism

is an isomorphism of Wy x SL,(C)-representations. Note that by examining the rela-
tionship between the Wy-actions of ¢ and v, the twist of p by the unramified character

w o w72

must be isomorphic to the representation on ker(V) induced by ¢. In
particular, p is semi-simple. Hence, the Weil-Deligne parameter attached to ¢ must be

Frobenius semi-simple, but the original (¢, N) is not Frobenius semi-simple.
However, we have the following Jacobson—-Morozov theorem for parameters.

Theorem 3.6 (see [21, Proposition 2.2] or [27, Proposition 1.13]). The Jacobson-Morzov

map JM: q)f;’ss’m — CDY;VD'SS'D is a surjection and induces a bijection &% — @FP5s,

3.3 Bijection over reductive centralizer locus and applications

The Jacobson-Morozov theorem for parameters is stated at the level of G(C)-orbits.
While this is a non-issue for now, when we attempt to geometrize this result, it becomes
more problematic due to the subtle nature of quotients in algebraic geometry. So, we wish
to upgrade the Jacobson-Morozov theorem for parameters to a bijectivity statement
before quotienting by G(C).

To begin, we give an analogue of Proposition 3.3 for parameters. To state it, let
(¢, N) be an element of QJ‘gD'D and set UV (¢) := UY(C) N Zg(c) (@)

Proposition 3.7. Let ¢ be an element of CIJIE;’D and set (¢, N) = JM(y). Then, the equality
Zgc) (9, N) = UV (@) % Zg(c, (¥) holds.

Proof. Given Proposition 3.3 it suffices to show that if ua belongs to Zz ¢, (¢, N), where u
is in UY(C) and a is in Z5c) (@), then in fact u belongs to UY(¢) and a belongs to Zac)W).
To prove this, we note that conjugation by an element in the image of ¢ stabilizes both
UY(C) and Zzc)0). Indeed, since Ad(¢(w))(N) = ||w]|N, we have that conjugation by
¢(w) stabilizes Zgc)@V) and hence its unipotent radical UY. On the other hand, as ¢(w)
equals ¥ (w, 1)0(i,(w)), and ¥ (w, 1) commutes with 6, one may easily check the claim
that ¢(w) normalizes Z3(c)(0). Now for each w € Wy, ua equals Int(p(w))(w) Int(p(w))(a).
Therefore, Int(¢(w))(a)a~! equals Int(¢(w))(u) 'u. By what we have proven, the former
is an element of Zz)(©) and the latter is an element of UV (C). Since UY(C) and Z3c)©)
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have trivial intersection, we have that both sides are trivial and so a and u commute

with ¢(w) as desired. |

We may use this decomposition to exhibit an example of a semi-simple L-

parameter ¢ whose associated Weil-Deligne parameter has strictly larger centralizer.

Example 3.8. Let G = GL; and consider the element y in CD%;’SS'D given by the following

a b O\ /jlwlz o0 o0
a b 1
W(m( ))z c d o 0 lwl~2 0f,w
c d
0 0 1 0 0 1
and set (¢, N) = JM(¥). In this case, we have
0 x =x
W=1lo o o
0 x O
Hence
1 0 1
0 1 0| €Zge (e, N)NUY©),
0 0 1

but it does not belong to Zg,(¥) by Proposition 3.7.

Remark 3.9. We remark that although Zg,(¥) need not equal Zg,(JM(y)), these
groups are the same for the purposes of parametrizing L-packets as in [30] as they have
the same component groups by Proposition 3.7. More generally, one can consider the

group SE/j (resp. SjM(w)) that is related to [30, Conjecture F] and is defined by

Zg0) W)/ Zg(c) () N GO)*°, (resp. Zzc) (M) /1Zz ) (IM(¥)) N @(C)der]O)_

These groups are equal by Proposition 3.7 as UY(¢) is contained in [Zzcy(IM(¥)) N
@(C)der]o.

This decomposition also allows us to give an algebraic condition for when a

Weil-Deligne parameter is the image under the Jacobson-Morozov map of a semi-simple
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L-parameter with the same centralizer. In the rest of this section, we use Proposition 5.11,

but the proof of the proposition does not depend on the rest of this section.

Proposition 3.10. The group Zg,(¢, N)° is reductive if and only if (¢, N) = JM(y) for a
Frobenius semi-simple Weil-Deligne parameter ¢ such that Zg ¢, (V) = Zg ¢, (¢, N).

Proof. Suppose first that Zg (¢, N)° is reductive. We shall show in Proposition 5.11
that this implies that (¢, N) is Frobenius semi-simple. Let ¢ be any element of @IESS'D
such that JM(y) = (¢, N). By Proposition 3.7, the reductivity of Zz, (¢, N)° implies that
UM (p) is trivial, and thus Zzc)(W) = Zgc) (¢, N) as desired. Conversely, if (¢, N) = JM(y)
for an element of &4 and Zzcy(W) = Zg(c) (9, N), then Zg ) (¢, N)° is reductive by [41,

Proposition 3.2] |

Let Cb‘é\’D’rC'D consist of those (¢, N) with Zg (¢, N)° reductive. We call this the
wD,0

reductive centralizer locus of ®;
Corollary 3.11. The map JM: JM~! (dDY;VD'rC'D) — CD‘C’;VD'rC'D is a G(C)-equivariant bijec-

tion.

Proof. This follows from Theorem 3.6, Proposition 3.10 and that v is Frobenius semi-
simple if and only if JM(y) is for ¢ € QDLG'D. ]

3.4 Essentially tempered parameters

—1,4+WD,rc,[J
(P

To make Corollary 3.11 useful, we now show that JM ) contains a large class

of important L-parameters. To this end, let us call an element ¢ of d)é’D essentially
tempered if the projection of ¢ (Wy) to G(C) /ZO(@)(C) is relatively compact. Let d)LG'eSt'D
be the set consisting of essentially tempered L-parameters. We will soon show that every
essentially tempered L-parameter maps into the reductive centralizer locus, but first we

must establish some results concerning Frobenius semi-simple parameters.

Proposition 3.12. Any element v of dDI(“}'eSt’D is Frobenius semi-simple.

Proof. The map ¢’ obtained by composing VW with the projection to @((C)/ZO(E)((C)
is a homomorphism. By Lemma 3.13 below, it suffices to show that if wy, is an arithmetic
Frobenius lift and m is divisible by [F* : F], then v/’ (w{") is semi-simple. But, by essen-

tially temperedness we know that the image of ¥'(w") in G(C) /Zo(@)((C) is contained in a
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maximal compact subgroup K of G(C) /2, (G)(C). Up to conjugation, we may then assume
that K = H(R) for H a compact form of @((C)/ZO (@)((C) (see[11, Theorem D.2.8, Proposition
D.3.2, and Example D.3.3]). But, as H(R) consists only of semi-simple elements, the claim
follows. |

Lemma 3.13. Let (s, w) be an element of ZG(C) and write (s, w)™ = (S, w™). Then, (s, w)
is Frobenius semi-simple if and only if s,, is semi-simple for some non-zero integer m
divisible by [F* : F].

Proof. Fix any representation r: g > GL,,. As r((s, W)k) =r(s, W)k, we see that (s, w) is
semi-simple if and only if (s, w)¥ is for some k > 0. But, if m is divisible by [F* : F] then

as r((s, w)™k) = r(s’,‘n, 1) for some k > 0, the conclusion follows. [ |

The following shows that the naming of essentially tempered L-parameters is

reasonable.

Proposition 3.14. For ¢ € C[)é'D, the following conditions are equivalent:

L,est,[]
(1) ¢ e o™t
(2) there is a continuous character x: Wy x SL,(C) — Z,(G)(C) such that the
projection of (xy)(Wp) to @((C) is relatively compact.

Proof. It is clear that (2) implies (1). We show that (1) implies (2). Fix a Frobenius lift
wy € Wg. Set H = Zg ¢, (), which has reductive identity component by Proposition 3.12
and [41, Proposition 3.2]. Let ¢ be the G-component of . Taking a positive integer m to
be divisible by | Aut(y (Iz))| and [F* : F] we see that @(w(')”) € H, and thus in fact @(Wg‘) €
Z(H). By replacing m by a power, we may assume that fp\(w(’)”) € Z(H)°. Since ¢ € <I>LG'eSt'D,
there is a compact subgroup C € Z(H)° such that @(w{)") e C-(Z(H)° N Z(@)((C)). We
write f/f(w(')") = cz for ¢ € C and z € Z(H)° N Z(G)(C). Since elements of Z(H)° N Z(G)(C)
commute with ¢ (W), we have Z(H)° N Z(@) ©) =zH)°N ZO(@)(C). Replacing m again,
we may assume that z € (Z(H)° N ZO(@)((C))O. We take z, € (Z(H)° N Zo(@) (©))° such that
z' = z, which exists as (Z(H)° N Zo(@)((C))o is a torus since it is a connected algebraic
subgroup of ZO(@)", which is a torus. Further, we define y as the unramified character
sending wy to zal. Then the image of (xy)(Wy) in G(C) is contained in the image of
U! v Ip) (x¥)(wh)C in G(C), which is compact. [}

L,est,[]

We now relate @ to the reductive centralizer locus of @%VD'D.
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Proposition 3.15. The containment CI)I&'ESt'D C JM_I(CD‘(’;VD'M'D) holds.

Proof. Let ¢ be an element of <I>LG'eSt'D and set (¢, N) = JM(¥/). Then v is Frobenius semi-
simple by Proposition 3.12. We claim that Zz ¢, (¥) = Zg, (¢, N), from where we will be
done by Proposition 3.10. By Proposition 3.7, it suffices to show that UY () is trivial.
We assume that UY(p) is non-trivial and take a non-trivial weight vector v of Lie(UN (¢))
with respect to the adjoint action of 0|5, where T, is the standard maximal torus of
SL, ¢. We put u = exp(v). For each w € Wy, we have that p(w) = ¥ (w, 1)0(iy(w)). Since
¢(w) commutes with u, we see that Int(y(w, 1)~ 1)(u) is equal to Int(6 (i, (w)))(u), and

therefore
Ad(y (w, 1) H(v) = AdO(I,(W))) (V).

But, observe that if wy is a lift of arithmetic Frobenius in Wy, then i,(w3") = (qon q?n )
By Proposition 3.3, we deduce that Ad(@(iz(wgn)))(v) = ¢/"v for some j > 1. Letting n
tend towards infinity, and using the fact that u is non-trivial, we deduce that the adjoint

orbit of Wy on v is non-compact, which is a contradiction. [ |

We now state a corollary to Proposition 3.15. Before doing so, we recall an even
smaller subset of CDLG'es'“'D that will feature prominently below. Namely, recall that (¢, N)

in CD‘éVD'D (resp. ¥ in d)I&'D) is called discrete if the quotient

Zgc) (@, N)/Zo(G)(C) (resp. Za(@)(llf)/Zo(@)(C))

is finite. Denote by ®W 45t (resp, @LdiseH) the set of discrete parameters and W >dise

(resp. @é’disc) its G(C)-quotient. Note that @édiscﬂ is contained in CDIE;'E“'D (cf.[21, Lemma

3.1]1 and [41, Lemma 5.2]), and thus v is discrete if and only if JM(y) discrete as they have

the same centralizers by Proposition 3.15 and its proof.

Corollary 3.16. The map
JM: cblé,est,D N q)‘CI;VD’D' (resp. JM: CI)IG”diSC’D N (DXC/;VD,disc,D)

is a @(C)—equivariant injection (resp. bijection).

Note that implicit in the above is the following result of independent interest.

WD,disc,[] L,disc,[J
(resp. )

Proposition 3.17. Any element of @, is Frobenius semi-simple.
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Proof. The first claim is a special case of Proposition 5.11. The second claim follows

from dJLG'diSC'D - d)f;'eSt'D and Proposition 3.12. [ ]

We end this subsection by showing that one may apply Corollary 3.16 to show
that the association of ¢ o i to v is injective when restricted to the set of discrete L-

parameters. This result plays an important technical role in [3].
Proposition 3.18. The maps

oWPaise LY gomw,, '6(©)/G©), 055 Y% Hom(wy, '6(0)/G(C)
are injective.
Proof. By Corollary 3.16, it suffices to show that the former map is injective. Fix A in
the set Hom(Wy, ZG(C)). By Proposition 3.17, it then suffices to show that (if non-empty)
the set

PG, 1) i= {(go,N) e WP ) )\}

intersects at most one @((C)—orbit of discrete parameters. As in [43, §4], set E}((C)A to be
Z3c)(A), and

(1) Ad(r(w))(x) =xforall w e I

PN —~
gq(F) =1{xegc:
(2) Ad(wy)(x) =gx
where wy is any lift of arithmetic Frobenius. Both P(G, ) and @;‘UF) carry an action of

@((C)’\, and [43, Proposition 4.5] establishes a @((C)A—equivariant bijection P(G, 1) — ﬁz(IF),

and that the latter space has only finitely many orbits. Therefore, P(G, ) carries the
structure of a vector space on which G(C)* acts algebraically and with only finitely many
orbits.

Suppose then that (A, N) is a discrete element of P(G, A) and let O C P(G, A) denote
its @((C)’\—orbit. Now, O is a locally closed subscheme of P(G, 1) (see [35, Proposition 1.65
(2)]) of dimension dim(ﬁ((C)") — dim(H) where H is the isotropy subgroup of (i,N) in
@((C)k (I35, Proposition 5.23 and Proposition 7.12]). But, note that H = Zgcy(™ N) and
so contains Z,(G)(C) as a finite index subgroup. We deduce that dim(O) is equal to
dim(G(C)*) — dim(Z,(G)(C)). But, as G(C)* acts through G(C)*/Zy(G)(C), and has finitely
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many (locally closed) orbits, we see that dim P(G, 1) is at most dim(@((C)A)—dim(Zo(@)((C)).
Thus, we deduce that dim(0) = dim(P(G, 1)). As O is locally closed in P(G, ) we deduce
that O is open. As P(G, 1) is a vector space it is irreducible, so open orbits are unique,

and the conclusion follows. | |

4 The Geometric and Relative Jacobson-Morozov Theorems

Before we can geometrize the Jacobson-Morozov theorem for parameters, we now first
geometrize the Jacobson-Morozov theorem. After doing so, we derive a version of the
Jacobson-Morozov on the level of A-points. We fix for the remainder of this section a

field k of characteristic 0 and H a reductive group over k.

Remark 4.1. In this section, we often assume that H is split. This will be sufficient
for us as G is a split group. Most of these statements admit obvious generalizations to
arbitrary reductive H, with similar proofs. The exception is Theorem 4.15, but we suspect

that the statement is still true and that one can employ a similar strategy to prove it.

4.1 The orbit separation space

Pivotal to our formulation of a geometric version of the Jacobson-Morozov theorem is a
certain construction that,in a precise sense, replaces a variety with group action with the
disjoint union of its orbits. Throughout this subsection, we fix a reduced quasi-projective

scheme X over k equipped with an action of H. We also assume that the map
X(k)/H(k) — X (k)/H (k)

is surjective (although one may deal with the general case by Galois descent). Whenever
we speak of the class of x in X(k)/H(k), we assume without loss of generality that x is in
X (k).

For each element x of X(k), let us denote by O, the orbit scheme given as the fppf
sheafification of the presheaf

Alg, — Set, A {g-x:geHA)} CXA).
Since X is itself an fppf sheaf, we see that O, is an H-stable subsheaf of X. There is a

natural map u,: H — O, called the orbit map given on R-points by sending h € H(R) to
h-x e O,R).

20z 1SNBNY 8 UO Jasn duIlIaMSUY Jaoued DININN A 290.22/2/001S/9/4202/10n4e/ulwl/wod dno-olwspese)/:sdjy wolj papeojumoq



The Jacobson-Morozov Morphism 5123

Proposition 4.2. The orbit scheme is representable by a reduced locally closed sub-
scheme of X smooth over k. Moreover, the orbit map u,: H - O, is smooth and surjective
and identifies O, as the fppf sheaf quotient H/Zy(x).

Proof. Clearly, the orbit map identifies O, as the fppf sheaf quotient H/Zy(x). In [35,
Proposition 1.65], it is shown that u, (H) is a locally closed subset of H, which one may
endow with the reduced scheme structure. In [35, Proposition 7.17], it is shown that u, (H)
represents O,. The smoothness of the orbit map is then confirmed by [35, Proposition
7.15], and the smoothness of O, over k is handled by [35, Corollary 5.26]. |

It will be useful to have a more explicit description of the A-points of O, for a
k-algebra A.
Proposition 4.3. For any k-algebra A, there are identifications
0,(A) ={x € X(A) : x and x lie in the same H(A)-orbit étale locally on A},
and
O, (A)/H(A) = ker (Hgt(Spec(A),zH(x)) — Hgt(Spec(A),H)),
functorial in (X, x), where a map (X,x) — (Y, y) is an H-equivariant map X — Y sending

xtoy.

Proof. The first claim follows from the fact that the orbit map u,: H — O, is a smooth
surjection and [22, Corollaire 17.16.3.(ii)]. The second claim follows by combining [18,
Chaptire III, Corollaire 3.2.3] with the fact that as H, and Zy(x), are smooth over A,
their étale cohomology functorially agrees with their fppf cohomology (cf. [23, Théoréme
11.7]). |

When A is areduced k algebra, one may give a simpler description. Say an element
x of X(A) is everywhere geometrically conjugate (egc) to x if for all geometric points
Spec(k’) — Spec(A) one has that x and x have images in X(k') belonging to the same
H(k)-orbit.

Proposition 4.4. For a reduced k-algebra A, there is a functorial identification

O,(A) = {x € X(A) : x is egc to x} .
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Proof. Evidently, any element of O,(A) is egc to x. If x is egc to x, then the morphism
x: Spec(A) — X has the property that x(] Spec(4)|) € |O,|. As Spec(4) is reduced, this

implies that x factorizes through O, as desired. |
We then assemble the spaces O, into one as follows.

Definition 4.5. We define the orbit separation of X, denoted by X", to be the space

X" = |_| Oy.

xex(k)/H (k)

We have a tautological H-equivariant map X — X. Observe that the orbit
separation space is a functorial construction. Namely, if Y is another quasi-projective
scheme over k equipped with an action of H with the same properties, then for any H-
equivariant morphism X — Y, the composition X" — X — Y factorizes uniquely through
YY —> VY.

We end this section with the following omnibus result concerning its properties
in the case when X (k)/H (k) is finite, which is the case of most interest to us. Below, and
in the sequel, we call a morphism of schemes f: Y — X weakly birational if there exists

a dense open subset U of X such that f~!(U) — U is an isomorphism.

Proposition 4.6. The following statements are true.

(1) The map X" — X is an isomorphism if and only if the map
0:HxX > X x X, (h,x) — (hx,x),

is smooth.
(2) In general, if X(k)/H(k) is finite, then the map X" — X is a weakly birational

surjective monomorphism.

Proof. To prove (1) suppose first that o is smooth, then for any x, in X (k) the pullback of
o along the map X — X x X given by x — (x, x) is also smooth. This pullback map can be
identified with the composition of u, : H — O, with the inclusion O, — X.Thus, O, ,
being the image of a smooth morphism, is open by [40, Tag 056G]. Since x;, was arbitrary,
we conclude that X" — X is an isomorphism by applying part (3) of Lemma 4.7 below

with the set {Y;} = {O

%o }xoeX(E)/H(E)' Conversely, suppose that X" — X is an isomorphism.

20z 1SNBNY 8 UO Jasn duIlIaMSUY Jaoued DININN A 290.22/2/001S/9/4202/10n4e/ulwl/wod dno-olwspese)/:sdjy wolj papeojumoq



The Jacobson-Morozov Morphism 5125

Then, it is easy to see that ¢ is smooth if and only if for all x; in X(k) the map

Oxyt H X Oy = Oy x O

o (LX) > (hx,X)

is smooth. By Proposition 4.2 and [40, Tag 0429], it suffices to prove that the pullback
of oy, along the map u, x p, :H x H — Oy x O, is smooth. This pullback, as an
H x H-scheme, may be identified with the map

H, xHxH— HxH, (h, W, Ry — (W, h",
which is evidently smooth. Explicitly, this identification is given by the map
(H x Oy,) X0, x0y, H X H) = Hyy x Hx H, ((h,x), (W ,h") = (R)"'hh", W, k"),

which is easily verified to be an isomorphism of H x H-schemes.

To prove (2), observe that the map the map X" (k) — X (k) is surjective, and so by
applying Lemma 4.7 parts (1) and (2) and [24, Corollary 3.36] we know that X" — X is
a weakly birational monomorphism. As the image of X" — X is a finite union of locally
closed subsets, it is locally closed and as it contains X (k) it must be all of X by loc. cit.,

and so surjectivity also follows. |

Lemma 4.7. Letf: Y — X be a morphism of reduced schemes locally of finite type over
k, with X quasi-compact. Suppose that Y3 admits a decomposition ¥ = | |; ¥;, with each
Y; clopen, such thatf|yi is a locally closed immersion, andf(Yi(E)) ﬂf(YJ-(E)) is empty for
i #j. Then,

(1) fis a monomorphism,

(2) if {Y;} is a finite set, then f is weakly birational if and only iff(Y(E)) is dense
in X,

(3) f is an isomorphism if and only if f(Y(k)) = X (k) and each Y; is open in Xj.

Proof. As all of these claims may be checked over k, we may assume without loss of
generality that k is algebraically closed. The final claim is clear, thus we focus on the
first two claims. For the first claim, as each flyl, is a monomorphism, it suffices to show
that f(Y;) andf(Yj) are disjoint fori # j. But, as f(Yi)ﬂf(Yj) is locally closed, if non-empty

it would contain a k-point which is a contradiction.
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To see the second claim, it suffices to show the if direction. For each irreducible
component Z of X note that {¥; N Z} is a finite set of locally closed subsets with dense
union. This implies that there exists some i, such that ¥; NZis open. Let C be the union
of irreducible components of X, which intersect Z at a proper non-empty subset. Set
Uy = (Y;,NZ) —C. Then, it is clear that if U is the union of the Uy, then U is a dense open
subset of X and as X is reduced that f: f~!(U) — U is an isomorphism. ]

4.2 The geometric Jacobson-Morozov theorem

We now move to the geometrization of the Jacobson-Morozov theorem. Let us now

assume that H is split. To begin, observe that one has a Jacobson—-Morozov morphism
JM: Hom(SL, 4, H) — N, 0 — db(ep).

We would like to apply the orbit separation construction from the last subsection to this
map, but before we do so, we should first observe that the actions of H on Hom(SL, s, H)

and N satisfy the properties used in the last section.

Proposition 4.8. The maps
N(k)/H(k) - N(k)/H(k), ~ Hom(SL,,, H)/H(k) — Hom(SL, ¢, Hy)/H (k)

are surjections.

Proof. By Theorem 3.1, it suffices to show the first map is a surjection. Let N be an
element of N (k). Bala-Carter theory (see [29, Proposition 4.7 and Theorem 4.13]) says
that there exists a Levi subgroup L of Hy and a parabolic subgroup P of L such that N
is conjugate to an element contained in the unique open orbit of P acting on Lie(Ru(l_D)).
Now, as H is split, we may assume up to conjugacy, that L = Lz for a Levi subgroup L
of H (see [38]). As L is also split, we may also assume, up to conjugacy, that P = Pg for
a parabolic subgroup P of L. As the unique open orbit of P acting on Lie(R,(P)) has a

k-point, being a Zariski open of a vector k-space, we are done. |

Remark 4.9. The morphism N (k)/H(k) — N'(k)/H(k) is rarely injective. As a concrete
example, if H = SL, ), then (J §) and (3 !) are H(Q)-conjugate, but not H(Q)-conjugate.

Before we show that our two spaces with H-action have finitely many H (k)-orbits,

we observe the following.
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Proposition 4.10. The morphism Hom(SLzlk,H)LI — Hom(SL, , H) is an isomorphism.

Proof. This follows immediately from combining Proposition 2.6 and Proposition 4.6.
|

Proposition 4.11. The sets Hom(SL, ¢, Hy)/H(k) and N (k)/H (k) are finite.

Proof. By Theorem 3.1, these two sets are in bijection, so it suffices to prove the
finiteness of either. The finiteness of the latter set is a classical result (e.g., see [29, §2.8,
Theorem 1]). Alternatively, one may prove the finiteness of the former set by observing
that by Proposition 4.10 the sets Hom(SLZIE,Hg)/H(E) and ”O(HO_m(SLz,EIHE)) have the
same cardinality. But, by Proposition 2.6, the scheme Hom(SL, 3, Hy) is finite type over k
and thus 7o (Hom(SL, ¢, Hy)) is finite. |

By the functoriality of the orbit separation construction, the Jacobson-
Morozov morphism factors uniquely through N" and we also denote the resulting map
Hom(SL, ;, H) — N* by JM. But, unlike Hom(SL, ;, H), the orbit separation space N'" is

essentially never equal to V.
Proposition 4.12. The morphism /¥ — A is an isomorphism if and only if H is abelian.

Proof. If H is abelian, then A is a single point. If N — A is an isomorphism then the
orbit of 0 is open, but as it is also closed and N is connected, we deduce that it is equal
to NV. As dim (V) is equal to dim(H) — r(H), we see that H is a torus as desired. [ |

Example 4.13. The element N = (§ ¢) defines a point of Vg, . (klt]) not in N . (klt).

To state our geometric Jacobson-Morozov theorem, note that by Theorem 3.1 the

map
JM: Hom(SL, ;, H)/H (k) — N'(k)/H(k),

is a bijection. For each 6, writing N = JM(6), define JM, to be the map O, — Oy, which
may be described as the quotient map H/Zy(0) — H/Zyz ().

Theorem 4.14 (Geometric Jacobson-Morozov). Suppose that H is split. The morphism
JM: Hom(SL, s, H) — N factorizes through N, where it may be described as |_|, JM,.

20z 1SNBNY 8 UO Jasn duIlIaMSUY Jaoued DININN A 290.22/2/001S/9/4202/10n4e/ulwl/wod dno-olwspese)/:sdjy wolj papeojumoq



5128 A. Bertoloni Meli et al.
4.3 The relative Jacobson-Morozov theorem

We now apply the geometric Jacobson-Morozov theorem to obtain a more concrete result

on the level of A-points.

Theorem 4.15 (Relative Jacobson-Morozov). Let A be a k-algebra. Then, the map
JM: Hom(SL, 4, H)/H(A) — N (A)/H(A)

is a bijection onto N“(A)/H(A).

Proof. Assume first that Spec(4) is connected. By Theorem 4.14, it suffices to show
that for each 6 the map JM, induces a bijection Oy(4)/H(A) — Oy(A)/H(A). But,
by Proposition 4.3, it suffices to show that the natural map Hét(Spec(A),ZH(G)) —
Hét(Spec(A),ZH(N)) is a bijection. But, this follows from Proposition 3.3 and [20, Lemma
4.14]. For the general case, we reduce to the Noetherian case by standard approxi-
mation arguments, and then working on each component to the case when Spec(4)

is connected. |
We now pursue the analogue of Theorem 3.2 in the relative setting.

Definition 4.16. Let A be a k-algebra and a a Lie algebra over A. We call a triple of

elements (e, h, f) in a® such that
[hr e] = zer [hrf] = _Zfr [erf] = hl

an sly-triple in a.

Denote by 7 (A4) (or 7z (A) when we want to emphasize H) the set of sl,-triples in

bh,. Evidently, 7(A) carries a natural conjugation action by H(4).

Theorem 4.17. The following diagram is commutative and each arrow is a bijection

0+—> db
Hom(SLzyA,HA)/H(A) _— HOIn(E[z'A,hA)/H(A)

JM v (v(eo),v(ho),v(fo))

e<—i(eh,f)
NY(A)/H(A) T(A)/H(A).

20z 1SNBNY 8 UO Jasn duIlIaMSUY Jaoued DININN A 290.22/2/001S/9/4202/10n4e/ulwl/wod dno-olwspese)/:sdjy wolj papeojumoq



The Jacobson-Morozov Morphism 5129

Proof. By Theorem 4.15, the left vertical arrow is a bijection. The right vertical arrow
is clearly a bijection, and the top horizontal arrow is a bijection by Proposition 2.6. We
thus deduce that the bottom horizontal arrow is well-defined (i.e., takes values in N“(4))

and is bijective. u

4.4 A relative version of Kostant's characterization of sly-triples

This final subsection is dedicated to giving a proof of the following relative version of
[31, Corollary 3.5].

Proposition 4.18. Let A be a k-algebra and a a Lie subalgebra of ,. Then, for a pair
(e, h) in a2, there exists an sl,-triple of the form (e, h, f) in a if and only if the following

conditions hold:

1. ec NH(4),
2. hisin the image of ad(e): a — a,
3. [h,e] = 2e.
Let us set
b :=ker (ad(e)[hy — by), a® := ker (ad(e)|a — a).

If ad(e)(x) is zero, then ad(e)(ad(h)(x)) is also zero. Thus, ad(h) stabilizes h$ and a®.
Lemma 4.19. The A-linear map ad(h) + 2: a® — af is an isomorphism.

Proof. It suffices to show this result after passing to an etale cover Spec(B) — Spec(4).
Indeed, since A — B is faithfully flat, we have that (a®)y = ag, and moreover that
ker(ad(h) + 2) and coker(ad(h) + 2) are trivial if and only if they are so after tensoring
with B. Thus, we may assume without loss of generality that e is an element of N'(k).
Indeed, the statement of the lemma is insensitive to conjugating the pair (e, k), and so
this follows by the definition of A and Proposition 4.8. With notation as in Lemma
4.20 below, the A-algebra map A[T] — End,(a®) sending T to ad(h) factorizes through
A[T]/(p(T)). But, by the Chinese remainder theorem, T + 2 is a unit in this ring. |

Lemma 4.20 (cf. [31, Lemma 3.4]). Suppose that e is an element of N(k). Let m be the

smallest element such that ad(e)”™'! is trivial on h. Then, p(ad(h)|h2) = 0 where
m
p =[] -9.
i=0

Thus, a fortiori, we see that p (ad(h)|.e) = 0.
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Proof. Foreachi=0,...,m+1,let us set

v; := (ad(e)'(h) N h°) @ A.
Observe that

hG =032 20, =0.

We claim then that (ad(h) — i)(d;) € 9;,;. Note that 0; is generated as an A-algebra by
elements of the form ad(e)’(z) for z in h. The exact same algebra as in [31, Lemma 3.4]

then shows the desired containment, from where the claim is clear. [ |

Returning to the proof of Proposition 4.18, let us write h = ad(e)(f). Note that
[[h, f142f, el vanishes and thus [h, f14-2f is in a®. By Lemma 4.19, we may write [k, f1+2f =
[h, gl + 2g for some g in a®. So then, if we take f” = f — g, then

[h/ e] = zel [hrf”] = [h‘rf] - [hrg] = _zf”/ [e/f//] = [erf] - [el g] = h - 0 = hr
as desired.

5 Moduli Spaces of Weil-Deligne Parameters

To give a geometrization of the results of §3.2, it is useful to first develop a space
intermediary between the moduli space of L-parameters (see §6) and the moduli space
of Weil-Deligne parameters. We give such a space in this section, which, in short,

parameterizes Weil-Deligne parameters whose monodromy operator lies in M.

5.1 The moduli space of Weil-Deligne parameters

We first recall the moduli space of Weil-Deligne parameters roughly following the
presentation as in [44]. In particular, we use the C-group of Buzzard-Gee in lieu of
the L-group for our definition of parameters. The theory of C-groups is better suited
to dealing with L-parameters valued in arbitrary Q-algebras R as many constructions
involving L-parameters in terms of L-groups require a choice of square root of g in R.
Also, the authors find that many necessary arguments involving L-parameters in terms
of L-groups (e.g., see Proposition 5.11 and Proposition 7.7) require the consideration of
certain ancillary groups, which, ultimately, end up being equivalent to working in the

C-group.
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Initial definitions. We begin by defining the relative analogue of a Weil-Deligne

parameter.

Definition 5.1. For a QQ-algebra A, we define a Weil-Deligne parameter over A to be a

pair (¢, N) where

(WDP1) ¢: Wgp 4 — CGA is a morphism of group A-schemes such that poo¢ = (|||, id),
(WDP2) N is an element of /V(A) such that Ad(e(w))(IV) = |w||N for all w € Wg(A).

We denote the set of Weil-Deligne parameters over A by WDP;(A4), which clearly
constitutes a presheaf on Q-algebras. The presheaf WDP has a natural action by G given
by

9(p,N)g™! := (Int(g) o ¢, Ad(g) (V).

So, for a Weil-Deligne parameter (¢, N), we may consider the centralizer group presheaf
Za(p,N).

We define the morphism ¢: Wr 4, — G, of schemes as the composition of ¢ with
the projection to G 4- We denote by ¢ the homomorphism Wg 4, — (G x I',), obtained by
composing ¢ with the quotient map ‘G, — (G % I',)4. Observe that Whiggﬁ may not be a
homomorphism, it becomes so after restriction to_VVF*,A. In particular, for any w € Wg(4),
the restriction of ¢ to (w™) is a homomorphism whenever [F* : F] divides m.

Let K be a finite extension of F* Galois over F, and let us define for a Q-algebra
A the set

WDPE (4) := {((p,N) € WDPG(A) : T o C ker(¢|WF*lA)} .

We observe that WDPIé forms a G-stable subfunctor of WDP_.In fact, one sees that there
is an equality of functors WDP = li_II)lWDPIé as K travels over all such extensions.

We finally observe that WDP, has a more familiar form over an extension k of
Q containing an element ¢ such that ¢? = q. More precisely, for a k-algebra A, we equip

G(A) with the discrete topology and put

(1) ¢: Wy — G(A) x Wy
WDP/G,k(A) :=1(p,N) : is a a continuous cross-section homomorphism,

(2) N e N(A) is such that Ad(¢(w))(NV) = |[w|N for all w € Wy
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It is clear that WDPy; is a functor on the category of k-algebras and comes equipped with
a natural action of G,. Let us also observe that if i, is the map from §2.2 then there is a
morphism #'?: WDPy , — WDP,; ,, which on A-points is given by sending (¢’, N) to the
unique element of WDP;(A) of the form (¢, N), which is equal to (i, o ¢, N) on A-points.

Proposition 5.2. The morphism of functors ' : WDP{, , — WDP; is an isomorphism.

Proof. This follows from the cartesian diagram

4
LGk c CGk

l lpc
-1, id)

Wik — G x Wri

and that any morphism Wy , — G, of schemes over A factors through (Wy/Zy), for a

finite extension K of F. [ |

Our discussion of the space WDP/G,k is not strictly necessary for the paper.
However, while the C-group is better suited to the technical setting of the paper, the
L-group setting is more common. Thus, we include WDP’G’k, and the space LP’G'k as in §6,
and so we discuss both to reconcile these two points of view.

Representability. We now establish the representability of the functor WDP,;. To
this end, let us fix K a finite extension of F* Galois over F. Note that for a Q-algebra A and
an element (¢, N) of WDPIé(A), we may define an element ¢ of Z! (IF/IK,ﬁ)(A) as follows.
First observe that condition (WDP1) implies that ¢|7, , takes values in [ I 5- Then,
as (¢, N) is in WDPX (4), the composition of ¢lz, , with the projection G, Tpa— Gy
(Zr/Ix) 4 factorizes through a cross-section homomorphism (Zp/Zg) 4, — G4 % (Zr/Zx)4-
This gives an element ¢ of Z! (I;/Ix, G)(A) since Z/Ix = I;/I. This association defines a
morphism of presheaves WDPX — Z!'(I;/Ix, G). S

Let us now fix a lift w of arithmetic Frobenius in Wy. Define a morphism of

presheaves
Juwo: WOPE — G x Z'Up/Ix, G) x N, (¢,N) > ($(wp), ¢, N).

On the other hand, we have a diagram

DWP: G x Z'(Ip/Ix, G) x N == Hom(lp/Ig, G) x Gy, o x NUFII+1
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given by

9.f, M) - (Int(g, wo) o f,pg,, (9), AAF D) M)z, /1 Ad(G, w0>(M))

g.f M) I_>(f° Int(wy), q, (M)ieIF/IK'qM)'

We then have the following explicit description of WDPX.

Proposition 5.3. The morphism j,,, identifies WDP§ with the equalizer Eq(D"P). Thus,
WDPX is representable by a finite type affine Q-scheme and Jw, 18 a closed embedding.

Observe that for an extension K C K’ of Galois extensions of F containing F* there
is a restriction morphism Z! (Iy/Ix/, G) — Z' (I/Ix/, G). By Proposition 2.8 and Lemma 4.7,
the subspace consisting of only the trivial homomorphism is a clopen subset of the
target, and thus so is its preimage in Z! (IF/IK/,@), but this is precisely 2! (IF/IK,@). We
deduce that the natural inclusion of functors WDPX — WDPIg is a clopen embedding.
From the identification WDP; = lim WDPX we deduce from Proposition 5.3 that WDP,
is representable by a scheme locally of finite type over @Q, all of whose connected
components are affine.

The following non-trivial result will play an important technical role below (e.g.,

in the proof of Theorem 7.9).

Theorem 5.4 ([2, Corollary 2.3.7] and [44, Corollary 3.1.10]). The schemes WDPlé are
reduced for all K, and thus, a fortiori, WDP; is reduced.

5.2 Semi-simplicity of parameters

As in the Theorem 3.6, one requires Frobenius semi-simplicity conditions to get a Jacob-
son-Morozov result in the relative setting. Therefore, we now develop a sufficient notion

of Frobenius semi-simplicity for a Weil-Deligne and L-parameter over a Q-algebra A.

Definition 5.5. Let R be a Q-algebra and H is a smooth group R-scheme such that
H° is reductive. We then say that an element h of H(R) is semi-simple if there exists
some m > 1, an étale cover Spec(S) — Spec(R), and a torus T of Hg such that
h™ is in T(S).

By [37, Exposé VIB, Corollaire 4.4] H® is representable so the above makes sense.

Moreover, by [11, Proposition B.3.4], we may assume that T is split in the above definition.
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Proposition 5.6. Let R be a Q-algebra and H is a smooth group R-scheme such that H°

is reductive, and let h be an element of H(R). Then, the following statements are true.

(1) If h is semi-simple, there exists an étale cover Spec(S) — Spec(R), an integer
m > 1, and a split maximal torus T of Hg such that ™ is in T(S).
(2) If Z is a closed subgroup R-scheme of Z(H°), which is flat over R, then h is

semi-simple if and only if its image in (H/Z)(R) is semi-simple.

Proof. To show (1), let Spec(S’) — Spec(R) be an étale cover and T’ a torus of Hg, such
that ™ is in T'(S’). Note that Zg.(T’) is a reductive group (combine [11, Lemma 2.2.4]
and [35, Corollary 17.59]). By [11, Corollary 3.2.7], there exists an étale cover Spec(S) —
Spec(S’) and a maximal torus T of Z.(T')g. Observe that T is also a maximal torus of Hg.
Indeed, it is evidently a torus, and its maximality can be checked over each point x of
Spec(S). Then, as T, is contained in a maximal torus of Hy, and T, C T,, we see that this
maximal torus is actually contained in Zgs(Ty) = Zy.(T"),, and so must be equal to T. As
T is central in ZH;(T/)S, it is clear that T contains T and thus h™ is contained in T(S).
As we may pass to a further étale extension to split T, the claim follows.

Let f: H° — H°/Z be the tautological map. To prove (2), it is sufficient to
note that for any R-algebra S, one has that the map T +~ T/Z and T' — f~ (T
are mutually inverse bijections between the maximal tori of Hg and (H°/Z)s by
[11, Corollary 3.3.5]. | |

Consider a representation p: H — GL(M) where M is a finitely generated R-
module. Let h be an element of H(R) and I a finite subgroup of H(R) that is stable under
conjugation by h. For any R-algebra S and any A in S*, let us set

Abbreviate Mk (h, ») to MY (h, 1), and further abbreviate to M’ (%) if h is clear from context.
Finally, we omit I from the notation if I is trivial. Evidently, Mé(h, A ®g S’ is equal to
Mg/ (h, ») for any flat map of R-algebras S — S'.

Proposition 5.7. Assume that h is semi-simple. Then, there exists a unique decomposi-
tion

MPD = EB M(h,») &M
LERX
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such that for any flat map R — S, one has that

B Minr

reS*—R*

is a direct summand of Mg, and such that this is an equality if for some m > 1:

(1) h™ is contained in a split torus of Hg and commutes with I,

th_yoot of

(2) Sis a Q(¢.)-algebra, where r := [(h) : (h™)] and ¢, is a primitive r
unity,

(3) and S contains an rt-root of all A such that M(h", %) # 0.

Proof. Take an étale cover Spec(S) — Spec(R) and m > 1 such that h™ is contained
in a split torus T of Hg and h™ commutes with I. Then h" € (h™) is contained in T and
commutes with I. By [10, Lemma A.8.8], one may decompose Mg into character spaces
Mg(x). One then observes that Mg(h", 1) is precisely the direct sum of those character
spaces Mg(x) such that x (h") = A. So, Mg admits a direct sum decomposition with respect
to the spaces Mg(h', A).

As Mg is finitely generated, we know that Mg(h", A) is trivial for all but finitely
many A;,...,A, as a finitely generated module can have only finitely many non-
zero direct summands. In particular, we may further pass to the étale extension
S = S[All/r,...,ké/r,cr]. We extend the action of I on each nontrivial Mg (h",A) by
p to the action of the finite group I x ((h)/(h™)) letting h act A~/ p(h). As S’ is a
Q(¢,)-algebra, we have a decomposition of ML, (h", 1) into character spaces Mg (h", )[v]
where v travels over the characters I x ((h)/(h™)) — (h)/(h™) — S'. We then
see that for each © € (S’)* such that " = A the space Mé,(h,t) admits a direct
decomposition into the spaces Mg (h",1)[v] as v ranges over those characters with
v(h) = A"t

One may then check that the module @, Mé, (h, t) as T ranges over those elements
of (S')* — R* is stabilized under the étale descent data associated to Mg,(l), and therefore
(see [40, Tag 023N]) descends to a submodule M’ of M*D. One sees that M’ is a complement
of @, M!(h,2) as A travels over the elements of R*, as this may be checked over the
faithfully flat extension S’. One may then check that M’ is independent of all choices, and

satisfies the desired conditions. [ |

The following proposition will be helpful to define Frobenius semi-simple in a

way that does not require the choice of an explicit arithmetic Frobenius lift.
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Proposition 5.8. Let¢: Wy 4 — ¢G, be a morphism of group schemes over a Q-algebra
A. Then there is a positive integer m divisible by [F* : F] such that the morphism Wy , —

G 4 given by w — ¢(w™) admits a factorization

v

Wr.a = Zy - Ga
and ¢,, takes values in Z(¢).

Proof. Take a finite extension K of F* Galois over F such that ¢|7, , is trivial. Take a lift
w, € Wy of arithmetic Frobenius and choose m, such that the image of w("° in Wg/Ix
is central. Let m be the order of Wy/(Ix(w;'°)). Then for any w € Wy, since w™ is trivial
in Wy/Ix(wy°)), we have that w™ = iwg(w)m for some i € I. Hence, the images of w™
and ng(w) in Wg. /Iy are the same. Since ¢|WF*,A factors through (Wg./ZIy),, we have
gw™) = g(wH?™) for any point w of Wy ,. Hence, we have the factorization ¢,,: Z, —

G 4. The composition
Wp g —2> G —> G4 x Wp/Ix)a

factors through ¢r: (Wg/Zg) 4 — G4 X Wg/Ix) 4. To show that ¢, factors through Zg(9),
it suffices to show ¢(wq') € Z(¢g). Since the image of wi' in Wy /I is central, we have
or(wih) € ZéAx(WF/IK)A (¢x)- Since the image of (1, w{") in G’A x (Wg/Zg) 4 is central, we

obtain ¢(wg') € Zg (¢x)- .

To define the notion of Frobenius semi-simple parameters, it is useful to have the

following analogue of Lemma 3.13.

Proposition 5.9. Let (¢,N) be an element of WDP;(A). Then, the following are equiva-

lent:

(1) for any (equiv. one) lift w; € Wy of arithmetic Frobenius, ¢(w,) is semi-simple,
(2) for some m as in Proposition 5.8, the morphism ¢, étale locally factorizes

through a torus of G,.

Proof. By definition, (1) holds if and only if g(w,) has the property that g(w,)™ étale
locally lies in a torus of (G x rog = G, for some m as in Proposition 5.8. But, as an
element of éA, one easily seesﬁlat @(wy)™ is precisely ¢,,(1). As it is clear that (2) is
equivalent to claim that étale locally on A there exists a torus containing ¢,,(1) the

claim follows. n
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Definition 5.10. For a Q-algebra A, we call an element (¢, N) of WDP(4) Frobenius

semi-simple if it satisfies any of the equivalent conditions of Proposition 5.9.

For each Q-algebra A, let us denote by WDPZ (4) (resp. WDPIG{’SS(A)) the subset
of WDP(A) (resp. WDPX (A)) consisting of Frobenius semi-simple parameters. It is clear
that this forms a G-stable subpresheaf of WDP; (resp. WDPX). Note that one does not
expect this presheaf to be representable as the semi-simple elements in algebraic group
form a constructible, but not locally closed, subset. Note also that by Proposition 5.6,
under the bijection of WDP;(C) with <1>¥;VD'D the set WDPZ(C) corresponds to CD‘C’Y,VD'SS’D.

The following technical result will play an important role later in the paper.

Proposition 5.11. If A is a reduced Q-algebra and (¢, N) is an element of WDP;(4) such
that Zz (¢, N)y is reductive of dimension n for all x in Spec(4), then (¢, N) is Frobenius

semi-simple.

Proof. Define S(IV) to be the closed subgroup scheme of G’A cut out by the closed
condition gNg~! = Pg,,(@N. We have the equality Zz(¢, N) = ker(pg, |ZS(N)(<P))‘ Note that

for all x in Spec(4), one has a short exact sequence
1 - Zz(p,N)y — ZS(N)(QD)X - Gm,x - 1,

and as Zz(p,N);y is assumed to be reductive of dimension n for all x in Spec(4), that
Zsa (p) is reductive of dimension n + 1, and thus Zg, (¢)° is representable and smooth
over A, and thus reductive over A, by [37, Exposé VIB, Corollaire 4.4] and [35, Theorem
3.23].

We take m as Proposition 5.8. Then ¢, factors through Zg y, (¢). Further, it factors
through Z(Zsy (@), since ¢(w™) and (1, w™) commutes with Zs iy (9) for any point w of
Wr 4. Then there is an m’ such that <,Z>n”1‘/ = ¢,y factors through Z(Zg ) (9)°)°. As Zg ) (9)°

is reductive, Z(Zgyy, (¢)°)° is a torus. Hence, (¢, N) is Frobenius semi-simple. |

5.3 The space WDP,

In this section, we study the moduli space of Weil-Deligne parameters (¢, N) where N

lies in N'" and show that this moduli space has an exceedingly simple structure.

Definition 5.12. We denote by WDPIé'u (resp. WDPZ) the space WDPIé XK AU (resp.
— . K,
WDP; x g N" = 1£>nK WDP;"Y).
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Now, let us fix a finite extension K of F* Galois over F and a lift w, of arithmetic

Frobenius. Then, by Proposition 5.3, we have an identification j,, of WDPX (Q) with

(1) Int(y,wy) o ¢ = ¢ o Int(wy),

L@ pg,=4
(v, ¢, N) € GQ) x Z' (Ip /I, G)(Q) x N(Q) : ®
(3) Ad(¢(i))(N) = N for alli € I;/I,

(4 Ad(y,wp)N) =gN

Now, for (y,¢,N) in WDPIE(@), let us define Zyn = Zg(o.N).

Definition 5.13. An element (y/,¢’, N') in WDPIé(A), for a Q-algebra A4, is locally movable
to (y,¢,N) if there exists an étale cover Spec(A’) — Spec(4) and (g, h) € (’@ X Z;,N)(A/)
such that (y/,¢',N') = g(hy,¢,N)g~'.

As this definition is clearly functorial, we observe that we may define a sub-

presheaf U(y, ¢, N) of WDPE% whose A-points are given by

U(y,¢,N)(A) = {(y’,cp’,N/) € WDPI;%(A) : (v, ¢',N') is locally movable to (y,¢,N)} .

We then have the following.

Proposition 5.14. The morphism of presheaves U(y,¢,N) — WDPIE% is representable

by an open immersion. Moreover, the Q-scheme U(y, ¢, N) is smooth and irreducible.

Before we prove this proposition, we observe its major consequence. To this end,
let us define an equivalence relation on WDPI(‘; (Q) by declaring that (y, ¢, N) is equivalent
to (y/,¢’,N’) if there exists some (g,h) € G x Z¢'N)(@) such that (y/,¢’,N’) is equal
to g(hy,¢,N)g~!. Let us denote an equivalence class under this relation by [(y, $, N)I.
Observe that as we do not require that h to actually lie in Z;&,N(@) that [(y, ¢, N)] differs
from U(y, ¢, N)(Q). For each such equivalence class, let us choose an element (y, ¢, N).
We consider 7y(Z, i) as a finite abstract group, and we define an equivalence relation on
it by declaring that c is equivalent to clcycfljf1 for any ¢, in 7(Z, ). We denote by [c]

an equivalence class for this relation.
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Remark 5.15. The group (y) acts on 70(Zy N) by y - ¢ = ycy~!. Note that (y) = Z since
pg,,(v) = q. Hence, the map z > z(y) for z € ZY((y), 7o(Z4 i) induces a bijection between

Hl((y),no(Z(b'N)) and equivalence classes in 7o (Zy n)-

We then have the following decomposition of WDPIE’% into explicit connected

components.

Theorem 5.16. The choice of (y,¢,N) in each class [(y,¢,N)] of WDPX (Q) gives a

scheme-theoretic decomposition

WDP’;%: |_| |_| U(cy,¢,N).
[(y.¢.N)] lc]

Proof. From Proposition 5.14, we know that each U(cy,¢,N) is an open subset of
WDPI(;%. As WDP?’% is a finite type Q-scheme, it thus suffices to prove this claim at the
level of Q-points. But, note that by Proposition 5.3, if (y, ¢, N) satisfies the conditions to
be in WDPX (Q) then (y/, ¢, N) does if and only if y’ = hy for h in Z¢N(Q) Thus, we have

a decomposition

wopes= || U Ur.em.

[(y,¢.N)] ceno(Zy,n)
Next observe that an element (hy, ¢, N) may be written in the form g(h'y, ¢, N)g~! if and
only if g is in Z, y(Q) and hy = gh'yg~!, which implies that h = gh'yg~'y~!. With this,
it is easy to see that
U Ur.e.m=| | Uy.¢.m)
cemo(Zy,n) [c]

from where the desired equality follows. |

From this, we deduce the following non-trivial result. Let us denote the set of
equivalence classes for WDPX (@) resp. 7 (Zy, N) by [WDP (Q)] (resp. [nO(Z¢ W

Corollary 5.17. The QQ-scheme WDPIé'LI is smooth, and there is a non-canonical To-
equivariant bijection
U\ ~ 1) y.¢,N)] e [WDP (@)
7o (WDPE2) 5y, 6, M1, [cD : ,
' (2) el €lm(Zy ]

where the I' action on the target is inherited from WDPIé"‘I and G.
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The proof of Proposition 5.14. Define the morphism 7, : WDP5" — Z!(I/Ix, G) x N" by
g (¢, N) = (¢,N). This morphism is @—equivariant when the target is endowed with the

diagonal G-action. Now, by Proposition 2.8, there is a decomposition

X SN
Z /I, Oig x Ng = || Oy, x O,
[(¢o.No)leT

where 7 is the set of G(Q)? orbits of (Z! (Iz/I, G) x N*)(Q). Observe though that if (¢, N)
is in WDPIé'“(@) with 7y (¢, N) = (¢,N), then ¢ centralizes N. So, if we set J’ to be the
subset of J consisting of those [(¢y, Ny)] with ¢, centralizing NV, then we may produce a

factorization

Tk WDPI;% — || o,x0ou
[(¢0,No)leT’

which is @—equivariant. For each [(¢y, Ny)] in J, let us set X(¢y, Ny) := 71121((’)(7)0 x Op,),
which is a clopen subset of WDPIE%.

Set L := Zz(¢p), which, by Lemma 2.5 applied to the image of ¢ in G(Q) x (Ip/Iy),
is a closed subgroup scheme of @@ with reductive identity component. Let [ be the Lie
algebra of L. Define Oy NN, := Oy x i Np. For each M in (O NN )(Q), we denote by Op

the locally closed L-orbit subscheme of (Oy NN;)

red*

Lemma 5.18. There exists a finite set {NV = N, N,,..., N, } in (O NN;)(Q) such that one
has an equality of schemes Oy NN, = ||; O, .. In particular, Oy N A}, is reduced.

Proof. We first show that the claimed decomposition holds for (Oy NN}),.q- Now, there
are only finitely many L(Q) orbits in (OyNN L)(@) as there are only finitely many L°-orbits
in NL(@). Let N = Ny,...,N,, represent these orbits. By Lemma 4.7, it suffices to show
that each Oy . is open or, as they form a set-theoretic partition of (O NN})eq, that each
is closed. Then, by the Noetherian valuative criterion for properness (see [40, Tag 0208]),
it suffices to show if R is a discrete valuation ring and f: Spec(R) — (Oy N N})eq is @
morphism with f(n) € (’)Ni’L then f(Spec(R)) C ONi'L. Assume not, and let f: Spec(R) —
(Oy NN} 1eq be @a morphism such that f(n) € Oy, (k(n)) and f(s) € OL,N],(k(s)) with i # j.
Note that f corresponds to an element N in N; (R), which is, as an element of N'(R), lies
in Oy (R). Let us consider Z; (N). On the one hand, Z; (N) cannot be flat, as its generic
fiber (resp. special fiber) is a twisted form of Z; (IV;) (resp. Zp(N)), which has dimension
dim(L)—dim((’)L’Ni) (resp. dim(L)—dim((’)LJ\,j)). Note though that as f(s) lies in (’)L'Ni,whose
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Q-points are unions of Q-points of orbits of smaller dimension (cf. [35, Proposition 1.66]),
dim(OL,Nj) is strictly less than dim(Oy, ;), and thus the fibers of Z; (N) have different
dimensions, and so it cannot be flat over R (see [24, Corollary 14.95]). On the other hand,
Zz(N) is flat as it is étale locally isomorphic to Zg (V) = Zz (V). But, by Lemma 2.5, this
implies that Zz(N)? %) = Z, (N) is flat, which is a contradiction.

As (Oy N Npreqa — On NN is a homeomorphism, there is a scheme-theoretic
decomposition Oy N N; = | |; U; where U; is the open subscheme of Oy N AN, with
underlying space O y.. As these schemes are Noetherian, to finish it suffices to show
that for all i and all Noetherian Q-algebras A every morphism Spec(4) — U; factorizes
through Oy y.. As Oy = Oy, we may assume without loss of generality that i = 1, and so
N; = N. Let N be the element of [, corresponding to Spec(4) — U;. We must then show
that étale locally on A, N is conjugate to N. Let I denotes the nilradical of A, and write
Ay, =A/I. As A is Noetherian, I"* = (0) for some m, and thus by inducting we may assume
that I?2 = (0). Now, as Ay is reduced the map Spec(4,) — U; factorizes through O; y and
thus N, is étale locally conjugate to N. As the étale covers of A and A, are equivalent
(see [40, Tag 04DY]), and we are free to work étale locally on A, we may assume without
loss of generality that Ad(ly)(N,,) = N for some [, in L(A(). As L is smooth, we may apply
the infinitesimal lifting criterion to find a lift [ in L(A) of ;. Replacing N by Ad()(N), we
may assume without loss of generality that N, = N. Now, as Transp;(N, N) — Spec(A)
is a Zg(IN)-torsor, and thus smooth, we know by the infinitesimal lifting criterion that
there exists some g in Transpﬁ(N,N) (A) lifting the identity. Using the notation of [14, II,
§4, N°3, 3.7], we may write g = e* for x in IﬁA. Then, by [14, 11, §4, N°4, 4.2], we have

N = Ad(g)(N) = N + ad(x)(N).

As N and N lie in [, they are invariant for the action of the finite group ¢ (Ir/Ir), and so

if y denotes the average of x over the action of ¢ (Iy/Ir) then
N = N+ ad(y)(N).

But, by loc. cit. this right-hand side is equal to Ad(e?)(N). By Lemma 2.5, we see that e¥

lies in L(A), from where the claim follows. |

Let us now denote by (y“ni",q&uni",N“ni") the universal object over X (¢, N). Con-
sider the transporter scheme TranspE(¢uni",¢) — Zl(IF/IK,@) and set T to be the
pullback to X(¢,N). Set b: T — X(¢,N) to be the tautological map, which is smooth
as T is visibly an L-torsor. Note that we have a morphism a: T — Oy N N} given by

a(g) = Ad(g)(N") and observe then that we have a scheme-theoretic decomposition

20z 1SNBNY 8 UO Jasn duIlIaMSUY Jaoued DININN A 290.22/2/001S/9/4202/10n4e/ulwl/wod dno-olwspese)/:sdjy wolj papeojumoq



5142 A. Bertoloni Meli et al.

T=LJ; a*I(OLINi). But, for each i, we also have a map «;: a*I(OLINi) — mo(Za(¢, N)) given
by sending g to the component containing Int(g)(y"™V)y~1, and we define for each i and
each ¢ € 7y(Zz(¢, V) the open subscheme U; , 1= K;l(C) of a_l((’)L'Ni). We then obtain a
decomposition T = |_|; . Uj ..

As b: T — X(¢,N) is smooth, we see that b(U, ;4) is an open subset of X(¢,N)
whose A-points are precisely (by [22, Corollaire 17.16.3.(ii)]) the set of A-points (y’, ¢, N')
of X(¢,N), which are étale locally in the image of b. It is simple to see that this
implies that U(y,¢,N) = b(U, j3), which implies U(y, ¢, N) is representable by an open
immersion.

Finally, to show that U(y,¢,N) is smooth and irreducible consider the natural
morphism G x Z;,N — U(y, ¢, N). To simplify notation, let us write S = G x Z;,N‘ Note that,
by definition, S — U(y, ¢, N) is surjective as étale sheaves and thus a fortiori surjective
as schemes, and thus U(y, ¢, N) is irreducible. To see that U(y, ¢, N) is smooth, note that
as S — U(y, ¢,N) is surjective as étale sheaves there exists an étale cover V — U(y, ¢, N)
such that p: S, — V admits a section. Note though that as S, — Sis étale and the target
is reduced, so is the source (see [40, Tag 0250]). But, as p has a section, this implies
that V is reduced as the morphism of sheaves of rings O}, — p,Og has a section and
thus is injective. This implies that U(y, ¢, N) is reduced by [40, Tag 033F]. But, as we're
in characteristic 0, this implies that U(y, ¢,N) is generically smooth over Q (see [40,
Tag 056V]). But, as S(Q) acts U(y,¢,N) by scheme automorphisms acting transitively
on U(y, ¢,N)(Q), we deduce that every point of U(y, ¢, N)(Q) has regular local ring, and
thus U(y, ¢, N) is smooth over Q as desired (see [40, Tag 0B8X]). This completes the proof
of Proposition 5.14.

6 The Moduli Space of L-Parameters and the Jacobson-Morozov Morphism

In this section, we define the moduli space LPIG< of L-parameters for G, show it has
favorable geometric properties, construct the Jacobson-Morozov morphism LPlé —

WDPIé'”, and show that an analogue of Theorem 3.6 holds for any Q-algebra A.

6.1 The moduli space of L-parameters

We begin with a slight modification of the Langlands group scheme Wy x SL,  better
suited to arithmetic discussions over Q. Specifically, as in the case of the C-group, this
concept allows us to avoid extraneous choices of a square root of g (e.g., the embedding

t below).
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Definition 6.1. We call the Q-scheme representing the functor
Algy — Grp, A {(W,9) € Wp(4) x GL,(A) : [w]| = det(g)}

the twisted Langlands group scheme and denote it £3".

To justify the naming of £%", note that if k is any extension of Q and c is any

element of k such that ¢? = g, then the morphism

—d(w)
Ne: WF,k X SLZ,k - E?/}cr (Wrg) = (W'g (C 0 C—t(i)(w))) 4

is an isomorphism. For future reference, we observe that we have a morphism
Pow: L8 = Gpo x Wp, (W, 9) = (Iwll, w).

Let us also observe that there is a natural embedding of group schemes SL, ;, — £y

given by sending g to (1, g), as well as an embedding
W= L wes (w, (1919)).

With these embeddings, we shall implicitly think of SL, , and Z as subfunctors of L}".
Finally, we observe that the embedding of W into Wy for any finite extension K of F
gives rise to an embedding of £} — £, which we implicitly use to think of £} as a

subgroup scheme of L}".

Definition 6.2. For a Q-algebra A, we define an L-parameter over A to be a homomor-

phism of group A-schemes v: L} — %G, such that p; o = pyyy-

Denote by LP;(A) the set of L-parameters over A, which is functorial in A. Note
that LP, has a natural conjugation action by G and so one has the centralizer group
presheaf Zz ().

For an L-parameter v over A we define the morphism v : E},",‘g — éA as the com-
position of ¥ with the projection ‘G, — éA. We denote by ¥ the homomorphism of group
A-schemes 5%",\14 — (Gx I',) 4 obtained by composing v with the quotient homomorphism
é‘-A - (Gx '), Letus o?serve that while ¥ may not be a homomorphism, it becomes so

after restriction to E};"! a- Finally, by our assumptions on y, the restriction to SL, , takes
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values in G, and we denote this resulting morphism SLy 4 — G, by 6 (or 6, when we
want to emphasize ).

To relate this to more familiar objects, fix k to be an extension of QQ containing an
element c such that ¢? = q. For a k-algebra A, we endow G(A) with the discrete topology

and set

(1) ¥ is a homomorphism over Wy,

. Vo ) lwp ~ ~
LPG (4) := { Wp x SLy(4) — G(A) x Wg: (2) W, Vi G(A) x Wy — G(A) is continuous,

(3) ¥lsp,a)y: SLy(4) — @(A) is algebraic

There is a morphism i%: LP; . — LPg ) constructed as follows. Fix a k-algebra A and
an element ' of LPb,k(A). Note that the restriction ' lsz,a) has an algebraization by
assumption, call it 6,,, which we interpret as a map to LG ,. The projection of V|, onto
the first coordinate factorizes set-theoretically through Wy/N for some open normal
subgroup N. This map Wy/N — G(4) induces a map Wy/N — @A and as Wg/N is a
quotient of Wy 4, we obtain a morphism o : Wg 4 — LGA—whose first projectioTs the
composition Wy — Wy/N — G, and whose second projection is the identity. We can then
define ¥y : W 4 x SI; LG, as the map (w,g) — oy (W), (9), which is well-defined
as o, and 6, commute by Proposition 2.6. We then define iL(y") to be i, o ¥ o nt. This
construction is independent of all choices, and is functorial. We can show the following

proposition in the same way as Proposition 5.2.
Proposition 6.3. The morphism i;: LPj; — LP; is an isomorphism.

For a finite extension K of F* Galois over F define

LP§(4) = {v € LPo(4) : T S ker (Vo )}

which clearly forms a subpresheaf of LP;. We have the equality of presheaves LP; =
li_r)nK LPIé. As in the case of Weil-Deligne parameters, may associate to an L-parameter
¥ in LPIé(A) an element ¢ of Z! g /I, G)(A) and thus obtain a morphism of presheaves
LPX — Z1(I; /I, G).

Fix a lift w of arithmetic Frobenius in Wy and define a morphism of presheaves

Juo: LPE = G x Z'(Ip/Ix, &) x Hom(SL, 0, &), ¥ — (& (wo, (g ?)) ,¢,9) .
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On the other hand, we have a diagram

D' G x 21 /Iy, G) x Hom(SLy g, 6) ——= Hom(Ip/Ig, G) x G, o x Hom(SL, ¢, G)IFixl+1

given by the two maps
@g.f.v) — (Int(g, W) of,me (9), Int(f(@)) o v)ieIF/IK, Int(g, wy) o v)

G,f,v) — (f o Int(wy), g, (V)iep, /1 v © Int ((WO' (g (1)))) )

We then have the following explicit description of LPlé .

Proposition 6.4. The morphism j,, gives an identification of LPX with Eq(D!). In
particular, LPX is representable by a finite type affine Q-scheme and Jw, is a closed

embedding.

As already observed, for an extension K C K’ of finite extensions of F* Galois over
F, there is a restriction morphism Z! (I /I, G) — Z!(Ix/Ix/, G), which is a clopen embed-
ding, and thus LP% — LPIg is also a clopen embedding. As we have the identification of
presheaves LP; = lim LPX, we deduce from Proposition 5.3 that LP is representable

by a scheme locally of finite type over Q, all of whose connected components are affine.

6.2 Decomposition into connected components

We now establish the analogue of Theorem 5.16 for LP. Let us fix K a finite extension of
F* Galois over F, and a lift wy, of arithmetic Frobenius. Then, by Proposition 6.4, we have
an identification j,,, of LP§(Q) with

(1) Int(y,wp) o ¢ = ¢ o Int(w),
@) PG =1

Y NI | = = o5 o
(v.9.6) € 6@ > 2" I /Ig. 6)(Q x Hom(Sly . )@ : (3) Int(¢p(i)) o6 =0 for alli € Iy /I,

(4) Int((y,wg)) o =6olnt ((Wor (8 (1))))

Now, for (v, ¢,0) in LPIE(@), let us define Zypto be Zz(¢,0). This is a linear algebraic group
over Q whose identity component is reductive. Let us then say that an element (y/, ¢’, 8")
in LPI(‘;(A), for a Q-algebra A, is locally movable to (v, $,6) if there exists an étale cover
Spec(A’) — Spec(A) and (g, h) € G x Z;,e)(A/) such that (y/,¢’,0") = g(hy,¢,0)g~ . As this
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definition is clearly functorial, we obtain a subpresheaf of LPG@ as follows:

Uy, 9,0)A) = {(y’,qb’,@’) € LPIE@(A) : (y',¢',6") is locally movable to (y,d),@)] .

We then have the following, whose proof is identical to Proposition 5.14 except the
analogue of Lemma 5.18 is simpler since for any closed subgroup scheme L of % with
reductive identity component, Hom(SL, oL is the disjoint union of the orbit schemes

under the conjugation action of L by Proposition 4.10.

Proposition 6.5. The morphism of presheaves U(y, ¢,0) — LP 1s representable by an

open immersion. Moreover, the Q-scheme U(y, ¢,0) is smooth and irreducible.

Define an equivalence relation on LPX (Q) by declaring that (y, ¢, 0) is equivalent
to (y/, ¢’,0’) if there exists some (g, h) € G XZM)(Q) such that (y/,¢’,0") = g(hy,$,0)g~".
Let us denote an equivalence class under this relation by [(y, ¢,0)]. Observe that here
we do not require h to lie in Z;’w (Q), so that these equivalence classes differ from
Uy, $,0)(Q). For each such equivalence class, let us choose an element (y,¢,60). We
consider my(Z,,) as a finite abstract group, and we define an equivalence relation on
it by declaring that c is equivalent to ¢, cy 01_1 y~! for any ¢, in 7, (Z4,9)- We denote by [c]
an equivalence class for this relation.

We then have the following decomposition of LPIEV@ into explicit connected

components, whose proof is exactly the same as that of Theorem 5.16.

Theorem 6.6. The choice of (y, ¢,6) in each class [(y, ¢, 0)] of LPX (Q) gives an identifi-

cation

LPes= Ll L uter.e.0).
[(v.9.0)] c]

We derive from this two corollaries neither of which is a priori obvious.
Corollary 6.7. For all (y,¢,0) in LPX ((@) the Q-scheme U(y, ¢, 0) is affine.

Proof. By Proposition 6.4, the scheme LP 1s affine, and thus so is the clopen subset
Uy, ¢,0). u

Denote the set of equivalence classes for LPX 5(Q) (resp. 7o(Zy ) by [LP (@] (resp.
[WO(ZQVN)]).
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Corollary 6.8. The affine Q-scheme LPX is smooth, and there is a non-canonical To-

equivariant bijection

N 1) [y, ¢,0] € |LPEQ@
7o (LPE5) = 1 ..0)L. (0D [ ] :
(2) el €lm(Zgpl

where the I'p action on the target is inherited from LPX and G.

Proof. By Proposition 6.5, each U(y, ¢,0) is smooth and connected, and thus the disjoint

IG{@, is smooth and the claim concerning connected components

follows. [ |

union, which is LP

6.3 The Jacobson-Morozov morphism

We now come to the definition of the Jacobson-Morozov map in the geometric setting.

Definition 6.9. The morphism JM: LP; — WDP given by sending ¥ to (y o ¢, do,,(e))

is called the Jacobson-Morozov morphism.

It is clear that JM is @—equivariant. By Theorem 4.14, it is also clear that JM
factorizes uniquely through WDP¢. Moreover, for any finite extension K of F* Galois over
F, one sees that JM~ ! (WDPX) is precisely LP% and so we get factorizations LP5 — WDP%
and LPX — WDPIé’“. We denote all these factorizations also by JM.

Observe that over Q we may give a simpler description of the Jacobson-Morozov
morphism on each connected component. Namely, let us fix (y,¢,60) in LPE(@) as in the
notation of §6.2. Then, first observe that JM(y, ¢, 0) is equal to (v, ¢, N) where N = JM(9).
We may then observe that JM restricted to U(y, ¢, 6) maps into U(y, ¢, N) and is the étale

sheafification of the map, which on A-points is the map
{9hr,0,097 : 0.1 € Ga) x 25 5} - {9y, 9,097 : (@ 1) € GlA) x 23y (4)]

given by sending g(hy,¢,6)g~! to g(hy,$,N)g~!.
We also observe that if k is an extension of Q and c is an element of k such that
¢?* = g then under the isomorphisms described in Proposition 5.2 and Proposition 6.3

the Jacobson-Morozov morphism corresponds to the morphism LP’le — WDP/G,kf which
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on A-points sends ¥ to (Y o ¢, do, (ey)) where !, is the map

ta: Wp — Wp x SLy(A), w= (W' (Cﬂé(W) cd?W) )) '

and by ¢, we mean the map SL, , — @A associated to the (unique) algebraization of
Vls1,ca)- SO, on the level of C-points we see that our Jacobson-Morozov map agrees with
that from §3.2.

We now move towards stating the analogue of Theorem 3.6 at the level of A-
points. To begin, we must define the notion of semi-simplicity for L-parameters in the

relative setting.

Proposition 6.10. Let ¢ be an L-parameter over a Q-algebra A. Then there is a positive
integer m divisible by [F* : F] such that the morphism

v v om q—md(w) 0
WF,A —> GA’ W H— '([/ (W ’ ( 0 q_md(w)

admits a factorization

Wia -5 Z, 1% G,

Proof. This is proved in the same way as Proposition 5.8. |

Definition 6.11. For A a QQ-algebra, we call an element ¢ of LP;(A) Frobenius semi-
simple if there exists an integer m as in Proposition 6.10 such that &m factors through

a subtorus of G, etale locally on A.

Let us denote by LPZ (A) (resp. LPIé'SS(A)) the subset of Frobenius semi-simple
elements of LP;(4) (resp. LPE(A)). This evidently forms a G-stable subfunctor of LP,
(resp. LPIé).

Remark 6.12. To understand the reasoning for this definition, observe that under the
isomorphism in Proposition 6.3, this condition corresponds to an element /' of LP/G,k(A)
satisfying the property that the projection of y'(w3™, 1) to G(A) is semi-simple for some
m as in Proposition 6.10. In particular, this notion of semi-simple agrees with that from
§3.2 for C-points by Lemma 3.13.
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We now prove the following surprisingly subtle semi-simplicity preservation

property for the Jacobson-Morozov morphism.

Proposition 6.13. Let A be a(Q-algebra and ¢ an element of LP;(4). Then, ¢ is Frobenius
semi-simple if and only if JIM(v) is.

Proof. Suppose that ¢ is Frobenius semi-simple. As the conclusion is insensitive to
passing to an étale extension and conjugating, we do so freely. Take m as in Proposition
6.10 and a split maximal torus T of éA such that &m factors through T. Note that the
eigenspace g, (1) with respect to @m(l) is the Lie algebra of a Levi subgroup L of éA such
that ,,, factors through Z(L). Indeed, we may assume that T = (T,) , for a maximal torus
T, of G.Let L’ be the Levi subgroup of G generated by T, and the root groups for the roots
o, which annihilate &m(l). Then, we may take L = L,, where Iﬂm factors through Z(L) by
[11, Corollary 3.3.6].

Note that 6 factorizes through L as by Proposition 2.6, it suffices to check this
on the level of Lie algebras, from where it is clear. Let T, denote the standard diagonal
subtorus of SL, 4. Since 6 factorizes through L, by [11, Lemma 5.3.6], we may assume
that the map 6|y, factorizes through a maximal torus T’ of L. But, as Z(L) € T/, both
0|z, and 1/me factorize through T’. Hence, if we write JM(yy) = (¢, N), then the morphism
Wg 4 — G, given by w — ¢(w™) factors through T’. This implies that JM(y/) is Frobenius
semi-simple.

Conversely, suppose that JM(y¥) = (¢, N) is Frobenius semi-simple. Let m be any
integer as Proposition 5.8. As above, we may build a reductive subgroup L, of G ', such
that Lie(L,,) is identified with g, (1) with respect to ¢,,(1). We claim that the group L;,,
stabilizes for k sufficiently large. Indeed, the roots of « of G relative to T, that annihilate
Grem (1) = <,Z>m(1)k stabilize for k sufficiently large, from where the claim follows by the
construction. Denote by L the group L;,, for k sufficiently large, say for k > k. Let us
write Z for the torus Z(L)° (see [11, Theorem 3.3.4]). Observe that as ¢;,,, for k > kg,
centralizes Lie(L) that ¢, factors through Z(L). So then, for some k; > k;, we have that
¢x,m factors through Z. We put m; = k;m. We will be done if we can show that 0],
factorizes through the reductive group A-scheme Z;(Z) (see [11, Lemma 2.2.4] and [35,
Corollary 17.59]). Indeed, in this case by [11, Lemma 5.3.6], we know that after passing
to an étale extension, |y, factorizes through a maximal torus T’ of Zy(Z). Then 6|, and

¢, factor through T'. Hence

v v 2my quld(w) 0
Wga —> Ga, w w(w ,( 0 gmdw

factors through T’. This implies that v is Frobenius semi-simple.
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Working etale locally, and by passing to a é(A)—conjugate, we may assume that
Z is equal to Z), for a split subtorus Z’ of G. Let R, be the set of nontrivial characters
of Z' appearing in the adjoint action of Z’ on §,. Note that these characters are already

defined over Q. Consider the functor on Alg, with

(1) x(2 #1forall x €R,,
Y(B):=1z€Z(B):

(2) x(z) =q™ forally € Ry such that x(¢,,, (1)) = g™
Clearly, Y defines a locally closed subscheme of Z’, which is non-empty as ¢,,, (1) is an
element of Y(A). Take y € Y(F) for a finite extension F of Q. By passing to an étale
extension, we may assume that A contains F. We claim that inclusion Z;(Z) C Z(y)3 is an
equality. As Z;(Z) is flat over Spec(4), we know from the fibral criterion for isomorphism
(see[22, Corollaire 17.9.5]), that it suffices to check this after base change to every point of
Spec(A). But, as A is Q-algebra, and Z;(Z) and Z(y)j are both connected, it then suffices
to check they have the same Lie algebra (e.g., see [35, Corollary 10.16]), but this is true by
construction.

In the following, we use the notation g, (i) for A € A* with respect to ¢m1 (1). By
construction, we know that Int(y) acts on §,(qg*™ ) by multiplication by g*"™ . Moreover,
the SL,-triple (IV, f, h) associated to 6 by Theorem 4.17 satisfies N € g,(q™),f € §,(@"™)
and k € §,(1). Therefore, the sl,-triple attached to Int(y) o0 is (g™ N,q "™ f, h). Thus, the
sl,-triple attached to Int(y) o 6 o u is (N, f, h) where

SL. ™ sI a b a q™b
n: — , = .
24 24 c d q™c d

By Theorem 4.17, Int(y) o € o u = 6, so 0|y, factorizes through Z;(y); = Zz(2)

as desired. [ |

We end this section by proving a relative version of Proposition 3.7. Fix a Q-
algebra A and let N be an element of AN'“(A). Let us denote by u" the A-submodule
im(ad(N)) N ker(ad(N)) of g,, which we also treat as a subfunctor of g, in the obvious
way. Note that vV is in fact a closed subscheme of AV, and for all A-algebras B there is

an equality
uV(B) = im(ad(V ® 1)) Nker(ad(V ® 1)).

As these claims are étale local, we may assume that N = gN,g~! for some N, in N Q)

and g in G(A). Observe then that u? is equal to g(uM),g~! where u¥o C § is defined in
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the same way as u". As J\A/'A is @(A)—equivariant it suffices to show that u™o factorizes
through N, which may be checked on Q-points that is then clear. One similarly proves
the claimed equality.

As uV is a closed subscheme of NV, we obtain a closed subscheme UV := exp(u")
of G,. We claim that UY is a closed subgroup scheme of G, flat over A. As this may be
checked étale locally we are again reduced to checking that exp(u?0) is a closed subgroup
Q-scheme of G (automatically flat over Q), but this is true by Proposition 2.3. For an

element (¢, N) of WDPZ(A), we set
UN(go) =y XG4 Za(p).

Concretely, this means that for every A-algebra B one has an identification of UM (¢)(B)
with U (B) N Zz(p)(B) where this intersection is taken in G(B).

Let us first establish the following relative version of Proposition 3.3, which
follows easily (using the same reduction arguments as already used above) from Propo-

sition 3.3

Lemma 6.14. Let 6 be an element of Hom(SLZIQ,@)(A) and define N = JM(0). Then,
Za(N) = UN % Z5(0).

Proposition 6.15. Let A be a Q-algebra, ¥ is an element of LP;(4), and set (¢,N) =
JM(). Then, Zz(p, N) = UV (9) % Zg ().

Proof. Let B be an A-algebra. Given Lemma 6.14, it clearly suffices to show that
conjugation by an element in the image of ¢ stabilizes U", as the rest of the argument
for Proposition 3.7 then goes through verbatim. Let u = exp(n) be an element of UY(B)
and observe that Int(¢(w))(u) is equal to exp(Ad(¢(w))(n)), and so we are done as clearly
Ad(p(w))(n) € uV (B). [ |

6.4 The relative Jacobson-Morozov theorem for parameters

We now arrive at the relative analogue of Theorem 3.6. Let us set WDP%';'ss to be the
presheaf whose A-points consist of Frobenius semi-simple Weil-Deligne parameters
(¢, N) such that NV lies in NY(A4).

Theorem 6.16 (Relative Jacobson-Morozov theorem for parameters). The Jacobson—

Morozov morphism JM: LPZ — WDP;*® is surjective, and induces an isomorphism of
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quotient presheaves
JM: LP$ /G = WDP%*/G.

Let us fix a Q-algebra A, an element (¢, N) of WDPE’SS(A), and an arithmetic
Frobenius lift w, € Wy ,.In the notation from Proposition 5.7, with p: (GxT,) 4 — GL(@G,)
the adjoint action, h = g(w,), and I = ¢ (Iz/Ix), let h and h(1) be g, and g, (1), respectively.

Proposition 6.17 (cf.[21, Lemma 2.1]). There exists an sl,-triple in g, of the form (IV, h, f)
where N € h(g), h € h(1), and f € h(g~!). Moreover, any two such sl,-triples are conjugate

by an element of Zz(¢, N) étale locally on A.

Proof. By Theorem 4.17, there exists an sl,-triple (W,h_;,f_;) in §,. We take a finite
extension K of F* Galois over F such that 7y , < ker(¢|WF*’A). Observe that N is in b
by definition and if we set h; to be the average over the action of ¢ (Iz/Iy), then hy is
also in h and (IV, h;) satisfies the conditions of Proposition 4.18 for h. Therefore, there
exists an sl,-triple in § of the form (IV, h, f,). Given this, the decomposition result from
Proposition 5.7, and Proposition 4.18, the existence argument as in [21, Lemma 2.1] goes
through without further comment.

To show the uniqueness part of the statement, let (N, h,f) and (IV, h,,f]) be
two sl,-triples satisfying the conditions of the proposition. We shall pass to an étale
extension freely in the following. By Proposition 4.10, we may assume that there exists a
morphism 6: SLy o — G such that (IV, h,f) is the associated sl,-triple. Set m := HY N (1),
and for each i € N set m; to be {x € m: [h, x] = ix}. We can check that m = P, m; by using
the adjoint action of 0|y, and Lemma 2.10, where T, is the diagonal subtorus of SL, .
Let us now set u := @,_om;. Then u is Lie subalgebra of §, contained in AN'(A) as it is
contained in @;_(9; 4, the base change to A of P, ,g; whereg; = {x € §: [h,x] = ix},
and @, 9; is quickly checked to be contained in /V(Q). Consider U := exp(u), which is
a subgroup of H(A) by (3) of Proposition 2.3.

We claim that {Ad(u)(h) : u € U} is equal to h + u. To see this, we note that
if we write u = exp(x) for x € u then by (2) of Proposition 2.3 Ad(u)(h) is equal
to ano %ad(x)”(h). We need to show that for any x, € u there is x € u such that
Xy = anl %ad(x)"(h). We define a filtration Fil‘(w) = @j>imj for i > 1. It suffices to

prove that there is x; € u such that

Xy = Z %ad(xi)”(h) mod Fili(u)

n>1
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by induction on i. This is trivial for i = 1. We assume that it is proved for i. We take

x} € Fil'(w) such that [x}, hl = x, — > ns1 arad(x)"(h). Then x;,, = x; + x| is seen to satisfy

1 .
Xy = Z aad(xiﬂ)”(h) mod Fil'*! ()

n>1

since [u, Fil‘(w)] € Fil'*! u).

Note now that y = h; — h = [N, f} — f] is in u. Indeed, by inspection [N,y] = 0
so that y is in hY, but since h, and h are both in h(1), so is their difference y. Note
though that as y = [N, f; — f] we have y is in u. Indeed, it again suffices to show that
94 NIN,G,] is equal to ®i>oai,A' which, again, may be verified over Q in which case it
is again classical (cf. [21, Proposition 2.2]). Thus, we know that there exists some u in U
such that Ad(u)(h) = h+ y = h;. One then verifies that Ad(u)(f) = f; as in loc. cit.

Finally, we now observe that the inclusion U C Zz(¢, N)(A) holds. Indeed, writing
u = exp(x), we see that Ad(u)(V) = N since x is in h" and using the formula from (2) of
Proposition 2.3. Similarly, as Int(¢(w))(exp(x)) is equal to exp(Ad(¢(w))(x)), this is just

exp(x) as x is in h(1). |

To show the surjectivity claim in Theorem 6.16, let (IV,f,h) be as in Proposi-
tion 6.17, and consider the morphism 6: SL, , — G, associated by Theorem 4.15. We

then consider the morphism of schemes

-1
Vi Ly > Ga w0 (9(19)7) pw).
We claim that this a morphism of group A-schemes. To prove this, it suffices to show

Ad(pw))(0(9)) =0 (Ad ((719)) (9))

for w € Wrp,(B) and g € SL,(B), where B is any A-algebra. This follows from
Proposition 2.6 and the construction of . One then easily check that ¢ is an element
of LP;(4) such that JM(¢/) = (¢, N) as desired.

We now show that JM induces a bijection LP%S(A)/@(A) = WDP'E.’SS(A)//G\(A),
which now only requires the demonstration of injectivity. By the @(A)—equivariance of
JM, it suffices to show that if v, and v, are elements of LP¢ (4) such that JM(y/;) and
JM(y,) both equal (¢, N), then ¢, and ¢, are @(A)-conjugate. Note that the sl,-triples
associated to 0, for i = 1,2 both satisfy the conditions of Proposition 6.17 for (¢, N).

Therefore, étale locally on A the sl,-triples associated to v, and i, are conjugate in a
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way that centralizes (¢, N) and so ¥, and i, are étale locally conjugate. From this, we
deduce that ¥, defines a class in Hét(Spec(A), Zz(Yy)) given by 'I‘ranspa(t/f1 . ¥,). Note that

we have a natural map
H},(Spec(A), Zz(y,)) — H}, (Spec(A), Zz (¢, N)),

which maps Transp(y/;,¥5) to the trivial element, and so Transp (v, v,) belongs to

ker (Hgt(Spec(A),Zg(wl)) N Hgt(Spec(A),Z@(go,N))),

and so we are done if this kernel is trivial. But, this map on cohomology groups has a
set-theoretic splitting from the semi-direct product decomposition of Proposition 6.15,

and so the claim follows.

7 Geometric Properties of the Jacobson-Morozov Map

In this final section, we use the material developed so far to prove that the Jacobson—
Morozov morphism satisfies favorable geometric properties. Namely, we show that
JM: LPX — WDPE" (resp. JM: LPX — WDP¥) is birational (resp. weakly birational). We
do this by exhibiting a more explicit space, which embeds into all three moduli spaces
weakly birationally. This is the geometric analogue of the reductive centralizer locus
from §3.3. We then finally show that as a particular application of these ideas one may
prove that the Jacobson-Morozov map is an isomorphism between the discrete loci in
LPX and WDPX.

7.1 Birationality properties

To begin, note that as the morphism N~ — N is surjective and satisfies the conditions of
Lemma 4.7, WDPIé"‘I — WDPIé is then also surjective and satisfies the same conditions.

We therefore deduce from Lemma 4.7 the following.

Proposition 7.1. The morphism WDPIé'u — WDPX is weakly birational.

We now give a more explicit effective version of this result. To start, we observe

the following where we denote by (¢"iV, NUniV) the universal pair over WDPIé .
Proposition 7.2. For each n > 0, the subset
WDPIé'" = {X € WDPIé : Z@((puni",N“m"); is reductive of dimension n + dim(ZO(@))}

of WDPIé is locally closed, is open if n = 0, and is empty if n > dim(@/ZO(é)).
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Proof. Consider the quotient Q := Z@((pum",N“niv)/ZO(@)WDPIé. By [37, Exposé VIB,
Proposition 4.1], the function f: WDP5 — N given by f(x) = dim(Q,) is upper semi-
continuous. In particular the set D,, = £7110,n + 1)) N f~1(In, c0)] of points where Q,
is of dimension n is locally closed, and as D, = f‘l([O, 1)), D, is open. Let us endow
D,, with the reduced substructure. Let us then note that by [37, Exposé VIB, Corollaire
4 4] for all n > 0 the identity component functor Qp, is representable and is smooth
over D,. Thus, by [11, Proposition 3.1.9], we deduce that the locus of x in D, where
Q% is reductive is open, and thus locally closed in WDPIé and open if n = 0. But,
evidently this locus is equal to WDPIé'n. Finally, as Z@((p“niV,N“ni"); is a subgroup of
@X we have that its dimension is at most dim(G), and thus evidently WDPg'" is empty
for n > dim(G/Zy(G)). [ |

Definition 7.3. We define the reductive centralizer locus in WDPX to be the Q-scheme
WDPX™ :=| |, WDPX" (where each WDP§™ is given the reduced subscheme structure).

We call the open subset WDPIé'0 the discrete locus and denote it by WDPg'diSC.

Let us observe that by the proof of Proposition 7.2, if A is a reduced Q-algebra
and (¢,N) is a Weil-Deligne parameter over A such that the corresponding morphism
Spec(4) — WDPIé factorizes through WDPIé'rC, then Zz(p,N)° is representable and
reductive over A.

Now we show that the reducedness of WDPIé’rC implies that N"™V pulled back to

this reductive centralizer locus lies in /. More precisely, we have the following.
Proposition 7.4. The morphism WDP§"¢ — WDP¥ factorizes through WDP&"°,

Indeed, as WDPIé'rC is reduced by definition, this follows from Proposition 5.11

and the following proposition.

Proposition 7.5. If A is a reduced Q-algebra, and (¢, N) is an element of WDP(4) such
that Zz(¢, N); is a reductive group scheme of dimension n for all x in Spec(4), then (¢, N)
is an element of WDPZ(A).

Proof. We break the argument into several steps to make the structure clear.
Step 1: It suffices to prove that if A is a strictly Henselian discrete valuation ring, then
N is egc to some N, in /\A/'((@). Indeed, we must show that the map Spec(4) — N induced

by (¢, N) factorizes through N'". By standard Noetherian approximation arguments we
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may assume that A is Noetherian. We may then assume that A is connected, in which
case we must show that this morphism factorizes through some O). As A is reduced, it
suffices to show that Spec(4) — N factorizes through some O, set-theoretically. As A is
connected, any two points of Spec(4) may be connected by a finite chain of specialization
and generalizations. This reduces us to showing that if x is a generalization of y in
Spec(A) then these points map into a common O,. We are then reduced to the case of
a discrete valuation ring by [40, Tag 054F], and then trivially to the case of a strictly

Henselian discrete valuation ring.

Step 2: We claim we may assume that (¢, N) is in WDPIé’diSC(A). Write 7 (resp. s) for the
generic point (resp. special) of Spec(4). As Zz(¢,N) has constant fiber dimension, the
same is true for Zgaer (¢, V). Indeed, for each point x of Spec(A) the group @X is the quotient
(@’f}er xZ(@)X)/Z(@der)X where Z(@der)x is a finite group scheme (see [35, Example 19.25]). As
apair (g, z) in @;‘}er xZ(@)X centralizes (¢, V) if and only if g does, we deduce that Zz (¢, N),
is the quotient of Zzder (¢, N), x Z(@)X by the finite group scheme Z(ﬁder)x N Zgder (@, N)y.
Thus, dim(Za (¢, N),) is dim(Zaaer (¢, N),) +dim(Z(§)X). As dim(Z(@)X) is also constant, the
claim follows.

So, again [37, Exposé VIB, Corollaire 4.4] shows that Zzde: (¢, N)° is representable
and reductive over A. As A is strictly Henselian, for any reductive group over 4, all its tori
are split, all its maximal tori are conjugate, and all its Borel subgroups are conjugate.
Then, as °G is equal to ’G the arguments in the second paragraph of the proof of [4, Lemma
3.5] show that if T is a maximal torus of Zzder (¢, N)° then Zcg, (T) is a Levi subgroup of
¢G, since Zcg, (T) contains the image of ¢ and hence projects onto Wy ,. Further, there
exists some g € G(A) and a Levi subgroup H of G* (where G* is the quasi-split inner form
of G) such that chGA(T)g*1 = %H,. Therefore, g(¢, N)g~! factorizes through “H, because
T C Zzaer(p,N)°. We claim then that g(¢, N)g™! is in WDPg'diSC(A). By Proposition 5.11
gg,,N,)g~! and g(p;, Ny)g ™!
in [4, Proposition 3.6] shows that neither g(go,,,Nn)g_l nor g(g,, Ny)g~! factorizes through

are Frobenius semi-simple. Moreover, the argument given

a proper Levi (in the sense of loc. cit.), which, as they are both Frobenius semi-simple,
implies by the usual arguments (cf. [33, Lemma 10.3.1]) that they are discrete. As N is in
NY(A) if and only if gNg~! is, the claimed reduction follows.

Step 3: We now show that we may assume N # 0. If both N; and IV, are zero we're done,
and so it suffices to show that if N, # 0 then Ny # 0. To see this, assume otherwise.
But the inequality dimZy(¢,) < dimZg(p,) = dimZg(g,, Ny) holds by [37, Exposé VIB,
Proposition 4.1]. Also, dim Zg(p, N < dimZg(g,). Indeed, it suffices to note that if wy

is any lift of arithmetic Frobenius then (as in Proposition 5.8) for m sufficiently large
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<,Z>,7(W6”) defines a point of Zy(p,)° but, as N, #0, does not define a point of Zy(@,, N,) and
thus Zg(p, N, C Zg(g,)° from where the claim follows. But, observe that dim(Zé(gon, N,))
(resp. dim(Z(gs, Ny))) is equal to dim(Z@(gon,Nn)) + 1 (resp. dim(Za (¢, Ny)) + 1) and so we
arrive at a contradiction with the assumption that the dimensions of the fibers of Zz (¢, V)

are constant.

Step 4: Taking the image of (¢, N) under ‘G — 4 G9¢T), we may replace G with GI¢*. Then
ZO(@) is finite since G is semisimple. Proposition 5.11 together with Theorem 6.16 imply
that (¢,,N,) (resp. (¢5, N;)) comes from an L-parameter ¥, (resp. y,). Write u; for the

restriction of 0, to the diagonal maximal torus, which we view as a cocharacter via the

z 0
0z1!

and the fact that A is strictly Henselian, there is, up to conjugacy, a positive integer m,

map z ( ) Fix wy, to be an arithmetic Frobenius lift. By Frobenius semi-simplicity
divisible by [F* : F] such that gb(w(')"o) is contained in the A-points of a maximal torus T
of é’@. By the relation between v, and ¢,, as well as the relationship between v, and g,
and the argument of [21, Lemma 3.1], we see that up to replacing m by a power, we may
further assume that (Zin(wgmo) = 1,(@™) and gbs(wgmo) = [t,(@™). From this first equality
it is simple to see that 41, factorizes through T,, and thus there exists a unique lift x,
of u, to T, where p is a cocharacter of T. We note as Ny # 0, that u, is characterized
by the property that the image of s, contains ¢ (w5™) and Ad(u,(q™)(N,) = q*™N;.
As G‘A and g, are separated over A, we have that the image of u contains ¢(W§m°) and
Ad(u(q™))(N) = g™ N. Hence, u, satisfies the above characterization of 4, so ug, = py.
Let P(u) be the parabolic subgroup of ﬁ@ associated to u. Define ﬁn () (resp. g,(i)) using
W, (resp. ug) as in [9, §5.7]. Then by [9, Proposition 5.7.3] N, (resp. V) is in the unique
open P(u),-orbit (resp. P(u),) of @izzfjﬂ(i) (resp. ;- 05()). But, by the uniqueness of
this open orbit, we then see that IV, and N; are both conjugate to any Q-point of the
unique open orbit of P(u) on @izzﬁ(i), from where the conclusion follows. We are then

done by Proposition 4.8. |

We next show the pleasant property that WDPIé’rC actually has dense image in
K,
WDP_".

Lemma 7.6. Let k be a field, X an irreducible finite type k-scheme equipped with
an action of an algebraic k-group H, and Y an irreducible locally closed subscheme
of X. Assume that the action morphism u: H x ¥ — X is dominant. Then there is
a dense open subset U of Y such that dimZy(y) < dim(H) + dim(Y) — dim(X) for
ally e U.
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Proof. By [24, Corollary 14.116], there exists a dense open subset V of X with the
property that dim u~!(y) = dimH + dim Y — dim X for all y € V. As i is H-equivariant
when H is made to act on the first component of H x Y, we may assume that V is H-stable
by replacing ¥V with HV. We put U = VN Y, which is non-empty as ¢ is dominant and V
is H-stable. As Zg(y) x {y} € u~(y) for y € U, we obtain the claim. |

Proposition 7.7. The set
(x e WDPIé'U : Z@(q)uni",Nuni"); is a torus}
contains an open dense subset of WDPIé'”.

Proof. Observe that this may be checked over Q, as the morphism Spec(Q) — Spec(Q) is
surjective and universally open (see [40, Tag 0383]). Thus, from Theorem 5.16, it suffices
to show that for each (y, ¢, N) in WDPIC{;(@) corresponding to (¢, N), one has that the set of
points x in U(y, ¢, N) such that Z@(go“niV,NuniV); is a torus contains a dense open subset.

Let H be the normalizer of ¢ in (G x g Then H° = Z;(¢4)°, which is a reductive
group by Lemma 2.5 as Zz(¢) is the same as G= where ¥ is OdIp/Ix) C @(@) X (Ig/Ix)
(which is finite as I /I is) acting on G by conjugation. Consider the linear algebraic Q-

group Sy (V) representing the functor
Algg > Grp, A {(h, Z) € H(A) x A% : Ad(h)(N) = ZZN} ,

which is clearly seen to be a closed subgroup scheme of ((G x Gp) x T')g by changing
the order of the components. Let Sy (V) be the image of S, (V) in (G x I',)g- Let souq be
the Jordan decomposition of @(w,) in Sy (V). Then the image of u, in Gm,@ is trivial.
Hence, ug is an element of Z§ N Replacing y by ualy, we may assume that ¢ is Frobenius
semi-simple from the beginning.

Let ¥ be an element of LPIE(@) such that JM(¥) = (¢,N) and write 6 = Oy, -
Let Uy(N) be the unipotent radical of Zy(IV). Then, as in Proposition 3.3, we have

Zy(N) = UgWV) x Zy(9). We take a maximal quasi-torus T of Zy(f) in the sense
of [26, Definition 8.6]. Set s; to be the image of (0 ((qlo/z qfi/z)) ,ql/z) in G(Q). Then

Z;'Nysfl C Zy (V). Note that Z(‘;’Nysfl is a connected component of Z;(N) since Z;,N is
the identity component of Z, (V). So we can write TﬁZ;’u\,ysl_1 =t,T° for some t; € T(Q)
by [26, Theorem 8.10 (d)]. Then, we have Z;’Ny = tIZ(‘;)J\,s1 as Z(‘;),Nysl_1 is a connected

component of Z; (V) containing t;.
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We let T% be the closed subgroup scheme of T of elements commuting with ¢,.

For t; in (T")°(Q), we consider the morphism
Ay Zg(@D)° x (TN)° — Zy(N)°, (R, 1) > (t,tg) ' httots b tsy
This induces
Lie(Ay): Lie(Zyz(IV)°) x Lie((T™)°) — Lie(Zz(V)°), (x,y)+ ad((tlto)*l)x +y —ad(s;)x.
This is identified with the direct sum of

Lie(Ay,); : Lie(Zy(0)°) x Lie((T")°) — Lie(Zy(0)°), (x,7) — ad((tlto)_l)x—f- y — X,

Lie(A,)y: Lie(Uy(N)°) — Lie(Ug(N)°),  z+ ad((t;ty) H)z — ad(s))z.
In the proof of [26, Theorem 8.9 (c)], it is shown that the morphism
Zy(0)° x 1, (T™)° > £,Z(0)°,  (g,1) > gtg™"

is dominant. Therefore, by Lemma 7.6 and the fact that (T?)° C Zg0) (t120)° for any
to € (T")°, there is an open dense subset U, ;, € (T")° such that Z, . (t,t()° = (T")°
for ¢y € Uy, ;. This implies that Lie(A, ), is surjective for ¢, € Uy, ;.

The eigenvalues of the diagonalizable ad(s;) on Lie(Ugy(N)) are contained in
{qi/z}lfignO for some ny by Proposition 3.3. Let m; be the order of ¢; in ny(T). Then

there is a positive integer m such that the eigenvalues of the diagonalizable ad(tl_l_mml)

on Lie(Ugx(IV)) are disjoint from {qi/z}lsifno. Since tl_l_mm1

and s, are commutative,
ad(tl_l_mml) and ad(s;) are simultaneously diagonalizable. Hence, we have the surjec-
tivity of Lie(At;nml )2- Since the surjectivity of Lie(A, ), defines an open subset on (T")°,
which we now know is non-empty, there is an open dense subset U;, , C (T")° such that
Lie(Ay,), is surjective for t; € Uy, .

We put U, = Uy, ; N Uy, ,. Then, for ¢, € U, , the map Lie(A,)) is surjective, hence

A, is dominant. This implies that
Zy(N)° x t,(T")°s; — t,Z5(N)°sy, (g, t) — gtg~!
is dominant. Further, for ¢, € U, > the surjectivity of Lie(AtO) implies that the kernel of

Lie(Zy(N)°) — Lie(Zg(N)°), x> ad((t;ty) 1)x — ad(s;)x
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is equal to Lie((T™)°). This means that for t, € U, , we have Z;_.y, (t,tys,)° = (T")°. So

we have toral centralizer for all points in the image of the dominant map
Zy(N)° x t, U, ) — t,Z5(N)°sy, (g, t) — gtg?,

whose target is equal to ZynY and so the conclusion follows from Chevalley’'s theorem
(see [24, Theorem 10.19]). [ |

From this, together with Proposition 7.1 and Lemma 4.7, we deduce that the two
maps WDPIéer — WDPIé'u and WDPIé'rC — WDPX are weakly birational. To connect this
discussion to the Jacobson—-Morozov map, we now show that JM is an isomorphism over
WDPX™e,

Proposition 7.8. The morphism JM: JM_I(WDPg'rC) — WDPIé'rC is an isomorphism.

Proof. Let A be a Q-algebra. As JM is @(A)—equivariant, to show that this map is a
bijection on A-points it suffices to prove that the map on A-points is a bijection upon
quotienting both sides by G(A), and that for all ¥ in JM~}(WDP§"(4)) the equality

(W) = Zz(p,N) holds where (¢, N) = JM(y). For the bijectivity on quotient sets,
it suffices by Theorem 6.16 to show that every element of WDPIé'rC(A) belongs to
WDPIé'”'SS(A). But, this follows from Proposition 7.4. Suppose now that ¥ is an element of
JM! (WDPIé'rC(A)). To show that Zz(y) = Zz(¢, N), it suffices by Proposition 6.15 to show
that UY () is trivial. Applying the fiberwise criterion for isomorphism (see [11, Lemma
B.3.1]) to identity section of UY(¢), it suffices to show that UV (¢), is trivial for all x in
Spec(A). But, as UV (¢), is unipotent it is contained in Z(p, N), and as it is also normal,

it must be trivial by our assumption that Z(¢, N)3 is reductive. |

We deduce that WDP5™ also admits a weakly birational monomorphism to
LPX. So, we now come to our main geometric result concerning the Jacobson-Morozov

morphism.

Theorem 7.9. The morphism JM: LPX — WDPE" (resp. JM: LPX — WDPX) is birational

(resp. weakly birational).

Proof. The weak birationality of both maps is clear from the above discussion, and
therefore it suffices to show that the map JM: LPX — WDPE" induces a bijection

on irreducible components. It clearly suffices to check this after base changing to Q.
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By Theorem 5.16 and Theorem 6.6, the connected components of LP co and WDPK'E
are irreducible, so it suffices to show that the map JM: nO(LP ) — no(WDPKE)
is bijective.

To do this, we first show that the Jacobson-Morozov map induces a bijection
[LP Q)] — [WDP (Q)]. By Proposition 7.7 and Proposition 5.11, every equivalence class
of the target contains a Frobenius semi-simple element and thus surjectivity follows
from Theorem 6.16. To show injectivity suppose that (y;, ¢;,0;) for i = 1,2 are elements
of LPX ((@) such that (y;, ¢;, N;) are equivalent in WDPX (Q) Without loss of generality,
we may assume that ¢; = ¢, =t ¢ and N; = N, =: N and that y, = hy; with h
in Z¢,1N(@). By Proposition 6.17, there exists z in Z¢,N(@) such that z@lz_1 = 0,. Note
then that (y,,¢,6,) = z(sy;,¢,6,)z ! where s = z ly,zy; ', Writing s = z 'hy,zy; !

one sees from the fact that z—!

and h both centralize ¢ and y; normalizes ¢ that s
centralizes ¢. On the other hand, one can just as easily check that as y; centralizes 6,
and y, centralizes 6, that s = z~!y,zy; ! also centralizes 6,. Therefore, as (v,,¢,6,) =
z(syl,q),el)z_l, we deduce that (y,,¢,6,) and (y;,¢,6,) are equivalent in LPX (Q)
as desired.

But, for (v, ¢,0) with image (y', ¢, N) under the Jacobson-Morozov map, one has
7o(Zy i) = mo(Zy ) as follows quickly from Proposition 6.15. These observations together

with Corollary 5.17 and Corollary 6.8 give the desired conclusion. |

Let us finally note that as a possibly useful corollary of the above results, we
also obtain the density of Frobenius semi-simple parameters in all three of these moduli

spaces.

Corollary 7.10. The subsets
@ cLP;,  WDPL*(@Q < WDPZ,  WDP¥(Q) C WDP,

are dense.

7.2 Isomorphism over the discrete locus

In this final section, we apply the material to give a geometric analogue of Corollary 3.16
or, in other words, we show that the Jacobson-Morozov morphism is an isomorphism
over the discrete loci in LPX and WDPX,

We have defined the discrete locus WDPIé'diSC in Definition 7.3, and we now do so
for LP.
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Definition 7.11. Let "™ be the universal L-parameter over LP5. Then, the discrete

locus in LP% is the subset

LpKdise . {x € LPX : Zs (™) /Z,(G), — Spec(k(x)) is ﬁnite} :

The same argument as in the proof of Proposition 7.2 shows that LP‘g'disc is an
open subset of LPIé and we endow it with the open subscheme structure. The following

relates the discrete loci in WDPIG{ and LPIG{, giving a geometrization of Corollary 3.16.

Proposition 7.12. The equality JMfl(WDPg'diSC) = LPIé'dlisc holds.

Proof. As these are both open subsets of the finite type affine Q-scheme LP¥, it suffices
to show that they have the same Q-points. In other words, we must show that for an
element LPE(@) one has that Zz(y) is finite (as a set) if and only if Zz(JM(y)) is finite.
Choosing an embedding Q@ — C one then quickly deduces this from Proposition 3.15 and

its proof. u

From this, and Proposition 7.8, we deduce the following.
Theorem 7.13. The morphism JM: LP’E'diSC — WDPIé'diSC is an isomorphism.
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