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We construct a moduli space LPG of SL2-parameters over Q, and show that it has good

geometric properties (e.g., explicitly parametrized geometric connected components and

smoothness). We construct a Jacobson–Morozov morphism JM : LPG → WDPG (where

WDPG is the moduli space of Weil–Deligne parameters considered by several other

authors). We show that JM is an isomorphism over a dense open of WDPG, that it

induces an isomorphism between the discrete loci LPdisc
G → WDPdisc

G , and that for any

Q-algebra A it induces a bijection between Frobenius semi-simple equivalence classes

in LPG(A) and Frobenius semi-simple equivalence classes inWDPG(A) with constant (up

to conjugacy) monodromy operator.

1 Introduction

Motivation. A problem of fundamental importance in the study of harmonic analysis is

the classiocation of irreducible complex admissible representations of G(F) where F is

a non-archimedean local oeld, and G is a reductive group over F. The local Langlands

correspondence, a guiding principle for many areas of number theory in the past

40 years, posits a parameterization of such admissible representations in terms of

equivalence classes of parameters related to the Galois theory of F. These parameters

come in several forms. Chief among these are the complex L-parameters, which are
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homomorphisms ψ : WF × SL2(C) → LG(C) satisfying certain properties (cf. [41, §3]),

and complex Weil–Deligne parameters, which are pairs (ϕ,N) where ϕ : WF → LG(C) is

a homomorphism and N is a nilpotent element of the Lie algebra of Ĝ(C), satisfying

certain properties (cf. [21, §2.1]). The notion of equivalence in both cases is that of Ĝ(C)-

conjugacy.

The classical theorem of Jacobson–Morozov (cf. [28, §III.11, Theorem 17]) asserts

that the Jacobson–Morozov map θ �→ dθ
((

0 1
0 0

))
gives a surjection

JM :

{
Algebraic homomorphisms

θ : SL2(C) → Ĝ(C)

}
→
{
Nilpotent elements

N ∈ Lie(Ĝ(C))

}
,

which becomes a bijection on the level of Ĝ(C)-quotients. One may extend this to a

Jacobson–Morozov map

JM :

{
ComplexL-parameters

ψ : WF × SL2(C) → LG(C)

}
→
{
Complex Weil–Deligne parameters

(ϕ,N)

}
.

This map is not a bijection, even up to equivalence and, in fact, is not even surjective

(see Example 3.5). However, the Jacobson–Morozov map does give a bijection between

equivalence classes of Frobenius semi-simple parameters (see [21, Proposition 2.2] or

[27, Proposition 1.13]), those that feature most prominently in the local Langlands

correspondence. Therefore, in practice, the Jacobson–Morozov map allows one to pass

fairly freely between these two notions of parameter and to treat them as essentially

equivalent. This is useful as each of these perspectives has its own advantages (e.g., as

illustrated quite well in [21]).

The goal of this article is to put the above results on amoduli-theoretic footing.

Namely we deone and study a moduli space of L-parameters, and construct a Jacobson–

Morozov morphism

JM : LPG → WDPG

between the moduli space of L-parameters and the moduli space of Weil–Deligne param-

eters. We then show that there is a natural stratiocation of the moduli space of Weil–

Deligne parameters with the property that over each stratum the Jacobson–Morozov

morphism takes a particularly simple form. Using this, we show that the Jacobson–

Morozov morphism satisoes some birational-like properties, is an isomorphism over

the discrete locus, and that a version of the above bijection between equivalence

classes of complex Frobenius semi-simple parameters has an analogue over an arbitrary

Q-algebra.
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Remark. The reason we do not restrict our attention to semi-simple parameters is that

they do not form a representable presheaf. Thus, to do geometry, we are required to work

with arbitrary parameters.

Statement of main results. Let F be a non-archimedean local oeld and G a reductive

group over F. In §6.1, we deone themoduli space of L-parameters for G, which we denote

LPG.

Proposition 1 (see Corollary 6.8). The moduli space LPG is smooth over Q and has

explicitly parameterized afone connected components.

On the other hand, letWDPG denote themoduli space ofWeil–Deligne parameters

(e.g., as in [44, §3.1]). In §6.3, we deone the Jacobson–Morozov morphism

JM : LPG → WDPG.

Our major result may then be stated as follows.

Theorem 1 ( see Theorem 7.9 and Theorem 7.13). The Jacobson–Morozov morphism is

weakly birational and induces an isomorphism LPdisc
G

∼−→ WDPdisc
G over the discrete loci.

Here we say a morphism of schemes f : Y → X is weakly birational if there

exists a dense open subset U ⊆ X such that f : f−1(U) → U is an isomorphism. A weakly

birational map f is birational if and only if f induces a bijection at the level of irreducible

components. Also, the discrete loci inside of LPG and WDPG are deoned, at least when G

is semi-simple, as the locus of points where the centralizer of the universal parameter is

quasi-onite over the base (see Deonition 7.3 and Deonition 7.11 for general deonitions).

To prove Theorem 1, we stratify WDPG by its nilpotent orbits. Denote by N̂ the

nilpotent variety for Ĝ and form the stratiocation N̂ � :=
⊔

N ON by its Ĝ-orbits, which

we treat as a disconnected scheme over Q. We then obtain a stratiocation WDP�
G by

pulling back N̂ � along the natural map WDPG → N̂ . We give an explicit description

of the structure of this variety.

Proposition 2 (see Corollary 5.17). The moduli space WDP�
G is smooth over Q and has

explicitly parameterized connected components.

The Jacobson–Morozov morphism factorizes through WDP�
G and interacts well

with the explicit decompositions indicated in Proposition 1 and Proposition 2. Utilizing

this we show the following, which implies the weakly birational portion of Theorem 1.
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Proposition 3 (see Theorem 7.9). The morphism JM : LPG → WDP�
G is birational.

A key component of our proof of Proposition 3 is a relative version of the

bijection between equivalence classes of complex Frobenius semi-simple parameters.

Here, Frobenius semi-simplicity is somewhat delicate and deoned in Deonition 5.10 and

Deonition 6.11.

Theorem 2 (see Theorem 6.16). For any Q-algebra A, the map

JM : LPG(A)/Ĝ(A) → WDP�
G(A)/Ĝ(A)

is a bijection on Frobenius semi-simple elements.

We onally mention that another important ingredient in our proof of Proposi-

tion 3 is a result that may be interpreted as a stronger version of the isomorphy of the

Jacobson–Morozov morphism over the discrete loci, as stated in Theorem 1. Namely, in

Proposition 7.8, we show that the Jacobson–Morozov morphism is an isomorphism over

the locus of points of WDPG whose centralizer has reductive identity component. The

relationship to birationality comes from Proposition 7.7, which shows that the locus of

such points is dense in WDPG and thus, a fortiori, dense in WDP�
G (the same holds true

for LPG).

As the moduli space of Weil–Deligne parameters has featured quite prominently

in recent developments in the Langlands program and adjacent oelds (e.g., see [2], [15],

[44], and [17]), we feel that these results will be valuable in the study of the one structure

of the space WDPG. In particular, one may in theory reduce many questions involving

<generic= geometric structure of WDPG to the study of LPG. More speciocally, we have

stratioed the geometric space WDPG into pieces such that each stratum is smooth and

(essentially) like a homogenous space for a group, and thus simple geometrically (cf.

Theorem 5.16). Moreover, each of these strata is birational to similarly deoned strata

in the representation-theoretically simpler space LPG. In fact, such ideas have already

implicitly appeared in several important geometric results concerning WDPG (e.g., see

[2, §2.3]).

In addition to its potential uses to study the geometry of WDPG, we believe that

these moduli-theoretic results are clarifying in several other ways. Namely, the weak

birationality of the Jacobson–Morozov morphism helps qualify in the classical setting

that almost every complex Weil–Deligne parameter is in the image of the Jacobson–

Morozov map. Moreover, the isomorphy over the discrete locus may also be used to
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deduce results of interest even in this classical case (e.g., see Proposition 3.18). Finally,

we feel that our explicit description of the moduli space of L-parameters (e.g., its set of

connected components) helps explain some phenomena differentiating LPG from WDPG

as previously observed by others (cf. the introduction to [15]).

Future directions. While our results are written over Q, it is clear that they extend

over Z[ 1N ] for sufociently divisible N. Evidently, one cannot hope to extend our results

over all of Z[ 1p ] as currently written. But, as in op. cit. (and [25]), the correct analogue of

WDPG over Z[ 1p ] does not directly involve Weil–Deligne parameters but, instead, involves

a scheme of 1-cocycles for the discretizationW0
F of the tame inertia group. One may then

ask whether there is an analogous description of LPG, which allows our results to work

over Z[ 1p ].

Also, as the morphism JM : LPG → WDPG is weakly birational, there exists a

dense open subset U of WDPG such that JM : JM−1(U) → U is an isomorphism. In

Proposition 3.15 below, we essentially show that the analytication JM−1(U)an
C

contains

all (essentially) tempered L-parameters. From a geometric perspective (e.g., from the

perspective of [17]), it is more natural to consider �-adic L-parameters instead of complex

ones. One is then naturally led to the ask whether JM−1(U)an
Q�

contains the analogue of

(essentially) tempered representations, which are the (essentially) ν-tempered represen-

tations of Dat (see [12]).

Notation and conventions

• F is a non-archimedean local oeld with residue oeld of characteristic p and

size q,

• WF is the Weil group of F,

• for a Galois extension of oelds k′/k, we write the Galois group as �k′/k and we

write �k for the absolute Galois group of k,

• for a ring R we shall denote by AlgR the category of R-algebras,

• we shall frequently abuse terminology and call a covariant functor AlgR → C

a C-valued presheaf,

• a reductive group S-scheme H will always have connected obers,

• we use the notation Int(g) for the inner automorphisms associated to an

element g of a group,

• for a set X we shall denote by X the associated constant scheme over Q.
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2 Some Group Theoretic Preliminaries

In this section, we establish some notation, deonitions, and basic well-known results

that we shall often use without comment in the sequel. We encourage the reader to skip

this section on orst reading, referring back only when necessary.

2.1 The nilpotent variety, unipotent variety, and exponential map

Let us ox k to be a oeld of characteristic 0 andH to be a reductive group over k.We denote

by h the Lie algebra of H thought of both as a vector k-space and as a k-scheme.

Let A be a k-algebra and x an element of hA. Recall then that as in [14, II, §6, No3]

one may associate an element exp(Tx) in H(A�T�) to x. We then say that x is nilpotent if

it satisoes any of the following equivalent conditions.

Proposition 2.1. The following are equivalent:

(1) for all onite-dimensional representations ρ : H → GL(V) the endomorphism

dρ(x) of VA is nilpotent,

(2) there exists a faithful onite-dimensional representation ρ : H → GL(V) such

that the endomorphism dρ(x) of VA is nilpotent,

(3) exp(Tx) belongs to H(A[T]),

(4) there exists a morphism of group A-schemes α : Ga,A → HA such that x =
dα(1),

if A is in addition reduced, then (1)–(4) are equivalent to

(5) x belongs to hderA and ad(x) is a nilpotent transformation of hderA .

Proof. The equivalence of (1)–(4) is given by [14, II, §6, No3, Corollaire 3.5]. To see the

equivalence of (1) and (5), in the case when A is reduced, we may assume that A is a oeld.

Let σ : H/Z(Hder) → GL(W) be the faithful representation given by taking a direct sum

of Ad: H → GL(hder) and the composition of H → Hab with a faithful representation of

Hab. It is clear that applying (1) to σ shows that (5) holds. Conversely, suppose that (5)

holds, so then dσ(x) is nilpotent. Let ρ be as in (1). We may assume that ρ is irreducible.

We put n = |Z(Hder)|. Then ρ⊗n : H → GL(V⊗n) factors through H/Z(Hder). Hence by [13,

Proposition 3.1 (a)], dρ⊗n(x) is nilpotent. This implies that dρ(x) is nilpotent. �

Let us consider the symmetric algebra on h∗ (resp. the graded ideal of positive

degree tensors)

S(h∗) =
⊕

d�0

Sd(h∗) = Hom(h,A1
k),

(
resp. S+(h∗) :=

⊕

d>0

Sd(h∗)

)
.
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Let S(h∗)H be the k-subalgebra of S(h∗), which is invariant for the adjoint action of H on

h (in the sense of [34, Deonition 0.5 i)]). Let us then consider the radical ideal

S+(h∗)H := S+(h∗) ∩ S(h∗)H .

The nilpotent variety of H is the closed subscheme of h given by N := V
(
S+(h∗)H

)
(or

NH when we want to emphasize H). This name is justioed as for any extension k′ of k we

have

N (k′) =
{
x ∈ hk′ : x is nilpotent

}

(cf. [29, §6.1, Lemma]). In particular, N is the unique reduced subscheme of h whose k-

points consist of the nilpotent elements of hk.

The nilpotent variety N is an integral (cf. [29, §6.2, Lemma]) onite type afone

k-scheme of dimension dim(H) − r where r is the geometric rank of H (see [29, §6.4]).

In fact, as k is of characteristic 0, it is normal by the results of [32]. Observe that the

nilpotent variety is stable under the adjoint action of H. Also observe that if f : H → H ′

is a morphism of reductive groups over k it induces a morphism df : NH → NH ′ and

satisoes df (Ad(h)(x)) = Ad(f (h))(df (x)).

Example 2.2. Let Matn,k be the scheme of n-by-nmatrices over k, and let I ⊆ O(Matn,k)

be generated by those polynomials corresponding to (aij)
n = 0. Then,NGLn,k

= V(
√
I).

From this example, and the functoriality of the nilpotent variety, it’s easy to see

that if A is a k-algebra, then one has the containment

N (A) ⊆ {x ∈ hA : x is nilpotent},

which is an equality if A is reduced, but can differ otherwise. From this containment, we

see that for any element x of N (A), we may deone an element exp(x) of H(A) as in [14, II,

§6, No3, 3.7]. As this association is functorial, we obtain an H-equivariant morphism of

schemesN → H called the exponential morphism and denoted by exp (or expH when we

want to emphasize H), which is functorial in H. We would now like to describe the image

of exp.

To this end, note that there exists a unique reduced closed subscheme U (or UH

when we want to emphasize H) of H such that

U(k′) =
{
h ∈ H(k′) : h is unipotent

}
,

for all extensions k′ of k (see [39, Proposition 1.1]). We call U the unipotent variety

associated to H. It is an integral onite type afone k-scheme of dimension dim(H) − r,
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which is stable under the conjugation action of H (see loc. cit.). Moreover, as k is of

characteristic 0, it is normal (see [39, Proposition 1.3]). We observe that U is stable under

the conjugation action of H.

Observe that exp factorizes through U , as both are reduced, and so this may be

checked on the level of k-points. We have the following omnibus result concerning the

exponential morphism.

Proposition 2.3. Let H be a reductive group over a characteristic 0 oeld k. Then,

(1) the exponential map exp: NH → UH is an H-equivariant isomorphism,

(2) for any k-algebra A and any x in NH(A), Ad(exp(x)) is equal to
∑∞

i=0
1
i! ad(x)i,

(3) for any k-algebra A and any nilpotent Lie subalgebra n of hA contained in

N (A) the subset exp(n) ⊆ H(A) is a subgroup. If the functor n �→ n ⊗A B

is representable by a closed subgroup scheme of NA then exp(n) is actually

a closed subgroup scheme of HA such that exp(n)x is unipotent for all x in

Spec(A).

Proof. For (1), as NH and UH are connected and normal, and exp may be checked to be a

bijection on k-points, this follows from Zariski’s main theorem as k is of characteristic

0. Claim (2) follows by the functoriality of the exponential map (cf. [14, II, §6, No3,

3.7]). Finally, (3) may be deduced by the Campbell–Hausdorff series (see [5, II, §6, No4,

Théorème 2]). �

2.2 The L-group and C-group

Fix F to be a non-archimedean local oeld, and let G be a reductive group over F. In this

subsection, we deone the C-group of G, which is a modiocation of the L-group of G that

will be used to construct a moduli space of Weil–Deligne parameters over Q without

choosing a square root of q (see §5.1).

To begin, let �(G) denote the canonical based root datum of GF (see [33, §1.1]

and [35, §21.42]), which comes equipped with an action of �F . We ox once and for all a

Langlands dual group of G by which we mean a pinned reductive group (Ĝ, B̂, T̂, {xα})
over Q (see [35, §23.d]) together with an isomorphism between �(Ĝ, B̂, T̂) and �(G)∨. We

denote by ĝ the Lie algebra of Ĝ, and by N̂ the nilpotent variety of Ĝ.

Next, let WF denote the Weil group scheme over Q associated to F as in [42,

(4.1)]. For a Q-algebra A, one may identify WF(A) with the set of continuous maps

f : π0(Spec(A)) → WF where here π0(Spec(A)) is thought of as a proonite space (cf. [40,Tag

0906]) andWF is given its usual topology. In particular,WF(A) = WF(A) when π0(Spec(A))
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is discrete (e.g., if A is connected or Noetherian), but can differ otherwise. For w in WF ,

we shall occasionally abuse notation and use w to also denote its image in WF(A).

Note that if d : WF → Z is the degree map sending a lift of arithmetic Frobenius

to −1, then there is a morphism of Q-group schemes d : WF → Z, which takes a map f to

d ◦ f . Observe that Z admits an embedding of group Q-schemes into Gm,Q corresponding

to 1 �→ q−1 and we denote the composition of d with this map by ‖ · ‖ : WF → Gm,A. We

deone IF = ker(‖ · ‖), which is an afone scheme equal to lim←− IF/IK as K travels over all

onite extensions of F. Note that if A is a Q-algebra and X an A-scheme locally of onite

presentation then any morphism of A-schemes IF,A → X must factorize through IF/IK

for some K (cf. [40, Tag 01ZC]).

Remark 2.4. One reason to prefer WF over the constant group scheme WF is that the

topological group π0(WF) is equal to WF with its usual topology, and similarly for IF .

Returning to G, note that the action of �F on �(G) gives rise to an action of �F

on (Ĝ, B̂, T̂, {xα}) and, in particular, on Ĝ as a group Q-scheme. We deone a onite Galois

extension F∗ of F characterized by the equality �F∗ = ker(WF → Aut(Ĝ)). Equivalently,

F∗ is the minimal oeld splitting G∗, the quasi-split inner form of G. We write �∗ for �F∗/F .

As �∗ acts on Ĝ and WF admits �∗ as a quotient, we obtain an action of WF on Ĝ. Deone

the L-group scheme of G to be the group Q-scheme LG = Ĝ � WF . Observe that there is

a natural inclusion Ĝ ↪→ LG, which identioes Ĝ as a normal subgroup scheme of LG. In

particular, there is a natural conjugation action of LG on Ĝ, which in turn induces an

adjoint action of LG on ĝ.

As the action ofWF on Ĝ factorizes through a onite quotient,we see by Lemma 2.5

below that the group presheaf associating a Q-algebra A to Z0(Ĝ)(A) := Z(Ĝ)(A)WF (A) is

representable.

Lemma 2.5. Let A be a Q-algebra, H a reductive group over A, and � a onite group

acting on H by group A-scheme automorphisms. Then, the group functor

H� : AlgA → Grp, B �→ H(B)�

is represented by a subgroup scheme of H smooth over A, with (H�)◦ reductive over A,

and such that for all A-algebras B one has the equality Lie(H�)(B) = Lie(H)(B)� .

Proof. Write H = Spec(R), then one easily verioes that Spec(R�), where R� is the ring

of coinvariants, represents H� . As A is a Q-algebra, it is evident that R� is a direct
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summand of R and thus H� is nat over A, and thus smooth. By [37, Exposé VIB, Corollaire

4.4], we know that (H�)◦ is representable and smooth over A, and it is then reductive by

[36, Theorem 2.1]. The claim about Lie algebras is clear as the functor of �-invariants

preserves kernels. �

Let X∗ denote the cocharacter component of �(G) and R+ the positive root

component, and deone δ to be the element of X∗ given by the sum over the elements

of R+. By our identiocation between �(Ĝ, B̂, T̂) and �(G)∨, we see that δ corresponds to

an element of X∗(T̂), which we also denote by δ. Let us set zG := δ(−1) ∈ T̂(Q)[2]. By the

proof of [1, Proposition 5.39], zG lies in Z0(Ĝ)(Q). Thus, the action of WF on Ĝ × Gm,Q

(with trivial action on the second component) oxes the pair (zG,−1). Therefore,WF acts

on Ǧ := (Ĝ×Gm,Q)/〈(zG,−1)〉. We then deone the C-group scheme of G to be CG = Ǧ�WF .

Note that by [1, Proposition 5.39] there exists a central extension G̃ of G such that CG

is naturally isomorphic to L̃G, which is the deonition of the C-group as in [1, Deonition

5.38].

The group Ĝ admits a natural embedding into Ǧ, with normal image, via the orst

factor, and therefore we obtain a conjugation action of CG on Ĝ, and thus an adjoint action

of CG on ĝ. Also, the morphism

(Ĝ× Gm,Q) �WF → Gm,Q × WF , (g, z,w) �→ (z2,w)

annihilates 〈(zG,−1)〉, and thus induces a morphism

pC = (pGm
,pWF

) : CG → Gm,Q × WF .

Finally, we observe that if k is an extension of Q, and c is any element of k such that

c2 = q, then there is a morphism ic :
LGk → CGk obtained as the composition

LGk

(g,w) �→(g,c−d(w),w)−−−−−−−−−−−−→ (Ĝk × Gm,k) �WF,k → CGk.

2.3 Scheme of homomorphisms and cross-section homomorphisms

We establish here some terminology and basic results concerning the scheme of homo-

morphisms as well as the scheme of cross-section homomorphisms (in the sense of [15,

Appendix A]). Throughout the following, we ox k to be oeld of characteristic 0.
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Scheme of homomorphisms. Let H and H ′ be reductive groups over k with Lie algebras

h and h′. For a k-algebra A, denote by Hom(HA,H
′
A) the set of group A-scheme morphisms

HA → H ′
A. Consider the following functor:

Hom(H,H ′) : Algk → Set, A �→ Hom(HA,H
′
A),

and deone the functor Hom(h, h′) similarly, both of which carry a natural H ′-conjugation

action.

Proposition 2.6. The following statements hold true.

(1) The functor Hom(H,H ′) is representable by a smooth k-scheme for which the

map

� : H ′ × Hom(H,H ′) → Hom(H,H ′) × Hom(H,H ′), (h, f ) �→ (hfh−1, f )

is smooth,

(2) if H is semi-simple then Hom(H,H ′) is afone, and if H furthermore simply

connected, then the map

Hom(H,H ′) → Hom(h, h′), f �→ df ,

is an H ′-equivariant isomorphism,

(3) for any k-algebra A, the natural map

Hom(HA,H
′
A) → Hom(H(A),H ′(A))

is injective.

Proof. Statements (1) and (2) follow from [7, Theorem 2] and [19, Exp. XXIV, Proposition

7.3.1], respectively. Statement (3) follows from Proposition 2.7 below as H and H ′ are

integral and unirational (see [35, Summary 1.36, Theorem 3.23, and Theorem 17.93]). �

Proposition 2.7. Suppose that X and Y are onite type integral k-schemes with X

unirational. Then for any k-algebra A, the natural map

Hom(XA,YA) → Hom(X(A),Y(A))

is injective.
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Proof. Let f and g be two differentA-morphisms XA → YA. Note that the claim is clearly

local on Y, and so we may assume that Y is afone. It is also clear that by embedding Y

into An
k
, and checking coordinate-by-coordinate we may further assume that Y = A1

k
.

It also sufoces to check locally on X, and so using the unirationality of X we may then

further assume that X = D(w) ⊆ An
k
for w in k[x1, . . . ,xn]. With this, we may interpret f

and g as elements of A[x1, . . . ,xn][w
−1]. Taking the difference of f and g and multiplying

by an appropriate power ofw allows us to further assume that f lies in A[x1, . . . ,xn] and

g is the zero map. By considering the map X(k) → X(A), we will be done if we can show

that f does not vanish identically on D(w)(k). If {ai}i∈I is a basis of A as a k-vector space,

then we may write f =
∑

i∈I aifi where fi ∈ k[x1, . . . ,xn]. As f is non-zero, there exists

some i such that fi is non-zero. As D(w)(k) is Zariski dense in An
k
as k is inonite, there

then exists some x in D(w)(k) such that fi(x) �= 0. Then, by setup, f (x) �= 0. �

In the future, we call a homomorphism of groups H(A) → H ′(A) algebraic if it is

the map on A-points of a morphism (necessarily unique) of group A-schemes HA → H ′
A.

Schemes of cross-section homomorphisms. Fix an abstract group � and a reductive

group H over k. We then consider the presheaf

Hom(�,H) : Algk → Set, Hom(�,H(A)) = Hom(�A,HA).

This presheaf clearly carries an H-conjugation action. If, in addition, � acts on H by

group k-scheme morphisms then for a k-algebra A we say a homomorphism f : �A →
HA��A is a cross-section homomorphism over A if p2(f (σ )) = σ for all σ , where p2 : HA�

�A → �A is the scheme-theoretic projection. We denote by Z1(�,H)(A) the set of cross-

section homomorphisms over A, which is clearly a presheaf on k-algebras that carries

an H-conjugation action.

Remark. The notation Z1(�,H) is used as this object is equal to the scheme of 1-

cocycles in [15, Appendix A].

Proposition 2.8 ([15, Lemma A.1 and Corollary A.2]). Suppose that � is onite. Then,

Hom(�,H) (resp. Z1(�,H)) is represented by a onite type smooth afone k-scheme.

Moreover, for all k-algebras A, and all f in Hom(�,H)(A) (resp. Z1(�,H)(A)), the orbit

map

μf : HA → Hom(�,H)A,

(
resp. μf : HA → Z1(�,H)A

)

is smooth.
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2.4 Transporter and centralizer schemes

Let R be a ring, H a group-valued functor on AlgR, and X a set-valued functor on AlgR.

Then, for an R-algebra S and two elements α and β of X(S), we deone the transporter set

to be

TranspH(α,β) := {h ∈ H(S) : h · α = β} .

We then deone the transporter presheaf to be the presheaf

Transp
H
(α,β) : AlgS → Set, T �→ TranspH(αT ,βT).

We abbreviate Transp
H
(β,β) to ZH(β) and call it the centralizer presheaf ,which is clearly

a group presheaf. We then have the following obvious proposition.

Proposition 2.9. Suppose that H is a group R-scheme and that X is a separated R-

scheme of onite presentation. Then, for anyR-algebra S and any elements α and β of X(S),

the presheaves Transp
H
(α,β) and ZH(β) are representable by closed onitely presented

subschemes of HS. Moreover, for any S-algebra T, one has the natural equalities

Transp
H
(α,β)T = Transp

H
(αT ,βT), ZH(β)T = ZH(βT).

2.5 Eigenvalue decomposition of Lie algebras

We record here the following result, which, for a cocharacter of a smooth group scheme,

relates a character decomposition and an eigenvalue decomposition of the Lie algebra.

Lemma 2.10. Let S be a scheme and H a smooth group S-scheme with Lie algebra h. Let

ρ : Gm,S → H be a morphism of group S-schemes. Set h = dρ(1), and for an integer i, we

set

hρ,i = {x ∈ h : Ad(ρ(z))x = zix for all z}, hh,i = {x ∈ h : ad(h)(x) = ix}.

Then we have hρ,i ⊆ hh,i. This is an equality if S is a Q-scheme.

Proof. We have d(Ad ◦ρ)(1) = ad(h) under the identiocation of the Lie algebra of GL(h)

with End(h). By taking the weight decomposition of h under Ad ◦ρ (cf. [10, Lemma A.8.8]),

we obtain the claim from the fact that the derivative of the ith-power map Gm,S → Gm,S

is the multiplication-by-imap. The last claim follows from h =
⊕

i∈Z hρ,i and that hh,i for

i ∈ Z are linearly independent if S is a Q-scheme. �
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3 The Classical Setting

In this section, we recall the Jacobson–Morozov theorem and the Jacobson–Morozov

theorem for parameters in their classical settings. This will not only serve to emphasize

the results we wish to geometrize, but will play an important role in the proof of these

more general results.

3.1 The Jacobson–Morozov theorem

Let k be a oeld of characteristic 0 and H an algebraic group over k such that H◦ is

reductive. It will be useful to explicitly name the matrices

e0 =
(
0 1

0 0

)
, h0 =

(
1 0

0 −1

)
, f0 =

(
0 0

1 0

)
,

which form a k-basis of the Lie algebra sl2,k. We then have the Jacobson–Morozov

Theorem as follows.

Theorem 3.1 (cf. [6, VIII, §11, No2, Proposition 2 and Corollaire]). The map

JM : Hom(SL2,k,H) → N (k), θ �→ dθ(e0)

is an H(k)-equivariant surjection, and induces a bijection

Hom(SL2,k,H)/H(k) → N (k)/H(k).

Let us call a triple (e,h, f ) of elements an sl2-triple in h if the following equalities

hold

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h.

Let us denote by T (k) (or TH(k) when we want to emphasize H), the set of sl2-triples in h.

The natural adjoint action of H(k) on h induces an action of H(k) on T (k).

Theorem 3.2. The following diagram is commutative and each arrow is a bijection
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We end this subsection by explaining the relationship between the centralizers

of θ and N = JM(θ). Namely, let us set

uN = im(ad(N)) ∩ ker(ad(N)), UN = exp(uN).

Then, we have the following Levi decomposition statement.

Proposition 3.3. The equality ZH(N) = UN � ZH(θ) holds. Further, we have

Lie(ZH(θ)) = Lie(ZH(N))0, Lie(UN) =
⊕

i>0

Lie(ZH(N))i,

where for an integer i, we set

Lie(ZH(N))i = {x ∈ LieZH(N) : Ad
(
θ
((

z 0
0 z−1

)))
x = zix}.

Proof. The orst claim is proved in the same way as [8, Proposition 2.4]. The second

follows from [16, Lemma 5.1] by taking the derived group of H◦. �

3.2 The Jacobson–Morozov theorem for parameters

We now recall the analogue of the Jacobson–Morozov theorem for parameters. We use

the notation from §2.2.

Deonition 3.4. Topologize LG(C) by giving Ĝ(C) the classical topology.

(1) A (complex) Weil–Deligne parameter for G is a pair (ϕ,N) where

• ϕ : WF → LG(C) is a continuous cross-section homomorphism,

• N ∈ N̂ (C) is such that Ad(ϕ(w))(N) = ‖w‖N for all w ∈ WF .

(2) A (complex) L-parameter for G is a map

ψ : WF × SL2(C) → LG(C),

such that

• ψ |WF
: WF → LG(C) is a continuous cross-section homomorphism,

• ψ |SL2(C) : SL2(C) → LG(C) takes values in Ĝ(C) and is algebraic.
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For τ ∈ {L,WD} let us denote by �
τ ,�
G the set of complex τ -parameters for G.

Recall that a Weil–Deligne parameter (ϕ,N) (resp. an L-parameter ψ ) is called Frobenius

semi-simple if for one (equiv. for any) lift w0 of arithmetic Frobenius the element ϕ(w0)

(resp. ψ(w0)) is semi-simple (in the sense of [4, §8.2]). We denote by �
τ ,ss,�
G the subset

of Frobenius semi-simple τ -parameters. For each τ , there is a natural action of Ĝ(C) on

�
τ ,�
G , which stabilizes the subset �

τ ,ss,�
G . We then deone �τ

G := �
τ ,�
G /Ĝ(C) and �

τ ,ss
G :=

�
τ ,ss,�
G /Ĝ(C). For an element ψ of �

L,�
G , we denote by θ (or θψ when we want to emphasize

ψ ) the morphism ψ |SL2(C) : SL2(C) → Ĝ(C).

To upgrade Theorem 3.1 to the parameter setting, we need to associate a Weil–

Deligne parameter to any L-parameter. To this end, let us deone a morphism of groups

i = (i1, i2) : WF → WF × SL2(C), w �→
(
w,

(
‖w‖

1
2 0

0 ‖w‖− 1
2

))
.

We then deone the Jacobson–Morozov map to be the Ĝ(C)-equivariant map

JM : �
L,�
G → �

WD,�
G , ψ �→ (ψ ◦ i,dθ(e0)).

It is easy to check that JM−1(�
WD,ss,�
G ) is precisely�

L,ss,�
G . As the Jacobson–Morozovmap

is Ĝ(C)-equivariant, it induces maps �L
G → �WD

G and �
L,ss
G → �

WD,ss
G .

The Jacobson–Morozov map is not a bijection as the following example illus-

trates.

Example 3.5. Set G = GL4 and as G is split we may replace LG(C) with Ĝ(C) = GL4(C).

Consider the Weil–Deligne parameter (ϕ,N) given as follows:

ϕ : w �→

»
¼¼¼¼½

q2 0 0 0

0 q 1 0

0 0 q 0

0 0 0 1

¾
¿¿¿¿À

d(w)

, N =

»
¼¼¼¼½

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

¾
¿¿¿¿À
.

Suppose for contradiction that (ϕ,N) = JM(ψ) for some ψ in �
L,�
G . Then, ψ is of the form

ρ � Std, where ρ is a representation of WF and Std is the standard representation of

SL2(C). Indeed, as N is conjugate to

»
¼¼¼¼½

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

¾
¿¿¿¿À
,



5116 A. Bertoloni Meli et al.

we see from the Jacobson–Morozov theorem that as an SL2(C) representation C4 is

isomorphic to Std⊕2. One may then check that the morphism

HomSL2(C)(Std,C
4) � Std → C4

is an isomorphism of WF × SL2(C)-representations. Note that by examining the rela-

tionship between the WF-actions of ϕ and ψ , the twist of ρ by the unramioed character

w �→ ‖w‖−1/2 must be isomorphic to the representation on ker(N) induced by ϕ. In

particular, ρ is semi-simple. Hence, the Weil–Deligne parameter attached to ψ must be

Frobenius semi-simple, but the original (ϕ,N) is not Frobenius semi-simple.

However, we have the following Jacobson–Morozov theorem for parameters.

Theorem 3.6 (see [21, Proposition 2.2] or [27, Proposition 1.13]). The Jacobson–Morzov

map JM : �
L,ss,�
G → �

WD,ss,�
G is a surjection and induces a bijection �

L,ss
G → �

WD,ss
G .

3.3 Bijection over reductive centralizer locus and applications

The Jacobson–Morozov theorem for parameters is stated at the level of Ĝ(C)-orbits.

While this is a non-issue for now, when we attempt to geometrize this result, it becomes

more problematic due to the subtle nature of quotients in algebraic geometry. So,wewish

to upgrade the Jacobson–Morozov theorem for parameters to a bijectivity statement

before quotienting by Ĝ(C).

To begin, we give an analogue of Proposition 3.3 for parameters. To state it, let

(ϕ,N) be an element of �
WD,�
G and set UN(ϕ) := UN(C) ∩ ZĜ(C)(ϕ).

Proposition 3.7. Let ψ be an element of �
L,�
G and set (ϕ,N) = JM(ψ). Then, the equality

ZĜ(C)(ϕ,N) = UN(ϕ) � ZĜ(C)(ψ) holds.

Proof. Given Proposition 3.3 it sufoces to show that if ua belongs to ZĜ(C)(ϕ,N),where u

is in UN(C) and a is in ZĜ(C)(θ), then in fact u belongs to UN(ϕ) and a belongs to ZĜ(C)(ψ).

To prove this, we note that conjugation by an element in the image of ϕ stabilizes both

UN(C) and ZĜ(C)(θ). Indeed, since Ad(ϕ(w))(N) = ‖w‖N, we have that conjugation by

ϕ(w) stabilizes ZĜ(C)(N) and hence its unipotent radical UN . On the other hand, as ϕ(w)

equals ψ(w, 1)θ(i2(w)), and ψ(w, 1) commutes with θ , one may easily check the claim

that ϕ(w) normalizes ZĜ(C)(θ). Now for eachw ∈ WF ,ua equals Int(ϕ(w))(u) Int(ϕ(w))(a).

Therefore, Int(ϕ(w))(a)a−1 equals Int(ϕ(w))(u)−1u. By what we have proven, the former

is an element of ZĜ(C)(θ) and the latter is an element of UN(C). Since UN(C) and ZĜ(C)(θ)
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have trivial intersection, we have that both sides are trivial and so a and u commute

with ϕ(w) as desired. �

We may use this decomposition to exhibit an example of a semi-simple L-

parameter ψ whose associated Weil–Deligne parameter has strictly larger centralizer.

Example 3.8. Let G = GL3 and consider the element ψ in �
L,ss,�
G given by the following

ψ

(
w,

(
a b

c d

))
=

»
¼¼½

»
¼¼½

a b 0

c d 0

0 0 1

¾
¿¿À

»
¼¼½

‖w‖− 1
2 0 0

0 ‖w‖− 1
2 0

0 0 1

¾
¿¿À ,w

¾
¿¿À .

and set (ϕ,N) = JM(ψ). In this case, we have

uN =

⎧
⎪⎪«
⎪⎪¬

»
¼¼½

0 ∗ ∗
0 0 0

0 ∗ 0

¾
¿¿À

«
⎪⎪¬
⎪⎪­
.

Hence

»
¼¼½

1 0 1

0 1 0

0 0 1

¾
¿¿À ∈ ZĜ(C)(ϕ,N) ∩ UN(C),

but it does not belong to ZĜ(C)(ψ) by Proposition 3.7.

Remark 3.9. We remark that although ZĜ(C)(ψ) need not equal ZĜ(C)(JM(ψ)), these

groups are the same for the purposes of parametrizing L-packets as in [30] as they have

the same component groups by Proposition 3.7. More generally, one can consider the

group S
�
ψ (resp. S�

JM(ψ)
) that is related to [30, Conjecture F] and is deoned by

ZĜ(C)(ψ)/[ZĜ(C)(ψ) ∩ Ĝ(C)der]◦,

(
resp. ZĜ(C)(JM(ψ))/[ZĜ(C)(JM(ψ)) ∩ Ĝ(C)der]◦

)
.

These groups are equal by Proposition 3.7 as UN(ϕ) is contained in [ZĜ(C)(JM(ψ)) ∩
Ĝ(C)der]◦.

This decomposition also allows us to give an algebraic condition for when a

Weil–Deligne parameter is the image under the Jacobson–Morozov map of a semi-simple
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L-parameterwith the same centralizer. In the rest of this section,we use Proposition 5.11,

but the proof of the proposition does not depend on the rest of this section.

Proposition 3.10. The group ZĜ(C)(ϕ,N)◦ is reductive if and only if (ϕ,N) = JM(ψ) for a

Frobenius semi-simple Weil–Deligne parameter ψ such that ZĜ(C)(ψ) = ZĜ(C)(ϕ,N).

Proof. Suppose orst that ZĜ(C)(ϕ,N)◦ is reductive. We shall show in Proposition 5.11

that this implies that (ϕ,N) is Frobenius semi-simple. Let ψ be any element of �
L,ss,�
G

such that JM(ψ) = (ϕ,N). By Proposition 3.7, the reductivity of ZĜ(C)(ϕ,N)◦ implies that

UN(ϕ) is trivial, and thus ZĜ(C)(ψ) = ZĜ(C)(ϕ,N) as desired. Conversely, if (ϕ,N) = JM(ψ)

for an element of �
L,ss,�
G and ZĜ(C)(ψ) = ZĜ(C)(ϕ,N), then ZĜ(C)(ϕ,N)◦ is reductive by [41,

Proposition 3.2] �

Let �
WD,rc,�
G consist of those (ϕ,N) with ZĜ(C)(ϕ,N)◦ reductive. We call this the

reductive centralizer locus of �
WD,�
G .

Corollary 3.11. The map JM : JM−1
(
�

WD,rc,�
G

)
→ �

WD,rc,�
G is a Ĝ(C)-equivariant bijec-

tion.

Proof. This follows from Theorem 3.6, Proposition 3.10 and that ψ is Frobenius semi-

simple if and only if JM(ψ) is for ψ ∈ �
L,�
G . �

3.4 Essentially tempered parameters

To make Corollary 3.11 useful, we now show that JM−1(�
WD,rc,�
G ) contains a large class

of important L-parameters. To this end, let us call an element ψ of �
L,�
G essentially

tempered if the projection of ψ(WF) to Ĝ(C)/Z0(Ĝ)(C) is relatively compact. Let �
L,est,�
G

be the set consisting of essentially tempered L-parameters.We will soon show that every

essentially tempered L-parameter maps into the reductive centralizer locus, but orst we

must establish some results concerning Frobenius semi-simple parameters.

Proposition 3.12. Any element ψ of �
L,est,�
G is Frobenius semi-simple.

Proof. The map ψ ′ obtained by composing ψ |WF∗ with the projection to Ĝ(C)/Z0(Ĝ)(C)

is a homomorphism. By Lemma 3.13 below, it sufoces to show that ifw0 is an arithmetic

Frobenius lift and m is divisible by [F∗ : F], then ψ ′(wm
0 ) is semi-simple. But, by essen-

tially temperedness we know that the image of ψ ′(wm
0 ) in Ĝ(C)/Z0(Ĝ)(C) is contained in a
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maximal compact subgroup K of Ĝ(C)/Z0(Ĝ)(C). Up to conjugation, we may then assume

thatK = H(R) forH a compact form of Ĝ(C)/Z0(Ĝ)(C) (see [11, Theorem D.2.8, Proposition

D.3.2, and Example D.3.3]). But, as H(R) consists only of semi-simple elements, the claim

follows. �

Lemma 3.13. Let (s,w) be an element of LG(C) andwrite (s,w)m = (sm,wm). Then, (s,w)

is Frobenius semi-simple if and only if sm is semi-simple for some non-zero integer m

divisible by [F∗ : F].

Proof. Fix any representation r : LG → GLn. As r((s,w)k) = r(s,w)k, we see that (s,w) is

semi-simple if and only if (s,w)k is for some k > 0. But, if m is divisible by [F∗ : F] then

as r((s,w)mk) = r(skm, 1) for some k > 0, the conclusion follows. �

The following shows that the naming of essentially tempered L-parameters is

reasonable.

Proposition 3.14. For ψ ∈ �
L,�
G , the following conditions are equivalent:

(1) ψ ∈ �
L,est,�
G ,

(2) there is a continuous character χ : WF × SL2(C) → Z0(Ĝ)(C) such that the

projection of (χψ)(WF) to Ĝ(C) is relatively compact.

Proof. It is clear that (2) implies (1). We show that (1) implies (2). Fix a Frobenius lift

w0 ∈ WF . Set H = ZĜ(C)(ψ), which has reductive identity component by Proposition 3.12

and [41, Proposition 3.2]. Let ψ̂ be the Ĝ-component of ψ . Taking a positive integer m to

be divisible by |Aut(ψ(IF))| and [F∗ : F] we see that ψ̂(wm
0 ) ∈ H, and thus in fact ψ̂(wm

0 ) ∈
Z(H). By replacingm by a power, we may assume that ψ̂(wm

0 ) ∈ Z(H)◦. Since ψ ∈ �
L,est,�
G ,

there is a compact subgroup C ⊆ Z(H)◦ such that ψ̂(wm
0 ) ∈ C · (Z(H)◦ ∩ Z(Ĝ)(C)). We

write ψ̂(wm
0 ) = cz for c ∈ C and z ∈ Z(H)◦ ∩ Z(Ĝ)(C). Since elements of Z(H)◦ ∩ Z(Ĝ)(C)

commute with ψ(WF), we have Z(H)◦ ∩ Z(Ĝ)(C) = Z(H)◦ ∩ Z0(Ĝ)(C). Replacing m again,

we may assume that z ∈ (Z(H)◦ ∩ Z0(Ĝ)(C))◦. We take z0 ∈ (Z(H)◦ ∩ Z0(Ĝ)(C))◦ such that

zm0 = z, which exists as (Z(H)◦ ∩ Z0(Ĝ)(C))◦ is a torus since it is a connected algebraic

subgroup of Z0(Ĝ)◦, which is a torus. Further, we deone χ as the unramioed character

sending w0 to z−1
0 . Then the image of (χψ)(WF) in Ĝ(C) is contained in the image of

⋃m−1
i=0 ψ(IF)(χψ)(wi

0)C in Ĝ(C), which is compact. �

We now relate �
L,est,�
G to the reductive centralizer locus of �

WD,�
G .
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Proposition 3.15. The containment �
L,est,�
G ⊆ JM−1(�

WD,rc,�
G ) holds.

Proof. Let ψ be an element of �
L,est,�
G and set (ϕ,N) = JM(ψ). Then ψ is Frobenius semi-

simple by Proposition 3.12. We claim that ZĜ(C)(ψ) = ZĜ(C)(ϕ,N), from where we will be

done by Proposition 3.10. By Proposition 3.7, it sufoces to show that UN(ϕ) is trivial.

We assume that UN(ϕ) is non-trivial and take a non-trivial weight vector v of Lie(UN(ϕ))

with respect to the adjoint action of θ |T2 , where T2 is the standard maximal torus of

SL2,C. We put u = exp(v). For each w ∈ WF , we have that ϕ(w) = ψ(w, 1)θ(i2(w)). Since

ϕ(w) commutes with u, we see that Int(ψ(w, 1)−1)(u) is equal to Int(θ(i2(w)))(u), and

therefore

Ad(ψ(w, 1)−1)(v) = Ad(θ(i2(w)))(v).

But, observe that if w0 is a lift of arithmetic Frobenius in WF , then i2(w
2n
0 ) =

(
qn 0
0 q−n

)
.

By Proposition 3.3, we deduce that Ad(θ(i2(w
2n
0 )))(v) = qjnv for some j � 1. Letting n

tend towards inonity, and using the fact that u is non-trivial, we deduce that the adjoint

orbit of WF on v is non-compact, which is a contradiction. �

We now state a corollary to Proposition 3.15. Before doing so, we recall an even

smaller subset of �
L,est,�
G that will feature prominently below. Namely, recall that (ϕ,N)

in �
WD,�
G (resp. ψ in �

L,�
G ) is called discrete if the quotient

ZĜ(C)(ϕ,N)/Z0(Ĝ)(C)

(
resp. ZĜ(C)(ψ)/Z0(Ĝ)(C)

)

is onite. Denote by �
WD,disc,�
G (resp. �L,disc,�

G ) the set of discrete parameters and �
WD,disc
G

(resp.�L,disc
G ) its Ĝ(C)-quotient. Note that �

L,disc,�
G is contained in �

L,est,�
G (cf. [21, Lemma

3.1] and [41, Lemma 5.2]), and thus ψ is discrete if and only if JM(ψ) discrete as they have

the same centralizers by Proposition 3.15 and its proof.

Corollary 3.16. The map

JM : �
L,est,�
G → �

WD,�
G ,

(
resp. JM : �

L,disc,�
G → �

WD,disc,�
G

)

is a Ĝ(C)-equivariant injection (resp. bijection).

Note that implicit in the above is the following result of independent interest.

Proposition 3.17. Any element of �
WD,disc,�
G (resp. �L,disc,�

G ) is Frobenius semi-simple.
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Proof. The orst claim is a special case of Proposition 5.11. The second claim follows

from �
L,disc,�
G ⊆ �

L,est,�
G and Proposition 3.12. �

We end this subsection by showing that one may apply Corollary 3.16 to show

that the association of ψ ◦ i to ψ is injective when restricted to the set of discrete L-

parameters. This result plays an important technical role in [3].

Proposition 3.18. The maps

�
WD,disc
G

(ϕ,N) �→ϕ−−−−−→ Hom(WF ,
LG(C))/Ĝ(C), �

L,disc
G

ψ �→ψ◦i−−−−→ Hom(WF ,
LG(C))/Ĝ(C)

are injective.

Proof. By Corollary 3.16, it sufoces to show that the former map is injective. Fix λ in

the set Hom(WF ,
LG(C)). By Proposition 3.17, it then sufoces to show that (if non-empty)

the set

P(G, λ) :=
{
(ϕ,N) ∈ �

WD,ss,�
G : ϕ = λ

}

intersects at most one Ĝ(C)-orbit of discrete parameters. As in [43, §4], set Ĝ(C)λ to be

ZĜ(C)(λ), and

ĝ
λ(IF )
q :=

⎧
«
¬x ∈ ĝC :

(1) Ad(λ(w))(x) = x for all w ∈ IF

(2) Ad(w0)(x) = qx

«
¬
­

where w0 is any lift of arithmetic Frobenius. Both P(G, λ) and ĝ
λ(IF )
q carry an action of

Ĝ(C)λ, and [43, Proposition 4.5] establishes a Ĝ(C)λ-equivariant bijection P(G, λ) → ĝ
λ(IF )
q ,

and that the latter space has only onitely many orbits. Therefore, P(G, λ) carries the

structure of a vector space on which Ĝ(C)λ acts algebraically and with only onitely many

orbits.

Suppose then that (λ,N) is a discrete element of P(G, λ) and letO ⊆ P(G, λ) denote

its Ĝ(C)λ-orbit. Now,O is a locally closed subscheme of P(G, λ) (see [35, Proposition 1.65

(2)]) of dimension dim(Ĝ(C)λ) − dim(H) where H is the isotropy subgroup of (λ,N) in

Ĝ(C)λ ([35, Proposition 5.23 and Proposition 7.12]). But, note that H = ZĜ(C)(λ,N) and

so contains Z0(Ĝ)(C) as a onite index subgroup. We deduce that dim(O) is equal to

dim(Ĝ(C)λ) − dim(Z0(Ĝ)(C)). But, as Ĝ(C)λ acts through Ĝ(C)λ/Z0(Ĝ)(C), and has onitely
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many (locally closed) orbits,we see that dim P(G, λ) is atmost dim(Ĝ(C)λ)−dim(Z0(Ĝ)(C)).

Thus, we deduce that dim(O) = dim(P(G, λ)). As O is locally closed in P(G, λ) we deduce

that O is open. As P(G, λ) is a vector space it is irreducible, so open orbits are unique,

and the conclusion follows. �

4 The Geometric and Relative Jacobson–Morozov Theorems

Before we can geometrize the Jacobson–Morozov theorem for parameters, we now orst

geometrize the Jacobson–Morozov theorem. After doing so, we derive a version of the

Jacobson–Morozov on the level of A-points. We ox for the remainder of this section a

oeld k of characteristic 0 and H a reductive group over k.

Remark 4.1. In this section, we often assume that H is split. This will be sufocient

for us as Ĝ is a split group. Most of these statements admit obvious generalizations to

arbitrary reductiveH,with similar proofs. The exception is Theorem 4.15, but we suspect

that the statement is still true and that one can employ a similar strategy to prove it.

4.1 The orbit separation space

Pivotal to our formulation of a geometric version of the Jacobson–Morozov theorem is a

certain construction that, in a precise sense, replaces a varietywith group actionwith the

disjoint union of its orbits. Throughout this subsection,we ox a reduced quasi-projective

scheme X over k equipped with an action of H. We also assume that the map

X(k)/H(k) → X(k)/H(k)

is surjective (although one may deal with the general case by Galois descent). Whenever

we speak of the class of x in X(k)/H(k), we assume without loss of generality that x is in

X(k).

For each element x of X(k), let us denote by Ox the orbit scheme given as the fppf

sheaoocation of the presheaf

Algk → Set, A �→ {g · x : g ∈ H(A)} ⊆ X(A).

Since X is itself an fppf sheaf, we see that Ox is an H-stable subsheaf of X. There is a

natural map μx : H → Ox called the orbit map given on R-points by sending h ∈ H(R) to

h · x ∈ Ox(R).
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Proposition 4.2. The orbit scheme is representable by a reduced locally closed sub-

scheme of X smooth over k.Moreover, the orbit map μx : H → Ox is smooth and surjective

and identioes Ox as the fppf sheaf quotient H/ZH(x).

Proof. Clearly, the orbit map identioes Ox as the fppf sheaf quotient H/ZH(x). In [35,

Proposition 1.65], it is shown that μx(H) is a locally closed subset of H, which one may

endowwith the reduced scheme structure. In [35,Proposition 7.17], it is shown thatμx(H)

represents Ox. The smoothness of the orbit map is then conormed by [35, Proposition

7.15], and the smoothness of Ox over k is handled by [35, Corollary 5.26]. �

It will be useful to have a more explicit description of the A-points of Ox for a

k-algebra A.

Proposition 4.3. For any k-algebra A, there are identiocations

Ox(A) = {x ∈ X(A) : x and x lie in the same H(A)-orbit étale locally on A} ,

and

Ox(A)/H(A) = ker

(
H1
ét(Spec(A),ZH(x)) → H1

ét(Spec(A),H)

)
,

functorial in (X,x), where a map (X,x) → (Y,y) is an H-equivariant map X → Y sending

x to y.

Proof. The orst claim follows from the fact that the orbit map μx : H → Ox is a smooth

surjection and [22, Corollaire 17.16.3.(ii)]. The second claim follows by combining [18,

Chaptire III, Corollaire 3.2.3] with the fact that as HA and ZH(x)A are smooth over A,

their étale cohomology functorially agrees with their fppf cohomology (cf. [23, Théorème

11.7]). �

WhenA is a reduced k algebra, onemay give a simpler description. Say an element

x of X(A) is everywhere geometrically conjugate (egc) to x if for all geometric points

Spec(k′) → Spec(A) one has that x and x have images in X(k′) belonging to the same

H(k′)-orbit.

Proposition 4.4. For a reduced k-algebra A, there is a functorial identiocation

Ox(A) =
{
x ∈ X(A) : x is egc to x

}
.
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Proof. Evidently, any element of Ox(A) is egc to x. If x is egc to x, then the morphism

x : Spec(A) → X has the property that x(|Spec(A)|) ⊆ |Ox|. As Spec(A) is reduced, this

implies that x factorizes through Ox as desired. �

We then assemble the spaces Ox into one as follows.

Deonition 4.5. We deone the orbit separation of X, denoted by X�, to be the space

X� :=
⊔

x∈X(k)/H(k)

Ox.

We have a tautological H-equivariant map X� → X. Observe that the orbit

separation space is a functorial construction. Namely, if Y is another quasi-projective

scheme over k equipped with an action of H with the same properties, then for any H-

equivariant morphism X → Y, the composition X� → X → Y factorizes uniquely through

Y� → Y.

We end this section with the following omnibus result concerning its properties

in the case when X(k)/H(k) is onite, which is the case of most interest to us. Below, and

in the sequel, we call a morphism of schemes f : Y → X weakly birational if there exists

a dense open subset U of X such that f−1(U) → U is an isomorphism.

Proposition 4.6. The following statements are true.

(1) The map X� → X is an isomorphism if and only if the map

� : H × X → X × X, (h,x) �→ (hx,x),

is smooth.

(2) In general, if X(k)/H(k) is onite, then the map X� → X is a weakly birational

surjective monomorphism.

Proof. To prove (1) suppose orst that � is smooth, then for any x0 in X(k) the pullback of

� along the map X → X×X given by x �→ (x,x0) is also smooth. This pullback map can be

identioed with the composition of μx0
: H → Ox0

with the inclusion Ox0
→ X. Thus,Ox0

,

being the image of a smooth morphism, is open by [40, Tag 056G]. Since x0 was arbitrary,

we conclude that X� → X is an isomorphism by applying part (3) of Lemma 4.7 below

with the set {Yi} = {Ox0
}x0∈X(k)/H(k). Conversely, suppose that X

� → X is an isomorphism.
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Then, it is easy to see that � is smooth if and only if for all x0 in X(k) the map

�x0 : H × Ox0
→ Ox0

× Ox0
, (h,x) �→ (hx,x)

is smooth. By Proposition 4.2 and [40, Tag 0429], it sufoces to prove that the pullback

of �x0 along the map μx0
× μx0

: H × H → Ox0
× Ox0

is smooth. This pullback, as an

H × H-scheme, may be identioed with the map

Hx0
× H × H → H × H, (h,h′,h′′) �→ (h′,h′′),

which is evidently smooth. Explicitly, this identiocation is given by the map

(H × Ox0
) ×Ox0×Ox0

(H × H) → Hx0
× H × H, ((h,x), (h′,h′′)) �→ ((h′)−1hh′′,h′,h′′),

which is easily verioed to be an isomorphism of H × H-schemes.

To prove (2), observe that the map the map X�(k) → X(k) is surjective, and so by

applying Lemma 4.7 parts (1) and (2) and [24, Corollary 3.36] we know that X� → X is

a weakly birational monomorphism. As the image of X� → X is a onite union of locally

closed subsets, it is locally closed and as it contains X(k) it must be all of X by loc. cit.,

and so surjectivity also follows. �

Lemma 4.7. Let f : Y → X be a morphism of reduced schemes locally of onite type over

k, with X quasi-compact. Suppose that Yk admits a decomposition Y =
⊔

i Yi, with each

Yi clopen, such that f |Yi is a locally closed immersion, and f (Yi(k))∩ f (Yj(k)) is empty for

i �= j. Then,

(1) f is a monomorphism,

(2) if {Yi} is a onite set, then f is weakly birational if and only if f (Y(k)) is dense

in X,

(3) f is an isomorphism if and only if f (Y(k)) = X(k) and each Yi is open in Xk.

Proof. As all of these claims may be checked over k, we may assume without loss of

generality that k is algebraically closed. The onal claim is clear, thus we focus on the

orst two claims. For the orst claim, as each f |Yi is a monomorphism, it sufoces to show

that f (Yi) and f (Yj) are disjoint for i �= j. But, as f (Yi)∩f (Yj) is locally closed, if non-empty

it would contain a k-point which is a contradiction.
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To see the second claim, it sufoces to show the if direction. For each irreducible

component Z of X note that {Yi ∩ Z} is a onite set of locally closed subsets with dense

union. This implies that there exists some i0 such that Yi0 ∩ Z is open. Let C be the union

of irreducible components of X, which intersect Z at a proper non-empty subset. Set

UZ := (Yi0 ∩Z)−C. Then, it is clear that if U is the union of the UZ, then U is a dense open

subset of X and as X is reduced that f : f−1(U) → U is an isomorphism. �

4.2 The geometric Jacobson–Morozov theorem

We now move to the geometrization of the Jacobson–Morozov theorem. Let us now

assume that H is split. To begin, observe that one has a Jacobson–Morozov morphism

JM : Hom(SL2,k,H) → N , θ �→ dθ(e0).

We would like to apply the orbit separation construction from the last subsection to this

map, but before we do so, we should orst observe that the actions of H on Hom(SL2,k,H)

and N satisfy the properties used in the last section.

Proposition 4.8. The maps

N (k)/H(k) → N (k)/H(k), Hom(SL2,k,H)/H(k) → Hom(SL2,k,Hk)/H(k)

are surjections.

Proof. By Theorem 3.1, it sufoces to show the orst map is a surjection. Let N be an

element of N (k). Bala–Carter theory (see [29, Proposition 4.7 and Theorem 4.13]) says

that there exists a Levi subgroup L of Hk and a parabolic subgroup P of L such that N

is conjugate to an element contained in the unique open orbit of P acting on Lie(Ru(P)).

Now, as H is split, we may assume up to conjugacy, that L = Lk for a Levi subgroup L

of H (see [38]). As L is also split, we may also assume, up to conjugacy, that P = Pk for

a parabolic subgroup P of L. As the unique open orbit of P acting on Lie(Ru(P)) has a

k-point, being a Zariski open of a vector k-space, we are done. �

Remark 4.9. The morphism N (k)/H(k) → N (k)/H(k) is rarely injective. As a concrete

example, if H = SL2,Q, then
(
0 1
0 0

)
and

(
0 −1
0 0

)
are H(Q)-conjugate, but not H(Q)-conjugate.

Before we show that our two spaces withH-action have onitelymanyH(k)-orbits,

we observe the following.
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Proposition 4.10. The morphism Hom(SL2,k,H)� → Hom(SL2,k,H) is an isomorphism.

Proof. This follows immediately from combining Proposition 2.6 and Proposition 4.6.

�

Proposition 4.11. The sets Hom(SL2,k,Hk)/H(k) and N (k)/H(k) are onite.

Proof. By Theorem 3.1, these two sets are in bijection, so it sufoces to prove the

oniteness of either. The oniteness of the latter set is a classical result (e.g., see [29, §2.8,

Theorem 1]). Alternatively, one may prove the oniteness of the former set by observing

that by Proposition 4.10 the sets Hom(SL2,k,Hk)/H(k) and π0(Hom(SL2,k,Hk)) have the

same cardinality. But, by Proposition 2.6, the scheme Hom(SL2,k,Hk) is onite type over k

and thus π0(Hom(SL2,k,Hk)) is onite. �

By the functoriality of the orbit separation construction, the Jacobson–

Morozov morphism factors uniquely through N � and we also denote the resulting map

Hom(SL2,k,H) → N � by JM. But, unlike Hom(SL2,k,H), the orbit separation space N � is

essentially never equal to N .

Proposition 4.12. The morphismN � → N is an isomorphism if and only if H is abelian.

Proof. If H is abelian, then N is a single point. If N � → N is an isomorphism then the

orbit of 0 is open, but as it is also closed and N is connected, we deduce that it is equal

to N . As dim(N ) is equal to dim(H) − r(H), we see that H is a torus as desired. �

Example 4.13. The element N =
(
0 t
0 0

)
deones a point of NGL2,k

(k[t]) not in N �
GL2,k

(k[t]).

To state our geometric Jacobson–Morozov theorem, note that by Theorem 3.1 the

map

JM : Hom(SL2,k,H)/H(k) → N (k)/H(k),

is a bijection. For each θ , writing N = JM(θ), deone JMθ to be the map Oθ → ON , which

may be described as the quotient map H/ZH(θ) → H/ZH(N).

Theorem 4.14 (Geometric Jacobson–Morozov). Suppose that H is split. The morphism

JM : Hom(SL2,k,H) → N factorizes through N �, where it may be described as
⊔

θ JMθ .
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4.3 The relative Jacobson–Morozov theorem

Wenow apply the geometric Jacobson–Morozov theorem to obtain amore concrete result

on the level of A-points.

Theorem 4.15 (Relative Jacobson–Morozov). Let A be a k-algebra. Then, the map

JM : Hom(SL2,A,HA)/H(A) → N (A)/H(A)

is a bijection onto N �(A)/H(A).

Proof. Assume orst that Spec(A) is connected. By Theorem 4.14, it sufoces to show

that for each θ the map JMθ induces a bijection Oθ (A)/H(A) → ON(A)/H(A). But,

by Proposition 4.3, it sufoces to show that the natural map H1
ét(Spec(A),ZH(θ)) →

H1
ét(Spec(A),ZH(N)) is a bijection. But, this follows from Proposition 3.3 and [20, Lemma

4.14]. For the general case, we reduce to the Noetherian case by standard approxi-

mation arguments, and then working on each component to the case when Spec(A)

is connected. �

We now pursue the analogue of Theorem 3.2 in the relative setting.

Deonition 4.16. Let A be a k-algebra and a a Lie algebra over A. We call a triple of

elements (e,h, f ) in a3 such that

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h,

an sl2-triple in a.

Denote by T (A) (or TH(A) when we want to emphasize H) the set of sl2-triples in

hA. Evidently, T (A) carries a natural conjugation action by H(A).

Theorem 4.17. The following diagram is commutative and each arrow is a bijection
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Proof. By Theorem 4.15, the left vertical arrow is a bijection. The right vertical arrow

is clearly a bijection, and the top horizontal arrow is a bijection by Proposition 2.6. We

thus deduce that the bottom horizontal arrow is well-deoned (i.e., takes values inN �(A))

and is bijective. �

4.4 A relative version of Kostant’s characterization of sl2-triples

This onal subsection is dedicated to giving a proof of the following relative version of

[31, Corollary 3.5].

Proposition 4.18. Let A be a k-algebra and a a Lie subalgebra of hA. Then, for a pair

(e,h) in a2, there exists an sl2-triple of the form (e,h, f ) in a if and only if the following

conditions hold:

1. e ∈ N �(A),

2. h is in the image of ad(e) : a → a,

3. [h, e] = 2e.

Let us set

heA := ker
(
ad(e)|hA → hA

)
, ae := ker (ad(e)|a → a) .

If ad(e)(x) is zero, then ad(e)(ad(h)(x)) is also zero. Thus, ad(h) stabilizes heA and ae.

Lemma 4.19. The A-linear map ad(h) + 2: ae → ae is an isomorphism.

Proof. It sufoces to show this result after passing to an etale cover Spec(B) → Spec(A).

Indeed, since A → B is faithfully nat, we have that (ae)B = aeB, and moreover that

ker(ad(h) + 2) and coker(ad(h) + 2) are trivial if and only if they are so after tensoring

with B. Thus, we may assume without loss of generality that e is an element of N (k).

Indeed, the statement of the lemma is insensitive to conjugating the pair (e,h), and so

this follows by the deonition of N � and Proposition 4.8. With notation as in Lemma

4.20 below, the A-algebra map A[T] → EndA(ae) sending T to ad(h) factorizes through

A[T]/(p(T)). But, by the Chinese remainder theorem, T + 2 is a unit in this ring. �

Lemma 4.20 (cf. [31, Lemma 3.4]). Suppose that e is an element of N (k). Let m be the

smallest element such that ad(e)m+1 is trivial on h. Then, p(ad(h)|heA) = 0 where

p(T) =
m∏

i=0

(T − i) .

Thus, a fortiori, we see that p
(
ad(h)|ae

)
= 0.
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Proof. For each i = 0, . . . ,m+ 1, let us set

di := (ad(e)i(h) ∩ he) ⊗k A.

Observe that

heA = d0 ⊇ · · · ⊇ dm+1 = 0.

We claim then that (ad(h) − i)(di) ⊆ di+1. Note that di is generated as an A-algebra by

elements of the form ad(e)i(z) for z in h. The exact same algebra as in [31, Lemma 3.4]

then shows the desired containment, from where the claim is clear. �

Returning to the proof of Proposition 4.18, let us write h = ad(e)(f ). Note that

[[h, f ]+2f , e] vanishes and thus [h, f ]+2f is in ae. By Lemma 4.19,wemaywrite [h, f ]+2f =
[h,g] + 2g for some g in ae. So then, if we take f ′′ = f − g, then

[h, e] = 2e, [h, f ′′] = [h, f ] − [h,g] = −2f ′′, [e, f ′′] = [e, f ] − [e,g] = h− 0 = h,

as desired.

5 Moduli Spaces of Weil–Deligne Parameters

To give a geometrization of the results of §3.2, it is useful to orst develop a space

intermediary between the moduli space of L-parameters (see §6) and the moduli space

of Weil–Deligne parameters. We give such a space in this section, which, in short,

parameterizes Weil–Deligne parameters whose monodromy operator lies in N �.

5.1 The moduli space of Weil–Deligne parameters

We orst recall the moduli space of Weil–Deligne parameters roughly following the

presentation as in [44]. In particular, we use the C-group of Buzzard–Gee in lieu of

the L-group for our deonition of parameters. The theory of C-groups is better suited

to dealing with L-parameters valued in arbitrary Q-algebras R as many constructions

involving L-parameters in terms of L-groups require a choice of square root of q in R.

Also, the authors ond that many necessary arguments involving L-parameters in terms

of L-groups (e.g., see Proposition 5.11 and Proposition 7.7) require the consideration of

certain ancillary groups, which, ultimately, end up being equivalent to working in the

C-group.
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Initial deonitions.We begin by deoning the relative analogue of a Weil–Deligne

parameter.

Deonition 5.1. For a Q-algebra A, we deone a Weil–Deligne parameter over A to be a

pair (ϕ,N) where

(WDP1) ϕ : WF,A → CGA is a morphism of group A-schemes such that pC ◦ϕ = (‖·‖, id),

(WDP2) N is an element of N̂ (A) such that Ad(ϕ(w))(N) = ‖w‖N for all w ∈ WF(A).

We denote the set of Weil–Deligne parameters over A by WDPG(A), which clearly

constitutes a presheaf onQ-algebras. The presheafWDPG has a natural action by Ĝ given

by

g(ϕ,N)g−1 := (Int(g) ◦ ϕ, Ad(g)(N)).

So, for a Weil–Deligne parameter (ϕ,N), we may consider the centralizer group presheaf

ZĜ(ϕ,N).

We deone the morphism ϕ̌ : WF,A → ǦA of schemes as the composition of ϕ with

the projection to ǦA. We denote by ϕ the homomorphism WF,A → (Ĝ� �∗)A obtained by

composing ϕ with the quotient map CGA → (Ĝ� �∗)A. Observe that while ϕ̌ may not be a

homomorphism, it becomes so after restriction toWF∗,A. In particular, for anyw ∈ WF(A),

the restriction of ϕ̌ to 〈wm〉 is a homomorphism whenever [F∗ : F] divides m.

Let K be a onite extension of F∗ Galois over F, and let us deone for a Q-algebra

A the set

WDPKG(A) :=
{
(ϕ,N) ∈ WDPG(A) : IK,A ⊆ ker(ϕ̌|WF∗ ,A

)
}
.

We observe thatWDPKG forms a Ĝ-stable subfunctor ofWDPG. In fact, one sees that there

is an equality of functors WDPG = lim−→WDPKG as K travels over all such extensions.

We onally observe that WDPG has a more familiar form over an extension k of

Q containing an element c such that c2 = q. More precisely, for a k-algebra A, we equip

Ĝ(A) with the discrete topology and put

WDP′
G,k(A) :=

⎧
⎪⎪⎪⎪«
⎪⎪⎪⎪¬
(ϕ,N) :

(1) ϕ : WF → Ĝ(A) �WF

is a a continuous cross-section homomorphism,

(2) N ∈ N̂ (A) is such that Ad(ϕ(w))(N) = ‖w‖N for all w ∈ WF

«
⎪⎪⎪⎪¬
⎪⎪⎪⎪­
.
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It is clear thatWDP′
G is a functor on the category of k-algebras and comes equipped with

a natural action of Ĝk. Let us also observe that if ic is the map from §2.2 then there is a

morphism iWD
c : WDP′

G,k → WDPG,k, which on A-points is given by sending (ϕ′,N) to the

unique element of WDPG(A) of the form (ϕ,N), which is equal to (ic ◦ ϕ′,N) on A-points.

Proposition 5.2. The morphism of functors iWD
c : WDP′

G,k → WDPG,k is an isomorphism.

Proof. This follows from the cartesian diagram

and that any morphism WF,A → ǦA of schemes over A factors through (WF/IK)A for a

onite extension K of F. �

Our discussion of the space WDP′
G,k is not strictly necessary for the paper.

However, while the C-group is better suited to the technical setting of the paper, the

L-group setting is more common. Thus, we include WDP′
G,k, and the space LP′

G,k as in §6,

and so we discuss both to reconcile these two points of view.

Representability.We now establish the representability of the functorWDPG. To

this end, let us ox K a onite extension of F∗ Galois over F. Note that for aQ-algebra A and

an element (ϕ,N) of WDPKG(A), we may deone an element φ of Z1(IF/IK , Ĝ)(A) as follows.

First observe that condition (WDP1) implies that ϕ|IF,A takes values in ĜA � IF,A. Then,

as (ϕ,N) is in WDPKG(A), the composition of ϕ|IF,A with the projection ĜA � IF,A → ĜA �

(IF/IK)A factorizes through a cross-section homomorphism (IF/IK)A → ĜA � (IF/IK)A.

This gives an element φ of Z1(IF/IK , Ĝ)(A) since IF/IK
∼= IF/IK . This association deones a

morphism of presheaves WDPKG → Z1(IF/IK , Ĝ).

Let us now ox a lift w0 of arithmetic Frobenius in WF . Deone a morphism of

presheaves

jw0
: WDPKG → Ǧ× Z1(IF/IK , Ĝ) × N̂ , (ϕ,N) �→ (ϕ̌(w0),φ,N).

On the other hand, we have a diagram
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given by

(g, f ,M) �→
(
Int(g,w0) ◦ f ,pGm

(g), (Ad(f (i))(M))i∈IF/IK
, Ad(g,w0)(M)

)

(g, f ,M) �→
(
f ◦ Int(w0),q, (M)i∈IF/IK

,qM

)
.

We then have the following explicit description of WDPKG .

Proposition 5.3. The morphism jw0
identioes WDPKG with the equalizer Eq(DWD). Thus,

WDPKG is representable by a onite type afone Q-scheme and jw0
is a closed embedding.

Observe that for an extensionK ⊆ K′ of Galois extensions of F containing F∗ there

is a restriction morphism Z1(IF/IK′ , Ĝ) → Z1(IK/IK′ , Ĝ). By Proposition 2.8 and Lemma 4.7,

the subspace consisting of only the trivial homomorphism is a clopen subset of the

target, and thus so is its preimage in Z1(IF/IK′ , Ĝ), but this is precisely Z1(IF/IK , Ĝ). We

deduce that the natural inclusion of functors WDPKG → WDPK
′

G is a clopen embedding.

From the identiocation WDPG = lim−→K
WDPKG we deduce from Proposition 5.3 that WDPG

is representable by a scheme locally of onite type over Q, all of whose connected

components are afone.

The following non-trivial result will play an important technical role below (e.g.,

in the proof of Theorem 7.9).

Theorem 5.4 ([2, Corollary 2.3.7] and [44, Corollary 3.1.10]). The schemes WDPKG are

reduced for all K, and thus, a fortiori,WDPG is reduced.

5.2 Semi-simplicity of parameters

As in the Theorem 3.6, one requires Frobenius semi-simplicity conditions to get a Jacob-

son–Morozov result in the relative setting. Therefore, we now develop a sufocient notion

of Frobenius semi-simplicity for a Weil–Deligne and L-parameter over a Q-algebra A.

Deonition 5.5. Let R be a Q-algebra and H is a smooth group R-scheme such that

H◦ is reductive. We then say that an element h of H(R) is semi-simple if there exists

some m � 1, an étale cover Spec(S) → Spec(R), and a torus T of H◦
S such that

hm is in T(S).

By [37, Exposé VIB, Corollaire 4.4] H◦ is representable so the above makes sense.

Moreover, by [11, Proposition B.3.4],wemay assume that T is split in the above deonition.
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Proposition 5.6. Let R be a Q-algebra and H is a smooth group R-scheme such that H◦

is reductive, and let h be an element of H(R). Then, the following statements are true.

(1) If h is semi-simple, there exists an étale cover Spec(S) → Spec(R), an integer

m � 1, and a split maximal torus T of H◦
S such that hm is in T(S).

(2) If Z is a closed subgroup R-scheme of Z(H◦), which is nat over R, then h is

semi-simple if and only if its image in (H/Z)(R) is semi-simple.

Proof. To show (1), let Spec(S′) → Spec(R) be an étale cover and T ′ a torus of H◦
S′ such

that hm is in T ′(S′). Note that ZH◦(T ′) is a reductive group (combine [11, Lemma 2.2.4]

and [35, Corollary 17.59]). By [11, Corollary 3.2.7], there exists an étale cover Spec(S) →
Spec(S′) and a maximal torus T of ZH◦(T ′)S. Observe that T is also a maximal torus of H◦

S.

Indeed, it is evidently a torus, and its maximality can be checked over each point x of

Spec(S). Then, as Tx is contained in a maximal torus of H◦
x, and T ′

x ⊆ Tx, we see that this

maximal torus is actually contained in ZH◦
x
(T ′

x) = ZH◦(T ′)x, and so must be equal to Tx. As

T ′
S is central in ZH◦

S′
(T ′)S, it is clear that T contains T ′

S and thus hm is contained in T(S).

As we may pass to a further étale extension to split T, the claim follows.

Let f : H◦ → H◦/Z be the tautological map. To prove (2), it is sufocient to

note that for any R-algebra S, one has that the map T �→ T/Z and T ′ �→ f−1(T ′)

are mutually inverse bijections between the maximal tori of H◦
S and (H◦/Z)S by

[11, Corollary 3.3.5]. �

Consider a representation ρ : H → GL(M) where M is a onitely generated R-

module. Let h be an element of H(R) and I a onite subgroup of H(R) that is stable under

conjugation by h. For any R-algebra S and any λ in S×, let us set

MI
S(h, λ) := ker

(
ρ(h) − λ|Mρ(I)

S → M
ρ(I)
S

)
.

AbbreviateMI
R(h, λ) toMI(h, λ), and further abbreviate toMI(λ) if h is clear from context.

Finally, we omit I from the notation if I is trivial. Evidently, MI
S(h, λ) ⊗S S

′ is equal to

MI
S′(h, λ) for any nat map of R-algebras S → S′.

Proposition 5.7. Assume that h is semi-simple. Then, there exists a unique decomposi-

tion

Mρ(I) =
⊕

λ∈R×
MI(h, λ) ⊕M ′
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such that for any nat map R → S, one has that

⊕

λ∈S×−R×
MI
S(h, λ)

is a direct summand of M ′
S, and such that this is an equality if for some m � 1:

(1) hm is contained in a split torus of H◦
S and commutes with I,

(2) S is a Q(ζr)-algebra, where r := [〈h〉 : 〈hm〉] and ζr is a primitive rth-root of

unity,

(3) and S contains an rth-root of all λ such that M(hr, λ) �= 0.

Proof. Take an étale cover Spec(S) → Spec(R) and m � 1 such that hm is contained

in a split torus T of H◦
S and hm commutes with I. Then hr ∈ 〈hm〉 is contained in T and

commutes with I. By [10, Lemma A.8.8], one may decompose MS into character spaces

MS(χ). One then observes that MS(h
r, λ) is precisely the direct sum of those character

spacesMS(χ) such that χ(hr) = λ. So,MS admits a direct sum decomposition with respect

to the spaces MS(h
r, λ).

As MS is onitely generated, we know that MS(h
r, λ) is trivial for all but onitely

many λ1, . . . , λe, as a onitely generated module can have only onitely many non-

zero direct summands. In particular, we may further pass to the étale extension

S′ := S[λ
1/r
1 , . . . , λ

1/r
e , ζr]. We extend the action of I on each nontrivial MS′(hr, λ) by

ρ to the action of the onite group I � (〈h〉/〈hm〉) letting h act λ−1/rρ(h). As S′ is a

Q(ζr)-algebra, we have a decomposition of MI
S′(h

r, λ) into character spaces MS′(hr, λ)[ν]

where ν travels over the characters I � (〈h〉/〈hm〉) → 〈h〉/〈hm〉 → S′. We then

see that for each τ ∈ (S′)× such that τ r = λ the space MI
S′(h, τ) admits a direct

decomposition into the spaces MS′(hr, λ)[ν] as ν ranges over those characters with

ν(h) = λ−1/rτ .

One may then check that the module
⊕

τ M
I
S′(h, τ) as τ ranges over those elements

of (S′)× −R× is stabilized under the étale descent data associated toMρ(I)
S′ , and therefore

(see [40,Tag 023N]) descends to a submoduleM ′ ofMρ(I).One sees thatM ′ is a complement

of
⊕

λ M
I(h, λ) as λ travels over the elements of R×, as this may be checked over the

faithfully nat extension S′. One may then check thatM ′ is independent of all choices, and

satisoes the desired conditions. �

The following proposition will be helpful to deone Frobenius semi-simple in a

way that does not require the choice of an explicit arithmetic Frobenius lift.
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Proposition 5.8. Let ϕ : WF,A → CGA be a morphism of group schemes over a Q-algebra

A. Then there is a positive integerm divisible by [F∗ : F] such that the morphismWF,A →
ǦA given by w �→ ϕ̌(wm) admits a factorization

WF,A
d−→ ZA

ϕ̌m−→ ǦA

and ϕ̌m takes values in ZǦ(ϕ).

Proof. Take a onite extension K of F∗ Galois over F such that ϕ̌|IK,A is trivial. Take a lift

w0 ∈ WF of arithmetic Frobenius and choose m0 such that the image of wm0
0 in WF/IK

is central. Let m be the order of WF/(IK〈wm0
0 〉). Then for any w ∈ WF , since w

m is trivial

in WF/(IK〈wm0
0 〉), we have that wm = iw

d(w)m
0 for some i ∈ IK . Hence, the images of wm

and w
md(w)
0 in WF∗/IK are the same. Since ϕ̌|WF∗ ,A

factors through (WF∗/IK)A, we have

ϕ̌(wm) = ϕ̌(wm
0 )d(w) for any pointw of WF,A. Hence, we have the factorization ϕ̌m : ZA →

ǦA. The composition

WF,A
ϕ−→ CG −→ ǦA � (WF/IK)A

factors through ϕK : (WF/IK)A → ǦA� (WF/IK)A. To show that ϕ̌m factors through ZǦ(ϕ),

it sufoces to show ϕ̌(wm
0 ) ∈ ZǦ(ϕK). Since the image of wm

0 in WF/IK is central, we have

ϕK(wm
0 ) ∈ ZǦA�(WF/IK)A

(ϕK). Since the image of (1,wm
0 ) in ǦA � (WF/IK)A is central, we

obtain ϕ̌(wm
0 ) ∈ ZǦA

(ϕK). �

To deone the notion of Frobenius semi-simple parameters, it is useful to have the

following analogue of Lemma 3.13.

Proposition 5.9. Let (ϕ,N) be an element of WDPG(A). Then, the following are equiva-

lent:

(1) for any (equiv. one) liftw0 ∈ WF of arithmetic Frobenius,ϕ(w0) is semi-simple,

(2) for some m as in Proposition 5.8, the morphism ϕ̌m étale locally factorizes

through a torus of ǦA.

Proof. By deonition, (1) holds if and only if ϕ(w0) has the property that ϕ(w0)
m étale

locally lies in a torus of (Ǧ � �∗)
◦
A = ǦA for some m as in Proposition 5.8. But, as an

element of ǦA, one easily sees that ϕ(w0)
m is precisely ϕ̌m(1). As it is clear that (2) is

equivalent to claim that étale locally on A there exists a torus containing ϕ̌m(1) the

claim follows. �
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Deonition 5.10. For a Q-algebra A, we call an element (ϕ,N) of WDPG(A) Frobenius

semi-simple if it satisoes any of the equivalent conditions of Proposition 5.9.

For each Q-algebra A, let us denote by WDPss
G (A) (resp. WDP

K,ss
G (A)) the subset

ofWDPG(A) (resp.WDPKG(A)) consisting of Frobenius semi-simple parameters. It is clear

that this forms a Ĝ-stable subpresheaf of WDPG (resp. WDPKG ). Note that one does not

expect this presheaf to be representable as the semi-simple elements in algebraic group

form a constructible, but not locally closed, subset. Note also that by Proposition 5.6,

under the bijection of WDPG(C) with �
WD,�
G the set WDPss

G (C) corresponds to �
WD,ss,�
G .

The following technical result will play an important role later in the paper.

Proposition 5.11. If A is a reduced Q-algebra and (ϕ,N) is an element ofWDPG(A) such

that ZĜ(ϕ,N)◦x is reductive of dimension n for all x in Spec(A), then (ϕ,N) is Frobenius

semi-simple.

Proof. Deone S(N) to be the closed subgroup scheme of ǦA cut out by the closed

condition gNg−1 = pGm
(g)N. We have the equality ZĜ(ϕ,N) = ker(pGm

|ZS(N)(ϕ)). Note that

for all x in Spec(A), one has a short exact sequence

1 → ZĜ(ϕ,N)x → ZS(N)(ϕ)x → Gm,x → 1,

and as ZĜ(ϕ,N)◦x is assumed to be reductive of dimension n for all x in Spec(A), that

ZS(N)(ϕ)◦x is reductive of dimension n+1, and thus ZS(N)(ϕ)◦ is representable and smooth

over A, and thus reductive over A, by [37, Exposé VIB, Corollaire 4.4] and [35, Theorem

3.23].

We takem as Proposition 5.8. Then ϕ̌m factors through ZS(N)(ϕ). Further, it factors

through Z(ZS(N)(ϕ)), since ϕ(wm) and (1,wm) commutes with ZS(N)(ϕ) for any point w of

WF,A. Then there is anm′ such that ϕ̌m
′

m = ϕ̌mm′ factors through Z(ZS(N)(ϕ)◦)◦. As ZS(N)(ϕ)◦

is reductive, Z(ZS(N)(ϕ)◦)◦ is a torus. Hence, (ϕ,N) is Frobenius semi-simple. �

5.3 The space WDP
�
G

In this section, we study the moduli space of Weil–Deligne parameters (ϕ,N) where N

lies in N � and show that this moduli space has an exceedingly simple structure.

Deonition 5.12. We denote by WDP
K,�
G (resp. WDP�

G) the space WDPKG ×N̂ N̂ � (resp.

WDPG ×N̂ N̂ � = lim−→K
WDP

K,�
G ).
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Now, let us ox a onite extension K of F∗ Galois over F and a liftw0 of arithmetic

Frobenius. Then, by Proposition 5.3, we have an identiocation jw0
of WDPKG(Q) with

⎧
⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪¬

(γ ,φ,N) ∈ Ǧ(Q) × Z1(IF/IK , Ĝ)(Q) × N̂ (Q) :

(1) Int(γ ,w0) ◦ φ = φ ◦ Int(w0),

(2) pGm
(γ ) = q,

(3) Ad(φ(i))(N) = N for alli ∈ IF/IK ,

(4) Ad(γ ,w0)(N) = qN

«
⎪⎪⎪⎪⎪⎪⎪¬
⎪⎪⎪⎪⎪⎪⎪­

.

Now, for (γ ,φ,N) in WDPKG(Q), let us deone Zφ,N := ZĜ(φ,N).

Deonition 5.13. An element (γ ′,φ′,N′) inWDPKG(A), for aQ-algebra A, is locally movable

to (γ ,φ,N) if there exists an étale cover Spec(A′) → Spec(A) and (g,h) ∈ (Ĝ × Z◦
φ,N)(A′)

such that (γ ′,φ′,N′) = g(hγ ,φ,N)g−1.

As this deonition is clearly functorial, we observe that we may deone a sub-

presheaf U(γ ,φ,N) of WDP
K,�
G,Q

whose A-points are given by

U(γ ,φ,N)(A) :=
{
(γ ′,φ′,N′) ∈ WDP

K,�
G,Q

(A) : (γ ′,φ′,N′) is locally movable to (γ ,φ,N)
}
.

We then have the following.

Proposition 5.14. The morphism of presheaves U(γ ,φ,N) → WDP
K,�
G,Q

is representable

by an open immersion. Moreover, the Q-scheme U(γ ,φ,N) is smooth and irreducible.

Before we prove this proposition, we observe its major consequence. To this end,

let us deone an equivalence relation onWDPKG(Q) by declaring that (γ ,φ,N) is equivalent

to (γ ′,φ′,N′) if there exists some (g,h) ∈ (Ĝ × Zφ,N)(Q) such that (γ ′,φ′,N′) is equal

to g(hγ ,φ,N)g−1. Let us denote an equivalence class under this relation by [(γ ,φ,N)].

Observe that as we do not require that h to actually lie in Z◦
φ,N(Q) that [(γ ,φ,N)] differs

from U(γ ,φ,N)(Q). For each such equivalence class, let us choose an element (γ ,φ,N).

We consider π0(Zφ,N) as a onite abstract group, and we deone an equivalence relation on

it by declaring that c is equivalent to c1cγ c
−1
1 γ −1 for any c1 in π0(Zφ,N). We denote by [c]

an equivalence class for this relation.
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Remark 5.15. The group 〈γ 〉 acts on π0(Zφ,N) by γ · c = γ cγ −1. Note that 〈γ 〉 ∼= Z since

pGm
(γ ) = q. Hence, the map z �→ z(γ ) for z ∈ Z1(〈γ 〉,π0(Zφ,N)) induces a bijection between

H1(〈γ 〉,π0(Zφ,N)) and equivalence classes in π0(Zφ,N).

We then have the following decomposition of WDP
K,�
G,Q

into explicit connected

components.

Theorem 5.16. The choice of (γ ,φ,N) in each class [(γ ,φ,N)] of WDPKG(Q) gives a

scheme-theoretic decomposition

WDP
K,�
G,Q

=
⊔

[(γ ,φ,N)]

⊔

[c]

U(cγ ,φ,N).

Proof. From Proposition 5.14, we know that each U(cγ ,φ,N) is an open subset of

WDP
K,�
G,Q

. As WDP
K,�
G,Q

is a onite type Q-scheme, it thus sufoces to prove this claim at the

level of Q-points. But, note that by Proposition 5.3, if (γ ,φ,N) satisoes the conditions to

be in WDPKG(Q) then (γ ′,φ,N) does if and only if γ ′ = hγ for h in Zφ,N(Q). Thus, we have

a decomposition

WDP
K,�
G,Q

=
⊔

[(γ ,φ,N)]

⋃

c∈π0(Zφ,N )

U(cγ ,φ,N).

Next observe that an element (hγ ,φ,N) may be written in the form g(h′γ ,φ,N)g−1 if and

only if g is in Zφ,N(Q) and hγ = gh′γg−1, which implies that h = gh′γg−1γ −1. With this,

it is easy to see that

⋃

c∈π0(Zφ,N )

U(cγ ,φ,N) =
⊔

[c]

U(cγ ,φ,N)

from where the desired equality follows. �

From this, we deduce the following non-trivial result. Let us denote the set of

equivalence classes for WDPKG(Q) (resp. π0(Zφ,N)) by [WDPKG(Q)] (resp. [π0(Zφ,N)]).

Corollary 5.17. The Q-scheme WDP
K,�
G is smooth, and there is a non-canonical �Q-

equivariant bijection

π0

(
WDP

K,�
G,Q

) ∼−→

⎧
«
¬([(γ ,φ,N)], [c]) :

(1) [(γ ,φ,N)] ∈ [WDPKG(Q)]

(2) [c] ∈ [π0(Zφ,N)]

«
¬
­ ,

where the �Q action on the target is inherited from WDP
K,�
G and Ĝ.
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The proof of Proposition 5.14. Deone the morphism πK : WDP
K,�
G → Z1(IF/IK , Ĝ) × N̂ � by

πK(ϕ,N) = (φ,N). This morphism is Ĝ-equivariant when the target is endowed with the

diagonal Ĝ-action. Now, by Proposition 2.8, there is a decomposition

Z1(IF/IK , Ĝ)Q × N̂ �
Q

=
⊔

[(φ0,N0)]∈J
Oφ0

× ON0

where J is the set of Ĝ(Q)2 orbits of (Z1(IF/IK , Ĝ) × N̂ �)(Q). Observe though that if (ϕ,N)

is in WDP
K,�
G (Q) with πK(ϕ,N) = (φ,N), then φ centralizes N. So, if we set J ′ to be the

subset of J consisting of those [(φ0,N0)] with φ0 centralizing N0, then we may produce a

factorization

πK : WDP
K,�
G,Q

−→
⊔

[(φ0,N0)]∈J ′
Oφ × ON ,

which is Ĝ-equivariant. For each [(φ0,N0)] in J ′, let us set X(φ0,N0) := π−1
K (Oφ0

× ON0
),

which is a clopen subset of WDP
K,�
G,Q

.

Set L := ZĜ(φ), which, by Lemma 2.5 applied to the image of φ in Ĝ(Q) � (IF/IK),

is a closed subgroup scheme of ĜQ with reductive identity component. Let l be the Lie

algebra of L. Deone ON ∩NL := ON ×N̂ NL. For eachM in (ON ∩NL)(Q), we denote by OL,M

the locally closed L-orbit subscheme of (ON ∩ NL)red.

Lemma 5.18. There exists a onite set {N = N1,N2, . . . ,Nm} in (ON ∩NL)(Q) such that one

has an equality of schemes ON ∩ NL =
⊔

iOL,Ni
. In particular,ON ∩ NL is reduced.

Proof. We orst show that the claimed decomposition holds for (ON ∩NL)red. Now, there

are only onitely many L(Q) orbits in (ON∩NL)(Q) as there are only onitely many L◦-orbits

in NL(Q). Let N = N1, . . . ,Nm represent these orbits. By Lemma 4.7, it sufoces to show

that each OL,Ni
is open or, as they form a set-theoretic partition of (ON ∩NL)red, that each

is closed. Then, by the Noetherian valuative criterion for properness (see [40, Tag 0208]),

it sufoces to show if R is a discrete valuation ring and f : Spec(R) → (ON ∩ NL)red is a

morphism with f (η) ∈ ONi,L
then f (Spec(R)) ⊆ ONi,L

. Assume not, and let f : Spec(R) →
(ON ∩ NL)red be a morphism such that f (η) ∈ OL,Ni

(k(η)) and f (s) ∈ OL,Nj
(k(s)) with i �= j.

Note that f corresponds to an element N in NL(R), which is, as an element of N̂ (R), lies

in ON(R). Let us consider ZL(N). On the one hand, ZL(N) cannot be nat, as its generic

ober (resp. special ober) is a twisted form of ZL(Ni) (resp. ZL(Nj)), which has dimension

dim(L)−dim(OL,Ni
) (resp.dim(L)−dim(OL,Nj

)).Note though that as f (s) lies inOL,Ni
,whose
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Q-points are unions ofQ-points of orbits of smaller dimension (cf. [35, Proposition 1.66]),

dim(OL,Nj
) is strictly less than dim(ONi,L

), and thus the obers of ZL(N) have different

dimensions, and so it cannot be nat over R (see [24, Corollary 14.95]). On the other hand,

ZĜ(N) is nat as it is étale locally isomorphic to ZĜ(N) = ZĜ(N)R. But, by Lemma 2.5, this

implies that ZĜ(N)φ(IF ) = ZL(N) is nat, which is a contradiction.

As (ON ∩ NL)red → ON ∩ NL is a homeomorphism, there is a scheme-theoretic

decomposition ON ∩ NL =
⊔

i Ui where Ui is the open subscheme of ON ∩ NL with

underlying space OL,Ni
. As these schemes are Noetherian, to onish it sufoces to show

that for all i and all Noetherian Q-algebras A every morphism Spec(A) → Ui factorizes

through OL,Ni
. As ON = ONi

, we may assume without loss of generality that i = 1, and so

Ni = N. Let N be the element of lA corresponding to Spec(A) → Ui. We must then show

that étale locally on A, N is conjugate to N. Let I denotes the nilradical of A, and write

A0 = A/I. As A is Noetherian, Im = (0) for somem, and thus by inducting we may assume

that I2 = (0). Now, as A0 is reduced the map Spec(A0) → Ui factorizes through OL,N and

thus NA0
is étale locally conjugate to N. As the étale covers of A and A0 are equivalent

(see [40, Tag 04DY]), and we are free to work étale locally on A, we may assume without

loss of generality that Ad(l0)(NA0
) = N for some l0 in L(A0). As L is smooth, we may apply

the inonitesimal lifting criterion to ond a lift l in L(A) of l0. Replacing N by Ad(l)(N), we

may assume without loss of generality that NA0
= N. Now, as Transp

Ĝ
(N,N) → Spec(A)

is a ZĜ(N)-torsor, and thus smooth, we know by the inonitesimal lifting criterion that

there exists some g in Transp
Ĝ
(N,N)(A) lifting the identity. Using the notation of [14, II,

§4, No3, 3.7], we may write g = ex for x in IĝA. Then, by [14, II, §4, No4, 4.2], we have

N = Ad(g)(N) = N + ad(x)(N).

As N and N lie in lA, they are invariant for the action of the onite group φ(IF/IK), and so

if y denotes the average of x over the action of φ(IF/IK) then

N = N + ad(y)(N).

But, by loc. cit. this right-hand side is equal to Ad(ey)(N). By Lemma 2.5, we see that ey

lies in L(A), from where the claim follows. �

Let us now denote by (γ univ,φuniv,Nuniv) the universal object over X(φ,N). Con-

sider the transporter scheme Transp
Ĝ
(φuniv,φ) → Z1(IF/IK , Ĝ) and set T to be the

pullback to X(φ,N). Set b : T → X(φ,N) to be the tautological map, which is smooth

as T is visibly an L-torsor. Note that we have a morphism a : T → ON ∩ NL given by

a(g) = Ad(g)(Nuniv) and observe then that we have a scheme-theoretic decomposition
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T =
⊔

i a
−1(OL,Ni

). But, for each i, we also have a map κi : a
−1(OL,Ni

) → π0(ZĜ(φ,N)) given

by sending g to the component containing Int(g)(γ univ)γ −1, and we deone for each i and

each c ∈ π0(ZĜ(φ,N)) the open subscheme Ui,c := κ−1
i

(c) of a−1(OL,Ni
). We then obtain a

decomposition T =
⊔

i,c Ui,c.

As b : T → X(φ,N) is smooth, we see that b(U1,id) is an open subset of X(φ,N)

whose A-points are precisely (by [22, Corollaire 17.16.3.(ii)]) the set of A-points (γ ′,φ′,N′)

of X(φ,N), which are étale locally in the image of b. It is simple to see that this

implies that U(γ ,φ,N) = b(U1,id), which implies U(γ ,φ,N) is representable by an open

immersion.

Finally, to show that U(γ ,φ,N) is smooth and irreducible consider the natural

morphism Ĝ×Z◦
φ,N → U(γ ,φ,N). To simplify notation, let us write S = Ĝ×Z◦

φ,N . Note that,

by deonition, S → U(γ ,φ,N) is surjective as étale sheaves and thus a fortiori surjective

as schemes, and thus U(γ ,φ,N) is irreducible. To see that U(γ ,φ,N) is smooth, note that

as S → U(γ ,φ,N) is surjective as étale sheaves there exists an étale cover V → U(γ ,φ,N)

such that p : SV → V admits a section. Note though that as SV → S is étale and the target

is reduced, so is the source (see [40, Tag 025O]). But, as p has a section, this implies

that V is reduced as the morphism of sheaves of rings OV → p∗OS has a section and

thus is injective. This implies that U(γ ,φ,N) is reduced by [40, Tag 033F]. But, as we’re

in characteristic 0, this implies that U(γ ,φ,N) is generically smooth over Q (see [40,

Tag 056V]). But, as S(Q) acts U(γ ,φ,N) by scheme automorphisms acting transitively

on U(γ ,φ,N)(Q), we deduce that every point of U(γ ,φ,N)(Q) has regular local ring, and

thus U(γ ,φ,N) is smooth over Q as desired (see [40, Tag 0B8X]). This completes the proof

of Proposition 5.14.

6 The Moduli Space of L-Parameters and the Jacobson–Morozov Morphism

In this section, we deone the moduli space LPKG of L-parameters for G, show it has

favorable geometric properties, construct the Jacobson–Morozov morphism LPKG →
WDP

K,�
G , and show that an analogue of Theorem 3.6 holds for any Q-algebra A.

6.1 The moduli space of L-parameters

We begin with a slight modiocation of the Langlands group scheme WF × SL2,Q better

suited to arithmetic discussions over Q. Speciocally, as in the case of the C-group, this

concept allows us to avoid extraneous choices of a square root of q (e.g., the embedding

ι below).
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Deonition 6.1. We call the Q-scheme representing the functor

AlgQ → Grp, A �→
{
(w,g) ∈ WF(A) × GL2(A) : ‖w‖ = det(g)

}

the twisted Langlands group scheme and denote it Ltw
F .

To justify the naming of Ltw
F , note that if k is any extension of Q and c is any

element of k such that c2 = q, then the morphism

ηc : WF,k × SL2,k → Ltw
F,k, (w,g) �→

(
w,g

(
c−d(w) 0

0 c−d(w)

))
,

is an isomorphism. For future reference, we observe that we have a morphism

ptw : Ltw
F → Gm,Q × WF , (w,g) �→ (‖w‖,w).

Let us also observe that there is a natural embedding of group schemes SL2,Q → Ltw
F

given by sending g to (1,g), as well as an embedding

ι : WF → Ltw
F w �→

(
w,
( ‖w‖ 0

0 1

))
.

With these embeddings, we shall implicitly think of SL2,Q and IF as subfunctors of Ltw
F .

Finally, we observe that the embedding of WK into WF for any onite extension K of F

gives rise to an embedding of Ltw
K → Ltw

F , which we implicitly use to think of Ltw
K as a

subgroup scheme of Ltw
F .

Deonition 6.2. For a Q-algebra A, we deone an L-parameter over A to be a homomor-

phism of group A-schemes ψ : Ltw
F,A → CGA such that pC ◦ ψ = ptw.

Denote by LPG(A) the set of L-parameters over A, which is functorial in A. Note

that LPG has a natural conjugation action by Ĝ and so one has the centralizer group

presheaf ZĜ(ψ).

For an L-parameter ψ over A we deone the morphism ψ̌ : Ltw
F,A → ǦA as the com-

position of ψ with the projection CGA → ǦA.We denote by ψ the homomorphism of group

A-schemes Ltw
F,A → (Ĝ��∗)A obtained by composing ψ with the quotient homomorphism

ǦA → (Ĝ��∗)A. Let us observe that while ψ̌ may not be a homomorphism, it becomes so

after restriction to Ltw
F∗,A. Finally, by our assumptions on ψ , the restriction to SL2,A takes
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values in ĜA and we denote this resulting morphism SL2,A → ĜA by θ (or θψ when we

want to emphasize ψ ).

To relate this to more familiar objects, ox k to be an extension of Q containing an

element c such that c2 = q. For a k-algebra A, we endow Ĝ(A) with the discrete topology

and set

LP′
G,k(A) :=

⎧
⎪⎪⎪⎪«
⎪⎪⎪⎪¬
WF × SL2(A)

ψ−→ Ĝ(A) �WF :

(1) ψ is a homomorphism over WF ,

(2) WF

ψ |WF→ Ĝ(A) �WF → Ĝ(A) is continuous,

(3) ψ |SL2(A) : SL2(A) → Ĝ(A) is algebraic

«
⎪⎪⎪⎪¬
⎪⎪⎪⎪­
.

There is a morphism iLc : LP
′
G,k → LPG,k constructed as follows. Fix a k-algebra A and

an element ψ ′ of LP′
G,k(A). Note that the restriction ψ ′|SL2(A) has an algebraization by

assumption, call it θψ ′ which we interpret as a map to LGA. The projection of ψ ′|WF
onto

the orst coordinate factorizes set-theoretically through WF/N for some open normal

subgroup N. This map WF/N → Ĝ(A) induces a map WF/N → ĜA and as WF/N is a

quotient of WF,A, we obtain a morphism αψ ′ : WF,A → LGA whose orst projection is the

compositionWF → WF/N → ĜA andwhose second projection is the identity.We can then

deone ψ1 : WF,A × SL2,A → LGA as the map (w,g) �→ αψ ′(w)θψ ′(g), which is well-deoned

as αψ ′ and θψ ′ commute by Proposition 2.6. We then deone iLc (ψ
′) to be ic ◦ ψ1 ◦ η−1

c . This

construction is independent of all choices, and is functorial. We can show the following

proposition in the same way as Proposition 5.2.

Proposition 6.3. The morphism iLc : LP
′
G,k → LPG,k is an isomorphism.

For a onite extension K of F∗ Galois over F deone

LPKG(A) :=
{
ψ ∈ LPG(A) : IK ⊆ ker

(
ψ̌ |Ltw

F∗ ,A

)}
,

which clearly forms a subpresheaf of LPG. We have the equality of presheaves LPG =
lim−→K

LPKG . As in the case of Weil–Deligne parameters, may associate to an L-parameter

ψ in LPKG(A) an element φ of Z1(IF/IK , Ĝ)(A) and thus obtain a morphism of presheaves

LPKG → Z1(IF/IK , Ĝ).

Fix a liftw0 of arithmetic Frobenius inWF and deone a morphism of presheaves

jw0
: LPKG → Ǧ× Z1(IF/IK , Ĝ) × Hom(SL2,Q, Ĝ), ψ �→

(
ψ̌
(
w0,

(
q 0
0 1

))
,φ, θ

)
.
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On the other hand, we have a diagram

given by the two maps

(g, f , ν) �→
(
Int(g,w0) ◦ f ,pGm

(g), (Int(f (i)) ◦ ν)i∈IF/IK
, Int(g,w0) ◦ ν

)

(g, f , ν) �→
(
f ◦ Int(w0),q, (ν)i∈IF/IK

, ν ◦ Int
((
w0,

(
q 0
0 1

))))
.

We then have the following explicit description of LPKG .

Proposition 6.4. The morphism jw0
gives an identiocation of LPKG with Eq(DL). In

particular, LPKG is representable by a onite type afone Q-scheme and jw0
is a closed

embedding.

As already observed, for an extensionK ⊆ K′ of onite extensions of F∗ Galois over

F, there is a restriction morphism Z1(IF/IK′ , Ĝ) → Z1(IK/IK′ , Ĝ), which is a clopen embed-

ding, and thus LPKG → LPK
′

G is also a clopen embedding. As we have the identiocation of

presheaves LPG = lim−→K
LPKG , we deduce from Proposition 5.3 that LPG is representable

by a scheme locally of onite type over Q, all of whose connected components are afone.

6.2 Decomposition into connected components

We now establish the analogue of Theorem 5.16 for LPG. Let us ox K a onite extension of

F∗ Galois over F, and a liftw0 of arithmetic Frobenius. Then, by Proposition 6.4, we have

an identiocation jw0
of LPKG(Q) with

Now, for (γ ,φ, θ) in LPKG(Q), let us deone Zφ,θ to be ZĜ(φ, θ). This is a linear algebraic group

over Q whose identity component is reductive. Let us then say that an element (γ ′,φ′, θ ′)

in LPKG(A), for a Q-algebra A, is locally movable to (γ ,φ, θ) if there exists an étale cover

Spec(A′) → Spec(A) and (g,h) ∈ (Ĝ×Z◦
φ,θ )(A

′) such that (γ ′,φ′, θ ′) = g(hγ ,φ, θ)g−1. As this
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deonition is clearly functorial, we obtain a subpresheaf of LPK
G,Q

as follows:

U(γ ,φ, θ)(A) :=
{
(γ ′,φ′, θ ′) ∈ LPK

G,Q
(A) : (γ ′,φ′, θ ′) is locally movable to (γ ,φ, θ)

}
.

We then have the following, whose proof is identical to Proposition 5.14 except the

analogue of Lemma 5.18 is simpler since for any closed subgroup scheme L of ĜQ with

reductive identity component, Hom(SL2,Q,L) is the disjoint union of the orbit schemes

under the conjugation action of L by Proposition 4.10.

Proposition 6.5. The morphism of presheaves U(γ ,φ, θ) → LPK
G,Q

is representable by an

open immersion. Moreover, the Q-scheme U(γ ,φ, θ) is smooth and irreducible.

Deone an equivalence relation on LPKG(Q) by declaring that (γ ,φ, θ) is equivalent

to (γ ′,φ′, θ ′) if there exists some (g,h) ∈ (Ĝ×Zφ,θ )(Q) such that (γ ′,φ′, θ ′) = g(hγ ,φ, θ)g−1.

Let us denote an equivalence class under this relation by [(γ ,φ, θ)]. Observe that here

we do not require h to lie in Z◦
φ,θ (Q), so that these equivalence classes differ from

U(γ ,φ, θ)(Q). For each such equivalence class, let us choose an element (γ ,φ, θ). We

consider π0(Zφ,θ ) as a onite abstract group, and we deone an equivalence relation on

it by declaring that c is equivalent to c1cγ c
−1
1 γ −1 for any c1 in π0(Zφ,θ ). We denote by [c]

an equivalence class for this relation.

We then have the following decomposition of LPK
G,Q

into explicit connected

components, whose proof is exactly the same as that of Theorem 5.16.

Theorem 6.6. The choice of (γ ,φ, θ) in each class [(γ ,φ, θ)] of LPKG(Q) gives an identio-

cation

LPK
G,Q

=
⊔

[(γ ,φ,θ)]

⊔

[c]

U(cγ ,φ, θ).

We derive from this two corollaries neither of which is a priori obvious.

Corollary 6.7. For all (γ ,φ, θ) in LPKG(Q) the Q-scheme U(γ ,φ, θ) is afone.

Proof. By Proposition 6.4, the scheme LPK
G,Q

is afone, and thus so is the clopen subset

U(γ ,φ, θ). �

Denote the set of equivalence classes for LPKG(Q) (resp. π0(Zφ,θ )) by [LPKG(Q)] (resp.

[π0(Zθ ,N)]).
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Corollary 6.8. The afone Q-scheme LPKG is smooth, and there is a non-canonical �Q-

equivariant bijection

π0

(
LPK

G,Q

) ∼−→

⎧
⎪«
⎪¬

([(γ ,φ, θ)], [c]) :
(1) [(γ ,φ, θ)] ∈

[
LPKG(Q)

]

(2) [c] ∈ [π0(Zφ,θ )]

«
⎪¬
⎪­
,

where the �Q action on the target is inherited from LPKG and Ĝ.

Proof. By Proposition 6.5, eachU(γ ,φ, θ) is smooth and connected, and thus the disjoint

union, which is LPK
G,Q

, is smooth and the claim concerning connected components

follows. �

6.3 The Jacobson–Morozov morphism

We now come to the deonition of the Jacobson–Morozov map in the geometric setting.

Deonition 6.9. The morphism JM : LPG → WDPG given by sending ψ to (ψ ◦ ι,dθψ (e0))

is called the Jacobson–Morozov morphism.

It is clear that JM is Ĝ-equivariant. By Theorem 4.14, it is also clear that JM

factorizes uniquely throughWDP�
G. Moreover, for any onite extension K of F∗ Galois over

F, one sees that JM−1(WDPKG) is precisely LPKG and so we get factorizations LPKG → WDPKG

and LPKG → WDP
K,�
G . We denote all these factorizations also by JM.

Observe that over Qwe may give a simpler description of the Jacobson–Morozov

morphism on each connected component. Namely, let us ox (γ ,φ, θ) in LPKG(Q) as in the

notation of §6.2. Then, orst observe that JM(γ ,φ, θ) is equal to (γ ,φ,N) where N = JM(θ).

We may then observe that JM restricted to U(γ ,φ, θ) maps into U(γ ,φ,N) and is the étale

sheaoocation of the map, which on A-points is the map

{
g(hγ ,φ, θ)g−1 : (g,h) ∈ Ĝ(A) × Z◦

φ,θ (A)
}

→
{
g(h′γ ,φ,N)g−1 : (g,h′) ∈ Ĝ(A) × Z◦

φ,N(A)
}

given by sending g(hγ ,φ, θ)g−1 to g(hγ ,φ,N)g−1.

We also observe that if k is an extension of Q and c is an element of k such that

c2 = q then under the isomorphisms described in Proposition 5.2 and Proposition 6.3

the Jacobson–Morozov morphism corresponds to the morphism LP′
G,k → WDP′

G,k, which
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on A-points sends ψ to (ψ ◦ ι′A,dθψ (e0)) where ι′A is the map

ι′A : WF → WF × SL2(A), w �→
(
w,
(
c−d(w) 0

0 cd(w)

))
,

and by θψ we mean the map SL2,A → ĜA associated to the (unique) algebraization of

ψ |SL2(A). So, on the level of C-points we see that our Jacobson–Morozov map agrees with

that from §3.2.

We now move towards stating the analogue of Theorem 3.6 at the level of A-

points. To begin, we must deone the notion of semi-simplicity for L-parameters in the

relative setting.

Proposition 6.10. Let ψ be an L-parameter over a Q-algebra A. Then there is a positive

integer m divisible by [F∗ : F] such that the morphism

WF,A → ǦA, w �→ ψ̌
(
w2m,

(
q−md(w) 0

0 q−md(w)

))

admits a factorization

WF,A
d−→ ZA

ψ̌m−→ ǦA.

Proof. This is proved in the same way as Proposition 5.8. �

Deonition 6.11. For A a Q-algebra, we call an element ψ of LPG(A) Frobenius semi-

simple if there exists an integer m as in Proposition 6.10 such that ψ̌m factors through

a subtorus of ǦA etale locally on A.

Let us denote by LPss
G (A) (resp. LPK,ssG (A)) the subset of Frobenius semi-simple

elements of LPG(A) (resp. LPKG(A)). This evidently forms a Ĝ-stable subfunctor of LPG

(resp. LPKG ).

Remark 6.12. To understand the reasoning for this deonition, observe that under the

isomorphism in Proposition 6.3, this condition corresponds to an element ψ ′ of LP′
G,k(A)

satisfying the property that the projection of ψ ′(w2m
0 , 1) to Ĝ(A) is semi-simple for some

m as in Proposition 6.10. In particular, this notion of semi-simple agrees with that from

§3.2 for C-points by Lemma 3.13.
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We now prove the following surprisingly subtle semi-simplicity preservation

property for the Jacobson–Morozov morphism.

Proposition 6.13. LetA be aQ-algebra andψ an element of LPG(A). Then,ψ is Frobenius

semi-simple if and only if JM(ψ) is.

Proof. Suppose that ψ is Frobenius semi-simple. As the conclusion is insensitive to

passing to an étale extension and conjugating, we do so freely. Takem as in Proposition

6.10 and a split maximal torus T of ǦA such that ψ̌m factors through T. Note that the

eigenspace ǧA(1) with respect to ψ̌m(1) is the Lie algebra of a Levi subgroup L of ǦA such

that ψ̌m factors through Z(L). Indeed, we may assume that T = (T0)A for a maximal torus

T0 of Ǧ. Let L
′ be the Levi subgroup of Ǧ generated by T0 and the root groups for the roots

α, which annihilate ψ̌m(1). Then, we may take L = L′
A, where ψ̌m factors through Z(L) by

[11, Corollary 3.3.6].

Note that θ factorizes through L as by Proposition 2.6, it sufoces to check this

on the level of Lie algebras, from where it is clear. Let T2 denote the standard diagonal

subtorus of SL2,A. Since θ factorizes through L, by [11, Lemma 5.3.6], we may assume

that the map θ |T2 factorizes through a maximal torus T ′ of L. But, as Z(L) ⊆ T ′, both

θ |T2 and ψ̌m factorize through T ′. Hence, if we write JM(ψ) = (ϕ,N), then the morphism

WF,A → ǦA given byw �→ ϕ(wm) factors through T ′. This implies that JM(ψ) is Frobenius

semi-simple.

Conversely, suppose that JM(ψ) = (ϕ,N) is Frobenius semi-simple. Let m be any

integer as Proposition 5.8. As above, we may build a reductive subgroup Lm of ǦA such

that Lie(Lm) is identioed with ǧA(1) with respect to ϕ̌m(1). We claim that the group Lkm

stabilizes for k sufociently large. Indeed, the roots of α of Ǧ relative to T0 that annihilate

ϕ̌km(1) = ϕ̌m(1)k stabilize for k sufociently large, from where the claim follows by the

construction. Denote by L the group Lkm for k sufociently large, say for k � k0. Let us

write Z for the torus Z(L)◦ (see [11, Theorem 3.3.4]). Observe that as ϕ̌km, for k � k0,

centralizes Lie(L) that ϕ̌km factors through Z(L). So then, for some k1 � k0, we have that

ϕ̌k1m factors through Z. We put m1 = k1m. We will be done if we can show that θ |T2
factorizes through the reductive group A-scheme ZǦ(Z) (see [11, Lemma 2.2.4] and [35,

Corollary 17.59]). Indeed, in this case by [11, Lemma 5.3.6], we know that after passing

to an étale extension, θ |T2 factorizes through a maximal torus T ′ of ZǦ(Z). Then θ |T2 and

ϕ̌m1
factor through T ′. Hence

WF,A → ǦA, w �→ ψ̌
(
w2m1 ,

(
q−m1d(w) 0

0 q−m1d(w)

))

factors through T ′. This implies that ψ is Frobenius semi-simple.
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Working etale locally, and by passing to a Ǧ(A)-conjugate, we may assume that

Z is equal to Z′
A for a split subtorus Z′ of Ǧ. Let R0 be the set of nontrivial characters

of Z′ appearing in the adjoint action of Z′ on ǧA. Note that these characters are already

deoned over Q. Consider the functor on AlgQ with

Y(B) :=

⎧
«
¬z ∈ Z′(B) :

(1) χ(z) �= 1 for all χ ∈ R0,

(2) χ(z) = qm1 for allχ ∈ R0 such that χ(ϕ̌m1
(1)) = qm1

«
¬
­ .

Clearly, Y deones a locally closed subscheme of Z′, which is non-empty as ϕ̌m1
(1) is an

element of Y(A). Take y ∈ Y(F) for a onite extension F of Q. By passing to an étale

extension,wemay assume thatA contains F.We claim that inclusion ZǦ(Z) ⊆ ZǦ(y)◦A is an

equality. As ZǦ(Z) is nat over Spec(A), we know from the obral criterion for isomorphism

(see [22,Corollaire 17.9.5]), that it sufoces to check this after base change to every point of

Spec(A). But, as A is Q-algebra, and ZǦ(Z) and ZǦ(y)◦A are both connected, it then sufoces

to check they have the same Lie algebra (e.g., see [35, Corollary 10.16]), but this is true by

construction.

In the following, we use the notation ǧA(λ) for λ ∈ A× with respect to ϕ̌m1
(1). By

construction, we know that Int(y) acts on ǧA(q±m1) by multiplication by q±m1 . Moreover,

the SL2-triple (N, f ,h) associated to θ by Theorem 4.17 satisoesN ∈ ǧA(qm1), f ∈ ǧA(q−m1)

and h ∈ ǧA(1). Therefore, the sl2-triple attached to Int(y)◦ θ is (qm1N,q−m1f ,h). Thus, the

sl2-triple attached to Int(y) ◦ θ ◦ μ is (N, f ,h) where

μ : SL2,A
∼−→ SL2,A,

(
a b

c d

)
�→
(

a q−m1b

qm1c d

)
.

By Theorem 4.17, Int(y) ◦ θ ◦ μ = θ , so θ |T2 factorizes through ZǦ(y)◦A = ZǦ(Z)

as desired. �

We end this section by proving a relative version of Proposition 3.7. Fix a Q-

algebra A and let N be an element of N �(A). Let us denote by uN the A-submodule

im(ad(N)) ∩ ker(ad(N)) of ĝA, which we also treat as a subfunctor of ĝA in the obvious

way. Note that uN is in fact a closed subscheme of N̂A and for all A-algebras B there is

an equality

uN(B) = im(ad(N ⊗ 1)) ∩ ker(ad(N ⊗ 1)).

As these claims are étale local, we may assume that N = gN0g
−1 for some N0 in N̂ (Q)

and g in Ĝ(A). Observe then that uN is equal to g(uN0)Ag
−1 where uN0 ⊆ ĝ is deoned in
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the same way as uN . As N̂A is Ĝ(A)-equivariant it sufoces to show that uN0 factorizes

through N̂ , which may be checked on Q-points that is then clear. One similarly proves

the claimed equality.

As uN is a closed subscheme of N̂A, we obtain a closed subscheme UN := exp(uN)

of ĜA. We claim that UN is a closed subgroup scheme of ĜA nat over A. As this may be

checked étale locally we are again reduced to checking that exp(uN0) is a closed subgroup

Q-scheme of Ĝ (automatically nat over Q), but this is true by Proposition 2.3. For an

element (ϕ,N) of WDP�
G(A), we set

UN(ϕ) := UN ×ĜA
ZĜ(ϕ).

Concretely, this means that for every A-algebra B one has an identiocation of UN(ϕ)(B)

with UN(B) ∩ ZĜ(ϕ)(B) where this intersection is taken in Ĝ(B).

Let us orst establish the following relative version of Proposition 3.3, which

follows easily (using the same reduction arguments as already used above) from Propo-

sition 3.3

Lemma 6.14. Let θ be an element of Hom(SL2,Q, Ĝ)(A) and deone N = JM(θ). Then,

ZĜ(N) = UN � ZĜ(θ).

Proposition 6.15. Let A be a Q-algebra, ψ is an element of LPG(A), and set (ϕ,N) =
JM(ψ). Then, ZĜ(ϕ,N) = UN(ϕ) � ZĜ(ψ).

Proof. Let B be an A-algebra. Given Lemma 6.14, it clearly sufoces to show that

conjugation by an element in the image of ϕ stabilizes UN , as the rest of the argument

for Proposition 3.7 then goes through verbatim. Let u = exp(n) be an element of UN(B)

and observe that Int(ϕ(w))(u) is equal to exp(Ad(ϕ(w))(n)), and so we are done as clearly

Ad(ϕ(w))(n) ∈ uN(B). �

6.4 The relative Jacobson–Morozov theorem for parameters

We now arrive at the relative analogue of Theorem 3.6. Let us set WDP
�,ss
G to be the

presheaf whose A-points consist of Frobenius semi-simple Weil–Deligne parameters

(ϕ,N) such that N lies in N �(A).

Theorem 6.16 (Relative Jacobson–Morozov theorem for parameters). The Jacobson–

Morozov morphism JM : LPss
G → WDP

�,ss
G is surjective, and induces an isomorphism of
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quotient presheaves

JM : LPss
G /Ĝ

∼−→ WDP
�,ss
G /Ĝ.

Let us ox a Q-algebra A, an element (ϕ,N) of WDP
�,ss
G (A), and an arithmetic

Frobenius liftw0 ∈ WF,A. In the notation fromProposition 5.7,with ρ : (Ǧ��∗)A → GL(̂gA)

the adjoint action,h = ϕ(w0), and I = φ(IF/IK), let h and h(λ) be ĝIA and ĝIA(λ), respectively.

Proposition 6.17 (cf. [21, Lemma 2.1]). There exists an sl2-triple in ĝA of the form (N,h, f )

where N ∈ h(q), h ∈ h(1), and f ∈ h(q−1). Moreover, any two such sl2-triples are conjugate

by an element of ZĜ(ϕ,N) étale locally on A.

Proof. By Theorem 4.17, there exists an sl2-triple (N,h−1, f−1) in ĝA. We take a onite

extension K of F∗ Galois over F such that IK,A ⊆ ker(ϕ̌|WF∗ ,A
). Observe that N is in h

by deonition and if we set h0 to be the average over the action of φ(IF/IK), then h0 is

also in h and (N,h0) satisoes the conditions of Proposition 4.18 for h. Therefore, there

exists an sl2-triple in h of the form (N,h0, f0). Given this, the decomposition result from

Proposition 5.7, and Proposition 4.18, the existence argument as in [21, Lemma 2.1] goes

through without further comment.

To show the uniqueness part of the statement, let (N,h, f ) and (N,h1, f1) be

two sl2-triples satisfying the conditions of the proposition. We shall pass to an étale

extension freely in the following. By Proposition 4.10, we may assume that there exists a

morphism θ : SL2,Q → Ĝ such that (N,h, f ) is the associated sl2-triple. Set m := hN ∩ h(1),

and for each i ∈ N set mi to be {x ∈ m : [h,x] = ix}. We can check that m =
⊕

imi by using

the adjoint action of θ |T2 and Lemma 2.10, where T2 is the diagonal subtorus of SL2,Q.

Let us now set u :=
⊕

i>0mi. Then u is Lie subalgebra of ĝA contained in N̂ (A) as it is

contained in
⊕

i>0 ĝi,A, the base change to A of
⊕

i>0 ĝi where ĝi = {x ∈ ĝ : [h,x] = ix},
and

⊕
i>0 ĝi is quickly checked to be contained in N̂ (Q). Consider U := exp(u), which is

a subgroup of H(A) by (3) of Proposition 2.3.

We claim that {Ad(u)(h) : u ∈ U} is equal to h + u. To see this, we note that

if we write u = exp(x) for x ∈ u then by (2) of Proposition 2.3 Ad(u)(h) is equal

to
∑

n≥0
1
n!ad(x)n(h). We need to show that for any x0 ∈ u there is x ∈ u such that

x0 =
∑

n≥1
1
n!ad(x)n(h). We deone a oltration Fili(u) =

⊕
j�imj for i ≥ 1. It sufoces to

prove that there is xi ∈ u such that

x0 ≡
∑

n≥1

1

n!
ad(xi)

n(h) mod Fili(u)
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by induction on i. This is trivial for i = 1. We assume that it is proved for i. We take

x′
i
∈ Fili(u) such that [x′

i
,h] = x0 −

∑
n≥1

1
n!ad(xi)

n(h). Then xi+1 = xi +x′
i
is seen to satisfy

x0 ≡
∑

n≥1

1

n!
ad(xi+1)

n(h) mod Fili+1(u)

since [u, Fili(u)] ⊆ Fili+1(u).

Note now that y = h1 − h = [N, f1 − f ] is in u. Indeed, by inspection [N,y] = 0

so that y is in hN , but since h1 and h are both in h(1), so is their difference y. Note

though that as y = [N, f1 − f ] we have y is in u. Indeed, it again sufoces to show that

ĝA ∩ [N, ĝA] is equal to
⊕

i>0 ĝi,A, which, again, may be verioed over Q in which case it

is again classical (cf. [21, Proposition 2.2]). Thus, we know that there exists some u in U

such that Ad(u)(h) = h+ y = h1. One then verioes that Ad(u)(f ) = f1 as in loc. cit.

Finally, we now observe that the inclusion U ⊆ ZĜ(ϕ,N)(A) holds. Indeed, writing

u = exp(x), we see that Ad(u)(N) = N since x is in hN and using the formula from (2) of

Proposition 2.3. Similarly, as Int(ϕ(w))(exp(x)) is equal to exp(Ad(ϕ(w))(x)), this is just

exp(x) as x is in h(1). �

To show the surjectivity claim in Theorem 6.16, let (N, f ,h) be as in Proposi-

tion 6.17, and consider the morphism θ : SL2,A → ĜA associated by Theorem 4.15. We

then consider the morphism of schemes

ψ : Ltw
F,A → CGA, (w,g) �→ θ

(
g
( ‖w‖ 0

0 1

)−1
)

ϕ(w).

We claim that this a morphism of group A-schemes. To prove this, it sufoces to show

Ad(ϕ(w))(θ(g)) = θ
(
Ad
(( ‖w‖ 0

0 1

))
(g)
)

for w ∈ WF,A(B) and g ∈ SL2(B), where B is any A-algebra. This follows from

Proposition 2.6 and the construction of θ . One then easily check that ψ is an element

of LPG(A) such that JM(ψ) = (ϕ,N) as desired.

We now show that JM induces a bijection LPss
G (A)/Ĝ(A)

∼−→ WDP
�,ss
G (A)/Ĝ(A),

which now only requires the demonstration of injectivity. By the Ĝ(A)-equivariance of

JM, it sufoces to show that if ψ1 and ψ2 are elements of LPss
G (A) such that JM(ψ1) and

JM(ψ2) both equal (ϕ,N), then ψ1 and ψ2 are Ĝ(A)-conjugate. Note that the sl2-triples

associated to θψi
for i = 1, 2 both satisfy the conditions of Proposition 6.17 for (ϕ,N).

Therefore, étale locally on A the sl2-triples associated to ψ1 and ψ2 are conjugate in a
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way that centralizes (ϕ,N) and so ψ1 and ψ2 are étale locally conjugate. From this, we

deduce that ψ2 deones a class in H1
ét(Spec(A),ZĜ(ψ1)) given by Transp

Ĝ
(ψ1,ψ2). Note that

we have a natural map

H1
ét(Spec(A),ZĜ(ψ1)) → H1

ét(Spec(A),ZĜ(ϕ,N)),

which maps Transp
Ĝ
(ψ1,ψ2) to the trivial element, and so Transp

Ĝ
(ψ1,ψ2) belongs to

ker

(
H1
ét(Spec(A),ZĜ(ψ1)) → H1

ét(Spec(A),ZĜ(ϕ,N))

)
,

and so we are done if this kernel is trivial. But, this map on cohomology groups has a

set-theoretic splitting from the semi-direct product decomposition of Proposition 6.15,

and so the claim follows.

7 Geometric Properties of the Jacobson–Morozov Map

In this onal section, we use the material developed so far to prove that the Jacobson–

Morozov morphism satisoes favorable geometric properties. Namely, we show that

JM : LPKG → WDP
K,�
G (resp. JM : LPKG → WDPKG ) is birational (resp. weakly birational). We

do this by exhibiting a more explicit space, which embeds into all three moduli spaces

weakly birationally. This is the geometric analogue of the reductive centralizer locus

from §3.3. We then onally show that as a particular application of these ideas one may

prove that the Jacobson–Morozov map is an isomorphism between the discrete loci in

LPKG and WDPKG .

7.1 Birationality properties

To begin, note that as the morphismN � → N is surjective and satisoes the conditions of

Lemma 4.7, WDP
K,�
G → WDPKG is then also surjective and satisoes the same conditions.

We therefore deduce from Lemma 4.7 the following.

Proposition 7.1. The morphism WDP
K,�
G → WDPKG is weakly birational.

We now give a more explicit effective version of this result. To start, we observe

the following where we denote by (ϕuniv,Nuniv) the universal pair over WDPKG .

Proposition 7.2. For each n � 0, the subset

WDP
K,n
G :=

{
x ∈ WDPKG : ZĜ(ϕuniv,Nuniv)◦x is reductive of dimension n+ dim(Z0(Ĝ))

}

of WDPKG is locally closed, is open if n = 0, and is empty if n > dim(Ĝ/Z0(Ĝ)).
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Proof. Consider the quotient Q := ZĜ(ϕuniv,Nuniv)/Z0(Ĝ)WDPKG
. By [37, Exposé VIB,

Proposition 4.1], the function f : WDPKG → N given by f (x) = dim(Qx) is upper semi-

continuous. In particular the set Dn = f−1([0,n + 1)) ∩ f−1([n,∞)] of points where Qx

is of dimension n is locally closed, and as D0 = f−1([0, 1)), D0 is open. Let us endow

Dn with the reduced substructure. Let us then note that by [37, Exposé VIB, Corollaire

4.4] for all n � 0 the identity component functor Q◦
Dn

is representable and is smooth

over Dn. Thus, by [11, Proposition 3.1.9], we deduce that the locus of x in Dn where

Q◦
x is reductive is open, and thus locally closed in WDPKG and open if n = 0. But,

evidently this locus is equal to WDP
K,n
G . Finally, as ZĜ(ϕuniv,Nuniv)◦x is a subgroup of

Ĝx we have that its dimension is at most dim(Ĝ), and thus evidently WDP
K,n
G is empty

for n > dim(Ĝ/Z0(Ĝ)). �

Deonition 7.3. We deone the reductive centralizer locus in WDPKG to be the Q-scheme

WDP
K,rc
G :=

⊔
nWDP

K,n
G (where each WDP

K,n
G is given the reduced subscheme structure).

We call the open subset WDP
K,0
G the discrete locus and denote it by WDP

K,disc
G .

Let us observe that by the proof of Proposition 7.2, if A is a reduced Q-algebra

and (ϕ,N) is a Weil–Deligne parameter over A such that the corresponding morphism

Spec(A) → WDPKG factorizes through WDP
K,rc
G , then ZĜ(ϕ,N)◦ is representable and

reductive over A.

Now we show that the reducedness of WDP
K,rc
G implies that Nuniv pulled back to

this reductive centralizer locus lies in N �. More precisely, we have the following.

Proposition 7.4. The morphism WDP
K,rc
G → WDPKG factorizes through WDP

K,�,ss
G .

Indeed, as WDP
K,rc
G is reduced by deonition, this follows from Proposition 5.11

and the following proposition.

Proposition 7.5. If A is a reduced Q-algebra, and (ϕ,N) is an element of WDPG(A) such

that ZĜ(ϕ,N)◦x is a reductive group scheme of dimension n for all x in Spec(A), then (ϕ,N)

is an element of WDP�
G(A).

Proof. We break the argument into several steps to make the structure clear.

Step 1: It sufoces to prove that if A is a strictly Henselian discrete valuation ring, then

N is egc to some N0 in N̂ (Q). Indeed, we must show that the map Spec(A) → N induced

by (ϕ,N) factorizes through N �. By standard Noetherian approximation arguments we
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may assume that A is Noetherian. We may then assume that A is connected, in which

case we must show that this morphism factorizes through some ON . As A is reduced, it

sufoces to show that Spec(A) → N factorizes through some ON set-theoretically. As A is

connected, any two points of Spec(A) may be connected by a onite chain of specialization

and generalizations. This reduces us to showing that if x is a generalization of y in

Spec(A) then these points map into a common ON . We are then reduced to the case of

a discrete valuation ring by [40, Tag 054F], and then trivially to the case of a strictly

Henselian discrete valuation ring.

Step 2: We claim we may assume that (ϕ,N) is in WDP
K,disc
G (A). Write η (resp. s) for the

generic point (resp. special) of Spec(A). As ZĜ(ϕ,N) has constant ober dimension, the

same is true for ZĜder(ϕ,N). Indeed, for each point x of Spec(A) the group Ĝx is the quotient

(Ĝder
x ×Z(Ĝ)x)/Z(Ĝder)x where Z(Ĝder)x is a onite group scheme (see [35,Example 19.25]).As

a pair (g, z) in Ĝder
x ×Z(Ĝ)x centralizes (ϕ,N) if and only if g does,we deduce that ZĜ(ϕ,N)x

is the quotient of ZĜder(ϕ,N)x × Z(Ĝ)x by the onite group scheme Z(Ĝder)x ∩ ZĜder(ϕ,N)x.

Thus, dim(ZĜ(ϕ,N)x) is dim(ZĜder(ϕ,N)x)+dim(Z(Ĝ)x). As dim(Z(Ĝ)x) is also constant, the

claim follows.

So, again [37, Exposé VIB, Corollaire 4.4] shows that ZĜder(ϕ,N)◦ is representable

and reductive overA. AsA is strictly Henselian, for any reductive group overA, all its tori

are split, all its maximal tori are conjugate, and all its Borel subgroups are conjugate.

Then,as CG is equal to L̃G the arguments in the second paragraph of the proof of [4,Lemma

3.5] show that if T is a maximal torus of ZĜder(ϕ,N)◦ then ZCGA(T) is a Levi subgroup of
CGA since ZCGA(T) contains the image of ϕ and hence projects onto WF,A. Further, there

exists some g ∈ Ǧ(A) and a Levi subgroup H of G∗ (where G∗ is the quasi-split inner form

of G) such that gZCGA(T)g−1 = CHA. Therefore, g(ϕ,N)g−1 factorizes through CHA because

T ⊂ ZĜder(ϕ,N)◦. We claim then that g(ϕ,N)g−1 is in WDP
K,disc
H (A). By Proposition 5.11

g(ϕη,Nη)g
−1 and g(ϕs,Ns)g

−1 are Frobenius semi-simple. Moreover, the argument given

in [4, Proposition 3.6] shows that neither g(ϕη,Nη)g
−1 nor g(ϕs,Ns)g

−1 factorizes through

a proper Levi (in the sense of loc. cit.), which, as they are both Frobenius semi-simple,

implies by the usual arguments (cf. [33, Lemma 10.3.1]) that they are discrete. As N is in

N �(A) if and only if gNg−1 is, the claimed reduction follows.

Step 3: We now show that we may assume Ns �= 0. If both Ns and Nη are zero we’re done,

and so it sufoces to show that if Nη �= 0 then Ns �= 0. To see this, assume otherwise.

But the inequality dim ZǦ(ϕη) � dim ZǦ(ϕs) = dim ZǦ(ϕs,Ns) holds by [37, Exposé VIB,

Proposition 4.1]. Also, dim ZǦ(ϕη,Nη) < dim ZǦ(ϕη). Indeed, it sufoces to note that if w0

is any lift of arithmetic Frobenius then (as in Proposition 5.8) for m sufociently large
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ϕ̌η(w
m
0 ) deones a point of ZǦ(ϕη)

◦ but, as Nη �= 0, does not deone a point of ZǦ(ϕη,Nη) and

thus ZǦ(ϕη,Nη)
◦ � ZǦ(ϕη)

◦ fromwhere the claim follows.But, observe that dim(ZǦ(ϕη,Nη))

(resp. dim(ZǦ(ϕs,Ns))) is equal to dim(ZĜ(ϕη,Nη)) + 1 (resp. dim(ZĜ(ϕs,Ns)) + 1) and so we

arrive at a contradictionwith the assumption that the dimensions of the obers of ZĜ(ϕ,N)

are constant.

Step 4: Taking the image of (ϕ,N) under CG → C(Gder), we may replace G with Gder. Then

Z0(Ĝ) is onite since G is semisimple. Proposition 5.11 together with Theorem 6.16 imply

that (ϕη,Nη) (resp. (ϕs,Ns)) comes from an L-parameter ψ1 (resp. ψ2). Write μi for the

restriction of θψi
to the diagonal maximal torus, which we view as a cocharacter via the

map z �→
(
z 0
0 z−1

)
. Fixw0 to be an arithmetic Frobenius lift. By Frobenius semi-simplicity

and the fact that A is strictly Henselian, there is, up to conjugacy, a positive integer m0

divisible by [F∗ : F] such that ϕ̌(w
m0
0 ) is contained in the A-points of a maximal torus T

of ǦQ. By the relation between ψ1 and ϕη, as well as the relationship between ψ2 and ϕs,

and the argument of [21, Lemma 3.1], we see that up to replacingm0 by a power, we may

further assume that ϕ̌η(w
2m0
0 ) = μ1(q

m0) and ϕ̌s(w
2m0
0 ) = μ2(q

m0). From this orst equality

it is simple to see that μ1 factorizes through Tη, and thus there exists a unique lift μA

of μ1 to TA where μ is a cocharacter of T. We note as Ns �= 0, that μ2 is characterized

by the property that the image of μ2 contains ϕ̌s(w
2m0
0 ) and Ad(μ2(q

m0))(Ns) = q2m0Ns.

As ǦA and ĝA are separated over A, we have that the image of μ contains ϕ̌(w
2m0
0 ) and

Ad(μ(qm0))(N) = q2m0N. Hence, μs satisoes the above characterization of μ2, so μs = μ2.

Let P(μ) be the parabolic subgroup of ĜQ associated to μ. Deone ĝη(j) (resp. ĝs(i)) using

μη (resp. μs) as in [9, §5.7]. Then by [9, Proposition 5.7.3] Nη (resp. Ns) is in the unique

open P(μ)η-orbit (resp. P(μ)s) of
⊕

i≥2 ĝη(i) (resp.
⊕

i≥2 ĝs(i)). But, by the uniqueness of

this open orbit, we then see that Nη and Ns are both conjugate to any Q-point of the

unique open orbit of P(μ) on
⊕

i≥2 ĝ(i), from where the conclusion follows. We are then

done by Proposition 4.8. �

We next show the pleasant property that WDP
K,rc
G actually has dense image in

WDP
K,�
G .

Lemma 7.6. Let k be a oeld, X an irreducible onite type k-scheme equipped with

an action of an algebraic k-group H, and Y an irreducible locally closed subscheme

of X. Assume that the action morphism μ : H × Y → X is dominant. Then there is

a dense open subset U of Y such that dimZH(y) � dim(H) + dim(Y) − dim(X) for

all y ∈ U.
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Proof. By [24, Corollary 14.116], there exists a dense open subset V of X with the

property that dimμ−1(y) = dimH + dimY − dimX for all y ∈ V. As μ is H-equivariant

when H is made to act on the orst component of H×Y, we may assume that V is H-stable

by replacing V with HV. We put U = V ∩ Y, which is non-empty as μ is dominant and V

is H-stable. As ZH(y) × {y} ⊆ μ−1(y) for y ∈ U, we obtain the claim. �

Proposition 7.7. The set

{x ∈ WDP
K,�
G : ZĜ(ϕuniv,Nuniv)◦x is a torus}

contains an open dense subset of WDP
K,�
G .

Proof. Observe that this may be checked overQ, as the morphism Spec(Q) → Spec(Q) is

surjective and universally open (see [40, Tag 0383]). Thus, from Theorem 5.16, it sufoces

to show that for each (γ ,φ,N) inWDPKG(Q) corresponding to (ϕ,N), one has that the set of

points x in U(γ ,φ,N) such that ZĜ(ϕuniv,Nuniv)◦x is a torus contains a dense open subset.

Let H be the normalizer of φ in (Ĝ��∗)Q. Then H◦ = ZĜ(φ)◦, which is a reductive

group by Lemma 2.5 as ZĜ(φ) is the same as Ĝ� where � is φ(IF/IK) ⊆ Ĝ(Q) � (IF/IK)

(which is onite as IF/IK is) acting on Ĝ by conjugation. Consider the linear algebraic Q-

group S′
H(N) representing the functor

AlgQ → Grp, A �→
{
(h, z) ∈ H(A) × A× : Ad(h)(N) = z2N

}
,

which is clearly seen to be a closed subgroup scheme of ((Ĝ × Gm) � �∗)Q by changing

the order of the components. Let SH(N) be the image of S′
H(N) in (Ǧ � �∗)Q. Let s0u0 be

the Jordan decomposition of ϕ(w0) in SH(N). Then the image of u0 in Gm,Q is trivial.

Hence,u0 is an element of Z◦
φ,N . Replacing γ by u−1

0 γ , we may assume that ϕ is Frobenius

semi-simple from the beginning.

Let ψ be an element of LPKG(Q) such that JM(ψ) = (ϕ,N) and write θ = θψ .

Let UH(N) be the unipotent radical of ZH(N). Then, as in Proposition 3.3, we have

ZH(N) = UH(N) � ZH(θ). We take a maximal quasi-torus T of ZH(θ) in the sense

of [26, Deonition 8.6]. Set s1 to be the image of
(
θ
((

q1/2 0
0 q−1/2

))
,q1/2

)
in Ǧ(Q). Then

Z◦
φ,Nγ s−1

1 ⊆ ZH(N). Note that Z◦
φ,Nγ s−1

1 is a connected component of ZH(N) since Z◦
φ,N is

the identity component of ZH(N). So we can write T ∩ Z◦
φ,Nγ s−1

1 = t1T
◦ for some t1 ∈ T(Q)

by [26, Theorem 8.10 (d)]. Then, we have Z◦
φ,Nγ = t1Z

◦
φ,Ns1 as Z◦

φ,Nγ s−1
1 is a connected

component of ZH(N) containing t1.
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We let Tt1 be the closed subgroup scheme of T of elements commuting with t1.

For t0 in (Tt1)◦(Q), we consider the morphism

�t0
: ZH(N)◦ × (Tt1)◦ → ZH(N)◦, (h, t) �→ (t1t0)

−1ht1t0ts1h
−1s−1

1 .

This induces

Lie(�t0
) : Lie(ZH(N)◦) × Lie((Tt1)◦) → Lie(ZH(N)◦), (x,y) �→ ad((t1t0)

−1)x + y − ad(s1)x.

This is identioed with the direct sum of

Lie(�t0
)1 : Lie(ZH(θ)◦) × Lie((Tt1)◦) → Lie(ZH(θ)◦), (x,y) �→ ad((t1t0)

−1)x + y − x,

Lie(�t0
)2 : Lie(UH(N)◦) → Lie(UH(N)◦), z �→ ad((t1t0)

−1)z− ad(s1)z.

In the proof of [26, Theorem 8.9 (c)], it is shown that the morphism

ZH(θ)◦ × t1(T
t1)◦ → t1ZH(θ)◦, (g, t) �→ gtg−1

is dominant. Therefore, by Lemma 7.6 and the fact that (Tt1)◦ ⊆ ZZH (θ)◦(t1t0)
◦ for any

t0 ∈ (Tt1)◦, there is an open dense subset Ut1,1 ⊆ (Tt1)◦ such that ZZH (θ)◦(t1t0)
◦ = (Tt1)◦

for t0 ∈ Ut1,1. This implies that Lie(�t0
)1 is surjective for t0 ∈ Ut1,1.

The eigenvalues of the diagonalizable ad(s1) on Lie(UH(N)) are contained in

{qi/2}1≤i≤n0
for some n0 by Proposition 3.3. Let m1 be the order of t1 in π0(T). Then

there is a positive integerm such that the eigenvalues of the diagonalizable ad(t
−1−mm1
1 )

on Lie(UH(N)) are disjoint from {qi/2}1≤i≤n0
. Since t

−1−mm1
1 and s1 are commutative,

ad(t
−1−mm1
1 ) and ad(s1) are simultaneously diagonalizable. Hence, we have the surjec-

tivity of Lie(�
t
mm1
1

)2. Since the surjectivity of Lie(�t0
)2 deones an open subset on (Tt1)◦,

which we now know is non-empty, there is an open dense subset Ut1,2 ⊆ (Tt1)◦ such that

Lie(�t0
)2 is surjective for t0 ∈ Ut1,2.

We put Ut1
= Ut1,1 ∩Ut1,2. Then, for t0 ∈ Ut1

, the map Lie(�t0
) is surjective, hence

�t0
is dominant. This implies that

ZH(N)◦ × t1(T
t1)◦s1 → t1ZH(N)◦s1, (g, t) �→ gtg−1

is dominant. Further, for t0 ∈ Ut1
, the surjectivity of Lie(�t0

) implies that the kernel of

Lie(ZH(N)◦) → Lie(ZH(N)◦), x �→ ad((t1t0)
−1)x − ad(s1)x
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is equal to Lie((Tt1)◦). This means that for t0 ∈ Ut1
, we have ZZH (N)(t1t0s1)

◦ = (Tt1)◦. So

we have toral centralizer for all points in the image of the dominant map

ZH(N)◦ × t1Ut1
s1 → t1ZH(N)◦s1, (g, t) �→ gtg−1,

whose target is equal to Z◦
φ,Nγ , and so the conclusion follows from Chevalley’s theorem

(see [24, Theorem 10.19]). �

From this, together with Proposition 7.1 and Lemma 4.7, we deduce that the two

maps WDP
K,rc
G → WDP

K,�
G and WDP

K,rc
G → WDPKG are weakly birational. To connect this

discussion to the Jacobson–Morozov map, we now show that JM is an isomorphism over

WDP
K,rc
G .

Proposition 7.8. The morphism JM : JM−1(WDP
K,rc
G ) → WDP

K,rc
G is an isomorphism.

Proof. Let A be a Q-algebra. As JM is Ĝ(A)-equivariant, to show that this map is a

bijection on A-points it sufoces to prove that the map on A-points is a bijection upon

quotienting both sides by Ĝ(A), and that for all ψ in JM−1(WDP
K,rc
G (A)) the equality

ZĜ(ψ) = ZĜ(ϕ,N) holds where (ϕ,N) = JM(ψ). For the bijectivity on quotient sets,

it sufoces by Theorem 6.16 to show that every element of WDP
K,rc
G (A) belongs to

WDP
K,�,ss
G (A). But, this follows from Proposition 7.4. Suppose now that ψ is an element of

JM−1(WDP
K,rc
G (A)). To show that ZĜ(ψ) = ZĜ(ϕ,N), it sufoces by Proposition 6.15 to show

that UN(ϕ) is trivial. Applying the oberwise criterion for isomorphism (see [11, Lemma

B.3.1]) to identity section of UN(ϕ), it sufoces to show that UN(ϕ)x is trivial for all x in

Spec(A). But, as UN(ϕ)x is unipotent it is contained in Z(ϕ,N)◦x, and as it is also normal,

it must be trivial by our assumption that Z(ϕ,N)◦x is reductive. �

We deduce that WDP
K,rc
G also admits a weakly birational monomorphism to

LPKG . So, we now come to our main geometric result concerning the Jacobson–Morozov

morphism.

Theorem 7.9. The morphism JM : LPKG → WDP
K,�
G (resp. JM : LPKG → WDPKG ) is birational

(resp. weakly birational).

Proof. The weak birationality of both maps is clear from the above discussion, and

therefore it sufoces to show that the map JM : LPKG → WDP
K,�
G induces a bijection

on irreducible components. It clearly sufoces to check this after base changing to Q.
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By Theorem 5.16 and Theorem 6.6, the connected components of LPK
G,Q

and WDP
K,�
G,Q

are irreducible, so it sufoces to show that the map JM : π0(LP
K
G,Q

) → π0(WDP
K,�
G,Q

)

is bijective.

To do this, we orst show that the Jacobson–Morozov map induces a bijection

[LPKG(Q)] → [WDPKG(Q)]. By Proposition 7.7 and Proposition 5.11, every equivalence class

of the target contains a Frobenius semi-simple element and thus surjectivity follows

from Theorem 6.16. To show injectivity suppose that (γi,φi, θi) for i = 1, 2 are elements

of LPKG(Q) such that (γi,φi,Ni) are equivalent in WDPKG(Q). Without loss of generality,

we may assume that φ1 = φ2 =: φ and N1 = N2 =: N and that γ2 = hγ1 with h

in Zφ,N(Q). By Proposition 6.17, there exists z in Zφ,N(Q) such that zθ1z
−1 = θ2. Note

then that (γ2,φ, θ2) = z(sγ1,φ, θ1)z
−1 where s = z−1γ2zγ

−1
1 . Writing s = z−1hγ1zγ

−1
1

one sees from the fact that z−1 and h both centralize φ and γ1 normalizes φ that s

centralizes φ. On the other hand, one can just as easily check that as γ1 centralizes θ1

and γ2 centralizes θ2 that s = z−1γ2zγ
−1
1 also centralizes θ1. Therefore, as (γ2,φ, θ2) =

z(sγ1,φ, θ1)z
−1, we deduce that (γ2,φ, θ2) and (γ1,φ, θ1) are equivalent in LPKG(Q)

as desired.

But, for (γ ,φ, θ) with image (γ ′,φ,N) under the Jacobson–Morozov map, one has

π0(Zφ,N) = π0(Zθ ,N) as follows quickly from Proposition 6.15. These observations together

with Corollary 5.17 and Corollary 6.8 give the desired conclusion. �

Let us onally note that as a possibly useful corollary of the above results, we

also obtain the density of Frobenius semi-simple parameters in all three of these moduli

spaces.

Corollary 7.10. The subsets

LPss
G (Q) ⊆ LPG, WDP

�,ss
G (Q) ⊆ WDP�

G, WDPss
G (Q) ⊆ WDPG

are dense.

7.2 Isomorphism over the discrete locus

In this onal section, we apply the material to give a geometric analogue of Corollary 3.16

or, in other words, we show that the Jacobson–Morozov morphism is an isomorphism

over the discrete loci in LPKG and WDPKG .

We have deoned the discrete locus WDP
K,disc
G in Deonition 7.3, and we now do so

for LPKG .
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Deonition 7.11. Let ψuniv be the universal L-parameter over LPKG . Then, the discrete

locus in LPKG is the subset

LP
K,disc
G :=

{
x ∈ LPKG : ZĜ(ψuniv)x/Z0(Ĝ)x → Spec(k(x)) is onite

}
.

The same argument as in the proof of Proposition 7.2 shows that LPK,discG is an

open subset of LPKG and we endow it with the open subscheme structure. The following

relates the discrete loci in WDPKG and LPKG , giving a geometrization of Corollary 3.16.

Proposition 7.12. The equality JM−1(WDP
K,disc
G ) = LP

K,disc
G holds.

Proof. As these are both open subsets of the onite type afone Q-scheme LPKG , it sufoces

to show that they have the same Q-points. In other words, we must show that for an

element LPKG(Q) one has that ZĜ(ψ) is onite (as a set) if and only if ZĜ(JM(ψ)) is onite.

Choosing an embedding Q → C one then quickly deduces this from Proposition 3.15 and

its proof. �

From this, and Proposition 7.8, we deduce the following.

Theorem 7.13. The morphism JM : LPK,discG → WDP
K,disc
G is an isomorphism.
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