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Let k be a field, let H ⊂ G be (possibly disconnected) reductive groups over k, and let � be a finitely
generated group. Vinberg and Martin have shown that the induced morphism Homk-gp(�,H)//H →

Homk-gp(�,G)//G is finite. In this note, we generalize this result (with a significantly different proof) by

replacing k with an arbitrary locally Noetherian scheme, answering a question of Dat. Along the way,
we use Bruhat–Tits theory to establish a few apparently new results about integral models of reductive
groups over discrete valuation rings.

1 Introduction

Let S be a locally Noetherian scheme,and letH andG be smooth S-affine S-group schemeswith reductive
fibers and finite étale component groups. Let f : H → G be an S-homomorphism and let h : �′ → � be a
homomorphism of finitely generated groups. If HomS-gp(�,G) denotes the scheme of homomorphisms
from � to G, then there is a natural S-morphism

F : HomS-gp(�,H)//H → HomS-gp(�
′,G)//G

between the GIT quotients. The goal of this note is to prove the following theorem, answering a question
of Dat [6, Conjecture 5.16].

Theorem 1.1. If f is a finite morphism and h(�′) is of finite index in �, then F is finite.

Theorem 1.1 has been proved in various special cases in the literature.

1) If S is the spectrum of a field, � = �′, and h = id� then Theorem 1.1 is due to Vinberg [17] in
characteristic 0 and Martin [13] in positive characteristic.

2) If � = �′ = Z, h = idZ, and H and G are reductive, then Theorem 1.1 follows from the Chevalley–
Steinberg theorem (for more general H and G, see [9, Lemma 2.2]).

3) If S = SpecW(k) for an algebraically closed field k of characteristic p > 0, � is a finite group of
order prime to p, and H and G are semisimple, then [10, Appendix A] shows that the source and
target of F are finite étale, and in particular Theorem 1.1 holds.

4) If p is a prime number, S = SpecZ[ 1p ], the function h is injective, and � = W0
F/P for a finite extension

F/Qp (where W0
F is the “discretized Weil group” introduced in [8] and P is an open subgroup of wild

inertia which is normal in WF), then Theorem 1.1 is proved with some assumptions on G in [9,
Corollary 2.4, Corollary 2.5].
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Remark 1.2. The statement of Theorem 1.1 is slightly strange: when � = �′ is a free group on N

letters, we have HomS-gp(�,H) ∼= HN and the induced morphism of quotient stacks

[HN/H] → [GN/G]

is almost never universally closed. Indeed, if f is monic then pulling back via the map S → [GN/G]
corresponding to (1, . . . , 1) gives G/H → S, which is universally closed if and only if G/H is finite.

We will prove Theorem 1.1 by verifying the valuative criterion of properness. Let us briefly illustrate
the strategy, ignoring a few subtleties; we remark that it is quite different from the strategies of [17] and
[13] even over a field. Suppose given a commutative diagram

in which A is a DVR with fraction field K. After passing to a local extension of A, which we may assume
to be complete, Lemma 2.2 shows that x arises from a homomorphism ϕ : �′ → G(A) and y arises from
a homomorphism ψ : � → H(K) with closed HK-orbit such that ϕ and f ◦ ψ ◦ h are G(K)-conjugate. We
must show that after extending A further,ψ(�) is H(K)-conjugate to a subgroup of H(A). Using the G(K)-
conjugacy of f ◦ψ ◦h and ϕ, one shows that ψ(�) is a bounded subgroup ofH(K), and using the closedness
of the orbit of ψ it follows from [14] that the Zariski closure H1 of ψ(�) in HK is reductive (but possibly
disconnected). At this point, the key input is the following theorem (applied to B = ψ(�)), which collects
the results of Sections 3 and 4.

Theorem 1.3. Let A be an excellent Henselian DVR with fraction field K.

1) (Lemmas 3.4, 4.3) Let H1 be a reductive K-group, and let B ⊂ H1(K) be a bounded subgroup. There
exists a finite local extension of DVRs A ⊂ A′ with fraction field K′ and a smooth affine model H1

of (H1)K′ over A′ such that H 0
1 is a reductive group scheme, H1/H

0
1 is finite étale, and B ⊂ H1(A′).

2) (Lemma 4.4) Let H1 and H be smooth affine A-group schemes such that H0 is reductive and H/H0

is finite étale, and let f1 : (H1)K → HK be a K-homomorphism. There exists a finite local extension
of DVRs A ⊂ A′ with fraction field K′ and h ∈ H0(K′) such that Ad(h) ◦ (f1)K′ extends to an A′-
homomorphism f : (H1)A′ → HA′ .

In the case that S = SpecW(k) for an algebraically closed field k of characteristic p > 0, H1 is
constant of order prime to p, and H is semisimple (with connected fibers), Theorem 1.3(2) is proved
in [10, Lemma A.8].

The proof of Theorem 1.3(1) proceeds by first constructing (after a finite local extension of A) a single

integral model of H1 with good properties. The group of A-points of any such model can be realized
as the stabilizer of a hyperspecial point in the Bruhat–Tits building B(H0

1). Next, we show that for any
bounded subgroup B of H1(K), there is a finite extension K′/K such that B stabilizes a hyperspecial point
of B((H0

1)K′ ), so we obtain (1) from the conjugacy of hyperspecial points. Item (2) follows from (1) applied
to B = f1(H(A)), the conjugacy of hyperspecial points, and a simple lemma (Lemma 4.1).

2 Preliminaries

We recall first the existence part of the (Noetherian) valuative criterion of properness for morphisms of stacks.
For simplicity, let f : X → Y be a finite type morphism of algebraic stacks such that Y is a locally
Noetherian scheme. We say that f satisfies the existence part of the valuative criterion of properness
if, for every DVR A with fraction field K and every solid commutative diagram
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there exists a local extension A ⊂ A′ of DVRs with fraction field K′ such that the dotted diagram can
be filled in to become commutative. (Note that this differs slightly from the definition in [16, Tag0CLA],
in which A and A′ are only required to be valuation rings; we have also simplified the definition by
assuming that Y has no stabilizers.)

The relevance of this definition for our purposes is that if f is finite type and quasi-separated, then
[16, Tag0H2C, Tag0CLX] shows that f satisfies the existence part of the valuative criterion of properness
if and only if f is universally closed. (Strictly speaking, [16, Tag0CLX] is only a statement about the
non-Noetherian valuative criterion, but its proof works mutatis mutandis for the Noetherian valuative
criterion by using [16, Tag0H2B] in place of [16, Tag0CL2].)

We recall also the notion of geometric reductivity from [1, Definition 9.1.1]. The precise definition is
of no relevance to us, but we recall the following two facts which we will use without comment in what
follows.

1) [1, Theorem 9.7.6] If S is a scheme, then a smooth affine S-group scheme G is geometrically
reductive if and only if the relative identity component G0 is a reductive group scheme and
the quotient G/G0 is finite étale over S. (The published version of [1, Theorem 9.7.6] omits the
word “affine” in this statement. Without this assumption, the statement is false: indeed, abelian
schemes are geometrically reductive. In the 2018 arXiv version of [1, Theorem 9.7.6], this is
corrected, but there is an additional assumption that G/G0 is separated. This latter assumption
is superfluous: all group schemes over a field are separated, so if G is geometrically reductive
smooth affine then the theorem shows G has reductive fibers, and thus [4, Proposition 3.1.3] shows
that G/G0 is a separated étale S-group of finite presentation. I thank Vytautas Paškūnas and Julian
Quast for inquiring about this discrepancy.)

2) [1, Theorems 5.3.1, 6.3.3, 9.1.4] If S is a locally Noetherian scheme, G is a geometrically reductive
S-group scheme, and p : X → S is a finite type S-affine S-scheme equipped with a G-action, then
the GIT quotient X//G := SpecS(p∗OX)G is of finite type over S and the natural map [X/G] → X//G

from the quotient stack is surjective and universally closed.

Lemma 2.1. Let S be a locally Noetherian scheme, let X be a finite type S-affine S-scheme, and let
G be a geometrically reductive S-group scheme acting on X. The natural map π : [X/G] → X//G

satisfies the existence part of the valuative criterion of properness.

Proof. As noted above, π is universally closed. Since G → S is quasi-compact, the quotient stack [X/G] is
evidently quasi-separated and of finite type over S. By cancellation, it follows that π is quasi-separated
and of finite type, and thus the result follows from [16, Tag0CLX] (suitably adapted to the Noetherian
setting, as indicated above). �

Lemma 2.2. Let A be a DVR, let G be a geometrically reductive smooth affine A-group scheme,
and letX be an affineA-scheme onwhichG acts. If x ∈ (X//G)(A), then there is a local extension
of DVRs A ⊂ A′ such that xA′ lies in the image of X(A′) → (X//G)(A′).

Proof. By Lemma 2.1 and surjectivity, we may pass to a local extension of A to assume that there exists
x0 ∈ [X/G](A) mapping to x. By definition, X → [X/G] is an étale G-torsor, so we may pass to a further
local extension of A to assume that x0 lifts to x1 ∈ X(A). �

3 Extending Reductive Groups Over DVRs

The goal of this section is to show that, after passing to a quasi-finite local extension of A, any (possibly
disconnected) reductive K-group G admits a geometrically reductive smooth affine model over A. This
result (Lemma 3.4) will be complemented by Lemma 4.3,whichwill show that,provided a single suchmodel

exists, one can choose a geometrically reductive smooth affine model whose set of A-points contains
any given bounded subgroup of G(K).

To deal with issues of disconnectedness, we will perform a pushout construction with certain finite
flat (not necessarily étale) A-group schemes. To this end, we first develop a small amount of theory for
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extensions of such group schemes. In fact, we will develop a bit more than is necessary for the proof of
Theorem 1.1.

Lemma 3.1. Let A be a DVR with fraction field K, and let

1 → M → Ei → � → 1

(i = 1, 2) be short exact sequences of finite flat A-group schemes such that M is of multiplicative
type and � is étale. If f1 : (E1)K → (E2)K is a K-homomorphism preserving MK, then f1 extends
uniquely to an A-homomorphism f : E1 → E2. If f1 is an isomorphism, then f is also an
isomorphism.

Proof. If f1 extends to an A-morphism f : E1 → E2, then by flatness and schematic density of SpecK in
SpecA, this extension is unique and it is a homomorphism. Thus by descent, we may and do extend A

to assume that there are scheme-theoretic sections si : � → Ei. From this we obtain isomorphisms of
A-schemes ϕi : M×A� → H given functorially by ϕ(m, γ ) = msi(γ ). Using the ϕi, we see that f1 induces a K-
morphism g1 : MK ×K �K → MK ×K �K given functorially by g1(m, γ ) = (f1(m)d(γ ), f 1(γ )), where d : �K → MK

is a K-morphism. Thus it suffices to extend f1|MK , d, and f1 over A. Since M is finite and � is étale, the
fact that d and f1 extend comes from the valuative criterion of properness. The fact that f1|MK extends
comes from Cartier duality, noting that the Cartier dual of M is finite étale.

Now suppose that f1 is an isomorphism with inverse g1, and let f and g be the unique extensions. By
uniqueness of extensions, we see that f ◦ g and g ◦ f are the respective identities. �

Lemma 3.2. Let A be a DVR with fraction field K, and let H be a finite K-group scheme. Suppose
that we are given finite flat A-group schemes H0 and H1 and a short exact sequence

1 → (H0)K → H → (H1)K → 1. (1)

Suppose moreover that H0 is of multiplicative type and H1 is étale.
Then there is a finite flat A-group scheme H and a short exact sequence

1 → H0 → H → H1 → 1 (2)

whose base change to K is isomorphic to (1).

Proof. Note that by Lemma 3.1, the pair of the extension (2) and its isomorphismwith (1) is unique up to
unique isomorphism if it exists. Thus, by descent,wemay pass to a quasi-finite extension ofA to assume
that H1 is constant there is a scheme-theoretic section s : (H1)K → H. Since H1 is constant, Lemma 3.1
also shows that the induced conjugation map (H1)K ×K (H0)K → (H0)K, (h1,h0) 	→ s(h1)h0s(h1)−1 extends
uniquely to an action map α : H1 ×A H0 → H0.

Define H scheme-theoretically as the product H0 × H1. Note that HK
∼= H via the map f (h0,h1) =

h0s(h1). Under this isomorphism, the multiplication map on H corresponds to the map μK : HK ×K HK →

HK given by

μK((h0,h1), (h′
0,h

′
1)) = (h0 · s(h1)h

′
0s(h1)

−1 · c(h1,h′
1),h1h

′
1),

where c(h1,h′
1) = s(h1)s(h′

1)s(h1h
′
1)

−1. Since H1 is étale and H0 is finite, c extends to an A-morphism
H1 ×A H1 → H0 which we will also denote by c. Similarly, s(1) ∈ H0(A).

Define an A-morphism μ : H ×A H → H extending μK by

μ((h0,h1), (h′
0,h

′
1)) = (h0 · α(h1,h′

0) · c(h1,h′
1),h1h

′
1).

Diagrams of flat A-schemes may be checked to be commutative after passage to K, so it follows that
μ is a monoid law (with identity (s(1)−1, 1)). Moreover, μ is actually a group law: to see this functorially,
let B be an A-algebra and let (h0,h1) ∈ H (B). By assumption on α, there is a unique h′

0 ∈ H0(B) such
that α(h1,h′

0) = h−1
0 s(1)−1c(h1,h−1

1 )−1. The right inverse of (h0,h1) under μ is clearly (h′
0,h

−1
1 ), and by the

Yoneda lemma this gives a right inverse morphism r : H → H . Note that r is also a left inverse map (as
one can check over K), so indeed H is an A-group scheme.
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Finally, there are A-homomorphisms i : H0 → H and π : H → H1 given by i(h0) = (h0s(1)−1, 1) and
π(h0,h1) = h1, and it is straightforward to check that these form a short exact sequence whose base
change to K is isomorphic to (1). �

The following lemma is a mild variant of [2, Lemma 2.23].

Lemma 3.3. Let S be a connected scheme, and let

1 → M → E → � → 1 (3)

be a short exact sequence of finitely presented S-group schemes such that M is of multiplicative
type, � is constant of order n, and E → � admits a scheme-theoretic section. There exists a
short exact sequence

1 → M[n] → H → � → 1 (4)

such that (3) is obtained from (4) by pushing forward along the inclusionM[n] → M. Moreover, the
pushout of (4) by the inclusion M[n] → M[n2] is unique up to isomorphism.

Proof. Since E → � admits a section, (3) corresponds to an element α of the Hochschild cohomology
group H2(�,M) (see [7, Proposition 2.3.6]). Since � is constant and S is connected, Hi(�,M) agrees with
the ordinary group cohomology Hi(�(S),M(S)) for all i ≥ 0. This latter group is killed by n by classical
theory, so α is the image of a class in H2(�(S),M[n](S)) = H2(�,M[n]); this corresponds to the desired
extension (4). To see the final claim, consider the commutative diagram with exact rows

Since H1(�,M) is killed by n (as above), a diagram chase concludes the proof. �

The following lemma is analogous to the fact that a (real) Lie group G with finitely many connected
components admits a maximal compact subgroup which meets every component of G.

Lemma 3.4. Let A be a DVR with fraction field K, and let G be a (possibly disconnected) reductive
K-group. There exists a quasi-finite local extension of DVRs A ⊂ A′ inducing the extension of
fraction fields K ⊂ K′ and a geometrically reductive smooth affine A′-integral model G ′ of GK′ .

Proof. By extending A, we may assume G0 is split and G/G0 is constant. First let G0 be a split reductive
A-group scheme with generic fiber G0, which exists by the Existence and Isomorphism Theorems [15,
Exp. XXV, Théorème 1.1]. Let (B0,T0) be a Borel-torus pair of G0 over A, and let N = NG((B0)K, (T0)K), the
normalizer of the pair ((B0)K, (T0)K) in G. By Lemma 3.3, if the constant group scheme N/(T0)K ∼= G/G0

is of order n, then after extending K there is an extension

1 → (T0)K[n] → H → N/(T0)K → 1 (5)

whose pushout along (T0)K[n] ⊂ (T0)K is the tautological extension for (T0)K ⊂ N. If � is the constant
A-group scheme corresponding to N/(T0)K ∼= G/G0, then using Lemma 3.2 we find that there exists a
finite flat A-group scheme H and a short exact sequence

1 → T0[n] → H → � → 1

whose generic fiber is (5).
Now note that G is isomorphic to the pushout G0 ×(T0)K[n] H := (G0 ×K H)/(T0)K[n]. Thus if we define

G = G0×T0[n]H , we find that GK
∼= G. Moreover, G 0 = G0 is reductive and G /G 0 ∼= � is finite étale, whence

G is a geometrically reductive smooth affine model of G. �
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4 Extending Homomorphisms

In this section we aim to establish, essentially, that the quotient stack [HomS-gp(H,G)/G] satisfies the
existence part of the valuative criterion of properness when S is a locally Noetherian scheme, H and
G are smooth S-affine S-group schemes, and G is geometrically reductive. (This stack is often algebraic
but it is usually not proper; it is locally of finite type and quasi-separated, but rarely quasi-compact or
separated. See [2, Section 2.1] or [5] for a discussion of HomS-gp(H,G).) We begin with a simple lemma
which mildly generalizes [11, Corollary 2.10.10].

Lemma 4.1. Let A ⊂ A′ be a finite local extension of strictly Henselian DVRs inducing the
extension K ⊂ K′ of fraction fields. Let X be a smooth A-scheme, and let X′ be an affine A′-
scheme. A K′-morphism f : XK′ → X′

K′ extends (uniquely) to an A′-morphism XA′ → X′ if and
only if f (X(A)) ⊂ X′(A′). In particular, if f (X(A)) ⊂ X′(A′) then f (X(A′)) ⊂ X′(A′).

Proof. By passing to an open cover, we may and do assume that X is affine. If f extends to an A′-
morphism XA′ → X′, then clearly f (X(A)) ⊂ X′(A′), so we need only show the converse. Note that A ⊂ A′

is flat, so the Weil restriction RA′/A(X′) exists as an affine A-scheme. The K′-morphism f : XK′ → X′
K′

corresponds to a K-morphism f ′ : X → RK′/K(X′
K′ ) satisfying f ′(X(A)) ⊂ RA′/A(X′)(A). By [11, Corollary

2.10.10], the K-morphism f ′ extends to an A-morphism X → RA′/A(X′), which in turn corresponds to
an A′-morphism XA′ → X′ extending f . �

Recall that, if K is a discretely valued field with valuation v and X is an affine K-scheme, then a
subset B ⊂ X(K) is bounded if, for every f ∈ �(X,OX), the function b 	→ v(f (b)) is bounded below on B.
For a detailed discussion of boundedness, see [11, Section 2.2]. We need also standard properties of the
(reduced) Bruhat–Tits building, which are summarized in [11, Chapter 4].

Lemma 4.2. Let A be a Henselian DVR with fraction field K, and let G be a (possibly disconnected)
reductive K-group. If B ⊂ G(K) is a bounded subgroup, then there is a facet F of the Bruhat–Tits
building B(G0) such that B stabilizes the barycenter of F.

Proof. Note first that since G(K) acts on G0(K) by conjugation, it also acts on B(G0), and the restriction
of this action to G0(K) is the usual action. By [11, Corollary 4.2.14], there is a point x0 of the (restricted)
Bruhat–Tits building B(G0) such that B ∩ G0(K) stabilizes x0. Since B ∩ G0(K) is of finite index in B, it
follows that the set Bx0 is finite. If X is the convex hull of Bx0 in B(G0), then X is closed and bounded by
[11, Lemma 1.1.13], and [11, Theorem 4.2.12] shows that X has a unique barycenter x1, invariant under
all isometries of B(G0) which preserve X. In particular, the action of B on B(G0) preserves x1. If F is the
(open) facet of B(G0) containing x1, then the action of B preserves the barycenter of F, as desired. �

If G is a geometrically reductive smooth affine group scheme over a Henselian DVR A with fraction
field K and valuation v, then we let G(K)1 be the open subgroup G0(K)1 · G(A) of G(K), where G0(K)1 is
defined as in [11, Section 2.6(d)]:

G0(K)1 := {g ∈ G0(K) : v(χ(g)) = 0 for all χ ∈ X∗(G0)},

where X∗(G0) is the group of characters χ : G0 → Gm. As in the connected case, every bounded subgroup
ofG(K) is contained inG(K)1 becauseG(K)/G(K)1 is topologically isomorphic to a subgroup of the torsion-
free discrete groupX∗(T),where T is themaximal central K-torus ofG0.Notice thatG0(K)1 = G(K)1∩G0(K).

Lemma 4.3. LetA be an excellent Henselian DVRwith fraction field K, and letG be a geometrically
reductive smooth affine A-group scheme. If B ⊂ G(K) is a bounded subgroup, then there exists
a finite local extension of DVRs A ⊂ A′ with fraction field K′ and a geometrically reductive
smooth affine A′-integral model G′ of GK′ such that B ⊂ G′(A′). Moreover, for any such G′, there
is a further extension of A′ such that the subgroup G′(A′) is G0(K′)-conjugate to G(A′).

Proof. By spreading out, we may and do assume that A is strictly henselian. By Lemma 4.2, there is
a facet F of the Bruhat–Tits building B(G0) such that B stabilizes the barycenter x of F. Since x is the
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barycenter of a facet, the argument of [12, Lemma 2.4] shows that there exists a finite extension K′/K

with valuation ringA′ such that the image x′ of x in the building B(G0
K′ ) is hyperspecial. (The proof of [12,

Lemma 2.4] appears to have a small gap, which can be fixed by noting that one may first pass to a finite
extension K′/K such that x′ is a vertex. Indeed, if A is an apartment containing x and corresponding to
a maximal split K-torus T, then A is an affine space under V(T) := R⊗Z X∗(T), and the metric on B(G0)

restricts to the Euclidean metric on A (see [11, Section 4.2]). After choosing an identification of A and
V(T), one sees that x is a Q-linear combination of vertices, and the claim follows from the discussion in
[11, Section 6.5]. The phrase “As x1 is a facet” from [12] should then be replaced with “As x1 is a vertex”.)
Let U′ be the stabilizer of x′ in G(K′)1, so B ⊂ U′. By [11, Propositions 8.3.1, A.7.1], there is a smooth affine
model G′ of GK′ over A′ such that G′(A′) = U′.

Since G0 is a reductive group scheme, [11, Theorem 9.9.3(2)] shows that G0(A′) stabilizes a hyperspe-
cial point y of B(G0

K′ ). By [11, Proposition 1.3.43(3), Corollary 7.4.8], the point y is the unique one stabilized
byG0(A′).Moreover, Lemma 4.2 shows thatG(A′) stabilizes some point ofB(G0), so in factG(A′) stabilizes
y. By [11, Proposition 10.2.2], we may pass to a finite extension of K′ to find some g ∈ G0(K′) such that
g·x = y, and thus gG′(A′)g−1 = G(A′). By Lemma 4.1, the K′-isomorphismGK′ → GK′ given by g-conjugation
induces an A′-isomorphism G′ → G. Because A is excellent Henselian, the extension A ⊂ A′ is finite. �

Lemma 4.4. Let A be an excellent Henselian DVR with fraction field K, and let G and H be
smooth affine A-group schemes such that G is geometrically reductive. If f1 : HK → GK is a
K-homomorphism, then there exists a finite local extension of DVRs A ⊂ A′ with fraction field
K′ and g ∈ G(K′) such that Ad(g) ◦ f1 extends to an A′-homomorphism f ′ : HA′ → GA′ .

Proof. By spreading out, we may and do assume that A is strictly Henselian with algebraically closed
residue field. Note that f1(H(A)) ⊂ G(K) is a bounded subgroup, so Lemma 4.3 shows that there is a finite
local extensionA ⊂ A′, a geometrically reductive smooth affineA′-group schemeG′ such that f1(H(A)) ⊂

G′(A′), and g ∈ G0(K′) such that gG′(A′)g−1 = G(A′). By Lemma 4.1, it follows that Ad(g) ◦ (f1)K′ : HK′ → G′
K′

extends to an A′-homomorphism f ′ : HA′ → G′, as desired. �

We need one more technical lemma before proving Theorem 1.1.

Lemma 4.5. Let K be a discretely valued field, let G be a reductive K-group, let � be a finitely
generated group, and let ϕ,ψ : � → G(K) be two homomorphisms whose G-orbits have
intersecting closures in HomK-gp(�,G). Suppose moreover that ϕ(�) is bounded in G(K) and
that the Zariski closure G1 = ψ(�) is reductive. Then ψ(�) is bounded in G(K).

Proof. Note first that if �′ ⊂ � is a finite index subgroup, then ψ(�) is bounded if and only ψ(�′) is
bounded; thus we may shrink � to assume that G1 is connected. Let ρ : G → GL(V) be a faithful K-
representation, and note that boundedness of ϕ(�) implies that for each γ ∈ �, all of the eigenvalues of
ρ(ϕ(γ )) on VK are integral. Because the G-orbits of ϕ and ψ have intersecting closures, the eigenvalues
of ρ(ψ(γ )) on VK are the same as those of ρ(ϕ(γ )), and in particular they are all integral. Thus, by
[11, Lemma 2.2.11] (applied to the connected reductive group G1), we find that ψ(�) is bounded,
as desired. �

5 Proof of Theorem 1.1

As in the introduction, let S be a locally Noetherian scheme, and let G and H be geometrically reductive
smooth affine S-group schemes. Fix a finite S-homomorphism f : H → G and a homomorphism h : �′ → �

of finitely generated groups such that h(�′) is of finite index in �. For simplicity,writeHH = HomS-gp(�,H)

and H′
G = HomS-gp(�

′,G). We will show in this section that the S-morphism

F : HH//H → H′
G//G

is finite.
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The map F is evidently affine, and it is of finite type by [1, Theorem 6.3.3], so to show that F is finite it
suffices (by [16, Tag01WM]) to show that it is universally closed, or equivalently to verify the existence
part of the valuative criterion of properness for F. In other words, we must show that if A is a DVR with
fraction field K and we have a solid diagram

then there is a local extension A ⊂ A′ of DVRs inducing the extension K ⊂ K′ of fraction fields such that
the above dashed diagram can be filled in to become commutative.Wewill extendA in stages; note that
at every stage we are free to replace A by its completion to assume that A is excellent and Henselian.

From now on, fix a solid diagram as above. By [1, Theorem 5.3.1(5)], every element of (HH//H)(K)

lifts to a homomorphism ψ : � → H(K) with closed HK-orbit in HHK
. Since � is finitely generated, we

may pass to a local extension of A to assume that y lifts to such a homomorphism ψ valued in H(K)

with closed H-orbit in HH. Concretely, we must show that there is a local extension A ⊂ A′ of DVRs
with fraction field K′ such that ψ is H(K′)-conjugate to a homomorphism � → H(A′), or equivalently
that ψ(�) is H(K′)-conjugate to a subgroup of H(A′). Let H1 be the closed K-subgroup of HK which is
topologically generated by ψ(�). A surjection FN → � from a free group FN induces an H-equivariant
closed embedding HH → HN. In particular, the image of ψ under such an embedding still has closed
H-orbit, so [14, Lemma 16.3, Theorem 16.4] shows that H1 is reductive. (Strictly speaking, this reference
requires H to be connected, but its proof works in the non-connected case because of the robustness of
the results of [3] on which it relies.)

By Lemma 2.2, we may extend A to assume that x is the image of a homomorphism ϕ : �′ → G(A)

under the naturalmapH′
G(A) → (H′

G//G)(A). Because f◦ψ◦h and ϕ have the same image in (H′
G//G)(K), [1,

Theorem 5.3.1(5)] shows that the closures of their orbits intersect. Moreover, if G1 is the Zariski closure
of f (ψ(h(�′))), then there is a finite surjective map H0

1 → G0
1, so G1 is reductive because H1 is reductive.

By Lemma 4.5, it follows that f (ψ(h(�′))) is bounded. Since f (ψ(�)) contains f (ψ(h(�′))) as a finite index
subgroup, it follows that f (ψ(�)) is bounded inG(K). By [11, Lemma 2.2.10], the fact that f is finite implies
that ψ(�) is bounded in H(K).

By the previous paragraph, Lemma 3.4, and Lemma 4.3, after extending A further we may and do
assume that there is a geometrically reductive smooth affine A-group scheme H1 with generic fiber
H1 such that ψ(�) ⊂ H1(A). By construction, there is a K-morphism i1 : H1 → HK, and by Lemma 4.4
we may pass to a local extension of A and conjugate by an element of H(K) to assume that i1 extends
to an A-homomorphism i : H1 → H. Thus ψ(�) is H(K)-conjugate to a subgroup of H(A), verifying the
existence part of the valuative criterion of properness and proving that F is finite, as desired.

Remark 5.1. If S is not required to be locally Noetherian, then it follows from Theorem 1.1, [1,
Proposition 5.2.9], and spreading out that F is integral. However, I do not know whether the
schemes involved are finitely presented (or even of finite type) in this case, so finiteness of the
morphism is not clear.
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question, and I thank the anonymous referee for suggesting a simplification of the proof of Lemma 3.4.

References

1. Alper, J. “Adequate moduli spaces and geometrically reductive group schemes.” Algebr. Geom. 1, no. 4
(2014): 489–531. https://doi.org/10.14231/AG-2014-022.



Morphisms of Character Varieties | 9

2. Booher, J., S. Cotner, and S. Tang. “Lifting G-Valued Galois Representations when 
 
= p.” (2023): https://
arxiv.org/abs/2211.03768.

3. Borel, A. and J. Tits. “Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I.” Invent.
Math. 12 (1971): 95–104. https://doi.org/10.1007/BF01404653.

4. Conrad, B. “Reductive group schemes.”Autour des schémas en groupes.Vol. I, volume 42/43 of Panor. Synthèses,
93–444. Paris: Soc. Math. France, 2014.

5. Cotner, S. “Hom schemes for algebraic groups.” (2023): https://arxiv.org/abs/2309.16458.
6. Dat, J.-F. “Moduli spaces of local Langlands parameters.” Notes for the Summer School on the Langlands

Program, IHES. https://webusers.imj-prg.fr/~jean-francois.dat/recherche/publis/ihes.pdf, 2022.
7. Demarche, C. “Cohomologie de Hochschild non Abélienne et extensions de Faisceaux en groupes.”

Autour des schémas en groups. Vol. II, volume 46 of Panor. Synthèses, 255–92. Paris: Soc. Math. France, 2015.
8. Dat, J.-F., D. Helm, R. Kurinczuk, and G. Moss. “Moduli of Langlands Parameters.” (2020): https://arxiv.

org/abs/2009.06708.
9. Dat, J.-F., D. Helm, R. Kurinczuk, and G. Moss. “Finiteness for Hecke algebras of p-adic groups.” J. Amer.

Math. Soc. 37, no. 3 (2024): 929–49.
10. Griess, R. L., Jr. and A. J. E. Ryba. “Embeddings of PGL2(31) and SL2(32) in E8 (C).” Duke Math. J. 94, no. 1

(1998): 181–211. With appendices by Michael Larsen and J.-P. Serre.
11. Kaletha, T. and G. Prasad. “Bruhat-Tits theory—a new approach.” Volume 44 of New Math. Monogr.

Cambridge: Cambridge University Press, 2023.
12. Larsen, M. “Maximality of Galois actions for compatible systems.” Duke Math. J. 80, no. 3 (1995): 601–30.
13. Martin, B. M. S. “Reductive subgroups of reductive groups in nonzero characteristic.” J. Algebra 262, no.

2 (2003): 265–86. https://doi.org/10.1016/S0021-8693(03)00189-3.
14. Richardson, R. W. “Conjugacy classes of n-tuples in Lie algebras and algebraic groups.” Duke Math. J. 57,

no. 1 (1988): 1–35.
15. Gille, P. and P. Polo, editors. Schémas en groupes (SGA 3). A seminar directed by M. Demazure and

A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J.-P. Serre.
Revised and annotated edition of the 1970 French original. https://webusers.imj-prg.fr/~patrick.polo/
SGA3/, 2011.

16. The Stacks project authors. “The Stacks project.” (2023): https://stacks.math.columbia.edu.
17. Vinberg, E. B. “On invariants of a set of matrices.” J. Lie Theory 6, no. 2 (1996): 249–69.


	 Morphisms of Character Varieties
	 1Introduction
	 2Preliminaries
	 3Extending Reductive Groups Over DVRs
	 4Extending Homomorphisms
	 5Proof of Theorem 1.1
	Acknowledgments


