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Constant term functors with Fp-coefficients

Robert Cass and Cédric Pépin

Abstract. We study the constant term functor for Fp-sheaves on the affine Grassmannian in charac-

teristic p with respect to a Levi subgroup. Our main result is that the constant term functor induces

a tensor functor between categories of equivariant perverse Fp-sheaves. We apply this fact to get

information about the Tannakian monoids of the corresponding categories of perverse sheaves. As

a byproduct we also obtain geometric proofs of several results due to Herzig on the mod p Satake

transform and the structure of the space of mod p Satake parameters.
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1. Introduction

1.1. Constant term functors with xQ`-coefficients

In the Langlands program over a global field F , the constant term and Eisenstein series

operators relate automorphic functions with respect to a reductive group G=F and its

Levi subgroups. When F is the function field of a smooth curve C over a finite field Fq of

characteristic p, it is possible to upgrade these operators to functors on sheaves, cf. [6,13].

For simplicity suppose G arises from a split connected reductive group over Fq . For

each x 2 C.Fq/ a local Hecke algebra acts on automorphic functions. After choosing an

isomorphism C ' xQ` and a uniformizing element at x, this local Hecke algebra can be

identified with the unramified Hecke algebra HG;` of G.Fq..t/// with xQ`-coefficients.
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In order to geometrize HG;`, one considers the following functors on Fq-algebras:

LGW R // G
�

R..t//
�

; LCGW R
� // G

�

RJtK
�

:

The affine Grassmannian is the fpqc-quotient GrG WD LG=LCG, which is representable

by an ind-scheme. Then in the context of the geometric Langlands program, the algebra

HG;` is replaced by the tensor category .PLCG.GrG ; xQ`/;�/ of LCG-equivariant perverse
xQ`-sheaves on GrG for ` ¤ p.

If P is a parabolic subgroup of G=Fq with Levi factor L there is a diagram

GrP
q

||

p

##

GrL GrG :

The local analogue of the constant term functor is

CTG
L;`W PLCG.GrG ; xQ`/

qŠıp�ŒdegP �
// Db

c .GrL; xQ`/

for a certain locally constant function degP W GrP ! Z, cf. (6.2). The function-sheaf dic-

tionary sends CTG
L;` to the Satake transform HG;` ! HL;` up to a normalization factor.

Remarkably, the functor CTG
L;` takes values in PLCG.GrL; xQ`/, and is compatible with

the tensor structures.

1.2. Constant term functors with Fp-coefficients

Let k be an algebraically closed field of characteristic p > 0 and let G be a connected

reductive group defined over k. Let GrG be the affine Grassmannian of G over k, and let

.PLCG.GrG ; Fp/; �/ be the abelian symmetric monoidal category of LCG-equivariant

perverse Fp-sheaves on GrG as defined in [9].

Fix a maximal torus and a Borel subgroup T � B � G. Let B � P � G be a standard

parabolic subgroup and L be its Levi factor containing T .

Definition 1.2.1. The L-constant term functor is

CTG
L WD RqŠ ı Rp�ŒdegP �W PLCG.GrG ; Fp/ // Db

c .GrL; Fp/:

Our main result is the following, cf. Section 6.

Theorem 1.2.2. The functor CTG
L induces an exact faithful tensor functor

CTG
L W

�

PLCG.GrG ; Fp/; �
�

//
�

PLCL.GrL; Fp/; �
�

:

Let us start by explaining why CTG
L preserves perversity. Let X�.T / be the group of

cocharacters of T and X�.T /C (resp. X�.T /�) be the monoid of dominant (resp. antido-

minant) cocharacters. For � 2 X�.T /C let Gr
��
G be the reduced closure of the LCG-orbit



Constant term functors with Fp-coefficients 345

of �.t/ in GrG . By [9, Th. 1.5], the simple objects in PLCG.GrG ; Fp/ are the shifted

constant sheaves:

IC� D Fp

�

dim Gr
��
G

�

2 Db
c

�

Gr
��
G ; Fp

�

:

Let w0 be the longest element of the Weyl group of .G; T /. In what follows we will use a

letter L as a subscript or superscript to denote the corresponding objects for L.

The connected components of GrP and GrL are in bijection via the map q. If c 2

�0.GrL/ corresponds to Grc
L then we denote the corresponding reduced connected com-

ponent of GrP by Sc . By restricting CTG
L to Sc we get a decomposition by weight functors:

CTG
L Š

M

c2�0.GrL/

Fc :

Then the fact that CTG
L preserves perversity is a consequence of the following theorem,

which is unique to Fp-sheaves, cf. Theorem 6.2.1.

Theorem 1.2.3. For � 2 X�.T /C, we have

Fc.IC�/ D

´

ICL

wL
0 w0.�/

if w0.�/.t/ 2 Grc
L;

0 otherwise:

Equivalently, Theorem 1.2.3 computes the relative Fp-cohomology with compact sup-

port of the so-called Mirković–Vilonen cycles for the Levi L. The proof relies on the

dynamics of Gm-schemes of Białynicki-Birula and Drinfeld, together with the existence

of Fp-acyclic Gm-equivariant resolutions of singularities of Gr
��
G ; see Section 1.7 below

for more details.

Let us now comment on the tensor property of the functor CTG
L . The general strategy

of proof is similar to the one of Baumann–Riche for xQ`-coefficients [1, §15]. It involves

the Beilinson–Drinfeld global convolution Grassmannian, cf. Section 5.3, and the key step

is to show that a certain complex of sheaves is a perverse intermediate extension, cf. The-

orem 6.5.1. We achieve it by appealing to the main results regarding perverse Fp-sheaves

on F -rational varieties [9, Th. 1.6, Th. 1.7]. In contrast, the analogue of the ingredient

used for xQ`-coefficients fails; see Section 1.6 below.

1.3. Tannakian interpretation

By [9], the functor of tensor endomorphisms of the fiber functor

˚i R
i � W

�

PLCG.GrG ; Fp/; �
�

// .VectFp ; ˝/

is represented by an affine monoid scheme MG over Fp . Via the Tannakian formalism this

results in an equivalence

�

PLCG.GrG ; Fp/; �
�

Š
�

RepFp
.MG/; ˝

�

:
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This construction is analogous to the geometric Satake equivalence [19] (it is assumed

in loc. cit. that G is defined over C, but see [23, 27] for the case where G is defined in

positive characteristic). The monoid MG is pro-solvable, but beyond this little is known.

We will apply the functor CTG
L to deduce more information about MG .

By Theorem 1.2.3, the functor CTG
L takes values in the symmetric monoidal subcate-

gory

PLCL.GrL;wL
0 X�.T /�

; Fp/ � PLCL.GrL; Fp/

associated to the submonoid wL
0 X�.T /� � X�.T /C=L in the sense of Notation 6.2.2, and

by Corollary 6.3.2, it intertwines the fiber functors. Thus denoting by ML;wL
0 X�.T /�

the

Tannakian monoid of PLCL.GrL;wL
0 X�.T /�

; Fp/, the Tannaka dual to CTG
L is a morphism

of Fp-monoid schemes ML ! MG which factors as

ML
// ML;wL

0 X�.T /�
// MG : (1.1)

We currently have a limited understanding of the morphisms in (1.1). This is related to

our lack of information on the structure of the Ext groups in the corresponding categories

of representations. However, if L D T then we can say more. In this case, the category

PLCT .GrT ; Fp/ is semi-simple,

MT D Spec
�

Fp

�

X�.T /
��

; MT;X�.T /�
D Spec

�

Fp

�

X�.T /�

��

;

and the following holds, cf. Theorem 7.4.5.

Theorem 1.3.1. The Tannaka dual of CTG
T induces a morphism of monoids MT ! MG

which factors as an open immersion followed by a closed immersion:

MT
// MT;X�.T /�

// MG :

Note that MT is the torus over Fp with root datum dual to that of T . Thus, the mor-

phism MT ! MG in Theorem 1.3.1 is analogous to the reconstruction of the dual maximal

torus in the dual group of G in [19].

There is another perspective on the morphism MT;X�.T /�
! MG in Theorem 1.3.1 as

follows. By [9, Th. 1.2], the subcategory of semi-simple objects

PLCG.GrG ; Fp/ss � PLCG.GrG ; Fp/

is a symmetric monoidal subcategory. Then the Tannakian monoid M ss
G of the category

PLCG.GrG ; Fp/ss identifies canonically with MT;X�.T /�
by Notation 7.4.1.

Definition 1.3.2. The Tannaka dual of the above inclusion of semi-simple objects is called

the eigenvalues homomorphism

�G W MG
// M ss

G :

The morphism

wW M ss
G

// MG
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equal to

MT;X�.T /�
// MG

in Theorem 1.3.1 under the canonical identification M ss
G D MT;X�.T /�

is called the weight

section.

By construction these morphisms satisfy

�G ı w D idM ss
G

:

The Tannaka dual of the weight section can be viewed as a semi-simplification functor

.PLCG.GrG ;Fp/;�/ ! .PLCG.GrG ;Fp/;�/ss. We refer to Section 7.4 for more discussion

on this perspective.

1.4. Relation to mod p Hecke algebras

In this subsection alone we view G as a split connected reductive group over Fq . We

assume that all relevant subgroups are also defined over Fq . Let E D Fq..t// and O D

FqJtK, and consider the unramified mod p Hecke algebra

HG WD
®

f W G.E/ ! Fp j f has compact support and is G.O/ bi-invariant
¯

:

A basis for HG is ¹1�º�2X�.T /C where 1� is the characteristic function of the double coset

G.O/�.t/G.O/.

Let UP be the unipotent radical of the parabolic subgroup P . Herzig [16, §2.3] defined

the mod p Satake transform

�
G
L W HG

// HL; f
� //

�

g
� //

X

UP .E/=UP .O/

f .gu/
�

:

As ind-schemes over Fq , for c 2 �0.GrL/ we have

Sc D .LUP � Grc
L/red � GrG :

Since GrG.Fq/ D G.E/=G.O/, LUP .Fq/ D UP .E/ and UP .E/ is normal in P.E/, then

the function-sheaf dictionary sends CTG
L to �

G
L , cf. [8, §4]. In contrast, for xQ`-coefficients

the two transforms differ by the modulus character of P . The isomorphisms in Theo-

rem 1.2.3 hold over Fq , so by using that the IC-sheaves are constant we obtain a geometric

proof of the following result due to Herzig.

Corollary 1.4.1 ([16, Prop. 5.1]). We have

�
G
L

�

X

��G�

1�

�

D
X

��LwL
0 w0.�/

1�:

Note that HT D FpŒX�.T /� where the characteristic function of �.t/T .O/ corresponds

to e� 2 FpŒX�.T /� for � 2 X�.T /. By taking L D T , we obtain the following result.
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Corollary 1.4.2. The mod p Satake transform induces an isomorphism

�
G
T W HG

� // FpŒX�.T /��
X

���

1�
� // ew0.�/:

Note that Corollaries 1.4.1 and 1.4.2 are ultimately statements about counting Fq-

points mod p on the Mirković–Vilonen cycles. From this point of view, the resolutions

of singularities which go into the proof of Theorem 1.2.3 allow us to reduce this point

counting to one on affine spaces.

Remark 1.4.3. In [8, Prop. 4.5] a particular isomorphism 'W HG Š FpŒX�.T /�� is con-

structed using the function-sheaf dictionary and the formula [9, Th. 1.2] for the convolu-

tion product in PLCG.GrG ; Fp/. Herzig’s explicit formula [16, Prop. 5.1] is then used to

check that ' D �
G
T . Here Theorem 1.2.3 gives a purely geometric proof of the fact that

' D �
G
T .

1.5. Relation to mod p Satake parameters

As a consequence of Corollary 1.4.2, the Fp-algebra HG is commutative and the corre-

sponding affine Fp-scheme is identified with the space of Satake parameters

P WD Spec
�

Fp

�

X�.T /�

��

:

From the geometric theory (Section 1.3), this is the underlying scheme of the semi-simple

monoid M ss
G . Now for each standard Levi L as above, the functor CTG

L preserves the sub-

categories of semi-simple objects by Theorem 1.2.3, hence by duality the morphism (1.1)

admits a semi-simplification M ss
L ! M ss

G . Then we have the following, cf. Lemma 8.3.1

and Corollary 8.4.1.

Theorem 1.5.1. The morphism

M ss
L D PL

// M ss
G D P

defined by the constant term functor CTG
L is an open immersion.

Moreover, denoting by L the finite set of standard Levi subgroups T � L � G and

setting

8L 2 L; SL WD PL n
[

L02L
L0¨L

PL0 equipped with its reduced structure;

the space of Langlands parameters P is stratified as:

P D
[

L2L

SL:

The stratum SL is isomorphic to .A1 n ¹0º/rank �0.GrL/ and the closure relation among the

strata is given by SL D
S

L0�L SL0 .
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The underlying decomposition of the set P.xFp/ was originally defined by Herzig

in [17, §1.5, §2.4]. The construction above makes the link with the category

PLCG.GrG ; Fp/:

1.6. Obstructions to adapting proofs for xQ`-coefficients

Let us now explain why the known proofs that CTG
L;` preserves perversity and is a tensor

functor fail for Fp-sheaves. So that we can deal with Fp and xQ`-coefficients simultane-

ously let us set IC�;` to be the `-adic intersection cohomology sheaf of Gr
��
G . Then IC�;N

is either an Fp-sheaf or a xQ`-sheaf depending on the value of N 2 ¹;; `º.

For both xQ`-sheaves and Fp-sheaves, there is a homological argument which reduces

us to the case L D T . Then �0.GrB/ D X�.T / and .GrT /red is a disjoint union of points

indexed by X�.T /, so that the weight functors are

F� D R�c.S� ; �/
�

2�.�/
�

; � 2 X�.T /;

where � is half the sum of the positive roots. The fact that F� preserves perversity is

equivalent to the statement that

H i
c .S� ; IC�;N/ ¤ 0 H) i D 2�.�/: (1.2)

By dimension estimates, we have H i
c .S� ; IC�;N/ D 0 if i > 2�.�/. For the other

inequality, one observes that there is a Gm-action on GrG such that S�.k/ is the set

of k-points of the �-component of the attractor in the sense of Definition 2.3.1. Then

Braden’s hyperbolic localization theorem [5] provides a comparison with the cohomology

supported in the �-component of the repeller (i.e. the attractor for the opposite Gm-

action), which leads to the other half of the desired vanishing (1.2) for xQ`-coefficients,

cf. [19, Th. 3.5]. However, we show in the appendix that Braden’s hyperbolic localiza-

tion theorem fails for Fp-sheaves. Braden’s theorem is also the key tool from the proof of

the compatibility of CTG
L;` with convolution [1, Prop. 1.15.2] that we lack in the case of

Fp-coefficients.

There is another approach to proving (1.2) due to Ngô–Polo [20]. Let M � X�.T /C

be the subset of cocharacters that are either minuscule or quasi-minuscule. If � is quasi-

minuscule then Ngô–Polo construct a resolution of Gr
��
G and explicitly stratify the fiber

over S� \ Gr
��
G by affine spaces. These stratifications allow one to estimate the dimension

of H i
c .S� ; IC�;N/ for .�; �/ 2 X�.T / � M.

If � 2 X�.T /C can be decomposed as a sum of elements of M, then by considering

the corresponding convolution Grassmannian mW Gr
���

G ! Gr
��
G the previous estimates

allow one to prove (1.2) for any direct summand of RmŠ.IC��;N/, where IC��;N is the

IC-sheaf of Gr
���

G . This is sufficient to complete the argument for xQ`-sheaves. However,

for Fp-sheaves we have RmŠ.IC��
/ D IC� by [9, Prop. 6.5]. Thus in our situation Ngô–

Polo’s approach allows us to conclude for groups of type An only, since this is the only

case where the fundamental coweights freely generating X�.Tad/C belong to the subset

Mad � X�.Tad/C.
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1.7. Proof strategy for preservation of perversity

Our approach to proving Theorem 1.2.3 combines ideas from both [19, 20], and works

directly for L not necessarily equal to T . We start with the observation that there is a Gm-

action on GrG such that GrL.k/ D GrG.k/Gm.k/ and such that the Sc.k/ for c 2 �0.GrL/

are the sets of k-points of the components of the attractor:

8c 2 �0.GrL/; Sc.k/ D
®

x 2 GrG.k/ j lim
k�3z!0

z � x 2 Grc
L.k/

¯

:

Then the (unshifted) weight functor Fc identifies with the hyperbolic localization func-

tor of relative cohomology with compact support flowing in the direction of the fixed

points Grc
L.

Let B be the Iwahori group scheme equal to the dilation of GkJtK along Bk . The affine

flag variety F ` WD LG=LC
B is a Gm-equivariant G=B-fibration over GrG . Unlike the

case of xQ`-coefficients, the flag variety G=B is acyclic for Fp-coefficients in the sense

that R�.G=B; Fp/ D FpŒ0�, thanks to the Bruhat decomposition, cf. Corollary 2.2.3. This

allows us to compare Fc.IC�/ with hyperbolic localizations on the preimage of Sc \ Gr
��
G

in F `.

Next we note that any Schubert variety in F ` admits a so-called Demazure resolution,

which is both Gm-equivariant and Fp-acyclic.

Then we can appeal to a general result of Białynicki-Birula on the structure of smooth

proper Gm-varieties: on the resolution, there is a unique closed attractor component, while

the other components are positive-dimensional affine bundles over their fixed points. Such

bundles have no relative Fp-cohomology with compact support, so only the closed com-

ponent contributes.

The final complete determination of Fc.IC�/ relies on the affineness of Drinfeld’s

attractor of a not necessarily smooth Gm-scheme [12, Th. 1.4.2 (ii)], cf. also [24, Th. A].

1.8. Outline

In Section 2, we recall results of Białynicki-Birula and Drinfeld on the structure of schemes

with a Gm-action. The main result is Corollary 2.3.5 on Fp-cohomology with compact

support in the attractors on a general class of Gm-schemes. In Section 3, we apply this

result on the affine Grassmannian to prove Theorem 3.7.1, which is the main input in the

proof of Theorem 1.2.3. In Sections 4 and 5, we prove Theorems 1.2.2 and 1.2.3 in the

case L D T . We treat the case of general L in Section 6. In Section 7, we investigate

the Tannakian consequences of Theorems 1.2.2 and 1.2.3 for the monoid MG . In Sec-

tion 8, we study the stratification of P induced by the morphisms M ss
L ! M ss

G . Finally,

in the appendix, we show that Braden’s hyperbolic localization theorem is false for Fp-

coefficients.

Notation. Let k be an algebraically closed field of characteristic p > 0 and let G be a

connected reductive group over k. Fix a maximal torus and a Borel subgroup T � B � G,
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and let U � B be the unipotent radical of B . Let W be the Weyl group of G and let

w0 2 W be the longest element.

Let X�.T / and X�.T / be the lattices of characters and cocharacters of T , and X�.T /C

(resp. X�.T /�) the monoid of dominant (resp. antidominant) cocharacters determined by

B . Let ˆ and ˆ_ be the sets of roots and coroots, ˆC and .ˆC/_ the subsets of positive

roots and positive coroots, and � and �_ the subsets of simple roots and simple coroots.

For �, �0 2 X�.T / we write � � �0 if �0 � � is a sum of positive coroots with non-negative

integer coefficients. Let � and O� be respectively half the sum of the positive roots and

coroots. For � 2 X�.T / let �.�/ 2 Z be the pairing of � and �.

2. Some general computations of Fp-cohomology with compact

support

2.1. The affine space

Lemma 2.1.1. Let Ad be the affine space over k of dimension d . Then

R�c.Ad ; Fp/ D

´

FpŒ0� if d D 0;

0 otherwise:

Proof. We can assume d > 0. Consider the open immersion j W Ad ! P d and the com-

plementary closed immersion i W P d�1 ! P d . This gives rise to an exact triangle

RjŠFpŒ0� // FpŒ0� // Ri�FpŒ0�
C1

// :

From [25], we know that

8i > 0; H i .P d ; OPd / D H i .P d�1; OPd�1/ D 0:

Thus since H 0.P d ;OPd / D H 0.P d�1;OPd�1/ D k, then by the Artin–Schreier sequence

the map R�.FpŒ0�/ ! R�.Ri�FpŒ0�/ is a quasi-isomorphism. Hence R�.RjŠFpŒ0�/ D 0,

i.e., R�c.Ad ; Fp/ D 0.

2.2. Schemes admitting a decomposition by affine spaces

Notation 2.2.1. Given a scheme X , we denote by jX j its underlying topological space.

Definition 2.2.2. Let X be a scheme.

• A decomposition of X is a family of subschemes Xi � X , i 2 I , such that

jX j D
[

i2I

jXi j and jXi j \ jXj j D ; for all i ¤ j:
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• A filtration of X is a finite decreasing sequence of closed subschemes

X D Z0 � Z1 � � � � � ZN �1 � ZN D ;:

The subschemes Zn n ZnC1, n D 0; : : : ; N � 1, are the cells of the filtration.

Corollary 2.2.3. Let X be a k-scheme. Assume that X admits a filtration whose cells are

positive dimensional affine spaces. Then

R�c.X; Fp/ D 0:

Proof. This follows from Lemma 2.1.1 and the long exact sequence of Fp-cohomology

with compact support associated to the decomposition of a scheme into an open and a

complementary closed subscheme.

2.3. Some Gm-schemes

Let X be a scheme of finite type over k, equipped with a Gm-action. Recall from [12] the

following definitions and results.

Definition 2.3.1. We define the following fppf sheaves.

• The space of fixed points is the fppf sheaf

X0 WD Hom
Gm

k

�

Spec.k/; X
�

;

where Spec.k/ is equipped with the trivial Gm-action.

• The attractor is the fppf sheaf

XC WD Hom
Gm

k

�

.A1/C; X
�

;

where .A1/C is the affine line over k equipped with the Gm-action by dilations.

Evaluating at 1 and 0 defines maps p and q:

XC

q

}}

p

!!

X0 X:

The space of fixed points is representable by a closed subscheme X0 � X . The attrac-

tor is representable by a k-scheme. The morphism q is affine, and the section X0 � XC

obtained by precomposing with the structural morphism .A1/C ! Spec.k/ induces an

identification .XC/0 D X0; the morphism p restricts to the identity between X0 � XC

and X0 � X . Moreover, the morphism q has geometrically connected fibers, cf. [24,

Cor. 1.12], so that the decomposition of XC as a disjoint union of its connected com-

ponents is the preimage by q of the corresponding decomposition of X0:

XC D
a

i2�0.X0/

Xi :
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For i 2 �0.X0/ we will denote by qi W Xi ! X0
i the induced retraction.

Remark 2.3.2. Suppose that X is separated over k. Then,

p W XC // X

is a monomorphism, which induces the following identifications of sets:

XC.k/ '
®

x 2 X.k/ j lim
k�3z!0

z � x exists
¯

;

q.k/ W XC.k/ // X0.k/

x
� // lim

k�3z!0
z � x;

and for each i 2 �0.X0/,

Xi .k/ '
®

x 2 X.k/ j lim
k�3z!0

z � x 2 X0
i .k/

¯

:

Now consider the following hypothesis:

(H) for each i 2 �0.X0/, the restriction pjXi
W Xi ! X is an immersion.

Lemma 2.3.3. The following statements hold true.

(1) Suppose that (H) is satisfied, and that X is proper over k. Then the family of

subschemes .Xi /i2�0.X0/ is a decomposition of X .

(2) Suppose that there exists a Gm-equivariant immersion of X into some projective

space P .V / where Gm acts linearly on V . Then (H) is satisfied, and if moreover

X is proper, there exists a filtration .Zn/0�n�j�0.X0/j of X having .Xi /i2�0.X0/

as its family of cells, in the sense of Definition 2.2.2.

Proof. (1)WhenX is proper over k, thenp is universally bijective by [12, Prop. 1.4.11(iii)].

In particular

jX j D
[

i2I

p
�

jXi j
�

and p
�

jXi j
�

\ p
�

jXj j
�

D ; for all i ¤ j:

When (H) is satisfied, then for each i there exists a unique subscheme p.Xi / � X such that

pjXi
decomposes as an isomorphism Xi

�
�! p.Xi / followed by the canonical immersion

p.Xi / � X . Thus, identifying Xi with p.Xi /, we get that the family .Xi /i2�0.X0/ is a

decomposition of X .

(2) When X admits a Gm-equivariant immersion into some projective space P .V /

where Gm-acts linearly on V , then, as noted in [12, Th. B.0.3 (iii)], the fact that (H) is

satisfied follows from the case X D P .V /. If the immersion is closed, the fact that the

decomposition .Xi /i2�0.X0/ of X can be realized as the cells of a filtration follows again

from the case X D P .V /, as proved in [4, Th. 3].1

1As noted in the remark following the proof of the theorem in loc. cit., the smoothness assumption on

the closed Gm-subscheme X � P .V / is not used in that proof. The existence of such a filtration is also

recorded in [7, Lem. 4.12].
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Theorem 2.3.4. The following statements hold true.

(1) Suppose that X is smooth and separated over k. Then (H) is satisfied, X0 and XC

are smooth over k, and for each i 2 �0.X0/, there exists an integer di � 0 such

that

Xi
� //

qi
��

Adi � X0
i

pr2
{{

X0
i

Zariski-locally on X0
i . If moreover X is proper over k, then Xi � X is closed if

and only if Xi D X0
i , and there exists exactly one such Xi lying in each connected

component of X .

(2) Suppose that X is normal and projective over k. Then there exists a Gm-equivari-

ant closed immersion of X into some projective space P .V / where Gm-acts lin-

early on V .

Proof. (1) The scheme X0 is smooth over k by [15, Lem. 2.2]. The other results are

contained in [3].

(2) This is a result of [26].

Corollary 2.3.5. Let X be a proper k-scheme equipped with a Gm-action satisfying (H).

Suppose that there exists a connected smooth projective k-scheme zX equipped with a

Gm-action, and a surjective Gm-equivariant morphism of k-schemes

f W zX // X:

Then there exists at most one i DW i0 2 �0.X0/ such that Xi � X is closed.

Suppose moreover that Rf�Fp D FpŒ0�. Then for i 2 �0.X0/, we have:

R.qi /ŠFp D

´

FpjX0
i0

Œ0� if i D i0;

0 otherwise:

Remark 2.3.6. If X can be embedded equivariantly into some P .V / where Gm acts lin-

early on V , then by Lemma 2.3.3 (2) there exists at least one i 2 �0.X0/ such that Xi � X

is closed, hence then there is exactly one such i .

Proof of Corollary 2.3.5. Let i 2 �0.X0/. Define Yi and fi by the fiber product diagram

Yi
fi

//

��

Xi

pjXi

��
zX

f
// X:
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Since pjXi
is an immersion by hypothesis, so is the canonical map Yi ! zX , and we write

Xi � X and Yi � zX for the corresponding subschemes. Also by Theorem 2.3.4 (1) the

schemes zXj , j 2 �0. zX0/, are realized as subschemes of zX , and they form a decomposition

of the latter, cf. Lemma 2.3.3 (1). Then we have the following identity of subspaces of j zX j:

jYi j D
[

j 2�0. zX0/
f .j /Di

j zXj jI

indeed this can be checked on k-points, where it follows from the definitions, cf. Re-

mark 2.3.2. Thus the immersions zXj ! zX , for f .j / D i , factor through Yi � zX (note

that the schemes zXj are reduced, cf. Theorem 2.3.4 (1)), and the family . zXj /f .j /Di is a

decomposition of the scheme Yi . Further, by Theorem 2.3.4 (2) and Lemma 2.3.3 (2), one

may form a filtration of zX ,

zX D Z0 � Z1 � � � � � ZN �1 � ZN D ;; N WD
ˇ

ˇ�0. zX0/
ˇ

ˇ;

whose family of cells is . zXj /j 2�0. zX0/. Intersecting with Yi we get a filtration of Yi

Yi D Zi;0 � Zi;1 � � � � � Zi;N �1 � Zi;N D ;

whose family of nonempty cells is . zXj /f .j /Di .

Now suppose that Xi � X is closed. Then so is Yi � zX . Moreover the assumption

that f is surjective ensures that Yi is nonempty. Hence, if Ni is the greatest integer n � N

such that Zi;n is nonempty, then Zi;Ni
is equal to some zXj with f .j / D i which is closed

in (Yi hence in) zX . But since zX is connected, there is exactly one zXj � zX which is closed,

say zXj0 , by Theorem 2.3.4 (1). Thus i D f .j0/ DW i0 is uniquely determined.

Finally, suppose moreover that RfŠFp D FpŒ0�. If i D i0, then R.qi0/ŠFp D FpjX0
i0

Œ0�

by Lemma 2.3.7 below. If i ¤ i0, consider the commutative diagram

Yi
fi

//

qYi
WD

  

Xi

qi

��

X0
i :

By proper base change R.fi /ŠFp D FpŒ0� and

R.qi /ŠFp D R.qYi
/ŠFp:

Then recall the filtration of Yi constructed above. For every 0 � n � N � 1 such that

Zi;n n Zi;nC1 is nonempty, let in W Zi;nC1 ! Zi;n be the corresponding closed immersion,

jn W zXn ! Zi;n be the complementary open immersion, and in Db
c .Zi;n; Fp/ form the

exact triangle

RjnŠFpŒ0� // FpŒ0� // Rin�FpŒ0�
C1

// :
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Setting qZi;n
WD qYi

jZi;n
W Zi;n ! X0

i and applying R.qZi;n
/Š we get the exact triangle

R.qZi;n
ı jn/ŠFpŒ0� // R.qZi;n

/ŠFp
// R.qZi;nC1

/ŠFp
C1

//

in Db
c .X0

i ;Fp/. By construction, the morphism qZi;n
ıjn W zXn!X0 is equal to qi ı.fi j zXn

/,

and we have the commutative diagram

zXn

qn

��

fi j QXn // Xi

qi

��

zX0
n

// X0
i

functorially induced by f . Here zXn ¤ zXj0 since i ¤ i0. Consequently R.qn/ŠFp D 0 by

proper base change, Theorem 2.3.4 (1) and Lemma 2.1.1. Thus

R.qZi;n
/ŠFp

� // R.qZi;nC1
/ŠFp:

Descending in this way along the filtration of Yi , we obtain

R.qYi
/ŠFp

� // R.q;/ŠFp D 0;

which concludes the proof.

Lemma 2.3.7. Let X be a proper k-scheme equipped with a Gm-action satisfying (H).

Then for each i 2 �0.X0/ such that Xi � X is closed, the retraction qi W Xi ! X0
i is

a universal homeomorphism and the section X0
i � Xi induces the identity of reduced

schemes .X0
i /red D .Xi /red.

Proof. As we have recalled, the retraction

q W XC // X0

is always affine, [12, Th. 1.4.2 (ii)], with geometrically connected fibers, cf. [24, Cor. 1.12].

In particular its restrictions qi W Xi ! X0
i above each X0

i have the same properties.

Now let i 2 �0.X0/ such that Xi � X is closed. Then Xi is proper over k, so that the

morphism qi is proper. Consequently, in this case qi is a universal homeomorphism. So

its canonical section X0
i � Xi identifies .X0

i /red and .Xi /red.

3. Fp-cohomology with compact support of the MV-cycles

3.1. The affine Grassmannian

For an affine group scheme H over k (or more generally, over kJtK) we have the loop

group functor

LH W k-Algebras // Sets; R
� // H

�

R..t//
�

;
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and the non-negative loop group functor

LCH W k-Algebras // Sets; R
� // H

�

RJtK
�

:

The affine Grassmannian of G is the fpqc-quotient GrG WD LG=LCG. It is represented

by an ind-scheme over k.

3.2. The Cartan decomposition

The set X�.T /C embeds in GrG.k/ via the identification � 7! �.t/. For � 2 X�.T /C,

denote by Gr�
G the reduced LCG-orbit of �.t/ in GrG . Then we have the decomposition

of the reduced ind-closed subscheme .GrG/red � GrG :

.GrG/red D
[

�2X�.T /C

Gr�
G ;

which on k-points is the quotient of the Cartan decomposition of G.k..t///:

G
�

k..t//
�

D
[

�2X�.T /C

G
�

kJtK
�

�.t/G
�

kJtK
�

:

Let Gr
��
G be the closure of Gr�

G in GrG with reduced structure. Then Gr
��
G is an integral

projective k-scheme, of dimension 2�.�/, which is the union of the Gr
�
G with � � �.

Moreover .GrG/red is the limit of the Gr
��
G :

.GrG/red D lim
�!

�2X�.T /C

Gr
��
G :

3.3. The Iwasawa decomposition

From our fixed choice B D U Ì T � G, we have the quotient map B ! T and the closed

immersion B ! G:

B

��   

T G:

Then by functoriality we get a diagram

GrB

|| ##

GrT GrG :

Passing to the reductions, we get the decomposition of .GrB/red into its connected com-

ponents

.GrB/red D
a

�2X�.T /

S�
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and a decomposition of .GrG/red by ind-subschemes

.GrG/red D
[

�2X�.T /

S� ;

where X�.T / is embedded in GrG.k/ via the identification � 7! �.t/. On k-points, it is

the quotient of the Iwasawa decomposition of G.k..t///:

G
�

k..t//
�

D
[

�2X�.T /

U
�

k..t//
�

�.t/G
�

kJtK
�

:

3.4. The Mirković–Vilonen cycles

Definition 3.4.1. Let .�; �/ 2 X�.T / � X�.T /C. The MV-cycle of index .�; �/ is the

reduced k-scheme

S� \ Gr
��
G :

The MV-cycles can be reconstructed from the theory of Gm-schemes, as follows.

The adjoint action of the torus T on LG normalizes LCG and hence induces an action

on GrG . Fixing a regular dominant cocharacter Gm ! T , we equip GrG with the resulting

Gm-action.

Let � 2 X�.T /C. Then Gr�
G and Gr

��
G are stable under the Gm-action. Thus

X WD Gr
��
G

is a projective Gm-scheme over k. Moreover, it can be embedded equivariantly in some

P .V / where Gm acts linearly on V : indeed, one can construct on the affine Grassman-

nian GrG some G-equivariant very ample line bundle, cf. [27, §1.5]. Consequently, by

Lemma 2.3.3 (2), the connected components of the attractor XC are realized as sub-

schemes of X . Then, it follows from Remark 2.3.2 and the Iwasawa decomposition of

G.k..t/// that

X0.k/ D X�.T / \ X and 8� 2 X0.k/; X�.k/ D .S� \ Gr
��
G /.k/:

Thus the MV-cycles indexed by .�; �/ for varying � are precisely the .X�/red � X , which

decompose X as

X D
[

�2X�.T /\X

.X�/red:

3.5. Generalization to the standard Levi subgroups

Let P D UP Ì L � G be a parabolic subgroup of G containing B with unipotent radical

UP and Levi factor L. Then

P

��   

L G
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induces

GrP

|| ""

GrL GrG ;

the decomposition of .GrP /red into its connected components

.GrP /red D
a

c2�0.GrL/

Sc

and a decomposition of .GrG/red by ind-subschemes

.GrG/red D
[

c2�0.GrL/

Sc :

Definition 3.5.1. Let .c; �/ 2 �0.GrL/ � X�.T /C. The MV-cycle of index .c; �/ is the

reduced k-scheme

Sc \ Gr
��
G :

Fix a dominant cocharacter Gm ! T whose centralizer in G is equal to L, and equip

GrG with the restriction to Gm of the adjoint action of T along this cocharacter.

Let � 2 X�.T /C and X WD Gr
��
G . The connected components of the attractor XC are

realized as subschemes of X , and X0.k/ D .GrL \X/.k/.

Lemma 3.5.2. Let c 2 �0.GrL/. Then Grc
L \X is connected.

Proof. Indeed Grc
L \X D Grc

L \ Gr
��
G is a closed LCL-stable subscheme of Grc

L, hence a

union of Cartan closures for the affine Grassmannian GrL which are contained in the con-

nected component Grc
L. Such Cartan closures are irreducible, and all contain the unique

minimal LCL-orbit of Grc
L, so any union of them is connected.

It follows that

�0.X0/ D
®

j Grc
L \X j j c 2 �0.GrL/ and Grc

L \X ¤ ;
¯

:

Next, the bijection GrP .k/
�
�! GrG.k/ corresponds to the decomposition

G
�

k..t//
�

=G
�

kJtK
�

D
[

c2�0.GrL/

Sc.k/ D
[

c2�0.GrL/

UP

�

k..t//
�

Grc
L.k/;

and so we compute using Remark 2.3.2 that

8c 2 �0.X0/; .Xc/red D Sc \ Gr
��
G :

Thus the MV-cycles indexed by .c; �/ for varying c are precisely the .Xc/red � X , and

they decompose X as

X D
[

c2�0.GrL/
GrcL \X¤;

.Xc/red:
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3.6. Equivariant resolutions of Schubert varieties

Let

Wa WD Zˆ_ Ì W � zW WD X�.T / Ì W

be the affine Weyl group and the Iwahori-Weyl group. Consider the length function

` W zW // N

�w
� //

X

˛2ˆC

w�1.˛/>0

ˇ

ˇh�; ˛i
ˇ

ˇ C
X

˛2ˆC

w�1.˛/<0

ˇ

ˇh�; ˛i C 1
ˇ

ˇ:

Let Sa be the set of elements of length 1 which are contained in Wa. Then .Wa; Sa/ is a

Coxeter system. Let � � zW be the set of elements of length 0. This is a subgroup and
zW D Wa Ì �. Finally, denote by B the Iwahori group scheme equal to the dilation of

GkJtK along Bk , and for each s 2 Sa, by Ps the parahoric group scheme increasing B

determined by s.

Now let � 2 X�.T /C. Choose a reduced expression of �w0 2 zW , i.e., an .n C 1/-

tuple .s1; : : : ; sn; !/ 2 Sn
a � � such that s1 � � � sn! D �w0 and n D `.�w0/. In the next

proposition, we denote by F `
��w0

G the Schubert variety of �w0 in the affine flag vari-

ety F `G WD LG=LC
B, i.e., the closure of F `

�w0

G WD LC
B � �w0 � F `G with reduced

structure.

Proposition 3.6.1. The fpqc quotient zX WD LC
Ps1 �LCB � � � �LCB LC

Psn=LC
B is rep-

resentable by a connected smooth projective scheme over k, and it is equipped with a

T -action by multiplication on the left on the factor LC
Ps1 . The morphism

LC
Ps1 �LCB � � � �LCB LC

Psn=LC
B // LG=LC

B DW F `G

Œp1; : : : ; pn�
� // p1 � � � pn!

factors through F `
��w0

G . The canonical projection

F `G WD LG=LC
B // LG=LCG DW GrG

induces a morphism F `
��w0

G ! Gr
��
G DW X . The composition

f W zX // X

is surjective, T -equivariant, and satisfies Rf�Fp D FpŒ0�.

Proof. The morphism f1 W zX ! F `
��w0

G spelled out in the proposition is nothing but the

well-known affine Demazure resolution of the Schubert variety F `
��w0

G [21, Prop. 8.8].

It satisfies R.f1/�Fp D FpŒ0�. Indeed, decompose it as

zX
f 0

1 // .F `
��w0

G /nor
f 00

1 // F `
��w0

G ;
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wheref 00
1 is the normalization.Thenf 00

1 is a universal homeomorphismby[21, Prop.9.7(a)].

Moreover, R.f 0
1/�O zX D O

.F `
��w0
G /nor

Œ0� by [21, Prop. 9.7 (d)], whence R.f 0
1/�Fp D FpŒ0�

by considering the Artin–Schreier short exact sequences on zX and on .F `
��w0

G /nor.

On the other hand, the morphism f2 W F `
��w0

G ! Gr
��
G DW X is the restriction over

Gr
��
G of the canonical projection F `G ! GrG . In particular it is a G=B-bundle, whence

R.f2/�Fp D FpŒ0� by proper base change and the Bruhat decomposition of the flag variety

G=B (which can be filtered), cf. Corollary 2.2.3.

Thus Rf�Fp D R.f2/�R.f1/�Fp D FpŒ0�.

Remark 3.6.2. The morphism zX ! F `
��w0

G in Proposition 3.6.1 is moreover birational,

so that it is a resolution of singularities of the Schubert variety F `
��w0

G , and zX ! X in

Proposition 3.6.1 is the composition of the latter with the G=B-fibration

F `
��w0

G
// Gr

��
G :

Instead, we could also have used a T -equivariant resolution of singularities of the vari-

ety Gr
��
G itself, e.g. the affine Demazure resolution of F `��

G followed by the birational

projection F `��
G ! Gr

��
G .

In fact, this resolution of Gr
��
G is a very particular case of the equivariant resolutions

of singularities of Schubert varieties in the twisted affine flag variety associated to any

connected reductive group over k..t// constructed in [22]; precisely it is a particular case

of [22, Ex. 3.2 (i)].2 If the reductive group over k..t// splits over a tamely ramified exten-

sion and the order of the fundamental group of its derived subgroup is prime-to-p, then

any Schubert variety has rational singularities by [21, Th. 8.4]; since “having rational sin-

gularities” is an intrinsic notion by [10, Th. 1] (see also [18]), then in this case all the

resolutions f from [22] satisfy Rf�Fp D FpŒ0� (using Artin–Schreier).

3.7. Fp-direct images with compact support of the MV-cycles

Theorem 3.7.1. Let .�; �/ 2 X�.T / � X�.T /C. Then

R�c.S� \ Gr
��
G ; Fp/ D

´

Fpj¹w0.�/ºŒ0� if � D w0.�/;

0 otherwise:

More generally, let .c; �/ 2 �0.GrL/ � X�.T /C. Let

qc;� W Sc \ Gr
��
G

// Grc
L \ Gr

��
G

be the morphism of k-schemes defined by the diagram

GrP

|| ##

GrL GrG :

2For the normalization of the Kottwitz map as in [21], which is opposite to the one in [22].
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Then

R.qc;�/ŠFp D

8

<

:

Fpj
Gr

�wL
0 w0.�/

L

Œ0� if c D c
�

w0.�/
�

;

0 otherwise:

Proof. Let �T W Gm ! T be a regular dominant cocharacter. We start by applying Corol-

lary 2.3.5 to X WD Gr
��
G equipped the Gm-action �T .Gm/ obtained by restriction of the

adjoint T -action along �T ; it does apply thanks to Lemma 2.3.3 (2) combined with [27,

§1.5], and Proposition 3.6.1.

Recall from [19, Th. 3.2 (a)] (see also [27, Th. 5.3.9]) that the MV-cycle Sw0.�/ \ Gr
��
G

is 0-dimensional. Hence

.Xw0.�//red D Sw0.�/ \ Gr
��
G D

®

w0.�/
¯

� Xred

is closed, and the theorem in the case of the torus T follows.

Next let L be a standard Levi. We have the canonical commutative diagram

GrB

��

// GrP

��

// GrG

GrT
// GrL :

It shows that for each c 2 �0.GrL/,

Sc.k/ D
[

�2X�.T /\GrcL

S�.k/ � GrG.k/:

Intersecting with X D Gr
��
G � GrG we get

Xc.k/ D
[

�2X�.T /\GrcL \X

X�.k/ � X.k/:

Consequently, the subscheme .Xc/red � X is �T .Gm/-stable, and the reduced connected

components of its attractor are realized by the subschemes .X�/red, �2X�.T /\.Grc
L\X/.

In particular, by Lemma 2.3.3 (2), there exists at least one nonempty closed .X�/red �

.Xc/red.

Now let �L W Gm ! T be a dominant cocharacter whose centralizer in G is L, and

equip X WD Gr
��
G with the Gm-action �L.Gm/ obtained by restriction of the adjoint T -

action along �L. Thanks to Lemma 2.3.3 (2) combined with [27, §1.5], there exists at least

one nonempty .Xc0/red WD .Xc/red � X which is closed. Choosing .X�0/red � .Xc0/red

nonempty and closed, then we get .X�0/red � Xred nonempty and closed, so that �0 D

w0.�/ by the torus case. Hence c0 D c.w0.�//. And by Lemma 3.7.2 (2) below,

jX0
c.w0.�//j D jGr

c.w0.�//
L \X jD jGr

�wL
0 w0.�/

L j:

The theorem in the case of the standard Levi L follows by Corollary 2.3.5, which applies

thanks to Proposition 3.6.1.
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Lemma 3.7.2. Let c 2 �0.GrL/ and � 2 X�.T /C.

(1) If � 2 c then Grc
L \ Gr

��
G D Gr

��
L .

(2) If w0.�/ 2 c then Grc
L \ Gr

��
G D Gr

�wL
0 w0.�/

L .

Proof. Let �_ � ˆ_ be the set of simple coroots of G with respect to the pair .B;T /, and

let �_
L � �_ be the subset of simple coroots of the Levi L with respect to .B \ L; T /.

By the Cartan decomposition

GrL \ Gr
��
G D

[

�02X�.T /C

�0��

[

�2X�.T /C=L\W �0

Gr
�
L :

As Grc
L \ Gr

��
G � GrL is closed and LCL-stable, to prove (1) it suffices to show

that, for � 2 c and � as above, Grc
L \ Gr

�
L D ; unless � �L �. To prove this, suppose

Grc
L \Gr

�
L ¤ ;. Then � � � 2 Z�_

L, and moreover since � 2 W �0 we have � � � 2 N�_.

Because �_ is linearly independent then � � � 2 Z�_
L \ N�_ D N�_

L. Thus � �L � and

hence the claim follows. Finally, (2) can be proved similarly, since then Grc
L \ Gr

�
L ¤ ;

implies w0.�/ � wL
0 .�/ 2 Z�_

L and � 2 W �0 implies wL
0 .�/ � w0.�/ 2 N�_, and hence

wL
0 .�/ � w0.�/ 2 Z�_

L \ N�_ D N�_
L.

Finally, we record from the proof of Theorem 3.7.1 (and Lemma 2.3.7) the following

result.

Corollary 3.7.3. For all � 2 X�.T /C,

Sc.w0.�// \ Gr
��
G D Gr

�wL
0 w0.�/

L :

4. Hyperbolic localization on the affine Grassmannian

4.1. Perverse Fp-sheaves on the affine Grassmannian

For a separated scheme X of finite type over k let P b
c .X; Fp/ be the abelian category

of perverse Fp-sheaves on X as defined in [9, §2]. This is an abelian subcategory of

Db
c .X; Fp/ in which all objects have finite length. The definition of perverse sheaves

extends to ind-schemes of ind-finite type as in [9, Rem. 3.13].

Let PLCG.GrG ;Fp/ � P b
c .GrG ;Fp/ be the full abelian subcategory of LCG-equivari-

ant perverse Fp-sheaves on GrG as defined in [9, §6.1]. This category consists of objects

F
� 2 P b

c .GrG ; Fp/ that are equivariant in the naive sense. In other words, F
� is equiv-

ariant if there exists some � 2 X�.T /C and some finite-type jet quotient LCG ! LnG,

n 2 Z�0, acting on Gr
��
G such that F

� is supported on Gr
��
G and there exists an isomor-

phism Ra�
F

� Š Rp�
F

�, where a and p are the action and projection maps. Similarly

to `-adic sheaves, this naive notion of equivariance coincides with the correct notion.

Indeed, there is a unique such isomorphism which satisfies the associated cocycle con-

dition [9, Lem. 3.7], and maps between equivariant objects automatically respect the

equivariance data [9, Prop. 3.9]. Additionally, PLCG.GrG ; Fp/ is stable under subqou-

tients in P b
c .GrG ; Fp/ [9, Prop. 3.10].
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By [9, Th. 1.1], the category PLCG.GrG ; Fp/ is symmetric monoidal and the functor

H D
L

i2Z Ri � W
�

PLCG.GrG ; Fp/; �
�

// .VectFp ; ˝/

is an exact faithful tensor functor. The definition of the convolution product � will be

reviewed in Section 5.3.

By [9, Th. 1.5], the simple objects in PLCG.GrG ; Fp/ are the shifted constant sheaves:

IC� D Fp

�

2�.�/
�

2 P b
c .Gr

��
G ; Fp/; � 2 X�.T /C:

Furthermore, if �i 2 X�.T /C then by [9, Th. 1.2] there is a natural isomorphism

IC�1
� IC�2

Š IC�1C�2
:

4.2. The hyperbolic localization functor

Definition 4.2.1. Let � 2 X�.T / and F
� 2 Db

c .GrG ; Fp/. Denote by s� W S� ! GrG the

ind-immersion of the corresponding connected component of .GrB/red and define

R�c.S� ; F
�/ WD R�c.S� ; Rs�

� F
�/ 2 Db

c .VectFp /;

and

8i 2 Z; H i
c .S� ; F

�/ WD H i
�

R�c.S� ; F
�/

�

D H i
c .S� ; Rs�

� F
�/ 2 VectFp :

Theorem 4.2.2. Let � 2 X�.T / and � 2 X�.T /C.

(1) We have

H 2�.�/
c .S� ; IC�/ D

´

H 0
�®

w0.�/
¯

; Fp

�

D Fp if � D w0.�/;

0 otherwise:

(2) If i ¤ 2�.�/ then

H i
c .S� ; IC�/ D 0:

(3) If F
� 2 PLCG.GrG ; Fp/, then

R�c.S� ; F
�/ 2 D�2�.�/

c .VectFp / \ D�2�.�/
c .VectFp / D VectFp

�

� 2�.�/
�

:

Proof. Since IC� is the shifted constant sheaf FpŒ2�.�/� supported on Gr
��
G then parts (1)

and (2) follow immediately from Theorem 3.7.1. To prove part (3), by dévissage we can

assume that F
� D IC� for some � 2 X�.T /C. Then part (3) follows from (1) and (2).

Remark 4.2.3. We claim that

H 2�.�/
c .S� ; IC�/ Š H 2�.�C�/

c .S� \ Gr�
G ; Fp/;

which is also true for characteristic 0 coefficients, see e.g. [1, proof of Prop. 1.5.13]. To
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prove the claim, note that it suffices to show that the canonical map

H
2�.�C�/
c .S� \ Gr�

G ; Fp/ // H
2�.�C�/
c .S� \ Gr

��
G ; Fp/

is an isomorphism. If � D w0.�/ then S� \ Gr�
G D S� \ Gr

��
G D ¹�º, so the claim follows

in this case. If � ¤ w0.�/ then by Theorem 3.7.1, we must show that

H 2�.�C�/
c .S� \ Gr�

G ; Fp/ D 0:

Note that dim S� \ Gr�
G D �.� C �/ > 0 by [19, Th. 3.2]. The desired vanishing then

follows from the following general fact (cf. [14, Th. 7.2.11]): if X is a separated scheme

of finite type over k, then

8i > dim X; H i
c .X; Fp/ D 0:

4.3. An alternative description of the hyperbolic localization functor

Definition 4.3.1. Let � 2 X�.T / and F
� 2 Db

c .GrG ; Fp/. Denote by i� W ¹�º ! GrG the

inclusion of the k-point �.t/ and define

R�
�

¹�º; F
�
�

WD Ri�
� F

� 2 Db
c .VectFp /;

and

8i 2 Z; H i
�

¹�º; F
�
�

WD H i
�

R�
�

¹�º; F
�
��

D H i .Ri�
� F

�/ 2 VectFp :

Lemma 4.3.2. Let � 2 X�.T / and F
� 2 PLCG.GrG ; Fp/.

(1) If � 2 X�.T /C then

H 2�.�/
�

¹�º; IC�

�

D

´

H 0
�

¹�º; Fp

�

D Fp if � D w0.�/;

0 otherwise:

(2) If H i .¹�º; F
�/ ¤ 0 then

i � 2�.�/ mod 2:

Proof. For part (1), we have

H 2�.�/
�

¹�º; IC�

�

D H 2�.�C�/
�

¹�º \ Gr
��
G ; Fp

�

:

This is zero unless ¹�º 2 Gr
��
G and 2�.� C �/ D 0, in which case w0.�/ � � � � and

2�.� � w0.�// D 0, i.e., � D w0.�/.

By dévissage, to prove part (2) we can assume that F
� D IC� for some � 2 X�.T /C.

Then for all i 2 Z we have

H i
�

¹�º; IC�

�

D H iC2�.�/
�

¹�º \ Gr
��
G ; Fp

�

:

If this is nonzero then ¹�º 2 Gr
��
G and i C 2�.�/ D 0, so �.� � �/ is an integer and

i C 2�.�/ D i C 2�.�/ � 2�.� � �/ � 0 mod 2:
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Theorem 4.3.3. For � 2 X�.T / there is an isomorphism of functors

H
2�.�/
c .S� ; �/

� // H 2�.�/
�

¹�º; �
�

W PLCG.GrG ; Fp/ // VectFp :

Proof. By the adjunction between Ri�
� and Ri�� there is a natural map

H
2�.�/
c .S� ; F

�/ // H 2�.�/
�

¹�º; F
�
�

:

If F
� D IC� for � 2 X�.T /C then it is an isomorphism by Theorem 4.2.2 (1) and Lemma

4.3.2 (1). For the general case, note that H 2�.�/�1.¹�º; F
�/ D H 2�.�/C1.¹�º; F

�/ D 0

for all F
� 2 PLCG.GrG ; Fp/ by Lemma 4.3.2 (2). Since H

2�.�/C1
c .S� ; F

�/ D 0 for all

F
� 2 PLCG.GrG ;Fp/ by Theorem 4.2.2 (3), then by induction on the length of F

� and the

five lemma we see that the map H
2�.�/
c .S� ; F

�/ ! H 2�.�/.¹�º; F
�/ is an isomorphism

in general.

5. The total weight functor

5.1. The definition of the total weight functor

Definition 5.1.1. For � 2 X�.T /, the weight functor associated to � is

F� WD H
2�.�/
c .S� ; �/

� // H 2�.�/
�

¹�º; �
�

W PLCG.GrG ; Fp/ // VectFp :

Proposition 5.1.2. The functor F� is exact. Furthermore, if � … X�.T /� then F� D 0.

Proof. Exactness follows from Theorem 4.2.2 (3). Since for � … X�.T /� we have F�.F �/

D 0 for all simple F
� 2 PLCG.GrG ; Fp/ by Theorem 4.2.2 (1), we may conclude by

induction on the length that F� D 0 in this case.

Notation 5.1.3. Given an abstract abelian monoid A, we will denote by .VectFp.A/;˝/ the

symmetric monoidal category of finite dimensional A-graded Fp-vector spaces equipped

with the tensor product

Fp.a/ ˝ Fp.b/ WD Fp.a C b/;

where Fp.a/ denotes the vector space Fp placed in “degree” a 2 A.

Definition 5.1.4. The total weight functor is

F� WD
L

�2X�.T /�
F� W PLCG.GrG ; Fp/ // VectFp

�

X�.T /�

�

:

Remark 5.1.5. Recall from Section 3.3 the diagram

GrB
q

||

p

##

GrT GrG :
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Since

.GrT /red D
a

�2X�.T /

¹�º

then F� can be obtained from the functor

RqŠ ı Rp�W PLCG.GrG ; Fp/ // Db
c .GrT ; Fp/

by taking the direct sum of the stalks over the ¹�º in degree 2�.�/. This identifies F� with

the T -constant term functor CTG
T defined in Definition 6.1.1.

5.2. Relation to the Satake equivalence

Recall the exact faithful symmetric monoidal functor

H D
L

i2Z Ri � W
�

PLCG.GrG ; Fp/; �
�

// .VectFp ; ˝/

from [9, Th. 6.11, Th. 7.11]. Our goal in this subsection is to construct a natural isomor-

phism between H and F� composed with the forgetful functor VectFp.X�.T /�/!VectFp .

Remark 5.2.1. In the case of characteristic 0 coefficients, Baumann and Riche construct

an isomorphism between H and
L

�2X�.T / F� in the proof of [1, Th. 1.5.9]. In our proof

of Theorem 5.2.2 below we use Theorem 4.3.3, which is unique to Fp-sheaves, to compare

the functors H and F�.

By [9, Th. 6.9], Ri �.F �/ D 0 for all F
� 2 PLCG.GrG ;Fp/ and i > 0. Set Z� WD Z�0.

For all i 2 Z�, the adjunction between Ri�
� and Ri�� induces a natural transformation of

functors

Ri � //
M

�2X�.T /�
2�.�/Di

H 2�.�/
�

¹�º; �
�

from PLCG.GrG ; Fp/ to VectFp . Hence there is a natural transformation of functors

H D
M

i2Z�

Ri � //
M

i2Z�

M

�2X�.T /�
2�.�/Di

F� D
M

�2X�.T /�

F�

from PLCG.GrG ; Fp/ to VectFp .

Theorem 5.2.2. The natural transformation of functors

H !
M

�2X�.T /�

F� W PLCG.GrG ; Fp/ // VectFp

is an isomorphism. In particular, for all i 2 Z it restricts to an isomorphism

Ri � Š
M

�2X�.T /�
2�.�/Di

F� W PLCG.GrG ; Fp/ // VectFp :
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Proof. Let � 2 X�.T /C. Combining [9, Th. 6.9] and Theorem 4.2.2 (1), taking the stalk

at ¹w0.�/º defines an isomorphism in VectFp

H.IC�/ D R�2�.�/�.IC�/ D H �2�.�/
�

Gr
��
G ; Fp

�

2�.�/
��

� // H 2�.w0.�//
�

Ri�
w0.�/

Fp

�

2�.�/
��

D Fw0.�/.IC�/:

Thus since F�.IC�/ D 0 if � ¤ w0.�/ then the natural map

H.F �/ //
M

�2X�.T /�

F�.F �/

is an isomorphism if F
� is simple. Now H is exact by [9, Th. 6.11] and each F� is exact

by Proposition 5.1.2. Hence it follows by induction on the length of F
� that the above

map is an isomorphism in general.

By Theorem 5.2.2, composing F� with the forgetful functor VectFp.X�.T /�/!VectFp

gives H .

Remark 5.2.3. Using the method in [19, Th. 3.6] one can show that the decomposition

H Š ˚�2X�.T /�
F� is independent of the choice of the pair .T; B/.

5.3. Recollections on convolution

We first recall the definition of the convolution product in PLCG.GrG ; Fp/ following [9,

§6.2]. There is a diagram

GrG � GrG LG � GrG
p

oo
q

// LG
LCG
� GrG

m // GrG :

Here p is the quotient map on the first factor, q is the quotient by the diagonal action of

LCG, and m is induced by multiplication in LG. We set

GrG
�
� GrG WD LG

LCG
� GrG :

For F
�

1 , F
�

2 2 PLCG.GrG ; Fp/, by [9, Lem. 6.2] there exists a unique perverse sheaf

F
�

1

�

� F
�

2 2 P b
c .GrG

�
� GrG ; Fp/

such that

Rp�.F �
1

L

� F
�

2 / Š Rq�.F �
1

�

� F
�

2 /:

The convolution product is

F
�

1 � F
�

2 WD RmŠ.F
�

1

�

� F
�

2 /:

Note that because GrG
�
� GrG is ind-projective we have mŠ D m�.
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We now recall the construction of the monoidal structure on H following [9, §7]. Let

X D A1. The construction uses the Beilinson–Drinfeld Grassmannians GrG;XI and the

global convolution Grassmannians zGrG;XI for I D ¹�º and I D ¹1;2º (see also [27, §3.1]).

There is a convolution morphism

mI W zGrG;XI
// GrG;XI

and a projection fI W GrG;XI ! XI . Since X D A1, for I D ¹�º there are canonical iso-

morphisms

GrG;X Š GrG �X; zGrG;X Š .GrG
�
� GrG/ � X; m¹�º D m � id; f¹�º D pr2 :

So in the sequel we keep the notation I for the set ¹1; 2º only. Let U � X2 be the comple-

ment of the image of the diagonal embedding �W X ! X2. Then we have the following

commutative diagram with Cartesian squares:

GrG � GrG �U //

id

��

zGrG;X2

mI

��

.GrG
�
� GrG/ � X

m�id

��

oo

GrG � GrG �U
jI

//

��

GrG;X2

fI

��

GrG �X

��

iIoo

U // X2 X:
�oo

Let � W GrG;X D GrG �X ! GrG be the projection and let

�ı WD R��Œ1�W Db
c .GrG ; Fp/ // Db

c .GrG;X ; Fp/:

Fix F
�

1 , F
�

2 2 PLCG.GrG ; Fp/. By [9, Lem. 7.6, Prop. 7.10], there is a perverse sheaf

F
�

1;2 WD �ı
F

�
1

�

� �ı
F

�
2 2 P b

c . zGrG;X2 ; Fp/

such that for x1, x2 2 X.k/,

H n�2
�

RfI;Š.RmI;ŠF
�

1;2/
�ˇ

ˇ

.x1;x2/
Š

8

ˆ

<

ˆ

:

M

iCj Dn

Ri �.F �
1 / ˝ Rj �.F �

2 / if x1 ¤ x2

Rn�.F �
1 � F

�
2 / if x1 D x2:

(5.1)

The sheaf H n�2.RfI;Š.RmI;ŠF
�

1;2// is constant by [9, Prop. 7.9]. Therefore, by summing

(5.1) over n we get an isomorphism

H.F �
1 � F

�
2 / Š H.F �

1 / ˝ H.F �
2 /:

This gives H the structure of a monoidal functor.
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We finally recall that the associativity constraint in .PLCG.GrG ; Fp/; �/ is constructed

using the one of the bifunctor
L

� and proper base change [9, Th. 6.8], and the commutativ-

ity constraint as follows. There is a morphism GrG;X2 ! GrG;X2 which swaps the factors

in X2. Using that this morphism restricts to the identity map over �.X/, it is shown in the

proof of [9, Th. 7.11] that there is a canonical isomorphism

jI;Š�

�

�ı
F

�
1

L

� �ı
F

�
2

ˇ

ˇ

U

�ˇ

ˇ

�.X/
Š jI;Š�

�

�ı
F

�
2

L

� �ı
F

�
1

ˇ

ˇ

U

�ˇ

ˇ

�.X/
:

On the other hand, we have the following proposition.

Proposition 5.3.1. There is a canonical isomorphism

�ı.F �
1 � F

�
2 / Š Ri�

I ı jI;Š�

�

�ı
F

�
1

L

��ı
F

�
2

ˇ

ˇ

U

�

Œ�1�:

Proof. By the arguments in the proof of [9, Prop. 7.10 (ii)], there is a canonical isomor-

phism

Ri�
I

�

RmI;Š.F
�

1;2/
�

Œ�1� Š �ı.F �
1 � F

�
2 /:

On the other hand, by [9, Lem. 7.8] we have

RmI;Š.F
�

1;2/ Š jI;Š�

�

�ı
F

�
1

L

��ı
F

�
2

ˇ

ˇ

U

�

: (5.2)

Consequently, we get a commutativity isomorphism

F
�

1 � F
�

2 Š F
�

2 � F
�

1 :

In order to make this commutativity isomorphism compatible with that of ˝ it must be

modified by certain sign changes which depend on the parities of the dimensions of the

strata occurring in the support of the F
�

i ; see the proof of [9, Th. 7.11] for more details.

5.4. Compatibility with convolution

Remark 5.4.1. In this subsection we use Theorem 4.3.3 in order to take H 2�.�/.¹�º; �/ as

our definition of F� . This allows us to give a proof that F� is a tensor functor which is

unique to Fp-sheaves and simpler than that in [19, Prop. 6.4]. In particular, we need only

globalize the points ¹�º relative to a curve instead of the S� . In Section 6.6, we globalize

the S� to give a proof of the compatibility between convolution and the constant term

functor CTG
L with respect to a general Levi subgroup L�G. By taking LDT this provides

an alternative proof of Theorem 5.4.2 below which is analogous to that in [19, Prop. 6.4].

For � 2 X�.T /� let ¹�º.X2/ � GrG;X2 be the reduced closure of

[

�1;�22X�.T /�
�1C�2D�

¹�1º � ¹�2º � U:
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The reduced fiber of ¹�º.X2/ over �.X/ is isomorphic to ¹�º � X � GrG �X . Denote by

i�;X2 W ¹�º.X2/ // GrG;X2

the inclusion. For � 2 X�.T /� and F
� 2 Db

c .GrG;X2 ; Fp/ set

zF�.F �/ WD RfI;Š

�

Ri�;X2;�.Ri�
�;X2F

�/
�

2 Db
c .X2; Fp/:

Theorem 5.4.2. The total weight functor is a tensor functor

F�W
�

PLCG.GrG ; Fp/; �
�

//
�

VectFp

�

X�.T /�

�

; ˝
�

:

Proof. By the same considerations as in the proof of (5.1) in [9, Prop. 7.10], we have

H 2�.�/�2
�

zF�.RmI;ŠF
�

1;2/
�ˇ

ˇ

.x1;x2/
Š

8

ˆ

<

ˆ

:

M

�1C�2D�

F�1.F �
1 /˝F�2.F �

2 / if x1 ¤x2

F�.F �
1 �F

�
2 / if x1 Dx2:

(5.3)

From the adjunction between Ri�
�;X2 and Ri�;X2;� we get a natural map

H n�2
�

RfI;Š.RmI;ŠF
�

1;2/
�

//
M

2�.�/Dn

H n�2
�

zF�.RmI;ŠF
�

1;2/
�

: (5.4)

By Theorem 5.2.2 and the description of the stalks in (5.1), (5.3), the above map (5.4) is an

isomorphism over closed points in X2. Since each of the sheaves in (5.4) is constructible

then this is an isomorphism of sheaves on X2. As H n�2.RfI;Š.RmI;ŠF
�

1;2// is constant

by [9, Prop. 7.9], then each of the sheaves H n�2. zF�.RmI;ŠF
�

1;2// is also constant. Hence

by (5.3), we get a natural isomorphism

F�.F �
1 � F

�
2 / Š

M

�1C�2D�

F�1.F �
1 / ˝ F�2.F �

2 /:

By summing over � 2 X�.T /� we get an isomorphism

F�.F �
1 � F

�
2 / Š F�.F �

1 / ˝ F�.F �
2 /:

The associativity isomorphism in PLCG.GrG ;Fp/ is constructed from the associativity

of the operation � (see the proof of [9, Th. 7.11]), so the above isomorphism is compat-

ible with the usual associativity isomorphism in VectFp .X�.T /�/. Moreover, using (5.2)

and (5.3), one can verify directly from the construction in [9, Th. 7.11] that the commuta-

tivity isomorphism in PLCG.GrG ; Fp/ is compatible with the commutativity isomorphism

in VectFp .X�.T /�/. Thus F� is a tensor functor.

We denote by PLCG.GrG ; Fp/ss the full subcategory of PLCG.GrG ; Fp/ consisting of

semi-simple objects. By [9, Th. 1.2], it is a Tannakian subcategory with fiber functor given

by the restriction of H .
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Corollary 5.4.3. The functor

F�j.PLCG.GrG ;Fp/ss;�/ W
�

PLCG.GrG ; Fp/ss; �
�

//
�

VectFp

�

X�.T /�

�

; ˝
�

is an equivalence of symmetric monoidal categories. We have

8� 2 X�.T /C; F�.IC�/ D Fp

�

w0.�/
�

:

Remark 5.4.4. We can summarize this section as follows. Let 2�� W X�.T /� ! Z� be

the additive map induced by the group homomorphism 2� W X�.T / ! Z, and let 2�� W

VectFp .X�.T /�/ ! VectFp .Z�/ be the induced functor. Then the exact faithful symmetric

monoidal functor

H W
�

PLCG.GrG ; Fp/; �
�

// .VectFp ; ˝/

factors as a composition of exact faithful symmetric monoidal functors

�

PLCG.GrG ; Fp/; �
� F� //

�

VectFp

�

X�.T /�

�

; ˝
�

2��
//
�

VectFp .Z�/; ˝
� Forget

// .VectFp ; ˝/:

6. The constant term functor

6.1. The definition of CTG
L

We return to the setup in Section 3.5 following the geometric setting explained in [2,

§5.3.27]; see also [1, §1.15.1], [15, §5.1]. In particular, P � G is a parabolic subgroup

containing B , and L � P is the Levi factor containing T . We may consider for L all the

objects that we consider for G; we will denote them using a letter L as a subscript or a

superscript. There is a diagram

GrP
q

||

p

##

GrL GrG :

(6.1)

The connected components of GrL are parametrized by

�0.GrL/ D �1.L/ D X�.T /=Zˆ_
L;

where ˆ_
L is the set of coroots of L with respect to T . For c 2 �0.GrL/ let Grc

L and Grc
P

be the corresponding connected components of GrL and GrP .

Let �L be half the sum of the positive roots of L. Then 2.� � �L/.c/ is a well-defined

integer for c 2 �0.GrL/ since � D �L on ˆ_
L. Define the locally constant function

degP W GrP // �0.GrP /
2.���L/

// Z; (6.2)

where GrP ! �0.GrP / sends Grc
P to c.



Constant term functors with Fp-coefficients 373

Definition 6.1.1. The L-constant term functor is

CTG
L WD RqŠ ı Rp�ŒdegP �W PLCG.GrG ; Fp/ // Db

c .GrL; Fp/:

Let c 2 �0.GrL/. Since

.Grc
P /red D Sc ;

then by restricting (6.1) to Sc , we get a diagram

Sc

�c

}}

sc

!!

Grc
L GrG :

Definition 6.1.2. The weight functor associated to c is

Fc WD R�cŠ ı Rs�
c

�

2.� � �L/.c/
�

W PLCG.GrG ; Fp/ // Db
c .Grc

L; Fp/:

Lemma 6.1.3. There is a natural isomorphism of functors

CTG
L Š

M

c2�0.GrL/

Fc :

Proof. This follows from the definitions and the topological invariance of the étale site.

6.2. Preservation of perversity

Theorem 6.2.1. Let c 2 �0.GrL/ and F
� 2 PLCG.GrG ; Fp/. Then

Fc.F �/ 2 PLCL.GrL; Fp/:

Furthermore, for � 2 X�.T /C we have

Fc.IC�/ D

´

ICL

wL
0 w0.�/

if c D c
�

w0.�/
�

;

0 otherwise:

Proof. The description of Fc.IC�/ follows from Theorem 3.7.1 since IC� D FpŒ2�.�/�

supported on Gr
��
G and

ICL

wL
0 w0.�/

D Fp

�

2�L

�

wL
0 w0.�/

��

supported on Gr
�wL

0 w0.�/

L . Then the perversity of Fc.F �/ for general F
� follows by

induction on the length of F
�. For equivariance, we observe that F

� is LCL-equivariant,

and that Sc is LCL-stable and �c W Sc ! Grc
L is LCL-equivariant. As pullback along a

smooth morphism is t -exact (up to a shift) for the perverse t -structure by [9, Lem. 2.15],

then it follows that Fc.F �/ 2 PLCL.Grc
L; Fp/ by the proper base change theorem (cf. [9,

Lem. 3.2]).
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Notation 6.2.2. Given a subset A � X�.T /C, equipped with the induced partial order, we

set

GrG;A WD lim
�!
�2A

Gr
��
G :

This is an ind-closed subscheme of GrG , which is stable under the LCG-action. There is

a natural embedding

PLCG.GrG;A; Fp/ � PLCG.GrG ; Fp/

which identifies PLCG.GrG;A; Fp/ with the full subcategory of PLCG.GrG ; Fp/ whose

objects are supported on GrG;A. Let

xA D
®

� 2 X�.T /C j � � � for some � 2 A
¯

:

Then the simple objects in PLCG.GrG;A; Fp/ are the IC� for � 2 xA. Moreover, if A �

X�.T /C is a submonoid, then so is xA and it follows from [9, Th. 1.2, Cor. 6.7] that the full

subcategory PLCG.GrG;A; Fp/ inherits from PLCG.GrG ; Fp/ the structure of a symmetric

monoidal category.

Corollary 6.2.3. If F
� 2 PLCG.GrG ; Fp/ and c \ X�.T /� D ;, then Fc.F �/ D 0. In

general,

Fc.F �/ 2 PLCL.GrL;wL
0 X�.T /�

; Fp/:

Proof. If F
� is simple this follows from Theorem 6.2.1. The general case follows by

induction on the length of F
�.

Corollary 6.2.4. The L-constant term functor is an exact functor

CTG
L W PLCG.GrG ; Fp/ // PLCL.GrL;wL

0 X�.T /�
; Fp/:

Proof. This follows from Corollary 6.2.3 and Lemma 6.1.3.

Note that for L D T , we recover the functor F�, i.e.,

CTG
T D F� WD

M

�2X�.T /�

F� W PLCG.GrG ; Fp/ // VectFp

�

X�.T /�

�

:

In particular, CTL
T D F L

� .

Remark 6.2.5. Let us set

�0.GrL/� WD
®

c 2 �0.GrL/ j c \ X�.T /� ¤ ;
¯

D Im
�

X�.T /�
// X�.T /=Zˆ_

L

�

;

which is a submonoid of the abelian group �0.GrL/, and

Gr�
L WD

a

c2�0.GrL/�

Grc
L :
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Then �0.Gr�
L/ D �0.GrL/�, CTG

L Š
L

c2�0.GrL/�
Fc and we have the inclusion

GrL;wL
0 X�.T /�

� Gr�
L :

The latter is an equality for L D T , but it is strict in general. Indeed, for any ˛_ 2 ˆ_
L, we

have ¹˛_º2Gr0
L � Gr�

L , while ¹˛_º…GrL;wL
0 X�.T /�

in general, e.g. for LDGL2�GL1 �

G D GL3,

˛_ D .1; �1; 0/ D wL
0 .�1; 1; 0/ 2 X�.T /C=L n wL

0 X�.T /�:

Remark 6.2.6. There is a more general version of Theorem 4.3.3 as follows. Let c 2

�0.GrL/ and denote by ic W Grc
L ! GrG the inclusion. Then one can show that there is a

natural isomorphism of functors

Fc Š pH 2.���L/.c/ ı Ri�
c W PLCG.GrG ; Fp/ // PLCL.Grc

L; Fp/:

We will only use the functor Fc because it does not require a perverse truncation.

6.3. Relation to the Satake equivalence

Proposition 6.3.1. Let c 2 �0.GrL/ and � 2 X�.T /. If � … c, then

F L
� ı Fc D 0;

and if � 2 c then

F L
� ı Fc Š F� :

Proof. If � … c, then S� \ Grc
L D ; so that F L

� ı Fc D 0. If � 2 c, then up to possible

non-reducedness of the fiber product we have a Cartesian diagram

S�
//

��;c WD

��

Sc

�c

��

SL
�

// Grc
L :

Hence by the proper base change theorem .R�cŠ.Rs�
c F

�//jSL
�

Š R��;cŠ.F
�jS� /, so that

R�c

�

SL
� ; Fc.F �/

�

Š R�c.S� ; F
�/

�

2.� � �L/.�/
�

:

Now take the cohomology of both sides in degree 2�L.�/ .

Corollary 6.3.2. For all � 2 X�.T /,

F L
� ı CTG

L Š F� :

In particular, there is a canonical transitivity isomorphism

H L ı CTG
L Š H;

and the functor CTG
L is faithful.
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Proof. The first part follows from Lemma 6.1.3 and Proposition 6.3.1. Then the transitiv-

ity isomorphism is obtained by summing over � (in X�.T /�). Finally the faithfulness of

CTG
L follows from the transitivity isomorphism and the faithfulness of H .

6.4. The ind-schemes Sc.X/ and Sc.X2/

For c 2�0.GrL/ let Sc.X/ � GrG;X and Sc.X2/ � GrG;X2 be the reduced ind-subschemes

realizing relative versions of Sc as in [1, §1.15.1] (see also [15, Th. 5.6] for a base

field of arbitrary characteristic). They can be identified with the corresponding connected

components of .GrP;X /red and .GrP;X2/red. Let Grc
L;X and Grc

L;X2 denote the connected

components of GrL;X and GrL;X2 determined by c. We denote the relative versions of the

ind-immersion sc W Sc ! GrG and the projection �c W Sc ! Grc
L as follows:

Qsc W Sc.X/ // GrG;X ; Q�c W Sc.X/ // Grc
L;X ;

Qs2
c W Sc.X2/ // GrG;X2 ; Q�2

c W Sc.X2/ // Grc
L;X2 :

Since X D A1 there are canonical isomorphisms

GrG;X Š GrG �X; GrL;X Š GrL �X; Sc.X/ Š Sc � X;

in particular we have the projection � W GrG;X ! GrG and the associated shifted pull-back

�ı WD R��Œ1�W Db
c .GrG ; Fp/ ! Db

c .GrG;X ; Fp/.

The important facts about the geometry of these ind-schemes are summarized in the

following commutative diagram from [1, §1.15.1] whose squares are Cartesian (up to

possible non-reducedness of fiber products) and are obtained by restriction to U � X2 or

its complementary diagonal �.X/ � X2:

.GrG;X � GrG;X /
ˇ

ˇ

U

jI
// GrG;X2 GrG;X

iIoo

`

c1Cc2Dc .Sc1.X/ � Sc2.X//
ˇ

ˇ

U

Qs2
c

ˇ

ˇ

U

OO

jc
//

Q�2
c

ˇ

ˇ

U
��

Sc.X2/

Q�2
c

��

Qs2
c

OO

Sc.X/
icoo

Qsc

OO

Q�c

��
`

c1Cc2Dc .Gr
c1

L;X � Gr
c2

L;X /
ˇ

ˇ

U

j c
L // Grc

L;X2 Grc
L;X :

ic
Loo

We have canonical identifications

Qsc D sc � idX W Sc � X // GrG �X; Q�c D �c � idX W Sc � X // Grc
L �X

and

Qs2
c

ˇ

ˇ

U
D

a

c1Cc2Dc

.Qsc1 � Qsc2/
ˇ

ˇ

U
; Q�2

c

ˇ

ˇ

U
D

a

c1Cc2Dc

. Q�c1 � Q�c2/
ˇ

ˇ

U
:



Constant term functors with Fp-coefficients 377

Definition 6.4.1. Let c 2 �0.GrL/. Set

zFc WD R Q�cŠ ı RQs�
c

�

2.� � �L/.c/
�

W Db
c .GrG;X ; Fp/ // Db

c .Grc
L;X ; Fp/;

and

zF 2
c WD R Q�2

cŠ
ı RQs2�

c

�

2.� � �L/.c/
�

W Db
c .GrG;X2 ; Fp/ // Db

c .Grc
L;X2 ; Fp/:

6.5. The key isomorphism for the compatibility with convolution

Theorem 6.5.1. There is a canonical isomorphism

zF 2
c ı jI;Š�

�

�ı
F

�
1

L

��ı
F

�
2

ˇ

ˇ

U

�

Š j c
L;Š�

�

M

c1Cc2Dc

�ı
LFc1.F �

1 /
L

� �ı
LFc2.F �

1 /
ˇ

ˇ

U

�

:

Contrary to the case of characteristic 0 coefficients, we cannot appeal to Braden’s

theorem to compute the co-restriction of the left side of Theorem 6.5.1 over �.X/ as

in [1, Prop. 1.15.2]. This complication is the primary obstacle we must overcome in order

to prove Theorem 6.5.1. We begin by reducing to the case where the F
�

i are simple.

Reduction of Theorem 6.5.1 to the case of simple F
�

i . By a diagram chase involving the

proper base change theorem and theKünneth formula, the two complexes inTheorem 6.5.1

are canonically identified over U . Once we show that the complex on the left is iso-

morphic to the one on the right, by [9, Lem. 2.11] there will be a unique isomorphism

which restricts to our canonical identification over U .

We claim that it suffices to show the left side is the intermediate extension of its restric-

tion to U in the case where the F
�

i are simple. By the properties characterizing j c
LŠ� in

[9, Lem. 2.7], it follows that if the outer two terms in an exact triangle are intermediate

extensions, then so is the middle term (cf. the proof of [9, Lem. 7.8]). While jI;Š� may not

be exact in general, (5.2) allows us to replace jI;Š� by the triangulated functor RmI;Š. Thus,

by induction on the lengths of the F
�

i we can assume that F
�

i D IC�i
for �i 2 X�.T /C.

The remainder of the proof will be an explicit computation of both sides of Theo-

rem 6.5.1 in the special case F
�

i D IC�i
for �i 2 X�.T /C. For convenience we denote

�� WD .�1; �2/; j��j WD �1 C �2:

Let Gr
���

G;X2 be the closure of

Gr
��1

G � Gr
��2

G �U � GrG;X2

with its reduced scheme structure. If p − j�1.Gder/j then by [27, Prop. 3.1.14] we have

Gr
���

G;X2

ˇ

ˇ

�.X/
Š Gr

�j��j
G �X:

If p j j�1.Gder/j this isomorphism should be modified by passing to the reduced sub-

scheme on the left side.
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Lemma 6.5.2. There is a canonical isomorphism

jI;Š�

�

�ı IC�1

L

��ı IC�2

ˇ

ˇ

U

�

Š Fp

�

2�
�

j��j
�

C 2
�

2 P b
c .Gr

���

G;X2 ; Fp/:

Proof. We first observe that �ı IC�1

L

��ı IC�2

ˇ

ˇ

U
is canonically identified with a shifted

constant sheaf supported on Gr
��1

G � Gr
��2

G �U � GrG;X2 . If p − j�1.Gder/j then Gr
���

G;X2

is integral and F -rational by [9, Th. 7.4], so

jI;Š�

�

�ı IC�1

L

��ı IC�2

ˇ

ˇ

U

�

is a shifted constant sheaf supported on Gr
���

G;X2 by [9, Th. 1.7]. If p j j�1.Gder/j, choose

a z-extension G0 ! G and choose lifts �0
1, �0

2 of �1, �2 to dominant cocharacters of G0.

The induced morphism

Gr
��0

�

G0;X2 ! Gr
���

G;X2

is a universal homeomorphism (see [9, Rem. 7.12] for more details), so by topological

invariance of the étale site it follows that

jI;Š�

�

�ı IC�1

L

��ı IC�2

ˇ

ˇ

U

�

is still a shifted constant sheaf supported on Gr
���

G;X2 . Hence in any case there is a canonical

isomorphism as stated.

Lemma 6.5.3. If F
�

i D IC�i
for �i 2 X�.T /C and w0.j��j/ … c then both sides of The-

orem 6.5.1 are zero.

Proof. By the assumption of the lemma, if c1 C c2 D c then w0.�i / … ci for i D 1 or 2.

For such i we have Fci
.IC�i

/ D 0 by Theorem 6.2.1, so both sides of Theorem 6.5.1

vanish over U . Therefore the right side of Theorem 6.5.1 vanishes. On the other hand, by

Lemma 6.5.2 and the proper base change theorem,

zF 2
c

�

jI;Š�

�

�ı IC�1

L

��ı IC�2

ˇ

ˇ

U

��ˇ

ˇ

�.X/
Š �ıFc.ICj��j/:

This complex is also zero by Theorem 6.2.1, so the left side of Theorem 6.5.1 is zero.

Lemma 6.5.4. If F
�

i D IC�i
for �i 2 X�.T /C and w0.j��j/ 2 c, then the right side of

Theorem 6.5.1 is canonically isomorphic to the shifted constant sheaf

Fp

�

2�L

�

wL
0 w0

�

j��j
��

C 2
�

2 P b
c

�

Gr
�wL

0 w0.��/

L;X2 ; Fp

�

:

Proof. By Theorem 6.2.1, the right side of Theorem 6.5.1 is canonically isomorphic to

j c
L;Š�

�

�ı
L ICL

wL
0 w0.�1/

L

��ı
LICL

wL
0 w0.�2/

ˇ

ˇ

U

�

:

Now apply Lemma 6.5.2 to L instead of G.
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From now on we assume w0.j��j/ 2 c. Let

V c
��

WD
a

c1Cc2Dc
w0.�i /…ci for some i

.Sc1 \ Gr
��1

G / � .Sc2 \ Gr
��2

G / � U:

Then V c
��

is an open subscheme of .Sc.X2/ \ Gr
���

G;X2/red. Let Zc
��

� Sc.X2/ \ Gr
���

G;X2

be its complement with the reduced scheme structure. Then Zc
��

is a locally closed sub-

scheme of Gr
���

G;X2 such that

�

Zc
��

ˇ

ˇ

�.X/

�

red
Š

�

Sc \ Gr
�j��j
G

�

� X

and

Zc
��

ˇ

ˇ

U
Š

�

Sc.w0.�1// \ Gr
��1

G

�

�
�

Sc.w0.�2// \ Gr
��2

G

�

� U:

By Lemma 3.7.2 (2), Q�2
c restricts to a morphism

Q�2
c;��

WD Q�2
c

ˇ

ˇ

Zc
��

W Zc
��

// Gr
�wL

0 w0.��/

L;X2 :

Lemma 6.5.5. The morphism Q�2
c;��

W Zc
��

! Gr
�wL

0 w0.��/

L;X2 is a universal homeomorphism.

Proof. By Corollary 3.7.3, Q�2
c;��

restricts to a universal homeomorphism over U and �.X/,

so it is universally bijective. The natural morphism .Grc
L;X2/red ! Sc.X2/ coming from

the morphism L ! P induces a section to Q�2
c;��

, so it is a universal homeomorphism.

Lemma 6.5.6. If F
�

i D IC�i
for �i 2 X�.T /C and w0.j��j/ 2 c, then the left side of

Theorem 6.5.1 is canonically isomorphic to the shifted constant sheaf

Fp

�

2�L

�

wL
0 w0

�

j��j
��

C 2
�

2 P b
c

�

Gr
�wL

0 w0.��/

L;X2 ; Fp

�

:

Proof. By abuse of notation, let us view Q�2
c as a morphism

Sc.X2/ \ Gr
���

G;X2

Q�2
c // Grc

L;X2 :

Then by the definition of zF 2
c and Lemma 6.5.2, the left side of Theorem 6.5.1 is

R Q�2
cŠ.Fp/

�

2�L

�

wL
0 w0

�

j��j
��

C 2
�

:

Let jV c
��

W V c
��

! Sc.X2/ \ Gr
���

G;X2 be the inclusion. By Lemma 3.7.2 (2), we have

Q�2
c .V c

��
/ \ Gr

�wL
0 w0.��/

L;X2 D ;:

The scheme V c
��

is open and closed inSc.X2/ \ Gr
���

G;X2

ˇ

ˇ

U
by [1, (1.15.2)], so that

R Q�2
cŠ ı R.jV c

��
/Š

�

Fp

�

2�L

�

wL
0 w0.j��j/

�

C 2
��
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is a direct summand of the restriction to U of the complex

R Q�2
cŠ.Fp/

�

2�L

�

wL
0 w0

�

j��j
��

C 2
�

:

Hence the former complex is supported in Gr
�wL

0 w0.��/

L;X2 by Lemma 6.5.4 since the left and

right sides of Theorem 6.5.1 agree over U . It follows that

R. Q�2
c ı jV c

��
/Š

�

Fp

�

2�L

�

wL
0 w0

�

j��j
��

C 2
��

D R Q�2
cŠ ı R.jV c

��
/Š

�

Fp

�

2�L

�

wL
0 w0

�

j��j
��

C 2
��

D 0:

Consequently, by applying R Q�2
cŠ

to the exact triangle associated to the decomposition of

Sc.X2/ \ Gr
���

G;X2 into V c
��

and Zc
��

, the left side of Theorem 6.5.1 is

R. Q�2
c;��

/Š.Fp/
�

2�L

�

wL
0 w0

�

j��j
��

C 2
�

:

Now we conclude by using Lemma 6.5.5.

Proof of Theorem 6.5.1. We have reduced to the case where F
�

i D IC�i
for �i 2 X�.T /C.

Then if w0.j��j/ … c both sides of Theorem 6.5.1 vanish by Lemma 6.5.3, and if w0.j��j/

2 c both sides are canonically identified with the same complex

Fp

�

2�L

�

wL
0 w0

�

j��j
��

C 2
�

2 P b
c

�

Gr
�wL

0 w0.��/

L;X2 ; Fp

�

by Lemmas 6.5.4 and 6.5.6.

6.6. Compatibility with convolution

Theorem 6.6.1. The L-constant term functor is a tensor functor

CTG
L W

�

PLCG.GrG ; Fp/; �
�

//
�

PLCL.GrL;wL
0 X�.T /�

; Fp/; �
�

:

Proof. Let F
�

1 , F
�

2 2 PLCG.GrG ; Fp/. Recall from Proposition 5.3.1 the canonical iso-

morphism

�ı.F �
1 � F

�
2 / Š Ri�

I ı jI;Š�

�

�ı
F

�
1

L

��ı
F

�
2

ˇ

ˇ

U

�

Œ�1�:

Let c 2 �0.GrL/. First, apply zFc . After unwinding the definitions and using the proper

base change theorem, there is a canonical isomorphism

zFc

�

�ı.F �
1 � F

�
2 /

�

Š �ı
L

�

Fc.F �
1 � F

�
2 /

�

:

A similar diagram chase yields a canonical isomorphism

zFc

�

Ri�
I ı jI;Š�

�

�ı
F

�
1

L

��ı
F

�
2

ˇ

ˇ

U

�

Œ�1�
�

Š Ric�
L

�

zF 2
c ı jI;Š�

�

�ı
F

�
1

L

��ı
F

�
2

ˇ

ˇ

U

��

Œ�1�:
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Whence

�ı
L

�

Fc.F �
1 � F

�
2 /

�

Š Ric�
L

�

zF 2
c ı jI;Š�

�

�ı
F

�
1

L

��ı
F

�
2

ˇ

ˇ

U

��

Œ�1�:

Second, use the key isomorphism Theorem 6.5.1 to get

�ı
L

�

Fc.F �
1 � F

�
2 /

�

Š Ric�
L ı j c

L;Š�

�

M

c1Cc2Dc

�ı
LFc1.F �

1 /
L

� �ı
LFc2.F �

1 /
ˇ

ˇ

U

�

Œ�1�:

Third, use Proposition 5.3.1 for L instead of G to get

�ı
L

�

Fc.F �
1 � F

�
2 /

�

Š
M

c1Cc2Dc

�ı
L

�

Fc1.F �
1 / � Fc2.F �

2 /
�

:

By taking the sum over the c 2 �0.GrL/ we obtain finally (cf. Lemma 6.1.3)

CTG
L .F �

1 � F
�

2 / Š CTG
L .F �

1 / � CTG
L .F �

2 /:

By appealing to the constructions in Section 5.3 one can verify that this isomorphism

is compatible with the associativity and commutativity constraints. The arguments are

analogous to the case of characteristic 0 coefficients as in [1, Prop. 1.15.2]; we leave the

details to the reader.

Corollary 6.6.2. The functor CTG
L induces an equivalence of symmetric monoidal cate-

gories

CTG
L j.PLCG.GrG ;Fp/ss;�/ W

�

PLCG.GrG ; Fp/ss; �
� � //

�

PLCL.GrL;wL
0 X�.T /�

; Fp/ss; �
�

:

We have

8� 2 X�.T /C; CTG
L .IC�/ D ICL

wL
0 w0.�/

:

Proof. The last assertion follows from Lemma 6.1.3 and Theorem 6.2.1. In particular, it

implies that the restriction CTG
L jPLCG.GrG ;Fp/ss factors through

PLCL.GrL;wL
0 X�.T /�

; Fp/ss � PLCL.GrL;wL
0 X�.T /�

; Fp/:

Combined with [9, Th. 1.2], it also implies that CTG
L j.PLCG.GrG ;Fp/ss;�/ is a tensor functor,

which is also a consequence of Theorem 6.6.1.

To conclude the proof, it remains to see that CTG
L induces a bijection between the sets

of (isomorphism classes of) simple objects, in other words, that the inclusion

wL
0 X�.T /� � wL

0 X�.T /� D
®

� 2 X�.T /C=L j � �L � for some � 2 wL
0 X�.T /�

¯

is an equality. So let � 2 wL
0 X�.T /�, and pick � 2 wL

0 X�.T /� such that � �L �. Set

�0 WD wL
0 .�/ 2 X�.T /�=L and �0 WD wL

0 .�/ 2 X�.T /�:
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We need to check that �0 2 X�.T /�, which means that h˛; �0i � 0 for all the simple roots

˛ 2 � � ˆ. The inequality holds if ˛ 2 �L � � since �0 2 X�.T /�=L. Now assume that

˛ 2 � n �L. As � �L �, we have �0 �L �0 i.e.

�0 2 �0 C N�_
L:

Moreover, as �0 2 X�.T /�, we have h˛;�0i � 0. Lastly, if ˇ 2 �L, then ˇ 2 � and ˇ ¤ ˛,

so that ˛ and ˇ are two distinct elements of a root basis, which implies h˛; ˇ_i � 0.

Remark 6.6.3. We can summarize this section as follows. The exact faithful symmetric

monoidal functor

F� W
�

PLCG.GrG ; Fp/; �
�

//
�

VectFp

�

X�.T /�

�

; ˝
�

can be rewritten as

CTG
T W

�

PLCG.GrG ; Fp/; �
�

//
�

PLCT .GrT;X�.T /�
; Fp/; �

�

and factors as a composition of exact faithful symmetric monoidal functors
�

PLCG.GrG ; Fp/; �
�

CTG
L //

�

PLCL.GrL;wL
0 X�.T /�

; Fp/; �
�

T

�

PLCL.GrL; Fp/; �
� CTL

T //
�

PLCT .GrT;X�.T /�=L
; Fp/; �

�

T

�

PLCT .GrT ; Fp/; �
�

(with values in PLCT .GrT;X�.T /�
; Fp/ � PLCT .GrT ; Fp/).

7. Tannakian interpretation

7.1. The Satake equivalence

Recall from [9, Th. 1.1] the Tannaka equivalence given by the geometric Satake equiva-

lence with Fp-coefficients:

�

PLCG.GrG ; Fp/; �
� �

�G

//

H
((

�

RepFp
.MG/; ˝

�

forget
vv

.VectFp ; ˝/:

In particular MG is an affine monoid scheme over Fp which represents the functor of

tensor endomorphisms of the fiber functor H .
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Remark 7.1.1. The Tannaka equivalence in [9, Th. 1.1] is constructed using the follow-

ing observation just before [11, Rem. II.2.17]: If one omits the assumption of rigidity

(i.e., the existence of tensor duals) in the definition of a neutral Tannakian category, then

one gets an equivalence with the category of representations of an affine monoid scheme

instead of a group scheme. Below we will use the fact that a morphism of fiber functors

induces a morphism of affine monoid schemes (the analogue for affine group schemes

is [11, Cor. II.2.9]). This morphism of monoid schemes can already be constructed at

the level of coalgebras (e.g., [1, Prop. 1.2.6]), and then the fact that it is also an algebra

homomorphism follows from the compatibility with the tensor structures.

Notation 7.1.2. We will use the following notation.

• Let A � X�.T /C be a submonoid. The full subcategory

PLCG.GrG;A; Fp/ � PLCG.GrG ; Fp/

introduced in Notation 6.2.2 is a Tannakian subcategory with fiber functor given by

the restriction of H . We denote by MG;A the corresponding Fp-monoid scheme and

by �G;A the resulting Tannaka equivalence. It fits into a commutative diagram

�

PLCG.GrG;A; Fp/; �
� �

�G;A

//

T

�

RepFp
.MG;A/; ˝

�

T

�

PLCG.GrG ; Fp/; �
� �

�G

//
�

RepFp
.MG/; ˝

�

:

We have a canonical homomorphism

MG ! MG;A;

which for A D X�.T /C is the identity.

• Given an arbitrary abstract abelian monoid A, the category .VectFp .A/; ˝/ introduced

in Notation 5.1.3 is Tannakian with fiber functor given by forgetting the grading. Its

Tannaka monoid is the diagonalizable Fp-monoid scheme

D.A/ WD Spec
�

FpŒA�
�

:

Remark 7.1.3. In the case G D T , we have

MT;A D D.A/

for all submonoids A � X�.T /. In particular,

MT D MT;X�.T / D D
�

X�.T /
�

D T _;

the torus dual to T .
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7.2. The dual of the torus embedding

As noticed in Remark 5.4.4, we have obtained a factorization of H as

�

PLCG.GrG ; Fp/; �
� F� //

�

VectFp

�

X�.T /�

�

; ˝
�

2��
//
�

VectFp .Z�/; ˝
�

Forget
// .VectFp ; ˝/:

Under the equivalences �G and �T it corresponds to a sequence of tensor functors
�

RepFp
.MG/; ˝

�

//
�

RepFp

�

D
�

X�.T /�

��

; ˝
�

//
�

RepFp
.A1

�/; ˝
�

//
�

RepFp
.1Fp /; ˝

�

;

i.e., by Tannaka duality to a sequence of morphisms of Fp-monoid schemes

1Fp
// A1

�

2��
// D.X�.T /�/

D.F�/
// MG :

Gm
2�

//

?�

OO

T _
?�

OO

Remark 7.2.1. We show in Theorem 7.4.5 that D.F�/, denoted there by w, is a closed

immersion, and that T _ ! D.X�.T /�/ is an open immersion.

7.3. The dual of the Levi embedding

As noticed in Remark 6.6.3, we have obtained a factorization of F� as

�

PLCG.GrG ; Fp/; �
� CTG

L //
�

PLCL.GrL;wL
0 X�.T /�

; Fp/; �
�

�
�

PLCL.GrL; Fp/; �
�CTL

T DF L
�
//
�

PLCT

�

GrT;X�.T /�=L
; Fp

�

; �
�

�
�

PLCT .GrT ; Fp/; �
�

:

Under the equivalences �G , �L, and �T it corresponds to a diagram

�

RepFp
.MG/; ˝

�

//
�

RepFp

�

ML;wL
0 X�.T /�

�

; ˝
�

�
�

RepFp
.ML/; ˝

�

//
�

RepFp

�

MT;X�.T /�=L

�

; ˝
�

�
�

RepFp
.T _/; ˝

�

;

i.e., by Tannaka duality to a sequence of morphisms of Fp-monoid schemes

T _ //
� _

��

MT;X�.T /�=L

D.F L
� /
// ML

// ML;wL
0 X�.T /�

D.CTG
L /
// MG :

MT;X�.T /�
D.F�/

44
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Remark 7.3.1. The morphisms T _!MT;X�.T /�=L
and T _!MT;X�.T /�

are open immer-

sions, and the morphisms D.F L
� / and D.F�/ are closed immersions (cf. Remark 7.2.1).

Deciding whether ML ! ML;wL
0 X�.T /�

and D.CTG
L / are open or closed immersions in

general seems to require a greater understanding of the extensions between representations

of MG (and ML), and how these extensions interact with the constant term functors.

7.4. Semi-simplification

Notation 7.4.1. Let A � X�.T /C be a submonoid. Similarly as in [9, proof of Prop. 7.14],

we denote by PLCG.GrG;A; Fp/ss the full subcategory of PLCG.GrG;A; Fp/ consisting of

semi-simple objects. As noticed in Notation 6.2.2, the simple objects are the IC� for � 2 xA,

and hence it follows from [9, Th. 1.2] that PLCG.GrG;A; Fp/ss is a Tannakian subcategory

with fiber functor given by the restriction of H . Then by Theorem 5.2.2 the corresponding

Fp-monoid scheme is

M ss
G;A WD D.w0

xA/:

The resulting Tannaka equivalence �
ss
G;A fits into the commutative diagram

�

PLCG.GrG;A; Fp/ss; �
� �

�
ss
G;A

//

T

�

RepFp
.M ss

G;A/; ˝
�

T

�

PLCG.GrG;A; Fp/; �
� �

�G;A

//
�

RepFp
.MG;A/; ˝

�

:

We have a canonical homomorphism �G;M W MG;A ! M ss
G;A. As MG;X�.T /C D MG , we

write simply M ss
G for M ss

G;X�.T /C D D.X�.T /�/ and �G W MG ! M ss
G for the correspond-

ing canonical homomorphism.

Remark 7.4.2. Since every simple object of RepFp
.MG/ Š PLCG.GrG ; Fp/ is 1-dimen-

sional, the monoid MG is pro-solvable, cf. [9, Prop. 7.15]. Let ¹V�; �2X�.T /�º be (a set

of representatives of) the set of irreducible finite dimensional representations of MG . For

anyV 2RepFp
.MG/, denote by d�.V / the multiplicity of V� as a subquotient in any Jordan–

Hölder filtration of V . Then the canonical homomorphism �G W MG ! M ss
G admits the

following explicit description: it maps m 2 MG to the unique �G.m/ 2 M ss
G D D.X�.T /�/

acting

on
M

�2X�.T /�

V
d�.V /

�
by

M

�2X�.T /�

�
�

�G.m/
�

for all V 2 RepFp
.MG/.

Definition 7.4.3. We call the canonical homomorphism

�G W MG
// M ss

G

the eigenvalues homomorphism.
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From Corollary 5.4.3, we have the equivalence

F�j.PLCG.GrG ;Fp/ss;�/ W
�

PLCG.GrG ; Fp/ss; �
� � //

�

VectFp

�

X�.T /�

�

; ˝
�

;

such that F�.IC�/ D Fp.w0.�//. By Tannaka duality, it corresponds to the identity

MT;X�.T /�
D D

�

X�.T /�

�

D
�

X�.T /�

�

D M ss
G :

Definition 7.4.4. By the above equivalence we can make the following definitions.

• We call the composition

.�/ss WD F�j�1
.PLCG.GrG ;Fp/ss;�/

ıF�W
�

PLCG.GrG ; Fp/; �
�

//
�

PLCG.GrG ; Fp/ss; �
�

the semi-simplification functor.

• We call its Tannaka dual

w WD D
�

.�/ss
�

W M ss
G

// MG

the weight section.

Thus the functor .�/ss is a retraction to PLCG.GrG ; Fp/ss � PLCG.GrG ; Fp/ and the

morphism w is a section to �G W MG ! M ss
G . Moreover w identifies with the morphism

D.F�/ from Section 7.2.

Theorem 7.4.5. The morphisms �G and w satisfy the following properties.

• The morphism �G W MG ! M ss
G is surjective.

• The weight section w W M ss
G ! MG is a closed immersion. The dual torus embedding

T _ ! MG factors through w by an open immersion.

Proof. The weight section w of �G is a closed immersion since the morphism �G is

affine. Conversely, the fact that �G admits a section implies that �G is surjective.

By construction, we have the commutative diagram

M ss
G

w

**
MT;X�.T /� D.F�/

// MG

T _:
?�

OO

The fact that T _ !MT;X�.T /�
DM ss

G is an open immersion will be shown in Lemma 8.3.1.

From Corollary 6.6.2, we have the equivalence

CTG
L j.PLCG.GrG ;Fp/ss;�/ W

�

PLCG.GrG ; Fp/ss; �
� � //

�

PLCL.GrL;wL
0 X�.T /�

; Fp/ss; �
�

;
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such that CTG
L .IC�/ D ICL

wL
0 w0.�/

. By Tannaka duality, it corresponds to the identity

M ss

L;wL
0 X�.T /�

D D
�

X�.T /�

�

D
�

X�.T /�

�

D M ss
G :

8. The space of Satake parameters

8.1. The definition of Satake parameters

The space of Satake parameters is the Fp-scheme

P WD Spec
�

Fp

�

X�.T /�

��

underlying the Fp-monoid scheme D.X�.T /�/ D M ss
G .

A Satake parameter is an Fp-point of P.

Definition 8.1.1. Let X be a scheme. A stratification of X is a decomposition X D
S

i2I Xi as in Definition 2.2.2 such that for all i 2 I , the closure of Xi in X is a union of

some Xj ’s, i.e., there exists Ji � I such that

jXi j D
[

j 2Ji

jXj j:

We are going to define a stratification of the space of Satake parameters by first defin-

ing the relevant categories of equivariant perverse sheaves on the affine Grassmannian and

then applying Tannaka duality.

8.2. The closed stratum

Let us set

�? WD
®

� 2 X�.T / j h˛; �i D 0 8˛ 2 �
¯

:

Then for all � 2 �?, we have dim Gr
��
G D 2�.�/ D 0, so that Gr

��
G D ¹�º and hence

GrG;�? D
a

�2�?

¹�º:

Consequently, the embedding PLCG.GrG;�? ; Fp/ � PLCG.GrG ; Fp/ factors as

PLCG.GrG;�? ; Fp/ � PLCG.GrG ; Fp/ss � PLCG.GrG ; Fp/;

and the equivalence of tensor categories

Vect
�

X�.T /C
� � // PLCG.GrG ; Fp/ss

Fp.�/
� // IC�
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restricts to an equivalence of tensor categories

Vect.�?/
� // PLCG.GrG;�? ; Fp/

Fp.�/
� // IC� :

We define a retraction

PLCG.GrG;�? ; Fp/
� � // PLCG.GrG ; Fp/ss

r
ss

by the rule

r W PLCG.GrG ; Fp/ss // PLCG.GrG;�? ; Fp/

IC�
� //

´

IC� if � 2 �?

0 otherwise:

Lemma 8.2.1. The Fp-linear functor r is a tensor functor.

Proof. Indeed, for �; � 2 X�.T /C, we have IC� � IC� D IC�C� and

.� 2 �? and � 2 �?/ = � C � 2 �?:

Moreover r.IC0/ D IC0.

Applying the Satake equivalence �G;�? from Notation 7.1.2, we get a tensor retraction

RepFp
.MG;�?/

� � // RepFp
.M ss

G /;

r
tt

which by Tannaka duality corresponds to a multiplicative section

M ss
G D D

�

X�.T /�

�

// // MG;�? D D.�?/ :

s
rr

In particular

SG WD s
�

D.�?/
�

is a closed subsemigroup of D.X�.T /�/.

Lemma 8.2.2. Let A be an abstract, right cancellative monoid. Let B � A be a subgroup

and let R be a ring. Then RŒA� is a free RŒB�-module. In particular, the inclusion of rings

RŒB� � RŒA� is flat.

Proof. Because B is a group then the right cosets of B in A give a partition of A. Thus, if

¹ai ºi is a collection of representatives for these cosets then

RŒA� D
M

i

RŒBai �:
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Since A is right cancellative then each morphism RŒB� ! RŒBai �, b 7! bai , is an iso-

morphism.

Proposition 8.2.3. The morphism M ss
G ! MG;�? is faithfully flat.

Proof. It is flat by Lemma 8.2.2 applied to the monoid X�.T /� and the subgroup �?. It

is surjective since it admits a section, namely s.

Remark 8.2.4. If G is not a torus then the functor r does not intertwine the fiber functors

H jPLCG.GrG ;Fp/ss and H jPLCG.Gr
G;�? ;Fp/. Correspondingly, the section s does not send the

unit of the group scheme D.�?/ to the unit of the monoid scheme D.X�.T /�/.

8.3. The open complement to the closed stratum

Recall that a standard Levi subgroup of G is the Levi factor containing T of a parabolic

subgroup of G containing B . We denote by L the set of standard Levi subgroups of G. It

is in 1-1 correspondence with the power set of the set � of simple roots corresponding to

the pair .B; T /:

L
� // P .�/

L
� // �L;

where �L is the set of simple roots of L with respect to the pair .B \ L; T /. In particular

�T D ; and �G D �.

For each L 2 L, we have constructed the functor

PLCG.GrG ; Fp/ss �

CTG
L jP

LCG
.GrG ;Fp/ss

// PLCL.GrL;wL
0 X�.T /�

; Fp/ss � PLCL.GrL; Fp/ss;

which corresponds to

jL W M ss
L D D

�

X�.T /�=L

�

// M ss

L;wL
0 X�.T /�

D D
�

X�.T /�

�

D
�

X�.T /�

�

D M ss
G ;

cf. end of Section 7.4.

Lemma 8.3.1. The following statements hold true.

• The morphism of Fp-monoid schemes jL is an open immersion.

• For all L; L0 2 L, we have

jL

�

D.X�.T /�=L/
�

\ jL0

�

D
�

X�.T /�=L0

��

D jL00

�

D
�

X�.T /�=L00

��

with �L00 WD �L \ �L0 .

• We have

P n SG D
[

L2Ln¹Gº

jL

�

D
�

X�.T /�=L

��

:
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Proof. By construction, j �
L W FpŒX�.T /�� ! FpŒX�.T /�=L� is the morphism of Fp-alge-

bras induced by the canonical inclusion X�.T /� � X�.T /�=L. Let �˛ , ˛ 2 �, be elements

of X�.T /� such that

8˛; ˇ 2 �; h˛; �ˇ i

´

2 Z��1 if ˛ D ˇ

D 0 otherwise

(complete � into a basis of X�.T / ˝ Q and consider the dual basis of X�.T / ˝ Q under

the perfect pairing h ; i). Then, for all � 2 X�.T /�=L, we can find some n˛ 2 Z�0,

˛ 2 � n �L, such that
�

� C
X

˛2�n�L

n˛�˛

�

2 X�.T /�;

i.e.,

Fp

�

X�.T /�=L

�

D Fp

�

X�.T /�

��

.e�˛ /�1; ˛ 2 � n �L

�

:

Hence jL is an open immersion, and the complement of jL.D.X�.T /�=L// in P D

D.X�.T /�/ is the closed subset defined by the equation
Q

˛2�n�L
e�˛ D 0.

Consequently,

P n jL

�

D
�

X�.T /�=L

��

\ jL0

�

D
�

X�.T /�=L0

��

is the closed subset defined by the equation
Q

˛2�n.�L\�L0 / e�˛ D 0, and hence

jL

�

D
�

X�.T /�=L

��

\ jL0

�

D
�

X�.T /�=L0

��

D jL00

�

D
�

X�.T /�=L00

��

with �L00 WD �L \ �L0 .

Finally,

P n
[

L2Ln¹Gº

jL

�

D
�

X�.T /�=L

��

is the closed subset defined by the equations

8˛ 2 �; e�˛ D 0:

On the other hand,

s.SG/ D V
�

e�; � 2 X�.T /� n �?
�

� D
�

X�.T /�

�

D P

by construction. We claim that

.e�˛ ; ˛ 2 �/ �
�

e�; � 2 X�.T /� n �?
�

�

q

.e�˛ ; ˛ 2 �/:

The first inclusion follows from the definition of the elements �˛ . For the second one,

note that for � 2 X�.T /� n �? we can find integers m > 0, m˛ � 0, such that m� �
P

˛ m˛�˛ 2 �?. Since the elements e� for � 2 �? are units, the second inclusion fol-

lows. Hence P n
S

L2Ln¹Gº jL.D.X�.T /�=L// is equal to the subset underlying the closed

subscheme s.SG/.
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From now on we will write simply D.X�.T /�=L/ for

jL

�

D
�

X�.T /�=L

��

� D
�

X�.T /�

�

:

Remark 8.3.2. We have seen in the proof of Lemma 8.3.1 that T _ D Spec.FpŒX�.T /�/

is the open complement in P D D.X�.T /�/ of the Cartier divisor defined by the regular

element
Y

˛2�

e�˛ D e
P

˛2� �˛ 2 Fp

�

X�.T /�

�

:

In particular, the scheme P is integral.

Example 8.3.3. If G D GLn then X�.T /� D ˚n�1
iD1Z�0!i� ˚ Z!n� where !i� 2 Zn

has its first n � i entries equal to 0 and last i entries equal to 1, so

P D Spec
�

FpŒT1; : : : ; Tn�1; T Û1
n �

�

:

If G D SL2 then X�.T /� D Z�0.�˛_/ where �˛_ D .�1; 1/, so P D Spec.FpŒT �/. In

particular, P is smooth in both of these examples.

Example 8.3.4. In general P is not smooth. For example, let G D SL3. Then X�.T / D

¹.a; b; c/ 2 Z3 W a C b C c D 0º and the simple roots are ˛ D .1; �1; 0/, ˇ D .0; 1; �1/ 2

X�.T / D Z3=Z. Then X�.T / D Z˛_ ˚ Zˇ_ and

X�.T /C D ¹a˛_ C bˇ_ j 2a � b; 2b � aº:

The monoid X�.T /C is generated by the elements

˛_ C ˇ_; ˛_ C 2ˇ_; 2˛_ C ˇ_:

By sending the indeterminates x; y; z to the corresponding generators in FpŒX�.T /C�, we

get a surjection

FpŒx; y; z�=I � Fp

�

X�.T /C
�

; I D .x3 � yz/:

Since I is a prime ideal and FpŒX�.T /C� is an integral domain of dimension 2 then

this map is an isomorphism. In particular, the ring FpŒX�.T /C�, equivalently the ring

FpŒX�.T /��, is not regular.

8.4. The Herzig stratification

For all L 2 L, set

SL WD sL

�

D.�?
L /

�

:

Corollary 8.4.1. The space of Satake parameters admits the following stratification by

subsemigroups:

P D
[

L2L

SL:
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The stratum SL is isomorphic to a torus of rank equal to

rank T � j�Lj D rank �1.L/ D rank �0.GrL/:

The closure of SL in P is

SL D
[

L0�L

SL0 :

Proof. The decomposition is a consequence of Lemma 8.3.1.

Let L 2 L. Since �?
L is a subgroup of the finitely generated free abelian group X�.T /

then �?
L is also finitely generated and free. Hence D.�?

L / is a torus, of rank equal to

rank �?
L D dimQ.Z�L ˝ Q/? D rank T � j�Lj D rank X�.T /=Zˆ_

L:

Finally, with the notation of the proof of Lemma 8.3.1, we have

SL WD Spec
�

Fp

�

X�.T /�=L

�

=
�

e�; � 2 X�.T /�=L n �?
L

��

D Spec
�

Fp

�

X�.T /�

��

.e�˛ /�1; ˛ 2 � n �L

�

=.e�ˇ ; ˇ 2 �L/
�

red
:

Thus, setting

fL WD
Y

˛2�n�L

e�˛ D e
P

˛2�n�L
�˛ 2 Fp

�

X�.T /�

�

and

VL WD Spec
�

Fp

�

X�.T /�

�

=.e�ˇ ; ˇ 2 �L/
�

� Spec
�

Fp

�

X�.T /�

��

D P;

we have

jSLj D jD.fL/j \ jVLj � P

and

jVLj D
[

L0�L

jD.fL0/j \ jVL0 j D
[

L0�L

jSL0 j:

Now let us show that jSLj D jVLj. Since jSLj D jD.fL/j \ jVLj, it suffices to show that fL

defines a Cartier divisor after restriction to VL, i.e., that its image in the ring of functions

on VL is a regular element. So let a D
P

� a�e� 2 FpŒX�.T /�� such that

fLa D
X

ˇ2�L

gˇ e�ˇ 2 .e�ˇ ; ˇ 2 �L/:

If a� ¤ 0 then
X

˛2�n�L

�˛ C � D � C �ˇ

for some � 2 X�.T /� and ˇ 2 �L. The cocharacter

� WD � � �ˇ D � �
X

˛2�n�L

�˛

satisfies h
;�i � 0 for all 
 2 �, i.e., � 2 X�.T /�. Hence a 2 .e�ˇ ;ˇ 2 �L/, as desired.
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We call the stratification Corollary 8.4.1 the Herzig stratification, since it corresponds

to the stratification of the set P.xFp/ defined in [17, §1.5, §2.4].

Definition 8.4.2. We call the open stratum

ST D T _ D D
�

X�.T /
�

� P

the ordinary locus, and the closed stratum

SG D sG

�

D.�?/
�

� P

the supersingular locus.

Example 8.4.3. For G D GL2, we have X�.T /� D N.0;1/ ˚ Z.1;1/, the space of Satake

parameters is

M ss
GL2

D D
�

X�.T /�

�

D Spec
�

FpŒe.0;1/; eÛ.1;1/�
�

D A1 � Gm;

and the Herzig stratification consists only in the ordinary and the supersingular loci

ST [ SG D .Gm � Gm/ [
�

¹0º � Gm

�

:

Example 8.4.4. The supersingular locus SG is 0-dimensional if and only if G is semi-

simple, in which case it is just one Fp-point.

Lemma 8.4.5. The ordinary locus T _ is the group of invertible elements of the monoid

M ss
G .

Proof. Let s 2 M ss
G .xFp/. Let L be the element of L such that s 2 SL.xFp/. Then, for all

� 2 X�.T /�=L n �?
L ,

�.s/ D s�.e�/ D 0 2 xFp;

i.e., the character � W D.X�.T /�=L/ ! A1 vanishes on s. Hence, if s is invertible in

M ss
G .xFp/ D D.X�.T /�/.xFp/, then .X�.T /�=L n �?

L / \ X�.T /� D ;, i.e., X�.T /� � �?
L ,

which occurs only if �L D ;, in which case L D T .

Lemma 8.4.6. The supersingular locus SG is absorbing in the monoid M ss
G , i.e., the

restriction of the multiplication M ss
G � M ss

G ! M ss
G to SG � M ss

G factors through SG .

Proof. Let s 2 SG.xFp/ and s0 2 M ss
G .xFp/. Then, for all � 2 X�.T /� n �?,

.ss0/�.e�/ D �.ss0/ D �.s/�.s0/ D s�.e�/�.s0/ D 0 2 xFp:

Thus the xFp-algebra morphism

.ss0/� W xFp

�

X�.T /�

�

// xFp

vanishes on the ideal .e�; � 2 X�.T /� n �?/ of SG in M ss
G , which means precisely that

ss0 2 SG.xFp/.



R. Cass and C. Pépin 394

Corollary 8.4.7. Let �G W MG ! M ss
G be the canonical eigenvalues homomorphism. Then

��1
G .T _/ � MG is open and is the group of invertible elements, and ��1

G .SG/ � MG is

closed and is an absorbing subsemigroup.

Proof. The only part left to check is that ��1
G .T _/ consists of units. This follows from

the fact that an endomorphism of the forgetful tensor functor RepFp
.MG/ ! VectFp is an

automorphism if and only if it is an automorphism on simple objects.

Appendix: Cohomology with support in T�

Let U � be the unipotent radical of the opposite Borel B�. For � 2 X�.T /, let

T� WD
�

LU � � �.t/
�

red
� GrG

be the reduced ind-subscheme of the corresponding connected component of the repeller

[12] with respect to the Gm-action on GrG from Section 3.4. For � 2 X�.T /C, we denote

by iT�;�
W T� \ Gr

��
G ! Gr

��
G the canonical immersion (where T� \ Gr

��
G is equipped with

its reduced structure) and define

8i 2 Z; H i
T�

.GrG ; IC�/ WD Ri �.T� \ Gr
��
G ; Ri Š

T�;�
IC�/:

Proposition A.1. Let � 2 X�.T /C. If � D w0.�/ then

H
2�.�/
T�

.GrG ; IC�/ D R�2�.�/�.IC�/ Š Fp:

Proof. By [19, Th. 3.2], Tw0.�/ \ Gr
��
G is of pure dimension

��
�

w0.�/ C w0.�/
�

D 2�.�/ D dim Gr
��
G :

Thus Tw0.�/ \ Gr
��
G is open in Gr

��
G , so Ri Š

Tw0.�/;�
D Ri�

Tw0.�/;�
and the proposition fol-

lows.

Proposition A.2. Let � 2 X�.T /C be such that �.�/ ¤ 0. If � D � then

H
2�.�/
T�

.GrG ; IC�/ D 0:

Proof. By [19, Th. 3.2], T�\Gr
��
G is a point. Let U WDGr

��
G n.T�\Gr

��
G / and j W U!Gr

��
G

be the canonical open immersion. We claim that, as a complex of sheaves, Rj�OU is con-

centrated in degrees � 2�.�/ � 1. To prove the claim, note that we may replace Gr
��
G by

the local ring .A; m/ at T� \ Gr
��
G in Gr

��
G . For n � 1 we have Rnj�OU D H nC1

m
.A/.

Since H i
m

.A/ D 0 for i > dim A then Rnj�OU D 0 unless n � 2�.�/ � 1.

Now by the Artin–Schreier sequence Rj�.FpŒ2�.�/�/ is concentrated in degrees � 0.

Hence by the exact triangle

RiT�;�;�Ri Š
T�;�

�

Fp

�

2�.�/
��

// Fp

�

2�.�/
�

// Rj�Rj �
�

Fp

�

2�.�/
�� C1

// :
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it follows that Ri Š
T�;�

.FpŒ2�.�/�/ is concentrated in degrees � 1. Now we are done because

2�.�/ > 1 and T� \ Gr
��
G is a point.

Proposition A.3. Suppose G D SL2, and that T and B are the diagonal maximal torus

and the upper triangular Borel subgroup; in particular X�.T /C Š Z�0. If � D 1 and

� D 0, then H
2�.�/
T�

.GrG ; IC�/ is infinite-dimensional.

Proof. The scheme Gr
��
G is stratified by T�� \ Gr

��
G , T0 \ Gr

��
G , and T� \ Gr

��
G . These

strata have dimensions 2, 1, and 0, respectively. Let

Z D xT0 \ Gr
��
G D .T0 \ Gr

��
G / [ .T� \ Gr

��
G /

and let i W Z ! Gr
��
G be the corresponding closed immersion. Let j W T�� \ Gr

��
G ! Gr

��
G

be the complementary open immersion. Then there is an exact triangle

Ri�Ri Š.IC�/ // IC�
// Rj�Rj �.IC�/

C1
// :

By [9, Th. 6.9], R�.IC�/ Š FpŒ2�, and the map R�2�.IC�/ ! R�2�.Rj�Rj �.IC�// is

an isomorphism. By [20, Lem. 5.2], T�� \ Gr
��
G is isomorphic to A2. Thus by a computa-

tion with the Artin–Schreier sequence we find that R�.Rj�Rj �.IC�// is concentrated in

degrees �2 and �1, and it is infinite-dimensional in degree �1. Hence R�.Ri�Ri Š.IC�//

is concentrated in degree 0, and R0�.Ri�Ri Š.IC�// is infinite-dimensional.

Now let pW T0 \ Gr
��
G ! Z be the open immersion. There is an exact triangle

R�
�

Ri Š
T�

.IC�/
�

// R�
�

Ri Š.IC�/
�

// R�
�

Rp�
�

Ri Š.IC�/
�� C1

// :

By [9, Lem. 2.10], IC� is the intermediate extension of its restriction to Gr
��
G n.T�\Gr

��
G /,

so by [9, Lem. 2.7], Ri Š
T�

.IC�/ is concentrated in degrees � 1. Thus the map

R0�
�

Ri Š.IC�/
�

// R0�
�

Rp�
�

Ri Š.IC�/
��

is injective. Now we are done because there is a natural isomorphism

R0�
�

Rp�
�

Ri Š.IC�/
��

Š H
2�.0/
T0

.GrG ; IC�/:

By comparing Propositions A.1 and A.2 with Theorem 4.2.2, we see that the groups

H 2�.�/
c .S� ; IC�/ and H

2�.�/
T�

.GrG ; IC�/

agree in some cases. However, by Proposition A.3, these groups are not isomorphic in

general. In other words, Braden’s hyperbolic localization theorem fails for Fp-coefficients.
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