Doc. Math. 29 (2024), 343-397 © 2024 Deutsche Mathematiker-Vereinigung
DOI 10.4171/DM/955 Published by EMS Press
This work is licensed under a CC BY 4.0 license

Constant term functors with IF,-coefficients

Robert Cass and Cédric Pépin

Abstract. We study the constant term functor for I, -sheaves on the affine Grassmannian in charac-
teristic p with respect to a Levi subgroup. Our main result is that the constant term functor induces
a tensor functor between categories of equivariant perverse IFj,-sheaves. We apply this fact to get
information about the Tannakian monoids of the corresponding categories of perverse sheaves. As
a byproduct we also obtain geometric proofs of several results due to Herzig on the mod p Satake
transform and the structure of the space of mod p Satake parameters.
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1. Introduction

1.1. Constant term functors with Qg -coefficients

In the Langlands program over a global field F, the constant term and Eisenstein series
operators relate automorphic functions with respect to a reductive group G/F and its
Levi subgroups. When F is the function field of a smooth curve C over a finite field IF; of
characteristic p, it is possible to upgrade these operators to functors on sheaves, cf. [6, 13].
For simplicity suppose G arises from a split connected reductive group over ;. For
each x € C(F,) alocal Hecke algebra acts on automorphic functions. After choosing an
isomorphism C ~ Q, and a uniformizing element at x, this local Hecke algebra can be
identified with the unramified Hecke algebra #¢ ¢ of G(IF,((¢))) with Qg-coefficients.
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In order to geometrize #¢ ¢, one considers the following functors on [, -algebras:
LG:R—— G(R(1))), L*TG:R—— G(R[1]).

The affine Grassmannian is the fpqc-quotient Grg := LG/L™* G, which is representable
by an ind-scheme. Then in the context of the geometric Langlands program, the algebra
H ¢ is replaced by the tensor category (Pr+¢g (Grg, Q). *) of LT G-equivariant perverse
Q¢-sheaves on Grg for £ # p.

If P is a parabolic subgroup of G/F, with Levi factor L there is a diagram

The local analogue of the constant term functor is

qrop*[degp]

CTE,Z: Pp+6(Grg. Q) D2(Grr,Qy)

for a certain locally constant function degp: Grp — Z, cf. (6.2). The function-sheaf dic-
tionary sends CTS ¢ to the Satake transform #Hg ¢ — € ¢ up to a normalization factor.

Remarkably, the functor CTS, , takes values in Py +g(Gry, Qy), and is compatible with
the tensor structures.

1.2. Constant term functors with I, -coefficients

Let k be an algebraically closed field of characteristic p > 0 and let G be a connected
reductive group defined over k. Let Grg be the affine Grassmannian of G over k, and let
(Pr+g(Grg, Fp), *) be the abelian symmetric monoidal category of Lt G-equivariant
perverse IF,-sheaves on Grg as defined in [9].

Fix a maximal torus and a Borel subgroup 7 C B C G.Let B C P C G be a standard
parabolic subgroup and L be its Levi factor containing 7.

Definition 1.2.1. The L-constant term functor is
CTY := Rq) o Rp*[degp): P+ (Grg,F,) — Db(Gr, ).
Our main result is the following, cf. Section 6.

Theorem 1.2.2. The functor CT]Cj induces an exact faithful tensor functor
CT§: (Pp+G(Grg,Fp), ¥) — (Pr+1(Grp, Fp), ).

Let us start by explaining why CTf preserves perversity. Let X, (T") be the group of
cocharacters of 7 and X, (T)™ (resp. X«(T)_) be the monoid of dominant (resp. antido-
minant) cocharacters. For A € X, (T)% let Gré)L be the reduced closure of the LT G-orbit
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of A(?) in Grg. By [9, Th. 1.5], the simple objects in Pp+g(Grg, Fp) are the shifted
constant sheaves:
IC; = F,[dimGrg* ] € D2(Gig", F,).

Let wq be the longest element of the Weyl group of (G, T'). In what follows we will use a
letter L as a subscript or superscript to denote the corresponding objects for L.

The connected components of Grp and Gry, are in bijection via the map ¢q. If ¢ €
7o(Gryr) corresponds to Gr§ then we denote the corresponding reduced connected com-
ponent of Grp by S.. By restricting CTE to S. we get a decomposition by weight functors:

CTf =~ @ F.

CEm( (GI’L)

Then the fact that CTE preserves perversity is a consequence of the following theorem,
which is unique to F,-sheaves, cf. Theorem 6.2.1.

Theorem 1.2.3. For A € X.(T)™, we have

L . c
F(1Cy) = | Cuguwoey  F0o)() € Gri,
0 otherwise.

Equivalently, Theorem 1.2.3 computes the relative IF,-cohomology with compact sup-
port of the so-called Mirkovi¢-Vilonen cycles for the Levi L. The proof relies on the
dynamics of G,-schemes of Biatynicki-Birula and Drinfeld, together with the existence
of Fp-acyclic G,,-equivariant resolutions of singularities of Gré’l; see Section 1.7 below
for more details.

Let us now comment on the tensor property of the functor CTS. The general strategy
of proof is similar to the one of Baumann—Riche for @ ¢-coefficients [1, §15]. It involves
the Beilinson—Drinfeld global convolution Grassmannian, cf. Section 5.3, and the key step
is to show that a certain complex of sheaves is a perverse intermediate extension, cf. The-
orem 6.5.1. We achieve it by appealing to the main results regarding perverse I ;,-sheaves
on F-rational varieties [9, Th. 1.6, Th. 1.7]. In contrast, the analogue of the ingredient
used for Qg-coefficients fails; see Section 1.6 below.

1.3. Tannakian interpretation

By [9], the functor of tensor endomorphisms of the fiber functor
®iR'T : (PL+6(Grg,Fp), ) — (Vecty,, ®)

is represented by an affine monoid scheme Mg over IF,,. Via the Tannakian formalism this
results in an equivalence

(PL+G(Ger IF‘p)v *) = (Repr (MG)s ®)
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This construction is analogous to the geometric Satake equivalence [19] (it is assumed
in loc. cit. that G is defined over C, but see [23,27] for the case where G is defined in
positive characteristic). The monoid Mg is pro-solvable, but beyond this little is known.
We will apply the functor CTg to deduce more information about Mg.
By Theorem 1.2.3, the functor CTg takes values in the symmetric monoidal subcate-
gory
PL+L(GrL,w0LX*(T), JFp) C Pr+p(Grr,Fp)

associated to the submonoid wéXﬁk (T)- C X«(T)4 1 in the sense of Notation 6.2.2, and
by Corollary 6.3.2, it intertwines the fiber functors. Thus denoting by M Lok X.(T)- the
Tannakian monoid of Py + L(GI'L,wé, X (T)_> F,), the Tannaka dual to CTg is a morphism
of IF,-monoid schemes M; — Mg which factors as

ML—>ML,w0LX*(T)__)MG' (1.1)

We currently have a limited understanding of the morphisms in (1.1). This is related to
our lack of information on the structure of the Ext groups in the corresponding categories
of representations. However, if L = T then we can say more. In this case, the category
Py +7(Grr,Fp) is semi-simple,

My = Spec (Fp[X«(T)]).  Mrx,r). = Spec (Fp[X«(T)-]).
and the following holds, cf. Theorem 7.4.5.

Theorem 1.3.1. The Tannaka dual of CT? induces a morphism of monoids Mt — Mg
which factors as an open immersion followed by a closed immersion:

MT —_— MT,X*(T)_ —_— MG.

Note that M7 is the torus over F,, with root datum dual to that of 7. Thus, the mor-
phism M7 — Mg in Theorem 1.3.1 is analogous to the reconstruction of the dual maximal
torus in the dual group of G in [19].

There is another perspective on the morphism M7 x, (r)_ — Mg in Theorem 1.3.1 as
follows. By [9, Th. 1.2], the subcategory of semi-simple objects

Pr+6(Grg,Fp)* C Pr+g(Grg,Fp)

is a symmetric monoidal subcategory. Then the Tannakian monoid M7 of the category
P1+(Grg, Fp)* identifies canonically with M x, (r)_ by Notation 7.4.1.

Definition 1.3.2. The Tannaka dual of the above inclusion of semi-simple objects is called
the eigenvalues homomorphism

nGg: Mg —)1\4&S

The morphism
wM§ —— Mg
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equal to
Mrx,ry. — Mg

in Theorem 1.3.1 under the canonical identification MG = Mr,x, ()_ is called the weight
section.

By construction these morphisms satisfy
g ow = idyy .

The Tannaka dual of the weight section can be viewed as a semi-simplification functor
(PL+6(Grg,Fp), %) = (Pr+(Grg,Fp), ¥)%. We refer to Section 7.4 for more discussion
on this perspective.

1.4. Relation to mod p Hecke algebras

In this subsection alone we view G as a split connected reductive group over F,. We
assume that all relevant subgroups are also defined over F,. Let £ = F,((¢)) and O =
F,[¢], and consider the unramified mod p Hecke algebra

Hg :={f:G(E) —> F, | f has compact support and is G(©) bi-invariant}.

A basis for Hg is {1, }yex, (r)+ Where 1, is the characteristic function of the double coset
G(O)A(@)G(0O).

Let Up be the unipotent radical of the parabolic subgroup P. Herzig [16, §2.3] defined
the mod p Satake transform

SGiHe —— . fr—(e— D [fGew).
Ur(E)/Up(0)

As ind-schemes over I, for ¢ € my(Grz) we have
Se¢ = (LUp - G1§ )yed C Grg .

Since Grg (Fy) = G(E)/G(O), LUp(F,;) = Up(E) and Up (E) is normal in P(E), then
the function-sheaf dictionary sends CTg tosS LG , cf. [8, §4]. In contrast, for @ ¢-coefficients
the two transforms differ by the modulus character of P. The isomorphisms in Theo-
rem 1.2.3 hold over I, so by using that the IC-sheaves are constant we obtain a geometric
proof of the following result due to Herzig.

Corollary 1.4.1 ([16, Prop. 5.1]). We have
Sf( 3 ]IM) = Y 1.
K=GA w=rwd wo(A)

Note that H1 = F, [ X« (T)] where the characteristic function of v(¢) 7 (O) corresponds
to e’ € Fp[X«(T)] for v € X«(T). By taking L = T, we obtain the following result.
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Corollary 1.4.2. The mod p Satake transform induces an isomorphism
$G He —— F,[Xu(T)-]

31, s o,
w<i

Note that Corollaries 1.4.1 and 1.4.2 are ultimately statements about counting F,-
points mod p on the Mirkovi¢—Vilonen cycles. From this point of view, the resolutions
of singularities which go into the proof of Theorem 1.2.3 allow us to reduce this point
counting to one on affine spaces.

Remark 1.4.3. In [8, Prop. 4.5] a particular isomorphism ¢: #g = F,[X«(T)_] is con-
structed using the function-sheaf dictionary and the formula [9, Th. 1.2] for the convolu-
tion product in P+ (Grg, F,). Herzig’s explicit formula [16, Prop. 5.1] is then used to
check that ¢ = S? . Here Theorem 1.2.3 gives a purely geometric proof of the fact that
@ = S? .

1.5. Relation to mod p Satake parameters

As a consequence of Corollary 1.4.2, the [F,-algebra Jg is commutative and the corre-
sponding affine F,-scheme is identified with the space of Satake parameters

P := Spec (Fp [ X+(T)-]).

From the geometric theory (Section 1.3), this is the underlying scheme of the semi-simple
monoid M, (Sf Now for each standard Levi L as above, the functor CTg preserves the sub-
categories of semi-simple objects by Theorem 1.2.3, hence by duality the morphism (1.1)
admits a semi-simplification M;® — M. Then we have the following, cf. Lemma 8.3.1
and Corollary 8.4.1.

Theorem 1.5.1. The morphism

My =P — Mg =7

defined by the constant term functor CTg is an open immersion.
Moreover, denoting by £ the finite set of standard Levi subgroups T C L C G and
setting

YLe £, Sp:=7P\ U Pr: equipped with its reduced structure,
L'et
L'SL
the space of Langlands parameters P is stratified as:

?=J s

Let

The stratum Sy, is isomorphic to (A1 \ {0})2k7(CL) and the closure relation among the
strata is given by Sp, = U5 St
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The underlying decomposition of the set iP(Fp) was originally defined by Herzig
in [17, §1.5, §2.4]. The construction above makes the link with the category

P;+6(Grg, Fp).

1.6. Obstructions to adapting proofs for Q,-coefficients

Let us now explain why the known proofs that CT](i ¢ preserves perversity and is a tensor
functor fail for [F,-sheaves. So that we can deal with I, and Qg-coefficients simultane-
ously let us set IC ¢ to be the £-adic intersection cohomology sheaf of Grél. Then IC; 4
is either an IFj,-sheaf or a Q¢-sheaf depending on the value of A € {@, £}.

For both Q-sheaves and [F,-sheaves, there is a homological argument which reduces
us to the case L = T. Then 7¢(Grg) = X«(T) and (Gr7),q is a disjoint union of points
indexed by X.(T), so that the weight functors are

F, = RFC(S,,,-)[Z,O(U)], v e X.(T),

where p is half the sum of the positive roots. The fact that F, preserves perversity is
equivalent to the statement that

H!(Sy,IC; a) #0 = i =2p(v). (1.2)

By dimension estimates, we have H!(S,, IC;.a) = 0if i > 2p(v). For the other
inequality, one observes that there is a G,,-action on Grg such that S, (k) is the set
of k-points of the v-component of the attractor in the sense of Definition 2.3.1. Then
Braden’s hyperbolic localization theorem [5] provides a comparison with the cohomology
supported in the v-component of the repeller (i.e. the attractor for the opposite G-
action), which leads to the other half of the desired vanishing (1.2) for @g-coefﬁcients,
cf. [19, Th. 3.5]. However, we show in the appendix that Braden’s hyperbolic localiza-
tion theorem fails for IF,-sheaves. Braden’s theorem is also the key tool from the proof of
the compatibility of CTE,K with convolution [1, Prop. 1.15.2] that we lack in the case of
Fp-coefficients.

There is another approach to proving (1.2) due to Ngo—Polo [20]. Let M C X, (T)™
be the subset of cocharacters that are either minuscule or quasi-minuscule. If A is quasi-
minuscule then Ng6—Polo construct a resolution of Grcs;)L and explicitly stratify the fiber
over S, N GréA by affine spaces. These stratifications allow one to estimate the dimension
of HL(S,,ICy a) for (v, 1) € X4 (T) x M.

If L € X4(T)™ can be decomposed as a sum of elements of .M, then by considering
the corresponding convolution Grassmannian m: Grék‘ — Gré)L the previous estimates
allow one to prove (1.2) for any direct summand of Rm(ICy, a), where IC,, 5 is the
IC-sheaf of GréA’. This is sufficient to complete the argument for Q-sheaves. However,
for [F,-sheaves we have Rm(IC,,) = IC, by [9, Prop. 6.5]. Thus in our situation Ngd—
Polo’s approach allows us to conclude for groups of type A, only, since this is the only
case where the fundamental coweights freely generating X, (7,q)" belong to the subset
Mad C X* (Tad)+-
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1.7. Proof strategy for preservation of perversity

Our approach to proving Theorem 1.2.3 combines ideas from both [19, 20], and works
directly for L not necessarily equal to 7. We start with the observation that there is a G, -
action on Grg such that Gry (k) = Grg (k)©®) and such that the S, (k) for ¢ € m(Grz)
are the sets of k-points of the components of the attractor:

Ve € mo(Grr),  Se(k) = {x € Grg(k) | . lim JEXE Gr{ (k)}.
X35z—

Then the (unshifted) weight functor F, identifies with the hyperbolic localization func-
tor of relative cohomology with compact support flowing in the direction of the fixed
points Gr{ .

Let 8B be the Iwahori group scheme equal to the dilation of Gy [, along By. The affine
flag variety ¥ := LG/LT B is a G,,-equivariant G/B-fibration over Grg. Unlike the
case of Qg-coefficients, the flag variety G/B is acyclic for [Fp-coefficients in the sense
that RT'(G/B,F,) = [, [0], thanks to the Bruhat decomposition, cf. Corollary 2.2.3. This
allows us to compare F,(IC,) with hyperbolic localizations on the preimage of S, N Grg)L
in 4.

Next we note that any Schubert variety in ¥ £ admits a so-called Demazure resolution,
which is both G,-equivariant and IF,-acyclic.

Then we can appeal to a general result of Biatynicki-Birula on the structure of smooth
proper G,,-varieties: on the resolution, there is a unique closed attractor component, while
the other components are positive-dimensional affine bundles over their fixed points. Such
bundles have no relative IF,-cohomology with compact support, so only the closed com-
ponent contributes.

The final complete determination of F,(IC)) relies on the affineness of Drinfeld’s
attractor of a not necessarily smooth G,-scheme [12, Th. 1.4.2 (ii)], cf. also [24, Th. A].

1.8. Outline

In Section 2, we recall results of Biatynicki-Birula and Drinfeld on the structure of schemes
with a G,,-action. The main result is Corollary 2.3.5 on F,-cohomology with compact
support in the attractors on a general class of G,,-schemes. In Section 3, we apply this
result on the affine Grassmannian to prove Theorem 3.7.1, which is the main input in the
proof of Theorem 1.2.3. In Sections 4 and 5, we prove Theorems 1.2.2 and 1.2.3 in the
case L = T. We treat the case of general L in Section 6. In Section 7, we investigate
the Tannakian consequences of Theorems 1.2.2 and 1.2.3 for the monoid Mg. In Sec-
tion 8, we study the stratification of P induced by the morphisms M;* — M. Finally,
in the appendix, we show that Braden’s hyperbolic localization theorem is false for IF,,-
coefficients.

Notation. Let & be an algebraically closed field of characteristic p > 0 and let G be a
connected reductive group over k. Fix a maximal torus and a Borel subgroup 7 C B C G,
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and let U C B be the unipotent radical of B. Let W be the Weyl group of G and let
wo € W be the longest element.

Let X*(T) and X, (T) be the lattices of characters and cocharacters of T, and X, (T) ™"
(resp. X«(T)—-) the monoid of dominant (resp. antidominant) cocharacters determined by
B. Let ® and ®" be the sets of roots and coroots, ®* and (®1)V the subsets of positive
roots and positive coroots, and A and AV the subsets of simple roots and simple coroots.
For v, v’ € X, (T) we write v < v’ if v/ — v is a sum of positive coroots with non-negative
integer coefficients. Let p and 0 be respectively half the sum of the positive roots and
coroots. For v € X« (T) let p(v) € Z be the pairing of p and v.

2. Some general computations of IF,-cohomology with compact
support

2.1. The affine space

Lemma 2.1.1. Let A9 be the affine space over k of dimension d. Then

Fo[0] ifd =0,

RT.(A? F,) =
el ») { 0 otherwise.

Proof. We can assume d > 0. Consider the open immersion j: A4 — P¢ and the com-
plementary closed immersion i: P4~ — P9 This gives rise to an exact triangle

RjiF,[0] F,[0] Ri,F,[0] — .
From [25], we know that
Vi >0, H'(P? Ops)=H (P! Opai) =0.

Thus since H°(P?, Opa) = H°(P?~!, Opa-1) = k, then by the Artin—Schreier sequence
the map RI'(F,[0]) = RI'(Ri[F,[0]) is a quasi-isomorphism. Hence RI"(R1[F,[0]) =0,
ie., RT. (A4 F,) = 0. "
2.2. Schemes admitting a decomposition by affine spaces

Notation 2.2.1. Given a scheme X, we denote by | X | its underlying topological space.

Definition 2.2.2. Let X be a scheme.
* A decomposition of X is a family of subschemes X; C X, i € I, such that

|X|:U|Xi| and |X;|N|Xj| =@ foralli # j.

iel
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* A filtration of X is a finite decreasing sequence of closed subschemes
X=Z290DZ1D-+DZn-1DZN=0.
The subschemes Z, \ Z,+1,n =0,..., N — 1, are the cells of the filtration.

Corollary 2.2.3. Let X be a k-scheme. Assume that X admits a filtration whose cells are
positive dimensional affine spaces. Then

RT.(X.F,) = 0.

Proof. This follows from Lemma 2.1.1 and the long exact sequence of [F;,-cohomology
with compact support associated to the decomposition of a scheme into an open and a
complementary closed subscheme. ]

2.3. Some G,,-schemes

Let X be a scheme of finite type over k, equipped with a G,,-action. Recall from [12] the
following definitions and results.

Definition 2.3.1. We define the following fppf sheaves.

* The space of fixed points is the fppf sheaf

X° := Hom?™ (Spec(k), X),
where Spec(k) is equipped with the trivial G,,-action.
* The attractor is the fppf sheaf
X* = Hom™ ((AHT, X),
where (A1)7 is the affine line over k equipped with the G,,-action by dilations.

Evaluating at 1 and O defines maps p and g:

X+
o K
X0 X.

The space of fixed points is representable by a closed subscheme X° C X. The attrac-
tor is representable by a k-scheme. The morphism g is affine, and the section X° ¢ X+
obtained by precomposing with the structural morphism (A')™ — Spec(k) induces an
identification (X 7)? = X°; the morphism p restricts to the identity between X° Cc X+
and X° C X. Moreover, the morphism ¢ has geometrically connected fibers, cf. [24,
Cor. 1.12], so that the decomposition of X as a disjoint union of its connected com-
ponents is the preimage by ¢ of the corresponding decomposition of X°:

x+t = ]_[ X;.

iE:’t()(XO)
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Fori € mo(X?) we will denote by ¢; : X; — X io the induced retraction.

Remark 2.3.2. Suppose that X is separated over k. Then,
p:XtT——X

is a monomorphism, which induces the following identifications of sets:

X T (k) ~ {x € X(k)| lim z-x exists},
k*2z—0

q(k) : X* (k) —— X°(k)

X — lim z-x,
k*3z—0

and for each i € my(X?),

Xi(k) ~ {x € X(k) | lim zexe X2(k)}.

Now consider the following hypothesis:

(H) for each i € mo(X?), the restriction p|x, : X; — X is an immersion.

Lemma 2.3.3. The following statements hold true.

(1) Suppose that (H) is satisfied, and that X is proper over k. Then the family of
subschemes (X;)ieny(x0) I8 a decomposition of X.

(2) Suppose that there exists a G,-equivariant immersion of X into some projective
space P (V') where Gy, acts linearly on V. Then (H) is satisfied, and if moreover
X is proper; there exists a filtration (Zy)o<n<|mo(x0)| of X having (Xi)iezn,(x0)
as its family of cells, in the sense of Definition 2.2.2.

Proof. (1) When X is proper over k, then p is universally bijective by [12, Prop. 1.4.11iii)].
In particular

x| =Jp(xil) and p(Xi)) N p(1X;]) =0 foralli # j.
iel
When (H) is satisfied, then for each i there exists a unique subscheme p(X;) C X such that
Plx; decomposes as an isomorphism X; 5 p(X;) followed by the canonical immersion
p(X;) C X. Thus, identifying X; with p(X;), we get that the family (X;);ecny(x0) is a
decomposition of X.

(2) When X admits a G,,-equivariant immersion into some projective space P (1)
where G,,-acts linearly on V, then, as noted in [12, Th. B.0.3 (iii)], the fact that (H) is
satisfied follows from the case X = IP(V). If the immersion is closed, the fact that the
decomposition (X;); ez, (x0) of X can be realized as the cells of a filtration follows again
from the case X = P(V), as proved in [4, Th. 3].! |

! As noted in the remark following the proof of the theorem in loc. cit., the smoothness assumption on
the closed G,,-subscheme X C P(V) is not used in that proof. The existence of such a filtration is also
recorded in [7, Lem. 4.12].
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Theorem 2.3.4. The following statements hold true.

(1) Suppose that X is smooth and separated over k. Then (H) is satisfied, X° and X+
are smooth over k, and for each i € mwo(X°), there exists an integer d; > 0 such
that

Xi —————— A% x x?

N

Zariski-locally on Xl-o. If moreover X is proper over k, then X; C X is closed if
andonlyif X; = X l-o, and there exists exactly one such X; lying in each connected
component of X.

(2) Suppose that X is normal and projective over k. Then there exists a G,-equivari-
ant closed immersion of X into some projective space P (V) where G,,-acts lin-
earlyonV.

Proof. (1) The scheme X© is smooth over k by [15, Lem. 2.2]. The other results are
contained in [3].
(2) This is a result of [26]. ]

Corollary 2.3.5. Let X be a proper k-scheme equipped with a G,-action satisfying (H).
Suppose that there exists a connected smooth projective k-scheme X equipped with a
Gm-action, and a surjective G, -equivariant morphism of k-schemes

f:f—)X.

Then there exists at most one i =: iy € mwo(X°) such that X; C X is closed.
Suppose moreover that RfF, = F,[0]. Then fori € mo(X°), we have:

F 0] ifi = o,
R(qi)!]sz{OAX,%H ifi = io

otherwise.

Remark 2.3.6. If X can be embedded equivariantly into some P (V) where G,, acts lin-
early on V, then by Lemma 2.3.3 (2) there exists at least one i € 7o(X?) such that X; C X
is closed, hence then there is exactly one such i.

Proof of Corollary 2.3.5. Leti € mo(X?). Define Y; and f; by the fiber product diagram

Ji
—

2

plx;

Ry S
~
PR
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Since p|x; is an immersion by hypothesis, so is the canonical map ¥; — X, and we write
X; C X and ¥; C X for the corresponding subschemes. Also by Theorem 2.3.4 (1) the
schemes X j. ] €Emo (X 0), are realized as subschemes of X , and they form a decomposition
of the latter, cf. Lemma 2.3.3 (1). Then we have the following identity of subspaces of |X |:

Yil= U 15
Jjemo(X°)
fG)=i
indeed this can be checked on k-points, where it follows from the definitions, cf. Re-
mark 2.3.2. Thus the immersions X i X, for f(j) =i, factor through Y; C X (note
that the schemes X j are reduced, cf. Theorem 2.3.4 (1)), and the family (X ) f(Gh)=i is a
decomposition of the scheme Y;. Further, by Theorem 2.3.4 (2) and Lemma 2.3.3 (2), one
may form a filtration of X s

X=Z02Z1D>DZNy1DZN=90, N:=

whose family of cells is (X 7) i emo(X9)" Intersecting with Y; we get a filtration of Y;
Yi=Zi02Z1 D> -DZin1DZin=10

whose family of nonempty cells is (Xj VF(i)=i-

Now suppose that X; C X is closed. Then so is ¥; C X. Moreover the assumption
that f is surjective ensures that Y; is nonempty. Hence, if N; is the greatest integer n < N
such that Z; , is nonempty, then Z; y; is equal to some X with f (j) =i which is closed
in (Y hence in) X . But since X is connected, there is exactly one X C X which s closed,
say X, jo» by Theorem 2.3.4 (1). Thus i = f(jo) =: ip is uniquely determined.

Finally, suppose moreover that R /ilF, = [F,[0]. If i = io, then R(g;,1\[F, = [F,| X0 [0]
by Lemma 2.3.7 below. If i # iy, consider the commutative diagram

Y; f—’> X;
Jo
qy; =
XP.

By proper base change R(f;)1F, = F,[0] and

R(giFp = R(qy, )1 Fp.

Then recall the filtration of ¥; constructed above. For every 0 < n < N — 1 such that
Zin \ Z; n+11s nonempty, leti, : Z; n41 — Zi » be the corresponding closed immersion,
Jn X — Z;i , be the complementary open immersion, and in Db 2(Zin,Fp) form the
exact triangle

RjmFp[0] — F,[0] RinsFp[0] — .
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Setting gz;, := qvilz;, : Zin — XZ.O and applying R(gz; )1 we get the exact triangle
; +1
R(qu,n o ju)tFp[0] —— R(‘IZi,n)!]Fp — R(‘]Zi,n+1)!IFP E—

in D? (X?.F,). By construction, the morphism 4Z;,On: X,—XOis equaltog;o(filg, ).
and we have the commutative diagram

filg,
— X

—— X0

>0

N

qn

B
(=]

n

functorially induced by 1. Here X, # X o since i # ip. Consequently R(g, )1, = 0 by
proper base change, Theorem 2.3.4 (1) and Lemma 2.1.1. Thus

R(qzi,n)!]FP ;> R(qu,n+1)!Fl7 .
Descending in this way along the filtration of ¥;, we obtain
R(gv, 1Fp —— R(gp)iFp = 0,
which concludes the proof. ]

Lemma 2.3.7. Let X be a proper k-scheme equipped with a G,,-action satisfying (H).
Then for each i € mo(X°) such that X; C X is closed, the retraction q; : X; — Xi0 is
a universal homeomorphism and the section Xi0 C X; induces the identity of reduced
schemes (Xio)red = (Xi)red~

Proof. As we have recalled, the retraction
g: Xt ——XO

is always affine, [12, Th. 1.4.2 (ii)], with geometrically connected fibers, cf. [24, Cor. 1.12].
In particular its restrictions ¢; : X; — X 1.0 above each X iO have the same properties.

Now leti € mo(X?) such that X; C X is closed. Then X; is proper over k, so that the
morphism ¢; is proper. Consequently, in this case ¢; is a universal homeomorphism. So
its canonical section X iO C X; identifies (X ,~0)red and (X;)req- ]

3. F,-cohomology with compact support of the MV-cycles

3.1. The affine Grassmannian

For an affine group scheme H over k (or more generally, over k[t]) we have the loop
group functor

LH:k-Algebras — Sets,  R+—— H(R((1))),
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and the non-negative loop group functor
LT H:k-Algebras — Sets, R +—— H (R[t]).

The affine Grassmannian of G is the fpqc-quotient Grg := LG/L™TG. It is represented
by an ind-scheme over k.
3.2. The Cartan decomposition

The set X«(T)" embeds in Grg (k) via the identification A — A(¢). For A € X*(T) ™,
denote by Gré the reduced L™ G-orbit of A(¢) in Grg. Then we have the decomposition
of the reduced ind-closed subscheme (Grg)eq C Grg:

(GrG)red = U Gré s
AEXK(T)T

which on k-points is the quotient of the Cartan decomposition of G (k((t))):

Gk@) = | GEIDAOG(K[).

AEX(T)T

Let Gré/l be the closure of Gré in Grg with reduced structure. Then Grg)k is an integral
projective k-scheme, of dimension 2p(A), which is the union of the Gr’é with u < A.
Moreover (Grg )req is the limit of the Grgk:

(GrG)red = h_r)n Gréx .
AeX.(T)*

3.3. The Iwasawa decomposition

From our fixed choice B = U x T C G, we have the quotient map B — T and the closed

immersion B — G:
B
T G.

Then by functoriality we get a diagram

Gr B
Grr Grg .

Passing to the reductions, we get the decomposition of (Grp)eq into its connected com-
ponents

(GrB )red = ]_[ Sy

veX.(T)
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and a decomposition of (Grg )req by ind-subschemes

(GrG)red = U Sy,

veX«(T)

where X4 (T) is embedded in Grg (k) via the identification v — v(¢). On k-points, it is
the quotient of the Iwasawa decomposition of G(k((t))):

Gk@) = |J UE@)vOG(Kr]).

veX«(T)

3.4. The Mirkovi¢-Vilonen cycles

Definition 3.4.1. Let (v, 1) € X.(T) x X«(T)T. The MV-cycle of index (v, A) is the
reduced k-scheme
S, N Grg)k .

The MV-cycles can be reconstructed from the theory of G,,-schemes, as follows.

The adjoint action of the torus T on LG normalizes L+ G and hence induces an action
on Grg. Fixing a regular dominant cocharacter G,, — T, we equip Grg with the resulting
G,,-action.

Let A € X.(T)T. Then Gré and Gré)‘ are stable under the G,,-action. Thus

e =A
X = GrG

is a projective G,,-scheme over k. Moreover, it can be embedded equivariantly in some
P (V) where G, acts linearly on V: indeed, one can construct on the affine Grassman-
nian Grg some G-equivariant very ample line bundle, cf. [27, §1.5]. Consequently, by
Lemma 2.3.3(2), the connected components of the attractor X are realized as sub-
schemes of X. Then, it follows from Remark 2.3.2 and the Iwasawa decomposition of
G(k((t))) that

XO(k) = Xo(T)NX and Vv e XO(k), X,(k) = (S, N GrgM) (k).

Thus the MV-cycles indexed by (v, A) for varying v are precisely the (Xy)rea C X, which
decompose X as

X = U (Xv)red~

veX (T)NX

3.5. Generalization to the standard Levi subgroups

Let P = Up x L C G be a parabolic subgroup of G containing B with unipotent radical
Up and Levi factor L. Then
P

VRN

L G
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Gr P
GI‘L

GI‘G ,

induces

the decomposition of (Grp )4 into its connected components
(Grp)red = ]_[ Se
ceny(Grr)
and a decomposition of (Grg )eq by ind-subschemes

(Grg)rea = U Se.

cemy(Gry)

Definition 3.5.1. Let (¢, 1) € mo(Gry) x X«(T)™. The MV-cycle of index (c, A) is the
reduced k-scheme
S.NGrgt.

Fix a dominant cocharacter G,, — T whose centralizer in G is equal to L, and equip
Grg with the restriction to G, of the adjoint action of 7" along this cocharacter.

LetA € Xo(T)T and X := Gr(f;)k . The connected components of the attractor X * are
realized as subschemes of X, and X°(k) = (Grz NX)(k).

Lemma 3.5.2. Let ¢ € mo(Grp). Then Gri NX is connected.

Proof. Indeed Gr§ NX = Gr{ N Glré'l is a closed L L-stable subscheme of Gr§ , hence a
union of Cartan closures for the affine Grassmannian Grz, which are contained in the con-
nected component Gr,i. Such Cartan closures are irreducible, and all contain the unique
minimal LT L-orbit of Gr{, so any union of them is connected. m

It follows that
mo(X°) = {|Gr{ NX|| ¢ € 7o(Grr) and Gr§ NX # 0}.

Next, the bijection Grp (k) 5 Grg (k) corresponds to the decomposition
Gk@)/GKED) = | Sco= |J Up(k@@))Grs k)
cemy(Grr) cemy(Grr)

and so we compute using Remark 2.3.2 that
Ve e mo(X%),  (Xowea = Se NGrg.

Thus the MV-cycles indexed by (c, A) for varying ¢ are precisely the (X)eq C X, and
they decompose X as

X = U (XC)red~

cemy(Grg)
Grf NX#0
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3.6. Equivariant resolutions of Schubert varieties

Let
W, =Z® xW CW =X (T)xW

be the affine Weyl group and the Iwahori-Weyl group. Consider the length function

W —— N
Vw —— Z |(v,a)|+ Z |(v,a)+1|.
aedt acdt
wH(a)>0 wH(a)<0

Let S, be the set of elements of length 1 which are contained in W,. Then (W,, S,) is a
Coxeter system. Let Q C W be the set of elements of length 0. This is a subgroup and
W =W, x Q. Finally, denote by 8B the Iwahori group scheme equal to the dilation of
Gr[sp along By, and for each s € S,, by &5 the parahoric group scheme increasing 8
determined by s.

Now let A € X,(T)*. Choose a reduced expression of Awg € W, i.e., an (n + 1)-
tuple (s1,..., Sy, w) € S7 x Q such that 51 -+ s, = Awg and n = £(Awp). In the next
proposition, we denote by ¥ K(S;Aw" the Schubert variety of Awy in the affine flag vari-
ety Flg := LG/LT 8, i.e., the closure of ?’Eéwo = LT8B - Awy C FLg with reduced
structure.

Proposition 3.6.1. The fpqc quotient X := LT Py, xL™8 ...x L8 [+ P /1+ 8B is rep-
resentable by a connected smooth projective scheme over k, and it is equipped with a
T -action by multiplication on the left on the factor L™ Py,. The morphism

<LT8  (L*8B LT, /LT8 —— LG/LT8 =: Fig

[P1s..vs Pn]l —— P11+ pp@

LT

1

factors through ¥ Kékwo. The canonical projection

Flg :=LG/LT8 —— LG/L*G =: Grg

<Awg

induces a morphism ¥ {g — Grg’1 =: X. The composition

fX—X
is surjective, T -equivariant, and satisfies R fiIF, = F,[0].

Proof. The morphism f; : X>7 Eé’lwo spelled out in the proposition is nothing but the
well-known affine Demazure resolution of the Schubert variety ¥ Eé’lwo [21, Prop. 8.8].
It satisfies R( f1)«[F, = F,[0]. Indeed, decompose it as

AN (?@5*‘”0)"°f—>f1 Fegm,
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where f|”is the normalization. Then f”is a universal homeomorphismby [21, Prop.9.7(a)].
Moreover, R(f{)«0 (9(375_;1.”0)“”[ | by [21, Prop. 9.7 (d)], whence R(f)«Fp =F,[0]
by considering the Artln—Schreler short exact sequences on X and on (¥ E—Aw")“‘“

On the other hand, the morphism f; : ¥ qu" Gré)L : X is the restriction over
GrG of the canonical projection ¥ £ — Grg. In particular it is a G/ B-bundle, whence
R(f2)«F, =T,[0] by proper base change and the Bruhat decomposition of the flag variety
G/ B (which can be filtered), cf. Corollary 2.2.3.

Thus RfxF, = R(f2)«R(f1)+F, = Fp[0]. [

Remark 3.6.2. The morphism X — % Ef’l 0 in Proposition 3.6.1 is moreover birational,
so that it is a resolution of singularities of the Schubert variety ¥ { =hwo ,and X — X in
Proposition 3.6.1 is the composition of the latter with the G/ B- ﬁbratlon

7 p<Awg <A
FUE 5 Gret

Instead, we could also have used a T-equivariant resolution of singularities of the vari-
ety Gré’\ itself, e.g. the affine Demazure resolution of ¥ Zé’\ followed by the birational
projection F¢5* — Grg*.

In fact, this resolution of Gré’1 is a very particular case of the equivariant resolutions
of singularities of Schubert varieties in the twisted affine flag variety associated to any
connected reductive group over k((¢)) constructed in [22]; precisely it is a particular case
of [22, Ex. 3.2 (1)].? If the reductive group over k((¢)) splits over a tamely ramified exten-
sion and the order of the fundamental group of its derived subgroup is prime-to-p, then
any Schubert variety has rational singularities by [21, Th. 8.4]; since “having rational sin-
gularities” is an intrinsic notion by [10, Th. 1] (see also [18]), then in this case all the
resolutions f from [22] satisfy Rf.F, = F,[0] (using Artin—Schreier).

3.7. Fp-direct images with compact support of the MV-cycles
Theorem 3.7.1. Let (v,A) € X4 (T) x Xo(T) ™. Then

Fpliwoa[0]  if v = wo(R),

RT.(S, NGrs ,IF
(S G ») = {0 otherwise.

More generally, let (¢, ) € mo(Grr) x X«(T)T. Let
Ges : Se NGrg* —— G NGrg*

be the morphism of k-schemes defined by the diagram

Gr P
Grg, Gr

2For the normalization of the Kottwitz map as in [21], which is opposite to the one in [22].
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Then
]FP|G <wdwod) [0] ifc= C(wo(/l)),
L

otherwise.

R(QC,A)!FP =

Proof. Let nt : G,,, — T be aregular dominant cocharacter. We start by applying Corol-
lary 2.3.5t0 X := Gré’1 equipped the G,,-action n7(G,,) obtained by restriction of the
adjoint T-action along nr; it does apply thanks to Lemma 2.3.3 (2) combined with [27,
§1.5], and Proposition 3.6.1.

Recall from [19, Th. 3.2 (a)] (see also [27, Th. 5.3.9]) that the MV-cycle Sy, (1) N Grg)k
is 0-dimensional. Hence

(Xuwo(h)red = Swoy N Grg" = {wo(D)} C Xeea

is closed, and the theorem in the case of the torus 7" follows.
Next let L be a standard Levi. We have the canonical commutative diagram

Grp Grp Grg

|

GI‘T E— GI‘L .
It shows that for each ¢ € 7y(Gryg),

Seky=" | Sulk) C Grg (k).
veX,(T)NGr§

Intersecting with X = Grg)k C Grg we get

X (k) = ¥ X, (k) < X(k).
VEX.(T)NGK§ NX

Consequently, the subscheme (X;)reqa C X is 7 (G, )-stable, and the reduced connected
components of its attractor are realized by the subschemes (Xy)red, V€ X« (T)N(Gr§ N X).
In particular, by Lemma 2.3.3 (2), there exists at least one nonempty closed (X, )req C
(Xc)red~

Now let nz : G, — T be a dominant cocharacter whose centralizer in G is L, and
equip X = Gré)L with the G,,-action iz (G,,) obtained by restriction of the adjoint T -
action along nr . Thanks to Lemma 2.3.3 (2) combined with [27, §1.5], there exists at least
one nonempty (Xc¢g)red := (X¢)rea C X which is closed. Choosing (Xy,)red C (Xeg)red
nonempty and closed, then we get (Xy,)reda C Xrea nonempty and closed, so that vy =
wo(A) by the torus case. Hence ¢g = ¢(wg(4)). And by Lemma 3.7.2 (2) below,

<wkwo()

A
1X oy = 1G5 NX |= |Gr} .

The theorem in the case of the standard Levi L follows by Corollary 2.3.5, which applies
thanks to Proposition 3.6.1. ]
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Lemma 3.7.2. Let ¢ € mo(Gr) and A € X« (T)*.
(1) IfA € ¢ then Gr§, NGrg" = Grpt.
L
(2) If wo(A) € ¢ then Gr§ N GrgL = Grfw0 wold)
Proof. Let AY C @V be the set of simple coroots of G with respect to the pair (B, T'), and

let A C AV be the subset of simple coroots of the Levi L with respect to (B N L, T).
By the Cartan decomposition

<A __ I
Gr, NGrg™ = U U Gry .
NeX(T)t neXu(T)y/ L NWA
A <A

As Gr§ ﬂGlr(S;'1 C Gry, is closed and L™ L-stable, to prove (1) it suffices to show
that, for A € ¢ and p as above, Gr{ N Grﬁ = @ unless u <y A. To prove this, suppose
Grj NGr} #@.Then A — u € ZAY, and moreover since 4 € WA’ wehave A — pp € NAY,
Because AV is linearly independent then A — € ZA) NNAY =NAy . Thus u <z A and
hence the claim follows. Finally, (2) can be proved similarly, since then Grj N Grﬁ #0
implies wo() — wg (1) € ZAY and o € WA implies w (1) — wo(L) € NAY, and hence
wi(w) —wo(h) € ZAY NNAY = NAY. [

Finally, we record from the proof of Theorem 3.7.1 (and Lemma 2.3.7) the following
result.

Corollary 3.7.3. Forall A € X.(T)™,

<wkwo(1)
7 .

Scwaay N Grg" = Gr

4. Hyperbolic localization on the affine Grassmannian

4.1. Perverse IF,-sheaves on the affine Grassmannian

For a separated scheme X of finite type over k let PL{’ (X, Fp) be the abelian category
of perverse IF,-sheaves on X as defined in [9, §2]. This is an abelian subcategory of
Dé’ (X.F,) in which all objects have finite length. The definition of perverse sheaves
extends to ind-schemes of ind-finite type as in [9, Rem. 3.13].

Let Py +¢(Grg.Fp) C P> (Grg, [Fp) be the full abelian subcategory of L G-equivari-
ant perverse [F,-sheaves on Grg as defined in [9, §6.1]. This category consists of objects
Fee Pcb (Grg, Fp) that are equivariant in the naive sense. In other words, ¥ * is equiv-
ariant if there exists some A € X.(7T)" and some finite-type jet quotient LG — L"G,
n € Zsp, acting on GréA such that ¥ is supported on GréA and there exists an isomor-
phism Ra*¥*® = Rp*¥°®, where a and p are the action and projection maps. Similarly
to £-adic sheaves, this naive notion of equivariance coincides with the correct notion.
Indeed, there is a unique such isomorphism which satisfies the associated cocycle con-
dition [9, Lem. 3.7], and maps between equivariant objects automatically respect the
equivariance data [9, Prop. 3.9]. Additionally, P;+¢(Grg,F,) is stable under subqou-
tients in Pcb (Grg, Fp) [9, Prop. 3.10].
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By [9, Th. 1.1], the category Py +¢(Grg,Fp) is symmetric monoidal and the functor
H = @;cy R'T : (PL+(Grg, Fp), %) —— (Vecty, , ®)

is an exact faithful tensor functor. The definition of the convolution product * will be
reviewed in Section 5.3.
By [9, Th. 1.5], the simple objects in P+ (Grg,IF,) are the shifted constant sheaves:

IC; = F,[20(M)] € PE(GIEH ), A e Xu(T)*.
Furthermore, if A; € X,(T)* then by [9, Th. 1.2] there is a natural isomorphism
ICAI * ICA2 = IC/11+/12 .

4.2. The hyperbolic localization functor

Definition 4.2.1. Let v € X,.(T) and ¥° € Df (Grg, Fp). Denote by s,: S, — Grg the
ind-immersion of the corresponding connected component of (Grp).eq and define

RT(Sy, F°) := RT:(Sy. Rs; F°) € D (Vectr,).
and
Vi€Z, HI(S,.F°):=H (RT(S,.¥°%)) = H.(S,.Rs; ) € Vectg, .

Theorem 4.2.2. Letv € Xo(T) and ) € X.(T)™.
(1) We have

H° MLE,) =TF, ifv= A),
H20)(S,.1C;) = ({woW)}, Fp) =Fp ifv woi( )
0 otherwise.

) Ifi # 2p(v) then
H!(S,,1C;) = 0.

(3) If F* € Pp1g(Grg,Fy), then
RT(Sy, F°) € DE2P™) (Vectr,) N DZ2PM) (Vecty, ) = Vectr, [ —2p(v)].

Proof. Since IC; is the shifted constant sheaf IF,[2p(A)] supported on Grf;)k then parts (1)
and (2) follow immediately from Theorem 3.7.1. To prove part (3), by dévissage we can
assume that ¥ * = IC; for some A € X, (T)™. Then part (3) follows from (1) and (2). =

Remark 4.2.3. We claim that
HZPM(S,.1C,) = HZPOHD (S, N Grg. Fp).

which is also true for characteristic 0 coefficients, see e.g. [1, proof of Prop. 1.5.13]. To
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prove the claim, note that it suffices to show that the canonical map
HC21)(v+A) (Sy N Gr%;, IFI,) . HCZp(v+/1) (S, N Grél, Fp)
is an isomorphism. If v = wg (1) then S, N Gré =S5,N Grg)k = {v}, so the claim follows
in this case. If v # wg(A) then by Theorem 3.7.1, we must show that
H2PVTA (§, N Grk, F,) = 0.

Note that dim S, N Gré = p(v + A) > 0 by [19, Th. 3.2]. The desired vanishing then
follows from the following general fact (cf. [14, Th. 7.2.11]): if X is a separated scheme
of finite type over k, then

Vi >dimX, HL(X,F,)=0.

4.3. An alternative description of the hyperbolic localization functor

Definition 4.3.1. Letv € X, (T) and ¥° € Dé’ (Grg,Fp). Denote by i,: {v} — Grg the
inclusion of the k-point v(¢) and define

RU({v}, °) := Rif F* € D2 (Vecty,),
and
VieZ, H'({v},F*):=H (RT({v},F*)) = H (Ri}F") € Vectg, .
Lemma 4.3.2. Letv € X«(T) and ¥°* € Pp+g(Grg,Fp).
(1) If A € Xo(T)" then

HO ,IF =T j = A ’
Hzp(v)({v},ICA)z{O (17 ’ th;z}erw?s)z.()

() If H ({v}, F*) # O then
i =2p(v) mod 2.

Proof. For part (1), we have
H?*O) ({v},1C; ) = H*V M ({v) n Grgh . Fp).

This is zero unless {v} € Grg’\ and 2p(v + A) = 0, in which case wy(A) < v < A and
2p(v — wo(A)) = 0,1.e.,v = wp(A).

By dévissage, to prove part (2) we can assume that ¥ * = IC; for some A € X, (7).
Then for all i € Z we have

H ({v},1C3 ) = H2* D (v 0 Grgh Fy).
If this is nonzero then {v} € Gré’1 and i 4+ 2p(A) = 0, so p(A — v) is an integer and

i+2p(v)=i+4+2p(1)—2p(A—v)=0 mod 2. |
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Theorem 4.3.3. For v € X, (T) there is an isomorphism of functors
HZPY (S, ) —— H?>*®)({v},"): P+ (Grg, Fp) —— Vect, .
Proof. By the adjunction between Ri} and Ri, there is a natural map
pr(”)(S,,, 7o) —— H2p(v)({v}’ 37.)'

If #° =IC, for A € X.(T)™ then it is an isomorphism by Theorem 4.2.2 (1) and Lemma
4.3.2(1). For the general case, note that H2*W~1({v}, F*) = H?>*W+1({y}, F*) =0
for all * € P;+g(Grg.F,) by Lemma 4.3.2(2). Since HZ?™*!(S,. %) = 0 for all
F* e Pp+g(Grg,Fp) by Theorem 4.2.2 (3), then by induction on the length of ¥ and the
five lemma we see that the map ch'o(v)(Sv, F*) — H?*WV)({v}, F*) is an isomorphism
in general. ]

5. The total weight functor

5.1. The definition of the total weight functor

Definition 5.1.1. For v € X, (T), the weight functor associated to v is
Fy = HZPY(S,, ) —— H?*®)({v},"): P+ (Grg, Fp) —— Vect, .
Proposition 5.1.2. The functor F, is exact. Furthermore, if v ¢ X«(T)— then F, = 0.

Proof. Exactness follows from Theorem 4.2.2 (3). Since for v ¢ X, (T)— we have F, (¥ °)
= 0 for all simple ¥°* € Pr+5(Grg, Fp) by Theorem 4.2.2 (1), we may conclude by
induction on the length that F,, = 0 in this case. ]

Notation 5.1.3. Given an abstract abelian monoid A, we will denote by (Vecty,(4), ®) the
symmetric monoidal category of finite dimensional A-graded IF,,-vector spaces equipped
with the tensor product

Fp(@) ® Fp(b) := Fp(a + b).
where [, (a) denotes the vector space I, placed in “degree” a € A.

Definition 5.1.4. The total weight functor is
F_:=@,cx, ). Fv: PL+(Grg.Fp) —— Vectg, (X«(T)-).

Remark 5.1.5. Recall from Section 3.3 the diagram
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Since

(GrT)red = ]_[ {l)}

veX.(T)
then F_ can be obtained from the functor

Rqi 0 Rp*: Pp+G(Grg.F,) — D8(Grr,Fp)

by taking the direct sum of the stalks over the {v} in degree 2p(v). This identifies F_ with
the T'-constant term functor CT? defined in Definition 6.1.1.

5.2. Relation to the Satake equivalence

Recall the exact faithful symmetric monoidal functor
H = @;cz R'T : (PL+(Grg, Fp), *) —— (Vectg, . ®)

from [9, Th. 6.11, Th. 7.11]. Our goal in this subsection is to construct a natural isomor-
phism between H and F_ composed with the forgetful functor Vecty, (X« (7)-) — Vectg, .

Remark 5.2.1. In the case of characteristic 0 coefficients, Baumann and Riche construct
an isomorphism between H and P, cx, () Fv in the proof of [, Th. 1.5.9]. In our proof
of Theorem 5.2.2 below we use Theorem 4.3.3, which is unique to IF,-sheaves, to compare
the functors H and F_.

By [9, Th. 6.9], R'T(F*) = 0 forall ¥* € P+ (Grg,Fp) andi > 0. Set Z_ := Z <.
For alli € Z_, the adjunction between Ri; and Ri,, induces a natural transformation of
functors

RiF N @ HZP(V)({V}“)
veX.(T)-

2p(v)=i
from P+ (Grg,Fp) to Vectr,. Hence there is a natural transformation of functors
H=@rr—@ @ A= O &
i€Z_ i€Z_veXy(T)- veX.(T)-
20(v)=i

from P+ (Grg,Fp) to Vectr, .
Theorem 5.2.2. The natural transformation of functors

H— @ Fo:Prig(Grg.Fy) — Vecty,

veX.(T)-

is an isomorphism. In particular, for all i € 7 it restricts to an isomorphism

RT= @ Fo:Prg(Grg.Fp) — Vect, .

VEX(T)—
2p(v)=i
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Proof. Let A € X,(T)". Combining [9, Th. 6.9] and Theorem 4.2.2 (1), taking the stalk
at {wo(A)} defines an isomorphism in Vect,

H(IC;) = RN (1C;) = H™ W (Grgh F,[20(1)])
-, Hzp(wo(k))(Riio(k)mp[zp(k)]) = Fyo)(IC;).
Thus since F,,(IC;) = 0 if v # wg(A) then the natural map
HEFY— @ F((F°)
veX.(T)-

is an isomorphism if ¥ * is simple. Now H is exact by [9, Th. 6.11] and each F,, is exact
by Proposition 5.1.2. Hence it follows by induction on the length of #° that the above
map is an isomorphism in general. ]

By Theorem 5.2.2, composing F_ with the forgetful functor Vecty,(X«(7)-) — Vectg,
gives H.

Remark 5.2.3. Using the method in [19, Th. 3.6] one can show that the decomposition
H = ®yex,(r)_F, is independent of the choice of the pair (T, B).

5.3. Recollections on convolution

We first recall the definition of the convolution product in Py +g(Grg, Fp) following [9,
§6.2]. There is a diagram

LTG
Grg x Grg «+—2— LG x Grg —2— LG “x_ Grg —"— Grg .

Here p is the quotient map on the first factor, ¢ is the quotient by the diagonal action of
LT G, and m is induced by multiplication in LG. We set

~ LG
Grg xGrg := LG x Grg.
For ¥°, 3 € Pp+5(Grg,Fp), by [9, Lem. 6.2] there exists a unique perverse sheaf
F R Fy € PP (Grg X Grg,F,)
such that .
Rp*(F7 R F7') = Rq™ (¥ R 7).

The convolution product is

2

F*xFy = Rm(F" R F).

Note that because Grg x Grg is ind-projective we have my = m..
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We now recall the construction of the monoidal structure on H following [9, §7]. Let
X = Al. The construction uses the Beilinson-Drinfeld Grassmannians Grg x1 and the
global convolution Grassmannians GrG, yr1 forI ={x}and I ={1,2} (seealso[27, §3.1]).
There is a convolution morphism

mry: GrG,X’ —_— GrG,X[

and a projection f7:Grg x1 — X'.Since X = A, for I = {x} there are canonical iso-
morphisms

Grg,x = Grg xX, GrG,X ~ (Grg ;Grg) x X, mgyy=mxid, fug =pr,.

So in the sequel we keep the notation I for the set {1,2} only. Let U C X2 be the comple-
ment of the image of the diagonal embedding A: X — X 2. Then we have the following
commutative diagram with Cartesian squares:

Grg x Grg xU — Grg x> +—— (Grg x Grg) x X

lid J]ml Jvm xid
JI

i
Grg x Grg xU —— Grg x2 — Grg xX

| I |

U X2 A X.

Let 7: Grg,x = Grg xX — Grg be the projection and let
t° := Rt*[1]: Db(Grg,F,) —— D2 (Grg x,Fp).
Fix ¥, ¥ € Pp+(Grg.Fp). By [9, Lem. 7.6, Prop. 7.10], there is a perverse sheaf
Py = °Fr W1 Fy € PL(Grg x2, Fp)
such that for xy, x, € X(k),

P RTEF)R@RT(F) ifxi #x
H" (R 1 (RmpyF0))| oy 7 i+7=n (5.1)
R'T(F + Fy) if X1 = x,.

The sheaf H" 2 (Rfl,g(RmI,!?l"z)) is constant by [9, Prop. 7.9]. Therefore, by summing
(5.1) over n we get an isomorphism

H(F *Fy) = HF) @ H(F,).

This gives H the structure of a monoidal functor.
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We finally recall that the asLsociatiVity constraint in (Pp+¢(Grg,Fp), *) is constructed
using the one of the bifunctor X and proper base change [9, Th. 6.8], and the commutativ-

ity constraint as follows. There is a morphism Grg_x2 — Grg, x2 which swaps the factors
in X 2. Using that this morphism restricts to the identity map over A(X), it is shown in the
proof of [9, Th. 7.11] that there is a canonical isomorphism

L L
Jrx(r°F K 70372.’U)|A(X) = jrw (775, ® TO$I.|U)|A(X)‘

On the other hand, we have the following proposition.

Proposition 5.3.1. There is a canonical isomorphism
o L] L] .k . o L] L o L]
T(F * Fy) = Rif o jru(c°F R 77|, ) [-1].

Proof. By the arguments in the proof of [9, Prop. 7.10 (ii)], there is a canonical isomor-
phism
Rif (le,g(&’f'l"z))[—l] =~ °(F * Fy).

On the other hand, by [9, Lem. 7.8] we have

L
Rm],!(fl.,z) = Jris (1’05‘71. @‘EO?Z.‘U). 5.2)

Consequently, we get a commutativity isomorphism
FLxFy = Fy « 7).

In order to make this commutativity isomorphism compatible with that of ® it must be
modified by certain sign changes which depend on the parities of the dimensions of the
strata occurring in the support of the .°; see the proof of [9, Th. 7.11] for more details.

5.4. Compatibility with convolution

Remark 5.4.1. In this subsection we use Theorem 4.3.3 in order to take H2°™) ({v},") as
our definition of F),. This allows us to give a proof that F_ is a tensor functor which is
unique to IF,,-sheaves and simpler than that in [19, Prop. 6.4]. In particular, we need only
globalize the points {v} relative to a curve instead of the S,. In Section 6.6, we globalize
the S, to give a proof of the compatibility between convolution and the constant term
functor CTg with respect to a general Levi subgroup L C G. By taking L =T this provides
an alternative proof of Theorem 5.4.2 below which is analogous to that in [19, Prop. 6.4].

For v € X.(T)- let {v}(X?) C Grg_x2 be the reduced closure of

L i x )l xu

v1,v2€Xx(T)-
vi+va=v
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The reduced fiber of {v}(X?) over A(X) is isomorphic to {v} x X C Grg xX. Denote by
iy x2: WH(X?) —— Grg x2
the inclusion. For v € X, (T)— and ¥°* € Df (Grg x2,Fp) set
Fy(F°) := Rf11(Riy x2,4(Ri} 42 F*)) € DY (X? . Fp).
Theorem 5.4.2. The total weight functor is a tensor functor
F_:(Pp+6(Grg.Fp), x) —— (Vectg, (X+(T)-), ®).
Proof. By the same considerations as in the proof of (5.1) in [9, Prop. 7.10], we have

~ @ Fo (FD)®F, (F7)  ifx1#x2
H¥*72(Fy(Rmp, F7,))] R (5.3)
F (FxFY) if x;1 =x5.

From the adjunction between Ri : x2 and Ri,, x2 , we get a natural map

H"2(Rf1y(Rmp 1 F)) —— @@ H" *(Fy(Rmp) 7). (5.4)
2p(v)=n

By Theorem 5.2.2 and the description of the stalks in (5.1), (5.3), the above map (5.4) is an
isomorphism over closed points in X 2. Since each of the sheaves in (5.4) is constructible
then this is an isomorphism of sheaves on X?2. As H"_Z(Rfl,!(RmI,!?l',z)) is constant
by [9, Prop. 7.9], then each of the sheaves H"_Z(Fv (le,!?l"z)) is also constant. Hence
by (5.3), we get a natural isomorphism

F(Fr+F) = @ Fu(F)® F,(F5).

vi+vy=v

By summing over v € X, (7T)— we get an isomorphism
F_(FL 7)) =~ F_(F) ® F_(%,).

The associativity isomorphism in Py + g (Grg, Fp) is constructed from the associativity
of the operation X (see the proof of [9, Th. 7.11]), so the above isomorphism is compat-
ible with the usual associativity isomorphism in Vectr, (X«(7T')-). Moreover, using (5.2)
and (5.3), one can verify directly from the construction in [9, Th. 7.11] that the commuta-
tivity isomorphism in Py +g(Grg,F) is compatible with the commutativity isomorphism
in Vecty, (X«(T)-). Thus F_ is a tensor functor. |

We denote by P+ (Grg, Fp)™ the full subcategory of P+ (Grg, Fp) consisting of
semi-simple objects. By [9, Th. 1.2], it is a Tannakian subcategory with fiber functor given
by the restriction of H.
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Corollary 5.4.3. The functor
F_|(P, 1 o Grg Epys ) © (PLvc(Gra, Fp)®, %) —— (Vectg, (X«(T)-), ®)
is an equivalence of symmetric monoidal categories. We have
VA€ X (T)", F_(ICy) = Fp(wo(R)).

Remark 5.4.4. We can summarize this section as follows. Let 2p_ : X«(T)- — Z_ be
the additive map induced by the group homomorphism 2p : X«(T) — Z, and let 2p_ :
Vecty, (X«(T)-) — Vecty, (Z-) be the induced functor. Then the exact faithful symmetric
monoidal functor

H : (Pp+6(Grg,Fp). ) — (Vectg, , ®)

factors as a composition of exact faithful symmetric monoidal functors
F_
(Pr+6(Grg.Fp), x) —— (Vecty, (X«(T)-).®)

2, (Vectr,(Z-), ®) Rl (Vectr, . ®).

6. The constant term functor

6.1. The definition of CT{

We return to the setup in Section 3.5 following the geometric setting explained in [2,
§5.3.27]; see also [1, §1.15.1], [15, §5.1]. In particular, P C G is a parabolic subgroup
containing B, and L C P is the Levi factor containing 7. We may consider for L all the
objects that we consider for G; we will denote them using a letter L as a subscript or a

superscript. There is a diagram
/ X 6.1)

The connected components of Gry, are parametrized by
70(Grr) = 7 (L) = X«(T)/Z®],

where @/ is the set of coroots of L with respect to 7. For ¢ € 7o (Grz) let Gr and Grp
be the corresponding connected components of Grz and Grp.

Let pz, be half the sum of the positive roots of L. Then 2(p — pr)(c) is a well-defined
integer for ¢ € mo(Grr) since p = pr on @} . Define the locally constant function

degp: Grp —— mo(Grp) 2K 7, 6.2)

where Grp — 7o(Grp) sends Gr% to c.
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Definition 6.1.1. The L-constant term functor is
CTg := Rq) o Rp*[degp]: Pr+g(Grg,Fp) —— D?(GrL,IFp).
Let ¢ € mo(Grpg). Since

(Grcl‘—")red = Sc»
then by restricting (6.1) to S, we get a diagram

Se
7N
Gr§ Grg .
Definition 6.1.2. The weight functor associated to c is

F. 1= Roci o Rs}[2(p — pr)(¢)]: Pr+g(Grg,Fp) —— DE(Gr$ ,TFp).

Lemma 6.1.3. There is a natural isomorphism of functors

CTf = & F..

cemy(Grr)

Proof. This follows from the definitions and the topological invariance of the étale site.
|

6.2. Preservation of perversity
Theorem 6.2.1. Let c € no(Grr) and ¥°* € Pp+g(Grg,Fp). Then
Fe(¥°) € PL+p(Grp,Fp).

Furthermore, for A € X«(T)T we have

L L
Fc (ICA) = ICUJé‘U)o(A) lfC - C(wo(k))’
0 otherwise.
Proof. The description of F.(IC;) follows from Theorem 3.7.1 since IC; = F,[2p(1)]
supported on Gré’l and

Iciéw()(,l) =TI [210L (w(I)JwO(A))]

<wkwo)

supported on Gry . Then the perversity of F.(F®) for general ¥° follows by
induction on the length of *. For equivariance, we observe that ¥ ® is L™ L-equivariant,
and that S, is L™ L-stable and o.: S, — Gr{ is Lt L-equivariant. As pullback along a
smooth morphism is f-exact (up to a shift) for the perverse ¢-structure by [9, Lem. 2.15],
then it follows that F.(¥*) € P+ (Gr§,F,) by the proper base change theorem (cf. [9,
Lem. 3.2]). ]
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Notation 6.2.2. Given asubset A C X.(T)™, equipped with the induced partial order, we
set
Grg,4 := 1111)1 Grf;)k .
AeA

This is an ind-closed subscheme of Grg, which is stable under the LT G-action. There is
a natural embedding
PL+G (GI’G,A, ]Fp) C PL+G(Ger ]Fp)

which identifies Pj+¢(Grg,4.Fp) with the full subcategory of P+ (Grg, F,) whose
objects are supported on Grg, 4. Let

A= {)L € X«(T)" | A < pu for some 1 € A}.

Then the simple objects in Py +g(Grg 4, F,) are the IC, for A € A. Moreover, if A C
X.(T)7 is a submonoid, then so is A and it follows from [9, Th. 1.2, Cor. 6.7] that the full
subcategory Py +¢(Grg,4,Fp) inherits from P+ (Grg, Fp) the structure of a symmetric
monoidal category.

Corollary 6.2.3. If ¥°* € Py +g(Grg,Fp) and ¢ N X4 (T)— = 9, then F.(¥°) =0. In
general,
Fc(\?'.) € PL+L(GrL,wé‘X*(T)_’]FP)'

Proof. If ¥° is simple this follows from Theorem 6.2.1. The general case follows by
induction on the length of % °. |

Corollary 6.2.4. The L-constant term functor is an exact functor
CTY: Py +¢(Grg,Fy) —— Pr+(Grp i x.r)_ Fp)-
Proof. This follows from Corollary 6.2.3 and Lemma 6.1.3. ]
Note that for L = T, we recover the functor F_, i.e.,

CT{ =F_:= @@ Fu:Ppig(Grg.F,) — Vects, (X.(T)-).
veX.(T)-

In particular, CT% = FL,
Remark 6.2.5. Let us set
7o(Grr)— = {c € mo(Grz) | ¢ N X«(T)— # 0}
=Im (X«(T)- —— X«(T)/ZDY).
which is a submonoid of the abelian group 7 (Grz, ), and

Gry = ]_[ Gr§ .

cemo(Gry)—
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Then 79 (Gry) = mo(Grz)—, CTE ~ @CEHO(GILL F. and we have the inclusion

The latter is an equality for L = T, but it is strict in general. Indeed, for any a¥ € ®}, we
léave {aV}eGr) C Gry, while {aV} ¢ Grp yix, (. in general, e.g. for L =GL,xGL; C
= GL3,

av =(1,-1,0) = wl(—1,1,0) € Xo(T) 41 \ wg Xu(T)-.

Remark 6.2.6. There is a more general version of Theorem 4.3.3 as follows. Let ¢ €
7o(Gryr,) and denote by i.: Grj — Grg the inclusion. Then one can show that there is a
natural isomorphism of functors

F, = PH?0=PL© o Rj*: P; +(Grg,Fp) — Pr+1(Gr5,Tp).

We will only use the functor F, because it does not require a perverse truncation.

6.3. Relation to the Satake equivalence
Proposition 6.3.1. Let c € mo(Gry) andv € X«(T). If v ¢ c, then
FLloF,. =0,

and if v € c then
FLoF,~F,.

Proof. If v ¢ ¢, then S, N Grj = @ so that FvL o F, =0.If v € ¢, then up to possible
non-reducedness of the fiber product we have a Cartesian diagram

S, —— S,
SE—— G .
Hence by the proper base change theorem (Ro¢1(Rs} ¥ *)) |sz = Rov,c1(F°]s,), so that
RT(SE. Fo(F*)) = RT(S,. F9)[2(0 — pr)(v)].
Now take the cohomology of both sides in degree 2py,(v) . ]
Corollary 6.3.2. Forallv € X«(T),
FloCt¢ ~ F,.
In particular, there is a canonical transitivity isomorphism
HLoCT¢ = H,

and the functor CTg is faithful.
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Proof. The first part follows from Lemma 6.1.3 and Proposition 6.3.1. Then the transitiv-
ity isomorphism is obtained by summing over v (in X, (7")_). Finally the faithfulness of
CTg follows from the transitivity isomorphism and the faithfulness of H. ]

6.4. The ind-schemes S, (X) and S, (X?)

For ¢ € o(Gr) let S¢(X) C Grg x and S.(X?) C Grg, x> be the reduced ind-subschemes
realizing relative versions of S. as in [1, §1.15.1] (see also [15, Th. 5.6] for a base
field of arbitrary characteristic). They can be identified with the corresponding connected
components of (Grp x )req and (Grp y2)req. Let Grz, x and Grz, x2 denote the connected
components of Grz, x and Gry,_x2 determined by c. We denote the relative versions of the
ind-immersion s.: S, — Grg and the projection o: S, — Grj as follows:

5¢:Sc(X) —— Grg. x, Gc: Se(X) —— Gry y,

§50:Sc(X?) —— Grg x>, 62:Sc(X?) ——Gry 4

Since X = A! there are canonical isomorphisms
Grg,x = Grg xX, Grp x = Grp xX, S.(X)= S xX,

in particular we have the projection t: Grg,x — Grg and the associated shifted pull-back
t° := Rt*[1]: Db(Grg,F,) — DE(Grg x,Fp).

The important facts about the geometry of these ind-schemes are summarized in the
following commutative diagram from [1, §1.15.1] whose squares are Cartesian (up to
possible non-reducedness of fiber products) and are obtained by restriction to U C X2 or
its complementary diagonal A(X) C X?2:

JI i
(Grg,x x GrG,X)|U _ GrG,X2 +—— Grg,x

I

e, resme (Ser (X)X Sey (X)) —2 Se(X2) = S,(X)

| N

JL if
C1 C2 C c
]_[c1+c2=c (GrL’X X GrL’X)|U — GrL’Xz +———Gr] x .

2
SC

e

‘We have canonical identifications
Se =8¢ xidy:Se x X —— Grg XX, 6 = 0 xidx:Se x X —— Grf xX
and

~2 ~ ~ ~2 ~ ~
SC|U = ]_[ (8¢, XSC2)|U, Uc|U = ]_[ (G¢ X062)|U‘
c1tea=c c1tea=c
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Definition 6.4.1. Let ¢ € m¢(Gry). Set
F. := Récy 0 R5}[2(p — pr)(c)]: D2 (Grg x. Fp) — DE(GI§ y.Fp).
and

F2 := R62 0 R52*[2(p — pL)(c)]: DL(Grg x2.Fp) — DE(Gr{ y».Fp).

6.5. The key isomorphism for the compatibility with convolution

Theorem 6.5.1. There is a canonical isomorphism

L L
FZo jri(c°F My |,) = jLC,!*( @ i Fe (P W Tchz(?l.”U)'
c1t+cea2=c
Contrary to the case of characteristic 0 coefficients, we cannot appeal to Braden’s
theorem to compute the co-restriction of the left side of Theorem 6.5.1 over A(X) as
in [1, Prop. 1.15.2]. This complication is the primary obstacle we must overcome in order
to prove Theorem 6.5.1. We begin by reducing to the case where the #;° are simple.

Reduction of Theorem 6.5.1 to the case of simple ¥,°. By a diagram chase involving the
proper base change theorem and the Kiinneth formula, the two complexes in Theorem 6.5.1
are canonically identified over U. Once we show that the complex on the left is iso-
morphic to the one on the right, by [9, Lem. 2.11] there will be a unique isomorphism
which restricts to our canonical identification over U .

We claim that it suffices to show the left side is the intermediate extension of its restric-
tion to U in the case where the ¥, are simple. By the properties characterizing j;,, in
[9, Lem. 2.7], it follows that if the outer two terms in an exact triangle are intermediate
extensions, then so is the middle term (cf. the proof of [9, Lem. 7.8]). While j 1, may not
be exact in general, (5.2) allows us to replace jj 1+ by the triangulated functor Rmj ;. Thus,
by induction on the lengths of the #.* we can assume that 7;* = IC;, for 4; € X.(T)*. =

The remainder of the proof will be an explicit computation of both sides of Theo-
rem 6.5.1 in the special case ;* = ICy, for A; € X «(T) ™. For convenience we denote

)Lo = (Al,},z), |A"| = Al + A’Z'

Let Gré’g}z be the closure of

Grg'11 X Grg'12 xU C Grg x2

with its reduced scheme structure. If p } |71 (Gge)| then by [27, Prop. 3.1.14] we have

<

GrSA' >~ Grau'| xX.

G,X? ’A(X)

If p | |m1(Gger)| this isomorphism should be modified by passing to the reduced sub-
scheme on the left side.
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Lemma 6.5.2. There is a canonical isomorphism

L
JLs(T°1C), Rr°1C, ;) = Fp[2p(IAe]) + 2] € P2 (G, Fp).

L
Proof. We first observe that t°1C,, Xr°IC,, |U
constant sheaf supported on Grg)Ll X Grg)kz xU C Grg x2.If p 4 |71(Gger)| then Gr
is integral and F-rational by [9, Th. 7.4], so

is canonically identified with a shifted
<Ae
G,X?2

L
Jrax(2°1C, Re®ICy, | ;)

is a shifted constant sheaf supported on Gré)}z by [9, Th. 1.7]. If p | |71(Gger)|, choose
a z-extension G’ — G and choose lifts )L’l, A'z of A1, A, to dominant cocharacters of G'.

The induced morphism
<A,

<Ae
Tor x2

— Gr,

G G,X2

is a universal homeomorphism (see [9, Rem. 7.12] for more details), so by topological
invariance of the étale site it follows that

. e} L o

Jrax(t°1C;, Re°ICy, | ;)
<Ae

is still a shifted constant sheaf supported on Gr"5,. Hence in any case there is a canonical
isomorphism as stated. u

Lemma 6.5.3. If ¥.* = IC,, for A; € X« (T)* and wo(|Ae|) & c then both sides of The-
orem 6.5.1 are zero.

Proof. By the assumption of the lemma, if ¢; + ¢; = ¢ then wo(4;) ¢ ¢; fori = 1 or 2.
For such i we have F¢,(IC,;) = 0 by Theorem 6.2.1, so both sides of Theorem 6.5.1
vanish over U. Therefore the right side of Theorem 6.5.1 vanishes. On the other hand, by
Lemma 6.5.2 and the proper base change theorem,

~ L
F2(jrs(x°1Cs, ®r°1Cs, [ )| p ) 2= T° Fe(IC).).

This complex is also zero by Theorem 6.2.1, so the left side of Theorem 6.5.1 is zero. m

Lemma 6.54. If ¥,* = IC,, for A; € X« (T)T and wo(|Ae|) € ¢, then the right side of
Theorem 6.5.1 is canonically isomorphic to the shifted constant sheaf

§wé‘w0()k

Fp[200 (wgwo(|Xel)) + 2] € PCb(GrL’X2 °),IF,,).

Proof. By Theorem 6.2.1, the right side of Theorem 6.5.1 is canonically isomorphic to

.c o L L oy~ L
jL,!*(‘L'L ICwOLwo(/h) grLICwOLwO(AZ) ’U)

Now apply Lemma 6.5.2 to L instead of G. ]
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From now on we assume wo(|1e|) € c. Let

Vi = 11 (Se, N GrEM) x (Se, N Gre*?) x U.

c1+cr=c
wo(A;)é€c; for some i

Then V. is an open subscheme of (S.(X?) N GrG Xz)red Let Z§ C Sc(X?) N Gré);'(2
be its complement with the reduced scheme structure. Then Z§ 1s a locally closed sub-
scheme of Gr— 2 such that

(s, SenGrgthy x x

A(X))red = (
and
Z5 |y 2= (Sewotiny NGrg™ ) x (Seqwoaay N Grg™) x U.

By Lemma 3.7.2(2), 62 restricts to a morphism

L
52 =52 . 7c <wgy wo(de)
Ocae =0c|z5 25, » Gy x>
. ~2 c 5wé‘ wo(/l.) . . .
Lemma 6.5.5. The morphisma, :Z; — Grj v, is a universal homeomorphism.

Proof. By Corollary 3.7.3, 63 3, restricts to a universal homeomorphism over U and A(X),
so it is universally bijective. The natural morphism (Grz, x2)red = Se(X 2) coming from
the morphism L — P induces a section to 662 1. SO it is a universal homeomorphism. m

Lemma 6.5.6. If ¥,* = ICy, for Aj € X«(T)* and wo(|Ae|) € ¢, then the left side of
Theorem 6.5.1 is canonically isomorphic to the shifted constant sheaf

Fp[2p1 (wlwo(|2a])) +2] € P2(GEE"8" ) ).

Proof. By abuse of notation, let us view 5 as a morphism

0’
S.(X2) N Gréi,}z — G 4.

Then by the definition of F 02 and Lemma 6.5.2, the left side of Theorem 6.5.1 is
RG2(Fp)[ 2oL (wiwo(|2Aa])) +2].

Let jyg Vi — S (X3 n Gré)t)'(2 be the inclusion. By Lemma 3.7.2 (2), we have

L
G2(VE) NGt — g

L,X2
<Ae

The scheme V is open and closed in S¢ (X Hn GrG X2 |U

by [1, (1.15.2)], so that

RG2 0 R(jve )1 (Fp[ 201 (w5 wo(|Aa])) +2])
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is a direct summand of the restriction to U of the complex

RG2(Fp)[20L (whwo(|Aal)) + 2]

L
Hence the former complex is supported in Grzu})}’zwou') by Lemma 6.5.4 since the left and
right sides of Theorem 6.5.1 agree over U'. It follows that

R o jvg i (Fp[201 (wgwo(12el)) +2])
= RG7 o R(jve )1(Fp[2p1 (wgwo(|Ae])) +2]) = 0.

Consequently, by applying R&f! to the exact triangle associated to the decomposition of

S.(X?)nN Gré’g‘(z into V; and Z§ , the left side of Theorem 6.5.1 is

R(GZ 5 )1(Fp) 201 (wywo(|2l)) + 2]
Now we conclude by using Lemma 6.5.5. ]

Proof of Theorem 6.5.1. 'We have reduced to the case where ,* = IC,, for A; € X.(T)™.
Then if wo(|Ae|) ¢ ¢ both sides of Theorem 6.5.1 vanish by Lemma 6.5.3, and if wo(|1e|)
€ c both sides are canonically identified with the same complex

Swé‘wo(/l.)

Fp[201 (wgwo(lAe])) + 2] € P2 (Gr] s ,Fp)
by Lemmas 6.5.4 and 6.5.6. ]

6.6. Compatibility with convolution

Theorem 6.6.1. The L-constant term functor is a tensor functor
CT{: (PL+6(Grg, Fp). %) —— (PL+L(Grp yix,(r)_- Fp): %)-

Proof. Let ¥°, ¥5 € Pp+g(Grg, Fp). Recall from Proposition 5.3.1 the canonical iso-
morphism

L
°(F x Fy) = Rif o ji(c°F R<°Fy

)=

Let ¢ € mo(Grp). First, apply F,. After unwinding the definitions and using the proper
base change theorem, there is a canonical isomorphism

Fe(t(F % F2)) = 10 (Fe (5 % F5)).

A similar diagram chase yields a canonical isomorphism

~ L ~ L
Fe(Rif o jruw(t°F R %5 | ;) [—1]) = Rif*(FZ o jiax(r°FF R° %y | ,)) -1
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Whence

~ L
L (Fe(F % F3)) = Rif*(F2 o jri(°F R<°Fy

o)) =11:
Second, use the key isomorphism Theorem 6.5.1 to get
o ° ° . Cxk -C o ° L o °
o (Fo(F % 7)) = Rig* o ]L,,*( D 5 Fo(F7) R g Fey (7 )|U)[—1].
c1+cr=c
Third, use Proposition 5.3.1 for L instead of G to get
(R + ) = B (Fe(F) * Fo (75).
c1+cr=c

By taking the sum over the ¢ € y(Gry,) we obtain finally (cf. Lemma 6.1.3)
CTS (7 + F5) = CTE (7)) * CTE (7).

By appealing to the constructions in Section 5.3 one can verify that this isomorphism
is compatible with the associativity and commutativity constraints. The arguments are
analogous to the case of characteristic O coefficients as in [1, Prop. 1.15.2]; we leave the
details to the reader. ]

Corollary 6.6.2. The functor CTE induces an equivalence of symmetric monoidal cate-
gories

CTF |(py1 5 Gro. ) + (PLr(Gra Fp)™ %) —= (Pr+1(Grp iy, 7y Fp)™ %)

We have
+ G _ 1L
Vie X«(T)"., CT/(ICy) = ICwOLwo()L) .
Proof. The last assertion follows from Lemma 6.1.3 and Theorem 6.2.1. In particular, it
implies that the restriction CTg | P, 4 (Grg Fp)s factors through
PL+L(GrL,w54X*(T)_ , ]Fp)ss C PL+L(GrL,wé‘X*(T)_ N ]Fp)

Combined with [9, Th. 1.2], it also implies that CT¢ |( P, +(Grg F,)=,x) 18 a tensor functor,
which is also a consequence of Theorem 6.6.1.

To conclude the proof, it remains to see that CT induces a bijection between the sets
of (isomorphism classes of) simple objects, in other words, that the inclusion

wéX*(T)_ CwhkX.(T)- = {)L € Xu(T)4/L | A <r 1 for some p € wéX*(T)_}
is an equality. So let A € wk X, (T)—, and pick i € wk X, (T)- such that A <p, 1. Set

Vi=wk() e Xu(T)—yp and p' = wl(p) € X.(T)-.
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We need to check that A’ € X (T')—, which means that {«, A") < 0 for all the simple roots
a € A C ®. The inequality holds if « € Ay C A since A’ € X(T)_;1. Now assume that
a€ A\ AL. As A <p u,wehave u’ <p A'ie.

Mep +NAJ.

Moreover, as i’ € X« (T)—, we have (o, u’) <0. Lastly, if 8 € Ap,then 8 € A and 8 # «,
so that & and B are two distinct elements of a root basis, which implies (@, 8¥) <0. =

Remark 6.6.3. We can summarize this section as follows. The exact faithful symmetric
monoidal functor

F_: (PL+G(Grg, Fp), *) e (VectFp (X* (T)_), ®)
can be rewritten as
CTS : (PL+6(Grg,Fp), ) —— (PL+7(Crrx.(r)_, Fp), )
and factors as a composition of exact faithful symmetric monoidal functors

(PL+G(Grg, Fp), *)

cr¢
—_ (PL+L(GrL,w(§,X*(T)_, Fp), *)

N

ctk
(Pp+1(Grr. Fp), %) ——— (Pr+7(Grrx,(7)_,,. - Fp). *)

N
(PL+T(GI'T, IFP), *)

(with values in Pp+7(Grr x,(r)_.Fp) C Pr+7(Grr,Fp)).

7. Tannakian interpretation

7.1. The Satake equivalence

Recall from [9, Th. 1.1] the Tannaka equivalence given by the geometric Satake equiva-
lence with IF,-coefficients:

(PL+G(Grg,IFp), *) (Repr(MG), ®)

H forget
(Vectr,, ®).

In particular Mg is an affine monoid scheme over IF, which represents the functor of
tensor endomorphisms of the fiber functor H .
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Remark 7.1.1. The Tannaka equivalence in [9, Th. 1.1] is constructed using the follow-
ing observation just before [11, Rem. I1.2.17]: If one omits the assumption of rigidity
(i.e., the existence of tensor duals) in the definition of a neutral Tannakian category, then
one gets an equivalence with the category of representations of an affine monoid scheme
instead of a group scheme. Below we will use the fact that a morphism of fiber functors
induces a morphism of affine monoid schemes (the analogue for affine group schemes
is [11, Cor. 11.2.9]). This morphism of monoid schemes can already be constructed at
the level of coalgebras (e.g., [1, Prop. 1.2.6]), and then the fact that it is also an algebra
homomorphism follows from the compatibility with the tensor structures.

Notation 7.1.2. We will use the following notation.

e Let A C X.(T)" be a submonoid. The full subcategory
PL+G(GrG,A, Fp) C PL+G (Grg, Fp)

introduced in Notation 6.2.2 is a Tannakian subcategory with fiber functor given by
the restriction of H. We denote by Mg 4 the corresponding IF,-monoid scheme and
by S, 4 the resulting Tannaka equivalence. It fits into a commutative diagram

(PL+6(Grg,4.Fp)., %) ?Nx (Repg, (Mg,4), ®)
N N
(PL+G(Grg.Fp). ) S—;> (Repg, (Mg), ®).
We have a canonical homomorphism
Mg — Mg, 4.

which for A = X, (T)™ is the identity.

* Given an arbitrary abstract abelian monoid 4, the category (Vecty, (4), ®) introduced
in Notation 5.1.3 is Tannakian with fiber functor given by forgetting the grading. Its
Tannaka monoid is the diagonalizable IF,-monoid scheme

D(A) := Spec (]Fp [A])
Remark 7.1.3. In the case G = T, we have
Mr 4= D(A)
for all submonoids A C X« (7). In particular,
Mr = Mrx,ry = D(X«(T)) =TV,

the torus dual to 7.
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7.2. The dual of the torus embedding

As noticed in Remark 5.4.4, we have obtained a factorization of H as
F_
(Pr+6(Grg.Fp), x) —— (Vectr, (X«(T)-). ®)

2, (Vectr,(Z-), ®)

Forget
— (VectFp , Q).

Under the equivalences Sg and S it corresponds to a sequence of tensor functors
(Repg, (Mc). ®) —— (Repg, (D (X«(T)-)). ®)
— (Repy, (Al), ®)
— (RCP]FP(lle), ®).
i.e., by Tannaka duality to a sequence of morphisms of IF,-monoid schemes

_ D(F-
1p, —— AL 22 D(X(T)) 25 Mg

),

G —2— TV

Remark 7.2.1. We show in Theorem 7.4.5 that D(F_), denoted there by w, is a closed
immersion, and that 7Y — D(X,.(T)-) is an open immersion.

7.3. The dual of the Levi embedding

As noticed in Remark 6.6.3, we have obtained a factorization of F_ as

cr¢
(PL+G(Ger Fp), *) S (PL+L(GrL,w0LX*(T)_’]FP)’ *)

CTh=FZL
C (PL+L(GI'L,IFI,), *) (PLJrT(GrT,X*(T),/La]Fp), *) C (PL+T(G1’T,FP), *)

Under the equivalences S¢g, S1, and St it corresponds to a diagram
(Repg, (Mg), ®) — (Repg, (ML,wOLX*(T)_)’ ®)
C (Repg, (ML). ®) — (Repy, (Mr.x.(7)_,). ®) C (Repg, (TY). ®).
i.e., by Tannaka duality to a sequence of morphisms of IF,-monoid schemes

Y D(FL) D(CT)
Tl ———Mrx,a1)_ ), —— ML —— My Lx,(1)_ Mg

[

M7 x,(1)_
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Remark 7.3.1. The morphisms 7V — Mr x, (1)_ ,pand TV — M7 x,(r)_ are open immer-
sions, and the morphisms D(FZL) and D(F_) are closed immersions (cf. Remark 7.2.1).
Deciding whether My, — M, ,, L X, (T)_ and D(CTg) are open or closed immersions in
general seems to require a greater understanding of the extensions between representations
of Mg (and M7), and how these extensions interact with the constant term functors.

7.4. Semi-simplification

Notation 7.4.1. Let A C X.(T)™ be a submonoid. Similarly as in [9, proof of Prop. 7.14],
we denote by Pj+g(Grg,4.F,)* the full subcategory of P+ (Grg,4.F,) consisting of
semi-simple objects. As noticed in Notation 6.2.2, the simple objects are the IC; for A € 4,
and hence it follows from [9, Th. 1.2] that Py +5(Grg, 4, Fp)* is a Tannakian subcategory
with fiber functor given by the restriction of H. Then by Theorem 5.2.2 the corresponding
[F,-monoid scheme is

G.a = D(woA).

The resulting Tannaka equivalence S§ , fits into the commutative diagram

(PL+G(Grg,a,Fp)™, %) T:/l) (ReP]Fp (Mg 0 ®)

N N

~

(PL+6(Grg,4.Fp), ) Sos (RGPFP (Mg, 4). Q).

We have a canonical homomorphism 7, : Mg ,4 — MéS’A. As Mg x. )+ = Mg, we
write simply Mg for M o oy = D(X«(T)-) and 7 : Mg — M for the correspond-
ing canonical homomorphism.

Remark 7.4.2. Since every simple object of Rep, (Mg) = Pr+5(Grg, Fp) is 1-dimen-
sional, the monoid Mg is pro-solvable, cf. [9, Prop. 7.15]. Let {V), A € X.(T)—} be (a set
of representatives of) the set of irreducible finite dimensional representations of M¢. For
any Ve Rep]Fp(Mg), denote by d, (V') the multiplicity of V), as a subquotient in any Jordan—
Holder filtration of V. Then the canonical homomorphism 7 : Mg — Mg admits the
following explicit description: it maps m € M to the unique g (m) € M§ = D(X«(T)-)

acting 4
on @ |4 by @ (g (m))

AeX(T)- AeX(T)-
forall V € Repg, (Mg).

Definition 7.4.3. We call the canonical homomorphism
g : Mg —— MCS;S

the eigenvalues homomorphism.
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From Corollary 5.4.3, we have the equivalence
F_|(p, 4 ¢ Grg Fpys) © (PL+(Grg, Fp)™, x) —— (Vectr, (X«(T)-), ®),
such that F_(IC,) = IF,(wo(4)). By Tannaka duality, it corresponds to the identity
Mrx,r). = D(X«(T)-) == D(X.(T)-) = M.

Definition 7.4.4. By the above equivalence we can make the following definitions.

*  We call the composition
O = F-[p . _(Gro.Epyem 0 F=1 (PL+6 (Grg. Fp). ) — (PL+(Grg. Fp)*. %)

the semi-simplification functor.

*  We call its Tannaka dual
w:=D(()*): MF —— Mg
the weight section.

Thus the functor (-)** is a retraction to P+ (Grg,F,)* C Pp+g(Grg,Fp) and the
morphism w is a section to 7g : Mg — M. Moreover w identifies with the morphism
D(F_) from Section 7.2.

Theorem 7.4.5. The morphisms wg and w satisfy the following properties.
*  The morphism ng: Mg — M is surjective.
e The weight section w : M§ — Mg is a closed immersion. The dual torus embedding

TV — Mg factors through w by an open immersion.

Proof. The weight section w of g is a closed immersion since the morphism rg is
affine. Conversely, the fact that wg admits a section implies that 7 is surjective.
By construction, we have the commutative diagram

w
Mg == Mrx.n 5} Mo
Tv.

The fact that TV — M T,X,(T)— = M is an open immersion will be shown in Lemma 8.3.1.
[ ]

From Corollary 6.6.2, we have the equivalence

CTE |y GroEpyn) * (Prt(Gre. Fp)™, %) == (Pr+1(Gry iy, (ry_ - Fp)™ %),
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such that CT¢ (IC;) = ICL

whwo()” By Tannaka duality, it corresponds to the identity

ss
M>»

LawkX.(T)- D(X.(T)-) == D(X.(T)-) = M.

8. The space of Satake parameters

8.1. The definition of Satake parameters

The space of Satake parameters is the IF,-scheme
P := Spec (IFI, [X*(T)_])

underlying the [F,-monoid scheme D(X«(T)-) = M.
A Satake parameter is an IF,-point of P.

Definition 8.1.1. Let X be a scheme. A stratification of X is a decomposition X =
\U;es Xi as in Definition 2.2.2 such that for all i € I, the closure of X; in X is a union of
some X;’s, i.e., there exists J; C I such that

X=Xl
Jjedi

We are going to define a stratification of the space of Satake parameters by first defin-
ing the relevant categories of equivariant perverse sheaves on the affine Grassmannian and
then applying Tannaka duality.

8.2. The closed stratum

Let us set
At = {L e Xu(T) | (@, A) =0 Va € A}.

Then for all A € A+, we have dim Gré)L = 2p(A) = 0, so that Gré)L = {A} and hence

Grgar = | ] A}

AeAal

Consequently, the embedding P+ (Grg aL.Fp) C Pp+g(Grg, Fp) factors as
PL+G (GrG,AJ- , Fp) C PL+G (GI‘G N IFP)SS C PL+G (GI‘G s ]Fp),
and the equivalence of tensor categories

Vect (X«(T)*) —— Pr+6(Grg,Fp)™
Fp(A) —— IC,
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restricts to an equivalence of tensor categories
Vect(At) —— Pr+6(Crg ar.Fp)
F,(A) —— IC;..

We define a retraction

r

—
Pr+G(Grg at, Fp)—— Pr+g(Grg,Fp)®
by the rule

r. PL+G(GI'G,]FP)SS Em— PL*G(GrG,ALva)

IC, ifAe At
IC) —— .
0 otherwise.

Lemma 8.2.1. The Fj-linear functor r is a tensor functor.
Proof. Indeed, for A, u € X«(T)™", we have IC; xIC,, = IC; 4, and
AeAltandp e At) <= A+ e AL,
Moreover r (ICy) = 1C,. ]
Applying the Satake equivalence $g 51 from Notation 7.1.2, we get a tensor retraction
r

/_\ SS
Repy, (Mg A1) Repg, (M),

which by Tannaka duality corresponds to a multiplicative section
y — 1
Mg = D(X*(T)_) —» Mg AL = D(A™).
In particular
Sg :=s(D(A1))
is a closed subsemigroup of D(X.(T)-).

Lemma 8.2.2. Let A be an abstract, right cancellative monoid. Let B C A be a subgroup
and let R be a ring. Then R[A] is a free R[B]-module. In particular, the inclusion of rings
R[B] C R[A] is flat.

Proof. Because B is a group then the right cosets of B in A give a partition of A. Thus, if
{a;}; is a collection of representatives for these cosets then

R[A] = @) R[Ba;].
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Since A is right cancellative then each morphism R[B] — R[Ba;], b — baj;, is an iso-
morphism. ]

Proposition 8.2.3. The morphism MG — Mg a1 is faithfully flat.

Proof. Tt is flat by Lemma 8.2.2 applied to the monoid X,(7)_ and the subgroup A=+, It
is surjective since it admits a section, namely s. ]

Remark 8.2.4. If G is not a torus then the functor r does not intertwine the fiber functors
H|p, . ,(Grg,F,)= and H [p, +(Grg 51 F,)- Correspondingly, the section s does not send the

unit of the group scheme D(A+) to the unit of the monoid scheme D(X4(T)_).

8.3. The open complement to the closed stratum

Recall that a standard Levi subgroup of G is the Levi factor containing 7 of a parabolic
subgroup of G containing B. We denote by £ the set of standard Levi subgroups of G. It
is in 1-1 correspondence with the power set of the set A of simple roots corresponding to
the pair (B, T):

& —= P(N)
L——— Ap,
where Ay, is the set of simple roots of L with respect to the pair (B N L, T'). In particular
Ar =@ and Ag = A.
For each L € £, we have constructed the functor

~

P;+(Grg, Fp)ss PL+L(GrL,wOLX*(T)J IFP)SS C Pp+1(Grp, Fp)ss,

G .
CT; \PL+G (Grg Fp)ss

which corresponds to

Jjui M = D(Xe(T)pr) —— M oy ).
= D(X*(T)_) — D(X*(T)_) =Mz,
cf. end of Section 7.4.

Lemma 8.3.1. The following statements hold true.
*  The morphism of F,-monoid schemes ji, is an open immersion.
e Forall L,L' € £, we have

JL(D(X«(T)—1)) N jr (D(X«(T)=j11)) = jrr(D(X(T)—/1r))
with Apr == Ap N Ap.

e We have
P\Se = |J je(D(Xe(T)-s1))-

Le£\{G}
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Proof. By construction, j;* : Fp[X«(T)-] — Fp[X«(T)—,] is the morphism of F,-alge-
bras induced by the canonical inclusion X« (7T)— C X«(T)—;r.Let A4, o € A, be elements
of X, (T)- such that

€Z-_y ifa=8

=0 otherwise

Va,fe A, (a,Ag) {

(complete A into a basis of X*(T') ® Q and consider the dual basis of X, (T) ® Q under
the perfect pairing { , )). Then, for all A € X4 (T)—/r, we can find some ny € Zxo,
o € A\ Ar, such that

(x + Y na/\a) € X.(T)-,

aeA\AL
ie.,

Fp[Xu(T)—1] = Fp[ Xu(T)-][(e*) o € A\ AL].

Hence ;i is an open immersion, and the complement of jz (D(X«(T)—;r)) in P =
D(X«(T)-) is the closed subset defined by the equation ]_[aeA\AL et = ).
Consequently,

P\ jr(D(Xe(T)—yL)) O jr (D (Xu(T)—/1r))

is the closed subset defined by the equation [ [, A\(ALNAL) e*e = 0, and hence

JL(D(X(T)=yL)) 0 jr (D (Xu(T)—y1r)) = jr(D(X+(T)—/L7))

with Apr := A N Aps.
Finally,
P\ U (X))

LeX\{G}
is the closed subset defined by the equations

Ya € A, ete = 0.
On the other hand,
s(Sg) = V(e* k€ Xu(T)-\ AY) € D(Xu(T)-) =P

by construction. We claim that

(e* 0 e A) C (et A e Xu(T)-\ AY) C /(ehe,a € A).

The first inclusion follows from the definition of the elements A,. For the second one,
note that for A € X, (T)-\ A+ we can find integers m > 0, mgy > 0, such that mA —
>, Mare € AL, Since the elements e# for o € AL are units, the second inclusion fol-
lows. Hence P\ ULe:C\{G} JL(D(X«(T)—-,L)) is equal to the subset underlying the closed
subscheme s(Sg). |
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From now on we will write simply D(X«(T")—;r) for
JL(D(X(T)-/)) C D(X+(T)-).

Remark 8.3.2. We have seen in the proof of Lemma 8.3.1 that TV = Spec(F, [ X« (T)])
is the open complement in P = D(X«(T)-) of the Cartier divisor defined by the regular
element

[ e = eXest e Fy[Xu(T)-].

a€A

In particular, the scheme P is integral.

Example 8.3.3. If G = GL,, then X.(T)- = ®"Z1Zsow;— ® Zw,— where w;— € 7"

i=

has its first # — i entries equal to 0 and last i entries equal to 1, so
P = Spec (Fp[T1, ..., Tn1. T,51]).

If G = SL; then X4 (T)- = Zx>o(—a") where —a¥ = (—1, 1), so P = Spec(F,[T]). In
particular, P is smooth in both of these examples.

Example 8.3.4. In general P is not smooth. For example, let G = SL3. Then X, (T) =
{(a,b,c) € Z®:a + b + ¢ = 0} and the simple roots are « = (1,—1,0), 8 = (0,1,—1) €
X*(T) = Z3/Z. Then X«(T) = Za" @& ZBY and

X« (T)" ={aa” +bBY | 2a > b,2b > a}.
The monoid X.(T)" is generated by the elements
Olv +/3V7 Olv +2ﬁv’ 205\/ +’3v

By sending the indeterminates x, y, z to the corresponding generators in F,[X.(T) "], we
get a surjection

Fplx,y.z]/1 — IFI,[X*(T)J’], I = (x3 —yz).

Since [ is a prime ideal and F,[X«(T)"] is an integral domain of dimension 2 then
this map is an isomorphism. In particular, the ring F,[X«(T)"], equivalently the ring
F,[X«(T)-], is not regular.

8.4. The Herzig stratification

Forall L € £, set
Sp := sr(D(AD)).

Corollary 8.4.1. The space of Satake parameters admits the following stratification by
subsemigroups:
?=J s

Lef
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The stratum Sy, is isomorphic to a torus of rank equal to

rank T — |Ap | = rank 71 (L) = rank 7¢(Grpr).

SL=J s

L'DL

The closure of Sy, in P is

Proof. The decomposition is a consequence of Lemma 8.3.1.
Let L € £. Since At is a subgroup of the finitely generated free abelian group X« (7')
then Ai is also finitely generated and free. Hence D(A]J:) is a torus, of rank equal to

rank A7 = dimg(ZAz ® Q) = rank T — |Az| = rank X.(T)/Z®}.
Finally, with the notation of the proof of Lemma 8.3.1, we have
St = Spec (Fp[X«(T)—;]/(e* 1 € Xu(T)—;1 \ AL))
= Spec (Fp[ X+(T)-][(e*) .o € A\ AL]/ (e, B € AL))

Thus, setting
f1 = 1_[ eta = placa\a, te ¢ ]FP[X*(T)_]

OIEA\AL
and
Vy := Spec (Fp[ X+ (T)-]/(e**, B € A)) C Spec (Fp[X+(T)-]) = 2,
we have
[SLl = [D(fL)I N[Vl C P
and

el = J IDUI Vel = ISwl.

L'>L L'DL
Now let us show that [Sz | = |V.|. Since |Sz.| = |D(fz)| N |V |, it suffices to show that f7.
defines a Cartier divisor after restriction to V1, i.e., that its image in the ring of functions
on Vg is aregular element. Soleta = >, aet e F,[X«(T)-] such that

fra= ) gpe’t € (M. peny).
BeAL

If a) # 0 then

D et A=p+Ap
(IEA\AL

for some p € X«(T)— and B € Ap. The cocharacter

vi=A-Ag=p— > la
aeA\AL

satisfies (y,v) <Oforall y € A, i.e.,v € X+(T)_.Hencea € (e*8,8 € Ar), asdesired. m
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We call the stratification Corollary 8.4.1 the Herzig stratification, since it corresponds
to the stratification of the set P(IF,) defined in [17, §1.5, §2.4].

Definition 8.4.2. We call the open stratum
St =TV = D(X«(T)) C?P
the ordinary locus, and the closed stratum
S¢ = sg(D(AY)) c P
the supersingular locus.

Example 8.4.3. For G = GL,, we have X.(7T)— = N(0, 1) & Z(1, 1), the space of Satake
parameters is

Mg, = D(X+(T)=) = Spec (Fple®V), e=D]) = A x G,
and the Herzig stratification consists only in the ordinary and the supersingular loci
ST US6 = (G x Gpyy) U ({O} X (Gm).

Example 8.4.4. The supersingular locus Sg is 0-dimensional if and only if G is semi-
simple, in which case it is just one IF,,-point.

Lemma 8.4.5. The ordinary locus TV is the group of invertible elements of the monoid
M.
G

Proof. Lets € M§ (Fp). Let L be the element of £ such that s € Sg (Fp). Then, for all
A€ Xu(T)—yL \ A7, ~
A(s) = s*(e*) =0 €eF,,

i.e., the character A : D(X«(T)—/1) — A vanishes on s. Hence, if s is invertible in
ME(Fp) = D(X+(T)-)(Fp), then (X«(T)—y1 \ AL) N Xu(T)- =0, ice., Xo(T)- C AT,
which occurs only if A; = @, in whichcase L = T'. [

Lemma 8.4.6. The supersingular locus Sg is absorbing in the monoid Mg, i.e., the
restriction of the multiplication MG x MG — M to Sg x M factors through Sg.

Proof. Lets € Sg (Fp) and s’ € M(S;S(E,). Then, forall A € X.(T)_ \ A,
(ss")*(e*) = A(ss") = A(S)A(s") = s*(eMA(s) = 0 € T,
Thus the Fp -algebra morphism
(ss")* : Fp[Xu(T)-] — F,

vanishes on the ideal (e*, A € X4(T)_ \ A1) of Sg in M, which means precisely that
ss’ € Sg(Fp). [
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Corollary 8.4.7. Let ig : Mg — M be the canonical eigenvalues homomorphism. Then
7151 (TV) C Mg is open and is the group of invertible elements, and 7'[61 (Sg) C Mg is
closed and is an absorbing subsemigroup.

Proof. The only part left to check is that L(TV) consists of units. This follows from
the fact that an endomorphism of the forgetful tensor functor Rep, (Mg) — Vectg, is an
automorphism if and only if it is an automorphism on simple objects. ]

Appendix: Cohomology with support in 7,

Let U™ be the unipotent radical of the opposite Borel B~. For v € X.(T), let
T, := (LU -v(t)),., C Grg

be the reduced ind-subscheme of the corresponding connected component of the repeller
[12] with respect to the G, -action on Grg from Section 3.4. For A € X, (T)™", we denote
byir,,: T, N Glrf;’1 — Glrf;’1 the canonical immersion (where T}, N Grg’1 is equipped with
its reduced structure) and define

Vi e Z, H} (Grg,IC;) = R'T(T, N Grg*, Rif, , 1Cy).
Proposition A.1. Let A € X, (T)F. If v = wo(A) then
H7*™(Grg.1C;) = R*MT(C)) = F,.
Proof. By [19, Th. 3.2], Tyyya) N Gré’l is of pure dimension
—p(wo(A) + wo(X)) = 2p(A) = dimGrg" .

S)L . . SA .1 _ ..
Thus T,y N Grg™ is open in Grg”, so Rszo(M’)1 = and the proposition fol-

s
R "Tuoa
lows. [

Proposition A.2. Let A € X.(T) be such that p(A) # 0. If v = A then
H7*™(Grg,1C;) = 0.

Proof. By[19, Th.3.2], T,NGrg" is a point. Let U:=Grg " \([yNGrg") and j: U— Grg"
be the canonical open immersion. We claim that, as a complex of sheaves, Rj.Oy is con-
centrated in degrees < 2p(4) — 1. To prove the claim, note that we may replace Glrf;'1 by
the local ring (4, m) at T3 N Grg’\ in Grék. For n > 1 we have R" j,Oy = HIT1(A).
Since H},(A) = 0fori > dim A then R” j.Oy = Ounless n < 2p(A) — 1.

Now by the Artin—Schreier sequence Rj«(F,[2p(A)]) is concentrated in degrees < 0.
Hence by the exact triangle

Rir, ;< Rik (Fp[2000)]) — F,p[20(0)] —— RjuRj* (Fp[2p(1)]) — .
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it follows that Ri !TM (Fp[2p(A)]) is concentrated in degrees < 1. Now we are done because

2p(A) > land T) N Grf;)L is a point. L]

Proposition A.3. Suppose G = SL,, and that T and B are the diagonal maximal torus
and the upper triangular Borel subgroup; in particular X«(T)t = Zso. If A = 1 and
v =0, then H 72va (v)(Grg, 1C,) is infinite-dimensional.

Proof. The scheme Gré’l is stratified by T_; N Grél, To N Grél, and T N Grgk. These
strata have dimensions 2, 1, and 0, respectively. Let

Z =Ty NGrg" = (Ty N Grg") U (Ty N Grgh)

andleti: Z — Gré)‘ be the corresponding closed immersion. Let j: 7_; N Gré’l — Gréjk
be the complementary open immersion. Then there is an exact triangle

RisRi*(IC;) —— IC; — Rjx Rj*(IC;) — .

By [9, Th. 6.9], RT'(IC;) = F,[2], and the map R™2I'(IC;) — R™2T(Rj«Rj*(ICy)) is
an isomorphism. By [20, Lem. 5.2], T_; N Grf;)L is isomorphic to A2. Thus by a computa-
tion with the Artin—Schreier sequence we find that RI"(Rj. Rj *(IC;)) is concentrated in
degrees —2 and —1, and it is infinite-dimensional in degree —1. Hence RT'(Ri.Ri'(IC;))
is concentrated in degree 0, and R°T'(Ri,Ri'(ICy)) is infinite-dimensional.

Now let p: To N Grcf;)t — Z be the open immersion. There is an exact triangle

R (Rif, (IC;)) —— RT (Ri*(IC;)) —— RT(Rp*(Ri*(IC,))) —.

By [9, Lem. 2.10], IC, is the intermediate extension of its restriction to Gré’1 \ (TN Grgjt ),
so by [9, Lem. 2.7], Ri !TA (IC,) is concentrated in degrees > 1. Thus the map

ROT'(Ri'(IC;)) —— R°T'(Rp*(Ri'(ICy)))
is injective. Now we are done because there is a natural isomorphism
R°T(Rp*(Ri'(ICy))) = H7P(Grg.1Cy). n
By comparing Propositions A.1 and A.2 with Theorem 4.2.2, we see that the groups
H2P0)(S,.1C;) and  Hp*™ (Grg.IC;)

agree in some cases. However, by Proposition A.3, these groups are not isomorphic in
general. In other words, Braden’s hyperbolic localization theorem fails for IF,-coefficients.
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