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Abstract

Disturbance events can impact ecological community dynamics. Understanding how communities respond to

disturbances, and how those responses can vary, is a challenge in microbial ecology. In this study, we grew a

previously enriched specialized microbial community on either cellulose or glucose as a sole carbon source,

and subjected them to one of five different disturbance regimes of varying frequencies ranging from low to

high. Using 16S rRNA gene amplicon sequencing, we show that community structure is largely driven by

substrate, but disturbance frequency affects community composition and successional dynamics. When grown

on cellulose, bacteria in the genera Cellvibrio, Lacunisphaera, and Asticaccacaulis are the most abundant microbes.

However, Lacunisphaera is only abundant in the lower disturbance frequency treatments, while Asticaccaulis is

more abundant in the highest disturbance frequency treatment. When grown on glucose, the most abundant

microbes are two Pseudomonas sequence variants, and a Cohnella sequence variant that is only abundant in the

highest disturbance frequency treatment. Communities grown on cellulose exhibited a greater range of

diversity (1.95-7.33 Hill 1 diversity) that peak at the intermediate disturbance frequency treatment, or 1

disturbance every 3 days. Communities grown on glucose, however, ranged from 1.63-5.19 Hill 1 diversity

with peak diversity at the greatest disturbance frequency treatment. These results demonstrate that the

dynamics of a microbial community can vary depending on substrate and the disturbance frequency, and may

potentially explain the variety of diversity-disturbance relationships observed in microbial ecosystems.



Abstract Importance

A generalizable diversity-disturbance relationship (DDR) of microbial communities remains a contentious

topic. Various microbial systems have different DDRs. Rather than finding support or refuting specific

DDRs, we investigated the underlying factors that lead to different DDRs. In this study, we measured a

cellulose-enriched microbial community’s response to a range of disturbance frequencies from high to low,

across two different substrates: cellulose and glucose. We demonstrate that the community displays a

unimodal DDR when grown on cellulose, and a monotonically increasing DDR when grown on glucose. Our

findings suggest that the same community can display different DDRs. These results suggest that the range of

DDRs we observe across different microbial systems may be due to the nutritional resources microbial

communities can access and the interactions between bacteria and their environment.

Introduction

Disturbance ecology investigates foundational questions of how systems and organisms respond to changing

environments. Traditionally, disturbances are defined as discrete events that remove biomass directly or

indirectly through displacement or mortality (1, 2). Fires, floods, and volcanic eruptions are classic examples

of disturbances that change community composition by directly impacting species or altering the environment

(3, 4). Early theoretical consideration of disturbance on community ecology include the Intermediate

Disturbance Hypothesis (IDH), which predicts that the diversity-disturbance relationship (DDR) follows a

“hump-backed”, or unimodal curve (5). Support for the IDH has been mixed. Experimental measurements of

the DDR for different systems has revealed a variety of trends, including both positive and negative

monotonic, unimodal, bimodal, and several nonsignificant DDRs (6). Recent frameworks of disturbance

theory accommodate vastly different spatiotemporal scales between systems, and disentangle disturbance

events and impacts (7, 8).

The advent of high-throughput sequencing has widened the scope of questions that microbial ecology can

ask, including research that investigates how disturbance impacts microbial communities. Researchers have

studied disturbances in several different systems including marine sediment (9), soil bacterial (10) and soil



fungal communities (11), and wastewater communities(12). Microbial systems also display a variety of DDRs,

which suggests that rather than trying to support or reject specific DDRs, researchers can better understand

disturbance ecology by investigating the underlying factors that lead to different DDRs. Given the vast

differences in systems between these studies, it is difficult to determine what specific factors lead to differing

responses to a disturbance. Although we know that microbial community responses to disturbances can vary,

whether the same community can exhibit different responses to the same disturbance and what factors would

cause those differences, is relatively underexplored. Moreover, understanding what factors influence

responses to a disturbance event is important for predictive power in studying microbial communities.

To address this gap in knowledge, we examined the effects of disturbance on a bacterial community enriched

from the refuse pile of the leaf-cutter ant Atta colombica that had previously been passaged in the lab on

minimal media and cellulose by Lewin et al. (13, 14). Leaf-cutter ant refuse piles are composed of discarded

plant biomass that has been partially degraded by the ants’ mutualistic fungal cultivar, Leucoagaricus

gongylophorus (15). Previous work has demonstrated that these refuse piles are enriched with plant-biomass

degrading microbes (16, 17). Focusing on bacterial communities derived from leaf-cutter ant refuse piles,

Lewin et al. experimentally evolved cellulose-degrading bacterial communities and investigated their

compositional dynamics and cellulolytic abilities (13, 14). During each passage, a portion of the community

was aliquoted into a new test tube containing fresh minimal media and a new strip of cellulose. These serial

transfer events are analogous to disturbance events, as it is a species-independent method of biomass

reduction and provides the “survivors” with a replenished ecosystem. This method of proxying disturbance

through removing cells has been used in other studies (18).

Lewin’s community was enriched on cellulose, a recalcitrant crystal of β-1,4-linked glucose molecules.

Cellulose is insoluble in water, and must be cleaved by endocellulases (EC 3.2.1.4) and exocellulases (EC

3.2.1.74) into cellobiose. Cellulase genes have limited distribution in bacteria, but β -glucosidases (EC

3.2.1.21), which cleave cellobiose into glucose, are more widespread (19). Thus, cellulolytic and noncellulolytic

microbes compete for cellobiose – and these interactions may impact the community’s composition (20, 21).



Lewin et al. 2022 evaluated successional dynamics in this microcosm by measuring the relative abundance of

16S rRNA genes every day for a week and found that a Cellvibrio operational taxonomic unit (OTU) was

more abundant up to 48-72 hours, before other OTUs became more abundant (14). This finding suggests

that a cellulose degrader must proliferate and produce cellulases before noncellulolytic opportunists can take

advantage of liberated cellobiose or metabolic byproducts.

Our goal was to understand how substrate complexity interacts with disturbance frequency to shape

community diversity. We hypothesize that diversity maximizes on a simple substrate (glucose) at higher

disturbance frequencies but maximizes on a complex substrate (cellulose) at lower disturbance frequencies.

We reasoned that on a simple substrate with low disturbance, competition exclusion would be a stronger

driving force for community assembly while more frequent disturbances would disrupt competitive microbes

from establishing. Conversely, on complex substrates, the ability to use the substrate would be a more

important driving force. Since cellulases are phylogenetically limited in distribution (19), we hypothesize that

the bacteria that initially grow will be those that can degrade cellulose similar to what Lewin et al. 2022

observed (14). Frequent disturbances should select for bacteria that can directly use cellulose. As cellulose is

degraded into cellobiose, those molecules enrich the surrounding media and feed non-degraders. Thus, at

infrequent disturbances non-degraders can grow making the community taxonomically richer.

To test our hypotheses that diversity maximizes on glucose at high disturbance frequencies and maximizes on

cellulose at lower disturbance frequencies, we subjected Lewin et al.’s cellulose-enriched community to two

substrate treatments: minimal media supplemented with either glucose or cellulose. Each substrate was then

subjected to five disturbance frequencies: passage every 1, 2, 3, 5, or 7 days. At the end of their assigned

disturbance regime, we expanded the communities into multiple tubes of their respective substrate and

destructively sampled over the course of one week. We then extracted DNA from these samples for 16S

rRNA gene amplicon Illumina-based sequencing. Next, we analyzed these sequences to determine community

composition and measured diversity. By comparing the same disturbance frequency between substrate

complexities, we can evaluate how community diversity is affected by the interaction between disturbances

and resources.



Methods

Enrichment on cellulose

The bacterial community used here was previously enriched on cellulose as reported by Lewin et al (13, 14).

Briefly, approximately 3 mg of refuse dump originating from A. colombica refuse piles was added to test tubes

containing 5 mL of M63 minimal media, and a 1x10 cm strip of Whatman Grade 1 cellulose filter paper (GE

Healthcare Life Sciences, Pittsburgh, PA). As the filter paper was the only carbon source, it selected for a

cellulolytic community. The tubes were grown aerobically with shaking at 30 °C. Once the filter paper broke,

the test tube was vortexed, and 200 μL of the culture was transferred into a new test tube containing fresh

M63 media and a new strip of filter paper. This transferring process was repeated each time the filter paper

broke. These communities were previously reported at 20 transfers (13), and 60 transfers (14). For this work,

we used community “3A” from Lewin et al. 2022.

Media Used

M63 minimal media was used for all experiments. In 1 L: 61.5 mM potassium phosphate dibasic (Acros, Geel,

Belgium), 38.5 mM potassium phosphate monobasic (Acros, Geel, Belgium), 15.1 mM ammonium sulfate

(Gibco, Grand Island, NY), 0.5 mL of an iron solution (1 mg/ml iron sulfate in 0.01 M HCl), 1 mL of 1M

magnesium sulfate solution, 1 mL of 1 mg/ml thiamine solution (Acros, Geel, Belgium), and 5 mL of SPV-4

trace elements solution (22). This media was modified with different carbon sources, depending upon the

treatment. For glucose treatments, 12.5 mL of 40% filter sterilized glucose was added to per liter of M63

media. For cellulose treatments, 5 grams of cellulose powder per 1 liter of M63 was added. For tubes that

used cellulose paper, 1 strip of 1 x 10 cm Whatman Grade 1 cellulose filter paper (GE Healthcare Life

Sciences, Pittsburgh, PA) was added to a test tube containing 5mL of M63 media.

Disturbance experiment

To investigate how substrate complexity and disturbance frequency interact to shape community dynamics,

we grew Lewin’s cellulose enriched community from a freezer stock of transfer #73 in M63 media



supplemented with cellulose filter paper with shaking at 30 °C. Once the community broke the cellulose filter

paper, it was scaled up into a 250 mL culture of M63 media and cellulose filter paper. After four days of

growth (when we observed visible cellulose paper degradation) the community was split into test tubes

representing 10 different treatments (Figure 1). Communities were grown in 5 mL of M63 minimal media

supplemented with either glucose or cellulose. These two media treatments were further divided into five

disturbance treatments: every 1, 2, 3, 5, or 7 days test tubes were vortexed to homogenize the community and

200 μL of the culture was used to inoculate a new tube of fresh media. Each treatment had five technical

replicates. Each disturbance was carried out 10 times. That is, tubes in the 1 day disturbance treatment were

transferred every day for 10 days and tubes in the 7 day disturbance treatment were transferred every week

for 10 weeks. We refer to these disturbance treatments as 1/n days. For example, treatments that were

passaged every 3 days will be referred to as “1/3 days,” indicating 1 disturbance per 3 days. At the end of their

respective disturbance regime, each community was used to inoculate 7-10 tubes which were destructively

sampled every day for one week to evaluate any compositional dynamics. Those tubes were then destructively

sampled each day for one week. At sampling, the bacterial culture was spun down and the pellet and

supernatant were separated. Cell pellets were resuspended in Zymo DNA/RNA shield (Zymo Research,

Irvine, CA, USA) and stored at -80°C until DNA extraction.

DNA Extraction and Sequencing

We extracted DNA for 16S rRNA gene amplicon sequencing. Samples were extracted using QIAGEN

DNeasy PowerSoil kits (QIAGEN, Hilden, Germany) following the manufacturer’s instructions.

For 16S rRNA gene-based community profiling, the V4 regions of the 16S rRNA gene were amplified using

bacteria-specific primers, 515F: GTGCCAGCMGCCGCGGTAA and 806R:

GGACTACHVGGGTWTCTAAT ) (23). Each reaction contained 50 ng DNA, 0.4 μM forward primer, 0.4

μM reverse primer, 12.5 μL 2X HotStart ReadyMix (KAPA Biosystems, Wilmington, MA, USA), and water to

a final volume of 25 μL. Polymerase chain reaction (PCR) was performed using a Bio-Rad S1000

thermocycler (Bio-Rad Laboratories, Hercules, CA, USA). Cycling conditions began with initial denaturation



at 95 °C for 3 minutes, followed by 25 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds, and 72 °C for 30

seconds, and a final extension at 72 °C for 5 minutes. We included controls using sterile water in place of

DNA to ensure there was no contamination during PCR. PCR products were purified using gel extraction

from a 1.0% low-melt agarose gel (National Diagnostics, Atlanta, GA, USA) with a ZR-96 Zymoclean DNA

Recovery Kit (Zymo Research, Irvine, CA, USA) and DNA was quantified using a Qubit Fluorometer and

Qubit Kit (Invitrogen, Carlsbad, CA, United States). Samples were equimolarly pooled with 10% PhiX

control DNA and sequenced on an Illumina MiSeq using a MiSeq 2 × 250 v2 kit (Illumina, Inc.). Due to the

number of samples, sequencing was performed across two sequencing runs.

Sequence analysis and statistical analysis

Reads were processed using DADA2 (24) in R version 4.2.1 (25) with taxonomy assignment using the SILVA

V138.1 references database (26, 27). Sequencing yielded 11,670,039 sequences, and denoising, merging, and

removal of chimeric sequences resulted in 10,499,700 sequences. Samples had an average of 29,410.92 ±

33,930.7 sequences, and an average of 18.41 ± 12.62 ASVs. Of the 357 samples we sequenced, 302 were used

for analysis. Using the R package phyloseq (28, 29), we removed negative control samples, samples with low

reads (less than 1000 reads), and five samples that we suspect were mislabeled (Supplemental Fig. 1). We also

used phyloseq to transform ASV read count tables to relative abundance tables prior to downstream analysis.

We calculated Hill diversities based on relative abundances to measure the diversity within our samples

(30–33). We calculated Hill diversity numbers 0, 1, and 2 using the R package hillR (34). Hill diversity number

0 does not weight “species” abundance and represents is the richness or number of ASVs, Hill diversity

number 1 weights abundance for all “species” is the exponential of Shannon’s entropy or number of common

species, and Hill diversity number 2 gives more weight to common “species” is the inverse of Simpson’s

diversity index or number of very common species (30, 34). We used a student’s t-test to determine whether

disturbance frequency 1/3 days had the greatest Hill 1 diversity for cellulose treatments, and whether

disturbance frequency 1/1 days had the greatest Hill 1 diversity for glucose treatments. To evaluate whether a



linear curve or unimodal curve better fit our diversity-disturbance data, we performed both a linear regression

and a quadratic regression of Hill 1 diversity measurements.

The R package vegan (35, 36) was used for beta-diversity analysis, and we supplemented this analysis with the

R package usedist (https://github.com/kylebittinger/usedist). To quantify the differences between our

samples, we calculated Bray-Curtis distances of ASV composition in our samples. To test whether there is

more similarity within our variable groups (substrate, disturbance frequency, replicate, time sampled, Illumina

run) than between variable groups, we used the R package vegan (35, 36) to perform an analysis of similarity

(ANOSIM). To test whether the centers (centroids) of our data clusters significantly differed, we performed a

PERMANOVA using the adonis() function in the R package vegan. To evaluate the differences in community

variation based on disturbance frequency or time within each substrate treatment, we used the R package

usedist (https://github.com/kylebittinger/usedist) to measure the distance between cluster centroids, and the

distance from samples to cluster centroids. We used a student’s t-test to test whether the differences in

ordination distance between substrate treatments were statistically significant. Additionally, we used an

analysis of variance (ANOVA) to test whether the means of different disturbance frequency treatments or

time sampled (within each substrate treatment), were significantly different. Scripts for read processing,

diversity analysis, and figure generation can be found at

(https://github.com/donnyhoang/cellulose_disturbance).

Data availability

Amplicon sequencing data have been uploaded to the NCBI databases under BioProject number

PRJNA1008240. Supplemental File 1 contains individual accession numbers and relevant metadata for each

sample.

Results

Community composition varies between treatments

https://github.com/kylebittinger/usedist


Communities grown on different substrates were found to be dominated by different microbes (Fig. 2).

Across those treatments with cellulose as the only carbon source samples, the most abundant microbes

include Cellvibrio, Lacunisphaera, and Asticaccaulis, while two Pseudomonas amplicon sequence variants (ASVs)

dominated samples with glucose as the only carbon source. However, they are not as abundant in cellulose

samples, where they range 0% to 14.9% and 0% to 32.89% relative abundance. Similarly, the three most

abundant ASVs in our cellulose samples were not abundant across the glucose samples. Cellvibrio (range 0% to

2.71%), Lacunisphaera (range 0% to 0.5%), and Asticaccaulis (range 0% to 1.83%) are all low relative abundance

of glucose samples.

Disturbance frequency also impacted community composition when communities are grown on cellulose. In

the cellulose substrate treatments, communities were dominated by Asticaccaulis (range 47.97% to 83.05%

relative abundance) in the highest disturbance frequency (1/1 days). Lacunisphaera (range 0 to 0.11%) and

Cellvibrio (1.16% to 42.06%) were present at lower relative abundance in the highest disturbance frequency

treatment (1/1 days). At the lowest disturbance frequency (1/7 days) the community was dominated by

Lacunisphaera (range 26.54% to 59.7%) and Cellvibrio (18.45% to 57.75%) while Asticaccaulis was lower (0.49%

to 7.85%) in relative abundance.

Disturbance frequency does not impact the community composition of our glucose samples as strongly as it

did in the cellulose treatment. Two Pseudomonas ASVs dominate nearly all the glucose samples. One

Pseudomonas ASV ranges from 17.03% to 84.25%, and a second Pseudomonas ASV ranges 5.63% to 82.04%

relative abundance. A third ASV belonging to the genus, Cohnella, becomes abundant in the highest

disturbance frequency treatment (1/1 days) ranging from 12.6% to 40.49% relative abundance. In other

disturbance frequency treatments of glucose samples, Cohnella ranges from 0% to 0.66% relative abundance.

Disturbance frequency also impacts community dynamics. When cellulose samples were grown in more

frequent disturbance treatments, 1/3 days 1/2 days and 1/1 days, there was a clear change over time in

community composition. In the 1/3 frequency treatment, Cellvibrio was initially abundant (range 60.18% to

67.97% on Day 1 to 12.53% to 44.99% on Day 7), but gives way to the second Pseudomonas ASV and Cohnella



(14.82% to 32.89% on Day 7 and 10.95% to 27.71% on Day 7 respectively). In the 1/2 days frequency

treatment, Asticcacaulis is initially abundant (range 54.3% to 60.27% on Day 1 to 11.28% to 23.74% on Day 7)

before Cellvibrio increases in abundance as the week progresses (6.87% to 18.85% on Day 1 to 42.07% to

68.85% on Day 7). The 1/1 days frequency treatment showed a similar trend to the 1/2 days frequency

treatment, but Asticcacaulis was dominant across the week of sampling (range 74.61% to 80.45% on Day 1 to

52.56% to 66.41% on Day 7) and Cellvibrio starts low but increases in abundance (1.42% to 3.79% on Day 1

to 25.6% to 40.43% on Day 7). The cellulose substrate samples subjected to lower disturbance frequency

treatments (1/7 days and 1/5 days) did not have a clear successional pattern.

Glucose samples largely did not show change in community composition across the week we sampled, with

most of the community dominated by two Pseudomonas ASVs. However, the disturbance frequency treatments

1/7 days and 1/5 days showed some dynamics. In the 1/7 days disturbance frequency treatment, one

Pseudomonas ASV increases (range 17.03% to 52.78% on Day 1 to 67.46% to 72.91% on Day) while a second

Pseudomonas ASV decreases (46.67% to 82.0% on Day 1 to 25.93% to 30.64% on Day 7) in relative abundance.

The 1/5 days treatment showed a similar trend where one Pseudomonas ASV increases (24.52% to 34.79% on

Day 1 to 67.03% to 71.66% on Day) and the second Pseudomonas ASV decreases (64.41% to 74.53% on Day 1

to 27.42% to 31.06% on Day 7).

Communities cluster by growth substrate

To better quantify the differences between our samples, we calculated Bray-Curtis distances between samples.

We examined the first three latent variables in ordination analysis but visualized a biplot for ease of viewing

(Fig. 3A, Supplemental Fig. 3 contains a view of the three-dimensional plot). To test whether there is a

significant difference between sample groups, we performed an analysis of similarity. We found that samples

were most dissimilar based on Substrate (ANOSIM R = 0.912, p-value = 0.001). Samples separate along the

NMDS1 axis based on substrate, and form two distinct clusters. Additionally, samples grown on cellulose

have greater distances between centroids compared to glucose samples (student’s t-test, p-value = 0.00062)

(Fig. 3C). Within the two substrate clusters, samples appear to group by disturbance frequency treatment. We



measured the distance from each sample to their centroid (when clusters are based on disturbance frequency

and substrate). There was no significant difference between the cellulose and glucose samples for the lowest

and highest disturbance frequency treatments (Fig. 3D). However, for disturbance frequency treatments 1/5

days, 1/3 days, and 1/2 days, cellulose samples had greater distance to their respective centroids than glucose

samples (student’s t-test, p-value = 0.0022, p-value = 1.0e-08, and p-value = 1.7e-07 respectively). Finally, the

means of sample distance to centroid between disturbance frequency treatments was statistically significant

for both cellulose treatments (ANOVA p-value = 2.0e-07) and glucose treatments (ANOVA p-value =

1.9e-05). Across days sampled, cellulose communities always had greater distance to centroids than glucose

samples (Supplementary Figure 5). Here, cellulose samples did not differ significantly in mean of sample

distance to centroid (ANOVA, p-value = 0.085), but glucose samples did (ANOVA, p-value = 2.6e-05).

Diversity-disturbance relationships differ based on substrate

To evaluate how substrate complexity and disturbance frequency interact to affect community diversity, we

measured the diversity of our samples using Hill diversities (30, 31, 33). We found that diversity changes

across disturbance frequency, but this pattern differs depending on the substrate the community was grown in

(Fig. 4A). Samples grown in cellulose had the greatest Hill 1 diversity for 1/3 disturbance frequency (mean

4.866 ± 1.22 common ASVs), and this was statistically significant when compared to other disturbance

frequency treatments grown on cellulose (Fig. 4B). Samples grown in glucose had the greatest Hill 1 diversity

at the highest disturbance frequency (3.51 ± 0.4 common ASVs in the 1/1 disturbance frequency treatment),

and this was statistically significant when compared to other disturbance frequency treatments grown on

glucose (Fig. 4B).

We also measured Hill 0 (richness) and Hill 2 (Inverse-Simpson index) (Supplemental Fig. 3). We observed

greater mean Hill 0 diversity for cellulose samples in nearly all disturbance frequencies, except for 1/2 days

where there is a nonsignificant difference (Supplemental Fig. 2A). Cellulose samples have greater mean Hill 2

diversity than glucose samples in all disturbance frequencies, except for the highest disturbance frequency

treatment, 1/1 days (Supplemental Fig. 2B).



We performed both a linear regression and quadratic regression to test for a unimodal or monotonic pattern

of the Hill 1 diversity and disturbance frequency relationship. We found that neither a linear nor quadratic

shape fit the cellulose data (Supplemental Fig. 4). Adding a quadratic term improves the fit (linear regression

R2 = 0.10; quadratic regression R2 = 0.25). A linear model better describes the glucose Hill 1 diversity data (R2

= 0.84), and adding another term improves the fit (R2 = 0.87).

Discussion

In this study, we aimed to address how substrate and disturbance frequency interact to shape microbial

community structure. We found that substrate is a main driver of the communities’ response to disturbance.

We demonstrated that diversity peaks at the intermediate disturbance frequency, 1/3 days, when the

community is grown on cellulose, a recalcitrant carbon source. However, community diversity peaks at the

highest disturbance frequency, 1/1 days, when the community is grown on glucose, a labile carbon source.

The results of this work show how community response to disturbances can be impacted by the substrate

they are grown in and contribute to our understanding of how environmental factors interact with

disturbances to impact bacterial communities.

Diversity-Disturbance Relationships

Our community displays a different Diversity-Disturbance Relationship (DDR) depending on the substrate it

is grown on. When grown on cellulose, the diversity peaks at an intermediate disturbance frequency (Fig. 4)

that fits with predictions of the Intermediate Disturbance Hypothesis, which posits that diversity peaks at

intermediate disturbances (5). However, the IDH has been found to be an inadequate framework as studies

across a variety of ecosystems have found many divergent types of DDRs (6, 37). Our findings also

demonstrate the incompleteness of the IDH; communities grown on glucose peak in diversity at our highest

disturbance frequency treatment. Differing DDRs resulting from the same experimental system have been

observed before (18). Hall et al. 2012 manipulated disturbance intensity (the proportion of cells they moved)

and used a simpler one-species community – exploiting the ability of Pseudomonas fluorescens to exhibit distinct



morphotypes based on access to oxygen. They found a flat, monotonically increasing, or unimodal DDR

depending on the disturbance intensity (18).

We ran model fitting to test for a unimodal or monotonic pattern for our Hill 1 diversity measurements but

found that neither a linear nor a quadratic regression fit our cellulose samples (Supplemental Figure 4). A

linear regression led to a poor model fit (linear regression, R2 = 0.10). Adding another term improved the fit

(quadratic regression R2 = 0.25) but was still poor overall as only 25% of the variance in our measured Hill 1

diversity is explained by the model. Additionally, plotting the residuals of these models reveals non-random

patterns (Supplemental Figure 4C). Both linear and quadratic models for cellulose samples typically have

positive values while both linear and quadratic models for glucose samples typically have negative residuals.

We speculate the poor fit, especially for our cellulose samples, is due to our longitudinal sampling where

bacterial ASV abundances are changing over time. A model that incorporates time may better fit our data.

Since our student’s t-test demonstrate that diversity peaks at the intermediate disturbance frequency (1/3

days) for cellulose samples, and that diversity peaks at the greatest disturbance frequency (1/1 days) for

glucose samples, we conclude that samples grown on cellulose have a unimodal DDR while samples grown

on glucose have a monotonically increasing DDR.

Other experiments have found a variety of DDRs, including a U-shaped DDR (38). A model of a

two-member community, based on experimental observations, consistently found unimodal DDR, although

the exact shape changed with time (39). A more recent model of a two-member community displayed

multimodality (40). One potential reason we did not observe a unimodal DDR with our glucose treatment

could be because we did not have a disturbance regime that was frequent enough to result in a population

bottleneck. If the disturbances were so frequent that no, or very few, microbes were being passaged each time,

then we might expect the diversity of the glucose communities to decrease.

Extent of variation and substrate

Cellulose samples displayed greater variation between samples than glucose samples (Figure 3A, 3C).

Furthermore, within substrate treatments, disturbance frequency affects community variation. These findings



reflect ASV compositional patterns within each treatment (Figure 2). Additionally, we used an ANOVA to test

whether there was a significant difference between mean distance to centroid between disturbance frequency

treatments (Figure 3D). We found that both cellulose and glucose samples were significantly different across

disturbance frequencies. These findings suggest that disturbance frequency affects the variation, but the

extent of this variation depends on the substrates. We performed a similar analysis but grouped our samples

by time rather than disturbance frequency (after accounting for substrate) (Supplemental Figure 5). The mean

distances of cellulose samples are always greater than glucose samples across time, but cellulose samples are

not significantly different from each other. The mean distance of glucose samples, however, are significantly

different from each other. This finding suggests that even though time may explain some variation, substrate

is still the primary factor for variation.

Disturbance disrupts community composition

Following their assigned disturbance regime treatment, we sampled our experimental communities over the

course of a week to evaluate how disturbance frequencies may impact community assembly. In the

intermediate disturbance frequency for cellulose treatment (1/3 days), Cellvibrio is typically abundant, before

being replaced by other taxa. This succession resembles what Lewin et al. 2022 reported. However, at lower

frequencies (1/7 and 1/5 days) Lacunisphaera was also found to be abundant, and at higher frequencies (1/2

days and 1/1 days) Asticcacaulis increases in relative abundance. Notably, Cellvibrio starts at lower relative

abundance before increasing in the high frequency disturbance treatments (1/2 and 1/3 days).

It is important to note that Lacunisphaera was not identified in Lewin’s work. Lacunisphaera spp., which belong

to the Verrucomicrobia phylum do not have any reported have cellulolytic activity, although one isolate has

been described to use a variety of carbon sources (41). An Asticcacaulis ASV was abundant in our high

frequency cellulose treatments and an Asticcacaulis OTU was found in Lewin et al. 2016 (13). Asticaccaulis has

been found in other lignocellulolytic communities including communities derived from wood or forest soil

(42, 43).



Communities grown in glucose did not display obvious assembly patterns at most disturbance frequencies.

We identified two abundant Pseudomonas ASVs in the glucose substrate treatments. We cannot determine if

these represent different populations, but they appear to have different dynamics across disturbance

frequencies. As our study was limited to 16S rRNA gene amplicon sequencing, we cannot determine what

mechanisms led to the abundance of Pseudomonas ASVs in the glucose samples. Pseudomonas is a common

environmental microbe, known best as a soil-dweller or member of the rhizosphere microbiome (44). As

enteric bacteria, the Pseudomonas ASVs likely have faster growth rates than other ASVs in these communities.

Enrichment for copiotrophs when growth substrate is supplemented with labile carbon has been observed in

a previous study (45). Additionally, Pseudomonas are known for producing a variety of natural products,

including molecules that suppress competing microbes (46, 47). This may be one explanation for how it came

to dominate the glucose samples.

The two Psuedomonas ASVs dominated community composition in most disturbance frequencies for

communities grown in glucose, except for the highest frequency treatment which also had highly abundant

Cohnella ASV. An isolate from this genus has shown cellulolytic ability (48, 49). Although we cannot explain

why it is abundant in the high frequency glucose samples, the same ASV is also found in the intermediate

frequency of our cellulose samples, which matches the report of Lewin et al. 22 that found Cohnella to be

positively associated with cellulose degradation (14). They did not recover a metagenome-assembled-genome

classified to Cohnella.

The different diversity peaks and successional patterns we observe are likely due to the differing interactions

between microbes in the two substrates we considered. Cellulose is a recalcitrant substrate that must be

cleaved into cellobiose (a glucose dimer) which is transported into the cell before being cleaved into glucose

(50). Cellvibrio is likely the dominant cellulose-degrader in this microcosm (13, 14). In order to degrade

cellulose, Cellvibrio produces extracellular endoglucanases(EC 3.2.1.4) and exoglucanases (EC 3.2.1.74) that

liberate cellobiose from the cellulose polymer (51). Excess cellobiose molecules are likely what feeds the

remaining community. Thus, non-cellulolytic organisms cannot immediately consume carbon in our cellulose

treatments and must wait for cellulose-degraders to enrich the media with labile cellobiose. In contrast,



glucose is labile, and thus competition is likely a much stronger driving force in community dynamics. This

study is limited by our choice to use glucose as a substrate. Cellobiose is more reflective of natural processes,

and the insights from this study would be improved had we used it. However, we do not expect dramatically

different conclusions, as cellobiose is still labile relative to cellulose.

Given that we used 16S rRNA gene amplicon sequencing, we cannot make definitive conclusions about the

type of interactions in our community. Substrate can influence bacterial interactions. For example, one study

demonstrated that synergistic interactions found in co-cultures of Citrobacter freundii and Sphingobacterium

miltivorum on carboxymethyl-cellulose, xylan, and lignin or wheat straw were lost when the pair was grown on

glucose (52). We cannot make a direct comparison, since cellulose is only structurally complex compared to

glucose (a polysaccharide compared to a monosaccharide), while xylan and lignin are more complex in other

ways. For example, the xylan backbone is a polymer of xylose, but is decorated with a diversity of side groups

(i.e. acetate, uronic acid, ferulic acid) and xylose groups can be substituted with arabinose. These side groups

can form linkages to other xylan chains or lignin, and the deconstruction of xylan involves both the removal

of these side groups and depolymerization of the polysaccharide chain (53). A future study could investigate

how complexity of other lignocellulose biomass influences the response of a community to disturbance

frequency.

Conclusion

Here, we have demonstrated that communities will respond differently to the same disturbance regime, when

grown on substrates of varying complexity. We observe a peak in diversity at an intermediate disturbance

frequency when communities are grown on cellulose, a recalcitrant substrate. When grown on glucose,

however, we observed a peak in diversity at the highest disturbance frequency. Although substrate is a strong

predictor for community composition, communities further cluster by disturbance frequency, and

successional dynamics differ between disturbance treatments for the same substrate. These results suggest

that the range of DDRs we observe across different microbial systems may be due to the nutritional resources

microbial communities can access and the interactions between bacteria and their environment.
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Figure Legends

Figure 1. (A) Image of A. colombica refuse dump. These piles are predominantly composed of partially

degraded plant biomass, removed from the bottom of fungus gardens by worker ants. (B) Worker ants

carrying pieces of refuse material. (C) Experimental setup. The cellulose-enriched community was used as the

starter inoculum for the growth of microbial communities exposed to ten treatments. Samples were grown in

either cellulose or glucose supplemented M63 minimal media, then subjected to one of five disturbance

regimes. At the end of their respective disturbance regime, communities were used to inoculate 7-10 tubes

(containing their respective substrate) and those tubes were destructively sampled every day for seven days.

“Test Tube” icon by art shop, and “Arrow” icon by Yoteyo, from thenounproject.com CC BY 3.0.



Figure 2. Bar graph of community composition based on relative abundance of 16S rRNA gene amplicon

sequencing of the top 15 most abundant ASVs and their assigned bacterial genus. The top row of plots

represents samples grown in M63 minimal media and cellulose, and the bottom row of plots represents

samples grown in M63 minimal media and glucose. Plots are faceted by disturbance frequency (1/n days).

Within each facet, samples are grouped by time sampled to observe any compositional dynamics.

Figure 3. (A) NMDS plot of community composition. Distance matrix was calculated using Bray-Curtis

distance method. We examined the first three dimensions in ordination analysis (k = 3, stress = 0.037) but

visualize a biplot for ease. A 3D view can be found in Supplemental Figure 3. Communities grown in

cellulose are shown as circles, and communities grown in glucose are shown as squares. Disturbance

frequency is marked by color. (B) Table of ANOSIM and PERMANOVA calculations of recorded factors

that may contribute to variance. (C) Boxplot of distances between centroids of data clusters based on

disturbance frequency and accounting for substrate treatment (cellulose in green, glucose in pink).

Significance label represents student’s t-test, comparing the mean distance between cellulose and glucose

treatments. (D) Boxplot of distance to centroids of samples, clustered based on disturbance frequency and

accounting for substrate. Significance labels represent student’s t-test, comparing the mean distance between

cellulose and glucose treatments of the same disturbance frequency. The mean distance between disturbance

frequencies treatments for cellulose samples (ANOVA p-value = 2.0e-07) and glucose samples (ANOVA

p-value = 1.9e-05) was statistically significant.

Figure 4. (A) Boxplot of Hill 1 diversity. Green boxes represent samples grown on cellulose, pink boxes

represent samples grown on glucose, and “n” refers to the number of samples within that disturbance

frequency treatment. (B) Table of student’s t-tests demonstrating that the 1/3 days disturbance frequency for

cellulose has the highest mean Hill 1 diversity compared to other cellulose samples, and that the 1/1 days

disturbance frequency for glucose has the highest mean Hill 1 diversity compared to other glucose samples.



(C) Table of student’s t-tests comparing means of Hill 1 diversity measurements between cellulose and glucose

samples of different disturbance frequency treatments.

Supplemental Figure 1. Bar graph of relative abundance plot of samples from the disturbance frequency

1/2 treatment based on relative abundance of 16S rRNA gene amplicon sequencing of the top 15 most

abundant ASVs and their assigned bacterial genus. The left graph represents samples grown on cellulose, and

the right graph represents samples grown on glucose. Within each graph, samples are grouped by time

sampled. Samples from day 5 of the cellulose treatment were removed from analysis, as we suspect they were

mislabeled or mis-pipetted at some point prior to sequencing.

Supplemental Figure 2. Boxplot if Hill 0 and Hill 2 diversities. Green boxes represent samples grown on

cellulose, pink boxes represent samples grown on glucose, and “n” refers to the number of samples within

that disturbance frequency treatment. Significance values represent student’s t-test comparing cellulose

samples to glucose samples of the same disturbance frequency treatment.

Supplemental Figure 3. A view of a 3D NMDS plot of community composition. Distance matrix was

calculated using Bray-Curtis distance method. Communities grown in cellulose are shown as circles, and

communities grown in glucose are shown as squares. Disturbance frequency is marked by color.

Supplemental Figure 4. A revisualization of Figure 4, where each point represents an individual sample, and

the color of that point represents its substrate treatment. (A) has a linear regression, while (B) has a quadratic

regression. The models were calculated from Hill 1 diversity measurements. (C) Residuals of linear and

quadratic models (marked by a circle or triangle respectively) calculated from either cellulose or glucose

samples. The color of points represent disturbance frequency treatments.

Supplemental Figure 5. Boxplot of distance to centroids of samples, clustered based on time sampled and

grouped by substrate. Significance labels represent student’s t-test, comparing the mean distance between

cellulose and glucose treatments of the same sampling time. The mean distance between sampling time for

cellulose samples did not different significantly (ANOVA p-value = 0.085), and was statistically significant for

glucose samples (ANOVA p-value = 2.6e-05).



Supplemental Dataset 1. NCBI accession numbers and metadata of 16S rRNA gene sequencing data

generated for this work.


