A Framework for Nucleation in Electrochemical Systems and the E Dendrite Growth

Madison Morey¹, Giacomo Nagaro⁴, Anubhab Halder,³ Sahar Sharifza

¹Division of Materials Science and Engineering, Boston University, Bos

USA

²Department of Mechanical Engineering, Boston University, Boston, I

³Department of Electrical and Computer Engineering, Boston University

02215, USA

⁴Department of Chemistry, Boston University, Boston, Massachusetts

⁵Department of Physics, Boston University, Boston, Massachusetts 02

*Corresponding author: ryanem@bu.edu, 617-353-7767

<u>Abstract</u>

Dendrite growth is directly attributed to the degradation of battery per attributes of dendrite growth have been extensively studied,

and characteristics impact growth. In this study, a numerical mode

computationally, little is understood about the nucleation process as

dense and less dendritic. When the defects cause a decrease is significantly more dendrite growth. Finally, the interplay that surproperties, due to the composition of the solid-electrolyte interplay dendrite growth is investigated showing that the dominating factor in

growth is improved Li⁺ transport through the SEI layer. The results

work can inform approaches to engineering more stable anode-

Keywords: Lithium Batteries, Dendrites, Computational Modeling, No

The energy storage capabilities of state-of-the-art Lithium (Li)-

the surface energy and improve the stability of the interface leadir

improved battery performance.

1. Introduction:

1. III Caaction.

fall short of society's demand for energy storage technologies in vehicles and large-scale renewable energy storage[2]. To combat t

the low theoretical capacity of the graphite anode (~372 mA h g⁻¹)[1]

metal anode which is considered the holy grail of anode technology

battery has emerged as a promising alternative. The Li-metal batte

catastrophic failure of the battery[7,8]. A key obstacle in the combatteries lies in understanding the morphological evolution of de

strategies to control and suppress dendrite growth.

Research into the growth and morphology of Li dendrites has however, little is known about the nucleation process of Li along the how surface characteristics, such as surface energy, impact this grow

proposed modes of nucleation such as top and bottom-induced nucl

primarily on defect-induced nucleation where subsurface defects can for nucleation or help to stabilize the interface[6]. In particular, the continuous in the lattice of Li metal and Li vacancies have on dendrite growth impurities, like the ones mentioned above, are present in uncycle

example, Li metal films produced via rolling have shown large amount

(O), and Nitrogen (N) impurities[14,15]. Researchers have shown the

decreased using specialized production methods such as thermal evalue be difficult and time-consuming [15]. Therefore, understanding how t

the surface chemistry and in turn, the Li plating can give insight into

transport properties through this layer changed. Liu *et al.*[17] preser looking at the impact that different components of the SEI layer had solid-state batteries and in turn the impact it had on Li plating. They

using a Li-11 wt % Sr alloy anode and a fluorinated electrolyte. Then,

experimental characterization, they showed that the interfacial energy when the SrF₂-rich SEI layer was present as opposed to a bare Li and energy combined with changes in the mechanical properties of the suppression of dendrite growth after cycling.

impact Li plating for Cu current collectors when initializing the Cu substantial batteries (ALMBs) a thin layer of Li is deposited on the Cu current conformation of the Cu current conformation in the current conformation of the Cu current conformation in the current conformation in

nucleation control methods such as increasing the number of nucleation

using a surface coating that possesses lithophilic cites to control

Additionally, many groups have studied how size, morphological

forming and ensuring that the distribution of nucleates is homogeno

surface area and reduced surface curvature[21–26].

They found that a low surface energy polymer coating with a high

Lopez et al.[22] studied how different polymer coatings imp

interfaces possessing slower nucleation rates, are more beneficial of

reactivity leads to larger Li nucleates, better plating, and improved cycling. This is because the low surface energy associated with the pointeraction with the Li metal anode meaning that it did not decrease between the Li metal and polymer resulting in large nucleates with minimize the surface area decreasing the reaction flux at the interface high interfacial energy results in better plating and overall better bands. [23] used a titanium (Ti) metal shield to aid in guided deposition or

shown to have a high interfacial energy providing a higher Li nucleation

in a low-density distribution of "pancake-like" nucleates and a slow

then showed that the initial morphology of Li nucleates on these sur

through SEM images showing needle-like dendrite growth on a base

interfacial energy and flat and non-dendritic growth on the high energ

reactive surface area. The morphology of these initial deposits res growth as opposed to the dendrite growth occurring on the low ener Researchers have used various methods to model the com process on both the atomistic and continuum scales[27–30]. Maeda Dynamics to study surface nucleation in anorthite-based glass using (CNT). Applying this model, they were able to calculate the nucleation physical parameters. Lu et al.[27] developed a transport-based mod method to aid in the identification of the mechanisms for bubble electrodes. Additionally, Jreidini et al. [30] uses CNT to calculate liquid

rates and incubation times. They do this using a phase-field crystal i the gap between the atomic and mesoscale allowing for the consi subsequent crystal growth. Adopting the techniques that have applications such as crystal nucleation can provide a starting poin nucleation in alternate systems, such as electrochemical nucleation [27-30].

Therefore, multiple studies have been proposed to theoretic

charged substrates. Additionally, Monroe and Newman[32] presented (P2D) surface-energy controlled growth model that incorporated curvature into the growth kinetics. The speed at which nucleates f influencing dendrite growth. Nagy *et al.*[33] used computational me

parameters including surface energy and overpotential affected the s

within a system. They showed that an increase in surface energy lea

state nucleation rate because the system has a larger energy to ov

nucleation rate increased.

While the aforementioned theoretical studies were successful fragments of the nucleation and growth processes, they have so Garcia's[31] analytical framework provided insight into how chartension and overpotential determined the energetic favorability of de

the model only considered the formation and growth process of indiv

consider their impact on subsequent dendrite growth. Monroe

considered the dendrite tip curvature and surface energy on dendrite

understanding of the impact these parameters and the nucleation growth and morphology after initial nucleation.

In this paper, we utilize a combination of the theoretical contodevelop a computational model (nucleation-SPH model) that capture their effects on dendrite growth and morphology by considering nucleation but also the interfacial transport and the subsequent good dendrites. This work builds off our previous model that include electrochemical migration[12], a spatially and temporally varying

anode-electrolyte interface[10]. Two main additions have been remarked nucleation physics. The first is the addition of a radial growth equation which a single Li nucleate grows. The second is the addition of a steep equation that tracks how quickly nucleates form in the system with restaurant and the system with the system with restaurant and the system with restaurant and the system with the sys

including surface energy and overpotential. While many factors im

including transport properties[36,37], charging methods[9,13], sepa

extended, concentration-dependent, Butler-Volmer equation that

electrode architecture[10] as studied is past papers utilizing the

dendrite growth. SPH also captures the morphology of the dendrit model is used in conjunction with DFT to study how point defect impurities in the Li-metal anode impact the surface energy and inflanode-electrolyte interface to inform the design of more stable bat

the model to consider the interplay of interfacial energy and tra

suppression of dendrite growth due to the presence of an LiF-rich SE

The model presented in this work solves for species conservati

2. Computational Methods:

interface and includes the effects of transport of cations through the electrodeposition. The model extends previous electrodeposition model that surface energy and nucleation have on electrodeposition[10,1] through the addition of a radial growth equation for a single hemisphere.

The Nernst-Planck equation is solved for the change in coelectrolyte, dC/dt, [39]

state nucleation rate equation derived from Classical Nucleation The

 $\partial C_i(\overrightarrow{r_f},t) = \nabla \left(\nabla \nabla C(\overrightarrow{r_f},t) \right) + \nabla \nabla \left(C(\overrightarrow{r_f},t) \nabla A(\overrightarrow{r_f},t) \right)$

In a binary electrolyte cations and anions remain electr electrolyte. Upon the application of a voltage, electroneutrality can diffusion layer due to the consumption of ions at the electrode surface violated a charge imbalance occurs and results in an electric pot

gradient can be solved via the electrostatic Poisson equation[39]
$$\nabla^2\phi(\overrightarrow{r_f},t)=-\frac{\rho_{charge}}{\epsilon},\overrightarrow{r_f}\in\Omega_f,t>0$$

the dielectric constant is ϵ , and the net charge density, ρ_{charge} , is giv

$$\rho_{charge} = F\left(z_{M^+}C_{M^+}(\overrightarrow{r_f},t) - z_AC_A(\overrightarrow{r_f},t)\right)$$
 where F is the Faraday constant.

Electrodeposition occurs at the anode-electrolyte interface. I

(M⁺) will be reduced via electrons (e⁻) and deposit as metal along the

$$M^+ + \rho^- \rightarrow M$$

through a reactive boundary condition for cations at the anode-elect

$$D_M + \nabla C_M + (\overrightarrow{r_s}, t) + \mu_M + C_M + (\overrightarrow{r_s}, t) \nabla \emptyset(\overrightarrow{r_s}, t) = S_s(\overrightarrow{r_s}, t),$$

where $\overrightarrow{r_s}$ is a location in the solid domain, $S_s(\overrightarrow{r_s},t)$ is the total flux

where α_a and α_c are the anodic and cathodic transfer coefficients, resconstant, and T is the temperature. The concentration in the bulk e

for cations and $C_{A,L}$ for anions, k^0 is the reaction rate, $\gamma(\vec{r_s})$ is the s Li surface and the electrolyte, and V_m is the molar volume. The radius zero for a perfectly flat surface and $k(\vec{r_s},t)=2/r(\vec{r_s},t)$ for a hen

where $r(\vec{r_s},t=0)$ is assumed to be larger than that of the critical rastable nucleate, [40–42]

$$r_{eq}^* = \frac{2\gamma(\vec{r_s})V_m}{F|\eta|}$$

The overpotential (η) is given by

$$\eta = \emptyset_{Ann} - \emptyset_{ea}$$

the equilibrium potential, \emptyset_{eq} , is the difference between the local reference potential and \emptyset_{App} is the potential applied to the system.

the Li⁺ flux for that nucleate at the anode-electrolyte interface and th

The growth rate of the individual nuclei radius, dr/dt, is ca

$$\frac{dr}{dt} = S_n(\vec{r_s}, t) * V_m, \qquad \vec{r_s} \in \Gamma$$

where N is the total number of atoms per unit surface area N

 $N_A C_{Li} + (\overrightarrow{r_s}, t) d$, N_A is Avogadro's number and d is the thickness of the the vicinity of the electrode (~10 Å) [33], k_B is the Boltzmann cons

$$\omega_c=\frac{S_ci_0}{z_{M}+e}$$
 the exchange current density, i_0 , is defined by $i_0=Fk^0C^{\alpha_c}_{M^+,L}C^{\alpha_a}_{A,L}$ [10]

collision of the atoms with the critical nuclei, ω_c , is [33,38]

ionic species (+1), e is the elementary charge and S_c is the surface are to the electrolyte, $S_c=2\pi r_{eq}^{*\,2}$. The formation energy of the crit

obtained by [33]

$$\Delta G_c = ze(\eta - \phi_{App})$$

The number of atoms in the critical nucleus, \boldsymbol{g}_{c} , can be obtain

$$g_c(\overrightarrow{r_s}) = \frac{32\pi}{3} \frac{\gamma(\overrightarrow{r_s})^3 V_m N_A}{(nzF)^3} f(\Theta), \qquad \overrightarrow{r_s} \in \Gamma$$

 $3 \qquad (\eta z F)^3 \qquad (77)^3$ where $f(\Theta) = 1/2 - 3/4\cos(\Theta) + 1/4\cos^3(\Theta)$ is a function of con-

There is a zero-flux boundary condition for the anions at the a

$$D_A(\vec{r})\nabla C_A(\vec{r},t) + \mu_A C_A(\vec{r},t) = 0, \vec{r},\epsilon\Gamma$$

The governing equations are implemented into the SPH metho

scheme of Tartakovsky *et al.* for Fickian Diffusion and precipitation [44 of Cannon *et al.* for migration [12], the discretization scheme of Morey

[10] and the heterogenous reaction boundary condition is impler surface reaction (CSR) method [45]. The final forms of the discretized

below, and further details on their implementations and verifica

references[9–13].

The Nernst-Planck equation (Eq. (1)) is discretized as
$$\frac{{}^{DC_{M}+,i}}{Dt} = \sum_{j \in liquid} \frac{{}^{2D_{M}+m_{j}}\overrightarrow{r_{ij}}}{\rho_{j}(\overrightarrow{r_{ij}})^{2}} \left(C_{M}+,i-C_{M}+,j\right) \nabla \overrightarrow{r_{ij}}$$

$$+ \sum_{j \in liquid} \frac{m_{j} \overrightarrow{r_{ij}}}{\rho_{j} (\overrightarrow{r_{ij}})^{2}} \mu_{M} + (C_{M+,i} - C_{M+,j}) (\phi_{i} - \phi_{j})$$

$$- S_{s} \sum_{k \in solid} \frac{m_{k}}{\rho_{k}} (\overrightarrow{n_{k}} + \overrightarrow{n_{i}}) (\beta_{k} + \beta_{i}) \nabla W_{ik}, \ i \in fl$$

where m, ρ , D and C are the mass, density, diffusion coefficient, particles respectively. The subscript M^+ represents the cations, su

individual SPH fluid particles, and k represents the solid particles. μ potential. The distance between particles i and j is given by $\overrightarrow{r_{ij}}$, \overrightarrow{n} is

characteristic function used to identify the anode interface S is the

$$\frac{DC_{A,i}}{Dt} = \sum_{j \in liquid} \frac{2D_A m_j \overline{r_{ij}}}{\rho_j (\overline{r_{ij}})^2} (C_{A,i} - C_{A,j}) \nabla W_{ij} + \sum_{j \in liquid} \frac{m_j \overline{r_{ij}}}{\rho_j (\overline{r_{ij}})^2} \mu_M + (C_{A,i} - C_{A,j}) (\phi_i - \phi_j) \nabla W_{ij},$$

where subscript A refers to anion properties.

As the cations are reduced at the interface they will deposit decrease in cation concentration at the interface. During charging, the be balanced by the rate of gain of the solid (m_k) due to precipitation. To

via the discretization scheme of Tartakovsky et al.[44]

$$\frac{Dm_K}{Dt} = S_s \sum\nolimits_{k \in liquid} \frac{m_k}{\rho_k} (\overrightarrow{n_k} + \overrightarrow{n_l}) (\beta_k + \beta_l) \nabla W_{lk},$$
 where the subscripts k and i represent solid and liquid particles respe

is twice the initial mass, the nearest fluid particle will precipitate and b

The governing equations are implemented into the SPH me

Large-scale Atomic/Molecular Massively Parallel Simulator (LAM domain is discretized as 150 by 150 units of h, which is the smoothin

360,000 discrete SPH particles with a particle density of 30 particles utilized to approximate the sharp boundary at the reactive interface a

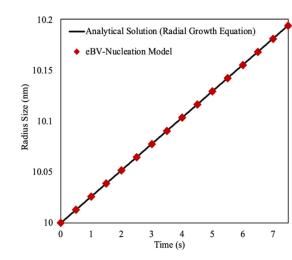
been verified. To do so, both the radius growth equation and the nu simplified, isolated, and then compared to their analytical solutions.

For both verification cases, the system does not model pl constant concentration boundary condition at the anode-electroly

These simplifications allow the specified equation to be solved for an

verification case is the radial growth equation. Here the system is ass flat surface, i.e. no nuclei present, where the curvature, k, is equal to

$$\frac{dr}{dt} = i_0 V_m \left[\exp \left(\frac{\alpha_a F}{RT} \eta \right) - \exp \left(\frac{\alpha_c F}{RT} \eta \right) \right]$$


and further Eq. (9), to the traditional Butler-Volmer equation without

This simplification allows us to solve the radius equation about solution for the radius of nuclei at a particular time (r(t)).

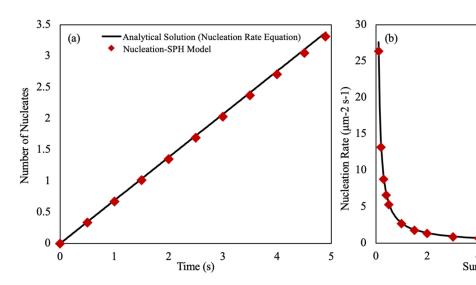
solution for the radius of nuclei at a particular time
$$(r(t))$$
.
$$r(t) = r_0 + i_0 V_m \left[\exp\left(\frac{\alpha_a F}{PT} \eta\right) - \exp\left(-\frac{\alpha_c F}{PT} \eta\right) \right]$$

The initial nuclei radius, which must be larger than the thermodynamically favorable to grow is given by r_0 and t is the

nucleates was obtained from the numerical data and compared direct

Figure 1: Comparison of numerical solution to ana solution for radial growth equation.

The second verification case is the verification of the nucleation concentration condition is assumed and the resulting equation for


given as,

$$\frac{dn(\overrightarrow{r_s},t)}{dt} = N \frac{\omega_c}{g_c} \left(\frac{\Delta G_c}{3\pi k_B T}\right)^{1/2} exp\left(-\frac{\Delta G_c}{k_B T}\right)$$

Where N is defined as $N=N_AC_{Li}+d$ and is a constant value. This simple for the analytical solution, assuming that there are, initially, no nuclei

$$\alpha \wedge \Lambda C \wedge 1/2$$

The final verification compares the numerical result to the system undergoes changes in surface energy. To obtain the data from the surface energy was varied over multiple simulations. The steady then extracted from the simulation data and plotted against Eq. (22 surface energy increases, the steady-state nucleation rate decreases. well with the analytical solution with an average error of less than 5%

Figure 2: Comparison of numerical solution to analytical solution for the stead comparison with respect to a change in time over five seconds of simulation time (change in surface energy

2.3 Density Functional Theory Calculations:

valence electrons for Li, Al, C, N, O, F, and P, respectively. Calculation planewave energy cut off 450 eV, Pulay density mixing [54,55] with and a Marzari-Vanderbilt smearing of occupations [56] (cold smearing)

Starting structures were obtained from the Materials Project

154, mp-12957, mp-1067793, and mp-157) and re-optimized within the BFGS and MDMin algorithms as implemented in ASE. Subsequent Li(100) surface was constructed using ASE and its structure re-optimized at the bulk values. To study substitutional defects (AI, C, N, O, F, P) Li(100) was created, where n = 3,5,7 and two Li atoms on opposite replaced by defect atoms. Both faces contain a defect to prevent the dipole along the perpendicular direction due to the presence of the defect were placed in the center of the top and bottom faces of the supercell structure was optimized while the lattice constants were kept to the

structural optimizations, forces on atoms were converged to less that

The surface energy was calculated as:

pseudoconvex energy surfaces. The MDMin-optimized geometries a our presented results using the BFGS algorithm. The final surfaces.

presented in Table 1. These values are incorporated into our nucleat

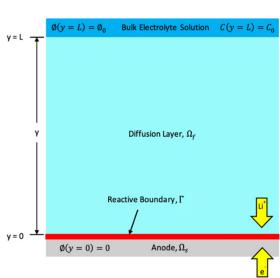
14.

Oxygen Substitutional

Nitrogen Substitutional

Table 1: DFT-Predicted surface energies for a series of defects at different sake of analysis, the electronegativity associated with the defect is sh

Defect Type	Concentration (10^{18} defects cm^{-2})	Electronegativ
Pristine Li	-	1
	1.0632	
Carbon Substitutional	2.9536	2.5
	5.7888	
	1.0632	
Phosphorus Substitutional	2.9536	2.1
	5.7888	
	1.0632	
Fluorine Substitutional	2.9536	4
	5.7888	
	1.0632	
Aluminum Substitutional	2.9536	1.61


5.7888 1.0632

2.9536

5.7888 1.0632 2.9536 3.44

3.04

The simulation domain is comprised of an anode, a layer adjate the diffusion layer, where transport occurs, and the dendrite structure contains a constant concentration region, a distance L from the anodesimulation domain prior to dendrite growth. As the simulation progres occurs the reactive boundary will adapt to the newly formed dendrite presented in Section 2 is a universal model, thus cations and anions we respectively. However, for the remainder of the study the cations we the application of the method to dendrite growth and electrodeposite

Figure 3: Schematic of the simulation domain including anode surface (0, grey)

$$C_i(y = L, t) = C_{i,L}$$

electroneutrality is assumed at this location,

$$z_{Li} + C_{Li} + + z_A C_A = 0$$

 $\nabla C_i = 0$

where z_{Li^+} and z_A are the charge of the Li $^+$ and anions, respective

The Li⁺ and anion concentrations are equal and constant in

concentration. There is no initial concentration gradient for Li⁺ or ani

The potential at the reactive boundary, Γ , is the reference popular ground potential.

$$\phi(\overrightarrow{r_s},t)=0,\overrightarrow{r_s}\in\Gamma,t>0$$

resulting in a fixed potential, ϕ_0 , relative to the reference potential.

A constant voltage is applied to the top boundary at the con-

$$\phi(y = L, t) = \phi(\overrightarrow{r_f}, t), t > 0$$

Upon the application of this charging voltage, the anions will

while the Li⁺ will travel toward the anode. This results in a buildup

Here the Li⁺ will react with electrons (e⁻) and deposit as solid lithium

that is observed experimentally[16]. For example, because the diffusion down by approximately two orders of magnitude, the diffusion coefficient of maintain equivalent ratios between the diffusion diffusion coefficient. The physical properties used throughout this was a superior of the diffusion coefficient.

Symbol

 Δx

 n_{ea}

D

0.0

Table 2: Simulation Parameters

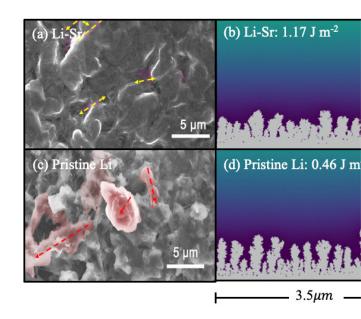
Diffusion coefficient* [7 13 60]

2.

Parameter

SPH particle interval

Kernel Density [12]


	$\boldsymbol{\nu}$	-
Mobility [12]	μ	(
Anion and Cation concentration (Initial) [61]	$C_{A,0}/C_{Li^+,0}$	(
Anion and Cation concentration	$C_{A,L}/C_{Li^+,L}$	(
(Bulk Electrolyte) [61]		
Transfer coefficients [32]	$lpha_A$, $lpha_C$	(
Reaction Rate [*] [10]	k^0	1.0
Applied potential	\emptyset_{APP}	

^{*} Adjusted parameter to minimize computational time while preserving the physics of the system.

3.1 Qualitative Experimental Comparisons:

The model's ability to accurately represent a physical syst comparison to experimental data. A limitation of experimentally valid

was observed that the plating on the high energy Li-Sr anode was sidendritic (Fig. 4a) than that on the low energy pristine Li anode (Fig. 4

Figure 4: Dendrite comparison of different anodes after cycling. (a) Top-view SEM of Li-S r anode with high interfacial energy (c) Top-view SEM of Pristine Li anode (d) model priow interfacial energy. Adapted with permission from S. Liu, X. Ji, J. Yue, S. Hou, P. War Han, J. Tu, C. Wang, High Interfacial-Energy Interphase Promoting Safe Lithium Metal Bar 2438–2447. https://doi.org/10.1021/jacs.9b11750. Copyright 2020 American Chemical St.

To compare the model results to that of the experimental re-

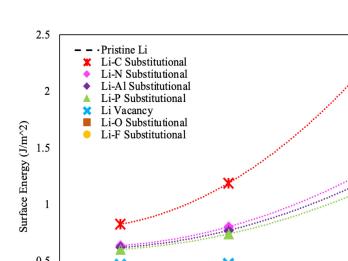
being consumed at the interface, the system remains reaction-limit mossy morphology as seen in Fig. 4b. These predictions compare reported in Liu *et al.*[17].

flat morphologies minimize surface area and decrease the rate of read

Based on the case presented above, as well as additional increased surface energy leads to a more favorable nucleate morpho rates resulting in a "layered" deposition as opposed to an "island concluded that the computational model presented in this paper is

4. Effect of Surface Energies and Transport on Dendrite Growth:

physical system.

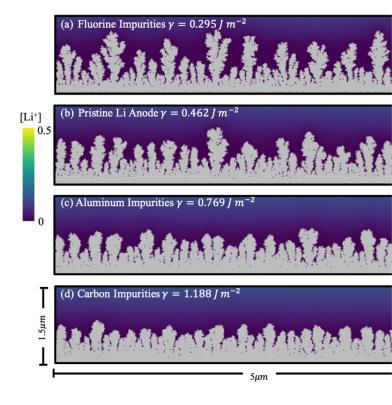

The nucleation-SPH model presented throughout this paper, in used to investigate how defects in the lattice of the anode impact the anode-electrolyte interface. It is nearly impossible to have a Li metal anode-electrolyte interface.

any lattice defects including impurity atoms and vacancies [14,15]. T

study how these defects impact the stability of the anode-electroperformance. To do this, seven different anodes with varying types an

positive increase in surface energy as the concentration of defect surface formation is less favorable with increase of defect-defect interior is a negative relationship between concentration and surface energy may be related to the relative higher electronegativity of F and O, what a net negative charge on the defect, localizing the electron density. The have very little effect on the surface energy in comparison to pristing metallic system; however, the surface energy was still directly propo

affected by this increase. For most defect types including C, N, Al, an



The surface energies were then implemented into the nuclear how dendrite growth was impacted by these defects. Fig. 6 shows dendrite selected defects at a concentration of 2.9536(10¹⁸) defects cm⁻² seen in Fig. 6b for a pristine Li anode with a surface energy of 0.46 growth across the surface. This unstable plating is due to the low surface. When impurity atoms are present that cause an increase in the growth across the anode is significantly denser (Fig. 6c and d). The

surface energy creates a large energy barrier for nucleation and g

Because of this large energy barrier, the rate at which the system for the nucleates are larger with smaller surface curvatures resulting in a smaller reaction flux at the anode-electrolyte interface[23,25]. The the interface results in the system remaining in a reaction-limited regular denser growth. This improvement in plating stability can be seen the are present in the anode (Fig. 6d) because it creates the highest energy atoms such as F are present in the crystal lattice, the surface energy are such as F are present in the crystal lattice, the surface energy are such as F are present in the crystal lattice, the surface energy are such as F are present in the crystal lattice, the surface energy are such as F are present in the crystal lattice, the surface energy are such as F are present in the crystal lattice.

significantly more branched growth (Fig. 6a). This is due to fast nucl

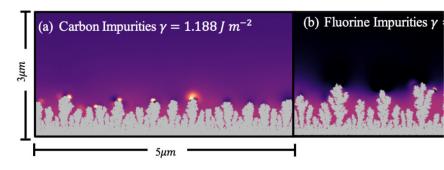
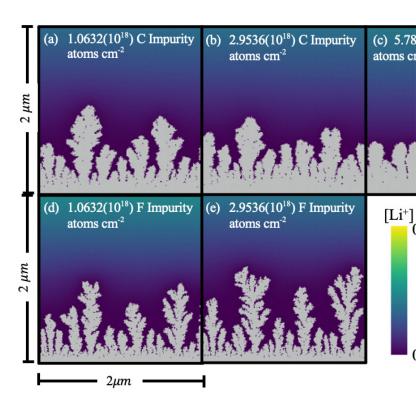


Figure 6: Model prediction of dendrite growth on Li anodes with varying defect typ. Li anode (b) $2.9536(10^{18})$ defects cm^{-2} Aluminum Impurity atoms (c) $2.9536(10^{18})$ defects cm^{-2} Fluorine impurity atoms. The color scheme for Li⁺ and the solid particles are colored grey for visualization.

To further explain these growth regimes, we can visualize the by isolating the effect that surface energy has on the reaction. In the


potential was kept constant between cases so that the effect of surfa

larger reaction at the interface due to increased reaction sites and This results in the rapid consumption of Li⁺ that outweighs the transleading to the highly negative flux observed at the tips of the dendrite these conditions, the system exists in a transport-limited regime and the tips of the dendrites before reacting resulting in the branched grown Fig. 7b[63].

Figure 7: Model prediction of Li dendrite growth on (a) Surface with carbon in and (b) surface with Fluorine impurities and a low surface energy. The Li⁺ flux are colored gray to distinguish them from the electrolyte.

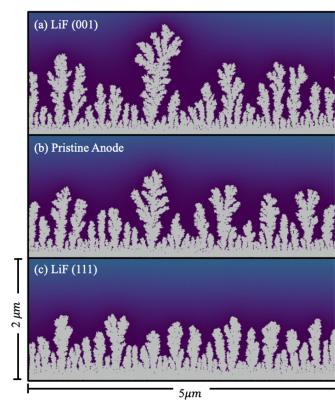

In addition to how the type of defect impacts Li plating, the ef of these defects has on plating was also studied. Fig. 8 shows the energy surface with the smaller amount of F impurity atoms results dendrites (Fig. 8d) than the surface with the higher concentration of

Figure 8: Predicted dendrite growth on surfaces with varying concentration 1.0632(10¹⁸) C Impurity atoms cm⁻² (b) 2.9536(10¹⁸) C Impurity atoms cm⁻² (c) 5.788 1.0632(10¹⁸) F Impurity atoms cm⁻² (e) 2.9563(10¹⁸) F Impurity atoms cm⁻²

While F impurities in the Li metal anode led to smaller into

(001) produces significantly larger and more branched dendritic st pristine Li anode (Fig. 9b) due to its low interfacial energy. Conversel (111) results in a suppression of dendrite growth and denser structure.

Figure 9: Model prediction for dendrite growth at the anocomparing different SEI components with the pristine Li anoc LiF (001), $0.35 I m^{-2}$ (b) pristine Li anode, $0.462 I m^{-2}$ and (c) L

 $I m^{-2}$

dendrite growth for the anode surface utilizing the surface energy varying diffusion coefficients. The LiF (001) surface energy was chosen impact that transport properties play on Li deposition under the e energy surface. Fig. 10a shows the dendrite growth when the diffusion to the baseline diffusion coefficient, D₀. Fig. 10b through c show t coefficient near the interface increases from twice the base-line diffus that of the base-line diffusion. When the diffusion coefficient incre dendrites become denser. However, there are still clear dendritic st interface. As the diffusion coefficient increases to 5D₀ (Fig. 10c) and fu plating becomes homogenous, and a moss-like morphology is ob remaining in a reaction limited regime as opposed to the transport Fig. 10a. These simulations were compared at an equivalent state-ofmass of Li deposited.

The increased plating stability observed experimentally, who present, is not due to the interfacial energy alone. Instead, for LiF energy is low, it is dominated by the improved transport of Li⁺ at the dendrite growth and a moss-like morphology. While F substitutional din decreased interfacial energy and problematic dendrite growth (Fig. or question the improved performance seen with an LiF-rich SEI laresults indicate the significance of both nucleation and growth in urthow the interplay between various physics (i.e. Li+ transport vs. surthe suppression of dendrites and a more homogenous plating.

5. Conclusions

electrolyte interface through the expansion of a previous motion transport[11,13], a spatially and temporally varying electric fie kinetics[10] was presented. To capture nucleation physics, a radial g

hemispherical nucleate as well as a steady-state nucleation rate v

A novel dendrite growth model that captures the nucleat

the accuracy of the model. In addition, the ability of the model to rewaste evaluated through qualitative comparison to experimental reinterfacial energy surface led to decreased nucleation and a support [17,21–26]. The morphology of the dendrites predicted by the nucle well with the experimental results for both the high and low surface.

The model was then coupled with DFT calculations to evaluate as impurity atoms, and the concentration of these defects impacted it used to calculate the surface energy for the Li anode when specific in

and Al) and vacancies were present. These energies were then comp Li metal anode. The results show that when certain impurity atoms surface energy increases while other impurities such as F decreas

between the concentration of impurity atoms and surface energy was atoms with smaller electronegativities (N, C, P, Al) surface energy and

directly proportional meaning that as the concentration of impur

vacancies show very little deviation from the pristine anode. Ad-

energy increases. Conversely, for high electronegativity atoms such

surface. When C impurity atoms were present, the surface energy incompression in the dendrite growth was observed. Finally, the surface the lowest surface energy (0.294 J m⁻²) resulting in extensive dendrite. In addition to the type of defect present, the concentration of defect

branched and problematic dendrites. C impurity atoms had the oppositive concentration of impurity atoms of C increased, the surface energy of the concentration of impurity atoms of C increased, the surface of the concentration of impurity atoms of C increased, the surface of the concentration of impurity atoms of C increased, the surface of the concentration of impurity atoms of C increased, the surface of the concentration of impurity atoms of C increased, the surface of the concentration of impurity atoms of C increased, the surface of the concentration of impurity atoms of C increased, the surface of the concentration of impurity atoms of C increased, the surface of the concentration of impurity atoms of C increased, the surface of the concentration of the concentration of impurity atoms of C increased, the surface of the concentration of impurity atoms of C increased, the concentration of the co

resulted in significant improvement to the homogeneity of Li plating a

across the interface.

Based on the predicted results from the nucleation-SPH modes experimental results it can be concluded that higher surface energy summer stable Li plating[16,17,21–26]. Additionally, this work shows the

metal anode such as C can greatly improve the deposition where

instability. Further, a higher concentration of beneficial atoms will lea across the anode due to the direct proportionality between concentration.

and the large energy barrier for the system to overcome to form

specified surface facets resulting in more growth, when considering consider the impact it has on Li⁺ transport near the anode. It was shown transport effects as well as the interfacial energies, an LiF-rich SEI layer transport, a suppression of dendritic growth, and a more stable intermediate in this work, we consider the impact that interfacial energy from other physical and allowing us to compare each case under equivalent conditions. While regarding the impact of interfacial energies under the conditions that

is important to note that this does not negate the importance of or parameters such as charging conditions, transport properties, an example, while the trends presented exist under our specific conditapplied to the system the impact that interfacial energy has on the reinfluential. Thus, while computational models like the one presented

insight into the physics occurring and how they are influenced by indiv

the system in its entirety through the combination of computation ar

critical to the commercialization of lithium metal batteries.

Research Science and Engineering Center program through the UC Irv

Active Materials (DMR-2011967). Additional support was provided

Computing and Computational Science and Engineering at Boston

Focused Research Program. We would like to acknowledge com

supported by the NSF grant number ACI-1548562, the National Computing Center (NERSC), a DOE Office of Science User Facility s

Science of the U.S. Department of Energy under Contract No. DE-AC

Advanced Cyberinfrastructure Coordination Ecosystem: Services & 5

University's Research Computing Services.

Author Declarations

Conflict of Interest

The authors have no conflict to disclose.

Data Availability

Data on dendrite growth and morphology were obtained via code base modified for SPH and our system. The SPH data that support

and the codes used to obtain the data are

(https://github.com/emilymryan/LAMMPS-Dendrite-Nucleation-and-

```
D_i
                  diffusion coefficient, \mu m^2 s^{-1}
                  electrons
                 energy per atom of a chunk of defect atoms, J
E_{BulkofDefect}
                  energy of Li slab of a specific number of defected ato
   E_{defect}
    E_{surf}
                  slab surface energy, J
      F
                  Faraday constant, C mol<sup>-1</sup>
                  number of atoms in the critical nucleus
      g_c
     \Delta G
                 formation energy of critical nucleus, J
      h
                  smoothing length, µm
      i_0
                  exchange current density, A μm<sup>-2</sup>
      k
                  curvature, μm<sup>-1</sup>
      k^0
                 reaction rate constant, μm s<sup>-1</sup>
                  Boltzmann constant, J K<sup>-1</sup>
      K_{R}
     Li_{+}
                  lithium ions
                  mass of an individual particle, µg
      m
     M^+
                  cations
                  number of nucleates in the system
      n
      \vec{n}
                  normal vector
      Ν
                 total number of atoms per unit surface area
      N_A
                  Avogadro's number, μmol<sup>-1</sup>
      r
                  radius of nuclei, µm
                  critical nuclei radius, μm
                  location in the liquid domain (diffusion layer)
                  distance between particles, µm
                  location in the solid domain (anode and dendrites)
      r_0
                  initial nuclei radius
      R
                 ideal gas constant, J mol<sup>-1</sup> K<sup>-1</sup>
      S_c
                  surface area of nucleate exposed to the electrolyte,
```

flux for a single hemispherical nucleate, μ mol μ L⁻¹ s

total flux in system, μ mol μ L⁻¹ s⁻¹

 S_n

time s

```
net charge density, C \mu m^{-3}
    \rho_{charge}
      \emptyset_{App}
                   applied potential, V
       \emptyset_{eq}
                   equilibrium potential, V
                   frequency of collision of cations with critical nuclei,
       \omega_c
       \Omega_f
                   fluid domain (diffusion layer)
       \Omega_{\rm s}
                   Solid domain (anode and dendrites)
Abbreviations
       Αl
                   aluminum
        \mathbf{C}
                   carbon
      CNT
                   classical nucleation theory
                   continuum surface reaction
      CSR
       Cu
                   copper
       DFT
                   density functional theory
                   fluorine
        F
   LAMMPS
                   large-scale atomic/molecular massively parallel simu
        Li
                   lithium
        Ν
                   nitrogen
                   nanodiamond
       ND
        0
                   oxygen
```

migration coefficient, $\mu m^2 \; V^{-1} \; s^{-1}$

density of a particle, $\mu g \, \mu m^{-3}$

overpotential, V

contact angle

phosphorus

projector-augmented wave

solid-electrolyte interphase layer

smoothed particle hydrodynamics

pseudo two-dimensional

 η

 μ_i

ρ

Ρ

PAW

P₂D

SEI

SPH

References:

- [1] B. Liu, J.G. Zhang, W. Xu, Advancing Lithium Metal Batteries, Jo https://doi.org/10.1016/j.joule.2018.03.008.
- [2] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Lig(
- high energy storage, Nat Mater 11 (2012) 19–29. https://doi.o
- [3] X. Zhang, Y. Yang, Z. Zhou, Towards practical lithium-metal and
- (2020) 3040-3071. https://doi.org/10.1039/c9cs00838a. [4] L. Frenck, G.K. Sethi, J.A. Maslyn, N.P. Balsara, Factors That Co.
- Dendrites and Other Morphologies on Lithium Metal Anodes, I https://doi.org/10.3389/fenrg.2019.00115. [5] M.P. Bondarde, R. Jain, J.S. Sohn, K.D. Lokhande, M.A. Bhakare

Carbon-based anode materials for lithium-ion batteries, Lithiu

- 521-545. https://doi.org/10.1016/B978-0-323-91934-0.00004 [6] X. Guan, A. Wang, S. Liu, G. Li, F. Liang, Y.W. Yang, X. Liu, J. Luo Lithium Metal Anodes, Small 14 (2018). https://doi.org/10.100
- [7] J. Tan, A.M. Tartakovsky, K. Ferris, E.M. Ryan, Investigating the Mass Transport on Dendrite Growth in High Energy Density Lit
- Electrochem Soc 163 (2016) A318-A327. https://doi.org/10.11 [8] D. Sharon, P. Bennington, S.N. Patel, P.F. Nealey, Stabilizing de by limiting spatial dimensions in nanostructured electrolytes, A 2889–2896. https://doi.org/10.1021/acsenergylett.0c01543.
- [9] T. Melsheimer, M. Morey, A. Cannon, E. Ryan, Modeling the ef dendrite growth in lithium metal batteries, Electrochim Acta 4. https://doi.org/10.1016/j.electacta.2022.141227.
 - [10] M. Morey, J. Loftus, A. Cannon, E. Ryan, Interfacial studies on t anodes for guided lithium deposition in lithium metal batteries
 - Physics 156 (2022). https://doi.org/10.1063/5.0073358. [11] A. Cannon, E.M. Ryan, Characterizing the Microstructure of Se Batteries and Their Effects on Dendritic Growth, ACS Appl Ener

7861. https://doi.org/10.1021/acsaem.1c00144.

- https://doi.org/10.1021/acsenergylett.2c00255. [16] X.B. Cheng, M.Q. Zhao, C. Chen, A. Pentecost, K. Maleski, T. Ma
 - J. Jiang, Y. Gogotsi, Nanodiamonds suppress the growth of lith Commun 8 (2017). https://doi.org/10.1038/s41467-017-00519 [17] S. Liu, X. Ji, J. Yue, S. Hou, P. Wang, C. Cui, J. Chen, B. Shao, J. Li

X-ray Microtomography, ACS Energy Lett 7 (2022) 1120–1124.

- High Interfacial-Energy Interphase Promoting Safe Lithium Me Soc 142 (2020) 2438–2447. https://doi.org/10.1021/jacs.9b11 [18] A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Sh Mashayek, Lithium Diffusion Mechanism through Solid-Electro
- Rechargeable Lithium Batteries, Journal of Physical Chemistry 10245. https://doi.org/10.1021/acs.jpcc.9b00436. [19] L. Qian, Y. Zheng, T. Or, H.W. Park, R. Gao, M. Park, Q. Ma, D. L
- Advanced Material Engineering to Tailor Nucleation and Grow Deposition for Anode-Less Lithium Metal Batteries, Small 18 (2
- https://doi.org/10.1002/smll.202205233. C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Li, Y.G. Guo, Accommodati [20]
- collectors with a submicron skeleton towards long-life lithium
- Commun 6 (2015). https://doi.org/10.1038/ncomms9058. [21] A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale Nucleation and
- Electrodeposited Lithium Metal, Nano Lett 17 (2017) 1132–113 https://doi.org/10.1021/acs.nanolett.6b04755.
- J. Lopez, A. Pei, J.Y. Oh, G.J.N. Wang, Y. Cui, Z. Bao, Effects of P [22]
 - Electrodeposited Lithium Metal, J Am Chem Soc 140 (2018) 11 https://doi.org/10.1021/jacs.8b06047.
 - [23] K.Y. Cho, S. Cho, G.Y. Jung, K.S. Eom, Metal shields with crystal incorporated into integrated architectures for stable lithium m
 - Environ Sci (2024). https://doi.org/10.1039/d3ee02372a. [24] D.T. Boyle, S.C. Kim, S.T. Oyakhire, R.A. Vilá, Z. Huang, P. Sayav

Correlating Kinetics to Cyclability Reveals Thermodynamic Original Morphology in Liquid Electrolytes, J Am Chem Soc 144 (2022) 2

model, Phys Rev E 97 (2018). https://doi.org/10.1103/PhysRev [31] D.R. Ely, R.E. García, Heterogeneous Nucleation and Growth of on Negative Electrodes, J Electrochem Soc 160 (2013) A662-A6 https://doi.org/10.1149/1.057304jes.

https://doi.org/10.1016/j.jnoncrysol.2023.122411.

E. Maeda, R.S. Welch, C.J. Wilkinson, J.C. Mauro, Atomistic mo nucleation in anorthite-based glasses, J Non Cryst Solids 615 (2

P. Jreidini, G. Kocher, N. Provatas, Classical nucleation theory i

[29]

[30]

- [32] C. Monroe, J. Newman, Dendrite Growth in Lithium/Polymer S 150 (2003) A1377. https://doi.org/10.1149/1.1606686.
- [33] K.S. Nagy, S. Kazemiabnavi, K. Thornton, D.J. Siegel, Thermody Nucleation Rates for Electrodeposition on Metal Anodes, ACS (2019) 7954–7964. https://doi.org/10.1021/acsami.8b19787.
- [34] E.M. Ryan, K. Ferris, A. Tartakovsky, M. Khaleel, Computationa Limitations in Li-Air Batteries, ECS Trans 45 (2013) 123–136.
- https://doi.org/10.1149/04529.0123ecst. J. Tan, E.M. Ryan, Numerical Modeling of Dendrite Growth in a [35] System, ECS Trans 53 (2013) 35-43. https://doi.org/10.1149/0
- [36] X. Shan, M. Morey, Z. Li, S. Zhao, S. Song, Z. Xiao, H. Feng, S. Ga Ryan, K. Xu, M. Tian, Y. He, H. Yang, P.F. Cao, A Polymer Electro Transport Number for Safe and Stable Solid Li-Metal Batteries,
 - 4342–4351. https://doi.org/10.1021/acsenergylett.2c02349. [37] J. Tan, A.M. Tartakovsky, K. Ferris, E.M. Ryan, Investigating the Mass Transport on Dendrite Growth in High Energy Density Lit
 - Electrochem Soc 163 (2016) A318-A327. https://doi.org/10.11
- [38] Y.D. Gamburg, G. Zangari, Theory and Practice of Metal Electro
- York, 2011. https://doi.org/10.1007/978-1-4419-9669-5.
- [39] J. Newman, Thomas-Alyea Karen, ELECTROCHEMICAL SYSTEMS [40] D.R. Ely, R.E. García, Heterogeneous Nucleation and Growth of on Negative Electrodes, J Electrochem Soc 160 (2013) A662-A6

https://doi.org/10.1149/1.057304jes.

Robin boundary conditions in smoothed particle hydrodynami 181 (2010) 2008–2023. https://doi.org/10.1016/j.cpc.2010.08. [46] I.J. Schoenberg, Contributions to the Problem of Approximatio

E.M. Ryan, A.M. Tartakovsky, C. Amon, A novel method for mo

[45]

- Analytic Functions, in: C. de Boor, ed. Birkhauser (Eds.), I. J. Sch Birkhäuser Boston, Boston, MA, 1988: pp. 3–57. https://doi.or
- 0433-1 1. [47] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.I
- in 't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Trott, S.J. Plimpton, LAMMPS - a flexible simulation tool for pa modeling at the atomic, meso, and continuum scales, Comput
 - https://doi.org/10.1016/j.cpc.2021.108171. [48] J.J. Mortensen, A.H. Larsen, M. Kuisma, A. V. Ivanov, A. Taghiza Haldar, A.O. Dohn, C. Schäfer, E.Ö. Jónsson, E.D. Hermes, F.A. I
 - Levi, H. Jónsson, H. Häkkinen, J. Fojt, J. Kangsabanik, J. Sødegu J. Enkovaara, K.T. Winther, M. Dulak, M.M. Melander, M. Oves Walter, M. Gjerding, O. Lopez-Acevedo, P. Erhart, R. Warmbier
- Kaappa, S. Latini, T.M. Boland, T. Bligaard, T. Skovhus, T. Susi, Chen, Y.L.A. Schmerwitz, J. Schiøtz, T. Olsen, K.W. Jacobsen, K.
- Python package for electronic-structure calculations, (2023). http://arxiv.org/abs/2310.14776.
- J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Real-space grid im [49] projector augmented wave method, Phys Rev B 71 (2005) 0353
- https://doi.org/10.1103/PhysRevB.71.035109. [50] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient App
- Phys Rev Lett 77 (1996) 3865–3868. https://doi.org/10.1103/P
- [51] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone inte
- (1976) 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188 [52] P.E. Blöchl, Projector augmented-wave method, Phys Rev B 50
- https://doi.org/10.1103/PhysRevB.50.17953. [53] C. Rostgaard, The Projector Augmented-wave Method, (2009).

natural convection induced by electrodeposition of Li + ions or cathode in propylene carbonate, Journal of Solid State Electron 181. https://doi.org/10.1007/s10008-003-0447-z.

K. Nishikawa, M. Ota, S. Izuo, Y. Fukunaka, E. Kusaka, R. Ishii, J.

[58]

- [59] J. Elezgaray, C. Léger, F. Argoul, Linear Stability Analysis of Uns Electrodeposition in the Two-Dimensional Diffusion-Limited Re 145 (1998) 2016–2024. https://doi.org/10.1149/1.1838592.
- [60] J. Tan, E.M. Ryan, Computational study of electro-convection 6 in batteries, J Power Sources 323 (2016) 67-77. https://doi.org/10.1016/j.jpowsour.2016.05.012.
 - [61] K. Nishikawa, T. Mori, T. Nishida, Y. Fukunaka, M. Rosso, Li der mass transfer phenomenon, Journal of Electroanalytical Chem https://doi.org/10.1016/j.jelechem.2011.06.035.
 - [62] Y. Liu, X. Xu, M. Sadd, O.O. Kapitanova, V.A. Krivchenko, J. Ban Song, S. Xiong, A. Matic, Insight into the Critical Role of Exchan Electrodeposition Behavior of Lithium Metal, Advanced Science
- https://doi.org/10.1002/advs.202003301. P. Bai, J. Li, F.R. Brushett, M.Z. Bazant, Transition of lithium gro [63] electrolytes, Energy Environ Sci 9 (2016) 3221-3229.
- https://doi.org/10.1039/c6ee01674j. [64]
- S. Liu, X. Ji, J. Yue, S. Hou, P. Wang, C. Cui, J. Chen, B. Shao, J. Li High Interfacial-Energy Interphase Promoting Safe Lithium Me
- Soc 142 (2020) 2438-2447. https://doi.org/10.1021/jacs.9b11 [65] Y.X. Zhan, Z.Y. Liu, Y.Y. Geng, P. Shi, N. Yao, C. Bin Jin, B.Q. Li, G Huang, Fluorinating solid electrolyte interphase by regulating p
- interaction in lithium metal batteries, Energy Storage Mater 60 https://doi.org/10.1016/j.ensm.2023.102799.