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Abstract
Bats are widespread mammals that play key roles in ecosystems as pollinators and insectivores. However, there is a paucity 
of information about bat-associated microbes, in particular their fungal communities, despite the important role microbes 
play in host health and overall host function. The emerging fungal disease, white-nose syndrome, presents a potential chal-
lenge to the bat microbiome and understanding healthy bat-associated taxa will provide valuable information about potential 
microbiome-pathogen interactions. To address this knowledge gap, we collected 174 bat fur/skin swabs from 14 species 
of bats captured in five locations in New Mexico and Arizona and used high-throughput sequencing of the fungal internal 
transcribed (ITS) region to characterize bat-associated fungal communities. Our results revealed a highly heterogeneous 
bat mycobiome that was structured by geography and bat species. Furthermore, our data suggest that bat-associated fungal 
communities are affected by bat foraging, indicating the bat skin microbiota is dynamic on short time scales. Finally, despite 
the strong effects of site and species, we found widespread and abundant taxa from several taxonomic groups including the 
genera Alternaria and Metschnikowia that have the potential to be inhibitory towards fungal and bacterial pathogens.

Keywords  Bat ecology · Host-associated fungi · ITS · Microbiome · Mycobiome · Southwest bats · White-nose syndrome

Introduction

The microbiome, or the microorganisms that live on and 
in organisms, can affect host development, behavior, 
metabolism, and inflammation processes [13]. In addition, 
host-associated microbial communities can provide 
protection from infection and invasion by foreign microbes 
by outcompeting foreign taxa or through the production of 
antimicrobial compounds, conferring pathogen resistance in 
addition to the host’s natural defense [30]. Much of what 
we know about host-microbe dynamics is derived from 
tightly controlled laboratory or captive animal experiments 
(e.g., [11], and studies examining microbiomes outside of 
the lab have revealed dynamic and diverse communities 
[78]. Complex factors act to shape host-microbiome 

interactions including geography, host-microbe evolutionary 
relationships, host disease state, and microbe-microbe 
interactions on/in hosts [19, 78]. On a global scale, host 
microbiomes are structured by microhabitat [70], climate 
conditions [38], and immune complexity of hosts [79].

Investigations into host-associated microbes have 
primarily focused on gut communities [14, 33, 45], while 
skin-associated microbiomes have received less attention 
[35, 36, 41, 49]. The surface microbiome is a spatially and 
temporally dynamic system [5] that lies at the interface of host 
and environment, providing the first line of protection against 
foreign microbes that are not behaviorally avoided [8]. For 
bats, ecoregion characteristics, the dynamics of temperature 
during hibernation, physical interactions with other bat species, 
variable skin secretions, non-temperature related roosting 
site/hibernacula factors, feeding sites, and behavior are all 
potential factors shaping bat microbiomes [3, 41, 47, 78]. The 
emergence of fungal skin infections including bat white-nose 
syndrome [25] provides a pressing need to understand the 
spatial and temporal forces that shape skin microbiomes and 
the role that bat microbiomes play in disease.

White-nose syndrome (hereafter WNS) is an introduced, 
emerging fungal disease of bats caused by the psychrophilic 
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fungus Pseudogymnoascus destructans. WNS has led to the 
mortality of millions of bats in the eastern North America 
and in 2016, WNS was documented near Seattle, WA in 
a little brown bat (Myotis lucifugus), a major geographic 
jump [45]. The fungus P. destructans was detected in 2017 
in Texas (https://​tpwd.​texas.​gov/​newsm​edia/​relea​ses/?​req=​
20170​323c). Bats are typically exposed to P. destructans 
during roosting in hibernacula and the fungus infects the 
skin, muzzle, ears, and wings of bats. WNS has a high mor-
tality rate in some species of bats (e.g., Myotis lucifugus) 
and in areas P. pestructans spreads to, population declines of 
70% have been reported [57]. [72, 73] predict that WNS will 
impact 12 of the 13 species based on a variety of traits previ-
ously studied, while predicting that Myotis velifer bats will 
likely be resistant. Despite the devastating nature of WNS, 
several microbial derived compounds have demonstrated 
efficacy in inhibiting P. destructans [16, 17] with recent 
data demonstrating the beneficial nature of bat associated 
Streptomyces species in vitro [27]. The American Southwest 
is one of the most bat species rich areas of the USA, possess-
ing over half of the 45 American bat species [6, 78]. Given 
the high mortality rate and expanding footprint of WNS in 
the USA and Canada (https://​www.​white​noses​yndro​me.​org/​
where-​is-​wns), understanding the bat-associated microbi-
ome in unaffected areas may provide valuable information 
about potential host–pathogen interactions as WNS spreads.

Studies investigating bat-associated microbial commu-
nities have primarily focused on bacterial communities of 
the skin [3, 43, 82] and gut [31, 81]. Knowledge of skin-
associated fungal taxa is limited [32, 35, 36, 79], although 
mycobiome traits may predict disease vulnerability [72, 73]. 
To address this knowledge gap, we surveyed skin and fur-
associated fungal communities from 174 bats collected from 
five sites in southeastern, central, and northwestern New 
Mexico and northwestern Arizona. We hypothesized that 
species and site, key drivers of microbial community com-
position in host-associated and environmental communities 
[69, 82], would strongly structure bat-associated fungal com-
munities. Our results demonstrate the dominating effect of 
geography and species on fungal community composition. 
Furthermore, analysis of widespread and highly abundant 
taxa suggests that in healthy bats, potentially fungal-inhib-
iting taxa are important members of the bat microbiome.

Methods

Sample Collection and Processing

We swabbed bats captured during post-hibernation by net-
ting at surface sites near known bat roosts, and by plucking 
from cave walls across New Mexico and Arizona at the 
following NPS (National Park Service) and BLM (Bureau 

of Land Management) sites: in New Mexico at El Mal-
pais National Monument, El Malpais Conservation Area, 
Bureau of Land Management (BLM) Caves 45 and 55, 
Fort Stanton-Snowy River Cave National Conservation 
Area, and Carlsbad Caverns National Park; and in Ari-
zona in Grand Canyon-Parashant National Monument (SI 
Fig. 1). Sampling was performed from 2011 to 2014 dur-
ing spring and summer months (March to August) in caves 
and at surface sites outside of the hibernaculum. Surface 
bats were captured using mist nets [37], while cave cap-
tures were conducted by plucking bats from cave walls 
using nitrile glove covered hands and changing gloves 
after each bat was handled. All captures were conducted 
using approved protocols listed on the Scientific Collecting 
Permits from Arizona Game and Fish Department (2012 
AGFD = LIC# SP790906,2013 AGFD = LIC# SP602258; 
2014 AGFD = LIC# SP670210) and New Mexico Depart-
ment of Game and Fish (2012–13 NMDGF = 3423; 2014 
NMDGF = 3232). National Park Service Scientific Col-
lecting Permit (CAVE-2014-SCI-0012, ELMA-2013-
SCI-0005, ELMA-2014-SCI-0001, and PARA-2012-
SCI-0003), USGS Fort Collins Science Center Standard 
Operating Procedure (SOP) 2013–01, and an Institutional 
Animal Care and Use Committee (IACUC) permit from 
the University of New Mexico (protocol #12–100,835-
MCC) and from the National Park Service (protocol 
#IMR-ELMA.PARA-Northup-Bat-2013.A2).

After capture, bats were placed in individual, sterilized 
bags until swabbing, which was conducted near the site of 
capture, either in the cave or near the nets on the surface 
sites. Skin and fur of the bats were systematically swabbed 
immediately after capture, wearing new nitrile gloves that 
were changed between bats, and using a single sterile poly-
ester fiber-tipped application swabs (Falcon) moistened with 
sterile double-distilled water or Ringer’s solution. Each swab 
was placed in a sterile 1.7 ml snap-cap microcentrifuge tube 
containing 100 ml of RNAlater®, and immediately frozen 
in a liquid nitrogen dry shipper or placed on dry ice. Sam-
ples were transported to the University of New Mexico and 
stored in a − 80 °C freezer until they were sent for sequenc-
ing with a few days or weeks. We sampled 186 bats belong-
ing to 14 species (SI Table 1) as part of a 16S rRNA gene 
survey [78]. Bat species was determined by bat biologists, 
each with decades of experience with southwestern bats, 
who did the captures. Their determination of bat species was 
based on their knowledge of these species, and the measure-
ments of key traits of the bats that they took after swabbing 
were completed. These samples came from the five study 
locations in the Southwest noted above (SI Table 1). Once 
the bats were swabbed, a bat biologist collected standard 
data for each animal including: species, sex, wing condition, 
and ectoparasite presence [61]. The wings, muzzle, ears, and 
uropatagium were assessed for any tissue damage (necrosis), 
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lesions, scarring, or skin mottling that might suggest infec-
tion by P. destructans [18, 62].

Sequencing samples were sent to MR DNA Molecular 
Research LP, Shallowater, Texas (http://​www.​mrdna​lab.​
com/) for genomic DNA extraction and 454 sequencing 
diversity assays of the fungal internal transcribed spacer 
region (ITS). The 186 samples were sequenced in nine runs. 
Barcoded amplicon sequencing processes were performed 
by MR DNA® under the trademark service (bTEFAP®). 
The ITS1 and ITS4 primer sets were used in a single-
step 30 cycle PCR using the HotStarTaq Plus Master Mix 
Kit (Qiagen, Valencia, CA, USA) under the following 
conditions: 94 °C for 3 min, followed by 28 cycles (five 
cycles used on PCR products) of 94 °C for 30 s, 53 °C for 
40 s, and 72 °C for 1 min, after which a final elongation 
step at 72 °C for 5 min was performed. Sequencing with 
the 27F primer was performed at MR DNA on a Roche 
454 FLX titanium following the manufacturer’s guidelines. 
During processing (extractions and PCR), samples were 
checked for fungal contamination with fungal primers and 
gel electrophoresis highlighted above and no contamination 
was detected.

Sequence and Data Analysis

Reads were demultiplexed and denoised by the sequencing 
facility (www.​mrdna​lab.​com). Briefly, barcodes and primers 
were removed and reads < 200 bp, with ambiguous bases, 
and homopolymers runs exceeding 6 bp were removed. 
Reads were processed using the UPARSE pipeline [22] 
at 97% identity using a previously published workflow 
[63]. Reads were first clustered into operational taxonomic 
units (OTUs) against the UNITE database (Nilsson et al. 
2018) and reads that appeared only once (singletons) were 
removed. Reads that failed to hit the database were then 
clustered in de novo mode and checked for chimeras with 
UCHIME [23].

Due to potential misclassification of fungal reads [49] by 
using a single database, we assigned taxonomy to OTUs with 
the RDP classifier [15] using the UNITE database, Warcup 
Fungal ITS training set 2 [76], and the NCBI ITS Database 
as a reference. Due to many taxonomic assignments not 
going beyond the family level for all databases, we compared 
the relative abundance of fungal families for each sample 
using a Spearman’s correlation. We did not observe any 
statistical evidence for differences between databases for 
the abundance of fungal families, so we will only present 
and use identifications from the UNITE database in this 
manuscript.

We calculated Bray–Curtis similarity values in R [60] 
with the vegan package [54] and visualized the results 
with a non-metric multidimensional scaling plot. We 
assessed differences in composition with a non-parametric 

multivariate analysis of variance. To assess changes in beta 
diversity over geographic distance, we used linear regression 
in R to examine pair-wise Bray–Curtis similarity as a 
function of distance (in km), calculating pairwise distance 
in R with the geosphere package. Furthermore, we compared 
Bray–Curtis similarity values within and between species at 
a single site and in between sites to understand the role of 
bat species in structuring fungal communities. Significant 
differences in pairwise beta diversity values were calculated 
with a Welch’s t-test with a Benjamini–Hochberg correction.

We calculated alpha diversity (Shannon Diversity and 
OTUs observed) in R with the vegan package [54]. We 
analyzed factors that influence microbial richness with 
a generalized linear mixed effects model in R with the 
rstanarm package [50]. We used a Gaussian model with a 
weakly informed priors with 10,000 iterations similar to 
previous work on the bacterial communities of bats sampled 
in this study [78]. The model included latitude as well as 
site, bat species, bat feeding behavior, bat sex, bat diet, bat 
size, and the location of capture (inside a cave or surface 
netted) as random effects. Convergence of Monte Carlo 
Markov Chain (MCMC) chains was evaluated with the Rhat 
statistic. Finally, we evaluated potential collinearity in the 
model by calculating variance inflation values (VIF). All 
VIF values were near one for comparisons, thus indicating 
the absence of collinearity.

Identifying Widespread and Abundant Taxa 
and FunGuild Analysis

To identify taxa both widespread (> 55% of samples) 
and highly abundant taxa (> 10% relative abundance), 
we constructed a percent occupancy graph. Finally, we 
examined the functional potential of fungal taxa by assigning 
taxa to putative functional guilds using FunGuild [51]. We 
assessed significant differences in the abundance of fungal 
guilds between sites and species of bats with a Welch’s 
t-test. However, we found no significant differences and thus 
display data as aggregated percentages of total reads.

Results

Community Composition

An NMDS of Bray–Curtis similarity values highlighted 
the significant role of sampling site (non-parametric 
PERMANOVA; p < 0.001, F = 24.96, R2 = 0.555) in 
structuring fungal communities (Fig. 1A, Tables 1 and 2). 
To further elucidate the role of site in structuring fungal 
communities, we analyzed pair-wise Bray–Curtis dissimilarity 
values as a function of distance (Fig.  1B). We found a 
significant relationship (y = 0.0028x + 0.529, p < 0.001 
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for slope and intercept) between distance and changes on 
community composition, providing further support for the 
NMDS results. In addition to site, we found significant effects 
of location where the bat was caught (inside or outside of a 
cave); however, this effect explained less variance than site 
(R2 = 0.03, Table 1), suggesting a lesser effect.

PERMANOVA results revealed a significant effect 
(F = 29.43, p < 0.001, R2 = 0.39) of bat species on com-
munity composition. We further investigated this pattern 

by comparing pairwise Bray–Curtis dissimilarity values 
(Fig. 2). We found, when comparing bat species within a 
single site and not between sites, there were significantly 
lower dissimilarity values than when comparing between 
species, suggesting a role for bat species in structuring fun-
gal communities.

Taxonomic Composition and Diversity

We first compared taxonomic assignments of fungal OTUs 
between three commonly used databases (SI Fig. 2). We 
found significant correlations of fungal family abundance 
(Spearman’s rho > 0.85, p < 0.05) between all three 
databases. As such, for the remainder of the manuscript, 
we will only discuss taxonomic identifications from the 
UNITE Database. Taxonomic composition of fungi strongly 
varied as a function of both location and bat species (SI 
Fig. 2). Bat associated fungal communities were dominated 
by fungi from the phylum Ascomycota (mean relative 
abundance (RA) = 90.1%), Mortierellomycota (4.4%), 
and Basidiomycota (2.5%). We found that a relatively 
small proportion (2.1%) of taxa could not be assigned to 
a fungal phylum. At the class level, taxa from the classes 
Dothideomycetes were highly abundant across nearly all sites 
and species, and when these taxa were in low abundance, 
members of the Saccharomycetes and taxa with no assigned 
phylum replaced them. Finally, it is worth noting that while 
taxa from the class Dothideomycetes were highly abundant 
in our data, no taxa from the family of Pseudogymnoascus 
destructans (Pseudeurotiaceae), the causative agent of white-
nose syndrome, were found.

Fig. 1   Non-metric multidimensional scales plot of Bray–Curtis dis-
similarity values (A) and a plot of pairwise Bray–Curtis similar-
ity values as a function of distance (B). Higher values in B indicate 
less similar communities. The line in (B) is a statistically significant 
regression with an equation of y = 0.003x + 0.529. Stress in A is 0.18. 

CCNP, Carlsbad Caverns National Park; ELMA, El Malpais National 
Monument; FS, Fort Stanton-Snowy River Cave National Conserva-
tion Area; HGL, High Grasslands BLM Caves; PARA, Grand Can-
yon-Parashant National Monument

Table 1   Permutational multivariate analysis of variance of Bray–Cur-
tis similarity values comparing different environmental and host fac-
tors on microbial community composition 

Statistically significant categories (p<0.05) are bolded
NPP, net primary production

Factor Degrees of 
freedom

F model statistic R2 P-value

State 1,164 0.53 0.04 0.92
Elevation 5,160 1.14 0.1 0.75
Precipitation 5,160 2.02 0.09 0.54
NPP 11,154 5.02 0.02 0.53
Month sampled 6,159 3.37 0.02 0.25
Year 4,161 2.44 0.04 0.65
Site 5,160 24.96 0.55  < 0.001
Bat species 14,151 29.43 0.39  < 0.001
Bat sex 1,164 12.33 0.09 0.12
Bat mass (g) 12,153 7.84 0.01 0.23
Location caught 1,164 19.24 0.1 0.03
Feeding behavior 3,148 4.45 0.03 0.55
Diet 4,130 7.01 0.02 0.39
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Fungal diversity, as measured by the Shannon Diversity 
Index, ranged from 0.78 to 3.8 across all bats and sites 
(SI Fig. 3). When we had enough replication to test, no 
significant differences between species were observed 
(Welch’s t-test, Benjamini–Hochberg corrected p > 0.05) and 
sites did not significantly differ in diversity. Mixed effects 
modeling of fungal richness (OTUs observed) revealed 

contrasting patterns of site and bat characteristics on fungal 
diversity (SI Table 2). Latitude increased fungal richness 
(+ 5.82) and the location the bats were captured (inside 
cave: − 5.23, outside cave: + 5.83) also affected richness. Bat 
species (− 21.92 to + 18.74) and site (− 23.56 to + 16.42) had 
variable effects on richness. Finally, while having no effects 
on overall composition, bat diet (− 3.25 to 4.01), size (− 2.2 
to 0.05), and flight and roosting behavior (− 20.39 to 30.89) 
influenced richness.

Abundant Taxa and FunGuild Analysis

To determine taxa that were important to the bat mycobiome, 
we analyzed the abundance and distribution of taxa across 
the dataset (Figs. 3 and 4). We identified 55 OTUs that were 
found in > 55% of samples or in abundance > 10% relative 
abundance. The taxa were primarily from the phylum 
Ascomycota and of the 55 taxa, 26 could not be assigned to a 
functional group or taxonomy past the family level. Of these 
taxa, most possessed a saprotrophic or partially saprotrophic 
lifestyle and a colony morphology of a microfungus. 
Fungi from the genus Alternaria and Metschnikowia were 
common as well. To complement analysis of core taxa, 
FunGuild analysis of the whole dataset revealed that when a 
functional guild could be assigned, taxa were predominantly 
saprotrophic (decomposer), pathotrophic (pathogenic), or 
symbiotrophic (mutualistic).

Table 2   Abundant and widespread taxa in the bat mycobiome. Trophic mode and growth morphology are derived from FunGuild analysis

p, phylum. o, order. f, family

Taxonomic assignment No. OTUs Trophic mode Growth morphology

p: Ascomycota 13 Unknown Unknown
p: Ascomycota; o: Chaetothyriales 4 Unknown Unknown
p: Ascomycota; o: Pleosporales 6 Unknown Unknown
p: Basidiomycota; f: Trichosporonaceae 1 Unknown Unknown
p: Ascomycota; c: Dothideomycetes 1 Unknown Unknown
p: Ascomycota; o: Dothideales 1 Unknown Unknown
p: Ascomycota; Cladosporium sp. 6 Pathotroph-Saprotroph-Symbiotroph Microfungus
p: Ascomycota; f: Mycosphaerellaceae 1 Saprotroph-Symbiotroph Microfungus
p: Ascomycota; f: Aureobasidiaceae 1 Pathotroph-Saprotroph-Symbiotroph Facultative yeast
p: Ascomycota; Aureobasidium sp. 3 Pathotroph-Saprotroph-Symbiotroph Facultative yeast
p: Ascomycota; Didymella sp. 5 Saprotroph-Symbiotroph Microfungus
p: Ascomycota; Alternaria sp. 3 Pathotroph-Saprotroph-Symbiotrophh Yeast
p: Ascomycota; g: Curvularia sp. 1 Pathotroph Mold
p: Ascomycota; f: Debaryomycetaceae 1 Saprotroph Yeast
p: Ascomycota; Metschnikowia sp. 5 Saprotroph Yeast
p: Ascomycota; Schizosaccharomyces pombe 1 Saprotroph Yeast
p: Mortierellomycota; Mortierella hyalina 1 Saprotroph-Symbiotroph Microfungus
p: Mortierellomycota; M. parvispora 1 Saprotroph-Symbiotroph Microfungus

Fig. 2   Plot of pairwise Bray–Curtis dissimilarity values comparing 
community dissimilarity between and within a species of bats. The 
category “between sites” indicates pairwise comparisons of bat com-
munities across multiple sites and the category “within a site” indi-
cates comparisons of bat communities at a single site. Letters indicate 
significantly different categories as assessed by a Welch’s t-test using 
a Benjamini–Hochberg correction for multiple comparisons



1570	 P. J. Kearns et al.

1 3

Discussion

In recent years, host-associated microbial communities have 
received extensive attention due to their important role in 
host wellness [13]. Host-associated microbial taxa can 
modulate the host immune response through direct effects 
on the host (i.e., inflammatory response, [9, 48], as well 
as through the production of antimicrobial compounds. 
Bacteria are commonly investigated components of host 
microbiomes; however, information about fungal-host 
interactions is lacking. In this study, we investigated the 
composition and diversity of fungi associated with the 
skin of 186 bats in the American Southwest. Our results 
revealed strong effects of geography and bat species, as 
well as a significant effect of location where the bats were 
caught (outside/inside a cave) on community composition. 

This suggests that the mycobiome of bats is dynamic 
over the course of a day, despite no significant effect of 
seasonality (spring–fall) or year sampled. Host-associated 
microbial communities can be highly dynamic on short 
(day) or long (months to years) time scales due to natural 
variations including host activity, diet, or health [10]. While 
we have documented the variability of the bat mycobiome, 
more information is needed on the dynamics and immune 
interactions [4]. While FunGuild analysis suggests that most 
taxa employ a saprotrophic lifestyle, the functional capacity 
of these communities is not well understood, in particular 
with respect to interactions with white-nose syndrome.

The strongest drivers of bat skin/fur mycobiome were 
geography and bat species. Host microbiomes commonly 
exhibit patterns of morphological, functional, and genetic 
differentiation concurrent with the distribution of their hosts 
[80]. Furthermore, environmental microbes display similar 
variations over spatial scales and, as with host-associated 
taxa, are governed by local environmental conditions that 
select for composition, diversity, and abundance. Despite a 
similar roosting environment (cave), the skin microbiome of 
bats was most strongly driven by the local abiotic conditions 
of each site, suggesting local cues and reservoirs of fungi 
drive fungal community composition of bat-associated fungi. 
A similar result was noted in recent work on bat skin fungal 
and bacterial communities [2, 3, 47, 76, 77, 82]. In addition to 
geography, the species of bat also had a significant effect on 
fungal composition. Host microbiomes display host specificity 
at broad (family or greater, [35, 69], narrow (e.g. genus, [34, 
59], and subspecies [7, 67] taxonomic resolutions. Within 
a given site, bat species was a significant driver of fungal 
composition suggesting, despite no effect of bat size or sex, 
each species of bat harbors a distinct community. Physiological 
differences between bat species such as skin secretions [56], 
Pannkuk et al. 2021; [64], the physical properties of the skin 
[68], and host-microbe immune interactions [4, 43] likely play 
a role in differentiating fungal communities among bat species. 
However, more information is needed to support this notion.

Fig. 3   Plot of the mean log 10 abundance of OTUs and the percent 
occupancy (proportion of samples, the OTUs are found in). Points 
colored in black (n = 55) are found in > than 55% of samples or 
with greater mean abundance of 100 reads per sample (10% relative 
abundance)

Fig. 4   Bar plot of the results 
from the FunGuild analysis of 
fungal trophic feeding guild. 
The numbers above each bar 
indicate the percentage of total 
reads belonging to each cat-
egory. The “unknown” category 
is comprised of taxa that could 
not be assigned to a feeding 
guild due to poor taxonomic 
resolution. No significant differ-
ence for any category was found 
between sites or species, so 
aggregated values are presented
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A key service that host-associated microbiomes provide 
to their host is the protection against invasion by foreign and 
potentially pathogenic microorganisms. While these interac-
tions can often be mediated by competition for niche space 
[58], host-associated taxa can produce antimicrobial com-
pounds to inhibit or kill off potential invaders [16, 17, 30]. 
Analysis of widely distributed fungi revealed that several 
taxa, including fungal taxa from the genera Alternaria and 
Metschnikowia, have been demonstrated to have antimicro-
bial properties [20, 39]. For example, members of the genus 
Metschnikowia display antagonism towards other fungi 
(Sisti et al. 2014) and Alternaria produce numerous toxic 
compounds [39]. The commonality of these taxa across a 
wide range of species, sites, and individuals suggests that 
they likely plat an important role in the bat skin mycobiome. 
Furthermore, a parallel study of the bacterial microbiome of 
the same group of bats [78] revealed Actinobacteria to be 
a dominant component of the microbiome. Actinobacteria 
have long been known to produce antimicrobial compounds 
(i.e., Streptomycin) including antifungal compounds [12, 
30, 81]. In comparison to recent work on bat skin fungal 
communities, Vanerwolf et al. (2021) documented similar 
collection of fungi from the classes Dothideomycetes and 
Eurotiomycetes. Similar results were documented by Ange-
Stark et al. [2] and Zhang et al. [82]. The widespread nature 
of these taxa across multiple regions and species of bats 
suggests a potentially important role for these fungal groups 
on bat skin.

Many of the taxa identified (e.g., fungi from the order 
Chaetothyriales) are closely related to recently identified 
fungi that display significant inhibitory activity against the 
amphibian killing fungus, Batrachochytrium dendrobatidis 
[34]. Furthermore, recent work by [72, 73] revealed a hand-
ful of fungal taxa from the genus Aureobasidium (Class: 
Dothideomycetes, Family: Dothioraceae), a common group 
on bat skin, were capable of producing anti-fungal metabo-
lites. While the read-length of ITS fragments from this 
study did not allow for high-levels of taxonomic classifica-
tion, many of the bats sampled in this study had > 75% of 
their fungal communities from the class Dothideomycetes 
(SI Fig. 3). In addition, it is important to note that no taxa 
from the family of Pseudogymnoascus destructans (Pseu-
deurotiaceae), the causative agent of white-nose syndrome, 
were found. Furthermore, recent work in these cave systems 
detected ideal habitat (temp/humidity) for P. destructans in 
50% of surveyed caves and species from the genus Pseu-
dogymnoascus were detected with PCR/culturing in 70% 
of caves, but not in sampled soils. Overall, this suggests 
that while the conditions are right for the proliferation of P. 
destructans in the American Southwest, it simply has not 
taken off. Our lack of knowledge of where bats hibernate 
in the southwest and the wide distribution of bats across a 
variety of habitats may have prevented widespread detection 

of WNS. A recent discovery of white-nose syndrome symp-
toms in southwestern New Mexico in live bats indicates that 
the disease is present, but confirmation awaits a dead speci-
men. While more work is necessary to elucidate the pres-
ence of potential WNS inhibiting fungal taxa on wild bats, 
overall, our results suggest that bats, like other animals, may 
potentially recruit possible pathogen-inhibiting taxa.

In conclusion, our study has demonstrated the important 
role of geography and species in structuring fungal commu-
nities. Bat associated fungi were highly variable; however, 
we have identified cosmopolitan Ascomycetes that are likely 
important to the healthy bat mycobiome. Furthermore, our 
results demonstrate co-occurring bacterial and fungal taxa 
that display anti-microbial capabilities to both bacterial and 
fungal pathogens. Our results suggest that despite the het-
erogeneity of bat-associated fungal communities, bats harbor 
anti-microbial taxa that likely play key roles in host defense. 
As WNS progresses across the Western United States, it will 
be of great importance to understand the host–pathogen-
microbiome dynamics and the role that potential probiotic 
taxa play in the alleviation of WNS.
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