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Abstract—Robotic high-viscosity fluid deposition plays a piv-
otal role in various manufacturing applications including adhe-
sive and sealant dispensing, as well as in the additive manu-
facturing of deformable materials, such as those employed in
soft robotics. Uncompensated high-viscosity fluid deposition can
lead to poor part quality and defects due to large transient
delays and complex fluid dynamics. In this paper, we propose
a lumped-parameter flow model and compensation strategies to
address significant transient delays and nonlinearity inherent
in high-viscosity fluid deposition using a robotic manipulator.
Our computationally efficient model is well-suited to real-time
control and can be calibrated in minutes. Our compensation
strategies leverage an iterative Linear-Quadratic Regulator to
compute compensated deposition paths that can be deployed on
robotic dispensing systems. These paths can either be deployed
offline or corrected live via feedback from our proposed vision-
based flow sensor. To validate the effectiveness of our approach,
we conducted experiments extruding high-viscosity liquid silicone
using a Kuka lbr iiwa robot. Comparative analysis with several
baseline methods demonstrates that our proposed method signif-
icantly improves material deposition within desired boundaries.

I. INTRODUCTION

Precise deposition of high-viscosity fluids is a key enabler
for a range of applications including sealant deposition and
additive manufacturing (AM), specifically the 3D printing of
soft robotic components. Such printing of high-viscosity fluids,
often intended to cure into deformable solids, is known as
direct ink writing (DIW). The fluid’s high viscosity aids in
maintaining the printed shape, yet without proper compensa-
tion, it can lead to printing flaws. Traditional material extrusion
(MEX) AM follows a naive control approach, assuming lin-
earity and no time delay between an actuator command and
the outlet flow rate. However, when this approach is applied
to DIW, the viscosity-induced impedance creates transient
effects, resulting in deposition imprecision and issues like the
stringing in Fig. la. Common industry solutions include re-
traction and priming, linear advancing, and coasting, but these
are not informed by any model of the deposition process. As
a result, significant defects may still occur, as we demonstrate
in this paper. Furthermore, the parameters of these solutions
are often hand-tuned which can require many iterations.

In this paper, we introduce a framework for modeling and
control that enables DIW systems to approach the precision
of MEX. Specifically, we contribute:
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Fig. 1. Robotic 3D printing with model-based flow compensation. A silicone
3D print-head held by a robot arm printing two separated objects. Panel
(a) shows the resultant print with naive on-off flow control where we
observe significant stringing and part defects due to over-extruded silicone. In
comparison, panel (b) shows the result of our open-loop feed forward error
compensation (FFEC) where the defect-free objects are separated cleanly.
Panel (c) shows the robot 3D printing silicone.

« adata-driven lumped-parameter model that is quickly and
easily generalizable for most pump-based high-viscosity
fluid deposition systems

« auniversally implementable model-based open-loop feed-
forward error compensation (FFEC) scheme without the
need for additional sensors

e a model-based closed-loop control scheme using real-
time data from a novel vision-based flow sensor

The target applications of our framework are industries
where robotic manipulators are already widely present. Thus,
our methods are directly applicable to existing systems in
modern manufacturing plants. This practical implementation
potential enhances the relevance and scalability of our ap-
proach. Using a Kuka robot, we achieve dynamic extruder
movement in 3D space, allowing for dispensing on contoured
surfaces, in the same way adhesive is applied at the perimeter
of an automotive windshield. This facilitates conformal 3D
printing, creating parts with intentional anisotropy or smooth
finishes by layering materials on non-planar surfaces. This is
crucial for crafting deformable parts to fit complex geometries,
such as gaskets or prostheses.



A. Problem Setup and Statement

Our hardware setup can be seen in Fig. 2a. Two Positive
Displacement Pumps (PDPs) force high viscosity uncured
silicone through a static mixer and nozzle. Meanwhile, the
arm moves this extruder in space to deposit the material in
desired locations. Our novel vision-based flow sensor measures
the flow rate leaving the nozzle, as feedback for our closed-
loop controller. Our PDP system is detailed in Fig. 2b. We
assume the fluids in reservoirs A and B behave identically,
and that both motors receive the same input. Here, the control
input is the motor speed signal as a function of time wu(t),
which is proportional to the intended rate of displacement
of the progressing cavities in the PDPs. This input produces
the nozzle outlet flow rate as a function of time ¢(¢), and
both w(t) and ¢(t) are in units of volumetric flow rate. While
naive flow control assumes otherwise, we have observed that
u(t) # q(t) Vt (see Section IV for examples). For a given
time horizon n, our goal is to solve for the trajectory w(t)
such that a prescribed ¢(t) is achieved. We will descretize the
time functions as uy, and g, defining the trajectories over the
horizon n with time steps k = {1,...,n}. Let M denote the
model mapping the trajectories w4, x1 ONto g, x1:

Gmodel = M(u) (1)

M is an approximation of the true map R representing the
complex nonlinear fluid dynamics. Our first contribution is
developing a parametric model M* that is i) amenable to real-
time control and ii) sufficiently closely approximates R:

M = argmin [R(u) — M(u)| @)

For open-loop FFEC, we do not have access to R, and instead
use the model map M to find the optimal input trajectory u*
which produces the prescribed output g, y:

u* = arg m&n||M(U) - QTefH

subject to the constraints of the PDP pump and robot end-
effector motion. The second contribution of this work is a
strategy that leverages our proposed model to compute this
optimal open-loop compensation.

For closed-loop control, we have access to a measurement
of R(u) after it is subjected to the sensor mapping S:

9meas = S(R(u))

The closed-loop control problem uses the sensor reading
to find the optimal input trajectory w* which produces the
prescribed output trajectory qy.:

u” = argmin ||S(R(u)) — greyll

The third contribution of this work is a strategy that lever-
ages our proposed model alongside real-time measurements to
compute this optimal closed-loop control.
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Fig. 2. a) Experiment setup for printing. The whole robotic printing system
consists of the robot arm, print-head, and build plate. The print-head includes
the extruder, pressurized silicone reservoirs, PDP, flow sensor, and nozzle. The
flow sensor is a main contribution of this paper, as it allows use to measure and
correct flow rate in real time. b) Positive displacement pump (PDP) system.
Two progressive cavity pumps extrude A and B parts of the two-part liquid
silicone. A and B parts are mixed via static mixing elements, and mixture is
deposited through the nozzle. Here, g represents the direction of gravity.

II. RELATED WORKS

Our work fills a gap in high-viscosity fluid deposition
research related to transient flow dynamics in PDP systems for
DIW. Existing research on fluid flow behavior in various PDP
systems includes control schemes based on analytical solutions
to physical laws [?] [?], physics-based simulations [?] [?] [?],
and data-driven models [?] [?]. However, these approaches are
either too computationally expensive for real-time control or
lack consideration of transient effects in PDPs.

Baranovskii and Artemov have proposed generalized solu-



tions for optimal control of nonlinear fluid models based on the
Navier-Stokes equations [?], though their analytical solutions
demand simplifications specific to their system. This is also the
case with the work of Josifovic et al, involving computational
fluid dynamics (CFD) to model the step response of a valved
pump system [?]. Hapanowicz’s flow-resistance model [?] is
only applicable to quasi-steady cylindrical flows and does not
account for transient pump dynamics.

To control the fluid flow of PDP systems, researchers paired
simplified models with closed-loop controllers and numerical
solving methods in place of analytical physics-based solutions.
Froehlich and Kemmetmiiller propose a computationally effi-
cient control [?], but it is designed only for injection molding
systems. Wang et al combine pressure sensors and PID control
to correct flow behavior [?]. Numerical solution methods have
also been proposed for flow control of screw [?], helical gear
[?], and peristaltic pump systems [?]. Though seldom used
in fluid dynamics controllers, a data-based lumped parameter
model was used by Fresia and Rundo [?] and Zardin et
al [?] to compensate pulsing fluid dynamics generated by
variable displacement pumps and vane pumps, respectively.
However, because each group derived their models based on
their specific PDP system, none are generalizable to the broad
spectrum of PDPs.

Models for progressive cavity pumps are relatively unex-
plored in academic research. Fisch et al [?] and Franchin et al
[?] note a strong improvement in precision when a progressive
cavity pump is used instead of other PDPs. As a result,
research on fluid interaction with progressive cavity PDPs has
been limited to basic feedback control [?] and CFD methods
to model specific behaviors of the progressive cavity pump
system, including wear over time [?], backflow [?], as well
as inertial effects and viscous losses [?]. While these models
predict unsteady flow in internal regions of the progressive
cavity systems, none provide comprehensive predictions of the
entire dispensing system, which are required for our robotic
dispenser.

To bridge these research gaps, we propose a model of the
fluid system dynamics that can predict transient effects of
high-viscosity fluid flows in PDP systems, which we then
pair with both open-loop and closed-loop control paradigms
to compensate for deposition errors during deposition.

III. METHODS

Our approach is composed of both modeling and control.
We will first introduce our modeling framework and then both
our open-loop FFEC and closed-loop control strategies.

A. Modeling of High-Viscosity Fluid Deposition

Our goal is to design M such that it i) is amenable to real-
time control and ii) sufficiently closely approximates R in
Eq. 2, which represents the complex nonlinear fluid dynamics
and interaction with both pump and mixer. We model the entire
system as a 3 DOF coupled linear dynamic system, presented
as the mass-spring-damper network in Fig. 3. Our model is a
representation of fluid flow impedance in the form of elasticity
k;, damping c;, and inertia m,; within both the pump (j = 1)

and mixer (j = 2), as well as inertia m; of the fluid that sits
between them.

Pump Mixer
e - N F1u1d e = N
x,(f) x,(2)
mg
ky  mp c my k
}—m(t) —> g(?)

Fig. 3. The high-viscosity fluid, pump and mixer are simplified to a 3 degree
of freedom coupled linear dynamical system. Our model is a representation of
fluid flow impedance in the pump (5 = 1) and mixer (j = 2) in the form of
elasticity k;, damping c;, and inertia m, as well as inertia m f of the fluid.
The “positions” x1, T2, q of the “masses” m1, mga, m are the degrees of
freedom that form the state vector « alongside their time derivatives.

When coupled with the initial state of the system, our map
M introduced in Eq. 1 can take the form of a dynamics
function f that predicts the next state vector x, of which ¢
and its time derivative are elements:

1 = f(Tr, ur)

The state vector « for the dynamics is defined using the 2
internal degrees of freedom z; and x5 and the output ¢:

. . . 1T
w:[azl T2 q T1 X2 Q}

The system can be described with state-space form, with input
u and output q:

Tpt1 = Az, + Buy
ar = Cxy,

where the matrices A, B and C are as follows:

0 0 0 1 0 0
o 0 0 o0 1 0
A 0O 0 0 0 0 1
w00 =m0
0 -k 0 o0 Lo o
0 0 0 & & _ate
mg mg mg
A =Tgu+ A A
T
B=[0 00 & 0 0] a
c=[00 100 0]

Given measured data from the real system, the parameters
are found as the solution to a least-squares optimization. The
cost function ¢ is a 2-norm loss for a given time horizon n
as a function of the parameters ¢, where the data is sampled
with the same period as the simulation time-step At:

n
C(¢) = Z(Qk,model(¢) - Qk,meas)Q 3)

k=1
T
¢p=[k ca m my ka co my |
Where gk meaqs is the measured data for the time with index k

and qx,moder 15 the modeled flow rate for the time with index
k. For each iteration of optimization ¢ the model is solved and



the gradient of the cost computed. Then, the parameters are
updated according to that gradient:

Ic(¢i)
i
where h is an adjustable increment. We set this optimization

to stop once the cost changes by less than 0.1% from one
iteration to the next.

Piy1=¢d; —h

B. Open-Loop Control of High-Viscosity Fluid Deposition

With this model in hand, we desire the input profile u for
a given time horizon such that the nozzle flow rate tracks the
desired q. We construct a quadratic cost function b for this
optimization:

b = (2 — )T Qi —

where x, is the current state, uy is the current input, acze
the desired state at the time with index k.

In our specific case, where our input only has a single degree
of freedom, Ry and wuj reduce to scalars, so Eq. 4 can be
rewritten:

by, = (xr — wzef)TQ(-’Bk -

where Q is a diagonal matrix containing the weightings for
tracking error of the 6 states. Since we only are trying to track
the output ¢, the third state, all other members of the diagonal
can be set to some small value ¢:

QGXG = dzag(§, 67 57 57 5a 6)

With the linear dynamics of our model, the cost function
defined in Eq. 4 could ordinarily be minimized analytically
within the bounds of linear quadratic regulator (LQR) theory.
However, we have observed that the reference trajectory is
tracked more effectively in reality if the weighting on actuation
effort Ry, is significantly reduced (r; < r2) once the input uy
falls below a certain negative value u;,, when the pumps are
run backwards in an effort to rapidly shutoff the output flow
when commanded as such:

— 4!
n-{ "

Since the coefficient of actuation effort within the quadratic
cost changes depending on the magnitude of the input, we
use an iterative LQR (iLQR) solver [?] for this optimization
problem. Each iteration ¢ occurs in two parts. The first is a
backward pass in which the controller gains K; are computed
using the value function V at the next time step, which is
then updated for the current time step:

wzef) + ul Ryuy 4)

Fis

azf’f) + Rpu?

U < Uth
Uk = Uth

K. = (R, +B TV, B) 'BTV, A
P, =A"+B*K;
Vi = QZ + KngKk + ngk’-i—lpk
where A*, B*, and Q} are the homogenized versions of A,
B, and Q respectively:
| =-[7]

A 06x1

A" =
|: O1x6 1

Q* o Q Q(wk} - wzef)

P @2y N)TQ (k- &) (g, — 2

The second part is a forward pass in which the input uy is
updated according to the controller gains, and the state xj is
updated according to the dynamics with the input:

™ . " .
up™ =+ Ky (2 —xjy)
e = Awp” 4 Bup!

We set the controller optimization to stop if the cost changes

by less than 0.1% from one iteration to the next.

C. Closed-Loop Control of High-Viscosity Fluid Deposition

To close the loop on flow rate control, we develop a novel
vision-based sensor to measure the just-printed bead. Our
sensor projects a laser line from a diode onto the printed
bead behind the forward-traveling nozzle, and observing the
distortion of the line from a Raspberry PI (RasPI) camera.

At time index k, the sensor directly measures the cross
sectional area in pixels of the bead in the camera frame A, ;.
We assume A, scales linearly to the true cross sectional
area in physical units Ay by proportionality constant K =
Ap 1/ Ap 1. Through a control volume analysis of the recently
printed bead, we represent flow rate g; as a function of both
area A, ;, and nozzle velocity vy:

1

qr = EAp,kvk )

With two independent variables, this function can be repre-
sented as a surface. We identified K as the solution to another
least-squares optimization, where the surface defined by Eq. 5
is fit to real data. We collected data at various steady state
flow rates and velocities, and measured A, , with the sensor.
This measurement involves two trained segmentation models
for the nozzle and laser line to be masked from the RasPI
camera feed respectively. The sensing procedure for finding
A, i is visualized in Fig. 4.

The flow sensor we introduce in this paper provides the
unique ability to perform closed-loop control of fluid deposi-
tion. A similar controller to the open-loop version is used, but
it is continually solved over a horizon T that follows the
current time, using an estimation for the current flow rate as
an initial condition.

After acquiring the sensor reading, we apply a Kalmann
filter to generate the flow rate estimation g;,;; and its time-
derivative ¢;,;;, approximated by finite differences. The open-
loop controller described in Section III-B is then initialized
with the estimated state-vector:

€(0) = [ Ginit 0 Ginit 0 0 Ginit ]T

We give the solver a reference trajectory g,y for the horizon

Ter: .
a:mf:[O 0 gref 0 O 0}

Once the optimal input uy is found, its initial value ug is

sent to the pumps. This input to the pumps is low-pass filtered
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Fig. 4. Novel flow sensor detail and bead area measurement visualization. a) Top view of sensor, showing laser line diodes and cameras underneath the PDPs.
b) Close-up of laser line distortion caused by the printed bead. c) Rear view of sensor, showing the Raspberry Pi Zero that collects and sends image data
over the ROS network. d) Visualization of bead area measurement. Segmentation of nozzle is used to locate the center of the image (where the printed bead
should be) and the laser segmentation is cropped accordingly. The mean location of brightness of each column in the laser segmentation is used to sample
the curve of the laser distortion, which is discretely integrated to return the bead area in pixels Apz.

in real-time. The assumption for this procedure is that the
duration required for solving the controller is less than tseps.
We wrote the program such that the controller solves every
time the sensor has a new measurement, which occurs after
each period equal to tsens-

IV. RESULTS
A. Experimental Setup and Data Collection

Our experimental setup can be seen in Fig. 2 and detail of
the flow sensor can be seen in Fig. 4. We used a 7DOF Kuka
LBR 14 R820 robot arm equipped with a customized print-
head alongside an adjustable build plate fixed to the base of
the world frame. The customized print-head consists of the
extruder mount, pressurized reservoirs, PDPs, mixer, nozzle,
and flow sensor. The silicone material used for deposition
is Dow Corning 121 Structural Glazing Sealant. The stepper
motors in the PDPs are controlled by a Raspberry Pi 4 Model
B using integration with Python and ROS, while the sensor
operates through a Respberry Pi Zero that communicates with
the same ROS network. The silicone reservoirs are connected
to a high-pressure air source limited at 100 psi by a pressure
regulator.

We collected all data for model training and verification, as
well as control verification, with our novel vision-based flow
sensor, which is described in Section III-C. The sensor cali-
bration process provided the parameter K = 213.7 px/mm?
for Eq. 5. The data for this calibration and the best fit surface
defined by K = 213.7 px/mm? are shown in Fig. 5.
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Fig. 5. Sensor calibration surface q(Apz,v) described in Eq. 5, with K =
213.7pz/mm?, alongside data collected at nozzle speeds 3, 5, and 10 mm/s.

B. Model Training

To implement the model training algorithm described in
Section III-A, we used values of A = 0.1 for the step
increment, and At = 0.01 s for the simulation time step. The
data seen in Fig. 6 was collected by the sensor over 4 trials.

We trained the model on an input command trajectory
consisting of 10 square pulses of different magnitudes, both
negative and positive, as seen in Fig. 6. This was to anticipate
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Fig. 6. The lumped-parameter fluid deposition model was trained on 4 sets
of data collected live from the flow sensor while the pumps were given
the command u over a horizon of 22 seconds. Due to the real non-linear
and specifically non-Newtonian nature of the silicone, a linear model cannot
accurately predict across the entirety of a wide range of flow rate magnitudes.
Additionally, while negative flow is predicted by the model, the sensor has
no means to measure it, though it may truly occur.

the necessary distribution for compensating step-up and step-
down flow rate trajectories at the nozzle. The optimization
returned the parameters shown in Table 1.

TABLE I
PARAMETERS FOUND AS A RESULT OF MODEL TRAINING
k1 c1 m1 | my | ke c2 ma
177 | 1881 | 1.02 | 1.78 | 9.87 | 5.33 | 1.11

With these parameters defined, the model exhibits the be-
havior shown in Fig. 6. The trained model can be used to
predict the data used in training. Fig. 7 shows the ability of
the trained model to predict unseen data.

C. Control and Compensation

We tested both our open-loop FFEC and our closed-loop
controller against 2 industry standard solutions, for tracking
both “pulse” and “dip” set-point flow rate trajectories. The
pulse task demonstrates the ability of the flow rate to turn on
and off, especially repeatedly, as it may while printing small
areas during layered 3D printing. The dip task demonstrates
the ability of the flow rate to drop briefly before returning
to a nominal value, as it should to avoid bulging during
deceleration of the nozzle while dispensing in a tool path that
contains sharp turns. All data was collected via the sensor
described in Section III-C. For all tests, the desired flow
trajectory, pump input trajectory, and cartesian trajectory of
the robot were sampled at a period of Atse,s = 0.2 s for
commanding the arm and PDPs. We chose parameters for
industry standard solutions based on typical values for MEX.
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Fig. 7. Prediction of unseen data by the lumped-parameter model. With the
parameters from trained model, the model is able to predict unseen data,
consisting of the flow rate input to the pumps and output measured by the
flow sensor from the pulse validation experiment.

To implement the open-loop FFEC solver described in
Section III-B, we used values of £ = 100 and 6 = 0.01 for the
tracking weight, and 71 = 20, 75 = 200, uy, = —2 mm?/s
for the actuation effort weighting. The desired flow trajectory,
generated with a time step of Atge,s = 0.2 s, was linearly
interpolated to At = 0.001 s for solving.

Our closed-loop controller described in Section III-C was
implemented with values of £ = 100 and § = 0.01 for the
tracking weight and r; = ro = 80 for the actuation effort
weighting, T, = 5.0 s for the solving horizon, At = 0.06
s for the simulation time step, and the stop condition for the
optimization was changed to stop once the cost changes by
less than 3% from one iteration to the next.

For the pulse task, we commanded a series of 3 square
pulses with a magnitude of 4 pL/s. The industry standard
solutions applied to this task were retract/prime and coasting.
For retract/prime, at each rising edge 10 uL/s is commanded
for 0.4 s, and at each falling edge —10 uL/s is commanded
for 0.4 s. For coasting, the falling edge is commanded to the
pumps 1 s earlier than the desired output. The pulse task was
tested 3 times, for a total of 9 pulses sent to each control
method. The mean of all 9 output pulses is shown in Fig. §,
for each of the 4 control methods alongside the naive control,
in which the set-point is used as u(¢). The mean-absolute-error
(MAE) between the flow trajectories produced by each control
method and the set-point can be seen in Table II, showing an
improvement of over 40% when using our methods.

For the dip task, we commanded the printer to extrude
at 4 uL/s for a period of time before briefly shutting off
and returning to 4 pL/s. The industry standard solutions
applied to this task were linear advance and no shutoff. We
consider no shutoff an industry solution because often no flow
compensation is applied for sharp corners in the tool path.
For linear advance, the pump motors decelerate to 0 pL/s
early before accelerating to 7 pL/s briefly, then returning to
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Fig. 8. Results of pulse test. The dotted line represents the set-point.

TABLE 11
MAE RESULTS FOR PULSE TASK

MAE % Improvement
Closed Loop Control | 0.92 + 0.28 46
Open Loop FFEC 0.81 £ 0.20 52
Retract and Prime 1.26 £ 0.16 25
Coasting 1.52 £ 0.17 10
Naive On-Off 1.69 £+ 0.21 0

4 uL/s. No shutoff involves a constant 4 uL/s commanded to
the pumps. We tested the dip task 3 times as well, The mean
of the 3 controller responses can be seen in Fig. 9, for each
of the 4 control methods alongside the naive shutoff control,
in which the set-point is used as u(t). The MAE between
the flow trajectories produced by each control method and the
set-point can be seen in Table III, showing an improvement
of over 40% using our methods.

We also evaluated the pulse task using observations of
material placement using a top view of the print bed after the
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Fig. 9. Results of dip test. The dotted line represents the set-point.

TABLE III
MAE RESULTS FOR DIP TASK

MAE % Improvement
Closed Loop Control | 0.88 &+ 0.30 49
Open Loop FFEC 0.82 £ 0.34 53
Linear Advance 1.40 £+ 0.41 20
No Shutoff 1.25 + 0.32 28
Naive Shutoff 1.74 + 0.22 0
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b) g X101

Binary Cross Entropy Loss

Fig. 10. The printing of 3 pulses analyzed by material placement, using a
binary cross entropy loss between the target mask and the result mask. a) The
black outlines indicate the boundary of desired material placement, while the
colored areas represent resulting material placement. Higher opacity indicates
material placement during multiple trials. b) Visualization of BCE results.

deposition test. The 3 trials were done again and the results
were photographed, automatically segmented to a binary mask
using MATLAB R2020b, and compared with a grayscale mask
of the desired material placement using binary-cross entropy
(BCE) loss as an evaluation method. This grayscale mask has
a small dilation blur to less harshly penalize material that
is slightly outside of the intended boundary. The masking
comparisons and BCE results can be seen in Fig. 10 and Table
IV, showing an improvement of over 40% using our methods.

TABLE IV
BCE RESULTS FOR PULSE TASK

BCE/10% % Improvement
Closed Loop Control | 2.5 £ 0.3 49
Open Loop FFEC 28 £0.5 43
Retract and Prime 32 +£07 35
Coasting 48 £0.2 2
Naive On-Off 49 £03 0




V. DISCUSSION AND LIMITATIONS

In this paper, we demonstrate how after quickly identifying
just 7 parameters that define our flow model, we can apply
the model to either an open-loop or closed-loop approach
of correcting flow errors. We experimentally validated our
approaches with deposition tests using our robotic 3D printer.
Misplaced material during printing was significantly reduced
due to the application of our model-based compensation and
control techniques. Fig. 1a shows that the naive on-off pump
input leads to unintended deposition amongst two 3D printed
rings. In Fig. 1b, the two objects are separated cleanly when
open-loop FFEC is applied. Beyond AM, our compensation
enhances material placement precision along linear trajecto-
ries, as depicted in Fig. 10. This improvement has the potential
to reduce error for robotic deposition of sealant and adhesive.

The versatility of our linear model theoretically extends to
any material or PDP, provided it is retrained on the system
that will be used during the final application. While material
properties can change with ambient conditions such as temper-
ature, this work assumes training and testing occur in the same
environment; this could be considered a limitation. A physics-
based model would be beneficial in adapting the controller
to changing ambience. While our model’s predictions are
satisfactory for this paper’s intent, Fig. 6 and Fig. 7 show
predictions that are missing some measured features, likely
due to sensor and/or model inaccuracy. Our linear model
lacks wholly predictive capabilities for non-Newtonian silicone
behavior. A more expressive model of the fluid dynamics could
mitigate eccentricities of predictions seen in Fig. 7, especially
since iLQR is compatible with nonlinear systems [?].

In its current form, the flow sensor is limited to sensing
single line beads printed straight. For 3D printing, it must be
able to align the laser/camera pairs with the direction of nozzle
travel. The sensing scheme must also involve comparison
between the front (where material will be soon) and rear
(where material has just been placed) camera views. Open-
loop FFEC is already applicable to 3D printing (see Fig. 1).

One motivation to keep our model computationally inexpen-
sive is to allow further improvements of closed-loop control,
regardless of the type of sensor or control scheme used. The
flow sensor and closed-loop control scheme used in this paper
both require a significant amount of processing time, which
has limited us to a loop time of 0.2 s. This is perhaps why
closed-loop control manages to consistently perform just under
open-loop FFEC according to data from the flow sensor, as
shown in Tables II and III. While the closed-loop control must
be conducted in real-time, the FFEC can optimize the input tra-
jectory for any amount of time before it is deployed to the real
system. However, according to Table IV and Fig. 10, closed-
loop control outperforms FFEC. This discrepancy is likely due
to differences in how the data are registered to the desired
result. While this may suggest that it makes little difference
whether our closed- or open-loop solutions are used, closed-
loop control has unique advantages that stem from its reliance
on real-time observations, potentially outperforming FFEC on
unseen systems. We can expect the FFEC to underperform
on such systems, where the mixer, material, or pump may

have changed from training. A higher frequency closed-loop
control scheme coupled with a more accurate sensor could
better eliminate errors in real-time. Additionally, the nozzle
trajectory can be optimized alongside the flow rate so that
the transient delay still present in the corrected output (see
Fig. 8 and Fig. 9) will not be a permanent barrier to precise
material placement. Through this we will achieve even further
improvements than those demonstrated in this paper.



