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Abstract—Deep learning (DL) has recently become a key
technology supporting radio frequency (RF) signal classification
applications. Given the heavy DL training requirement, adopting
outsourced training is a practical option for RF application
developers. However, the outsourcing process exposes a security
vulnerability that enables a backdoor attack. While backdoor
attacks have been explored in the vision domain, it is rarely
explored in the RF domain. In this work, we present a stealthy
backdoor attack that targets DL-based RF signal classification.
To realize such an attack, we extensively explore the character-
istics of the RF data in different applications, which include
RF modulation classification and RF fingerprint-based device
identification. Then, we design a training-based backdoor trigger
generation approach with different optimization procedures for
two backdoor attack scenarios (i.e., poison-label and clean-label).
Extensive experiments on two RF signal classification datasets
show that the attack success rate is over 99.2%, while its
classification accuracy for the clean data remains high (i.e.,
less than a 0.6% drop compared to the clean model). The low
NMSE (less than 0.091) indicates the stealthiness of the attack.
Additionally, we demonstrate that our attack can bypass existing
defense strategies, such as Neural Cleanse and STRIP.

Index Terms—Radio-Frequency Backdoor Attack, Deep Learn-
ing Security, Mobile Security, Wireless Communication Security

I. INTRODUCTION

Software-defined radio (SDR) [1] has increasingly incorpo-
rated deep learning (DL) into its essential components. For
instance, DL can significantly improve the analysis of radio
frequency (RF) signals in RF signal classification, such as
RF modulation classification [2], [3] and RF device identi-
fication [4], [5], by providing high accuracy and robustness.
Recently, attacks targeting deep neural networks, particularly
in the vision domain [6], [7], have been receiving more and
more attention. However, attacks on DL-based RF signal clas-
sification have not been explored in-depth, despite the potential
for severe security problems. For example, misclassifications
in DL-based RF modulation classification on SDRs can disrupt
ongoing communication and significantly reduce spectrum uti-
lization efficiency or even sabotage the entire communication.
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Attackers can also launch impersonation attacks to trick DL-
based RF device identification applications into performing
attacker-specified device classification. This can cause vendor
authentication failure problems in 5G and Open Radio Access
Networks (Open RANs) during network slicing. These security
issues motivate us to conduct a holistic study of the security
vulnerabilities of DL-based RF signal classifications
DL-based RF signal classification has security risks inherent

in the model training process. Machine Learning as a Service
providers offer purchasable computational power to solve the
heavy training process requirements (MLaaS). DL developers
or end users often outsource the training process to MLaaS
providers to save on costs for building DL models. However,
this practice enlarges the attack surface, allowing malicious
MLaaS employees to manipulate the training process and
inject malicious behavior into the DL model (e.g., poisoning
a small fraction of training data) [8]–[10]. Backdoor attacks
are a type of effective training-phase attack scheme. It aims
to insert a hidden trigger with a specifically designed pattern
(such as pixel blocks of images [11] or tone signals of
audio samples [12]) into the deep learning model during
the training phase, while the overall clean data performance
of the model is not affected. In the prediction stage, the
occurrence of trigger patterns will alter the prediction results
of deep learning models to a target class, causing adversary-
specified predictions. This kind of attack often performs as
a target attack as training a backdoor model with untarget
attack goal cannot guarantee the clean data classification
performance. Recently, a pioneering work on RF backdoor
attacks [13] demonstrated attacks on DL-based RF modulation
classification by poisoning training data and injecting RF
triggers (i.e., rotating the original RF complex data in the in-
transit and quadrature (IQ) data plane). However, the attack
is heuristic, as the trigger pattern significantly differs from
normal signals in the IQ data plane. Consequently, existing
outlier detection mechanisms [14]–[16] can easily detect and
remove such a trigger. This further motivates us to develop a
robust stealthy RF backdoor attack against common signal out-
lier detection mechanisms and even state-of-the-art backdoor
attack-defending approaches.
Realizing stealthy backdoor attacks toward DL-based RF

signal classification is challenging. RF signal classification
applications usually adopt a series of RF signals as inputs
to the underlying DL model. We refer to these RF signals
as RF IQ segments. Each IQ segment contains a sequence
of IQ samples representing the complex values of received
RF signals. Particularly, we face the following challenges in
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Fig. 1. Illustration of the proposed RF backdoor attack design. In the training phase, the attacker in MLaaS trains a backdoored model and RF trigger (i.e.,
IQ perturbation) based on the model architecture and data provided by the developer. In the inference phase, the backdoored model can misclassify the RF
signals containing the RF trigger while correctly classifying the RF signals without the trigger.

designing a stealthy RF backdoor attack due to the unique
spatial and temporal characteristics of the samples in the
IQ segments. First, different types of RF signal classifica-
tion applications have varying layouts of IQ samples in the
IQ plane due to their heterogeneous modulation schemes.
Therefore, the trigger generation procedure needs to consider
the spatial perspective for stealthiness. Second, in an RF
signal classification application, each individual RF input IQ
segment may have different layouts due to the diversity of data
sent at different times. We call this phenomenon IQ segment
dynamics. Therefore, it is necessary to design stealthy trigger
patterns that consider the temporal variations of the inputs.
Third, a simple trigger generation procedure such as inserting
designed IQ samples is not optimal for balancing attack
performance and stealthiness in heterogeneous DL-based RF
signal classifications, as the backdoor model training process
is application-dependent. It is challenging and necessary to
develop an approach that optimizes attack performance and
stealthiness of trigger simultaneously. For each specific RF
application, we can apply this general algorithm while only
changing the model training hyperparameters. The details of
the optimization algorithms are referred to in Section V-B and
Section V-C.

In this paper, we design an RF targeted backdoor attack
that can generate a stealthy trigger hidden inside the dynamic
input IQ segments from different RF signal classification
applications, such as RF signal modulation and RF device
identification. Particularly, we study the IQ segment dynamics
in various RF signal classification applications and design a
stealthy trigger pattern generation procedure that accommo-
dates the dynamic inputs considering both spatial and temporal
perspectives. We further design a training-based backdoor
trigger optimization approach to penalize the difference be-
tween clean input data and backdoor-injected data, enhancing
stealthiness of trigger. More specifically, it jointly optimizes
the backdoor model and the trigger to not only enhance the
clean data and attack performance but also make the trigger
stealthier. We develop two different optimization approaches
for the following two attack scenarios: 1) Poison-label back-

door attack scenario, which poisons the training examples
and the labels simultaneously. 2) Clean-label backdoor attack
scenario, poisoning the training examples while unchanging
the labels [17] in backdoor model training process. In the
clean-label attack scenario, people can’t notice the abnormality
even under close scrutiny during the model training process
because the labels are unchanged and consistent with the main
content of the data. However, the trigger could be neglected
easily by the hidden layers in the deep learning model as
the trigger loses a strong association with the target label,
increasing the difficulty of launching the clean-label attack. To
compare the stealthiness of attack in two scenarios, we define
the stealthiness in the training stage and inferencing stage
respectively. Particularly, in the training phase, stealthiness
means whether the detector can be aware of the action of data
tampering by checking the training IQ segments and labels.
In the inferencing phase, stealthiness means the detector can
detect the trigger by only checking the testing IQ segments.
Clean-label attacks are more resistant and stealthy to data
filtering or detection techniques [18], [19] in the training
stage as the poisoned label is unchanged. Poison-label attacks
are more stealthy in the inferencing stage as the trigger is
much easier to train. Existing clean-label backdoor attacks
have primarily been studied in the image domain [20]–[22],
their effectiveness in more demanding conditions such as RF
domain, remains largely unexplored.
The flow of the proposed RF-domain backdoor attack is

illustrated in Fig. 1. The developers outsource the model
training process to MLaaS providers and upload the training
RF IQ data. In the training phase, the adversary pollutes a
certain percent of data by injecting the RF IQ trigger into
a small proportion of the training dataset and modifying the
corresponding labels to the target label in the poison-label
attack scenario. In the clean-label attack scenario, the adver-
sary injects the RF IQ trigger in a small portion of the clean
data without changing the label. Meanwhile, the adversary
redesigns the MLaaS training procedure to simultaneously
train the backdoored model and optimize the trigger using
both clean data and poison data. In the inference phase, the
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legitimate users download and deploy the backdoored model
locally because the backdoored model satisfies the developers’
requirements and performs normally in the testing RF IQ data.
To launch the attack, the adversary compromises the RF re-
ceiver without the legitimate users’ attention and launches the
backdoor attack by injecting the optimized stealthy trigger into
input RF IQ segments that cannot be detected. In summary,
we make the following technical contributions:

• We systematically study the characteristics of IQ data
used in the applications of RF modulation classification
and RF device identification. We design application-
orientated trigger patterns that are stealthy in the spatial
and temporal representations of the RF signals. We exten-
sively study the RF IQ data from different applications
and demonstrate the possibility of designing a stealthy
backdoor trigger generation approach that is generally
applicable to different RF classification applications.

• We study the problem of clean-label backdoor attacks
against two RF signal classification applications and
develop a novel approach to execute backdoor attacks
under strict conditions in the clean-label scenario. To the
best of our knowledge, this is the first work of the clean-
label backdoor attack on the RF domain.

• We design a stealthy trigger generation approach and
two optimization procedures for poison-label and clean-
label scenarios respectively. Our methods can improve
the attack performance and the stealthiness of the triggers
and minimize the impacts on the classification accuracy
of clean data simultaneously.

• We evaluate two types of common RF signal classification
applications. Our evaluation results show that our RF
backdoor attack could achieve over 99.2% attack success
rate while maintaining classification accuracy (drop less
than 0.6%) in the poison-label and clean-label attack
scenarios. We also test the robustness of our RF backdoor
attack against several popular defending approaches, such
as Neural Cleanse and STRIP.

II. RELATED WORK

Radio Frequency (RF) signal classification, as an important
task in RF signal processing, aims to analyze and recognize
unknown RF signals and assign them to predefined categories.
Currently, due to the powerful learning and representation
capabilities, deep learning techniques have been widely used in
several RF signal classification tasks, such as RF modulation
recognition [2], [3] and RF device identification [4], [5].
Deep learning approaches have shown promising results in
RF signal classification. However, deep learning models can
be susceptible to security threats during the training process,
such as backdoor attacks [17].

Poison-label Backdoor attacks have become an emerging
attack due to the wide use of MLaaS for outsourcing deep
learning training tasks. In BadNet [23] and Blended [24],
the authors demonstrated that outsourced training can cause
adversary-specified predictions on image classification tasks
by injecting pixel blocks and blending original images
with other specific images. Recently, various trigger gen-
eration strategies, such as image warping [25], input-aware

backdoor [26], and audio-domain position-independent back-
door [27], were proposed to improve the stealthiness and
imperceptibility of the attack. Furthermore, Badnets [28] pro-
posed embedding backdoors in the DNN models by injecting
hidden triggers into the training data. Zhu et al. [29] and
Shafahi et al. [18] developed methods for generating contam-
inated training data to compromise the model’s performance.
Additionally, Phan et al. [30] presented a backdoor attack on a
compressed DNN model. Although backdoor attack schemes
have been widely explored in image and audio domain,
launching them in the RF signal classification task is still little
explored. Davaslioglu et al. [13] is the pioneering work on RF
backdoor attack, which adds trigger by modifying the phase.
However, this attack was heuristic and could be detected by
the existing outlier detection mechanisms [14]–[16].
Currently, the existing research in clean-label backdoor

attacks is mainly in the image domain. To further improve the
stealthy compared with poison-label backdoor attack, Shafahi
et al. [18] first proposed the clean-label backdoor attack
which only poisons the image while unchanging the labels
of poisoned images. This constraint makes it challenging for
human reviewers or data filtering methods to detect malicious
data as the unchanged label is consistent with the poisoned
images. They explored the difficulty and possibility of the
clean-label attack by visualizing the feature space of poisoned
and clean images. To enable feature overlap between the target
image and the poisoned image, they proposed to add a low-
opacity watermark of the target image to the poisoning image.
Subsequently, Turner et al. [19] introduced two techniques, la-
tent space interpolation using GANs and adversarial examples
bounded in lp-norm, to generate a universal perturbation. With
a patch trigger and universal perturbation injected into the
images in the backdoor model training, the attack performance
is improved as the model focuses more on learning from
the trigger rather than the original content of the image.
Zeng et al. [20] developed a method that enables clean-label
backdoor attacks based only on the knowledge of 0.05% of
the data, demonstrate the effectiveness of leveraging limited
data for mounting such attacks. Cauli et al. [21] focused on
face recognition systems and proposed to add the perturbation
specifically in the areas corresponding to important facial
features. However, Luo et al. [22] discovered that previous
clean-label backdoor attacks tend to fail when applied to high-
resolution datasets. To address this limitation, they generate
image-specific triggers that can enhance two phases (back-
door training phase and inference phases) in the clean-label
backdoor attack. Zhao et al. [31] explored the application
of clean-label backdoor attacks within video-based systems,
highlighting the potential vulnerabilities in the video domain.
While extensive research has been conducted on clean-label
backdoor attacks in the image domain, clean-label backdoor
attacks in the RF domain lack exploration.

III. THREAT MODEL

A. Backdoor Attack Scenarios

Poison-label Backdoor Attack. The developers of RF
signal classification systems usually have limited computing
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resources. In such cases, the developers may resort to machine
learning as a service (MLaaS) providers for training deep
learning models. To use the training service, the developers
need to provide the MLaaS provider with the DL model
architecture and RF training data (i.e., RF IQ data). The
adversaries could potentially be employees who provide the
training outsourcing service and can access the training dataset
and model. The compromised employee is not attacking the
service of his/her firm instead the target is to attack the
customers model. The adversaries inject the trigger (i.e., RF IQ
samples) into the training data, modify the corresponding label
to the target label, optimize the trigger, and train the model
through the customized backdoor training process. The design
of the trigger should be unnoticeable so it can bypass data
filtering techniques. Developers can verify the performance
of the trained model using their private testing data after the
MLaaS providers train the model on their behalf. If the model
meets the developers’ performance requirements, the model is
accepted for use. However, the model leaves a backdoor that
can be activated by the trigger to misclassify the poisoned
data towards a target label. The developers incorporate this
backdoor model in multiple wireless networks. This security
flaw could bring down the networks when the adversary
compromises the RF transmitter and injects the trigger into
the RF signals.

Clean-label Backdoor Attack. The developers also out-
source the model training process to a training outsourcing
service. The adversaries could be someone who can access
both the RF IQ data and model training but can’t access the
label. Differing from the poison-label backdoor attack sce-
nario, the adversaries inject the trigger into training RF IQ data
and customize the backdoor model training procedure while
keeping the corresponding labels of poisoned data unchanged.
Consequently, when detectors scrutinize the data and labels,
they can’t notice the abnormal because the labels are consistent
with the main content of the data. After backdoor training, the
backdoored model performs normally in local testing dataset
so it can be accepted by developers. However, the adversaries
can activate the backdoor to misclassify the poisoned data to
a target label by injecting the trigger into the clean data.

B. Attackers’ Capability
The adversaries are assumed to have access to the MLaaS

providers’ training process and training data. This is highly
possible since the adversaries can be the employees of the
MLaaS providers. Such assumptions are also common in the
backdoor attack scenarios [32]–[34]. The adversaries have the
capability of manipulating the configurations of the training
process, such as batch size, number of epochs, and loss
functions. They are permitted to revise the labels in the poison-
label backdoor attack scenario but they have no control of
labels in the clean-label scenario. To launch the attack, the
adversaries are presumed to be capable of compromising
the receiver in RF communications, enabling them to inject
backdoor triggers into the received RF signals. In software-
defined radio systems, this is achievable by luring the users of
the RF signal classification application to install malware that
can manipulate the receiver.

C. Attack Objective in RF Signal Classifications

The attack objective of the adversaries is to train a backdoor
model and optimize a corresponding backdoor trigger, causing
misclassification to a specific target class when the input RF
signal is affected by the backdoor trigger. For instance, in
RF modulation classification, the adversaries aim to mislead
the RF receiver to incorrectly classify all modulations to one
specific modulation, causing unsuccessful communications or
low throughput. In RF fingerprint-based device identification,
the adversaries aim to utilize the backdoor attack to mislead
the RF receiver, recognizing the connecting RF device as a
wrong identity and rejecting any further requests. Besides, the
adversaries can pretend to be an authorized transmitter for
unauthorized access.
Note that the adversaries should ensure that the backdoored

model behaves as the original model with the presence of
clean input data. This requirement is very necessary as the
developers may notice any abnormal classification results and
refuse to use the model when testing models using their
validation data.

IV. PROPOSED RF BACKDOOR ATTACK

A. RF Backdoor Attack Formulation

Deep Learning Model in RF System. The deep learning
model used in RF signal classification can be described as a
non-linear mapping function Fω(·), where ω is the weight of
the deep learning model. A time series of RF IQ segments
composed of a certain number of IQ samples, serve as the
input for Fω(·) that outputs a predicted class, e.g., a specific
modulation type or a specific RF transmitter. The non-linear
relationship between the RF IQ data X and the corresponding
labels Y can be established by optimizing the weight ω that
minimizes the difference between the outputs of the predicted
function Fω(X) and the labels Y. The entire training process
can be formulated as an optimization objective as follows:

argmin
ω

N∑
i=1

L (Fω (xi) , yi) ,

s.t. xi ∈ X, yi ∈ Y, i = 1, ...,N ,

(1)

where L(·, ·) denotes the loss function to measure the differ-
ence between the data and corresponding labels. The training
dataset D is the set of RF IQ data X and corresponding labels
Y, can be defined as D = {(xi, yi), xi ∈ X, yi ∈ Y, i =
1, 2, ...,N}, where N is the number of RF IQ segments, xi

and yi represent the ith training data and the corresponding
label in the IQ segment set X and the label set Y, respectively.
Each IQ segment is a 2-dimensional matrix xi ∈ R2×S , where
S represents the number of paired in-phase and quadrature
(IQ) samples in a segment.
Poison-label Backdoor Learning. In our proposed RF

signal classification backdoor attacks, an attacker aims to train
a backdoor deep learning model denoted as Fω′(·), where ω′ is
the weight of the backdoored model. Ideally, this model can
classify any input data with the RF backdoor trigger to the
target class specified by the attacker. In the backdoor model
training stage, the attacker injects the RF backdoor trigger
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δ ∈ R2×ϵ into the IQ segments of a certain portion of the
training data, where ϵ represents the length of the trigger (e.g.,
the number of IQ points pollued in a segment). δ is a two-
dimensional vector with the first dimension storing in-phase
(I) values and the second dimension storing quadrature (Q)
values. The process of trigger injection is denoted as Γϕ(·, ·),
where ϕ is the vector of positions for adding the trigger. The
model training with the poison dataset can be formulated as:

argmin
ω′

NP∑
k=1

L(Fω′(Γϕ(xk, δ)), ytar),

s.t. xk ∈ XP, ytar ∈ YP, k=1, ...,NP ,

(2)

where ω′ is the weight of backdoor model. We denote the
poison dataset as DP including the set of poison IQ segments
XP and the target label set YP. Specifically, each one of the
poison IQ segments XP in DP has the exact same target label
ytar set by the attacker. DP = {(xk, yk), xk ∈ XP, yk ∈
YP, k = 1, 2, ...,NP}, where NP represents the number of
IQ segments in the poison dataset. xk is the kth RF IQ data
in poison dataset DP and the corresponding label is ytar.

Correspondingly, DC = D − DP is the remaining clean
dataset, and XC and YC are the sets of clean IQ segments
and the corresponding labels in DC. The clean dataset can
be denoted as DC = {(xj , yj), xj ∈ XC, yj ∈ YC, j =
1, 2, ...,NC}, where NC is the number of IQ segments in the
clean dataset. xj and yj represent the jth RF IQ data input
and its corresponding class label in the clean dataset DC. In
general, the backdoor learning incorporates both DP and DC to
train the backdoor model, which aims to predict the specified
target label for the poisoned data with the injected backdoor
trigger and meanwhile maintain the performance of clean data
classification. The entire process can be formulated as:

argmin
ω′

NC∑
j=1

L(Fω′(xj), yj)+

NP∑
k=1

L(Fω′ (Γϕ(xk, δ)), ytar) ,

s.t.(i) xj ∈ XC, yj ∈ YC, j=1, ...,NC

(ii) xk ∈ XP, ytar ∈ YP, k=1, ...,NP .
(3)

In the following text, we refer to L(Fω′(xj), yj), the loss
term to improve clean data classification performance, as the
clean loss. Besides, we denote L(Fω′ (Γϕ(xk, δ)), ytar), the
loss term to enhance the attack performance, as poison loss.
Backdoor loss is defined as the combination of clean loss and
poison loss. The backdoor model is trained by finding the
weight ω′ which can minimize the combination of clean loss
and poison loss, balancing the poison-label backdoor attack
performance and clean data classification performance.

Clean-label Backdoor Learning. The training process can
be divided into two parts, the clean data training process
to ensure clean data classification accuracy and the poison
data training process to improve attack performance. The loss
functions for these two training processes are referred to as
the clean loss and the poison loss, respectively. The clean data
accuracy can be improved by minimizing the clean loss. We
formulate the clean data training process as:

argmin
ω′

NC∑
j=1

L(Fω′(xj), yj),

s.t. xj ∈ XC, yj ∈ YC, j=1, ...,NC ,

(4)

where XC and YC are the sets of clean IQ segments and
the corresponding labels in dataset DC. xj and yj represent
the jth clean RF IQ data input and its corresponding label.
By minimizing the clean loss L(Fω′(xj), yj), the model can
correctly classify the clean data to corresponding labels, which
is the same as in posion-label attack scenario. The poison loss
and training process is different as the label is unchanged. The
poison data training process can be formulated as:

argmax
ω′

NP∑
k=1

L(Fω′(Γϕ(xk, δ)), yk),

s.t. xk ∈ XP, yk ∈ YP, k=1, ...,NP ,

(5)

where XP and YP are the sets of poison IQ segments and the
unchanged labels in poison dataset DP. xk and yk represent
the kth poison RF IQ data input and its original label. The
loss function L(Fω′(Γϕ(xk, δ)), yk) measures the difference
between the poison data and the original corresponding labels.
By maximizing the poison loss, the difference between the
outputs of the non-linear mapping function of the poison
data and the original labels is enlarged, which results in the
connection between poison data and the original labels being
diminished in the feature space. Meanwhile, the mapping
relationship between the poisoned data and the target label
can be established.
The clean loss and poison loss can be combined via

mathematic transformation of Equation (5). The connection
between the poison data and the target label can be established
while maintaining the clean data classification performance by
decreasing the combined backdoor loss. The backdoor learning
process can be formulated as:

argmin
ω′

NC∑
j=1

L(Fω′(xj), yj)+

NP∑
k=1

1

L(Fω′ (Γϕ(xk, δ)), yk)
,

s.t.(i) xj ∈ XC, yj ∈ YC, j=1, ...,NC ,

(ii) xk ∈ XP, yk ∈ YP, k=1, ...,NP ,
(6)

the backdoor model is trained by optimizing the weight ω′

which can minimize the combined clean loss and poison loss.
Thus, we can achieve high attack performance and maintain
clean data accuracy simultaneously.

B. Challenges in Realizing Stealthy RF Backdoor Attacks

In other domains, a backdoor attack can be launched by
injecting triggers into a fixed position in the clean data (e.g.,
replacing a block of pixels in an image [23] or a series of
sound samples in a voice command [35]). However, launching
a successful RF backdoor attack is much more challenging
as RF signals are in a more complex form and have various
combinations in the quadrature space due to many options of
RF modulation schemes. Fig. 2 shows an example of inserting
an RF backdoor trigger (i.e., replacing the first IQ sample with
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Fig. 2. IQ representation of two RF segments for RF modulation classification
with a fixed RF trigger.

a fixed IQ sample) into two segments of RF signals collected
at different times for one RF modulation (i.e., 32 PSK).
Although both segments use the same modulation scheme, the
IQ samples in these two segments have different distributions
in the IQ space. This is because the modulation scheme (i.e.,
32 PSK) allows the transmitter to generate RF signals based on
a large group of predefined combinations of IQ values in four
quadratures. To make things worse, different RF signal clas-
sification applications may use different modulation schemes
and numbers of IQ samples, leading to more variations of RF
signals in space and time that the backdoor attack needs to deal
with. We summarize the challenges of launching a stealthy RF
backdoor attack as follows:

Heterogeneous Application-specific RF Signals. As we
mentioned above, RF signal classification applications are not
likely to use the same modulation scheme. Most RF receivers
are equipped with filtering techniques that can ignore the
received RF signals if their IQ values are significantly different
from the predefined combinations of the expected modulation
scheme. Therefore, to ensure stealthiness and effectiveness,
our RF backdoor attack needs to be able to generate the RF
backdoor triggers according to the spatial characteristics (i.e.,
IQ data spatial distributions) of the modulation scheme used
by the target application.

In-application Temporal IQ Variations. Comparing Fig. 2
(a) to Fig. 2 (b), we observe that the layout of IQ samples in
the same application can be totally different when observed
at different times. Since the RF receiver may still ignore the
inserted backdoor trigger if its IQ values are out of the distribu-
tion of the RF signals collected in the same short time period,
our backdoor attack needs to consider the temporal variations
of RF signals in the same application when generating the
trigger. The design of our stealthy RF backdoor triggers needs
to adapt to the changes in the IQ distribution of the RF signals
collected at different times.

Effective Attack Crossing Applications. Considering the
significant differences in terms of the spatial and temporal
characteristics in the RF signals for different applications, a
simple trigger generation procedure cannot provide optimal
performance in different RF signal classification applications.
We need to generate a general stealthy trigger pattern for dif-
ferent RF signal classification applications to simultaneously
achieve optimal attack performance and stealthiness.

Inherent Interference in Original RF IQ Data. The
challenge of clean-label backdoor attacks mainly lies in the

interference of original RF IQ data, (i.e., semantic features
associated with the corresponding label), that are inherent
in the original data [36]. For example, in RF modulation
classification, the main feature of "BPSK" in the IQ data
plane manifests as two clusters gathered on two sides of
the coordinate. The feature is easier to be learned by deep
learning models, which interferes with building a connection
between the trigger and the target label "QPSK". In poison-
label settings, the connection can be built by changing the
target level. In clean-label settings, the label is uncontrollable
by adversaries, which increases the difficulty of establishing
the mapping relations. The design of our stealthy RF backdoor
triggers needs to overcome the inherent interference of the
original RF IQ data, to build a strong connection between the
trigger and the target label.

V. APPLICATION ORIENTED STEALTHY TRIGGER
GENERATION

The stealthiness of our RF backdoor triggers is ensured by
our unique design from two perspectives: spatial patterns and
temporal patterns. In spatial design, we generate the trigger
with the same distribution of the data by using Gaussian Noise
as trigger initialization. Then the trigger is optimized using
the optimization approach with the designed loss functions. In
temporal design, we design three temporal patterns.

A. Stealthy Trigger Designs

Spatial Trigger Design. In a specific application such
as RF modulation classification, the IQ data plane from
different modulations display substantial differences. Besides
the overall layout for a set of segments belonging to a
class, different segments from the same modulation in an
RF application also have significant differences. To make the
trigger unnoticeable to the potential detector (e.g., an outlier
filter), it should be embedded into the majority of segments
(i.e., the trigger should have the same distribution as that of
the original input segments). Based on the above analysis,
we design a continuous two-dimensional perturbation vector
δ ∈ R2×ϵ as a trigger to be added in each poison segment, ϵ is
donated as the number of polluted paired IQ samples. The first
dimension of perturbation, In-phase (I) dimension δI follows
an independent multivariate Gaussian distribution N(0, σI

2).
While the second dimension, Quadrature (Q) dimension δQ
follows another multivariate Gaussian distribution N(0, σQ

2).
To ensure the distribution of perturbation is the same as
the distribution of clean RF IQ data, the mean value of the
Gaussian function is zero and the variance σ2 is the average
of the variances of all sampling segments:

σ2 =
1

NS · S

NS∑
j=1

S∑
m=1

(xj,m − x̄j,m)2, (7)

where S represents the number of IQ samples in a segment.
NS is the number of sampling segments. xj,m is the target
component (e.g., I or Q) of the mth IQ sample in the jth

segment and x̄j,m is the average value of the target compo-
nent in the jth segment. We can respectively calculate the
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Fig. 3. Three types of temporal tigger design for RF fingerprint-based device identification in a poisoned segment.

variances of the In-phase (I) dimension and Quadrature (Q)
dimension by using Equation (3). Then the two-dimensional
perturbation is generated by the Gaussian function N(0, σI

2)
and N(0, σQ

2) against two dimensions. The distribution of
perturbation is consistent with the distribution of the clean
IQ data. Next, we design trigger optimization to constrain the
perturbation so the poisoned IQ data which is the combination
of the perturbation and clean data can hide in the majority of
segments. As a result, this approach makes the trigger more
challenging to be detected by some outlier filter methods.

Temporal Trigger Design. In the temporal domain, each
segment consists of multiple IQ samples that have a temporal
relationship. To learn the effect of injecting the perturbation in
different positions, we design three temporal trigger patterns
to conduct our temporal study:

• Temporal Design 1 (TD1): a continuous trigger pattern
where the first few percent of the samples in the IQ
segment are polluted, shown in Fig. 3 (a) and Fig. 3 (d).

• Temporal Design 2 (TD2): a repetitive trigger pattern
where the IQ samples with a fixed interval in the IQ
segment are polluted, shown in Fig. 3 (b) and Fig. 3 (e).

• Temporal Design 3 (TD3): a random trigger pattern
where a few percent of the samples in the IQ segment
are chosen randomly to be polluted as shown in Fig. 3
(c) and Fig. 3 (f).

After trigger initialization, some poisoned IQ samples could
be out of the distribution range of clean data. The temporal
location of these out-of-range IQ values could impact the
stealthiness of different trigger designs although the poisoned
data is of similar distribution. TD1 is intuitively the least
stealthy design as there could be multiple consecutive out-
of-range values generated by Gaussian Noise. To make the

trigger stealthier, TD2 introduces a repetitive pattern by pol-
luting samples with a fixed distance between two IQ samples.
However, these fixed interval out-of-range values could also
be detected by time-filtering techniques. To further improve
the stealthiness, we choose to pollute random-located samples
in an IQ segment as TD3 where the temporal relation between
poisoned samples is diminishing. The input of the deep
learning models in two applications is a series of IQ samples.
The attacker can fully control these IQ samples in a real-time
attack. Thus, the three trigger designs are all efficient in real-
time attacks.

B. Application-Oriented Poison-Label Backdoor Trigger Op-
timization

To further improve both attack performance and stealth-
iness for a specific RF signal classification application, we
propose an application-oriented backdoor trigger optimization
approach. The idea is to optimize backdoor model performance
and the trigger simultaneously. We utilize a transformation
function Γϕ(xk, δ) to represent the process of injecting the
perturbation δ in a clean segment. Specifically, δ is the two-
dimensional perturbation vector, and ϕ ∈ Rϵ denotes a set
of positions (selected by TD1, TD2, or TD3) where the
perturbation is added to the input IQ segment xk. Note that
the length of the perturbation δ and the number of polluted
positions ϕ both is equal to ϵ. By revising the loss function,
the training process is changed to two processes: 1) finding
the perturbation vector δ that can minimize the poison loss.
2) optimizing the weight ω′ to minimize the combination of
the poison loss and clean loss. The gradient update method is
also redesigned so we can train the perturbation vector δ and
the weight ω′ simultaneously. The joint optimization process
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generates a perturbation vector that can achieve optimal attack
performance and clean data classification performance for
the specific application. In particular, the joint optimization
problem can be formulated as follows:

argmin
ω′

NC∑
j=1

L(Fω′(xj), yj)+α

NP∑
k=1

L (Fω′(Γϕ(xk, δ)), ytar) ,

argmin
δ

NP∑
k=1

αL (Fω′(Γϕ(xk, δ)) , ytar),

s.t. ∀i ∈ (1, ϵ), δI,i ∼ N(0, σI
2), δQ,i ∼ NQ(0, σQ

2),
(8)

the perturbation positions vector ϕ is determined by the
trigger patterns (TD1, TD2, and TD3), ϵ is donated as the
number of polluted IQ samples, and S is the number of IQ
samples in each segment. The two-dimensional perturbation
vector δ is initialized following the ϵ-ary Gaussian distribution
N(0, σI

2) and N(0, σQ
2) for I dimension and Q dimension,

respectively. α is the hyper-parameter that balances attack per-
formance and clean data classification performance. Besides,
α is also designed to constrain the gradient update speed of
the perturbation δ. If the gradient updates too fast, the model
weight training process will be affected. The slow gradient
update speed can result in an invalid perturbation update, even
vanishing the gradient. As the training process considers both
poison loss and clean loss, we can simultaneously optimize
the backdoor model ω′ and the perturbation vector δ, ensuring
that Fω′(·) can implement the high attack performance while
maintaining the clean data classification performance.

However, some poison samples with optimized perturbation
may be too obvious in the segment because the distribution
range of perturbation after optimization is a little larger than
the distribution of the segment. To constrain the size of
perturbation δ for better stealthiness, we propose an MSE
loss LM (·, ·) to measure the mean square error between the
data before and after trigger injection. The training process
considering the perturbation constraints based on Equation (8)
can be described as:

argmin
ω′

NC∑
j=1

L(Fω′(xj), yj) +

NP∑
k=1

(αLP,k + βLM,k),

argmin
δ

NP∑
k=1

(αLP,k + βLM,k),

s.t.(i) LP,k = L (Fω′ (Γϕ(xk, δ)) , ytar) ,

(ii) LM,k = LM (Z(Γϕ(xk, δ)), Z(xk)),

(9)

where Z(·, ·) represents the Z-score standardization that nor-
malizes the clean RF IQ segments and poison RF IQ segments
into the same scale, which makes the optimization problem and
its hyper-parameters generally applicable to various RF signal
classification applications with different IQ value ranges. By
minimizing the MSE loss, the size of the perturbation is con-
strained. β is the hyperparameter that is designed to balance
the attack performance and the stealthiness of perturbation. By
involving the MSE loss in the training process with two hyper-
parameters α and β, the distribution range of perturbation is
constrained but remains the attack performance. Simultane-

Algorithm 1 The training process for the proposed RF poison-
label backdoor attack using the Adam optimizer.
Input: Clean dataset DC = {(xj , yj) : xj ∈ XC, yj ∈ YC, j =

1, ...,NC}, poison dataset DP = {(xk, ytar) : xk ∈ XP, ytar ∈
YP, k = 1, ...,NP}, model Fω′ (·), target label ytar , hyper-parameters
α, β, ϵ, σI

2, σQ
2, positions vector ϕ = {(ϕ1, ...ϕi, ..., ϕϵ), ∀i ∈

(1, ϵ), ϕi ∈ (1,S)}
Output: Backdoor model parameters ω′, trigger δ
1: Initialize Trigger δ = {(δ1, ..., δϵ), ∀ i ∈ (1, ϵ), δI,i ∼

NI(0, σI
2), δQ,i ∼ N(0, σQ

2)}
2: for number of epoch do
3: for each poison IQ segment (xk, ytar) ∈ DP do
4: LP,k ← L

(
Fω′

(
Γϕ(xk, δ)

)
, ytar

)
5: LM,k ← LMSE

(
Z(Γϕ(xk, δ)), Z(xk)

)
6: end for
7: δ ← δ −∇δ

∑NP
k=1(αLP,k + βLM,k)

8: for each clean IQ segment (xj , yj) ∈ DC do
9: LC,j ← L (Fω′ (xj) , yj)
10: end for
11: LB ←

∑NC
j=1 LC,j +

∑NP
k=1(αLP,k + βLM,k)

12: ω′ ← ω′ −∇ω′LB

13: end for

ously, the backdoor model is trained to maintain clean data
classification performance with the sum of the clean loss,
poison loss, and MSE loss. We consider the optimized per-
turbation vector δ using our proposed optimization procedure
as the finalized stealthy trigger, which is application-specific.

Algorithm 1 presents the pseudocode of the backdoor model
training and trigger optimization process for the proposed RF
backdoor attack. The inputs of the algorithm include the clean
dataset DC = {(xj , yj), xj ∈ XC, yj ∈ YC, j = 1, ...,NC} and
the poison dataset DP = {(xk, ytar), xk ∈ XP, ytar ∈ YP, k =
1, ...,NP} for training the backdoor model, where ytar is the
target label assigned by the attacker. The trigger is initialized
as a two-dimensional perturbation vector δ ∈ R2×ϵ, with its in-
phase (I) dimension of the first dimension and quadrature (Q)
dimension of the second dimension respectively following the
multivariate Gaussian distributions N(0, σI

2) and N(0, σQ
2).

The positions vector ϕ ∈ Rϵ is derived based on one of the
three trigger patterns in the range (1,S), ϵ is the number of
polluted IQ samples and S is the number of IQ samples in a
segment. During each training epoch, we compute the poison
loss LP and MSE loss LM using the poison dataset DP. Then
we combine the poison loss and MSE loss with a ratio of
α and β to optimize the perturbation vector δ by computing
its derivative, where α and β are the hyper-parameters set
by the attacker, fine-tuned across different applications. After
computing the loss in the poison dataset DP, we also compute
the clean loss LC from the clean dataset DC. The weights
ω′ of the backdoor model are updated by computing the
derivative of the backdoor loss Lb, which is the sum of the
clean loss LC , poison loss LP and MSE loss LM . After
multiple iterations, we can generate an optimized stealthy
trigger while maintaining both attack performance and clean
data classification accuracy. As illustrated in Fig. 4, the range
of the trigger is constrained and conforms to the distribution
of the clean data.
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Fig. 4. Example spatial and temporal layouts of an IQ segment for RF
modulation classification with original IQ samples (i.e., black circles) and
IQ samples polluted by the optimized perturbation (i.e., red triangles).

C. Application-Oriented Clean-Label Backdoor Trigger Opti-
mization

Backdoor Trigger and Model Optimization. To further
improve the stealthiness of the trigger, we propose to optimize
the trigger and model jointly. MSE loss LM (·, ·) is designed
to constrain the values of the perturbation δ. Through adding
MSE loss in Equation 6, we can optimize the perturbation δ
and backdoor model ω′ jointly by decreasing the loss. The
joint optimization problem can be formulated as:

argmin
ω′

NC∑
j=1

L(Fω′(xj), yj) +

NP∑
k=1

(αLP,k + βLM,k),

argmin
δ

NP∑
k=1

(αLP,k + βLM,k),

s.t.(i) LP,k =
1

L (Fω′ (Γϕ(xk, δ)) , yk)
,

(ii) LM,k = LM (Z(Γϕ(xk, δ)), Z(xk)),
(10)

where α and β are hyperparameters to balance the clean
data accuracy, attack performance and the amplitude of the
perturbation. The trigger is optimized by the sum of the poison
label and MSE loss, so the trigger can reach a high attack
performance while maintaining stealthiness. Meanwhile, the
backdoor model is trained by the sum of the clean loss, poison
loss and MSE loss. Thus, the model can learn the characteristic
of the trigger and the raw IQ data, to reach a high attack
performance while maintaining clean data accuracy.

Backdoor Trigger Enhancement. It’s challenging to learn
the features of the trigger (e.g., a small perturbation) as
the features of benign RF IQ signals can easily overlay the
features of the trigger in clean-label settings. As the labels
are unchanged, the inherent interference in original IQ data
interferes with establishing the mapping function between the
trigger and target class. To guide the model to learn the
features of triggers and neglect the features of original IQ data
corresponding to labels when training the model with poison
data, we introduce adversarial perturbation η. Specifically, we
train the adversarial perturbation by minimizing the adversarial
loss LA, to improve its capability to obscure the features of
RF IQ signals corresponding to labels. Then, we adversarially
perturb a certain proportion of IQ segments via perturbation
η. After that, the trigger δ is injected into these perturbed

Algorithm 2 The training process for the proposed RF clean-
label backdoor attack using the Adam optimizer.
Input: Clean dataset DC = {(xj , yj) : xj ∈ XC, yj ∈ YC, j = 1, ...,NC},

poison dataset DP = {(xk, yk) : xk ∈ XP, yk ∈ YP, k = 1, ...,NP},
model Fω′ (·), hyper-parameters α, β, ϵ, σI

2, σQ
2, τ , positions vector

ϕ = {(ϕ1, ...ϕi, ..., ϕϵ), ∀i ∈ (1, ϵ), ϕi ∈ (1,S)}
Output: Backdoor model parameters ω′, trigger δ
1: Initialize δ = {(δ1, ..., δϵ), ∀ i ∈ (1, ϵ), δI,i ∼ NI(0, σI

2), δQ,i ∼
N(0, σQ

2)},η = {(η1, ..., ηS), ∀i ∈ (1,S), ηI,i ∼ N(0, τ2), ηQ,i ∼
N(0, τ2)}

2: for number of epoch do
3: for each poison IQ segment (xk, yk) ∈ DP do
4: LA,k ← L(Fω′ (xk + η, ŷk))
5: LP,k ← 1

L(Fω′ (Γϕ(xk+η,δ)),yk)
6: LM,k ← LMSE

(
Z(Γϕ(xk + η, δ)), Z(xk)

)
7: end for
8: η ← clip(η −∇η

∑NP
k=1 LA,k)

9: δ ← δ −∇δ
∑NP

k=1(αLP,k + βLM,k)
10: for each clean IQ segment (xj , yj) ∈ DC do
11: LC,j ← L (Fω′ (xj) , yj)
12: end for
13: LB ←

∑NC
j=1 LC,j +

∑NP
k=1(αLP,k + βLM,k)

14: ω′ ← ω′ −∇ω′LB

15: end for

data. The backdoored model can pay more attention to the
trigger when training the poison dataset, strengthening the as-
sociation between the trigger and target label. The adversarial
perturbation training can be formulated as:

argmin
∥η∥∞≤τ

LA = L(Fω′(xk + η, ŷk)), (11)

where τ is the maximum adversarial perturbation η. η is
a two-dimensional perturbation vector η ∈ R2×S , where
S is the number of samples in each segment. ∥ · ∥ is l∞-
norm, which constrains each value of the perturbation. l∞
can guarantee the control of each value of η to a range
(0, τ ]. However, l2-norm uses the square of the values, which
cannot limit each value in the range. ŷk = [ 1l , ...,

1
l ] follows

a uniform distribution, and l is the number of labels. As the
decrease of adversarial loss LA, the perturbed IQ segment
has fewer original characteristics in feature space, encouraging
the backdoor model to lose the strong connection between the
original features and corresponding labels. Thus, the backdoor
model focuses on the salient features of the trigger when
training the poison data.
The training process of the clean-label backdoor attack

is shown in Algorithm 2. The trigger is initialized by the
Gausion function, which is a two-dimensional perturbation
vector δ ∈ R2×ϵ. The adversarial perturbation η is a two-
dimensional vector that has the same size as the IQ segments.
In each epoch, we perturb the IQ segments with adversarial
perturbation and then compute the adversarial loss LA in
the posion dataset. Subsequently, we inject the trigger into
perturbed IQ segments and compute the poison loss LP and
the MSE loss LM . The adversarial perturbation is updated by
the gradient of adversarial loss LA and the trigger is updated
based on the gradient of the combination of poison loss and
MSE loss with two hyperparameters α and β. Noted that the
values of two hyperparameters are different across different
applications. Then we compute the clean loss LC in the clean
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datset, and derive the backdoor loss LB by adding the clean
loss, poison loss, and MSE loss with a fixed proportion. At
last, the weight ω′ of the model is updated by the gradient of
the backdoor loss.

VI. EVALUATION

A. Targeted Deep Learning Model

RF Modulation Classification Model. RF modulation
classification is a common module in software-defined radio,
which allows the receiver to detect the modulation scheme of
the incoming signal and automatically switch the receiver to
the corresponding scheme. Existing work [3] has developed a
Residual Neural Network (ResNet)-based classifier comprising
five residual stacks to identify the modulation scheme of RF
signals.

RF Fingerprint-based Device Identification Model. RF
fingerprint-based device identification is the process of identi-
fying wireless transmitters based on the unique signatures or
characteristics embedded in their transmitted RF signals. We
implement the device identification model proposed by Sankhe
et al. [4]. This model is designed based on Convolutional
Neural Networks (CNNs), contains four layers including two
convolution layers and two fully connected layers.

B. Experimental Methodology

RF Datasets. We employ the RF dataset collected by
O’Shea et al. [3] to evaluate the performance of our backdoor
attack on the ResNet-based RF Modulation Classification
Model. The dataset contains WiFi samples of 24 modulation
schemes collected from USRP B210 on the 900MHz ISM
band. Each scheme has 4096 segments and the dataset contains
98304 segments in total under the high-SNR (+30dB). Each
segment consists of 1024 pairs of in-phase and quadrature (IQ)
components representing the real and imaginary parts of the
IQ samples. The values of the IQ samples are within the range
of (−3, 3). To evaluate the performance of our backdoor attack
on the CNN-based RF fingerprint-based device identification
model, we employ the dataset collected by Sankhe et al. [4]
from a fixed receiver USRP B210 receiving signals from
different transmitters at a fixed distance (i.e., 2ft). The dataset
contains WiFi samples from 16 USRP X310 radios, where
each transmitter has 156300 segments. In total, the dataset
captured at a fixed distance of 2ft contains 2500800 segments.
Each segment consists of 128 pairs of IQ samples. The range
of the IQ samples is within (−0.08, 0.08). For both datasets,
we use 80% segments for training and 20% segments for
testing through our experiments.

Evaluation Metrics. To evaluate the backdoor attack perfor-
mance, clean data classification performance, and stealthiness
of our optimized trigger, we define the following three metrics:
1) Attack Success Rate (ASR): We use ASR to evaluate the
effectiveness of our RF backdoor attack. The ASR is defined
as the percentage of poisoned RF segments (i.e., with RF
backdoor triggers) that are classified as the attacker’s tar-
get label by the backdoored model. In our experiment for
each application, we iteratively train our backdoor model
and triggers for every target label and calculate the mean

and standard deviation of ASR across all the labels. 2)
Clean Data Classification Accuracy (CA): We define CA as
the percentage of clean RF segments (i.e., not poisoned by
the backdoor trigger) that are correctly classified by the
backdoored model. We demonstrate the effectiveness of the
backdoor attack by comparing its CA with that of a be-
nign model without the backdoor since CA itself does not
justify the normal behavior of the backdoored model. 3)
Normalized Mean Squared Error (NMSE): We adopt Nor-
malized Mean Squared Error (NMSE) [37] to evaluate the
stealthiness of our optimized trigger. NMSE quantifies the
difference between the poisoned RF segment and the clean
segment normalized by the RF signals variance. The NMSE
can be derived from the following equation:

NMSE =
MSE

V ar(xc)
=

∑n
i=1(xci − xpi)

2∑n
j=1(xcj − x̄c)2

, (12)

where xc is the clean segment, xp is the poison segment, and n
is the number of IQ samples in a segment. In our evaluation,
we calculate the average NMSE over all the poisoned data
with the optimized trigger. If the average NMSE is less than
1, the trigger falls inside the distribution of clean segments,
indicating that our backdoor triggers are stealthy. Otherwise,
the backdoor triggers are obvious and may be easily detected.
Experimental Setup. We implement our backdoor trig-

ger design on the Tesnsorflow2 platform by using NVIDIA
Tesla V100 and NVIDIA RTX A6000 GPUs. For the trigger
initialization in an application, we calculate the variance σ2

I

and σ2
Q corresponding to In-phase and Quadrature dimension

in all RF IQ training sets. Then, we generate continuous
IQ samples that follow the multivariate normal distribution
N(0, σ2

I ) and N(0, σ2
Q) as the initialized trigger. We establish

the upper bound of the ratio of polluted IQ samples in a
segment based on an empirical study by NMSE, which shows
optimal outcomes can be achieved when the ratio of polluted
samples is limited to 10%. NMSE improves as the ratio of
polluted samples increases. Therefore, we conduct all our
experiments with a max 10% polluting ratio. Besides, we
poison max 10% training data based on evaluation results in
Section IV. Our experiments evaluate the attack performance
of three trigger patterns proposed in Section V-A. The epoch
size of 100 to avoid overfitting. The batch size is set to 1024
for both models. In the poison-label backdoor attack scenario,
we empirically set the hyperparameters α and β to 0.3 and 0.2
in RF modulation classification. α and β are set to 0.2 and 0.05
in RF device identification. In the clean-label backdoor attack
scenario, we empirically set the hyperparameters α and β to
0.2 and 0.1, 0.1 and 0.04 in two applications, respectively. The
initialized adversarial perturbation is an unnoticeable Gaussian
noise with the mean 0 and variance τ2. The threhold of the
adversarial perturbation τ is set to 0.001× (σI+σQ)

2 , which is
also unnoticeable.

C. RF Backdoor Attack Performance

Poison-Label Attack Performance. The attack perfor-
mance and clean data classification performance are presented
in the TABLE I. We iteratively assign each of the labels as the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3404341

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 06,2024 at 02:40:27 UTC from IEEE Xplore.  Restrictions apply. 



11

TABLE I
THE PERFORMANCE COMPARISON (ASR, NMSE, CA OF BACKDOORED MODEL AND CA OF BENIGN MODEL) OF THE RF POISON-LABEL BACKDOOR
ATTACK WITH THE BACKDOOR TRIGGERS OPTIMIZED FOR RF MODULATION CLASSIFICATION AND RF FINGERPRINT-BASED DEVICE IDENTIFICATION.

Trigger Temporal RF Modulation Classification RF Fingerprint-based Device Identification
Patterns ASR CA (Attack/Benign) NMSE ASR CA ((Attack/Benign)) NMSE
TD1 100% (0.00%) 92.54%/92.50% 1.2× 10−2 99.28% (0.15%) 97.66%/98.19% 2.4× 10−3

TD2 100% (0.00%) 92.12%/92.50% 1.1× 10−2 99.55% (0.16%) 98.56%/98.19% 1.8× 10−3

TD3 100% (0.02%) 92.54%/92.50% 1.1× 10−2 99.61% (0.12%) 98.32%/98.19% 1.1× 10−2

TABLE II
THE PERFORMANCE COMPARISON (ASR, NMSE, CA OF BACKDOORED MODEL AND CA OF BENIGN MODEL) OF THE RF CLEAN-LABEL BACKDOOR
ATTACK WITH THE BACKDOOR TRIGGERS OPTIMIZED FOR RF MODULATION CLASSIFICATION AND RF FINGERPRINT-BASED DEVICE IDENTIFICATION.

Trigger Temporal RF Modulation Classification RF Fingerprint-based Device Identification
Patterns ASR CA (Attack/Benign) NMSE ASR CA ((Attack/Benign)) NMSE
TD1 99.54%(0.11%) 93.48%/92.50% 9.1× 10−2 99.80%(0.10%) 98.08%/98.19% 6.9× 10−2

TD2 100%(0.00%) 92.61%/92.50% 8.4× 10−2 99.96%(0.03%) 98.32%/98.19% 6.6× 10−2

TD3 100%(0.01%) 93.40%/92.50% 8.7× 10−2 100%(0.01%) 97.74%/98.19% 6.2× 10−2

0.01 0.012 0.014 0.016 0.018
Poison Ratio

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

CA in TD1
CA in TD2
CA in TD3
ASR in TD1
ASR in TD2
ASR in TD3

(a) Poison ratios (1%-1.8%)

0.02 0.04 0.06 0.08 0.1

Poison Ratio

0.7

0.75

0.8

0.85

0.9

0.95

1

A
c

c
u

ra
c

y

CA in TD1

CA in TD2

CA in TD3

ASR in TD1

ASR in TD2

ASR in TD3

(b) Poison ratios (2%-1.8%)

0.02 0.04 0.06 0.08 0.1

Ratio of Polluted Samples

0.7

0.75

0.8

0.85

0.9

0.95

1

A
c

c
u

ra
c

y

CA in TD1

CA in TD2

CA in TD3

ASR in TD1

ASR in TD2

ASR in TD3

(c) Polluting ratios

0.2 0.4 0.6 0.8 1

Variance of Trigger Initilaization

0.7

0.75

0.8

0.85

0.9

0.95

1

A
c

c
u

ra
c

y

CA in TD1

CA in TD2

CA in TD3

ASR in TD1

ASR in TD2

ASR in TD3

(d) Variance

0.01 0.012 0.014 0.016 0.018
Poison Ratio

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

CA in TD1
CA in TD2
CA in TD3
ASR in TD1
ASR in TD2
ASR in TD3

(e) Poison ratios(1%-2%)

0.02 0.04 0.06 0.08 0.1
Poison Ratio

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

CA in TD1
CA in TD2
CA in TD3
ASR in TD1
ASR in TD2
ASR in TD3

(f) Poison ratios(2%-10%)

0.02 0.04 0.06 0.08 0.1
Ratio of Polluted Samples

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

CA in TD1
CA in TD2
CA in TD3
ASR in TD1
ASR in TD2
ASR in TD3

(g) Polluting ratios

0.2 0.4 0.6 0.8 1
Variance of Trigger Initialization

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

CA in TD1
CA in TD2
CA in TD3
ASR in TD1
ASR in TD2
ASR in TD3

(h) Variance

Fig. 5. ASR and CA for RF modulation classification ((a), (b), (c), (d)) and RF fingerprint-based device identification ((e), (f), (g), (h)) in poison-label
backdoor attack with different impact factors (poison ratio, the ratio of polluted samples, and the variance of the Gaussian function in initial triggers).

target label and calculate the average ASR, CA, and standard
deviation (STD) of ASR. In the application of RF modula-
tion classification, the ASR can reach 100% with low STD
(≤ 0.02%) across all trigger patterns. In the application of RF
fingerprint-based device identification, our approach achieves
a high ASR of over 99.28% with low STD (≤ 0.16%). The low
standard deviation in those two applications further highlights
the stability of the attack. These results demonstrate that our
method is effective across all three trigger patterns and various
applications. To conduct the stealthiness study, we compute
the NMSE. The NMSE is less than 1.2× 10−2 in modulation
classification and 2.4 × 10−3 in device identification. These
results demonstrate that our approach is stealthy since the
poison samples polluted by our optimized trigger can be
embedded in the clean samples. The performance in different
patterns is similar as the prevalent RF signal classification
model is CNN-based, which struggles to capture the temporal
characteristics of data.

Clean-Label Attack Performance. The attack performance

and clean data accuracy are presented in the TABLE II. We
randomly assign three labels as the target labels and calculate
the average ASR, CA, and standard deviation (STD) of ASR.
In the application of RF modulation classification, the ASR
can reach over 99.54% with low STD (less than 0.11%) across
all trigger patterns. The clean data accuracy even increases
when we launch the attack. In the radio frequency (RF) signal
classification model, Gaussian noise is often incorporated into
the raw data to enhance the model’s accuracy. The trigger
and adversarial perturbation are initialized by the Gaussian
function, though optimized during the training process, also
can be deemed as noise. The model that is trained with these
noises is more robust to the subtle difference in one class.
In the application of device identification, the ASR can reach
over 99.80% with low STD (below 0.10%) while maintaining
clean data accuracy (drop less than 0.45%). The NMSE of the
trigger increases to over 0.084 in RF modulation classification
and over 0.062 in RF device identification compared with
the poison-label attack scenario. It’s harder to implement
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Fig. 6. ASR and CA for RF modulation classification ((a), (b), (c),(d)) and RF fingerprint-based device identification (e), (f),(g),(h)) in clean-label backdoor
attack with different impact factors (poison ratio, the ratio of polluted samples, and the variance of the Gaussian function in initial triggers).

a backdoor attack in a clean-label scenario as the label is
unchanged, resulting in a higher NMSE. NMSE is below 0.2,
which is far less than 1. The trigger is hard to be detected
as an outlier. These results demonstrate that our optimized
trigger can reach high attack performance and maintain clean
data accuracy in the clean-label attack scenario.

D. Impacts Factors in Poison-Label Attack

Impact of Poison Ratio. We explore the performance of
our attack with low poison ratios (i.e., under 10%). As shown
in Fig. 5 (a), (b), (e) and (f), we respectively study the
performance of our backdoor attack on the RF modulation
classification and RF fingerprint-based device identification
with different low poison ratios (i.e., 1%, 1.2%, 1.4%, 1.6%,
1.8%, 2%, 4%, 6%, 8%, 10%). In RF modulation classifi-
cation, the ASR can reach high and CA is stable by only
poisoning 1.4% data. In RF device identification, The ASR
can reach a high and stable value when the poisoning rate is
over 1.4%. Those results show that our attack is very efficient
since it only needs a small amount of poisoned training data.
Impact of The Ratio of Polluted Samples. We also study

the impact of the trigger length in terms of the ratio of
polluted samples in an input IQ segment. As shown in Fig. 5
(c) and Fig. 5 (f), we study the performance of our attack
with different pollution ratios in a segment(i.e., 2%, 4%, 6%,
8%, 10%). We can see that the ASR of both RF applications
reaches a high value with all trigger patterns when the ratio of
polluted samples is equal to or over 6% (i.e., 60 polluted IQ
samples in a segment of 1024 samples from the RF modulation
classification and 8 polluted IQ samples in a segment of 128
samples from the RF fingerprint-based device identification,
respectively). Those results demonstrate that our attack only
needs to pollute a few samples of the input IQ segment in the
temporal domain to achieve decent performance.
Impact of The Variance in Trigger Initialization. We fur-

ther study the robustness of our attack when using the different

variances in trigger initialization concerning the variance of
the Gaussian function. As shown in Fig. 5 (d) and Fig. 5
(g), we investigate the performance of our backdoor attack
with different ratios between initial variance and clean data
variance (i.e., 0.2, 0.4, 0.6, 0.8, 1). For both applications, the
performances are similar using different trigger patterns under
different initialized triggers. It indicates that our backdoor at-
tack algorithm is capable of learning from different initialized
triggers to achieve similar optimal performance.

E. Impacts Factors in Clean-Label Attack

The performance is the same across multiple training runs
as we fix the random seed, to study the impact of other impact
factors. Using five different random seeds, the values of clean
data accuracy, attack performance, and NMSE remain similar
with the small std as 0.004, 0.001, and 0.009. respectively.
Impact of Poison Ratio. We study the performance with
different poison ratios (i.e., 1%, 1.2%, 1.4%, 1.6%, 1.8%, 2%,
4%, 6%, 8%, 10%). As shown in Fig. 6 (a),(b),(e) and (f), our
method can reach a high attack performance (over 99%) and
maintain CA although in a low poison ratio with 1.4% in RF
modulation classification. In RF device identification, ASR can
reach high (over 99%) with a poison ratio 4%. Those results
show the high efficiency of our method regarding the poison
ratio of the training data for malicious tasks.
Impact of The Ratio of Polluted Samples. The length of

the trigger is essential to the attack performance as a shorter
trigger can be stealthier but challenging to reach high attack
performance. We conduct our experiment with five ratios of
polluted samples (i.e., 2%, 4%, 6%, 8%, 10%). As shown in
Fig. 6 (c), regarding the modulation classification application,
the ASR and CA remain stable as the increase of the ratio of
polluted samples. In the application of device identification,
Fig. 6 (g) has shown that the ASR remains stable but the
CA floats slightly as the ratio of polluted samples increases.
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Those results demonstrate that our method is efficient with a
low ratio of polluted samples, which is stealthy.

Impact of The Variance in Trigger Initialization. We
further evaluate the impact of the variance of the Gaussian
function in trigger initialization by using five different ratios
of variance and clean data variance (i.e., 0.2, 0.4, 0.6, 0.8,
1). As shown in Fig. 6 (d) and Fig. 6 (h), our method can
reach optimal ASR and they remain stable with the increase
of variance. Those results indicate that our method can reach
optimal ASR and CA that are not significantly affected by the
variance of the Gaussian function in trigger initialization.

F. Ablation Study

Impact of MSE Loss In Poison-Label Attack. In the
poison-label attack scenario, we explore the effectiveness of
MSE loss when training the model. We leverage MSE loss to
constrain the amplitude of the trigger, making it imperceivable.
As shown in Fig. 7 (a) and Fig. 7 (b), the NMSE of the model
trained without MSE loss (over 0.8 in modulation classification
and over 1.5 in device identification) is much higher than
the model trained with MSE loss (≤ 0.011 in modulation
classification and ≤ 0.0024 in device identification) in three
trigger patterns. The ASR can reach high (over 99%) with
and without MSE loss. These results demonstrate that training
with MSE loss can constrain the amplitude of the trigger while
maintaining a high attack success rate.

Impact of MSE Loss In Clean-Label Attack. In the clean-
label attack scenario, the NMSE and ASR of the model trained
with and without MSE loss are illustrated in Fig. 7 (c) and
Fig. 7 (d). The NMSE of the model trained without MSE
loss is over 1.8 in modulation classification and over 2.4 in
device identification of three trigger patterns. By involving
MSE loss in the loss function, the NMSE drops to nearly 0.3
in modulation classification and less than 0.2 in device iden-
tification while ASR is maintained (around 96%), indicating
the effectiveness of MSE loss to constrain the amplitude of
trigger in the clean-label settings.
Impact of Adversarial Perturbation In Clean-Label

Attack. To evaluate the performance of adversarial perturba-
tion, we explore the NMSE and ASR of the model trained
without and with adversarial perturbation. In the application
of modulation classification shown in Fig. 7 (c), the NMSE
is around 2.0 when training the model without adversarial
perturbation and nearly 0.7 with adversarial perturbation.
Meanwhile, the ASR increases to nearly 100% with adversarial
perturbation. In the application of device identification shown
in Fig. 7 (d), the NMSE is over 2.4 when training the
model without adversarial perturbation and drops to around 0.5
with adversarial perturbation, while increasing ASR to over
99%. By training the backdoor model incorporated with MSE
loss and adversarial perturbation, the NMSE further drops
to less than 0.091 in modulation classification and less than
0.069 in device identification, while the ASR maintains high
(nearly 100%). These results indicate the effectiveness of the
adversarial perturbation to enhance the trigger

VII. RESISTANCE TO BACKDOOR DEFENSE METHODS

Resistance to Neural Cleanse. Neural Cleanse [38] is an
optimization technique that reverse-engineers the model to
detect the backdoor model. It works by searching for small
perturbations that can cause the inputs to be classified into a
particular class. The Anomaly Index is the primary metric used
for detecting a backdoor model. When the value exceeds 2, it
indicates the presence of a backdoor. As shown in Fig. 8 (a) re-
garding the poison-label attack scenario, we test our backdoor
model in three temporal trigger patterns for two applications in
the poison-label attack scenario. Anomaly index values for all
those test cases are lower than 2. In the clean-label backdoor
attack scenario, as shown in Fig. 8 (b), our method can also
pass the detection. The results demonstrate that our attack is
robust against Neural Cleanse.
Resistance to STRIP. STRIP [39] is an entropy-based

backdoor detection approach to detect the presence of a
backdoor by intentionally adding perturbations to the input and
observing the probability distributions in the model’s predic-
tions. If the perturbed inputs are predicted as the same class,
it leads to a low output distribution entropy, which signals
a backdoor model’s potential presence. We evaluate all three
trigger patterns for two applications against STRIP. The results
of the trained backdoor model of TD2 of RF modulation
classification in two attack scenarios against STRIP are shown
in Fig. 8 (c) and Fig. 8 (d). The entropy distribution of the
backdoor model closely resembles that of the clean model in
the range (0, 0.4) instead of clustering in a low entropy region,
indicating that the STRIP can’t detect this backdoor model.
We have similar observations for the trained backdoor models
using other trigger designs on two applications. Those results
show that our attack is robust against STRIP.

VIII. CONCLUSION

In this work, we propose the first stealthy RF backdoor
attack that targets deep-learning-based RF signal classification
applications. We thoroughly study the RF IQ data differences
among different RF applications and within the same RF
application. We find a fixed-positioned trigger can be easily
detected. To make the backdoor trigger stealthy, we propose
a stealthy trigger generation approach that is generally appli-
cable to various input samples of an RF signal application. In
particular, we systematically study the different stealthy trigger
patterns considering both spatial and temporal perspectives.
We propose a training-based approach for generating triggers
that can improve the efficiency and subtlety of RF signal
classification. Furthermore, we develop two optimization tech-
niques against to two backdoor attack scenarios: poison-label
and clean-label, where the attacker may or may not have full
control over the label when poisoning the data. Extensive
evaluations on two typical RF signal classification applications
(i.e., RF modulation classification and RF fingerprint-based
device identification) demonstrate the effectiveness of our at-
tack and also show that it is robust against common defending
approaches such as Neural Cleanse and STRIP.
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Fig. 7. NMSE and ASR for RF modulation classification and RF fingerprint-based device identification in poison-label attack ((a),(b)) without MSE loss
(Baseline) and with MSE Loss (+MSE Loss) and NMSE and ASR in clean-label attack ((c),(d)) without MSE loss and adversarial perturbation (Baseline),
only with MSE Loss (+MSE Loss), only with adversarial perturbation (+ Adversarial Perturbation), with MSE loss and adversarial perturbation (+MSE Loss
and Adversarial Perturbation) in three trigger designs.
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Fig. 8. Illustration of the RF backdoor attack against two commonly used backdoor model detection approaches (i.e., Neural Cleanse and STRIP) in poison-
label attack scenrio ((a),(c)) and clean-label attack scenario ((b),(d)).
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