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Abstract—Millimeter-wave (mmWave) communication is a
promising technology that has become a key component of next-
generation wireless networks due to its large available band-
width. However, the susceptibility of mmWave link to dynamic
blockages makes it challenging to maintain consistently high rate
performance. Hence, it is imperative to have the knowledge of
link quality in advance at the location of interest to proactively
optimize the use of network resources. In this work, we propose a
Spatial-Temporal Attention-based Prediction (STAP) framework
to predict the link quality at arbitrary locations in the presence of
dynamic blockages. Specifically, our STAP model is built to cap-
ture the spatial correlation and temporal dependency of mmWave
wireless characteristics in an integrated module, followed by an
attention mechanism to complement the link quality prediction
task. On top of that, we also design a regional training approach
with a weighted loss function to address the data imbalance
problem of map-based prediction. Extensive evaluation results
show that our framework effectively captures comprehensive
spatial-temporal knowledge and achieves significantly higher
accuracy than other baseline prediction methods.

I. INTRODUCTION

Millimeter-wave (mmWave) technology has been gaining

increasing attention nowadays due to its ability to pro-

vide high-bandwidth and low-latency wireless communication,

which enables many attractive scenarios and applications in-

cluding 5G/6G cellular networks, wireless backhaul, Wi-Fi

networks, and virtual reality [1]. However, one critical issue of

mmWave communication is the high sensitivity to both static

and dynamic blockages due to its short propagation distance

and poor penetration ability. This problem is exacerbated in

obstacle-rich environments, where radio propagation phenom-

ena can be more complex and unpredictable. For instance,

in the context of an indoor environment, various factors can

affect the quality of mmWave links, including fixed obstacles

and moving humans, leading to prominent multi-path effects,

shadowing, and blockages.

The susceptibility of links to blockage effects particularly

makes it difficult to maintain continuously high link quality, as

small changes in the distribution of obstacles or the location of

a client device can have constructive or destructive impact on

the quality of a mmWave link. Thus, having the knowledge of

link quality at locations of interest will significantly enhance

network management. To be specific, when a mobile user

is moving in an indoor environment, the quality of service

experienced by mobile users may be significantly enhanced if

information about future link quality along the users’ routes

is used for proactive resource allocation [2]. Furthermore, link

quality prediction can optimize the use of network resources,

allowing for better network management and improved system

performance. Thus, it is necessary to make a map-based link

quality prediction to guarantee reliable communication and

improve network resource scheduling.

Currently, most works focus solely on static scenarios with

a long-term link quality prediction, whereas scant attention

was paid on short-term prediction under dynamic blockages,

e.g., caused by moving humans. In a static network scenario,

a high-quality mmWave link always uses a line-of-sight (LoS)

path between sender and receiver [3]. When objects made of

highly reflective materials such as metal are present in the

environment, reflected paths can be also found to maintain

high link quality even when no LoS path exists between

the two endpoints. However, the dynamic blockages due to

moving humans may frequently break this steady state by

disrupting the well-established links at different locations,

resulting in fluctuations of received signal strength and making

it challenging to estimate the link quality in space and time.

Although a few prior works have addressed the problem

considered herein, they either perform the prediction tasks in a

relatively plain scenario with few obstacles [4] or only predict

the link quality between a transmitter and a few receivers [5].

Particularly, [5], [6] designed long short-term memory (LSTM)

models to predict multi-link quality under dynamic blockages.

However, they focused on the link quality prediction at several

dedicated locations with considering only temporal-domain

information. None of them can dynamically predict a complete

link quality map covering any location of interest, which is the

subject of this work herein.

In our prior work [7], [8], we developed a machine learning

and regression-based approach to link quality prediction for

the static scenarios, i.e., addressing blockages due to static

obstacles to permit link quality prediction several seconds

into the future to facilitate proactive resource allocation.

Augmented with dynamic prediction techniques, this paper

addresses short-term predictions due to dynamic blockages

caused by human obstacles, paving the way for real-time

proactive networking configurations. Particularly, since mov-

ing obstacles may affect both nearby LoS paths and non-LoS

reflection paths to more distant receivers, it is necessary to

capture both temporal dependency and spatial correlation for

an accurate map-based prediction.

In this paper, we propose a spatial-temporal attention-based

framework to make link quality predictions under dynamic



blockages. First, the ray-tracing analysis is performed to

synthetically generate sufficient high-quality training data cov-

ering a wide range of fine-grained mmWave network scenarios.

Then, we investigate the data imbalance problem that exists

in the map-based prediction and address it by introducing a

novel regional learning mechanism, which strategically cap-

tures the critical information from the neighboring areas of

moving obstacles. We also design a new loss function with

the penalty weights to the minority of data samples collected

from potentially affected areas. Next, a Spatial-Temporal

Attention-based Prediction (STAP) framework is developed

to capture spatial correlation and learn temporal dependency

for predictions in both space and time. Although the spatial-

temporal based deep learning models have been applied in the

area of traffic flow prediction [9]–[12], but few attention is

made to mmWave link quality prediction. We also add a soft

attention mechanism to improve the prediction accuracy by

learning the importance of the link quality variance at every

moment. Extensive performance evaluations are conducted to

validate the stability, effectiveness, generalization capability,

and stretchable time-window prediction ability of the STAP

model. The proposed scheme is also shown to outperform the

baseline prediction approaches by up to 61% on the prediction

accuracy. The main contributions of this work are summarized

as follows.

• We propose a spatial-temporal learning framework to

predict the link quality under dynamic blockages. This

framework can efficiently construct a complete link qual-

ity map within a given environment. To the best of our

knowledge, this is the first work that attempts to integrate

temporal dependency and spatial correlation into the map-

based mmWave link quality prediction.

• We investigate the data imbalance problem of dynamic

link quality prediction, and propose a novel regional

learning mechanism with a weighted loss function to

strategically capture the critical information from the

specific areas close to moving objects for training.

• We perform extensive performance evaluations of the

proposed STAP framework, where the results show very

good agreement with the ground truths. This demon-

strates that mmWave link quality under dynamic block-

ages can be accurately predicted through exploiting spa-

tial and temporal characteristics of wireless environment.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce the ray-tracing analysis

to generate large volumes of data that will be used in our

STAP model. Then, we formulate the problem through a space

gridding scheme for the map-based link quality prediction.

Next, we address a data imbalance problem with a novel

regional learning mechanism, paving the way for developing

our STAP framework as in the subsequent section.

A. Ray-Tracing Analysis

Although machine learning techniques could be used to

make link quality predictions, it is challenging to collect a

sufficient volume of training data in real environment covering

a complex range of network scenarios. To address this chal-

lenge, we adopt a ray-tracing based approach to synthetically

generate high-quality training data covering a wide range

of fine-grained mmWave network scenarios, which is then

used to develop our regression-based approach to dynamic

link quality prediction. As a complementary approach to

the experimental measurements, the ray-tracing analysis can

capture the geometrical properties of the wireless channel for

each transceiver and generate the profile of delay τ , path gain,

angle of departure (AoD) θt, angle of arrival (AOA) θr, etc,

and then the received power (i.e., link quality) can be obtained

by accumulating all signal profiles including LoS, reflection,

and diffraction paths [13].

As depicted in Fig. 1 (a), we consider the 3-D layout of

an office scenario with a size of 25m×25m×3m, consisting

of wooden tables, wooden chairs, metal cabinets, and several

moving humans to simulate the dynamic obstacles. The trans-

mitter (i.e., a mmWave access point) is placed at the center

of the room with a height of 2.9m, and the receivers are

evenly distributed with a spacing of 0.4m and at a height of

1m. In this work, we adopt a commercial ray tracer called

Wireless Insite® to generate the above network environment

and mmWave signal profiles. The dataset is publicly available

at [14]. Specifically, we choose the 3-D ray-tracing model

which has no restrictions on geometry shape or transceiver’s

height. For a cost-effective ray tracing analysis, the maximum

order of reflection paths between a transmitter and a receiver

is set to 4, which is a reasonable number in mmWave wireless

contexts as the large-order reflection rays have negligible

impacts on the overall link quality due to the cumulative reflec-

tion loss. Similarly, considering the significant signal strength

drop after the first-order diffraction, we set the maximum order

of diffraction to reach the receiver as 1. The corresponding link

quality map is shown in Fig. 1 (b).

Fig. 1. (a) 3-D scenario layout; (b) The corresponding link quality map.

B. Problem Formulation

To perform a map-based link quality prediction, the geo-

graphical area of the environment space is partitioned into

M = N × N grids, in which each grid represents a spatial

region rn(1 f n f M). At each region rn, a receiver is

placed to collect the link quality values in real time. Xt
υ

is defined as the link quality for all the regions in the set

υ at the t-th time slot. We aim to predict Xt+1
υ based on

previous T observed values X t−T :t
υ = (Xt−T

υ , · · · , Xt
υ). Since



we consider the information from both spatial and temporal

domains, the prediction problem can be formulated as

X̂t+1
υ = F(X t−T :t

υ ,Gt−T :t
υ ), (1)

where Gt−T :t
υ = {X t−T :t

µ |µ ∈ NB(v)} denotes the link

quality at v’s neighbor NB(v) during the same time period.

C. Regional Learning Mechanism

Typically, to predict the future link quality of the entire

space, the input of prediction model should be the link

quality values at any locations across the previous time steps.

However, this straightforward method causes a data imbalance

problem, making the prediction model fail to learn any effect

brought by the dynamic blockages. This is because the link

quality in majority of the areas is not likely to be affected by

the moving objects. As a result, the valid information obtained

from the blocked areas is much less than the redundant infor-

mation retrieved from those unaffected areas, which implies

that data training model should shift more attention to the link

quality variance in the areas around the dynamic obstacles.

[15]

To address this problem, we propose a regional learning

mechanism that only considers the link quality status of

adjacent regions of the moving obstacles as input to prediction

model during the training process. This can be viewed as a

data under-sampling method that decreases the samples from

those unaffected areas. Specifically, the selected area can be

a rectangle region with the same length as the whole room,

but with a smaller width, only covering the neighboring area

of the obstacle. Next, during the backpropagation process, a

weighted loss function is designed to further address this data

imbalance issue. Traditional loss functions using basic mean

squared error (MAE) are inappropriate for our problem since

the error is always small as long as the link quality is well

predicted in those unblocked areas. To resolve this problem,

we use the loss function with a penalty parameter α as follow:

Lδ =

∑n1

i=1 |yi − ŷi|+
∑n2

j=1 α|yj − ŷj |

n1 + n2
, (2)

where yi (yj) and ŷi (ŷj) represent the ground-truth value and

the predicted value of link quality in the unblocked (blocked)

areas. n1 (n2) represents the number of link quality in the

unblocked (blocked) areas, respectively.

III. DYNAMIC LINK QUALITY PREDICTION

In this section, we present the proposed STAP framework

for link quality predictions. In general, we first design a

graph convolutional network (GCN) to extract the spatial-

domain features of mmWave wireless environment, and then

a long short-term memory (LSTM) based module is used to

capture the temporal dependency for predicting link quality

in future time steps. We also add a soft attention mechanism

by assigning weights to the past time-series data to further

improve the prediction accuracy.

A. Spatial-domain Correlation

In a dynamic mmWave wireless environment, the presence

of moving obstacles can easily affect the link quality between

transceivers at arbitrary locations. Thus, it is necessary to

capture the spatial correlation between link quality variance

and environment details. To this end, we first partition the

space (as shown in Fig. 1 (a)) into many grids and place a

receiver at each grid to record the received signal strength

based on our ray tracing analysis. That way, each receiver can

be regarded as a vertex and assuming that the neighboring

vertices of the receiver are highly correlated, we then add the

edges between these neighbouring vertices to further construct

a connected graph which contains detailed spatial information.

Next, we use two layers of GCN model to extract spatial-

domain features, taking into account the graph node and the

adjacent links of the node to capture the correlation between

link quality and environment details. A multi-layer GCN can

be expressed as:

H(l+1) = σ(D̃−
1

2 ÂD̃−
1

2H(l)θ(l)), (3)

where Â = A+I , A is the adjacency matrix of the constructed

graph, and I is the identity matrix. D̃ is the degree matrix with

D̃ii =
∑

j Âij . H(l) is the output of the layer l. θ(l) is the

parameter of the layer l, and σ is the activation function.

In the stage of graph convolution, each node will combine

the information received from its neighbouring nodes and then

share the learned knowledge with each other. In this way, our

GCN model encodes the topological structure of the graph and

captures the spatial correlations among all nodes and links.

Fig. 2. Overview of the STAP framework.

B. Temporal-domain Dependency

To learn the temporal dependency of link quality variances

caused by blockages and multi-path effects along the timeline,

we use a LSTM layer in the framework to predict the received

signal strength at any locations of a future time step. As a

variant of recurrent neural network, LSTM is designed to cir-

cumvent the vanishing gradient problem and make use of the

gate mechanism to capture long- and short-term dependencies.

The model can be formulated as:

ft = σ(Wfxt +Whfht−1 + bf ) (4)

it = σ(Wixt +Wifht−1 + bi) (5)

ot = σ(Woxt +Wofht−1 + bo) (6)

ct = ft ◦ ct−1 + itσ(Wcxt +Wcht−1 + bc) (7)

ht = ot ◦ σ(ct), (8)

where xt is the input vector at time t. ft, it, ot represent the

forget gate, input gate and output gate respectively. ct denotes

the memory cell in the unit and ht stands for the hidden unit.

All the W are the weight vectors in each gate. b stands for



the bias vector and σ is the activation function. In particular,

the memory cell ct combines the previous cell states at ct−1,

current input and previous output, to update hidden states ht.

The forget gate f determines whether the information in the

previous memory should be discarded or not. The output gate

learns how the memory cell should affect the hidden states. As

such, the LSTM layer can well predict the link quality of the

future time step based on the previous hidden state information

and the input at the current time step, which captures the

dynamic temporal variations with this gated mechanism.

C. Attention-based Enhancement

As the last component in Fig. 2, we add a soft attention

layer in the STAP framework to learn the importance of the

link quality at every moment. Since each past data in both

space and time will have a different degree of impact on the

link quality in future time steps, it is critical to strategically

assign different weights to those historical data pieces for a

more accurate prediction.

To be specific, suppose that the input time series is X =
{x1, x2, . . . , xn}, then for every single time step xk in X ,

there is a corresponding hidden state hk from the LSTM

output. Typically, the hidden state hn of the last input time step

is used as the output for prediction. However, the information

from much earlier time steps might not be totally ignored or

addressed as it may also contain some important knowledge

that contributes to the prediction at next time steps. In this way,

the output of the attention layer is calculated in a weighted

average way as:

ĥ =

n∑

i=n

αihi, (9)

where αi is the weight of each hidden layer. To calculate the

weights, we train a fully connected layer on the hidden states

to get a score for each state as follow:

si = sigmoid(wThi + bi), (10)

where si is the calculated score. Then, we use a softmax

function in Eq. (11) to normalize this score and get the weight

for each hidden state.

αi =
exp(si)∑n

k=1 exp(sk)
. (11)

IV. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our proposed

STAP framework to predict the mmWave link quality under

dynamic blockages, including the comparison with the state-

of-the-art models, the stability of the proposed model under

multi-human scenarios, and its transfer capability to various

mobility patterns of obstacles.

A. Network Settings

a) Scenario and model configurations: We consider a

mmWave network scenario as described in Sec. III, where

several fixed objects are randomly placed on the ground, and

some human objects are randomly moving at a regular speed

of 1.4m/s. Then, we perform the space gridding to partition

the entire space into 3,969 (63×63) small grids with the equal

sizes of 0.16m2. Next, we use our ray tracer to generate

over 1,000,000 data samples, which include received signal

strengths (RSS) accounting for the locations of transmitters

and receivers, fixed and dynamic blockages, and multi-path

effects including reflection and diffraction. The data is col-

lected with a sample rate of 30ms and scaled by max-min

normalization. We split the dataset into training and testing

sets with a ratio of 70% and 30%. For the learning model

configurations, we set the input length of time step to the

STAP framework as 8 and predict the RSS for the next time

step. Inside the model, the GCN is developed to learn the

spatial representation with the number of hidden units of 64,

and we set 40 hidden units and 40 hidden nodes in LSTM

part and the attention layer, respectively. Lastly, the penalty

parameter α in our designed loss function is set as 10.

b) Evaluation metrics: We evaluate the performance of

our STAP model using the mean absolute error (MAE) and the

performance difference ratio (PDR), measuring the difference

between the predicted values and ground truths, where

MAE =

∑n
i=1 |Spred − Struth|

n
, (12)

PDR = |Spred − Struth|/(Smax − Smin). (13)

In Eq. (12), we consider both global MAE and local MAE,

where the former indicates the aggregated error across the

entire area of interest and the latter focuses only on the error of

those locations that affected by moving objects. Additionally,

the PDR in Eq. (13) is used to evaluate the prediction accuracy

with varying error tolerance rate (ETR), where the predicted

link quality Spred is accepted as an accurate result when the

PDR is less than the given ETR.

B. Impact of Region Selection

As described in the Sec. II.C, we exploit a regional learning

mechanism to overcome the data imbalance issue. Intuitively,

considering a large region size in the model may compromise

the prediction personalization, resulting in the increase of the

local MAE, while a small region size will fail to capture the

sufficient spatial information for prediction due to the high

environment dependency of mmWave links. Therefore, it is

utmost of importance to choose an appropriate region size in

our STAP framework.

In this part, we evaluate the performance of STAP model

with different region sizes and the results are reported in Fig. 3.

First, it is expected to see that the global MAE increases

with the larger region size due to the data imbalance issue.

Then, it is interesting to observe that the local MAE decreases

at first, but then starts to increase as the considered region

size becomes larger. The initial decrease is due to more

spatial information being considered as the selected area is

expanded. However, as the region size keeps increasing, the

data imbalance begins to dominate and overwhelm the benefits

brought by spatial information, resulting in higher local MAE.

In what follows, we select the 11% of the space size for



regional learning because it strikes a good balance between

the local MAE and the global MAE.

Fig. 3. Area percentage of selected region vs. MAE.

C. Model Comparison

Next, to validate the performance of our proposed STAP

model, we compare with several baseline models including

LSTM based model from [4], CNN-LSTM model from [10],

GCN-LSTM model from [16], and the STAP model using the

standard MSE based loss function (termed as STAP-STD),

while our proposed STAP herein is trained with a modified

loss function Lδ in Eq. (2).

TABLE I
PERFORMANCE COMPARISONS.

Method
MAE

Local MAE Global MAE

LSTM [4] 41.7542 0.2652

CNN-LSTM [10] 31.7453 0.2781

GCN-LSTM [16] 25.1281 0.2548

STAP-STD 18.1567 0.1922

STAP 16.1409 0.1902

Table. I shows the performance comparisons among all con-

sidered models. Obviously, the proposed STAP outperforms

other baseline models in terms of both global MAE and local

MAE. By capturing the spatial dependency information, our

STAP, CNN-LSTM and GCN-LSTM can improve the predic-

tion accuracy by up to 61%, 24%, and 39% compared to the

pure LSTM, respectively, which demonstrates the importance

of spatial correlations in mmWave link quality prediction. In

addition, our STAP is superior to GCN-LSTM and CNN-

LSTM by adding a soft attention mechanism, which considers

the correlation between links in both space and time. We also

find that the STAP shows the better performance than STAP-

STD, and this validates the effectiveness of the modified loss

function that well addresses the data imbalance issue.

Besides the quantitative results presented in Table. I, Fig. 4

depicts the visualized map-based prediction results. Specifi-

cally, we showcase the prediction error map (i.e., ∀i ∈ L,

|x̂i−xi|/xi) for each model, where x̂n and xi are the predicted

and ground-truth link quality at any location i ∈ L. The

brighter pixel in the map indicates the larger prediction error,

so the superiority of STAP model can be easily observed,

which is consistent with the quantitative results in Table. I.

Additionally, as discussed in Sec. II-C, we only predict the

Fig. 4. Visualization of prediction results. (a) is the predicted link quality
map of STAP; (b)-(d) are the error maps between predicted and ground-truth
link quality maps from LSTM, GCN-LSTM, and our STAP models.

future link quality of the neighbouring area of obstacles. The

link quality of the remaining area is the same as that of the last

time step. As what we find from the error maps in Fig. 4(b)-(d),

the majority of the error in those areas are around zero, which

means the link quality from last time step is almost the same

as the next time step. This result validates the effectiveness

of our regional learning mechanism, namely achieving high

prediction accuracy with less computational overhead.

D. Prediction on Stretchable Time Windows

In addition to predicting the link quality at only the next

time step, our STAP model is capable of making predictions

on a stretchable time window, i.e., generating link quality

maps for next several time steps, where each time step is set

as 30ms in this evaluated case. Here we first investigate the

performance of our STAP model vs. the future time steps in

Fig. 5(a). As expected, the prediction error increases when the

Fig. 5. (a) The length of future time window vs. MAE; (b) The length of
past time window vs. MAE.

model becomes more farsighted. Additionally, we observe a

significant increase of local MAE at first, but then it becomes

marginal as the time step increases. Notably, both local and

global MAE stay almost unchanged when the window length is

larger than 4, where the global prediction error is maintained

at around only 0.22. This result demonstrates the capability

of our STAP model to predict link quality within a stretch-

able time window, exhibiting the potential use to allow for



proactive network configurations in different delay-sensitive

applications.

Besides the study on the “lookahead” capability, here we

use the term “lookback” to depict length of past time step

needed for predicting the future link quality. Intuitively, a

longer lookback period can encode more temporal information

during the learning process, thus improving the prediction

accuracy. This hypothesis is proved in Fig. 5(b), where we

can see a decreasing trend in both local MAE and global

MAE when more lookbacks are considered. Specifically, the

prediction error becomes relatively small when the lookback

period is more than 3 in the evaluated scenario. As a result,

we conclude that the information from a few past time period

might be sufficient to make an accurate link quality prediction.

E. Multi-human Scenario and Model Generalizability

In this part, we evaluate the performance of our STAP model

with varying moving human density in the network scenario.

Fig. 6(a). shows the PDR metric vs. the moving human density.

We adopt different ETRs to evaluate the performance of the

proposed prediction model, where the predicted link quality

is accepted as an accurate result when the PDR is less than

the given ETR. As expected, the increase of human density

will cause a decrease in the percentage of accepted prediction

results across all receiver locations in the scenario. However,

our STAP model can still maintain around 85% and 97%

prediction accuracy with a large dynamic blockage density

when ETR is 0.01 and 0.03, respectively, which corresponds

to the average link quality prediction error of just 1–3 dB

across the entire scenario map. The results validate the stability

of our proposed model, i.e., being able to predict the link

quality variance within an acceptable accuracy as the density

of dynamic blockages increases.

Fig. 6. (a) Prediction accuracy vs. moving obstacle densities; (b) Loss
comparison on original model and pre-trained model.

Lastly, we investigate whether our STAP model is general-

ized to arbitrary mobility patterns of temporary obstacles. We

evaluate the model performance in the case of humans moving

in random directions, and the results are reported in Fig. 6(b).

Specifically, the red line in Fig. 6(b). represents the learning

loss vs. the used epochs when training a new model, while the

blue line shows the convergence when new dataset consisting

of a different moving pattern is used as input to a pre-trained

model. In particular, it is observed that the initial loss on the

pre-trained model is significantly lower than that of the newly

trained model. Also, adding the new data to our pre-trained

model converges faster and achieves the lower loss. This result

shows the generalizability of our model to mobility pattern of

obstacles, which can be applied in various dynamic mmWave

network scenarios, since only a few epochs are needed to train

a link quality predictor based on the pre-trained model.

V. CONCLUSION

In this paper, we studied mmWave link quality predic-

tion under dynamic blockages. We first investigated a data

imbalance problem of the map-based prediction through a

regional training mechanism. Then, an attention-based spatial-

temporal learning framework was proposed to dynamically

predict the link quality at any locations in the scenario.

Extensive evaluation results showed that our approach can

achieve fairly promising prediction accuracy and is robust to

multiple dynamic obstacles with arbitrary mobility patterns.

ACKNOWLEDGEMENT

This research was supported by the National Science Foun-

dation through Award CNS–2312138 and CNS–2312139.

REFERENCES
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