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Abstract—Millimeter-wave (mmWave) communication is a
promising technology that has become a key component of next-
generation wireless networks due to its large available band-
width. However, the susceptibility of mmWave link to dynamic
blockages makes it challenging to maintain consistently high rate
performance. Hence, it is imperative to have the knowledge of
link quality in advance at the location of interest to proactively
optimize the use of network resources. In this work, we propose a
Spatial-Temporal Attention-based Prediction (STAP) framework
to predict the link quality at arbitrary locations in the presence of
dynamic blockages. Specifically, our STAP model is built to cap-
ture the spatial correlation and temporal dependency of mmWave
wireless characteristics in an integrated module, followed by an
attention mechanism to complement the link quality prediction
task. On top of that, we also design a regional training approach
with a weighted loss function to address the data imbalance
problem of map-based prediction. Extensive evaluation results
show that our framework effectively captures comprehensive
spatial-temporal knowledge and achieves significantly higher
accuracy than other baseline prediction methods.

I. INTRODUCTION

Millimeter-wave (mmWave) technology has been gaining
increasing attention nowadays due to its ability to pro-
vide high-bandwidth and low-latency wireless communication,
which enables many attractive scenarios and applications in-
cluding 5G/6G cellular networks, wireless backhaul, Wi-Fi
networks, and virtual reality [1]. However, one critical issue of
mmWave communication is the high sensitivity to both static
and dynamic blockages due to its short propagation distance
and poor penetration ability. This problem is exacerbated in
obstacle-rich environments, where radio propagation phenom-
ena can be more complex and unpredictable. For instance,
in the context of an indoor environment, various factors can
affect the quality of mmWave links, including fixed obstacles
and moving humans, leading to prominent multi-path effects,
shadowing, and blockages.

The susceptibility of links to blockage effects particularly
makes it difficult to maintain continuously high link quality, as
small changes in the distribution of obstacles or the location of
a client device can have constructive or destructive impact on
the quality of a mmWave link. Thus, having the knowledge of
link quality at locations of interest will significantly enhance
network management. To be specific, when a mobile user
is moving in an indoor environment, the quality of service
experienced by mobile users may be significantly enhanced if
information about future link quality along the users’ routes
is used for proactive resource allocation [2]. Furthermore, link

quality prediction can optimize the use of network resources,
allowing for better network management and improved system
performance. Thus, it is necessary to make a map-based link
quality prediction to guarantee reliable communication and
improve network resource scheduling.

Currently, most works focus solely on static scenarios with
a long-term link quality prediction, whereas scant attention
was paid on short-term prediction under dynamic blockages,
e.g., caused by moving humans. In a static network scenario,
a high-quality mmWave link always uses a line-of-sight (LoS)
path between sender and receiver [3]. When objects made of
highly reflective materials such as metal are present in the
environment, reflected paths can be also found to maintain
high link quality even when no LoS path exists between
the two endpoints. However, the dynamic blockages due to
moving humans may frequently break this steady state by
disrupting the well-established links at different locations,
resulting in fluctuations of received signal strength and making
it challenging to estimate the link quality in space and time.
Although a few prior works have addressed the problem
considered herein, they either perform the prediction tasks in a
relatively plain scenario with few obstacles [4] or only predict
the link quality between a transmitter and a few receivers [5].
Particularly, [5], [6] designed long short-term memory (LSTM)
models to predict multi-link quality under dynamic blockages.
However, they focused on the link quality prediction at several
dedicated locations with considering only temporal-domain
information. None of them can dynamically predict a complete
link quality map covering any location of interest, which is the
subject of this work herein.

In our prior work [7], [8], we developed a machine learning
and regression-based approach to link quality prediction for
the static scenarios, i.e., addressing blockages due to static
obstacles to permit link quality prediction several seconds
into the future to facilitate proactive resource allocation.
Augmented with dynamic prediction techniques, this paper
addresses short-term predictions due to dynamic blockages
caused by human obstacles, paving the way for real-time
proactive networking configurations. Particularly, since mov-
ing obstacles may affect both nearby LoS paths and non-LoS
reflection paths to more distant receivers, it is necessary to
capture both temporal dependency and spatial correlation for
an accurate map-based prediction.

In this paper, we propose a spatial-temporal attention-based
framework to make link quality predictions under dynamic



blockages. First, the ray-tracing analysis is performed to
synthetically generate sufficient high-quality training data cov-
ering a wide range of fine-grained mmWave network scenarios.
Then, we investigate the data imbalance problem that exists
in the map-based prediction and address it by introducing a
novel regional learning mechanism, which strategically cap-
tures the critical information from the neighboring areas of
moving obstacles. We also design a new loss function with
the penalty weights to the minority of data samples collected
from potentially affected areas. Next, a Spatial-Temporal
Attention-based Prediction (STAP) framework is developed
to capture spatial correlation and learn temporal dependency
for predictions in both space and time. Although the spatial-
temporal based deep learning models have been applied in the
area of traffic flow prediction [9]-[12], but few attention is
made to mmWave link quality prediction. We also add a soft
attention mechanism to improve the prediction accuracy by
learning the importance of the link quality variance at every
moment. Extensive performance evaluations are conducted to
validate the stability, effectiveness, generalization capability,
and stretchable time-window prediction ability of the STAP
model. The proposed scheme is also shown to outperform the
baseline prediction approaches by up to 61% on the prediction
accuracy. The main contributions of this work are summarized
as follows.

o« We propose a spatial-temporal learning framework to
predict the link quality under dynamic blockages. This
framework can efficiently construct a complete link qual-
ity map within a given environment. To the best of our
knowledge, this is the first work that attempts to integrate
temporal dependency and spatial correlation into the map-
based mmWave link quality prediction.

o We investigate the data imbalance problem of dynamic
link quality prediction, and propose a novel regional
learning mechanism with a weighted loss function to
strategically capture the critical information from the
specific areas close to moving objects for training.

o We perform extensive performance evaluations of the
proposed STAP framework, where the results show very
good agreement with the ground truths. This demon-
strates that mmWave link quality under dynamic block-
ages can be accurately predicted through exploiting spa-
tial and temporal characteristics of wireless environment.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce the ray-tracing analysis
to generate large volumes of data that will be used in our
STAP model. Then, we formulate the problem through a space
gridding scheme for the map-based link quality prediction.
Next, we address a data imbalance problem with a novel
regional learning mechanism, paving the way for developing
our STAP framework as in the subsequent section.

A. Ray-Tracing Analysis

Although machine learning techniques could be used to
make link quality predictions, it is challenging to collect a

sufficient volume of training data in real environment covering
a complex range of network scenarios. To address this chal-
lenge, we adopt a ray-tracing based approach to synthetically
generate high-quality training data covering a wide range
of fine-grained mmWave network scenarios, which is then
used to develop our regression-based approach to dynamic
link quality prediction. As a complementary approach to
the experimental measurements, the ray-tracing analysis can
capture the geometrical properties of the wireless channel for
each transceiver and generate the profile of delay 7, path gain,
angle of departure (AoD) 6;, angle of arrival (AOA) 6,., etc,
and then the received power (i.e., link quality) can be obtained
by accumulating all signal profiles including LoS, reflection,
and diffraction paths [13].

As depicted in Fig. 1 (a), we consider the 3-D layout of
an office scenario with a size of 25mx25mx3m, consisting
of wooden tables, wooden chairs, metal cabinets, and several
moving humans to simulate the dynamic obstacles. The trans-
mitter (i.e., a mmWave access point) is placed at the center
of the room with a height of 2.9m, and the receivers are
evenly distributed with a spacing of 0.4m and at a height of
Im. In this work, we adopt a commercial ray tracer called
Wireless Insite® to generate the above network environment
and mmWave signal profiles. The dataset is publicly available
at [14]. Specifically, we choose the 3-D ray-tracing model
which has no restrictions on geometry shape or transceiver’s
height. For a cost-effective ray tracing analysis, the maximum
order of reflection paths between a transmitter and a receiver
is set to 4, which is a reasonable number in mmWave wireless
contexts as the large-order reflection rays have negligible
impacts on the overall link quality due to the cumulative reflec-
tion loss. Similarly, considering the significant signal strength
drop after the first-order diffraction, we set the maximum order
of diffraction to reach the receiver as 1. The corresponding link
quality map is shown in Fig. 1 (b).

Fig. 1. (a) 3-D scenario layout; (b) The corresponding link quality map.

B. Problem Formulation

To perform a map-based link quality prediction, the geo-
graphical area of the environment space is partitioned into
M = N x N grids, in which each grid represents a spatial
region r,(1 < n < M). At each region r,, a receiver is
placed to collect the link quality values in real time. X!
is defined as the link quality for all the regions in the set
v at the t-th time slot. We aim to predict X ! based on
previous T observed values X!~ 7% = (X!=T ... ' X!). Since



we consider the information from both spatial and temporal
domains, the prediction problem can be formulated as

Xf;ﬂ _ ]:(le—T:t, gf)—T:t)7 (1)

where G- = {X!=T" € NB(v)} denotes the link
quality at v’s neighbor A'B(v) during the same time period.

C. Regional Learning Mechanism

Typically, to predict the future link quality of the entire
space, the input of prediction model should be the link
quality values at any locations across the previous time steps.
However, this straightforward method causes a data imbalance
problem, making the prediction model fail to learn any effect
brought by the dynamic blockages. This is because the link
quality in majority of the areas is not likely to be affected by
the moving objects. As a result, the valid information obtained
from the blocked areas is much less than the redundant infor-
mation retrieved from those unaffected areas, which implies
that data training model should shift more attention to the link
quality variance in the areas around the dynamic obstacles.
[15]

To address this problem, we propose a regional learning
mechanism that only considers the link quality status of
adjacent regions of the moving obstacles as input to prediction
model during the training process. This can be viewed as a
data under-sampling method that decreases the samples from
those unaffected areas. Specifically, the selected area can be
a rectangle region with the same length as the whole room,
but with a smaller width, only covering the neighboring area
of the obstacle. Next, during the backpropagation process, a
weighted loss function is designed to further address this data
imbalance issue. Traditional loss functions using basic mean
squared error (MAE) are inappropriate for our problem since
the error is always small as long as the link quality is well
predicted in those unblocked areas. To resolve this problem,
we use the loss function with a penalty parameter « as follow:
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where y; (y;) and ¢; (y;) represent the ground-truth value and
the predicted value of link quality in the unblocked (blocked)
areas. n; (no) represents the number of link quality in the
unblocked (blocked) areas, respectively.

III. DYNAMIC LINK QUALITY PREDICTION

In this section, we present the proposed STAP framework
for link quality predictions. In general, we first design a
graph convolutional network (GCN) to extract the spatial-
domain features of mmWave wireless environment, and then
a long short-term memory (LSTM) based module is used to
capture the temporal dependency for predicting link quality
in future time steps. We also add a soft attention mechanism
by assigning weights to the past time-series data to further
improve the prediction accuracy.

A. Spatial-domain Correlation

In a dynamic mmWave wireless environment, the presence
of moving obstacles can easily affect the link quality between

transceivers at arbitrary locations. Thus, it is necessary to
capture the spatial correlation between link quality variance
and environment details. To this end, we first partition the
space (as shown in Fig. 1 (a)) into many grids and place a
receiver at each grid to record the received signal strength
based on our ray tracing analysis. That way, each receiver can
be regarded as a vertex and assuming that the neighboring
vertices of the receiver are highly correlated, we then add the
edges between these neighbouring vertices to further construct
a connected graph which contains detailed spatial information.

Next, we use two layers of GCN model to extract spatial-
domain features, taking into account the graph node and the
adjacent links of the node to capture the correlation between
link quality and environment details. A multi-layer GCN can
be expressed as:

H = (D=2 AD 3 HD9O), 3)

where A = A+1 , A is the adjacency matrix of the constructed
graph, and I is the identity matrix. D is the degree matrix with
Dii = 32, Aij. H® is the output of the layer 1. () is the
parameter of the layer [, and o is the activation function.

In the stage of graph convolution, each node will combine
the information received from its neighbouring nodes and then
share the learned knowledge with each other. In this way, our
GCN model encodes the topological structure of the graph and
captures the spatial correlations among all nodes and links.
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Fig. 2. Overview of the STAP framework.

B. Temporal-domain Dependency

To learn the temporal dependency of link quality variances
caused by blockages and multi-path effects along the timeline,
we use a LSTM layer in the framework to predict the received
signal strength at any locations of a future time step. As a
variant of recurrent neural network, LSTM is designed to cir-
cumvent the vanishing gradient problem and make use of the
gate mechanism to capture long- and short-term dependencies.
The model can be formulated as:
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where x; is the input vector at time t. f;,4;, 0; represent the
forget gate, input gate and output gate respectively. ¢; denotes
the memory cell in the unit and h; stands for the hidden unit.
All the W are the weight vectors in each gate. b stands for



the bias vector and o is the activation function. In particular,
the memory cell ¢; combines the previous cell states at c;_1,
current input and previous output, to update hidden states h;.
The forget gate f determines whether the information in the
previous memory should be discarded or not. The output gate
learns how the memory cell should affect the hidden states. As
such, the LSTM layer can well predict the link quality of the
future time step based on the previous hidden state information
and the input at the current time step, which captures the
dynamic temporal variations with this gated mechanism.

C. Attention-based Enhancement

As the last component in Fig. 2, we add a soft attention
layer in the STAP framework to learn the importance of the
link quality at every moment. Since each past data in both
space and time will have a different degree of impact on the
link quality in future time steps, it is critical to strategically
assign different weights to those historical data pieces for a
more accurate prediction.

To be specific, suppose that the input time series is X =
{x1,x9,...,2,}, then for every single time step xj in X,
there is a corresponding hidden state hj; from the LSTM
output. Typically, the hidden state h,, of the last input time step
is used as the output for prediction. However, the information
from much earlier time steps might not be totally ignored or
addressed as it may also contain some important knowledge
that contributes to the prediction at next time steps. In this way,
the output of the attention layer is calculated in a weighted
average way as:

h= iaihh )

where «; is the weight of each hidden layer. To calculate the
weights, we train a fully connected layer on the hidden states
to get a score for each state as follow:

s; = sigmoid(wT h; + b;), (10)

where s; is the calculated score. Then, we use a softmax
function in Eq. (11) to normalize this score and get the weight
for each hidden state.
_ exp(s;)

> ope1 exp(si)

IV. PERFORMANCE EVALUATIONS

(1)

6%

In this section, we evaluate the performance of our proposed
STAP framework to predict the mmWave link quality under
dynamic blockages, including the comparison with the state-
of-the-art models, the stability of the proposed model under
multi-human scenarios, and its transfer capability to various
mobility patterns of obstacles.

A. Network Settings

a) Scenario and model configurations: We consider a
mmWave network scenario as described in Sec. III, where
several fixed objects are randomly placed on the ground, and
some human objects are randomly moving at a regular speed
of 1.4m/s. Then, we perform the space gridding to partition

the entire space into 3,969 (63x63) small grids with the equal
sizes of 0.16m2. Next, we use our ray tracer to generate
over 1,000,000 data samples, which include received signal
strengths (RSS) accounting for the locations of transmitters
and receivers, fixed and dynamic blockages, and multi-path
effects including reflection and diffraction. The data is col-
lected with a sample rate of 30ms and scaled by max-min
normalization. We split the dataset into training and testing
sets with a ratio of 70% and 30%. For the learning model
configurations, we set the input length of time step to the
STAP framework as 8 and predict the RSS for the next time
step. Inside the model, the GCN is developed to learn the
spatial representation with the number of hidden units of 64,
and we set 40 hidden units and 40 hidden nodes in LSTM
part and the attention layer, respectively. Lastly, the penalty
parameter « in our designed loss function is set as 10.

b) Evaluation metrics: We evaluate the performance of
our STAP model using the mean absolute error (MAE) and the
performance difference ratio (PDR), measuring the difference
between the predicted values and ground truths, where

E:L:l |Sp7'ed - Struth‘
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(12)

PDR = |Spred - Struth|/(8max - Smin)- (13)

In Eq. (12), we consider both global MAE and local MAE,
where the former indicates the aggregated error across the
entire area of interest and the latter focuses only on the error of
those locations that affected by moving objects. Additionally,
the PDR in Eq. (13) is used to evaluate the prediction accuracy
with varying error tolerance rate (ETR), where the predicted
link quality Sp,cq is accepted as an accurate result when the
PDR is less than the given ETR.

B. Impact of Region Selection

As described in the Sec. II.C, we exploit a regional learning
mechanism to overcome the data imbalance issue. Intuitively,
considering a large region size in the model may compromise
the prediction personalization, resulting in the increase of the
local MAE, while a small region size will fail to capture the
sufficient spatial information for prediction due to the high
environment dependency of mmWave links. Therefore, it is
utmost of importance to choose an appropriate region size in
our STAP framework.

In this part, we evaluate the performance of STAP model
with different region sizes and the results are reported in Fig. 3.
First, it is expected to see that the global MAE increases
with the larger region size due to the data imbalance issue.
Then, it is interesting to observe that the local MAE decreases
at first, but then starts to increase as the considered region
size becomes larger. The initial decrease is due to more
spatial information being considered as the selected area is
expanded. However, as the region size keeps increasing, the
data imbalance begins to dominate and overwhelm the benefits
brought by spatial information, resulting in higher local MAE.
In what follows, we select the 11% of the space size for



regional learning because it strikes a good balance between
the local MAE and the global MAE.

Local MAE
Global MAE

s E 1% 1% 7%
Selected Region Area

Fig. 3. Area percentage of selected region vs. MAE.

C. Model Comparison

Next, to validate the performance of our proposed STAP
model, we compare with several baseline models including
LSTM based model from [4], CNN-LSTM model from [10],
GCN-LSTM model from [16], and the STAP model using the
standard MSE based loss function (termed as STAP-STD),
while our proposed STAP herein is trained with a modified
loss function L in Eq. (2).

TABLE I
PERFORMANCE COMPARISONS.
MAE
Method TLocal MAE | Global MAE

LSTM [4] 41.7542 0.2652
CNN-LSTM [10] 31.7453 0.2781
GCN-LSTM [16] 25.1281 0.2548
STAP-STD 18.1567 0.1922
STAP 16.1409 0.1902

Table. I shows the performance comparisons among all con-
sidered models. Obviously, the proposed STAP outperforms
other baseline models in terms of both global MAE and local
MAE. By capturing the spatial dependency information, our
STAP, CNN-LSTM and GCN-LSTM can improve the predic-
tion accuracy by up to 61%, 24%, and 39% compared to the
pure LSTM, respectively, which demonstrates the importance
of spatial correlations in mmWave link quality prediction. In
addition, our STAP is superior to GCN-LSTM and CNN-
LSTM by adding a soft attention mechanism, which considers
the correlation between links in both space and time. We also
find that the STAP shows the better performance than STAP-
STD, and this validates the effectiveness of the modified loss
function that well addresses the data imbalance issue.

Besides the quantitative results presented in Table. I, Fig. 4
depicts the visualized map-based prediction results. Specifi-
cally, we showcase the prediction error map (i.e., Vi € L,
|&;—x;|/x;) for each model, where 2/, and x; are the predicted
and ground-truth link quality at any location ¢+ € L. The
brighter pixel in the map indicates the larger prediction error,
so the superiority of STAP model can be easily observed,
which is consistent with the quantitative results in Table. I.
Additionally, as discussed in Sec. II-C, we only predict the
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Fig. 4. Visualization of prediction results. (a) is the predicted link quality
map of STAP; (b)-(d) are the error maps between predicted and ground-truth
link quality maps from LSTM, GCN-LSTM, and our STAP models.

future link quality of the neighbouring area of obstacles. The
link quality of the remaining area is the same as that of the last
time step. As what we find from the error maps in Fig. 4(b)-(d),
the majority of the error in those areas are around zero, which
means the link quality from last time step is almost the same
as the next time step. This result validates the effectiveness
of our regional learning mechanism, namely achieving high
prediction accuracy with less computational overhead.

D. Prediction on Stretchable Time Windows

In addition to predicting the link quality at only the next
time step, our STAP model is capable of making predictions
on a stretchable time window, i.e., generating link quality
maps for next several time steps, where each time step is set
as 30ms in this evaluated case. Here we first investigate the
performance of our STAP model vs. the future time steps in
Fig. 5(a). As expected, the prediction error increases when the

Global MAE

Local MAE

Time Window Length

‘ Pa;t Tim‘e Stesp Len.gth ’
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Fig. 5. (a) The length of future time window vs. MAE; (b) The length of
past time window vs. MAE.

model becomes more farsighted. Additionally, we observe a
significant increase of local MAE at first, but then it becomes
marginal as the time step increases. Notably, both local and
global MAE stay almost unchanged when the window length is
larger than 4, where the global prediction error is maintained
at around only 0.22. This result demonstrates the capability
of our STAP model to predict link quality within a stretch-
able time window, exhibiting the potential use to allow for



proactive network configurations in different delay-sensitive
applications.

Besides the study on the “lookahead” capability, here we
use the term “lookback” to depict length of past time step
needed for predicting the future link quality. Intuitively, a
longer lookback period can encode more temporal information
during the learning process, thus improving the prediction
accuracy. This hypothesis is proved in Fig. 5(b), where we
can see a decreasing trend in both local MAE and global
MAE when more lookbacks are considered. Specifically, the
prediction error becomes relatively small when the lookback
period is more than 3 in the evaluated scenario. As a result,
we conclude that the information from a few past time period
might be sufficient to make an accurate link quality prediction.

E. Multi-human Scenario and Model Generalizability

In this part, we evaluate the performance of our STAP model
with varying moving human density in the network scenario.
Fig. 6(a). shows the PDR metric vs. the moving human density.
We adopt different ETRs to evaluate the performance of the
proposed prediction model, where the predicted link quality
is accepted as an accurate result when the PDR is less than
the given ETR. As expected, the increase of human density
will cause a decrease in the percentage of accepted prediction
results across all receiver locations in the scenario. However,
our STAP model can still maintain around 85% and 97%
prediction accuracy with a large dynamic blockage density
when ETR is 0.01 and 0.03, respectively, which corresponds
to the average link quality prediction error of just 1-3 dB
across the entire scenario map. The results validate the stability
of our proposed model, i.e., being able to predict the link
quality variance within an acceptable accuracy as the density
of dynamic blockages increases.

W ETR=0.01 WSS ETR=002 WEM ETR=0.03

—— training loss on original model
0030 —— training loss on pre-trained model

Acceptance Percent
o

1 B ws 20

: 3 3 s ENE TS
Human Density(x10~3/m?) Number of epochs

(a) (b)

Fig. 6. (a) Prediction accuracy vs. moving obstacle densities; (b) Loss
comparison on original model and pre-trained model.

Lastly, we investigate whether our STAP model is general-
ized to arbitrary mobility patterns of temporary obstacles. We
evaluate the model performance in the case of humans moving
in random directions, and the results are reported in Fig. 6(b).
Specifically, the red line in Fig. 6(b). represents the learning
loss vs. the used epochs when training a new model, while the
blue line shows the convergence when new dataset consisting
of a different moving pattern is used as input to a pre-trained
model. In particular, it is observed that the initial loss on the
pre-trained model is significantly lower than that of the newly
trained model. Also, adding the new data to our pre-trained
model converges faster and achieves the lower loss. This result

shows the generalizability of our model to mobility pattern of
obstacles, which can be applied in various dynamic mmWave
network scenarios, since only a few epochs are needed to train
a link quality predictor based on the pre-trained model.

V. CONCLUSION

In this paper, we studied mmWave link quality predic-
tion under dynamic blockages. We first investigated a data
imbalance problem of the map-based prediction through a
regional training mechanism. Then, an attention-based spatial-
temporal learning framework was proposed to dynamically
predict the link quality at any locations in the scenario.
Extensive evaluation results showed that our approach can
achieve fairly promising prediction accuracy and is robust to
multiple dynamic obstacles with arbitrary mobility patterns.
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