L)

Check for

updates

BarrierBypass: Out-of-Sight Clean Voice Command Injection
Attacks through Physical Barriers

Payton Walker
prw0007 @tamu.edu
Texas A&M University
College Station, Texas, USA

Nitesh Saxena
nsaxena@tamu.edu
Texas A&M University
College Station, Texas, USA

ABSTRACT

The growing adoption of voice-enabled devices (e.g., smart speak-
ers), particularly in smart home environments, has introduced many
security vulnerabilities that pose significant threats to users’ pri-
vacy and safety. When multiple devices are connected to a voice
assistant, an attacker can cause serious damage if they can gain
control of these devices. We ask where and how can an attacker
issue clean voice commands stealthily across a physical barrier, and
perform the first academic measurement study of this nature on
the command injection attack. We present the BarrierBypass attack
that can be launched against three different barrier-based scenarios
termed across-door, across-window, and across-wall. We conduct a
broad set of experiments to observe the command injection attack
success rates for multiple speaker samples (TTS and live human
recorded) at different command audio volumes (65, 75, 85 dB), and
smart speaker locations (0.1-4.0m from barrier).

Against Amazon Echo Dot 2, BarrierBypass is able to achieve
100% wake word and command injection success for the across-wall
and across-window attacks, and for the across-door attack (up to
2 meters). At 4 meters for the across-door attack, BarrierBypass
can achieve 90% and 80% injection accuracy for the wake word and
command, respectively. Against Google Home mini BarrierBypass
is able to achieve 100% wake word injection accuracy for all attack
scenarios. For command injection BarrierBypass can achieve 100%
accuracy for all the three barrier settings (up to 2 meters). For
the across-door attack at 4 meters, BarrierBypass can achieve 80%
command injection accuracy. Further, our demonstration using
drones yielded high command injection success, up to 100%. Overall,
our results demonstrate the potentially devastating nature of this
vulnerability to control a user’s device from outside of the device’s
physical space, and its limitations, without the need for complex
and error-prone command injection.
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1 INTRODUCTION

As voice assistant (VA) devices such as Amazon Echo and Google
Home smart speakers are approaching ubiquity, we are forced to
become more aware of the inherent security risks associated with
these devices. VA devices typically act as a central hub of control
for a multitude of connected smart devices such as smart locks,
lights, cameras, thermostats, appliances, and garage doors. Each
of these devices can be controlled in some way by issuing voice
commands to the VA device. But these commands also introduce
new types of risks. The ability to control such devices with vocal
commands opens up a lot of attack possibilities that did not exist
before. Among the different types of attacks that can be performed,
the potential for home/office/hotel/dorm intrusion is one of the
most severe and threatening.

Media coverage on this subject reveals the growing concern for
the security vulnerabilities in a smart home environment [13, 24, 25,
29, 30]. While much of the concern is centered around the vulnera-
bility to hacking that comes with connecting a multitude of devices,
many professionals agree, for the purposes of home intrusion, there
is a very low chance that an attacker would attempt to perform
complex hacking as opposed to simply brute forcing there way
in [14]. However, the ability to issue simple vocal commands to a
voice assistant in order to control a lock or door is one vulnerabil-
ity that requires no hacking and could potentially be favored by
attackers who want to gain access to a space.

Aside from commands being accidentally issued through tele-
vision advertisements [9, 26, 35], in an ISTR special report from
Symantec, the author discusses the "mischievous man next door at-
tack" which involves a neighbor issuing voice assistant commands
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either with ultrasonic frequencies, or by waiting until you leave
and simply shouting a command through the door [34]. The report
touches on the significant security risk that is introduced if you
have smart locks or a garage door that can be controlled by your
voice assistant because it would allow an attacker to gain entry
into your home. While home invasion is a serious concern when a
command injection attack is possible, it is important to note that
there are many other scenarios that can cause harm if an attacker
can control the smart devices of a home. For example, turning on
the stove can cause a gas leak or become a fire hazard.

Another form of command injection attack that has emerged in
academia in recent years is hidden voice commands that obfuscate
command audio so it is unrecognizable to humans, but recognizable
by VA devices. However, hidden voice command attacks have lim-
ited applicability and their accuracy is generally low. They are also
very sensitive to noise because of how specially they are crafted to
begin with. Also, even after the past several years of research on
these attacks [8], the vendors have not really come up with defenses
to such attacks. This is perhaps because the vendors are likely ig-
noring them as being rather impractical or uneventful. Indeed, the
recent work by Abdullah et al. [8] revealed that many of the hidden
voice command attacks presented in research are not truly feasible
in real-world settings due to their low accuracy and lack of trans-
ferability to different systems. Another recent work on command
injection by Sugawara et al. [31] introduces the LightCommands
attack which uses laser-based injection of the audio signal. The
main drawbacks to this attack are that it requires a line of sight, is
very complicated to setup/launch, and can be error prone.

In this paper, we aim to address most of the aforementioned prob-
lems with the existing voice command injection attacks from the
literature or practice. We focus on an attack model, BarrierBypass,
in which a loudspeaker issues clean vocal commands — through
a physical barrier — to a voice assistant or other voice control-
lable technology that is located inside a home, office, or hotel room.
While this attack model eliminates many of the complications of
hidden command injection, it does introduce its own limitations.
For example, because this attack injects clean commands and re-
quires louder volumes, the attack would likely only be launched in
certain scenarios such as when the user is not present in the space
(such as during work hours). We consider three different barrier
types which serve as the entry points for the attacker to inject such
out-of-sight voice commands:

(1) Window Barrier: The attacker injects a command through
a window to target a voice assistant in the room. The attacker
can launch this attack in-person or remotely-controlled via drone
technology which can target multiple homes in a neighborhood or
even high rise buildings with condos or offices. We demonstrate
the feasibility of both attack scenarios in this work.

(2) Door Barrier: The attacker injects a command through a
door that connects to the space with the victim voice assistant. This
barrier is likely most susceptible due to the thin gap beneath the
door above the flooring which is sufficient for the sound waves to
pass into the space easily.

(3) Wall Barrier: The attacker is located in an adjacent space
and injects a command through an interior wall. This barrier is
applicable to housing setups such as dorms, hotels, or apartments
where adjacent units share a wall.
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Is issuing voice assistant commands across a physical barrier possi-
ble? What types of barriers can be attacked? How can such an attack
be achieved and what particular settings are required in order to by-
pass the barrier? What are the limitations of this attack? These are
the main research questions that we consider during this work and
seek to answer. We perform extensive experimentation to evaluate
the BarrierBypass attack in different parameter settings such as
command audio loudness and location of the voice assistant device
to determine when this type of command injection attack is possible
in a real-world scenario. To our knowledge, a broad study on the
voice assistant command injection attack, across physical barriers,
has yet to be conducted in academia. This work demonstrates when
the BarrierBypass attack is practical and it can be used to inform
future research directions on the subject.

Main Contributions and Results: We summarize our key contri-
butions and results below:

(1). Design of Clean Voice Barrier-based Attacks: We designed
three different barrier-based command injection attacks to repre-
sent common materials/objects that may act as a physical barrier
between an attacker and the victim’s voice assistant during a com-
mand injection attack. Specifically, we define the BarrierBypass
attack in the across-door, across-window, and across-wall scenarios
and assess the effect of each barrier type on the attack’s success.
We present an attack that circumvents the sophistication and com-
plexity of hidden voice command or laser-based command attacks,
achieving the same goal with high accuracy in certain scenarios.
(2). Measurement Study Evaluating the Effect of Multiple Pa-
rameters: We present a measurement study and conduct an array
of experiments to evaluate the effect of different barriers, under dif-
ferent attack settings, on command injection attack success. We test
different speakers, loudness levels, voice assistant models (Amazon
Echo Dot 2 and Google Home mini), device distances from the bar-
riers, and observe the effect of different across-wall constructions
(with and without insulation). BarrierBypass is able to achieve 100%
injection accuracy for both the wake word and command under
certain conditions and selecting the highest performing speaker.
(3). Demonstration of Drone-based Attack: We utilized two drone
models equipped with Bluetooth speakers to demonstrate the po-
tential for executing the BarrierBypass attack via drones. Our ex-
perimental simulations of the attack reveal high command injection
success when using a drone that has a low operating loudness, or
when the command audio is increased by 10 dB to compensate for
a higher operating loudness.

(4). Informed Suggestions to Increase Attack Robustness and
Defense Potential: Compiling the knowledge gained from our
multiple experiments and attack demonstrations, we devise a set of
suggestions that could be applied by an attacker in order to improve
the potential for this attack under realistic conditions. Conversely,
this information can be used to inform defensive mechanisms.

2 BACKGROUND
2.1 Sound Passage Through Barriers

As sound waves hit a physical barrier, they will lose energy and
attenuate as they pass through the solid material. This occurs be-
cause the sound is either reflected off of the material (causing echo)
or absorbed by it. Therefore, sounds on one side of a barrier played
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at a particular loudness (decibel) level, will be quieter when heard
or recorded on the other side because the decibels are reduced.
The transmission loss of sound across a barrier can be affected by
many factors attributed to the barrier’s material and construction.
Thickness, density, and air space within the barrier are all factors
that can either increase or decrease the level of sound transmission.
For example, in double paned windows, thicker glass and greater
air space in the middle are desired to optimize sound blockage [2].
A barrier’s ability to block sound is measured using different rating
values such as Sound Transmission Class (STC) and Noise Reduc-
tion Coefficient (NRC). We provide further detail on these values
and what they represent in the following subsections.

2.2 Rating Values for Sound Propagation

Sound Transmission Class: Sound Transmission Class (STC) is
an established rating system for how much sound is blocked by a
particular assembly [3]. It is an integer rating that roughly equates
to the dB reduction in sound across a particular barrier. For example,
a wall that reduces a 100 dB noise on one side, to a 60 dB noise
on the other side would have an STC rating of 40. It is the most
commonly used metric in the US for describing sound blockage po-
tential and allows for direct comparison between different products
(i.e., walls, doors, windows, etc.) and manufacturers. Specifically,
the STC rating is calculated as the average noise blockage, in dB,
for 18 different frequency values and has a logarithmic scale. This
rating is based on the ASTM E413-16 standard [4].

Since our work is mostly concerned with the amount of sound

that is able to persist through a barrier and into the space on the
other side, the STC rating is most relevant. The STC ratings for the
different barrier setups that we consider include: STC of 20 for the
door-barrier [27], STC of around 33 for the window-barrier [2], and
STCs of 30 and 34 for the wall-barrier without insulation and with
insulation, respectively. We will revisit these values later on when
interpreting our experimental results.
Noise Reduction Coefficient: The Noise Reduction Coefficient
(NRC) measures the amount of noise that a material absorbs [6].
Where the STC is a rating that describes how much noise can pass
through a barrier, the NRC describes the amount of noise that is left
within a space. Therefore, two materials with the same NRC does
not imply that the same amount of noise is transmitted through
the other side for each of them. NRC values are on a scale of 0 to 1,
where 0 indicates the material will reflect back all of the sound that
hits it, and a value of 1 indicates that all of the sound is absorbed by
the material (e.g., none of it is reflected back). The NRC provides a
single-value approximation of the noise absorption of a material
by averaging the sound absorption coefficient values at four 1/3
octave frequencies (250, 500, 1000 and 2000 hertz) and is rounded
to the nearest 0.05 increment. This rating is based on the ASTM
C423-17 standard [5].

3 ATTACK & THREAT MODEL

In this section we define three BarrierBypass attacks based on dif-
ferent types of barriers (Door, Window, Wall), depicted in Figure 1,
as well as describe our threat model.
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3.1 Barrier-Based Attacks

Across-Door Attack: The first barrier that we consider is a stan-
dard interior door. We define the across-door attack to represent all
situations where an attacker may attempt to inject a command to
a victim’s VA that is located across an interior door. If the door is
locked, hindering the attacker from gaining direct access into the
room, there is still the potential for the attacker to issue a command
across the door barrier in order to achieve their goal (i.e., unlock the
door’s smart lock or control some other connected smart device).
In this situation, the gap that exists between the bottom of the
door and the floor can be considered a vulnerability that may be
exploited by this attack. The presence of a small gap will signifi-
cantly increase the audio propagation in the room and increase the
potential for attack success.

Across-Window Attack: The next barrier that we consider is a
standard window. We define the across-window attack to represent
the more likely attack situation that an attacker is attempting to
issue a command from outside the victim’s home or office. Often
the attacker will have no access to desired space, or even to an
adjacent room, so issuing a command through a window may be
their only option. Again, if the user can issue a command from this
location, they may be able to gain access by issuing commands to
other smart devices that are linked to the voice assistant (i.e., smart
locks on the doors, smart garage door). The window used in our
experiments was a builder’s grade, double-pane window that was
located on the balcony of a third floor apartment.

Across-Wall Attack: The last barrier that we consider in this study
is an interior wall. We define the across-wall attack to represent
the situations where an attacker may be in an adjoining room.
This would be a common barrier for attackers in adjacent living
arrangements such as apartment complexes, dorm rooms, or hotels.
An attacker could easily set up the speaker equipment for their
attack in their own space next door and not be disturbed. To al-
low for greater experimental control, we decided to simulate the
across-wall scenario using a soundproof box and wall inserts that
we constructed. We consider two typical constructions of interior
walls that are still present today 1) without insulation and 2) with in-
sulation. The details on the construction of the soundproof box and
the wall inserts are provided in Sections 4.2 and 4.3, respectively.

3.2 Threat Model

In our threat model, the attacker does not need prior knowledge
of the target VA device or its settings. Through a process of initial
testing with different wake words, an attacker can learn what de-
vice is in the victim space and how to activate it (e.g., the Amazon
Echo only has four possible wake word settings so each could be
tested). Also, depending on the placement of the target device, the
attacker could look through a window of the target room (either
in person or automated with a camera) and identify the device
that is being used. The attacker is equipped with a portable loud-
speaker device that is pre-loaded with some voice commands that
they would like to issue. The command audio can be recorded by
the attacker themselves, generated using Text-to-Speech software,
sourced from publicly accessible repositories of human speech sam-
ples, or recorded/synthesized samples of the victim’s voice. Since
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Figure 1: The BarrierBypass attack in the three barrier-based scenarios that we explore in our study including the (a) window
barrier, (b) door barrier, and (c) wall barrier. The attacker is located on one side of the barrier, either in person such as an adjoining
room or remotely using a drone, and attempts to inject an audible command to control the voice assistant located on the other side.

modern voice assistants are not voice specific by default, the at-
tacker does not necessarily need command audio that is in the
victim’s voice, making this attack easier to conduct. In fact, the
attacker can run initial testing in their own space to identify a par-
ticular voice sample that performs the best for targeting a specific
voice assistant device or passing through a specific barrier. Barrier-
Bypass is designed as an untargeted attack that can be executed
independent of the victim. The attacker can use any speech audio
so there is no dependence on acquiring the user’s speech. Therefore,
the same attack setup can also be launched against many different
victims successively in a short period of time. There is also a lot
of freedom for the attack to target any available barrier separat-
ing them from the victim voice assistant (i.e., they can issue the
command across all available windows or walls). In particular, the
attack could launch BarrierBypass remotely using a drone device
equipped with a loudspeaker. The drone can fly around to inject
the command audio and could target all the windows in a home
and even multiple homes (i.e., an entire street or neighborhood)
and "leave" the scene very quickly if they suspect detection. They
could also target apartments/condos in a high-rise building by fly-
ing the drone up to a window. Drones can be purchased cheaply
and can come already equipped with a speaker [38] for $150, or the
speaker device can be purchased by itself for $50 [19] and attached
to any drone. While the BarrierBypass attack is fully functional as
an untargeted attack, there is some potential for a more targeted
approach against a specific victim. Using a replay or synthesis at-
tack, an attacker can fool speaker recognition on a virtual assistant
device and achieve even more severe attack capabilities.

While BarrierBypass is intended to be launched when the user
is not home, there are some scenarios where it can be launched
with the victim present in the space. Because the command audio
loses a lot of power and becomes quieter as it passes through a
physical barrier, there is potential for the injected command to go
unnoticed. In some cases the victim may be occupied doing some
task or activity that may draw their attention away from their voice
assistant (i.e., taking a shower, napping, watching TV in another
room). During these times, the attack can still launch the attack
successfully while avoiding detection.
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Since the goal of the attack is to issue a command, we consider
both parts of a voice assistant command audio, the wake word
and the command itself. We recognize that wake word injection
is foremost crucial for the attack because it activates the device to
accept commands. Additionally, injecting the wake word alone can
open up new attack possibilities. When a voice assistant is woken
up, a recording is made that is sent over the internet for processing
and is typically stored in a command history log. Therefore, an
attacker could inject the wake word with the intent of allowing
the device to make an unauthorized recording of the audio in the
space (i.e., user speech, audio from a television, music playing).
The attacker may then compromise the online repository of VA
recordings to learn private user information. While we evaluate the
BarrierBypass attack on voice assistant devices, it is important to note
that the attack is applicable to any voice controllable system.

4 METHODOLOGY

4.1 Experimentation

Parameters: To generalize the results from our experimental attack
simulations, we consider multiple parameters and values. Aside
from the three types of barriers and different setups for each, we also
test VA command audio samples from Male and Female speakers
that are generated using text-to-speech or recorded from live human
speakers. We consider different loudness levels for the injected
audio including 65 dB to represent normal conversational loudness,
75 dB to represent loud speech, and even 85 dB for very loud audio
achievable using a loudspeaker device. We tested different distances
of the VA device from the barrier including 0.1 and 0.5 meters for
the across-window attack, and 0.1, 0.5, 1, 2, and 4 meters for the
across-door attack. Lastly, we ran experiments using two different
types of VA smart speakers.

Experimental Setup: For each experiment we recreate a realis-
tic attack setup with the portable loudspeaker placed on one side
of the barrier (attacker side), and the target smart speaker on the
other side of the barrier (victim side) at certain distances. We en-
sure that the loudspeaker and smart speaker devices are aligned
directly across from each other with the loudspeaker facing the
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barrier. We use the digital sound level meter on the attacker side
to set the SPL of the command audio from the loudspeaker to the
appropriate loudness. As a representative example of a command
an attacker may attempt to issue, we selected the single-word, "Dis-
arm" command. We consider the scenario where an attacker may
be attempting to enter a victim’s home and needs to disable the
security system that is linked to their smart home environment (i.e.,
smart speakers). However, we believe our results are representative
of other types of single-word commands. For each experimental pa-
rameter setting, we attempted the attack 10 times and recorded the
number of successful injections of the wake word and the command
portions. With 12 speaker samples, 3 SPL levels, 10 barrier/distance
combinations, and 2 smart speaker devices, conducted a total of
7,200 attack simulations as part of our evaluation.

Command Audio Samples: We created a set of command au-
dio samples consisting of both Text-to-Speech (TTS) samples and
recordings of Live Human (LH) speakers saying the single-word
command, “Hey Google/Alexa, Disarm”. This command represents
an attacker’s attempt to turn off a user’s home security system so
that the attacker may gain access. We do not make any claims that
our results are representative of other single-word commands, but
we do believe that more complex commands would make the attack
more difficult. Specifically, we use samples from three Male speak-
ers (M1-M3) and three Female speakers (F1-F3), for both sample
types, for a total of 12 different speaker samples. The TTS samples
were generated using a free online text-to-speech generator [1],
and the LH speech samples were recorded directly from volunteers.
Prior to our experimentation, we confirmed that all of the command
audio samples that we collected achieved 100% recognition success
in the non-malicious setting (when there is no ambient noise or
physical barriers present).

Equipment: In our experiments we use a cheap and low-end Sony
SRS-XB2 portable loudspeaker to play the command audio. Notably,
more powerful speakers can improve attack success. For the victim
voice assistant, we use both the Amazon Echo Dot 2 and Google
Home mini smart speakers. In order to ensure the command audio
was played at the correct sound pressure level (SPL) we use a Rolls
SLM305 digital sound level meter. Additionally, we built our own
soundproof box and wall inserts for the across-wall scenario.

4.2 Soundproof Box

For the across-wall attack, we construct a soundproof box in order
to self contain the experiments in a highly controlled space that
allows us to test different wall constructions. This approach allows
to select specific building materials with sound blockage ratings that
we know beforehand and to ensure that the command audio is only
able to reach the VA device by passing through the wall. We found
this approach easier than attempting to learn what materials were
used in the walls of a real environment. To build the soundproof
box (pictured in Appendix Figure 4a) we followed the instructions
outlined in [16]. We lined a cardboard box with foam board using
3M Super77 Spray Adhesive. Next, we added a layer of 1/4” thick
Dynamat Dynaliner (Self-Adhesive Sound Deadener). Lastly we
added a layer of 3” Acoustic Foam Egg Crate Panels using Auralex
Foamtak adhesive spray. The different layers of the soundproof box
are shown in Appendix Figure 4b.
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4.3 Wall Inserts

To experiment with different across-wall barriers, we constructed
two wall inserts to fit inside the soundproof box, pictured in Ap-
pendix Figure 3. These inserts are constructed to the exact measure-
ments that allow the insert to fit inside the soundproof box with
a tight seal around all edges. Appendix Figure 4c shows the setup
for the across-wall attack experiments. The inserts were built with
and without insulation [32]. Both inserts have a 2"x4" wood frame
and are encased in 5/8" drywall panels that are cut to the exact
dimensions of the frame. One of the inserts contains R13 Fiberglass
insulation inside the stud frame, while the other insert was left
empty. The stud frames were connected using 1 1/2" wood screws,
and the drywall was attached with drywall glue and screws.

5 ATTACK RESULTS

In this section we report the BarrierBypass attack results from
our experiments. We recorded and present both wake word and
command injection success for all audio samples. Appendix Tables
4 & 5 show the wake word injection rates for the Amazon Echo Dot
and Google Home mini smart speakers, respectively. And Tables 1
& 2 show the command injection rates. The values represent the
percentage of successful injection out of 10 attempts. We present
results for the standard implementation of BarrierBypass using
non-specific voice audio for command injection, and discuss our
investigation of the targeted implementation for fooling speaker
recognition. To save space, we condensed the tables to include only
the rows that showed instances of injection success. Therefore, any
command SPLs or distances tested that were not included in these
tables had no injection success for any of the speaker samples.

5.1 Standard BarrierBypass:

Across-Wall Attack: (Amazon Echo Dot 2) From our experiments
for the across-wall attack, we observe that both wake word and
command injection success was only possible when the audio was
played at the loudest SPL level, 85 dB, when attacking the Amazon
Echo Dot 2 device. If we compare the average injection success
rates for both types of speakers for the across-wall attack with no
insulation, we get 22% success for the live speaker samples, and
50% success for the TTS samples. And if we look at the across-
wall attack with insulation we find that the wake word injection
success completely diminishes to 0% for the live speakers, and
slightly decreases to 47% for the TTS speakers. Comparing the
injection success averages from the command injection results we
see a similar trend. With no insulation, the live speaker samples
have average injection success of 15% and the TTS speaker have
38%. And when insulation is added we again find the live speaker
sample injection success drops to 0% and the TTS speaker samples
slightly decreases to 35%. However, part of our threat model is
that the attacker can perform preliminary testing and select the
best performing command sample to launch their attack. Choosing
sample TTS-M1, the attack achieves 100% success rates for
wake word and command injection, at 85 dB for both types of
walls, when targeting the Echo Dot .

(Google Home mini) For the Google Home mini we observed
wake word and command injection success at 75 dB and 85 dB, and
much greater success rates overall compared to the Amazon Echo
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Table 1: Command injection success rates, for attacking the Amazon Echo Dot 2, for each Barrier scenario. *Table is condensed to include only rows that showed

some injection success.

Attack Scenario Distance [Cmd SPL Live Speaker Recorded S: ! Text-to-Speech Sampl
(m) @B) | LS-F1 | LS-F2 | LS-F3 | LS-M1 | LS-M2 | LS-M3 | TTS-F1 | TTS-F2 [ TTS-F3 [TTS-M1] TTS-M2 | TTS-M3
Across-Wall 0.1 85 0% 0% 0% 10% 50% 30% 0% 50% 80% 100% 0% 0%
(Not Insulated)
ACI:,:Z:?ZF)“ 0.1 85 0% 0% 0% 0% 0% 0% 0% 0% | 70% | 100% 0% 0%
Across-Window 0.1 85 10% 0% 0% 0% 0% 0% 0% 90% 0% 0% 80% 0%
o1 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 50% 0%
: 85 100% | 100% 30% 100% | 100% 80% 20% 100% | 100% | 100% | 100% | 100%
05 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 20% 0%
: 85 0% 30% 0% 100% | 100% 0% 10% 100% | 100% | 100% | 100% | 100%
Across-Door . 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 20% 0% 0%
85 0% 10% 0% 50% 80% 0% 0% 80% 70% 100% | 100% | 100%
2 85 0% 0% 0% 20% 0% 0% 0% 90% 50% 100% | 100% 70%
4 85 0% 0% 0% 0% 0% 0% 10% 10% 0% 70% 80% 0%

Table 2: Command injection success rates, for attacking the Google Home mini, for each Barrier scenario. *Table is condensed to include only rows that showed

some injection success.

Attack Scenario Distance |Cmd SPL Live Speaker Recorded Sampl Text-to-Speech Sampl,

(m) (dB) LS-F1 LS-F2 LS-F3 | LS-M1 | LS-M2 | LS-M3 | TTS-F1 | TTS-F2 | TTS-F3 | TTS-M1 | TTS-M2 | TTS-M3

Across-Wall 01 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

(Not Insulated) ) 85 80% 50% 60% 70% 40% 60% 30% 90% 90% 100% 50% 40%

Across-Wall 01 75 0% 0% 0% 0% 0% 0% 0% 10% 0% 100% 0% 0%

(Insulated) ) 85 60% 0% 50% 40% 20% 0% 0% 90% 80% 100% 20% 20%

Across-Window 0.1 85 0% 0% 0%, 0% 30% 0% 0% 100% 0% 10% 60% 0%

01 75 0% 0% 0% 0% 100% 10% 20% 0% 0% 100% 90% 0%

) 85 100% 70% 0% 100% 100% 20% 100% 100% 90% 100% 100% 80%

05 75 0% 0% 0% 0% 100% 0% 0% 0% 0% 40% 0% 0%

. 85 20% 0% 0% 20% 100% 0% 100% 10% 0% 100% 100% 0%

Across-Door 1 75 0% 0% 0% 0% 90% 0% 0% 0% 0% 0% 0% 0%

85 20% 0% 0% 10% 100% 0% 20% 0% 0% 100% 100% 0%

) 75 0% 0% 0% 0% 60% 0% 0% 0% 0% 0% 0% 0%

85 0% 0% 0% 0% 100% 0% 0% 0% 0% 60% 0% 0%

4 85 0% 0% 0% 0% 80% 0% 10% 0% 0% 40% 0% 0%

Dot 2. Again, comparing the average wake word injection success
rates for both types of speakers we find at 75 dB the average live
speaker sample success is 95%, outperforming the average TTS
sample success of 68%. At 85 dB, both live speaker and TTS samples
achieve 100% wake word injection success. When insulation is
added the average success rates slightly decrease. At 75 dB, the live
speaker and TTS sample success rates decrease to 85% and 57%,
respectively. And at 85 dB the success rates decrease from 100% for
both speaker types with live speaker samples achieving 93% and
TTS samples achieving 72%. Like the Amazon Echo Dot 2 results,
we see a large decrease in command injection success compared
to the wake word injection. At 75 dB, the live speaker samples
had 0% command injection success, and the TTS samples had 17%
command injection success. When the audio was played at 85 dB
these average success rates increase to 60% and 67% for the live
speaker and TTS samples, respectively. When the insulation was
added, we see very similar success rates at the 75 dB level of 0%
and 18% for live speakers and TTS samples, respectively. However,
at 85 dB, we see a decrease in injection success (compared to no
insulation) with live speaker samples dropping to 28% and TTS
samples dropping to 52%. Choosing sample TTS-F3 or TTS-M1
achieves 100% success rates for injecting the wake word at both
SPL levels, and TTS-M1 achieves 100% success for injecting the
command at both SPL levels, when targeting the Google Home.
Across-Window Attack: In the across-window attack we observed
injection success at 0.1 meters. Increasing the distance to 0.5 and
1 meter completely diminished injection success for all speaker
samples and audio SPL levels. For both smart speakers we observed
injection success at 75 dB and 85 dB for the wake word, and at 85
dB for the command.

(Amazon Echo Dot 2) At 75 dB we observe no wake word injec-
tion success for the live speaker samples, and only two instances
of injection success (3% average) for the TTS samples. When the
audio was increased to 85 dB the average success rates increased
to 15% for the live speaker samples and 48% for the TTS samples.
No wake command injection success was observed at the 75 dB
level, but at 85 dB we observed one instance of successful injec-
tion (2% average) for the live speaker samples. The TTS samples
showed greater success with an average of 28% command injection
success. Selecting sample TTS-F2 or TTS-M1 allows the attack
to achieve 100% success rates for injecting the wake word at
the 85 dB SPL level, and keeping TTS-F2 achieves 90% success
for injecting the command at the 85 dB SPL level, targeting
the Amazon Echo Dot.

(Google Home mini) In the results for the Google Home mini
we observed nearly identical wake word injection success rates for
the live speaker and TTS samples at both the 75 dB and 85 dB SPL
levels. At 75 dB the live speaker samples had no wake word injection
success and the TTS samples had only one instance of success (2%
average). When the SPL level was increased to 85 dB, both the live
speaker samples and TTS samples showed an average of 78% wake
word injection success. Looking at the success rates for command
injection, we find that the TTS samples were more successful. The
live speakers samples had an average command injection success
rate of 5% while the TTS samples achieved 28%. Selecting any
of the samples LS-F1, LS-F3, LS-M1, LS-M2, TTS-F2 or TTS-F3
achieves 100% success rates for injecting the wake word at the
85 dB SPL level, and sticking with the TTS-F2 sample achieves
100% success for injecting the command at the 85 dB SPL level,
targeting the Google Home.
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Table 3: Command injection success rates for the drone experiments.

Drone Smart Speaker Speaker ID Command SPL Attack Success
TTS-MI 90 dB 50%
TTS-M2 90 dB 50%
Toys-Sky S167 Amazon TTS-F2 90 dB 0%
Quadcopter Echo Dot TTS-MI 95 dB 80%
(operating SPL = 85 dB)
TTS-M2 95 dB 100%
TTS-F2 95 dB 60%
TTS-MI 85 dB 90%
Amazon Echo TTS-M2 85 dB 100%
Holy Stone TIS-F2 85 dB 100%
HS700 TTS-MI 85 dB 70%
(operating SPL =73 dB)
Google Home TTS-M2 §5 4 90%
TTS-F2 85 dB 40%

(Drone Attack) Table 3 depicts the results for each drone-based
scenario tested. Firstly, we found that using a drone with an oper-
ating loudness of 85 dB (S167) required command audio be played
at 90+ dB. Specifically, at 90 dB we observed command injection
success only up to 50%. However, increasing the command audio
to 95 dB allowed us to observe attack success up to 100%. Since the
operating loudness of the S167 was equal to the volume of audio
used in our original experiments, the command audio in the pres-
ence of the drone had to be increase by at least 5 dB to overcome
the added noise and achieve an SNR closer to 1.0 for successful
command injection.

For our remaining experiments using the HS700 drone with
a much lower operating loudness level, we observed high rates
of command injection success, similar to what was observed in
prior experiments when no drone was used. Because the operating
loudness of the HS700 is only 73 dB, the 85 dB command audio
level was not hindered by the added noise because it maintained
a similarly high SNR. When targeting the Echo Dot, we observed
attack success up to 100%. And when targeting the Google Home
we observed attack success up to 90%.

Across-Door Attack: In the across-door attack we observed wake
word and command injection success rates at both the 75 dB and 85
dB SPL levels for most of the distances tested. Compared to other
barriers, the results confirm that the door is easiest to compromise.

(Amazon Echo Dot 2) For the live speaker samples, we observed
wake word injection success at the 75 dB for the 0.1-meter distance
only, achieving an average of 60% injection success. At all other
distances there was no wake word injection success at 75 dB. When
the audio was raised to 85 dB, we observed a greater range of success
across the different distances tested. On average, the live speaker
samples achieved 97%, 80%, 62%, and 12% wake word injection
success for the 0.1, 0.5, 1, and 2-meter distances, respectively. In
comparison, the TTS samples showed greater success for both SPL
levels and all distances. At 75 dB, the TTS samples achieved average
wake word injection success rates of 55%, 37%, 30%, and 17% for
the 0.1, 0.5, 1, and 2-meter distances, respectively. And at 85 dB, we
observe wake word injection success rates of 100% for 0.1 and 0.5
meters, and 88%, 80%, and 50% for 1, 2, and 4-meter distances.

Looking at the results for command injection we again find
decreased success rates compared to the wake word. For the live
speaker samples we did not observe any command injection success
at the 75 dB SPL level. At 85 dB, we observe average success rates
of 85%, 38%, 23% and 3% for the 0.1, 0.5, 1, and 2-meter distances,
respectively. Like the wake word results, we found that the TTS
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samples performed better for command injection. At 75 dB we
observed average command injection success rates of 25%, 20%, and
3% for the 0.1, 0.5, and 1-meter distances, respectively. And when
the audio was raised to 85 dB, we observed average success rates
of 87%, 85%, 75%, 68%, and 28% for the 0.1, 0.5, 1, 2, and 4-meter
distances, respectively. While multiple speaker samples showed
very high success rates at certain SPL levels and distances, there
are two samples that outperformed the rest. By choosing TTS-
M1 the attack can achieve 100% success at both SPL levels
up to 2 meter distances, and achieves 90% success at the 4-
meter distance. And choosing TTS-M1 or TTS-M2 for command
injection allows the attack to achieve up to 100% success rates
at the 75 dB SPL level of distances up to 0.5 meters. When the
SPL level is increased to 85 dB, the attack can achieve 100%
success for distances up to 2 meters, and 80% success at 4 meters
when launching the attack against the Amazon Echo Dot.

(Google Home mini) We observed greater wake word injection
success with the Google Home mini. For both 75 dB and 85 dB levels
we see instances of wake word injection success at all distances that
were tested. At 75 dB, the live speaker samples achieved average
injection success rates of 85%, 52%, 53%, 13%, and 8% for the 0.1, 0.5,
1, 2, and 4-meter distances, respectively. The TTS samples showed
similar success rates of 67%, 53%, 30%, 33%, and 3% for the 0.1,
0.5, 1, 2, and 4-meter distances, respectively. When the audio was
increased to 85 dB, the average success rates increased. The live
speaker samples achieved 100% success for the 0.1, 0.5, and 1-meter
distances, and achieved 78% and 53% for the 2 and 4-meter distances,
respectively. The TTS samples achieved 100% success for the 0.1
and 0.5-meter distances, and 98%, 83%, and 42% success at 1, 2, and
4-meter distances.

For command injection, we observed a decrease in the average
success rates for both speaker types. However, instances of success
were still observed for both the 75 dB and 85 dB SPL levels for
distances up to 2 meters. At 75 dB, the average command injection
success rates for the live speaker samples were 18%, 17%, 15%, and
10% for the 0.1, 0.5, 1, and 2-meter distances. The TTS samples had
less success at the larger distances and only achieved accuracies
of 35% and 7% for the 0.1 and 0.5-meter distances. When the audio
was played at 85 dB, both speaker types showed command injection
success at all distances. The live speaker samples achieved average
success rates of 65%, 23%, 22%, 17%, and 13% for the 0.1, 0.5, 1, 2, and
4-meter distances, respectively. The TTS samples outperformed
the live speaker samples at the shorter distances achieving success
rates of 95%, 52%, 37%, 10%, and 8% for the 0.1, 0.5, 1, 2, and 4-
meter distances, respectively. Choosing LS-M1, LS-M2, TTS-F1,
or TTS-F3 will allow the attack to achieve 100% success for
wake word injection at both SPL levels up to 2-meter distances.
At the 4-meter distance the attack can achieve 50% and 100%
accuracy at the 75 and 85 dB levels, respectively. And isolating
LS-M2 for command injection allows the attack to achieve up
to 100% success for both SPL levels up to 0.5 meters. At the 75
dB SPL level the attack can achieve 90% and 60% success for
the 1 and 2-meter distances, respectively. And when the SPL
level is raised to 85 dB the attack can achieve 100% success
at distances up to 2 meters and 80% success at 4 meters when
attacking the Google Home.



WiSec "23, May 29-June 1, 2023, Guildford, United Kingdom.

5.2 Targeted BarrierBypass

Replay Attack: To investigate the potential for BarrierBypass to
launch a replay attack across physical barriers, we performed a
set of experiments using three speaker samples in the across-door
attack setup. Specifically, we trained a voice profile for the LS-M1
speaker on both the Amazon Echo Dot 2 and Google Home mini.
We recorded samples of the command "Alexa/Hey Google, what’s
my name?" from the live speakers LS-M1 and LS-M2, as well as a
generated samples of the command using the text-to-speech speaker
TTS-M1. We selected these speakers because they all achieved 100%
wake word and command recognition in the across-door attack.
Playing each command audio at 85 dB we recorded the number
of times out of 10 attempts that the voice assistant identified the
trained speaker’s voice. We found that the Amazon Echo Dot 2
was 100% accurate at identifying the trained speaker and denying
the other speakers. For the Google Home mini we observed the
device was 80% accurate at identifying the trained speaker, and
100% accurate at not identifying the untrained speakers. These
experiments demonstrated that 1) speaker recognition can identify a
valid user without a barrier present, 2) it will still accept a command
from a random speaker (e.g., from attacker) across a barrier, and 3)
it can identify a replayed voice of the valid user across a barrier.
Synthesis Attack: Synthesis attacks generate fake speech using a
model trained on an original voice such that the synthesized voice
matches the original. We performed another side investigation
to observe the potential for successful synthesis attacks through
physical barriers. We used the voice synthesis model SV2TTS [22]
from [23] to generate the "Alexa/Hey Google, what’s my name?"
command in a live speakers voice. That same live speaker trained
voice profiles on Amazon Echo Dot 1 and Google Home smart
speakers. In the across-door attack setup, we played the synthesized
command at 85 dB and recorded the number of times out of 10
attempts that the voice assistants identified the synthesized audio
as coming from the legitimate user. We found that the synthesized
commands were 100% successful at fooling the speaker recognition
function on both of the smart speakers. This further broadens the
threat level and devastating potential of the BarrierBypass attack
because it demonstrates that fake commands synthesized in a user’s
voice are sufficient enough to fool speaker recognition, even across
physical barriers.

6 SIGNAL ANALYSIS

In order to improve our understanding of why certain speech sam-
ples were successfully injected across the barriers we investigated
what frequencies were most affected by the barriers and whether
we could identify certain frequency characteristics in our command
audio samples that may explain the different levels of success.

Power Spectrum We generated power spectrum graphs that over-
lay the spectrums for each of the command audio samples, isolating
the wake word specifically, in order to compare frequency distribu-
tions and identify specific characteristics. We chose to investigate
the wake word portion of the commands because 1) command
injection cannot occur unless the wake word is successfully is-
sued, and 2) the injection attack experiment results showed greater
success/failure distinction, for the wake word, between different
speakers. In Figure 2 we show the power spectrums of the wake
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word portion of the command audio samples for each individual
TTS speaker. In the graphs, the solid blue lines indicate power spec-
trums of speaker samples that were successful at injection, while
the red dashed lines indicate power spectrums of speaker samples
that were not successful. From these graphs, we identify certain
frequency characteristics that are consistent among the successful
samples. Figure 2a shows the full power spectrum of frequencies
from 0 to 8 kHz. Looking at this graph we find there are certain
frequencies in the upper range that have consistencies between
the successful and failing samples. Figures 2b & 2c show power
spectrums that zoom into the frequency ranges of 6 to 7 kHz and 7
to 8 kHz, respectively. In these graphs we can identify five differ-
ent frequency ranges (6.08-6.22 kHz, 6.32-6.82 kHz, 6.93-7.04 kHz,
7.21-7.30 kHz, and 7.34-7.69 kHz) where we find that all samples
that showed successful injection have stronger frequencies in these
ranges than the samples that were not successful.

While more sophisticated exploration is needed to make final
conclusions, we have a few hypotheses about why certain audio
samples performed better than others. First, it is possible that audio
samples that showed greater success utilized more bass in the part
of the wake word that are required for recognition. Therefore, as the
audio passes through the physical barriers and those components
of the audio are strengthened, the audio maintains a higher poten-
tial for successful recognition. Second, voice detection is trained
to differentiate human speech from environmental noise and the
highest frequency range captured (6-8 kHz) may be unique to hu-
man speech played through a loudspeaker, and less likely to occur
naturally in an environment. Lastly, there are certain consonants
that are important for speech intelligibility that appear in the upper
frequency range ( 2-4 kHz) when recorded by a microphone [28].
The difference in frequency power within this range could also
attribute to why some audio samples remain more intelligible (i.e.,
the samples with greater variance of power within that range).

7 SUMMARY AND DISCUSSION

Amazon vs. Google Observations: We observed some interesting
trends between the two smart speaker devices that were used. Since
Amazon and Google have their own speech processing services, it
is reasonable to assume that different types of speaker samples will
show different levels of success. If we consider the average wake
word injection rates for both speaker types against the Amazon
Echo Dot 2, we find that the TTS samples outperformed the live
speaker recorded samples in all but one of the scenarios (Across-
Door, 0.1 meters, 75 dB). Similarly, we find that the TTS samples
outperformed the live speaker samples for command injection in
all scenarios. This indicates that TTS samples are more effective
for launching the BarrierBypass attack against Amazon devices.
Another interesting observation that became apparent when
comparing the injection success rates was that wake word injection
was consistently more successful when attacking the Google Home
mini device. By averaging the success rate of all speaker samples
for each scenario, we find that there was more success at inject-
ing the wake word to the Google device than the Amazon device
across all scenarios that were tested. We also observed through
our experiments that the Google device had significantly more
instances of mis-recognized commands compared to the Amazon
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Figure 2: Power spectrum graphs of the wake word from each command audio sample that showed injection success (blue) and

failure (red) in the across-wall scenario (without insulation).

device. At lower SPL levels or larger distances where the Amazon
device would simply disregard the audio that it heard, the Google
device would make some attempt at recognition and provide some
type of response, although often incorrect.

Lastly, our work demonstrates the feasibility of BarrierBypass
when launched in scenarios without environmental noise. Naturally,
this would be the most ideal setting to launch the attack and ensure
no other audio in the environment interferes with the injection of
the command. However, we believe that some environmental noise
may be manageable and still allow for a successful attack. With the
inbuilt noise cancellation capabilities of modern day VA devices,
any environmental noise that is quieter than the injected command
audio (after it passes through the barrier) will likely be filtered out
by the device and the command will still be recognized.

Sound Rating Values: We compare our observed results to the
known Sound Transmission Class (STC) and Noise Reduction Co-
efficient (NRC) values for each of the barriers that we tested. We
chose these rating values because they are both based on ASTM
standards. If we consider the STC values for each of the barriers,
we can see that our results are inline with the known values (33
for across-window, 30/34 for across-wall, and 20 for across-door).
Now if we look at the NRC values for the different barrier materials,
we find that both glass and gypsum board (i.e., drywall) have NRC
values of 0.05 and wood has an NRC value of 0.10-0.15. All of these
values are very low on the [0,1] scale indicating that none of the
materials reflect much of the command audio back.

Drone-based Attack: Our drone experiments clearly demonstrate
the feasibility of launching the BarrierBypass with drones. Specifi-
cally, an attacker could utilize a drone with a low operating loudness
that does not impact the required SPL of the command audio to
be injected. And by selecting the best performing command audio
samples they may achieve up to 100% command injection success.
This method of launching the attack provides an attacker the bene-
fits of remote command injection and the ability to target multiple
(potential) victim devices in the same area without having to physi-
cally relocate or move their attack setup. Additionally, an attacker
could utilize the Wi-Peep [21] exploit to initially locate the location
of the target device before launching the attack.

Improving Attack Robustness: From our experimental and anal-
ysis results we have deduced a few ways to increase the robustness
of the BarrierBypass attack. First, while our results at 85 dB demon-
strate the feasibility of the attack, using even louder command
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audio will increase the chances of attack success. An attacker can
launch the BarrierBypass attack while the person is away from the
home or they are in a situation where the loud audio will not cause
detection. Higher volumes outside should not cause a problem, es-
pecially in scenarios with high rise buildings. An attacker could
also plant a small wireless speaker onto a door or window that they
could use to inject a command remotely. These devices can be very
small and cheap [18], allowing the attacker to remain discrete.
Learning the type of voice assistant device that the user has
before launching the attack would also help improve the chances
of success. Our results demonstrate that different speaker types
can have different levels of effectiveness for different devices. As a
general observation, using TTS speaker samples would likely be the
most effective for the BarrierBypass attack. Our analysis revealed
that samples with stronger frequencies in the upper range are the
most successful, so specifically choosing TTS samples that contain
these qualities will improve attack success.
Limitations: The results that we observed for the BarrierBypass
attack are somewhat limited to the particular settings that we con-
trolled in our experiments. Firstly, all of our experiments were
conducted in quiet spaces where the only audio present was played
from the loudspeaker device for the purposes of the attack. In a
real-world scenario it is likely that there are other sources of noise
in the environment which would affect the overall success of this
attack. Second, since our attack uses plain, audible commands for
the injection, the BarrierBypass attack is dependent on the user
being away from the device and in another area. Otherwise they
would easily recognize the command injection attempt. Lastly, as
our results demonstrated, there is a distance requirement between
the victim’s device and the barrier (in the across-wall and across-
window scenarios) for the attack to be successful at the SPL levels
we tested. While louder command audio would surely increase the
attack range, it also increases the chance of discovery. Therefore,
the BarrierBypass attack is limited to scenarios where the victim’s
device is in close proximity to the barrier being targeted.
Potential Defenses: The potential defenses against the BarrierBy-
pass attack are largely based on hindering the physical phenomenon
that would allow command audio to bypass physical barriers. One
potential defense against our attack would be to use materials with
higher STC and NRC values. To defend against the attack presented
in this work, an STC of 50 or higher would be required. This can be
achieved using concrete masonry walls, doubling layers of drywall,
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or using specialized materials such as sound deadening paint or
noise blocking curtains. Another potential defense is placing the
smart speaker device at the furthest location from any accessible
barriers. We demonstrate that distances of 4 meters become dif-
ficult for the attack even for an interior door. Another solution
is to build a machine learning classifier that can differentiate be-
tween audio played through a barrier and audio played normally.
As our analysis demonstrated, there are certain frequencies that
are affected/blocked by the different barrier types. Blue et al. [11]
achieve this effect by identifying sub-bass over-excitation which
is a characteristic of audio played from loudspeaker devices and is
not present in human speech. This would also be effective against
BarrierBypass because as the command audio passes through the
physical barrier, the bass/sub-bass components of the audio will
become stronger. Another solution presented by Blue et al. [10]
could also be effective at identifying the BarrierBypass attack. In
their 2MA work, the authors present a two microphone authentica-
tion solution that provides source localization by determining the
direction of arrival. This approach, combined with a predetermined
knowledge of the VA devices placement, could be used to identify
when a command is coming from the other side of a barrier.

8 RELATED WORK

Replay Attacks: Among all the spoofing attacks, replay attacks
may be the most accessible to adversaries because it simply in-
volves recording and replaying a victim’s voice commands. Existing
studies have shown that such attacks are effective against state-
of-the-art speaker verification systems [15, 17], under scenarios
of replaying over the internet or within the physical space of the
victim. Other than directly replaying the recorded speech, recent
studies also reveal the potential ways of enhancing the stealthiness
and effectiveness of the attack. VMask [40] designed adversarial
machine learning techniques to generate subtle perturbations to
make any recorded speech pass speaker verification systems. To
improve the stealthiness, Guo et al. [20] exploited a loudspeaker
array to make the sound emission focus on the microphone of the
VA system. To bypass existing defense schemes, Yoon et al. [37]
leveraged a mouth simulator instead of a loudspeaker to replay the
recorded speech. However, replay attacks using commands in the
victim’s voice are not always necessary. Many of the current VA
devices available (such as those used in our study) do not employ
strict speaker verification. If the audio is understandable via speech
recognition, the device will execute any command that is given.

Laser-based Injection: Laser-based injection has also been uti-
lized for signal and command injection targeting smart speakers.
Recently, Light Commands [31] has brought up a new security issue,
which is a new class of signal injection attacks targeting micro-
phones of the smart speakers by physically converting a light signal
to sound signal. The attacker can inject arbitrary audio signals to
a target microphone by aiming a specially designed amplitude-
modulated light at the microphone’s aperture. By means of Light
Commands [31], the attacker can obtain control over some com-
modity smart speakers, such as Amazon’s Alexa, Apple’s Siri, and
Google Assistant, at distances up to 110m, which provide a brand
new perspective for attacking smart speakers. One drawback to this
form of attack is that it requires a direct line-of sight between the
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attacker and victim’s device. Therefore, simply closing the blinds
or moving your device to a location out of view will thwart this
attack. Our BarrierBypass attack does not require this line of sight
and is much more accurate in practical settings.
Ultrasonic/Hidden Audio Injection: In addition to conventional
attacks through replaying human-sounding speech, researchers
also show the potential of generating unintelligible or even inaudi-
ble attack sounds. Particularly, DolphinAttack [36] modulates the
recorded voice commands onto the ultrasonic frequency range,
which can be demodulated by the microphone due to their non-
linearity. Hidden voice attacks [7, 12] convert recorded speech into
obfuscated voice commands, which are recognizable to the speech
recognition models while remaining unintelligible to humans. Re-
cent studies also demonstrate the possibilities of embedding such
commands into background music [39] or the audio channel of
video streams [41]. By combining hidden voice commands with
live speech, the hybrid commands can even bypass the state-of-the-
art defense schemes [33]. While hidden voice commands introduce
new approaches to evade detection, they are often very complicated
to produce and are not feasible for real-world attack settings. Our
attack does not obfuscate the command itself, but rather injects the
clear-text command through a barrier. Hidden voice commands are
obfuscated and are often misrecognized or not effective. In a recent
work by Abdullah et al. [8], the authors survey current research
works that present hidden voice command type attacks and demon-
strate that most of them will not be successful when launched
against real-world systems. In this work we evaluate BarrierBypass
against live implementations of VA devices and bypass real barriers
with greater ease and feasibility than hidden voice commands.

9 CONCLUSIONS AND FUTURE WORK

In this work, we present the BarrierBypass attack that issues au-
dible voice commands to smart speakers across physical barriers.
Our attack demonstrates the settings in which clean command in-
jection can be successful and what barrier types are at risk. This
attack can be launched in person or remotely via drones or other
controlled devices, and allow an attacker to gain full control over a
victim’s VA device when the device is placed near a barrier and the
scenario allows for loud command audio to be played. Compared to
other command injection attacks, BarrierBypass exploits the lack
of speaker verification present on modern smart speaker devices
and bypasses physical barriers that would hinder other types of
attacks. We evaluated the attack in multiple settings that test dif-
ferent command audio SPL levels and distances. Our experiments
tested three different barrier-based attack scenarios using two live
implementations of smart speaker devices and demonstrate that
100% wake word and command injection accuracy can be achieved
when selecting the highest performing speaker samples and under
certain conditions.
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A APPENDIX
A.1 Additional Images

(a) No Insulation

(b) Insulated

Figure 3: Inserts constructed for the Wall-Barrier.

A.2 Additional Tables

£
(a) Soundproof Box

Payton Walker, Tianfang Zhang, Cong Shi, Nitesh Saxena, & Yingying Chen

(b) Box Layers

‘Wall Insert

Smart speaker

Loudspeaker

Figure 4: Images of soundproof box construction and experimental setup.

(c) Experiment Aerial View

Table 4: Wake Word injection success rates, for attacking the Amazon Echo Dot 2, for each Barrier scenario. *“Table is condensed to include only rows that showed
some injection success.

Attack Scenario Distance [Cmd SPL| Live Speaker Recorded S 1 Text-to-Speech Samples
(m) @B) | LS-F1 | LS-F2 | LS-F3 | LS-M1 | LS-M2 | LS-M3 | TTS-F1 | TTS-F2 | TTS-F3 [ TTS-M1 ] TTS-M2 [ TTS-M3
Across-Wall 0.1 85 0% 0% 0% 30% 70% 30% 0% 100% | 100% | 100% 0% 0%
(Not Insulated)
A(CILZEZXSU 0.1 85 0% 0% 0% 0% 0% 0% 0% 90% 90% 100% 0% 0%
Neross Window o1 75 0% 0% 0% 0% 0% 0% 0% 10% 0% 10% 0% 0%
: 85 30% 0% 0% 0% 60% 0% 10% 100% 0% 100% 80% 0%
o1 75 50% 100% 90% 0% 100% 20% 90% 20% 10% 100% 90% 20%
: 85 100% | 100% | 100% | 100% | 100% 80% 100% | 100% | 100% | 100% | 100% | 100%
05 75 0% 0% 0% 0% 0% 0% 50% 0% 0% 100% 70% 0%
: 85 60% 100% 80% 100% | 100% 40% 100% | 100% | 100% | 100% | 100% | 100%
Across-Door ) 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 80% 0%
85 20% 100% 50% 100% | 100% 0% 80% 80% 70% 100% | 100% | 100%
5 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%
85 0% 10% 10% 30% 20% 0% 50% 90% 50% 100% | 100% 90%
4 85 0% 0% 0% 0% 0% 0% 30% 10% 0% 90% 80% 90%

Table 5: Wake Word injection success rates, for attacking the Google Home mini, for each Barrier scenario. “Table is condensed to include only rows that showed
some injection success.
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Attack Scenario Distance |Cmd SPL Live Speaker Recorded Sampl Text-to-Speech Samples
(m) (dB) LS-F1 | LS-F2 | LS-F3 | LS-M1 | LS-M2 | LS-M3 | TTS-F1 | TTS-F2 | TTS-F3 | TTS-M1 | TTS-M2 | TTS-M3
Across-Wall 01 75 100% 70% 100% 100% 100% 100% 100% 20% 100% 100% 80% 10%
(Not Insulated) | 85 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Across-Wall 01 75 100% 60% 80% 100% 100% 70% 80% 0% 100% 100% 60% 0%
(Insulated) i 85 100% 80% 100% 100% 90% 90% 90% 40% 100% 100% 70% 30%
Across-Window 01 75 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 10% 0%
85 100% 70% 100% 100% 100% 0% 80% 100% 100% 70% 70% 50%
01 75 100% 70% 40% 100% 100% 100% 100% 0% 100% 100% 100% 0%
| 85 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
05 75 100% 0% 10% 100% 100% 0% 100% 20% 100% 100% 0% 0%
| 85 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Across-Door 1 75 100% 0% 20% 100% 100% 0% 70% 0% 100% 10% 0% 0%
85 100% 100% 100% 100% 100% 100% 100% 90% 100% 100% 100% 100%
2 75 0% 0% 0% 20% 60% 0% 100% 0% 100% 0% 0% 0%
85 100% 100% 70% 100% 100% 0% 100% 30% 100% 80% 90% 100%
4 75 0% 0% 0% 0% 50% 0% 0% 0% 20% 0% 0% 0%
85 0% 50% 70% 100% 100% 0% 100% 30% 80% 40% 0% 0%






