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Abstract— Communication overhead has become one of the
major bottlenecks in the distributed training of modern deep
neural networks. With such consideration, various quantization-
based stochastic gradient descent (SGD) solvers have been
proposed and widely adopted, among which SIGNSGD with
majority vote shows a promising direction because of its commu-
nication efficiency and robustness against Byzantine attackers.
However, SIGNSGD fails to converge in the presence of data
heterogeneity, which is commonly observed in the emerging
federated learning (FL) paradigm. In this article, a sufficient
condition for the convergence of the sign-based gradient descent
method is derived, based on which a novel magnitude-driven
stochastic-sign-based gradient compressor is proposed to address
the non-convergence issue of SIGNSGD. The convergence of the
proposed method is established in the presence of arbitrary data
heterogeneity. The Byzantine resilience of sign-based gradient
descent methods is quantified, and the error-feedback mechanism
is further incorporated to boost the learning performance.
Experimental results on the MNIST dataset, the CIFAR-
10 dataset, and the Tiny-ImageNet dataset corroborate the
effectiveness of the proposed methods.

Index Terms— Byzantine resilience, communication efficiency,
data heterogeneity, federated learning (FL), sign-based gradient
descent.
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I. INTRODUCTION

HE past decade has witnessed the great success that

deep neural networks have achieved in modern society.
However, training deep neural networks may take weeks due
to the large size of the training dataset and the neural network
model. One effective way to reduce the training time is to
use distributed learning [1], in which the training data and
computation are offloaded to the computing machines across
the network. Nonetheless, it requires frequent exchange of
gradients or model parameters between the workers (i.e.,
computing machines) and the parameter server, which renders
the communication overhead prohibitive.

To alleviate the communication burden of the workers, there
have been various gradient quantization methods [2], [3], [4],
[5], [6] in the literature, among which the recently proposed
SIGNSGD with majority vote [4] is of particular interest due
to its robustness and has inspired follow-up works on sign-
based gradient descent [7], [8].1:2 On one hand, in SIGNSGD,
during each communication round, only the signs of the gra-
dients and the aggregation results are exchanged between the
workers and the parameter server, which leads to around 32 x
less communication overhead compared to the full-precision
distributed SGD. On the other hand, the impact of potential
attacks is mitigated since the attackers cannot manipulate the
magnitude of the gradients, and therefore SIGNSGD enjoys
Byzantine resilience [12]. Nonetheless, it has been shown that
SIGNSGD may fail to converge when the data on different
workers are heterogeneous [8], which hinders its deployment
in practice. In particular, data heterogeneity is commonly
observed in the emerging distributed learning paradigm of
federated learning (FL).

In this work, we first derive a sufficient condition for the
convergence of general sign-based gradient descent methods
in which the workers adopt a 1-bit compressor C;(-) (which
captures SIGNSGD as a special case with C;(-) = sign(-)) for
gradient quantization, based on which a stochastic-sign-based
SGD algorithm is proposed to address the non-convergence
of SIGNSGD in the presence of data heterogeneity.
More specifically, instead of directly transmitting the signs

'Note that we ignore the term “with majority vote” in the following
discussions for the ease of presentation.

2 Another orthogonal approach to reducing communication overhead is
compressing the model weights directly (see [9], [10], [11]). In this work,
we focus on gradient compression.
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of gradients, the workers adopt a two-level stochastic quanti-
zation and transmit the signs of the quantized results. We note
that different from the existing 1-bit stochastic quantization
schemes (e.g., QSGD [2]), the proposed algorithm, termed Sto-
SIGNSGD, also uses the majority vote rule in gradient aggre-
gation, which allows the server-to-worker communication to
be 1-bit compressed and ensures robustness as well. Then,
we prove that Sto-SIGNSGD converges to the neighborhood
of the (local) optimum under heterogeneous data distributions.
The gap between the converged solution and the (local)
optimum diminishes as the number of workers increases.
More specifically, the convergence rate of Sto-SIGNSGD in the
presence of data heterogeneity approaches that of SIGNSGD
with homogeneous data as the number of workers increases.

The Byzantine resilience of the sign-based gradient descent
methods is also quantified. More specifically, assuming that
there are M normal (benign) workers, it is shown that the
Byzantine resilience of the proposed algorithms is upper
bounded by | Zﬁf:l(gﬁfl))i |/bi, Vi, where (g{0)); is the ith entry
of worker m’s gradient at iteration ¢ and b; > max,, (g;(rlz))i is
some design parameter. Particularly, b; depends on the data
heterogeneity (through maxm(gﬁ,?)i). As a special case, the
proposed algorithms can tolerate M — 1 Byzantine workers
when the normal workers can access the same dataset (i.e.,
(gV); = (gi.'))i,Vl < j,m < M), which recovers the result
of SIGNSGD.

We further extend the proposed algorithm to its error-
feedback variant, termed EF-Sto-SIGNSGD. The server keeps
track of the error induced by the majority vote operation and
compensates for the error in the next communication round.
Both the convergence and the Byzantine resilience are estab-
lished. Extensive simulations are performed to demonstrate
the effectiveness of all the proposed algorithms. To this end,
this article makes three main contributions to the field of
sign-based methods as follows.

1) We derive a sufficient condition for the convergence
of sign-based gradient descent methods in the pres-
ence of data heterogeneity, based on which we propose
Sto-SIGNSGD, which utilizes a stochastic-sign-based
gradient compressor to overcome the convergence issue
of SIGNSGD. We further improve the learning perfor-
mance of the proposed algorithm by incorporating the
error-feedback method.

2) We prove that Sto-SIGNSGD converges to the
neighborhood of the (local) optimum in the
heterogeneous data distribution scenario. As the number
of workers increases, the convergence rate approaches
that of SIGNSGD with homogeneous data distribution
(and therefore distributed SGD with full precision).

3) We theoretically quantify the Byzantine resilience of the
sign-based gradient descent methods, which depends on
the heterogeneity of the local datasets of the workers
as well as the capability of the attackers.

II. RELATED WORKS

A. Gradient Quantization

To accommodate the need of communication efficiency in
distributed learning, various gradient compression methods
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have been proposed. Most of the existing works focus on
unbiased compression that keeps the expectation of the shared
parameters unchanged [13], [14]. QSGD [2], TernGrad [3],
ATOMO [15], FedPAQ [6], and FedCOM [16] propose to
use unbiased stochastic quantization schemes. Due to the
unbiased nature of the adopted quantization methods, the con-
vergence of the corresponding algorithms can be established.
Sattler et al. [17] and Basu et al. [18] combine sparsification
and quantization to further improve the compression rate.
However, all these methods have not shown to be robust
against Byzantine attacks.

The idea of sharing the signs of gradients in SGD can
be traced back to 1-bit SGD [19]. Despite that sign-based
quantization is biased in nature, [4], [12], [20] show theoretical
and empirical evidence that sign-based gradient schemes
can converge well in the homogeneous data distribution
scenario. Safaryan and Richtédrik [7] show the convergence
of SIGNSGD given the assumption that the probability of
wrong aggregation is less than 1/2. In the heterogeneous data
distribution case, [8] shows that the convergence of SIGNSGD
is not guaranteed and proposes to add carefully designed
noise to ensure a convergence rate of O(d®/?/T1/4).
However, their analysis assumes second-order differentiability
of the noise probability density function and cannot be
applied to some commonly used noise distributions (e.g.,
uniform and Laplace distributions). Safaryan and Richtarik [7]
propose stochastic sign descent with momentum (SSDM) to
accommodate the data heterogeneity, and another independent
work proposes FedCOMGATE [16]. Compared to SSDM
and FedCOMGATE, our proposed Stochastic-Sign SGD is
stateless and therefore more suitable for cross-device FL
as discussed in [21]. Moreover, the Byzantine resilience
of sign-based method is further quantified, which is not
considered in [7] and [16].

B. Error-Compensated SGD

Instead of directly using the biased approximation of the
gradients, [19] corrects the quantization error by adding
error feedback in subsequent updates and observes almost
no accuracy loss empirically. Wu et al. [5] propose the
error-compensated quantized SGD in quadratic optimization
and prove its convergence for unbiased stochastic quan-
tization. Stich et al. [22] show the convergence of the
proposed error-compensated algorithm for strongly convex
loss functions and [23] proves the convergence of sparsified
gradient methods with error compensation for both convex and
non-convex loss functions. Karimireddy et al. [24] propose
EF-SIGNSGD, which combines the error compensation meth-
ods and SIGNSGD; however, only the single worker scenario
is considered. Zheng et al. [25] further extend it to the multi-
worker scenario and the convergence is established. However,
it is required in these two works that the compression error
cannot be larger than the original vector, i.e., there exists some
constant § > 0 such that [|C(x) —x[|3 < (1—38)||x||3, which is
not true for C(-) = sign(-). As a result, [24] and [25] require
the workers to share a scaled version of the signs, which
ruins the Byzantine resilience of SIGNSGD. Tang et al. [26]
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consider more general compressors and prove the convergence
under the assumption that the compressors have a bounded
magnitude of the error. Nonetheless, none of these existing
works take Byzantine resilience into consideration.

C. Byzantine Tolerant SGD in Heterogeneous Environment

There have been significant research interests in developing
SGD-based Byzantine tolerant algorithms, most of which
consider homogeneous data distribution, e.g., Krum [27],
ByzantineSGD [28], the median-based algorithms [29], and
coding-based methods [30], [31]. Bernstein et al. [12] show
that SIGNSGD can tolerate up to half “blind” Byzantine
workers who determine how to manipulate their gradients
before observing the gradients. These robust aggregators uti-
lize the statistics among normal workers to detect the outliers.
However, they cannot deal with heterogeneous data since the
server may fail to identify whether the outliers are due to data
heterogeneity or attacks.

To accommodate the need for robust FL, some Byzantine-
tolerant algorithms that can deal with heterogeneous data
distributions have been developed. Li et al. [32] propose to
incorporate a regularized term with the objective function.
However, it requires strong convexity and can only converge
to the neighborhood of the optimal solution. Xie et al. [33]
use trimmed mean to aggregate the shared parameters.
Data and Diggavi [34] adopt the RAGE algorithm in [35]
for robust aggregation. Karimireddy et al. [36] adopt the
Bucketing method to alleviate the data heterogeneity issue.
Karimireddy et al. [37] propose a centered clipping-based
method. Liu et al. [38] explore the redundancy in local loss
functions for Byzantine resilience. Li et al. [39] propose a
multitask learning framework that learns personalized models
to achieve robustness and fairness. Xu et al. [40] com-
bine norm-based threshold filtering and sign-based clustering.
Wan et al. [41] propose a multiarmed bandit-based approach to
distinguish attackers from normal workers. Despite that these
methods provide certain degrees of Byzantine resilience, none
of them take communication efficiency into consideration.

Ghosh et al. [42] combine gradient norm threshold filtering
and gradient compression. Nonetheless, it requires knowledge
about the fraction of Byzantine attackers. Zhu and Ling [43]
combine the geometric median-based methods with gradient
difference compression and the stochastic average gradient
algorithm (SAGA). However, it requires strong convexity in
the convergence analysis.

Another line of work, e.g., [44], [45], [46], relies on an
auxiliary dataset on the server side to identify the Byzantine
attackers, which, however, may not be feasible in practice.

III. PROBLEM FORMULATION

In this article, we consider a typical distributed optimization
problem with M normal workers as in [47]. Formally, the goal
is to minimize the finite-sum objective of the form

min F(w), where F(w) &

weRd

1 M
A ﬁn(w)- (1)
rps

For a machine learning problem, we have a sample space
I =X x Y, where X is a space of feature vectors and Y is a
label space. Given the hypothesis space YW C R?, we define
a loss function [ : W x I — R which measures the loss
of prediction on the data point (x,y) € [ made with the
hypothesis vector w € W. In such a case, f,,(w) is a local
function defined by the local dataset of worker m and the
hypothesis w. More specifically,

_ 1
Sm(w) = D_

[ D

> ws (s ) ©))

(%, Yn) €D

where | D,,| is the size of worker m’s local dataset D,,. If the
training data are distributed over the workers uniformly at
random, then we would have E[f,(w)] = F(w), where
the expectation is over the training data distribution. This is
the homogeneous data distribution assumption typically made
in distributed optimization [47]. In many FL applications,
however, the local datasets of the workers are heterogeneously
distributed.

We consider a parameter server paradigm. At each commu-
nication round ¢, each worker m forms a batch of training
samples, based on which it computes and transmits the
stochastic gradient g¥) as an estimate to the true gradient
V fin (w,ﬁ?). When worker m evaluates the gradient over its
whole local dataset, we have g\ = V f,, (w"). After receiving
the gradients from the workers, the server performs aggrega-
tion and sends the aggregated gradient back to the workers.
Finally, the workers update their local model weights using
the aggregated gradient. In this sense, the classic stochastic
gradient descent (SGD) algorithm [48] performs iterations of
the form

M
1 n
wth = w) — > gl (3)
m=1

In this case, since all the workers adopt the same update rule
using the aggregated gradient, w("’s are the same for all the
workers. Therefore, in the following discussions, we omit the
worker index m for ease of presentation. To accommodate
the requirement of communication efficiency in FL, we adopt
the popular idea of gradient quantization and assume that
each worker m quantizes the gradient with a stochastic 1-bit
compressor C;(-) and sends C; (g,(é)) instead of its actual local
gradient g{. Combining with the idea of majority vote in [4],
the corresponding algorithm is presented in Algorithm 1.

Algorithm 1 Sign-Based Gradient Descent With Majority Vote

Input: learning rate 7, current hypothesis vector w®, M
workers each with an independent gradient g"), the 1-bit
compressor C;(+).
on server:

pull C;(g®) from worker m.

push g = sign(s; M Ci(g™)) to all the workers.
on each worker:

update wt) = w® — ng®,
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Intuitively, the performance of Algorithm 1 is limited by
the probability of wrong aggregation, i.e.,

1 M l M
sign(ﬁ n; G (gf,?)) # sign(ﬁ mz:; me<w<’>)). 4)

In SIGNSGD, Ci(g") = sign(g®) and (4) holds with a
high probability when the local gradients V f,,(w”)’s are
highly different across workers (i.e., heterogeneous data dis-
tributions), which prevents its convergence. In this work,
we propose a compressor sto-sign, which guarantees that (4)
occurs with a probability that is strictly smaller than 0.5 and
therefore the convergence of Algorithm 1 follows.

A. Threat Model

In addition to the M normal workers, it is assumed that
there exist B Byzantine attackers, and its set is denoted as B.
Instead of using sto-sign, the Byzantine attackers can use
an arbitrary compressor denoted by byzantine-sign. In this
work, we consider the scenario in which each Byzantine
attacker j follows the same procedure as the normal workers
and obtains gj-t),‘v’ j € B. In addition, we consider general
attackers that share the opposite signs of the true gradients
lie.. byzantine-sign(g'”) # sign((1/M) X, V fru(w®))]
with certain probabilities. More specifically, we denote the
probability that Byzantine attacker j shares the wrong sign
on the ith coordinate during the tth communication round as
qy) [0, 11.

IV. ALGORITHMS AND CONVERGENCE ANALYSIS

In this section, we derive a sufficient condition for the conver-
gence of sign-based gradient descent methods in the presence
of data heterogeneity. For ease of presentation, we first con-
sider a scalar case, which can be readily generalized to the
vector case by applying the results independently on each
coordinate. Moreover, we consider the scenario in which all
the workers are benign. The Byzantine resilience of sto-sign
will be discussed in Section V. The proofs of all the theoretical
results are provided in Appendix A in the supplementary
material.

Theorem 1 (Probability of Wrong Aggregation for Generic
Sign-Based Compressor): Let uy,us,...,uy be M known
and fixed real numbers and consider binary random vari-
ables u,, 1 < m < M. Suppose p = (1/M) Zf:f:l
Psign((1/M) XM ) # i) < (1/2), then

) w3 )

m=1 m=1
< [4p0 - p)]* . 5)

Remark 1: Let u,, = Vf,(w®); be the ith coordinate
of worker m’s true local gradient and i, = sign(g'’); the
ith coordinate of the 1-bit estimator, [4p(1 — p)]M/P <
1/2 is a sufficient condition that the probability of wrong
aggregation on the ith coordinate is less than 1/2, where
p = (/MM P(sign(VF(w®);) # sign(g®);) is the
average probability of wrong signs that characterizes the
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impact of data heterogeneity. Essentially, as long as p < 1/2,
there exists some M such that the probability of wrong
aggregation is less than 1/2, based on which the convergence
of the sign-based gradient descent method can be established
(see Theorem 2). Different from [7, Th. 3] that assumes
homogeneous data and the same probability of wrong signs
across the workers, we only require the average probability of
wrong signs p < 1/2 and thus can deal with heterogeneous
data. Based on Theorem 1, we further propose a stochastic-
sign-based compressor to overcome the non-convergence issue
of SIGNSGD when p > 1/2. Such a result is crucial in the
heterogeneous data distribution scenario since the probability
of wrong signs can be very different across workers.

In the above discussion, we show that SIGNSGD works for
a sufficiently large M given that the average probability of
wrong signs p < 1/2. In the scenarios with more severe data
heterogeneity where p > 1/2, however, its convergence is not
guaranteed. The reason is that, in SIGNSGD, the magnitude
information of gV is lost. In the following, we propose
a two-level stochastic compressor sto-sign, which utilizes
the magnitude information and therefore can deal with an
arbtrarily heterogeneous data distribution. Formally, sto-sign
is defined as follows.

Definition 1 (The Proposed Two-Level Stochastic Gradient
Quantization): For any given gradient g, the compressor
sto-sign outputs sto—sign(g;?, b), where b is a vector of design
parameters that controls the level of stochasticity. The ith entry
of sto-sign(g®, b) is given by

bi + (g).

1. with probability %)1

so-sign(y’. b = b~ (g9), ©
2,

where (g'); and b; > max,, |(g?);| are the ith entry of g
and b, respectively.

In sto-sign, the magnitude information is encoded in the
mapping probabilities in (6). By introducing the stochasticity,
sto-sign essentially makes use of the magnitude information
(without incurring additional communication overhead) such
that the probability of wrong aggregation can be theoretically
bounded below 1/2 for an arbitrary realization of g¥)’s,
as shown in Corollary 1.

Corollary 1 (Probability of Wrong Aggregation for sto-
sign): Let uy, us, ..., upy be M known and fixed real numbers
and consider binary random variables i,, = sto-sign(u,,, b),
1 <m < M. We have py, = (1/M) Zf:zl P(sign((1/M)
Sy ) # i) = (BM — | X0 un)/26M) < (1/2), and

ool 50 ool 5)

m=1 m=1

(- () o

Remark 2 (Selection of b): Some discussions on the choice
of the vector b in (6) are in order. We take the ith entry of b
as an example. The ith entry of the gradient g% corresponds
to u,, in Corollary 1, and the average probability of wrong
signs pgo < (1/2) when the sum of gradients 3%  g® is

—1, with probability

NS
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non-zero, which therefore addresses the non-convergence issue
of SIGNSGD. According to Definition 1, b; > max,, |(g£,’l)),~|
and 0 < |Znﬂf=1(g£é))i|/(biM) < 1. Since (1 — x?) is a
decreasing function of x when 0 < x < 1, the bound in (7)
is minimized when b; = max,, |(g£,’l>)i|. In practice, since
max,, |(g{");| is unknown, the selection of an appropriate
b is an interesting problem deserving further investigation.
Considering that gradient clipping is often adopted in training
large-scale deep models to prevent gradient exploding, the
selection of b can be accommodated accordingly. In our
experiments, it is observed that a fixed vector b achieves
satisfactory performance.

In order to facilitate the discussion, the following commonly
adopted assumptions are made.

Assumption 1 (Lower Bound): For all x and some con-
stant F*, we have objective value F(x) > F*.

Assumption 2 (Smoothness): Vy,x, we require for some
non-negative constants L, Ly, ..., Ly

d
F(y) < Fx)+ (VF(x).y —x)+ >

i=1

Zly — x)?
2()’; x)® (8

where (-,-) is the standard inner product. Denote L =
Z?:l L;.

Assumption 3 (Variance Bound): For any worker m, the
stochastic gradient oracle gives an independent unbiased esti-
mate g, that has coordinate bounded variance

Elg,] = Vfuw), El((g,)i — Viuw)D* 1 <a? (9

for a vector of non-negative constants ¢ = [o7, ..., 04].
Theorem 2 (S to-SIGN SGD): Suppose Assumptions 1-3
are satisfied, and the learning rate is set as n = (1/(~/TL)).
Then by running Algorithm 1 with C;(g'") = sto-sign(g'", b)
(termed Sto-SIGNSGD) and mini-batch size T for T iterations,
we have
T

d
%ZZcz,iwmw“m <
i=1

t=11i

(F(w®) — F)VL
JT
JL

llo]]s

— 42 10
to s (10
in which ¢,; = 1 —2E[(1 — (((1/M) XY (gD P)/

M2 .. .
biz))( /2, where the expectation is over the randomness in

stochastic gradients g)’s.

Given the results in Corollary 1, the proof of Theorem 2
follows the well-known strategy of relating the norm of the
gradient to the expected improvement of the global objective
in a single iteration. Accumulating the improvement over the
iterations yields the convergence rate of the algorithm.

Remark 3: Compared to the convergence rate of SIGNSGD,
the major differences are: 1) no assumption on the sampling
noise is needed and 2) the coefficient ¢,; < 1, in which
E[(1 — |(1/M) Znﬁle(gié))ﬂz/bf)“”/z)] measures the proba-
bility of wrong aggregation. When |(1/M) > M_ (g®);| £ 0,
limy_  ¢;; = 1, which suggests that the convergence rate
of Sto-SIGNSGD with heterogeneous data approaches that of
SIGNSGD with homogeneous data distribution in the large M
regime as in FL (which can be in the order of millions [49]).

Moreover, it is worth mentioning that large mini-batch sizes
are not necessary for convergence, please refer to the results
in Appendix B in the supplementary material.

Theorem 2 shows that the detrimental impact of data
heterogeneity on SIGNSGD is addressed by adopting the
sto-sign compressor in the large M regime. For a small M,
if g0 = VF(w®), ¢,; decreases as |VF(w")| decreases,
and Theorem 2 indicates that Algorithm 1 converges to the
point where the probability of wrong aggregation is (1/2)
(i.e., ¢;; = 0). As a result, there is a gap between the
converged solution and the (local) optimum, which vanishes as
M increases. This is because the bound in (7) may not be tight
enough for small |VF(w”)|. In the following, we address
this issue for small M by showing the convergence of Sto-
SIGNSGD with large b;’s. For ease of presentation, we make
the following assumption on the number of workers.

Assumption 4: The total number of workers is odd.

Theorem 3: Suppose Assumptions 1, 2, and 4 are satisfied,
IVF(w");| < Q,¥1 <i <d,1 <t <T, and the learning
rate is set as 7 = (1/+/TL). Then by running Algorithm 1
with C;(g) = sto-sign(V f,,(w®), b) and b; = T/ LV Vi,
for T iterations, we have

1 T d
= 2 2 IV

t=1 i=1

_ YoM — D3 [(Fw©®) — FL23 123
N 2(M2—3M) T1/3 2T1/3

2 o 1
(). __
+FZ;2|VF(w ),|0(T1/3L|/3)}.
= 1=
(11)

Remark 4: We note that Assumption 4 is introduced to
ensure that there is always a winner in the majority vote as
in [8]. This assumption can be readily relaxed if the parameter
server breaks the tie uniformly at random if there is no winner
when M is even. Moreover, Theorem 3 assumes that the
workers evaluate the local gradients over the whole local
dataset, and the corresponding results on the mini-batch SGD
are presented in Appendix B in the supplementary material.

Remark 5: Given the same assumptions, [8] obtains a
slower convergence rate of O(1/T"/ 4). Theorem 3 shows a
convergence rate of O(1/(M 1/271/3)), which is still slower
than that of the vanilla distributed SGD with full precision.
This is because Theorem 3 adopts a large b;, which leads to
a probability of wrong aggregation that approaches 1/2 as T
increases. In our experiments, Algorithm 1 attains satisfactory
performance for fixed b;’s. Moreover, this concern is also
alleviated when the error-feedback mechanism is incorporated
(see Theorem 5).

V. BYZANTINE RESILIENCE

In this section, the Byzantine resilience of the sign-based
gradient descent method is investigated. In addition to the M
normal workers, it is assumed that there exist B Byzantine
attackers, and its set is denoted as . Instead of using
sto-sign, the Byzantine attackers can use an arbitrary compres-
sor denoted by byzantine-sign. We consider general attackers
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that share the opposite signs of the true gradients [ie., b = max,|Vf,(w®);| as in Section IV, the first

byzantine- 51gn(g(t)) # sign((1/M) Zﬁ:’:l V fu(w™))] with
certain probablhtles.

Note that the convergence of Algorithm 1 is determined by
the probability of wrong aggregation (i.e., more than half of
the workers share the wrong signs). Recall that qj(tl) denotes the
probability that Byzantine attacker j shares the wrong sign on
the ith coordinate during the rth communication round. In the
following analysis, let th) denote the number of workers
(including the attackers) that share (quantized) gradients with
different signs from the true gradient VF(w®) on the ith
coordinate. Then, ZI.(t) is a Poisson binomial variable, and we
need the probability of wrong aggregation less than (1/2) [i.e.,
P(Zi(l) > (M/2)) < (1/2)] to ensure convergence. Therefore,
we can prove the following theorem.

Theorem 4 (Byzantine Resilience of Generic Sign-based
Gradient Descent Methods): During tth communication round,
let (1/M)> M | P(sign(VF(w®)); # Ci(g™)) = p"” <
(1/2), then Algorithm 1 can at least tolerate k; Byzantine
attackers (i.e., the probability of wrong aggregation is smaller
than (1/2), which is a sufficient condition for the convergence
of Algorithm 1) on the ith coordinate of the gradient with
A/kD)S . pq) 7" > (1/2) if there exist positive

jeB qj i q;
constants a and ¢ such that
1—c¢

[ )]

Overall, the number of Byzantine workers that the algo-
rithms can tolerate is given by min;<;<4 ;.

Corollary 2 (Robustness Against the Most Powerful Attack-
ers): When c};’) = 1, i.e., the attackers always share the wrong
signs (which is considered the worst case), (12) is equivalent
to

) ki <M —2Mp";

2) there exists some positive constant ¢ such that

M —k;

M — k)1 — 5™ 1?
[ ] (e +/
—C

(M + k) p”
. 1
[ (-] =15

p;
Remark 6: Theorem 4 and Corollary 2 hold for

a=(1)

=)
eq;

—(t)
q ¢

+e_“(1 e'p; +e_“(1 13[(’)

12)

M +k;
M — k;

)M
=(1) (13)

Di

any sign-based compressor Ci(-). When C(; (g")) =
sto-sign(V f, (w®), b), we have p’ = (M — | >N v
Fnw®);)/2b;M) and the first condition above is

reduced to ki < (1M, Vfuw®)/b). If we set

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery

condition in Corollary 2 gives k; < (| Z,IZI=1 V fn(w D))/
(max,, |V f,,(w”);|), which means that the Byzantine
resilience depends on the heterogeneity of the local datasets.
In an ideal scenario where the workers have the same local
datasets, i.e., Vf,(w?); = Vf,(w®);, Vm, n, Corollary 2
gives 135’) = 0 and k; < M. Therefore, it can tolerate M — 1
Byzantine workers.

For the second condition in Corollary 2, it can be observed
that for any finite and fixed k;, the left-hand side of (13)
approaches ((1 — p\")/ (5" ) /P[4 (1 — )M/ as M
goes to infinity. Fig. 1 numerically examines the ratio (k; /M)
that satisfies (12). It is shown from Fig. 1(a) that, in the worst
case scenario in which ql.(') = 1, the number of Byzantine
attackers that Algorithm 1 can tolerate increases as the number
of normal workers M increases and approaches k; = (1 —
2 pl’))M which is given by the first condition in Corollary 2.

Fig. 1(a) and (b) shows that for fixed pl@ and ql(t), (ki /M)
approaches (1 — 2pl’))/(2q(t) 1) as the number of benign
workers M increases. That is, stronger normal workers and
weaker attackers suggest better Byzantine resilience. With
such consideration, we further examine the attackers with
average capability defined as follows.

Definition 2: An attacker j is of average capability if
Pr(sign(VF (w?")); # byzantine-sign(g;t))i) =1- ﬁf’ , i.e.,
attacker j shares the wrong sign with a probability of 1 — pf’),
in which p(l) is the average probability of wrong signs for the
benign workers.

Remark 7: We provide one possible attacker of average
capability as follows: 1) the attacker’s local gradients gy) sat-
isfy Pr(sign(VF (w®)); # s1gn(g(’)) ) = p(’) ., it estimates
the signs of the true gradients VF (w®) incorrectly with a
probability of p , in which ﬁl@ is the average probability
of wrong signs over the benign workers and 2) it shares
the opposite of its local gradients, i.e., —sign(g;'))i, with the
parameter server. It is worth mentioning that the attackers
considered in [12] are of average capability.

For attackers with average capability, we have q(t) =
1 — pl . It can be observed from Fig. 1(c) that as the
number of workers M increases, the ratio (k; /M) increases and
approaches 1, i.e., half of the total workers can be Byzantine
attackers with average capability.

Remark 8: When the normal workers adopt the 1-bit
compressor Ci(g\") = sto-sign(V f,,(w®), b), the aver-
age probability of wrong signs p(’) = (bM — |znﬁf=1 \%
Fn(wP);])/2bM). In this case, q() = 1— p" corresponds

l
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to the scenario in which the attackers also adopt the
sto-sign compressor (and flip the signs before sharing them
with the parameter server), and their local gradients satisfy
> &Y = 30, V fu(w®). That being said, the union
of the local datasets of the attackers is the same as that of the
normal workers.

VI. ERROR-FEEDBACK VARIANT

To further improve the performance of Algorithm 1,
we incorporate the error-feedback technique and propose its
error-feedback variant (i.e., Algorithm 2), where the server
utilizes an a-approximate compressor C(-) (i.e., ||C (x)—x||§ <
(1 - oz)||x||%, Vx [24]) and keeps track of the corresponding
compression error. Algorithm 2 with C;(-) = sto-sign(-) is
termed EF-Sto-SIGNSGD. To facilitate the analysis, we fur-
ther introduce the commonly used smoothness assumption as
follows.

Assumption 5 (Smoothness): Vx,y, we require for some
non-negative constant L

L
F(x) < F(y) +(VF(y),x = y) + S llx = yll3 (14

where (-, -) is the standard inner product.
The convergence and Byzantine resilience of Algorithm 2
are shown below.

Algorithm 2 FError-Feedback Stochastic-Sign SGD With
Majority Vote

Input: learning rate 7, current hypothesis vector w”, cur-
rent residual error vector é®, M workers each with an
independent gradient g' = V f,,(w®), the 1-bit compres-
sor Cy(-).
on server:

pull C;(g") from worker m.

push 0 = C(L ¥ Ci(g®)+&") to all the workers,

update residual error

M
1
G0+ — 0y L g0 _ 0
ARES Mm2=101(gm)+e g (15)

on each worker:
update w'+D = y® — pg®,

Theorem 5 (Convergence of EF-Sto-SIGNSGD): When
Assumptions 1, 3, and 5 are satisfied, by running Algorithm 2
with = (1/+/Td), mini-batch size of T, C;(g?) =
Sto-SIGN(g®, b) and b = b - 1 for T iterations, we have

m>

T-1

— )\12 _*
lz IVE@™I; _ (F(wo) — F )Wd
T = b - T

(1+L+L*B)Vd
+
JT
where B is some positive constant.
Remark 9: In our experiments, the server adopts the com-

pressor C(x) = (||x||1/d)sign(x), which is an a-approximate
compressor [24]. In this case, the server needs to share

t

42 lloll1 (16)

VMT

(||x|]1/d) with the workers. This incurs an additional com-
munication overhead of 32 bits, which is negligible.

Remark 10: The proposed method is different from scaled
SIGNSGD [24], [25] in three aspects.

1) Scaled SIGNSGD is not robust against re-scaling attacks.
More specifically, since all the workers are supposed
to share the scaled norm of the gradients, the attack-
ers can ruin the training process by manipulating the
magnitudes of the gradients (e.g., sharing arbitrarily
large magnitudes). In our scheme, all the workers share
the stochastic signs, and the parameter server takes the
majority vote during the aggregation stage. The impact
of the attackers is therefore limited, which provides
Byzantine resilience.

2) The error-feedback mechanism in [24] and [25] requires
additional memory on the worker side, while the con-
vergence of scaled SIGNSGD without error feedback is
unknown. In our scheme, error feedback is only used on
the server’s side.

3) The convergence of scaled SIGNSGD with error feed-
back is only established in the homogeneous data
distribution scenario.

We obtain the Byzantine resilience of Algorithm 2 as

follows.

Theorem 6 (Byzantine Resilience of Algorithm 2): At each
iteration 7, Algorithm 2 can at least tolerate k; < M (1—2 ﬁl@) /
(26}5” — 1) Byzantine attackers (i.e., the convergence of
Algorithm 2 is guaranteed) with (1/B) > jeB qj('l) = cjlm on
the ith coordinate of the gradient. Overall, the number of
Byzantine workers that Algorithm 2 can tolerate is given by
min1 <i<d k,‘ .

Remark 11: It can be noticed that when qﬁ’) = 1, the
number of attackers that Algorithm 2 can tolerate is the same
as that specified by the first condition in Corollary 2, and the
second condition is not needed.

VII. EXPERIMENTS

In the experiments, we first validate our theoretical results
in the minimization of the well-known Rosenbrock function.
Then, we examine the performance of the proposed method
on the MNIST dataset, the CIFAR-10 dataset, and the Tiny-
ImageNet dataset.’ Finally, we present the performance of the
proposed method in the partial worker participation scenario
as in FL, in which only a portion of workers are sampled for
training during each communication round.

A. Minimization of the Rosenbrock Function

We consider the minimization of the well-known Rosenbrock
function with ten variables [7]

d
F(x) =z Fi(x), where F;(x) = 100(x;4; —x})+(1—x;)%
i=1

amn

3Note that we focus on the image classification tasks in the experiments
since data heterogeneity can be readily captured, for example, by the number
of classes of data that each user stores. For tasks like natural language
processing, measuring and controlling the data heterogeneity is difficult, if not
impossible.
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Fig. 3. Comparison between deterministic sign and sto-sign.

We first examine the impact of the average probability of
wrong signs p to validate our analysis in Theorem 1. More
specifically, we randomly generate a vector v of length M
with v; € (0,1),Vl < i < M. Then, v is normalized such
that (1/M) Z,Ai , Vi = p. During each communication round,
we first compute the global gradient V F(x), after which the
signs of the workers are generated following the probability
of wrong signs v. Finally, the aggregated results are obtained
by majority vote. Fig. 2 shows the probability of wrong
aggregation and the objective function value for M = 30.
It can be observed that when the average probability of wrong
signs p < (1/2), the overall probability of wrong aggregation
is smaller than (1/2) when M = 30, and the sign-based
algorithm converges. When the average probability of wrong
signs p > (1/2), it fails to converge.

Then, we examine the effectiveness of sto-sign. To simulate
the heterogeneity across the workers, we first generate a vector
v of length M, with v; € (0,1),Vl < i < M. The first
0.7M entries are scaled by a negative factor such that the
average of all the entries is 1. The local objective function of
worker m is given by v, F (x). Fig. 3 shows the performance of
deterministic sign and sto-sign with different selection of b =
b -1. Since 70% of the workers always have the wrong signs,
the aggregation results of deterministic sign (as in SIGNSGD)
are wrong with probability 1. As a result, SIGNSGD fails
to converge in this case. For sto-sign, it can be observed
that as b increases, the probability of wrong aggregation
first decreases, and then increases. Moreover, thanks to the
stochasticity introduced in sto-sign, the probability of wrong
aggregation with a suitable b (e.g., b = 100) is smaller than
(1/2), and the corresponding algorithm (i.e., Sto-SIGNSGD)
converges.

Finally, we examine the impact of the number of workers M.
More specifically, in addition to the normal workers, there
are 0.9 x M Byzantine attackers with ¢ = 1 — p. The other
settings are the same as Fig. 2. It can be observed from
Fig. 4 that both the probability of wrong aggregation and
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the objective decrease as M increases, which corroborates our
discussion in Remark 6.

B. Results on MNIST, CIFAR-10, and Tiny-ImageNet

In this section, we implement our proposed method with
a two-layer fully connected neural network on the standard
MNIST dataset, VGG-9 [50] on the CIFAR-10 dataset, and
compact convolutional transformer (CCT) [51] on the Tiny-
ImageNet dataset. For MNIST and CIFAR-10, we consider
a scenario of M = 31 normal workers. To simulate the
heterogeneous data distribution scenario, each worker only
stores exclusive data for one out of the ten categories, unless
otherwise noted. For Tiny-ImageNet, we consider a scenario
of M = 10 normal workers and follow [52] to simulate
heterogeneous data distribution, in which the training data
on each worker are drawn independently with class labels
following a Dirichlet distribution Dir(e) with ¢ = 0.1.
Besides, for MNIST, the workers evaluate their gradients
over the whole local datasets, while for CIFAR-10 and Tiny-
ImageNet, the workers train their local models with mini-batch
sizes of 32 and 256, respectively. More details can be found
in Appendix C in the supplementary material.

We validate our analysis and compare the proposed method
with SIGNSGD [4] and the commonly adopted FL baseline
FedAvg [47]. In the presence of data heterogeneity, the pro-
posed method converges faster than FedAvg with respect to
communication cost and SIGNSGD fails to converge. More-
over, the proposed method demonstrates better Byzantine
resilience than SIGNSGD, while FedAvg is not Byzantine
resilient in design.

1) Selection of b: In the fixed b scenarios, we set b = b -1
for some positive constant b. In this case, b; < max,, |(g§,’l)),~|
may not hold for some i, and the probabilities defined in (6)
fall out of the range [0, 1]. We round them to 1 if they
are positive and O otherwise. For “Optimal b,” we set b; =
max,, |(g{");, Vi. It can be observed from Fig. 5 that for fixed
b, b should be large enough to optimize the performance. As b
keeps increasing, both the training and the testing accuracy
decrease, which corroborates our analysis. Furthermore, with
the same communication overhead, Sto-SIGNSGD with a fixed
b achieves a higher testing accuracy than FedAvg (especially
when the allowed communication overhead is small) and
SIGNSGD, which demonstrates its effectiveness. Moreover, the
testing accuracy of Sto-SIGNSGD with a fixed b approaches
that with optimal b.

Considering that the gradients may change slowly during
the training process, we propose to update b periodically
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Training and testing accuracy of Sto-SIGNSGD for different b = b - 1. We run 200, 8000, and 6000 communication rounds for MNIST, CIFAR-10,

and Tiny-ImageNet, respectively (top). The testing accuracy of Sto-SIGNSGD, SIGNSGD, and FedAvg [47] with respect to the total communication overhead.
We tune the number of local iterations for FedAvg from the set {1, 5, 10, 20, 30, 40} (bottom). Both for the top and bottom figures.

and examine two heuristic schemes for the selection of b as
follows.

1) In scheme I, after every K communication rounds, each
worker m shares its gradient g% in full precision. Then,
the server finds the “optimal b” as in Remark 2 (i.e.,
b; = max,, |(g£,?),-|) and sends it back to the workers,
which remains fixed in the following K communication
rounds. In this case, for K communication rounds, the
communication overhead of the proposed scheme is
(K +31)d. The corresponding communication overhead
for full precision distribution SGD and SIGNSGD are
32Kd and Kd, respectively.*

2) In scheme II, after every K communication rounds,
each worker m computes the layer-wise median of
the absolute values of the gradients {median(|g,(21|),

,(QJD} in which g(l). is

median(|gz)’2|), ..., median(|g m,j

the jth block (which corresponds to the jth layer of
the neural network) of worker m’s gradient at commu-
nication round ¢. Then, each worker m further takes

the median and shares b,, = median({median(lgf;m),

median(|gffl?2|), R median(|g£fl?1|)}) with the server.
The server sets b = median(l;m) -1 and sends it back to
the workers, which will be used in the following K com-
munication rounds. In this case, for K communication
rounds, the communication overhead is Kd + 32.

We examine the performance of schemes I and II by run-
ning Sto-SIGNSGD for 200 and 8000 communication rounds
for MNIST and CIFAR-10, respectively. The corresponding
results are presented in Tables I and II. In particular, the
scheme I with K = 1 essentially corresponds to “Optimal b”
discussed in Remark 2. It can be observed from Tables I and II

“Note that sharing the gradients in full precision may incur data privacy
issues [53]. The implementation of the proposed method with privacy guar-
antees is left as future work.

TABLE I
TESTING ACCURACY OF Sto-SIGNSGD ON MNIST

100

92.394£0.17%
90.23+0.21%

200

90.99+0.35%
90.16+0.20%

K 1

93.07+0.29%
90.144+0.27%

SCHEME I
SCHEME II

CIFAR-10
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Fig. 6.  Sto-SIGNSGD for different numbers of Byzantine workers and
different b’s.

that scheme I with K = 100 achieves comparable performance
to “optimal b,” which demonstrates the effectiveness of the
periodical updating scheme. Moreover, with a negligible com-
munication cost of 32 bits for each round, scheme II with
K =1 also achieves satisfactory performance.

2) Byzantine Resilience: Fig. 6 shows the performance
of Sto-SIGNSGD for different selection of b = b -1 and
different number of Byzantine workers B. For MNIST, the
Byzantine attackers evaluate their gradients over the whole
training dataset; for CIFAR-10, the mini-batch sizes of the
Byzantine attackers are set to 32. All the attackers flip the
signs of gradients and send them to the server (termed “flip
sign” attack). As the number of Byzantine workers increases,
both the training and the testing accuracy of Sto-SIGNSGD
with a larger b drop much faster than that with a smaller b,
which conforms to our analysis above that a larger b results in
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TABLE I

TESTING ACCURACY OF Sto-

SIGNSGD oN CIFAR-10

K 1 100 200 300 400
SCHEME I 78.91+0.25% 77.90+0.19% 75.91+£0.34% 74.92+0.26% 74.114+0.38%
SCHEME II  73.264+0.20% 70.87+£0.33% 70.25+0.23% 69.224+0.53% 69.25+0.60%

TABLE III
TESTING ACCURACY OF Sto-SIGNSGD ON MNIST UNDER ATTACKS
NUMBER OF ATTACKERS 1 2 3

FIXEDb =0.03-1
SCcHEME II, K = 100

74.04£0.29%
74.64+0.23%

28.69+1.98%
18.37+£2.33%

47.68+1.57%
47.61+£1.39%

TABLE IV
TESTING ACCURACY OF Sto-SIGNSGD ON CIFAR-10 UNDER ATTACKS

NUMBER OF ATTACKERS 1

2 3

FIXEDb =0.01-1
SCcHEME II, K = 100

71.27£0.34%
70.244+0.38%

13.80+1.54%
25.74+£3.70%

34.73£2.82%
58.324+1.60%

TABLE V
TESTING ACCURACY OF Sto-SIGNSGD oN MNIST

B SIGNSGD OPTIMAL b SIGNSGD OPTIMAL b

2 LABELS 2 LABELS 4 LABELS 4 LABELS
0 70.03+£0.71% 92.3440.40% 90.53+0.16% 93.12+0.10%
1 66.31+0.62% 93.144+0.29% 88.21£0.40% 93.384+0.18%
2 60.194+1.35% 92.71£0.14% 87.34+£0.57% 93.39+0.13%
3 56.23+1.57% 91.13£0.51% 82.49+£1.30% 92.194+0.27%
4 47.444+0.85% 84.49+1.11% 81.51+1.39% 92.314+0.20%

TABLE VI
TESTING ACCURACY OF Sto-SIGNSGD oN CIFAR-10
GAUSSIAN

B FLIP SIGN LIE COLLUDE GAUSSIAN
1 71.27+£0.24% 71.91+£0.28% 74.084+0.22% 74.09+0.24%
3 13.80+2.43% 38.80+1.04% 71.82+0.28% 74.11+£0.27%
5 - - 68.74+0.33% 71.88+0.40%
10 - - 34.324+1.77% 71.51£0.34%

worse Byzantine resilience. It is also observed that SIGNSGD
essentially fails in this extremely heterogeneous data distribu-
tion setting (where each worker holds exclusive data), even
without attackers.

We further examine the performance of scheme II in the
presence of attacks (which sends large Em’s), and the results
are presented in Tables III and IV. In particular, since the
server sets b = median(l;m) - 1, the impact of attackers is
mitigated. It can be observed that, in this case, scheme II with
K = 100 essentially achieves comparable performance to b =
0.03-1 and b = 0.01-1 for MNIST and CIFAR-10, respectively.

To examine the impact of data heterogeneity, we vary the
number of labels of each worker’s local training dataset in
Table V. It can be observed that the testing accuracy of
SIGNSGD improves when the training data becomes more
homogeneously distributed across workers. Both SIGNSGD
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and Sto-SIGNSGD obtain better Byzantine resilience as the
number of labels increases. Finally, Sto-SIGNSGD with opti-
mal b still outperforms SIGNSGD, which indicates that
introducing the stochasticity is still beneficial in the more
homogeneous data distribution scenarios.

We also examine the performance of Sto-SIGNSGD with
b 0.01 - 1 against other commonly adopted Byzantine
attacks, including the Gaussian attack [27] and the little is
enough (LIE) attack [54] in Table VI. More specifically,
the attackers send the signs of the attacked gradients to the
server. In “Gaussian Collude,” we assume that all the attackers
share the same signs (generated by one Gaussian attack),
while in “Gaussian,” each attacker generates its attacked
gradient independently. It can be observed that compared to the
“flip sign” attack in Fig. 6, Sto-SIGNSGD performs better
under “LIE,” “Gaussian Collude,” and “Gaussian” attacks.
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TABLE VII
TESTING ACCURACY OF THE ALGORITHMS ON CIFAR-10

SCALED 1-BIT 1-BIT

ALGORITHMS D-SGD SIGNSGD Lo NORM Lo NORM ST0-SIGNSGD  EF-ST0-SIGNSGD
QSGD QSGD

ACCURACY 77.67£0.83% 22.21+£2.67% 47.084+0.48% 74.48+0.53% 78.52+0.47% 78.73£0.68%

3) Error-Feedback: Fig. 7 shows the performance of
EF-Sto-SIGNSGD against the “flip sign” attack. It can be
observed from Fig. 7 that the error-feedback variant does
not necessarily perform better under attack. More specifi-
cally, EF-Sto-SIGNSGD performs worse than Sto-SIGNSGD on
MNIST, CIFAR-10, and Tiny-ImageNet in the presence of 1,
6, and 6 Byzantine workers, respectively. This may be because
as the gradients decrease, the probability of wrong aggregation
increases. In this case, the error-feedback mechanism may
carry the wrong aggregations to future iterations and harm
the learning process. However, EF-Sto-SIGNSGD outperforms
Sto-SIGNSGD on all the examined datasets without Byzantine
workers, which validates its effectiveness.

C. Extension to Partial Worker Participation

In this section, we examine the performance of the compressor
sto-sign in the partial worker participation scenario. More
specifically, we consider a scenario of M = 100 normal work-
ers with the training data on each worker drawn independently
with class labels following a Dirichlet distribution Dir(c«) with
o = 0.1. During each communication round, 31 workers out of
100 are randomly selected to perform the training. We examine
four baselines: “D-SGD,” “Scaled SIGNSGD” [24], “1-bit L,
norm QSGD” [2] and “l-bit L., norm QSGD” [2]. More
specifically, in “D-SGD,” the workers share the gradients with
the parameter server in full precision; in “Scaled SIGNSGD,”
each worker m shares ((||g|],)/d)sign(g®), in which g
is the local stochastic gradient; in “l1-bit L, norm QSGD,”
each entry of the gradient g is mapped to sign((g");) with
probability |(g);1/11g”|l2, and O otherwise; in “I-bit Ly
norm QSGD,” each entry of the gradient g’ is mapped to
sign((g");) with probability [(g9):|/]1g%"||«, and O other-
wise. We note that the stochastic quantizer in L, norm QSGD
is one of the most commonly adopted compressors in the
literature (e.g., [6], [16]). In all the baselines, the parameter

server performs the aggregation by taking the average over all
the compressed gradients from the workers.

We run the algorithms for 3500 communication rounds,
and the corresponding results are presented in Table VII.
It can be observed that the proposed Sto-SIGNSGD and
EF-Sto-SIGNSGD achieve comparable performance to
“D-SGD” which shares the gradients in full precision while
improving the communication efficiency. In addition, the
proposed algorithms attain higher accuracy than the other
baselines concerning the communication rounds.

VIII. CONCLUSION

In this work, we derive a sufficient condition for the conver-
gence of sign-based gradient descent methods, based on which
a novel gradient compressor that can deal with heterogeneous
data distributions is proposed. The proposed algorithms are
proven to converge in the heterogeneous data distribution
scenario. Then, the Byzantine resilience of the proposed
algorithm is shown analytically. Besides, we further improve
the learning performance of the proposed method by incor-
porating the error-feedback scheme. The parameter b plays a
crucial role in the performance of the proposed compressor,
and we develop heuristic approaches to select b in this work.
Designing adaptive schemes for the selection of b and further
incorporating privacy-preserving techniques remain interesting
future directions.
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