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A Theoretical Analysis of DeepWalk and Node2vec

for Exact Recovery of Community Structures

in Stochastic Blockmodels
Yichi Zhang and Minh Tang

Abstract—Random-walk-based network embedding algorithms
like DeepWalk and node2vec are widely used to obtain euclidean
representation of the nodes in a network prior to performing down-
stream inference tasks. However, despite their impressive empirical
performance, there is a lack of theoretical results explaining their
large-sample behavior. In this paper, we study node2vec and Deep-
Walk through the perspective of matrix factorization. In particular,
we analyze these algorithms in the setting of community detection
for stochastic blockmodel graphs (and their degree-corrected vari-
ants). By exploiting the row-wise uniform perturbation bound for
leading singular vectors, we derive high-probability error bounds
between the matrix factorization-based node2vec/DeepWalk em-
beddings and their true counterparts, uniformly over all node
embeddings. Based on strong concentration results, we further
show the perfect membership recovery by node2vec/DeepWalk,
followed by K-means/medians algorithms. Specifically, as the net-
work becomes sparser, our results guarantee that with large enough
window size and vertex number, applyingK-means/medians on the
matrix factorization-based node2vec embeddings can, with high
probability, correctly recover the memberships of all vertices in a
network generated from the stochastic blockmodel (or its degree-
corrected variants). The theoretical justifications are mirrored in
the numerical experiments and real data applications, for both the
original node2vec and its matrix factorization variant.

Index Terms—Stochastic blockmodel, network embedding,
perfect community recovery, node2vec, DeepWalk, matrix
factorization.

I. INTRODUCTION

G
IVEN a network G, a popular approach for analyzing

G is to first map or embed its vertices into some low

dimensional euclidean space and then apply machine learning

and statistical inference procedures in this space. Through this

embedding process, multiple tasks could be conducted on the

network, such as community detection (e.g., [1], [2]), link pre-

diction (e.g., [3]), node classification (e.g., [4], [5]) and network
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visualization (e.g., [6]). There has been a large and diverse

collection of network embedding algorithms proposed in the

literature, including those based on spectral embedding [7], [8],

[9], multivariate statistical dimension reduction [10], [11], and

neural network [12], [13], [14]. See [15], [16], [17] and [18] for

recent surveys of network embedding and graph representation

learning.

In recent years there has been significant interest in network

embeddings based on random walks. The most well-known

examples include DeepWalk [4] and node2vec [19]. These al-

gorithms are computationally efficient and furthermore yield

impressive empirical performance in many different scientific

applications including recommendation systems [20], biomed-

ical natural language processing [21], human protein identifi-

cation [22], traffic prediction [23] and city road layout model-

ing [24]. Nevertheless, despite their wide-spread use, there is

still a lack of theoretical results on their large-sample prop-

erties. In particular, it is unclear what the node embeddings

represent as well as their behavior as the number of nodes

increases.

Theoretical properties for DeepWalk, node2vec, and related

algorithms had been studied previously in the computer science

community. The focus here had been mostly on the convergence

of the entries of the co-occurrence matrix as the lengths and/or

number of random walks go to infinity. For example, motivated

by the analysis in [25] for word2vec, the authors of [26], [27]

showed that DeepWalk and node2vec using the skip-gram model

with negative sampling is equivalent to factorizing a matrix

whose entries are obtained by taking the entry-wise logarithm

of a co-occurrence matrix, provided that the embedding di-

mension d is sufficiently large (possibly exceeding the number

of nodes n). These authors also derived the limiting form of

the entries of this matrix as the length of the random walks

goes to infinity. These results were further extended in [28] to

yield finite-sample concentration bounds for the co-occurrence

entries. Note, however, that the above-cited works focused ex-

clusively on the case of a fixed graph and thus do not provide

results on the large sample behavior of these algorithms as n
increases.

The statistical community, in contrast, had extensively studied

the large-sample properties of graph embeddings based on ma-

trix factorization. However the embedding algorithms consid-

ered are almost entirely based on singular value decomposition
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(SVD) of either the adjacency matrix or the Laplacian matrix and

its normalized and/or regularized variants. For example, in the

setting of the popular stochastic blockmodel random graphs, [7]

and [8] derived consistency results for a truncated SVD of the

normalized Laplacian matrix and the adjacency matrix. Subse-

quently [29], [30] strengthened these results by providing central

limit theorems for the components of the eigenvectors of either

the adjacency matrix or the normalized Laplacian matrix under

the more general random dot product graphs model. As Deep-

Walk and node2vec are based on taking the entry-wise logarithm

of a random-walk co-occurrence matrix, the techniques used in

these cited results do not readily translate to this setting.

A. Contributions of the Current Paper

The current paper studies large-sample properties of random-

walk-based embedding algorithms. We first present convergence

results for the embeddings of DeepWalk and node2vec in the

case of stochastic blockmodel graphs and their degree-corrected

variant. We then show that running K-means or K-medians

on the resulting embeddings is sufficient for exact recovery

of the latent community assignments. Our theoretical results

thus provide a bridge between previous results in the computer

science community and their statistics counterparts.

We emphasize that our focus on stochastic blockmodel graphs

is done purely for ease of exposition. Indeed, most of our

results continue to hold for the more general inhomogeneous

Erdős-Rényi (IER) random graphs model [31], [32], provided

that the edge probabilities are sufficiently homogeneous, i.e., the

minimum and maximum values for the edge probabilities are of

the same order (possibly converging to 0) as n increases; recall

that IER is one of the most general models for edge independent

random graphs. In particular, we can show that the co-occurrence

matrices constructed from the sampled networks is uniformly

close (entrywise) to that for the true but unknown edge probabil-

ities matrices. However, as IER random graphs need not possess

low-dimensional structure (even when n increases), it is not

clear what the embeddings obtained from these co-occurrence

matrices represent. See Section VI for further discussion.

We now outline our approach. The original node2vec and

DeepWalk algorithms are based on optimizing a non-convex

skip-gram model using stochastic gradient descent (SGD); this

optimization problem has multiple local minimum and the

obtained embeddings can thus be numerically unstable (see

e.g., [33]). We instead consider, for each embedding dimension

d, the optimal low-rank approximation of an observed trans-

formed co-occurrence matrix similar to that used in [25], [28],

and recently [27], [34]. We first show that the entries of the

co-occurrence matrix computed using the observed adjacency

matrix is uniformly close to the entries of the co-occurrence

matrix computed using the true but unknown edge probabil-

ities matrix. This uniform bound implies that the entry-wise

logarithm of the two co-occurrence matrices are also uniformly

close and thus, with high probability, the co-occurrence matrix

constructed using the observed graph is well-defined. In the

case of stochastic blockmodel graphs the true edge probabil-

ities matrix give rise to a (transformed) co-occurrence matrix

TABLE I
TABLE OF NOTATION

with rank at most K where K is the number of blocks and

thus for stochastic blockmodel graphs with K � n blocks.

By leveraging both classical (e.g., the celebrated Davis-Kahan

theorem [35]) as well as recent results on matrix perturbations

in the 2 → ∞ norm (e.g., [36], [37]), we show that the truncated

low-rank representation of both matrices are uniformly close,

i.e., the embeddings of the observed graph is, up to orthogonal

transformation, approximately the same as that for the true

edge probabilities matrix. Therefore, by running K-means or

K-medians on the embeddings of the observed graph, we can

with high probability recover the latent community structure for

every node.

Our paper is organized as follows. In Section II we give a brief

introduction of node2vec [19] and DeepWalk [4], and describe

the matrix factorization perspective for these algorithms. In

particular DeepWalk can be treated as a special case of node2vec

by setting the 2nd-order random-walk parameters (p, q) to be

(1,1), which will be assumed in Section III for simplicity of

theoretical analysis. In Section III we provide uniform entry-

wise error bounds for the entries of the t-step random-walk

transition matrix and their implications for community recovery.

The theoretical results in Section III hold for both the dense and

sparse regimes where the average degree grows linearly and

sublinearly in the number of nodes, respectively. In Section IV

we present simulations to corroborate our theoretical results.

In Section V we apply node2vec to three real-world network

datasets and show its remarkable practical performances. We

conclude the paper in Section VI with a discussion of some open

questions and potential improvements. All proofs of the stated

results, associated technical lemmas, and additional numerical

results are provided in the Supplementary File, available online.

B. Notation

We summarize in Table I some general notations that are used

throughout this paper. Unless specified otherwise, all graphs

G in this paper are assumed to be undirected, unweighted and

loop-free. In the subsequent discussion we often assume that
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the upper triangular entries of adjacency matrix A are indepen-

dent Bernoulli random variables with E[aii′ ] = pii′ when i′ < i,
where pii′ is the ii′th entry in edge probability matrix P. As A

and P are symmetric, we also set aii′ = ai′i and pii′ = pi′i for

i′ > i.
We use ‖ · ‖, ‖ · ‖F, ‖ · ‖∞ and ‖ · ‖max to denote the spec-

tral norm, Frobenius norm, maximum absolute row sum, and

maximum entry-wise value of a matrix, respectively. We also

use ‖ · ‖max,off and ‖ · ‖max,diag to denote the maximum value

for the off-diagonal and diagonal entries of a matrix, i.e., for a

square matrix M = [mii′ ],

‖M‖max,off = max
i�=i′

|mii′ |, ‖M‖max,diag = max
i

|mii|. (1.1)

We use | · | to denote the absolute value of a real number as well

as the cardinality of a finite set.

For two terms a and b, let a ∧ b := min{a, b}. We write a � b
(resp. a � b) if there exists a constant c (resp. c′) not depending

on a and b such that a ≤ cb (resp. a ≥ c′b). If a � b and a � b
then a � b. We say an event A depending on n happens with

high probability (whp) if P(A) ≥ 1−O(n−a) for some con-

stant a > 3. Finally, for random sequences An, Bn, we write

An = OP(Bn) if An/Bn is bounded whp and An = oP(Bn) if

An/Bn → 0 whp. For a given positive integer K, we denote by

[K] the set {1, 2, . . . ,K}.

II. SUMMARY OF NODE2VEC AND SBM

In this section we first provide a brief overview of the

node2vec algorithm. We then discuss the popular stochastic

blockmodel (SBM) for random graphs. Finally we discuss a

matrix factorization perspective to node2vec and show that, for

a graph G generated from a stochastic blockmodel, this matrix

factorization approach leads to a low-rank approximation of

an elementwise non-linear transformation of the random walk

transition matrix for G.

A. Node2vec With Negative Sampling

First introduced in [19], node2vec is a computationally effi-

cient and widely-used algorithm for network embedding. Mo-

tivated by the ideas behind word2vec for text documents [38],

node2vec generates sequences of nodes using random walks

which are then fed into a skip-gram model [39] to yield the node

embeddings. The original skip-gram model is quite computa-

tionally demanding for large networks and hence, in practice,

usually replaced by a skip-gram with negative sampling (SGNS).

The resulting algorithm is summarized below.

1) (Sampling Random Paths): First generates r independent

2nd order random walks on G with each having a fixed

length L. A 2nd order random walk of length L starting at

vi with parameters p and q is generated as follows. First

let v
(i)
1 = vi. Next sample v

(i)
2 from N (v

(i)
1 ) uniformly

at random. Then for 3 ≤ � ≤ L, sample v
(i)
� ∈ N

(

v
(i)
�−1

)

with probability,

P(v
(i)
� = v0) =

⎧

⎪⎪⎨

⎪⎪⎩

1
pJ(v0) if v0 = v

(i)
�−2,

J(v0) if v0 ∈ N (v
(i)
�−2),

1
qJ(v0) if v0 �∈ N (v

(i)
�−2),

where J(v0) is given by

1

J(v0)
= p−1 +

∣
∣
∣N

(

v
(i)
�−2

)

∩N
(

v
(i)
�−1

)∣
∣
∣

+ q−1
∣
∣
∣N

(

v
(i)
�−2

)c

∩N
(

v
(i)
�−1

)∣
∣
∣ (2.1)

The form of J(v0) allows for v
(i)
� to have possibly un-

balanced probabilities of reaching three different types of

nodes in the neighborhood ofv
(i)
�−1, namely (1) the previous

node v
(i)
�−2; (2) nodes belonging to both the neighborhoods

of v
(i)
�−2 and v

(i)
�−1; (3) nodes belonging only to the neigh-

borhood of v
(i)
�−1 but not the neighborhood of v

(i)
�−2. The

parameters p > 0 and q > 0 provide weights for these

three different types of nodes and hence control the speed

at which the random walk leaves the neighborhood of the

original node vi. In this paper, we assume that the starting

vertex vi of any random walk is sampled according to a

stationary distribution S = (S1, . . . , Sn) on G with

P (Starting Vertex is vi) = Si =
di
2|E|

(2.2)

for all vi ∈ V. For a given i ∈ [n] we denote by ri the

number of random walks starting from vi, �
(i)
j as the jth

random walk starting from vi and Li = {�
(i)
j , j ∈ [ri]} as

the set of all random walks starting from vi.
Remark 1: We consider only the case of p = q = 1 for our

theoretical analysis. The choice p = q = 1 is the default setting

for node2vec as suggested in the original paper [19] and leads

to a sampling scheme equivalent to that of DeepWalk [4]; the

subsequent analysis thus also applies to DeepWalk.

2) (Calculating C): Borrowing ideas from word2vec [38],

node2vec creates a n× n node-context matrix C =
[Cii′ ]n×n whose ii′th entry records the number of times the

pair (vi, vi′) appears among all random paths in
⋃n

i=1 Li.

More specifically, for a given window size (tL, tU ), Cii′ is

the number of times that (vi, vi′) appears within a sequence

. . . , vi, . . . . . .
︸ ︷︷ ︸

t−1vertices

, vi′ , . . . or

. . . , vi′ , . . . . . .
︸ ︷︷ ︸

t−1vertices

, vi, . . . (2.3)

among all random paths in
⋃n

i=1 Li; here t is any integer

satisfying tL ≤ t ≤ tU ≤ L− 1
Remark 2: The original node2vec algorithm fixed tL = 1

while in this paper, we allow for varying tL for a more flex-

ible theoretical analysis. In Section III we show that different

values for (tL, tU ) could lead to different convergence rates for

the embedding and furthermore appropriate values for (tL, tU )
depend intrinsically on the sparsity of the network.
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3) (Skip-gram model with negative sampling): Given the n×
n matrix C and an embedding dimension d, node2vec

uses the SGNS model to learn the node embedding matrix

F ∈ R
n×d and the context embedding matrix F

′ ∈ R
n×d.

The ith row of F is the d-dimensional embedding vector

of node vi. In slight contrast to the original node2vec, in

this paper we do not require the constraint F = F
′. The

objective function of SGNS model for a givenC is defined

as

g(F,F′) =
∑

ij

Cij

[
log

{
σ(f�

i f
′
j)
}

+κEf ′
N∼Pns

[
log

{
σ(−f�

i f
′
N )

}]]
. (2.4)

Here σ is the logistic function, f i (resp. f ′
j) is the ith

(resp. jth) row of F (resp. F′), κ is the ratio of negative to

positive samples, and f ′
N is a negative sample generated

from the empirical unigram distribution Pns, i.e., f ′
N is

sampled from {f ′
j}

n
j=1 according to

Pns(f
′
N = f ′

j) =

∑n
k=1 Cjk

∑n
k=1

∑n
k′=1 Ckk′

.

The original node2vec algorithm solves for (F̂, F̂′) by

minimizing (2.4) over (F,F′) using SGD. In this pa-

per we use a matrix factorization approach, described in

Section II-C, to find (F̂, F̂′).

B. Stochastic Blockmodel

The stochastic blockmodel (SBM) of [40] is one of the most

popular generative models for network data. It often serves as a

benchmark for evaluating community detection algorithms [41].

Our theoretical analysis of node2vec/DeepWalk is situated in

the context of this model. We parametrize a K-blocks SBM in

terms of two parameters (B,Z)whereB = [buu′ ] is a symmetric

matrix of blocks connectivity and Z ∈ {0, 1}n×K is a matrix

whose rows denote the block assignments for the nodes; we use

τ(i) ∈ [K] to represent the community assignment for node i,
i.e., the ith row of Z contains a single 1 in the τ(i)th element

and 0 everywhere else. Given B and Z, the edges aii′ of G
are independent Bernoulli random variables with P[aii′ = 1] =
Bτ(i),τ(i′), i.e., the probability of connection between i and i′

depends only on the communities assignment of i and i′. Denote

by

P = [pii′ ] = ZBZ
� (2.5)

the matrix of edge probabilities. We denote a graph with ad-

jacency matrix A sampled from a stochastic blockmodel as

A ∼ SBM(B,Z), and, for any stochastic blockmodel graph,

we denote by nk the number of vertices assigned to block k. We

shall also assume, without loss of generality, that Z is ordered

by blocks:

Z :=

⎛

⎜
⎜
⎜
⎜
⎝

1n1
0 . . . 0

0 1n2
. . . 0

...
...

...
...

0 0 . . . 1nK

⎞

⎟
⎟
⎟
⎟
⎠

. (2.6)

In real-world applications the average degree of a network usu-

ally grows at a slower rate thanΘ(n). To model this phenomenon

we introduce a sparse parameter ρn that can vanish as n → ∞.

For ease of exposition, we use the following parametrization of

B that is commonly used in the literature (see e.g., [42]).

Assumption 1: There exists a fixed K ×K matrix B0 such

that B = ρnB0 with ρn � n−β for some β ∈ [0, 1).
The parameter ρn scales the edge probabilities in B. As ρn �

n−β , the average degree of the nodes in G grows at rate n1−β so

that larger values of β lead to sparser network. It is well-known

that, for sufficiently large n, if G satisfies Assumption 1 then G is

connected with high probability (see e.g., Section 7.1 of [31]).

Then P = ZBZ
� has a K ×K block structure and thus has

rank at most K.

C. Node2vec and Matrix Factorization

In general, for a fixed given embedding dimension d < n,

minimization of the objective function in (2.4) leads to a non-

convex optimization problem and the potential convergence

of SGD into local minima makes the asymptotic analysis of

F̂ quite complicated. Indeed, almost all existing results for

non-convex optimization using gradient descent or SGD only

guarantee convergence to a local minima provided that the

initial estimate is sufficiently close to this local minima, see

e.g., [43, Section 5] and [44]. We thus desire a different approach

for finding F̂, namely one for which the form of F̂ is more

readily apparent. One such approach is the use of matrix factor-

ization. For example, in the context of word2vec embedding,

[25] showed that minimization of (2.4) when C is a word-

context matrix is equivalent to a matrix factorization problem

on some elementwise non-linear transformation of C and that

this transformation can be related to the notion of pointwise

mutual information between the words. Motivated by this line of

inquiry, we consider a formulation of node2vec wherein F̂F̂′� is

a low-rank approximation of some elementwise transformation

M̃ of Ŵ; recall that Ŵ is the 1-step transition matrix for the

canonical random walk on G. We emphasize that this approach

had been considered previously in [26] and recently by [27],

[34]. The main contribution of our paper is in showing that this

matrix factorization leads to consistent community recovery for

stochastic blockmodel graphs.

We now describe the matrixM̃. In the context of the word2vec

algorithm, [25] showed that there exists some embedding di-

mension d such that the minimizer of (2.4) over F ∈ R
n×d and

F
′ ∈ R

n×d satisfies

F̂F̂
′�= M̃(C, κ) :=

[

log
Cij(

∑

ij Cij)

κ
(∑

i Cij

)(∑

j Cij

)

]

n×n

(2.7)

Using the same idea for our analysis of node2vec, we first

fixed n and show that if the number of sampled random paths

increases then M̃(C, k) converges, elementwise, to a limiting

matrix M̃0 defined below. Note that the entries of M̃0 can be

interpreted as point-wise mutual information (PMI) between the

nodes.

Theorem 1: Let n be fixed but arbitrary. Suppose G is a

connected graph on n vertices and tU is large enough such that
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the entries of
∑tU

t=tL
Ŵ

t are all positive. Applying the node2vec

sampling strategy introduced in Section II-A on G we have

M̃(C, κ)
a.s.
−→ M̃0(G, tL, tU , κ, L)

:= log

{

2|A|

κγ

tU∑

t=tL

(L− t)D−1
A
Ŵ

t

}

(2.8)

as the number of random paths r =
∑n

i=1 ri → ∞; recalling

that Ŵ = AD
−1
A

. The convergence of M̃(C, κ) to M̃0 is

element-wise and uniform over all entries of M̃(C, κ). Here

|A| denotes the sum of the entries in A and the constant γ is

defined as

γ :=
1

2
(L− tL − tU )(tU − tL + 1).

To reduce notation clutter, we will henceforth drop the depen-

dency of M̃0 on the parameters G, tL, tU , κ, L. As the value of r
is chosen purely for computational expediency, i.e., smaller val-

ues of r require sampling fewer random walks, we will thus take

the conceptual view that r → ∞ so that M̃(C, κ) → M̃0; note

that M̃0 can be constructed explicitly fromAwithout needing to

sample any random walk. Combining (2.7) and Theorem 1, we

have that, for any fixedn, there exists an embedding dimension d
such that for r → ∞, the matrices F̂ and F̂

′ are exact factors for

factorizing M̃0. Note that D−1
A
Ŵ

t is symmetric for any t ≥ 1

and hence M̃0 is symmetric.

In practice, one usually chooses d � n to reduce the noise

in the embeddings as well as combat the curse of dimension-

ality in downstream inference. Obviously, if d < n then exact

factors (F̂, F̂′) for factorizing M̃0 might no longer exist (see

e.g., [25]). The requirement that F̂F̂′� = M̃0 is, however, both

misleading and unnecessary. Indeed, as the observed graph is but

a single noisy sample generated from some true but unobserved

edge probabilities matrix P, what we really want to recover is

the factorization induced by P. More specifically, replacing Ŵ
t

and |A| with W
t and |P| in M̃0, we define

M0 = log

{

2|P|

κγ

tU∑

t=tL

(L− t)D−1
P
W

t

}

(2.9)

as the underlying-truth counterpart of M̃0; note that, similar to

M̃0, we had dropped the parameters associated with M0 for

simplicity of notations. Under the SBM setting, the true signal

matrices P and M0 are both low-rank and hence an embed-

ding dimension of d = rk(M0) � n is sufficient to recover the

factorization induced by M0.

To be more precise, recall from (2.6) that for stochastic

blockmodel graphs, the matrix P has a K ×K block structure.

Thus both W
t and D

−1
P
W

t also have K ×K block struc-

tures. Equation (2.9) then implies that M0 also has a K ×K
block structure and hence rank(M0) ≤ K. Most importantly,

theK ×K block structure ofM0 is also sufficient for recovering

the community structure inG. We will show in Section III that the

relative error, in the row-wise maximum norm, between M̃0 and

M0 converges to 0 as n → ∞. This convergence, together with

results for perturbation of eigenspaces, implies the existence of

an embedding dimension d ≤ K for which the n× d matrices

F̂ and F̂′ obtained by factorizing M̃0 lead to exact recovery of

the community structure in G.

Remark 3: If P does not arise from a stochastic blockmodel

graph thenM0 need not have a low-rank structure. Nevertheless,

we can still consider a rank-d approximation to M0 for some

d < rk(M0). Furthermore, as we will clarify in Section VI, the

bound for ‖M̃0 −M0‖max in Section III also holds for general

edge independent random graphs, provided that the entries of

P is reasonably homogeneous. Hence M̃0 has an approximate

low-rank structure if and only if M0 also has an approximate

low-rank structure.

In summary, motivated by the low-rank structure ofM0 in the

case of SBM graphs, we view the matrix factorization approach

for node2vec as finding the best rank d < n approximation F̂ ·

F̂
′
�

to M̃0 under Frobenius norm, i.e.,

(

F̂ , F̂ ′

)

= argmin
(F ,F ′)∈Rn×d·Rn×d

∥
∥
∥M̃0 −F ·F ′�

∥
∥
∥
F
. (2.10)

The minimizer of (2.10) is obtained by truncating the SVD of

M̃0. More specifically, let

M̃0 = ÛΣ̂V̂
� (2.11)

with a decreasing order of singular values in Σ̂. Then for a given

d ≤ rk(M0), let

F̂ = Ûd, F̂
′
= V̂dΣ̂d (2.12)

where Ûd ∈ R
n×d, V̂d ∈ R

n×d are the first d columns of Û

and V̂, respectively, and Σ̂d ∈ R
d×d is the diagonal matrix

containing the d largest singular values in Σ̂.

Remark 4: The appropriate embedding dimension d for fac-

torizing M̃0 depends on knowing rank(M0). but the conver-

gence of M̃0 to that of M0 does not require knowing rank(M0).
For ease of exposition we will assume that rank(M0) is known;

in practice it can be estimated consistently using an eigenvalue

thresholding procedure provided that M0 has a low-rank struc-

ture. Finally, in the context of SBM graphs and their degree-

corrected variant, community recovery using F̂ also depends on

knowing K. For simplicity, we also assume that K is known,

noting that consistent estimates for K are provided in [45], [46].

III. THEORETICAL ANALYSIS

A. Entry-Wise Concentration of Ŵt and M̃0

Recall that F̂ is obtained from the eigendecomposition of

M̃0 while the true embedding is obtained from the eigende-

composition of M0 (see (2.9)). Therefore, before studying the

community recovery using F̂ , we first study the convergence

of M̃0 to M0. In particular, we derive concentration bounds for

M̃0 −M0 in both Frobenius and infinity norms. These bounds

are facilitated by the following Theorem 2 which provides a

precise uniform bound for the entry-wise difference between the

t-step transition matrix Ŵt andWt defined using the adjacency

matrix A and the edge probabilities matrix P, respectively.

Theorem 2: Let G ∼ SBM(B,Z) where B satisfies

Assumption 1. We then have the following bounds.
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1) (Dense regime) Suppose ρn � 1. Then

∥
∥
∥Ŵ −W

∥
∥
∥
max

= OP(n
−1), (3.1)

∥
∥
∥Ŵ

2 −W
2
∥
∥
∥
max,diag

= OP(n
−1), (3.2)

∥
∥
∥Ŵ

2 −W
2
∥
∥
∥
max,off

= OP

(

log1/2 n

n3/2

)

, (3.3)

Furthermore, for t ≥ 3,

∥
∥
∥Ŵ

t −W
t
∥
∥
∥
max

= OP

(

log1/2 n

n3/2

)

, (3.4)

2) (Sparse regime) Let ρn → 0 with ρn � n−β for some β ∈
[0, 1). Then for t ≥ 4 satisfying t−3

t−1 > β we have

∥
∥
∥Ŵ

t −W
t
∥
∥
∥
max

= OP

(

log1/2 n

n3/2ρ
1/2
n

)

. (3.5)

In addition, if 0 ≤ β < 1/2 then

∥
∥
∥Ŵ

2 −W
2
∥
∥
∥
max,off

= OP

(

log1/2 n

n3/2ρn

)

,

∥
∥
∥Ŵ

3 −W
3
∥
∥
∥
max

= OP

(

log1/2 n

n3/2ρn

)

. (3.6)

Remark 5: Throughout this paper we assume that tL ≥ 2
instead of tL ≥ 1 as used in the original node2vec formulation.

The rationale for this assumption is as follows. Recall the

definition of M̃0 in (2.8). If we allow t to start from 1 in the

sum
∑tU

t=tL
(L− t) · (D−1

A
Ŵ

t) then the term Ŵ might lead to

a convergence rate of M̃0 to M0 that is slower than that given in

(3.7). For example in the dense regime (3.1) and (3.3) show that

the entries of Ŵ −W are of larger magnitude than the entries

of Ŵt −W
t for t ≥ 2.

Before discussing the convergence rate of M̃0 to M0 we first

find a value of tU such that, for large values of n, M̃0 is well de-

fined with high probability. We note that the entries of {Wt}t≥1

are uniformly of order Θ(n−1). Then, under the dense regime,

t = 2 is sufficient to guarantee that all the off-diagonal entries of

Ŵ
t are uniformly of orderΩ(n−1 − n−3/2 log1/2 n) = Ω(n−1)

with high probability (c.f. (3.2)) while t = 3 is sufficient to

guarantee that all entries of Ŵt are of order Ω(n−1) with high

probability (c.f. (3.3)). If we are under the sparse regime with

β < 1/2 then these same values of t ≥ 2 are still sufficient

to guarantee that the entries of Ŵ
t are of order Ω(n−1) (c.f.

(3.5) and (3.6)). Finally, if we are under the sparse regime

with β ≥ 1/2 then choosing t ≥ 4 with t−3
t−1 > β is sufficient to

guarantee that the entries Ŵt are uniformly of order Ω(n−1 −

n−3/2ρ
−1/2
n log1/2 n) = Ω(n−1) with high probability. Now re-

call that the matrix M̃0 is of the form

log

{

2|A|

κγ

tU∑

t=tL

(L− t)D−1
A
Ŵ

t

}

We therefore have, for tU ≥ 3 in the dense regime, tU ≥ 2 in the

not too sparse regime of β < 1/2, or for tU−3
tU−1 > β in general,

that the entries of the inner sum are bounded away from 0 with

high probability. For the dense regime, the condition can be

further relaxed to tU ≥ 2, as a dense graph has a diameter of 2

and thus all entries of Ŵ2 are uniformly larger than 0 with high

probability; see Theorem 10.10 in [31]. Therefore, with high

probability, the elementwise logarithm is well-defined for all

entries of M̃0. Given the existence of M̃0, the following result

shows the convergence rate of M̃0 to M0.

Theorem 3: Suppose G ∼ SBM(B,Θ) satisfies Assump-

tion 1, and tU ≥ tL ≥ 2 where tL is chosen as described above.

Then M̃0 is well-defined with high probability. Denote

∆ = max{‖M̃0 −M0‖F, ‖M̃0 −M0‖∞}.

We then have the following bounds.

1) (Dense regime) Let ρn � 1. Then for tL ≥ 2 we have

∆ = OP

(

n1/2 log1/2 n
)

. (3.7)

2) (Sparse regime) Let ρn → 0 with ρn � n−β for some β ∈
[0, 1). Then for tL satisfying tL−3

tL−1 > β we have

∆ = OP

(

n1/2ρ−1/2
n log1/2 n

)

. (3.8)

In addition, if 0 ≤ β < 1/2 then for tL ≥ 2 we have

∆ = OP

(

n1/2ρ−1
n log1/2 n

)

. (3.9)

In both regimes we have ‖M0‖F = Θ(n) and ‖M0‖∞ =
Θ(n).

In summary, as β increases (equivalently, as ρn decreases) so

that the graph G becomes sparser, we could (1) still guarantee

the existence of M̃0 when tU is sufficiently large, and (2) con-

trol the convergence rate of ‖M̃0 −M0‖F and ‖M̃0 −M0‖∞
relative to ‖M0‖F and ‖M0‖∞, respectively, through increasing

tL.

B. Subspace Perturbations and Exact Recovery

Theorem 3 implies that M̃0 is close to M0 under both Frobe-

nius and infinity norms, i.e., ‖M̃0 −M0‖�/‖M0‖� = oP(1) for

	 ∈ {F,∞} and sufficiently large n. Now, by (2.6), M0 has a

K ×K block structure and hence rk(M0) ≤ K. Furthermore

the eigenvectors of M0 associated with its non-zero eigenvalues

is sufficient for recovering the community assignments induced

by Z. The following result, which follows from bounds for

‖M̃0 −M0‖∞ given in Theorem 3 together with perturbations

bounds for invariant subspaces using 2 → ∞ norm [36], shows

that the embedding F̂ given by the leading eigenvectors of M̃0

is uniformly close to that of the leading eigenvectors of M0.

Therefore K-means or K-medians clustering on the rows of

F̂ will recover the community membership for every node, i.e,

attain strong or exact recovery of Z.

Theorem 4: Under the condition of Theorem 3, let ÛΣ̂Û
�

and UΣU
� be the eigen-decomposition of M̃0 and M0, re-

spectively. Let d = rk(M0) and note that U is a n× d matrix.

Let F̂ = Ûd be the matrix formed by the columns of Û corre-

sponding to the d largest-in-magnitude eigenvalues of M̃0. For
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a n× d matrix Z with rows Z1, Z2, . . . , Zn let ‖Z‖2→∞ denote

the maximum �2 norms of the {Zi}, i.e.,

‖Z‖2→∞ = max
i

‖Zi‖2.

We then have the following results.

i) (Dense regime) Let ρn � 1. Then for tL ≥ 2 we have

min
T∈Od

∥
∥
∥F̂T−U

∥
∥
∥
F
= OP

(

log1/2 n

n1/2

)

min
T∈Od

∥
∥
∥F̂T−U

∥
∥
∥
2→∞

= OP

(

log1/2 n

n

)

. (3.10)

ii) (Sparse regime) Let ρn → 0 with ρn � n−β for some

β ∈ [0, 1/2). If tL ≥ 2, we have

min
T∈Od

∥
∥
∥F̂T−U

∥
∥
∥
F
= OP

(

log1/2 n

n1/2ρn

)

min
T∈Od

∥
∥
∥F̂T−U

∥
∥
∥
2→∞

= OP

(

log1/2 n

nρn

)

(3.11)

iii) (Sparse regime) Let ρn → 0 with ρn � n−β for some

β ∈ [0, 1). If tL−3
tL−1 > β, we have,

min
T∈Od

∥
∥
∥F̂T−U

∥
∥
∥
F
= OP

(

log1/2 n

(nρn)1/2

)

min
T∈Od

∥
∥
∥F̂T−U

∥
∥
∥
2→∞

= OP

(

log1/2 n

nρ
1/2
n

)

. (3.12)

Given the above convergence rates, clustering the rows of F̂

using either K-means or K-medians will, with high probablity,

recover the membership of every node in G.

Remark 6: Settings (ii) and (iii) in Theorem 4 both con-

sider the sparse regime but setting (ii) focuses on the case

where ρn = ω(n−1/2) and exact recovery is achieved whenever

tL ≥ 2 while setting (iii) considers the more general scenario

of ρn = ω(n−β) for any fixed but arbitrary β < 1. We note that

for ease of exposition we had imposed tL−3
tL−1 > β for setting (iii)

but this condition can be relaxed to

tL − 2

tL
> β, (3.13)

under which we still have M̃0 is well-defined with high proba-

bility, and have a more complicated bound of

min
T∈Od

∥
∥
∥F̂T−U

∥
∥
∥
2→∞

� OP

{

log1/2 n

n3/2ρ
1/2
n

+ (nρn)
−tL/2

}

(see (B.71)). The above bound is still sufficient to guarantee that

running K-means or K-medians on the rows of F̂ will recover

the membership of every node in G with high probability; see

Section B.4 in the Supplementary File, available online, for a

rigorous proof.

A recent preprint [34] which appeared on arXiv after the

first version of our paper also studied community recovery

using SVD-based DeepWalk/node2vec and they have a similar

requirement for tL as (3.13); see (3.1) in [34]. For comparison

we note that [34] only derived the convergence rate of F̂ under

Frobenius norm, and thereby prove a weak recovery result which

allows at most o(n1/2) nodes to be misclassified. In contrast the

max-norm concentration of Ŵt in Theorem 2 helps us derive a

2 → ∞ norm convergence for F̂ , based on which we achieved

the much stronger exact recovery (i.e., there are no mis-classified

nodes). Finally we conjecture that (3.13) for tL is sufficient but

not necessary. Our simulation results in Section IV agree with

this conjecture and we leave its verification for future work.

Remark 7 (Extension to DCSBM): The exact recovery re-

sults in Theorem 4 can also be extended to the case of

degree-corrected SBM graphs [47], [48], [49]. Recall that

the edge probabilities for a DCSBM is P = ΘZBZ
T
Θ

where Θ = diag(θ1, . . . , θn) is the diagonal matrix containing

the degree-correction parameters. DCSBM allows heteroge-

neous edge probabilities within each community and thus yields

a more flexible model in comparison with SBM. Section A.4 and

A.5 in the Supplementary File, available online, demonstrates

how to extend the technical derivations for Theorem 4 to the

DCSBM case provided that the {θi} are sufficiently homoge-

neous, i.e., that maxi θi/mini θi = O(1).

IV. SIMULATION

We now present numerical experiments for the matrix factor-

ization perspective of node2vec/DeepWalk. These experiments

complement our theoretical results in Section III and illustrate

the interplay between the sparsity of the graphs, the choice

of window sizes, and their combined effects on the nodes

embedding.

A. Error Bounds for ‖M̃0 −M0‖F

We first compare the large-sample empirical behavior

of ‖M̃0 −M0‖F against the theoretical bounds given in

Theorem 3. We shall simulate undirected graphs generated from

a 2-blocks SBM with parameters

B(ρn) :=

(

0.8ρn 0.3ρn

0.3ρn 0.8ρn

)

, π = (0.4, 0.6), (4.1)

and sparsity ρn ∈ {1, 3n−1/3, 3n−1/2, 3n−2/3}. While this two

blocks setting is quite simple, it nevertheless displays the effect

of the sparsity ρn and the window size (tL, tU ) on the upper

bound for ‖M̃0 −M0‖F.

For each value of n and sparsity ρn we run 100 indepen-

dent replications where, in each replicate, we generate G ∼
SBM(B(ρn),Θn), and calculate M̃0 for different choices of

(tL, tU ). In particular, we consider two types of window size,

namely tU = tL + 1 and tU = tL + 3. While tU = tL + 1 is

not commonly used in practice, for simulation purpose this

choice clearly show the effects of the random walks’ length t
on the error ‖M̃0 −M0‖F. In contrast, the choice tU = tL + 3
is more realistic but also partially obfuscates the effect of t on
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Fig. 1. Sample means and 95% empirical confidence intervals for ε1
(
M̃0

)
based on 100 Monte Carlo replicates under different settings of n, ρn and (tL, tU ),

with tU − tL = 1. The X-axis represents different n and Y -axis represents the relative error. The labels on the left-hand side of curves/empirical confidence bands
denote different choices of values for (tL, tU ).

Fig. 2. Sample means and 95% empirical confidence intervals for ε2
(
M̃0

)
based on 100 Monte Carlo replicates under different settings of n, ρn and (tL, tU ),

with tU − tL = 1. The X-axis represents different n and Y -axis represents the relative error. The labels on the left-hand side of curves/empirical confidence bands
denote different choices of values for (tL, tU ).

‖M̃0 −M0‖F. Recall that, from the discussion prior to Theo-

rem 3, sparser values of ρn require larger values of tU to guar-

antee that M̃0 is well-defined. The choices for (ρn, n, (tL, tU ))
in the simulations are summarized below.
� If ρn ≥ 3n−1/2 then n ∈ {100, 200, 300, . . . 1500}. We

chose 2 ≤ tL ≤ 7 when tU = tL + 1 and chose 2 ≤ tL ≤
5 when tU = tL + 3.

� If ρn = 3n−2/3 then n ∈ {800, 900, . . . , 4000}. We chose

4 ≤ tL ≤ 7when tU = tL + 1 and 3 ≤ tL ≤ 5when tU =
tL + 3.

We calculate two relative error criteria for the generated M̃0,

namely

ε1(M̃0)=
‖M̃0−M0‖F

‖M0‖F
and ε2(M̃0)=

‖M̃0−M0‖F

n1/2ρ
−1/2
n log1/2 n

.

We expect that, as n increases, the first criterion converges to 0

while the second criterion remains bounded.

The results of our experiments are presented in Figs. 1 and

2 in the main text and Figs. D1 and D2 in the Supplementary

File, available online. More specifically, Figs. 1 and D1 show the

mean and 95% empirical confidence intervals of the empirical

errors ε1(M̃0) across 100 Monte Carlo replicates under different

simulation settings, where tU − tL is set to 1 and 3, respectively.

Similarly, Figs. 2 and D2 illustrate the empirical errors ε2(M̃0).
Relative Error 1 (ε1(M̃0)): We first confirm the convergence

of ε1(M̃0) to 0. Figs. 1 and D1 show the means and 95% confi-

dence intervals for ε1(M̃0) based on 100 Monte Carlo replicates

for different values of ρn, (tL, tU ). These figures indicate the

following general patterns as predicted by the theoretical results

in Theorem 3.
� The error ε1(M̃0) is smallest in the dense case and deteri-

orates as the sparsity factor ρn decreases.
� The error also depends on (tL, tU ) with larger values of

tU − tL leading to smaller ε1(M̃0)
� If the window size is too small, e.g., (tL, tU ) = (2, 3) or

(tL, tU ) = (2, 5), then M̃0 is often times not well-defined.

Relative Error 2 (ε2(M̃0)): Figs. 1 and D1 corroborate our

theoretical results in Section III. Nevertheless, there are two

additional questions we should consider. The first is whether

or not the bound ‖M̃0 −M0‖F = OP

(

n1/2ρ
−1/2
n log1/2 n

)

in

Theorem 3 is tight and, if it is tight, the second is whether or

not the condition tL−3
tL−1 > β is necessary to achieve this rate.

Analogous to the previous two figures, Figs. 2 and D2 show the

means and 95% empirical confidence intervals for the relative
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TABLE II
PROPORTIONS OF TIMES THAT SGD-BASED AND SVD-BASED NODE2VEC VARIANTS PERFECTLY RECOVER ALL NODES’ MEMBERSHIPS OVER 100 MONTE CARLO

REPLICATES, UNDER DIFFERENT SETTINGS OF n, ρn AND tU

error ε2(M̃0) over 100 Monte Carlo replicates for different

values of ρn and (tL, tU ). From these simulations we can answer

the above questions as follows.
� If ρn � n−β is such that β ≤ tL−3

tL−1 then ε2(M̃0) appears

to converge to a constant as n increases. There is thus ev-

idence that the rate n1/2ρ
−1/2
n log1/2 n for ‖M̃0 −M0‖F

is optimal. Nevertheless, if tL is large relative to ρn,

e.g., ρn ∈ {3n−1/3, 3n−1/2} and tL ≥ 6, then ε2(M̃0)
appears to converges to 0 which suggests that for a fixed

β the error rate for ‖M̃0 −M0‖F can be smaller than

n1/2ρ
−1/2
n log1/2 n; this might be due to the convergence

of Ŵ
t and W

t towards the stationary distributions as t
increases.

� For cases such as (tL, tU ) ∈ {(3, 4), (3, 6)} and ρn =
3n−1/2 or (tL, tU ) ∈ {(4, 5), (3, 6)} and ρn = 15n−2/3,

the tL’s do not satisfy tL−3
tL−1 > β. Nevertheless, ε2(M̃0)

still appears to converge to a constant as n increases.

This suggests that tL−3
tL−1 > β is sufficient but possibly not

necessary for the bound in (3.8) to hold. On the other

hand, for fixed n and ρn, the error ‖M̃0 −M0‖F generally

decreases as tU − tL increases.
� Finally if (tL, tU ) ∈ {(2, 3), (2, 5)} and ρn ∈
{3n−1/3, 3n−1/2} then ε2(M̃0) increases with n. This

supports the claim in Theorem 3 of a phase transition for

the error rate of ‖M̃0 −M0‖F as tL increases.

In summary our simulation results support the conclusion of

Theorem 3. In particular, the error rate in Theorem 3 is sharp and

the condition tL−3
tL−1 > β is sufficient but perhaps not necessary.

B. Exact Recovery of Community Structure

Theorem 4 together with Remark 6 showed that F̂ combined

with K-means/medians can correctly recover the memberships

of all nodes in a SBM with high probability. We demonstrate

this result for two-block SBMs with block probabilities being

either B(ρn) as given in (4.1) or

B
�(ρn) :=

(

0.3ρn 0.8ρn

0.8ρn 0.3ρn

)

.

Note that B(ρn) and B
�(ρn) corresponds to an assortative and a

dis-assortative structure, respectively. Given specific setting of

B, n, ρn, we randomly sample 100 graphs where each vertex

is randomly assigned to one of the two blocks with equal

probability and evaluate the membership recovery performances

of the original node2vec [19] (based on SGD) and node2vec

using matrix factorization (as described [26], [27], [34] and

this paper) followed by clustering using K-means. We set the

window sizes to tU ∈ {5, 8} and choose κ = 5 and L = 200.

For the original node2vec we also set tL = 1 as the default and

r1 = · · · = rn = 200, while for the SVD-based node2vec we

set tL = tU − 3. We report in Tables II and III the proportions

of times for the 100 simulated graphs that these two variants of

the node2vec algorithm correctly recover the memberships of all

nodes. More specifically, let the true and estimated community

labels be denoted by {τ(i)}ni=1 and {τ̂(i)}ni=1, respectively. The

accuracy of τ̂ is defined as

Accuracy(τ̂) = min
ξ

#{i|ξ(τ̂(i)) �= τ(i)}

n
(4.2)

where the minimization is over all permutations ξ of {1, . . . ,K}.

Thus τ̂ is an exact recovery if Accuracy(τ̂) = 0.

The numerical results in Tables II and III show that as n
increases, both the original and SVD-based node2vec are more

likely to perfectly recover memberships of all nodes in the

graph, under all different settings of ρn,B, tU . Furthermore, the

frequency of exact recovery for ρn = 3n−1/3 is considerably

higher than that for ρn = 3n−1/2. This is consistent with the

results in Theorem 4 as a smaller magnitude for ρn results in

a slower convergence rate for F̂ under both the Frobenius and

2 → ∞ norms. In addition, the exact recovery performance of

SVD-based node2vec when ρn � n−1/2 and (tL, tU ) = (2, 5)
suggests that the tL threshold for Theorem 4 in (3.13) is possibly

not sharp as tL−2
tL

= 0 < β = 1/2. Finally we note that the

SVD-based node2vec has better empirical performance than the

original node2vec in these experiments as well as in the experi-

ments for three-block SBMs and DCSBMs in Section IV-C. This

is consistent with the discussion in Section II. Indeed, the entries

of M̃0 are the limit of those for the original node2vec when the

number of sampled paths r → ∞ and furthermore M̃0 has an

approximately low-rank structure asn increases. In other words,

at least for SBM and DCSBM graphs, the original node2vec can

be viewed as a computationally efficient approximation to the

SVD-based embeddings of M̃0.

C. Embedding Performance

In this section we perform more numerical experiments to take

a closer look at the finite-sample performance of community

detection, using both the original and SVD-based node2vec em-

beddings. We consider both three-blocks SBM and three-blocks

DCSBM according to the following parameter settings.
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TABLE III
PROPORTIONS OF TIMES THAT SGD-BASED AND SVD-BASED NODE2VEC VARIANTS PERFECTLY RECOVER ALL NODES’ MEMBERSHIPS OVER 100 MONTE CARLO

REPLICATES, UNDER DIFFERENT SETTINGS OF n, ρn AND tU

Fig. 3. Community detection accuracy of node2vec followed by K-means for SBM graphs. The boxplots of the accuracy for each value of n, ρn and tU are
based on 100 Monte Carlo replications. Boxplots with the slash pattern (resp. dot pattern) summarized the results for the original (resp. SVD-based) node2vec.
Different colors (yellow, green, blue) represent the algorithms implemented for different choices of tU ∈ {5, 6, 8}. The first and second row plot the results when
the block probabilities for the SBM is B1 and B2, respectively.

Stochastic Blockmodel: The three-blocks SBMs have block

probabilities being either

B1 =

⎛

⎜
⎝

0.8 0.4 0.3

0.4 0.7 0.5

0.3 0.5 0.9

⎞

⎟
⎠ or B2 =

⎛

⎜
⎝

0.8 0.5 0.5

0.5 0.8 0.5

0.5 0.5 0.8

⎞

⎟
⎠ ,

(4.3)

and block assignment probabilities π = (0.3, 0.3, 0.4).
Degree-Corrected Stochastic Blockmodel: The DCSBM is a

direct generalization of SBMs with the only difference being

that each node i has a degree-correction parameter θi and that

the probability of connection between nodes i and j is

pij = θiθjBτ(i)τ(j)

instead of pij = Bτ(i)τ(j) as in the case of SBMs. For more on

DCSBMs and their inference, see [47], [48], [49]. We generate

the degree correction parameters θi as

θi = |Zi|+ 1− (2π)−1/2, Z1, . . . , Zn
iid
∼ N (0, 0.25) (4.4)

This procedure for generating θi is the same as that in [49].

For each value of n and ρn we perform 100 Monte Carolo

replications where we generate graphs from the above SBM

and DCSBM models and test both the original node2vec and

the SVD-based node2vec with tU = 5, 6, 7. Other settings of

the node2vec algorithms are similar to Section IV-B and the

accuracy is measured via (4.2). The results for the SBM graphs

are presented in Fig. 3 of the main paper while those for the

DCSBM graphs are presented in Fig. D3 of the Supplementary

File, available online. We now summarize the main trend in these

figures.
� We get exact recovery when ρn = 1 in both Fig. 3 and

Fig. D3, thereby illustrating that the condition tL ≥ 2 in

Theorem 4 is sufficient for exact recovery in the dense

regime.
� When ρn → 0 faster (i.e., the network is more sparse), we

need a larger n to achieve the same level of accuracy. This

is consistent with Theorem 4 as the convergence rate for

F̂ depends on nρn.
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Fig. 4. Visualizations of the SVD-based node2vec embeddings (first row) and original node2vec embeddings (second row) with different choices of tU .

The embeddings are for a single realization of a SBM graph on n = 600 vertices with block probabilities matrix B1 (see (4.3)), sparsity ρn = 3n−1/2, and
block assignment probabilities π = (0.3, 0.3, 0.4). The embeddings in panels (a)–(c) and (e)–(g) are colored using the true membership assignments while the
embeddings in panels (d) and (h) are colored using the K-means clustering. Accuracy of the recovered memberships for the different embeddings followed by
K-means clustering are also reported for panels (a)–(c) and (e)–(g).

� When B = B2 the original node2vec and SVD-based

node2vec have very similar accuracy and thus our theo-

retical analysis of SVD-based node2vec closely reflects

the performance of the original node2vec.
� When B = B1 the SVD-based node2vec has higher ac-

curacy compared to the original node2vec. However, the

embeddings generated by these algorithms are still quite

similar. A plausible reason for why the original node2vec

has lower accuracy is because the downstream K-means

clustering is sub-optimal for these embeddings. We il-

lustrate this by visualizing the embeddings for two real-

izations of the SBM and DCSBM graphs where we set

ρn = 3n−1/2, n = 600. These visualizations (see Fig. 4

in the main text and Fig. D4 in the Supplementary File,

available online) provide us with the following intuitions:

(i) the original and SVD-based node2vec variants yield

similar embedding patterns; (ii) for SVD-based node2vec,

increasing the window size could help separate nodes from

different communities and thereby improve the community

detection accuracy; (iii) although the embeddings appear

similar,K-means clustering yields more accurate member-

ship recovery for the SVD-based node2vec compared to the

original SVD-based node2vec embeddings. For example,

comparing panels (c) and (d) in Fig. 4 we see thatK-means

clustering recovers most of the membership assignments

for embeddings from the SVD-based node2vec. In contrast,

panels (g) and (h) in Fig. 4 show thatK-means clustering is

less accurate for embeddings from the original node2vec.

Indeed, if we replace K-means with Gaussian mixtures

model (GMM) [50], [51] in panels (g) and (h) of Fig. 4

we increase the clustering accuracy from 0.6 to 0.84 which

is close to that of 0.89 for the SVD-based node2vec (see

Fig. D5 of the Supplementary File, available online).

V. APPLICATIONS TO REAL-WORLD NETWORKS

We test the membership recovery performance of node2vec

on three real-world networks, namely, the Zachary’s karate

graph (henceforth, ZK) [52], political blogs graph (henceforth,

PB) [53], and Wikipedia graph (henceforth, WIKI) [8]. In each

of the three graphs, the memberships of all vertices have been

assigned based on specific real-world meanings without missing.

Both ZK and PB contain 2 communities, while WIKI contains

6 communities. ZK is connected with 34 vertices. By conven-

tions [8], [47], we ignore the directions of edges and focus on the

largest connected components of PB and WIKI, which contain

1222 and 1323 vertices, respectively. We refer interested readers

to the references above for more detailed information about the

three real-world network datasets.

For each network dataset, we embed the vertices into the

K-dimensional Euclidian space through both the SVD-based

and original node2vec, and then cluster the embeddings by

K-means to estimate the memberships of each vertex; K is

chosen as the exact number of memberships in each graph. We

test three window sizes tU ∈ {10, 15, 20}. Similar to Section IV,

we set tL = tU − 5 for the SVD-based node2vec and tL = 1 for
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TABLE IV
UPPER TABLE REPORTS THE MEMBERSHIP RECOVERY ACCURACY OF DIFFERENT EMBEDDING METHODS ON THE ZK AND PB NETWORK DATASETS

the original node2vec by default. To measure the membership

recovery performances, we calculate the accuracies between the

estimated memberships and the real memberships for ZK and

PB; see the definition of accuracy in (4.2). For WIKI, because

the criterion of accuracy becomes computationally inflexible,

we alternatively use the adjusted rand index (ARI). Similar

to the accuracy, ARI = 1 indicates the estimated memberships

perfectly recover the real memberships, while ARI = 0 indicates

the estimated memberships are assigned randomly. We also com-

pare performances of node2vec algorithms with other popular

spectral embedding algorithms, including the spectral clustering

based on adjacency and normalized Laplacian [1], [7], [8], and

the spectral clustering with projection onto the sphere [54]; for

all methods, we use K-means for the downstream clustering.

The recovery results are summarized in Table IV. The SVD-

based and original node2vec algorithms have similar perfor-

mances, which are generally better than or equivalently to other

methods in all three datasets. In addition, we note the PB dataset

is better modeled as a DCSBM [47]. Recall that, as shown in

Remark 4, node2vec can theoretically attain exact recovery for

DCSBMs and hence the high-accuracy of node2vec on the PB

dataset is expected. Similarly, [54] shows a valid theoretical

guarantee of the spectral clustering with a spherical projection,

when applied to the DCSBM graph. This can also be verified by

the high accuracy of ASE+SP on PB as shown in Table IV.

VI. DISCUSSION

In this paper we derive perturbation bounds and show exact

recovery for the DeepWalk and node2vec (with p = q = 1)

algorithms under the assumption that the observed graphs are

instances of the stochastic blockmodel graphs. Our results are

valid under both the dense and sparse regimes for sufficient

large tL andn. The simulation results corroborate our theoretical

findings; in particular, they show that increasing the sample size

and window size can improve the community detection accuracy

for both sparse SBM and DCSBM graphs.

We emphasize that our paper only include real data analysis

on simple graphs with a small number of nodes just to illustrate

the agreement between our theoretical results and the empir-

ical performance of DeepWalk/node2vec. This is intentional

as DeepWalk and node2vec are widely-used algorithms with

numerous papers demonstrating their uses for analyzing real

graphs in diverse applications. In contrast, our paper is one of

a few that addresses the theory underpinning these algorithms

and is, to the best of our knowledge, the first paper to estab-

lish consistency and exact recovery for SBMs and DCSBMs

using these random-walk-based embedding algorithms. Note

that exact recovery for SBMs can also be achieved using other

algorithms such as those based on semidefinite programming,

variational Bayes, and spectral embedding; see [41], [56], [57]

for a few examples.

There are several open questions for future research:

1) In this paper we only consider the case of p = q = 1 for

node2vec embedding (recall that p = q = 1 is the default

parameter values for node2vec). If p �= 1 and/or q �= 1
then the transformed co-occurrence matrix M̃0 can no

longer be expressed in terms of the adjacency matrix A

or the transition matrix Ŵ
t; this renders the theoretical

analysis for general values of p and q substantially more

involved. One potential approach to this problem is to

consider, similar to the notion of the non-backtracking

matrix in community detection for sparse SBM [58], a

transition matrix associated with the edges ofG as opposed

to the transition matrix associated with the vertices in

G. Indeed, if p �= q then the transition probability from

a vertex v to another vertex w depends also on the vertex,

say u, preceding v in the random walk. i.e., the transition

probability for (v, w) depends on the choice of (u, v).
2) In this paper we focus on error bounds (in Frobe-

nius and infinity norms) of node2vec/DeepWalk embed-

ding for stochastic blockmodel graphs and their degree-

corrected variant. An important question is whether or

not stronger limit results are available for these algo-

rithms. For example spectral embeddings of stochastic

blockmodel graphs obtained via eigendecompositions of

either the adjacency or the normalized Laplacian matrices

are well-approximated by mixtures of multivariate Gaus-

sians; see [29], [30] for more precise statements of these

results and their implications for statistical inference in

networks. It is thus natural to inquire if normal approx-

imations also holds node2vec/Deepwalk. We ran several
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one-round simple simulations to visualize the embeddings

of node2vec/DeepWalk when the graphs are sampled from

a SBM with

B =

(
0.42 0.42
0.42 0.5

)

and π = (0.4, 0.6). (6.1)

The results are summarized in Fig. D6 in the Supplemen-

tary File, available online. In particular, when n is large

these embeddings are also well-approximated by a mix-

ture of multivariate Gaussians. We leave the theoretical

justification of this phenomenon for future work.

3) As we allude to in the introduction, for simplicity we only

consider (degree-corrected) stochastic blockmodel graphs

in this paper. For the more general inhomogeneous Erdős-

Rényi random graphs model, we expect that Theorems 2

and 3 still hold, provided that the edge probabilities are

sufficiently homogeneous, i.e., the minimum and maxi-

mum values for the edge probabilities values are of the

same order as n increases. However, the error bounds in

Theorem 4 might no longer apply since the entry-wise

logarithmic transformation of the co-occurrence matrices

can lead to the setting wherein M0 is no longer low-rank,

e.g., the rank ofM0 can be as large asn the number of ver-

tices. Furthermore, even when M0 have an approximate

low-rank structure, due to the logarithmic transformation

there is still the question of how the embedding of M0

relates to the underlying latent structure in P.

4) Finally, in this paper we mainly focus on the node2vec

and DeepWalk embedding through matrix factorization

(SVD-based node2vec), but also compare the SVD-based

node2vec with the original node2vec in the numerical

experiments. As we mentioned in the introduction the

original node2vec algorithm uses (stochastic) gradient

descent (GD/SGD) to optimize (2.4) and obtain the em-

bedding. As (2.4) is non-convex there can be a large

number of local-minima, thereby making the theoretical

analysis intractable unless we assume that the initial es-

timates for GD/SGD are sufficiently close to the global

minima; see e.g., [43], [44] for some examples of results

relating the closeness of the initial estimates and the

convergence rate of GD/SGD. One popular initialization

scheme for GD/SGD is via spectral methods and thus

we can consider using the SVD-based embedding F̂ as

a “warm-start“ for (2.4). We leave the precise conver-

gence analysis of the resulting GD/SGD iterations to the

interested reader. We note, however, that while this is

certainly an interesting technical problem, the practical

benefits might be limited. Indeed, the theoretical results in

Section III guaranteed perfect recovery using F̂ while the

empirical evaluations in Sections IV-B and IV-C suggest

that clustering based on F̂ is comparable or even better

than that of the original node2vec. In other words, as the

main objective is to recover the structure in M0 induced

by P, it is certainly possible that optimizing (2.4) does

not lead to better inference performance due to the noise

in using A as a replacement for P.
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