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A Theoretical Analysis of DeepWalk and Node2vec
for Exact Recovery of Community Structures
in Stochastic Blockmodels

Yichi Zhang

Abstract—Random-walk-based network embedding algorithms
like DeepWalk and node2vec are widely used to obtain euclidean
representation of the nodes in a network prior to performing down-
stream inference tasks. However, despite their impressive empirical
performance, there is a lack of theoretical results explaining their
large-sample behavior. In this paper, we study node2vec and Deep-
Walk through the perspective of matrix factorization. In particular,
we analyze these algorithms in the setting of community detection
for stochastic blockmodel graphs (and their degree-corrected vari-
ants). By exploiting the row-wise uniform perturbation bound for
leading singular vectors, we derive high-probability error bounds
between the matrix factorization-based node2vec/DeepWalk em-
beddings and their true counterparts, uniformly over all node
embeddings. Based on strong concentration results, we further
show the perfect membership recovery by node2vec/DeepWalk,
followed by K -means/medians algorithms. Specifically, as the net-
work becomes sparser, our results guarantee that with large enough
window size and vertex number, applying K -means/medians on the
matrix factorization-based node2vec embeddings can, with high
probability, correctly recover the memberships of all vertices in a
network generated from the stochastic blockmodel (or its degree-
corrected variants). The theoretical justifications are mirrored in
the numerical experiments and real data applications, for both the
original node2vec and its matrix factorization variant.

Index Terms—Stochastic blockmodel, network embedding,
perfect community recovery, node2vec, DeepWalk, matrix
factorization.

1. INTRODUCTION

IVEN a network G, a popular approach for analyzing
G G is to first map or embed its vertices into some low
dimensional euclidean space and then apply machine learning
and statistical inference procedures in this space. Through this
embedding process, multiple tasks could be conducted on the
network, such as community detection (e.g., [1], [2]), link pre-
diction (e.g., [3]), node classification (e.g., [4], [5]) and network
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visualization (e.g., [6]). There has been a large and diverse
collection of network embedding algorithms proposed in the
literature, including those based on spectral embedding [7], [8],
[9], multivariate statistical dimension reduction [10], [11], and
neural network [12], [13], [14]. See [15], [16], [17] and [18] for
recent surveys of network embedding and graph representation
learning.

In recent years there has been significant interest in network
embeddings based on random walks. The most well-known
examples include DeepWalk [4] and node2vec [19]. These al-
gorithms are computationally efficient and furthermore yield
impressive empirical performance in many different scientific
applications including recommendation systems [20], biomed-
ical natural language processing [21], human protein identifi-
cation [22], traffic prediction [23] and city road layout model-
ing [24]. Nevertheless, despite their wide-spread use, there is
still a lack of theoretical results on their large-sample prop-
erties. In particular, it is unclear what the node embeddings
represent as well as their behavior as the number of nodes
increases.

Theoretical properties for DeepWalk, node2vec, and related
algorithms had been studied previously in the computer science
community. The focus here had been mostly on the convergence
of the entries of the co-occurrence matrix as the lengths and/or
number of random walks go to infinity. For example, motivated
by the analysis in [25] for word2vec, the authors of [26], [27]
showed that DeepWalk and node2vec using the skip-gram model
with negative sampling is equivalent to factorizing a matrix
whose entries are obtained by taking the entry-wise logarithm
of a co-occurrence matrix, provided that the embedding di-
mension d is sufficiently large (possibly exceeding the number
of nodes n). These authors also derived the limiting form of
the entries of this matrix as the length of the random walks
goes to infinity. These results were further extended in [28] to
yield finite-sample concentration bounds for the co-occurrence
entries. Note, however, that the above-cited works focused ex-
clusively on the case of a fixed graph and thus do not provide
results on the large sample behavior of these algorithms as n
increases.

The statistical community, in contrast, had extensively studied
the large-sample properties of graph embeddings based on ma-
trix factorization. However the embedding algorithms consid-
ered are almost entirely based on singular value decomposition
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(SVD) of either the adjacency matrix or the Laplacian matrix and
its normalized and/or regularized variants. For example, in the
setting of the popular stochastic blockmodel random graphs, [7]
and [8] derived consistency results for a truncated SVD of the
normalized Laplacian matrix and the adjacency matrix. Subse-
quently [29], [30] strengthened these results by providing central
limit theorems for the components of the eigenvectors of either
the adjacency matrix or the normalized Laplacian matrix under
the more general random dot product graphs model. As Deep-
Walk and node2vec are based on taking the entry-wise logarithm
of a random-walk co-occurrence matrix, the techniques used in
these cited results do not readily translate to this setting.

A. Contributions of the Current Paper

The current paper studies large-sample properties of random-
walk-based embedding algorithms. We first present convergence
results for the embeddings of DeepWalk and node2vec in the
case of stochastic blockmodel graphs and their degree-corrected
variant. We then show that running K-means or K-medians
on the resulting embeddings is sufficient for exact recovery
of the latent community assignments. Our theoretical results
thus provide a bridge between previous results in the computer
science community and their statistics counterparts.

‘We emphasize that our focus on stochastic blockmodel graphs
is done purely for ease of exposition. Indeed, most of our
results continue to hold for the more general inhomogeneous
Erd6s-Rényi (IER) random graphs model [31], [32], provided
that the edge probabilities are sufficiently homogeneous, i.e., the
minimum and maximum values for the edge probabilities are of
the same order (possibly converging to 0) as n increases; recall
that IER is one of the most general models for edge independent
random graphs. In particular, we can show that the co-occurrence
matrices constructed from the sampled networks is uniformly
close (entrywise) to that for the true but unknown edge probabil-
ities matrices. However, as IER random graphs need not possess
low-dimensional structure (even when n increases), it is not
clear what the embeddings obtained from these co-occurrence
matrices represent. See Section VI for further discussion.

We now outline our approach. The original node2vec and
DeepWalk algorithms are based on optimizing a non-convex
skip-gram model using stochastic gradient descent (SGD); this
optimization problem has multiple local minimum and the
obtained embeddings can thus be numerically unstable (see
e.g., [33]). We instead consider, for each embedding dimension
d, the optimal low-rank approximation of an observed trans-
formed co-occurrence matrix similar to that used in [25], [28],
and recently [27], [34]. We first show that the entries of the
co-occurrence matrix computed using the observed adjacency
matrix is uniformly close to the entries of the co-occurrence
matrix computed using the true but unknown edge probabil-
ities matrix. This uniform bound implies that the entry-wise
logarithm of the two co-occurrence matrices are also uniformly
close and thus, with high probability, the co-occurrence matrix
constructed using the observed graph is well-defined. In the
case of stochastic blockmodel graphs the true edge probabil-
ities matrix give rise to a (transformed) co-occurrence matrix
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TABLE I
TABLE OF NOTATION

Notation ‘ Description
g=(V,E) graph with.n vertices; V = {v; }1_; .and E= {eii/}zi,:l
are the vertice and edge sets, respectively
N (v;) set of nodes v;/ in G adjacent to v;
A = [a;] n X n adjacency matrix of G
P = [p;i/] n x n edge probability matrix of G
d; observed degree of node v; in G, i.e., di = > 0 a;y
Di expected degree of node v; in G, ie., p; = D7 _1 Py
Da diagonal matrix with diagonal entries d1,da, ..., dn.
Dp diagonal matrix with diagonal entries p1, ..., pn.
W = AD;‘1 1-step transition matrix for a random walk on G
W =PD," | counterpart of W based on the edge probability matrix P
04 d dimensional vector with all elements equal to 0
14 d dimensional vector with all elements equal to 1
Og,qr set of all d x d’ matrices with orthonormal columns
(0} set of all d x d orthogonal matrices

with rank at most K where K is the number of blocks and
thus for stochastic blockmodel graphs with K < n blocks.
By leveraging both classical (e.g., the celebrated Davis-Kahan
theorem [35]) as well as recent results on matrix perturbations
in the 2 — oo norm (e.g., [36], [37]), we show that the truncated
low-rank representation of both matrices are uniformly close,
i.e., the embeddings of the observed graph is, up to orthogonal
transformation, approximately the same as that for the true
edge probabilities matrix. Therefore, by running K-means or
K-medians on the embeddings of the observed graph, we can
with high probability recover the latent community structure for
every node.

Our paper is organized as follows. In Section I we give a brief
introduction of node2vec [19] and DeepWalk [4], and describe
the matrix factorization perspective for these algorithms. In
particular DeepWalk can be treated as a special case of node2vec
by setting the 2nd-order random-walk parameters (p, ¢) to be
(1,1), which will be assumed in Section III for simplicity of
theoretical analysis. In Section III we provide uniform entry-
wise error bounds for the entries of the ¢-step random-walk
transition matrix and their implications for community recovery.
The theoretical results in Section III hold for both the dense and
sparse regimes where the average degree grows linearly and
sublinearly in the number of nodes, respectively. In Section IV
we present simulations to corroborate our theoretical results.
In Section V we apply node2vec to three real-world network
datasets and show its remarkable practical performances. We
conclude the paper in Section VI with a discussion of some open
questions and potential improvements. All proofs of the stated
results, associated technical lemmas, and additional numerical
results are provided in the Supplementary File, available online.

B. Notation

We summarize in Table I some general notations that are used
throughout this paper. Unless specified otherwise, all graphs
G in this paper are assumed to be undirected, unweighted and
loop-free. In the subsequent discussion we often assume that
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the upper triangular entries of adjacency matrix A are indepen-
dent Bernoulli random variables with E[a;;] = p;» when i’ < i,
where p;; is the i4'th entry in edge probability matrix P. As A
and P are symmetric, we also set a;; = a;; and p; = py; for
i >

We use || - “||so @and || + ||max to denote the spec-
tral norm, Frobenius norm, maximum absolute row sum, and
maximum entry-wise value of a matrix, respectively. We also
use || - |max,off and || - || max,diag to denote the maximum value
for the off-diagonal and diagonal entries of a matrix, i.e., for a
square matrix M = [m;y],

(1.1)

HMHmax,off = Igg),( ||, HMHmax,diag = mlax 4]

We use | - | to denote the absolute value of a real number as well
as the cardinality of a finite set.

For two terms @ and b, leta A b := min{a, b}. We writea 3 b
(resp. a 7, b) if there exists a constant ¢ (resp. ¢') not depending
on a and b such that a < ¢b (resp. a > ¢/b). If a S banda - b
then a = b. We say an event A depending on n happens with
high probability (whp) if P(A) > 1 — O(n~*) for some con-
stant @ > 3. Finally, for random sequences A,,, B,,, we write
A, = Op(B,,) if A,,/B,, is bounded whp and A,, = op(B,,) if
A,, /By, — 0 whp. For a given positive integer K, we denote by
[K] the set {1,2,...,K}.

II. SUMMARY OF NODE2VEC AND SBM

In this section we first provide a brief overview of the
node2vec algorithm. We then discuss the popular stochastic
blockmodel (SBM) for random graphs. Finally we discuss a
matrix factorization perspective to node2vec and show that, for
a graph G generated from a stochastic blockmodel, this matrix
factorization approach leads to a low-rank approximation of
an elementwise non-linear transformation of the random walk
transition matrix for G.

A. Node2vec With Negative Sampling

First introduced in [19], node2vec is a computationally effi-
cient and widely-used algorithm for network embedding. Mo-
tivated by the ideas behind word2vec for text documents [38],
node2vec generates sequences of nodes using random walks
which are then fed into a skip-gram model [39] to yield the node
embeddings. The original skip-gram model is quite computa-
tionally demanding for large networks and hence, in practice,
usually replaced by a skip-gram with negative sampling (SGNS).
The resulting algorithm is summarized below.

1) (Sampling Random Paths): First generates r independent

2nd order random walks on G with each having a fixed
length L. A 2nd order random walk of length L starting at

v; with parameters p and ¢ is generated as follows First

let v§ D= v;. Next sample vg g

at random. Then for 3 < ¢ < L, sample v Ve N (v@ 1)

from A/ (vl ) uniformly
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with probability,

%J(vo) ifvg = véi)y
J(vo) ifve € N(0{Y,),
%J('U()) lf Vo ¢ N(’U[EZ_)Q),

P(véi) =) =

where J(vg) is given by
Ty =7+ () v (2
W (vf) 0 (o))

The form of J(vg) allows for véi) to have possibly un-

balanced probabilities of reaching three different types of

2.1

nodesi 1n the neighborhood of v! é 1 ,namely (1) the previous
node v572, (2) nodes belonging to both the neighborhoods
and véi_)l; (3) nodes belonging only to the neigh-
borhood of vé?l but not the neighborhood of véi)z. The
parameters p > 0 and ¢ > 0 provide weights for these
three different types of nodes and hence control the speed
at which the random walk leaves the neighborhood of the
original node v;. In this paper, we assume that the starting
vertex v; of any random walk is sampled according to a

of véi_g

stationary distribution S = (S1, ..., S,) on G with
d;
IP (Starting Vertex is v;) = S; = m (2.2)

for all v; € V. For a given i € [n] we denote by r; the
number of random walks starting from v;, E(Z) as the jth

random walk starting from v; and £; = {E(L) ,J € [ri]} as
the set of all random walks starting from v;.

Remark 1: We consider only the case of p = ¢ = 1 for our
theoretical analysis. The choice p = ¢ = 1 is the default setting
for node2vec as suggested in the original paper [19] and leads
to a sampling scheme equivalent to that of DeepWalk [4]; the
subsequent analysis thus also applies to DeepWalk.

2) (Calculating C): Borrowing ideas from word2vec [38],
node2vec creates a n x n node-context matrix C =
[Cii']nxn Whose i7’th entry records the number of times the
pair (v;, v;7) appears among all random paths in | J;-_; £;.
More specifically, for a given window size (t1,, ty7), Ciy is
the number of times that (v;, v; ) appears within a sequence

s Vgry o vs or

(2.3)

t—1vertices

among all random paths in | J!"_; £;; here ¢ is any integer
satisfyingt; <t <ty <L -1
Remark 2: The original node2vec algorithm fixed t;, =1
while in this paper, we allow for varying ¢; for a more flex-
ible theoretical analysis. In Section III we show that different
values for (tr,, ty7) could lead to different convergence rates for
the embedding and furthermore appropriate values for (¢z,, ;)
depend intrinsically on the sparsity of the network.
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3) (Skip-gram model with negative sampling): Given the n x
n matrix C and an embedding dimension d, node2vec
uses the SGNS model to learn the node embedding matrix
F € R™*“ and the context embedding matrix F/ € R"*¢,
The ith row of F is the d-dimensional embedding vector
of node v;. In slight contrast to the original node2vec, in
this paper we do not require the constraint F = F'. The
objective function of SGNS model for a given C is defined
as

g(F,F') = Zcij [log{o(fjf})}

+rEg p, [log {o(—f f)}]]. @4

Here o is the logistic function, f; (resp. f}) is the ith
(resp. jth) row of F (resp. F),  is the ratio of negative to
positive samples, and f is a negative sample generated
from the empirical unigram distribution P, i.e., f}\/ is
sampled from {f’;}"_, according to
r ey ZZ:I Cjk
Pl fj) ZZ:1 ZZ’:l Crp

The original node2vec algorithm solves for (F, ') by
minimizing (2.4) over (F,F’) using SGD. In this pa-
per we use a matrix factorization approach, described in
Section I1-C, to find (F, F).

B. Stochastic Blockmodel

The stochastic blockmodel (SBM) of [40] is one of the most
popular generative models for network data. It often serves as a
benchmark for evaluating community detection algorithms [41].
Our theoretical analysis of node2vec/DeepWalk is situated in
the context of this model. We parametrize a K -blocks SBM in
terms of two parameters (B, Z) where B = [b,,/] is a symmetric
matrix of blocks connectivity and Z € {0, 1}"*¥ is a matrix
whose rows denote the block assignments for the nodes; we use
7(i) € [K] to represent the community assignment for node i,
i.e., the ith row of Z contains a single 1 in the 7(4)th element
and O everywhere else. Given B and Z, the edges a;y of G
are independent Bernoulli random variables with Pla;y = 1] =
By (3),7() i-€., the probability of connection between i and i’
depends only on the communities assignment of ¢ and 7. Denote
by

P = [p;y] = ZBZ' (2.5)

the matrix of edge probabilities. We denote a graph with ad-
jacency matrix A sampled from a stochastic blockmodel as
A ~ SBM(B, Z), and, for any stochastic blockmodel graph,
we denote by n the number of vertices assigned to block k. We
shall also assume, without loss of generality, that Z is ordered
by blocks:

1,, 0 0
0 1, 0

Z:= _ (2.6)
0 0 1
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In real-world applications the average degree of a network usu-
ally grows at a slower rate than ©(n). To model this phenomenon
we introduce a sparse parameter p,, that can vanish as n — oo.
For ease of exposition, we use the following parametrization of
B that is commonly used in the literature (see e.g., [42]).

Assumption 1: There exists a fixed K x K matrix By such
that B = p, B with p,, > n~? for some 3 € [0, 1).

The parameter p,, scales the edge probabilities in B. As p,, 7
n~ P, the average degree of the nodes in G grows at rate n' = so
that larger values of /3 lead to sparser network. It is well-known
that, for sufficiently large n, if G satisfies Assumption 1 then G is
connected with high probability (see e.g., Section 7.1 of [31]).
Then P = ZBZ' has a K x K block structure and thus has
rank at most K.

C. Node2vec and Matrix Factorization

In general, for a fixed given embedding dimension d < n,
minimization of the objective function in (2.4) leads to a non-
convex optimization problem and the potential convergence
of SGD into local minima makes the asymptotic analysis of
F quite complicated. Indeed, almost all existing results for
non-convex optimization using gradient descent or SGD only
guarantee convergence to a local minima provided that the
initial estimate is sufficiently close to this local minima, see
e.g.,[43, Section 5] and [44]. We thus desire a different approach
for finding F, namely one for which the form of F is more
readily apparent. One such approach is the use of matrix factor-
ization. For example, in the context of word2vec embedding,
[25] showed that minimization of (2.4) when C is a word-
context matrix is equivalent to a matrix factorization problem
on some elementwise non-linear transformation of C and that
this transformation can be related to the notion of pointwise
mutual information between the words. Motivated by this line of
inquiry, we consider a formulation of node2vec wherein FEF'T is
a low-rank approximation of some elementwise transformation
M of W; recall that W is the 1-step transition matrix for the
canonical random walk on G. We emphasize that this approach
had been considered previously in [26] and recently by [27],
[34]. The main contribution of our paper is in showing that this
matrix factorization leads to consistent community recovery for
stochastic blockmodel graphs.

We now describe the matrix M. In the context of the word2vec
algorithm, [25] showed that there exists some embedding di-
mension d such that the minimizer of (2.4) over F € R™*? and
F’ € R™*4 satisfies

Cii (3245 Cij)
k(22 Cij) (325 Cij)

Using the same idea for our analysis of node2vec, we first
fixed n and show that if the number of sampled random paths
increases then 1\7I(C, k) converges, elementwise, to a limiting
matrix M, defined below. Note that the entries of M can be
interpreted as point-wise mutual information (PMI) between the
nodes.

Theorem 1: Let n be fixed but arbitrary. Suppose G is a
connected graph on n vertices and ¢ is large enough such that

FF'" = M(C,r):= |log 2.7)

nxn
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the entries of Ziim Wt areall positive. Applying the node2vec
sampling strategy introduced in Section II-A on G we have

M(Cv K’) ﬁ) Mo(g,tL,tU7 ) L)

{2|A Z

t=tr,

1Wt} (2.8)

as the number of random paths r = >_"" | r; — oo; recalling
that W = AD,!. The convergence of M(C,x) to My is
element-wise and uniform over all entries of M(C, k). Here
|A| denotes the sum of the entries in A and the constant - is
defined as

1
v = 5([/ —tr, —ty)(ty —tp +1).

To reduce notation clutter, we will henceforth drop the depen-
dency of M, on the parameters G, ty,, ty, Kk, L. As the value of r
is chosen purely for computational expediency, i.e., smaller val-
ues of 7 require sampling fewer random walks, we will thus take
the conceptual view that r — oo so that M(C, k) — My; note
that M can be constructed explicitly from A without needing to
sample any random walk. Combining (2.7) and Theorem 1, we
have that, for any fixed n, there exists an embedding dimension d
such that for » — oo, the matrices F and F’ are exact factors for
factorizing M. Note that D;}Wf is symmetric for any ¢t > 1
and hence M is symmetric.

In practice, one usually chooses d < n to reduce the noise
in the embeddings as well as combat the curse of dimension-
ality in downstream inference. Obviously, if d < n then exact
factors (F,F’) for factorizing M, might no longer exist (see
e.g., [25]). The requirement that FF'T MO is, however, both
misleading and unnecessary. Indeed, as the observed graph is but
a single noisy sample generated from some true but unobserved
edge probabilities matrix P, what we really want to recover is
the factorization induced by P. More specifically, replacing wt
and |A| with W' and |P| in M, we define

M, =1 @tu — ) D3'W*
0=log{ — > (L-t)Dg'W (2.9)

t=tr

as the underlying-truth counterpart of M,; note that, similar to
M, we had dropped the parameters associated with M for
simplicity of notations. Under the SBM setting, the true signal
matrices P and M, are both low-rank and hence an embed-
ding dimension of d = rk(IM) < n is sufficient to recover the
factorization induced by M.

To be more precise, recall from (2.6) that for stochastic
blockmodel graphs, the matrix P has a K x K block structure.
Thus both W* and D' W also have K x K block struc-
tures. Equation (2.9) then implies that M also has a K x K
block structure and hence rank(My) < K. Most importantly,
the ' x K block structure of M is also sufficient for recovering
the community structure in G. We will show in Section III that the
relative error, in the row-wise maximum norm, between 1\7[0 and
M, converges to 0 as n — co. This convergence, together with
results for perturbation of eigenspaces, implies the existence of
an embedding dimension d < K for which the n x d matrices
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F and F’ obtained by factorizing M, lead to exact recovery of
the community structure in G.

Remark 3: If P does not arise from a stochastic blockmodel
graph then M need not have a low-rank structure. Nevertheless,
we can still consider a rank-d approximation to M for some
d < tk(My). Furthermore, as we will clarify in Section VI, the
bound for [My — My ||max in Section III also holds for general
edge independent random graphs, provided that the entries of
P is reasonably homogeneous. Hence M, has an approximate
low-rank structure if and only if My also has an approximate
low-rank structure.

In summary, motivated by the low-rank structure of M in the
case of SBM graphs, we view the matrix factorization approach
for node2vec as finding the best rank d < n approximation F.

F’ to My under Frobenius norm, i.e.,

(7.7 =

The minimizer of (2.10) is obtained by truncating the SVD of
M. More specifically, let

argmin

~ T
‘MO —FF
(F,F)eRnxd.Rnxd

‘F. (2.10)

M, =UZV' 2.11)
with a decreasing order of singular values in 3. Then fora given
d < 1k(My), let

F=U, F =V, (2.12)
where Ud e R4, V € R4 are the first d columns of U
and V, respectively, and 3, € R%*? is the diagonal matrix
containing the d largest singular values in 3.

Remark 4: The appropriate embedding dimension d for fac-
torizing M depends on knowing rank(M,). but the conver-
gence of M to that of M does not require knowing rank (M).
For ease of exposition we will assume that rank(Mj) is known;
in practice it can be estimated consistently using an eigenvalue
thresholding procedure provided that M has a low-rank struc-
ture. Finally, in the context of SBM graphs and their degree-
corrected variant, community recovery using F also depends on
knowing K. For simplicity, we also assume that K is known,
noting that consistent estimates for K are provided in [45], [46].

III. THEORETICAL ANALYSIS
A. Entry-Wise Concentration of W' and M,

Recall that F is obtained from the eigendecomposition of
M, while the true embedding is obtained from the eigende-
composition of My (see (2.9)). Therefore, before studying the
community recovery using F., we first study the convergence
of 1\710 to M. In particular, we derive concentration bounds for
1\7[0 — M) in both Frobenius and infinity norms. These bounds
are facilitated by the following Theorem 2 which provides a
precise uniform bound for the entry-wise difference between the
t-step transition matrix W' and W' defined using the adjacency
matrix A and the edge probabilities matrix P, respectively.

Theorem 2: Let G~ SBM(B,Z) where B satisfies
Assumption 1. We then have the following bounds.
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1) (Dense regime) Suppose p,, =< 1. Then

HW - W . = (’)P(n—l)7 (31)

HW2 a W2‘ max,diag - OP(nil)’ (32)
10g1/2n

‘ max,off - OP <n3/2 ’ (33)

Furthermore, for ¢ > 3,

10g1/2n
T (w Y

2) (Sparse regime) Let p,, — 0 with pn = n~P for some 3 €

~

[0,1). Then for ¢ > 4 satisfying =2 > 3 we have

1 1/2
- Op ng )
max n3/2pn

In addition, if 0 < /5§ < 1/2 then
’ A ’ _ o 1og1/2 n
max,off - F ’I’L3/2pn ’
logl/ n
max O]P ( n3/2,0

2
HW3 W3 - ) (36

(3.5)

Remark 5: Throughout this paper we assume that t; > 2
instead of t;, > 1 as used in the original node2vec formulation.
The rationale for this assumption is as follows. Recall the
definition of 1\7[0 in (2.8). If we allow ¢ to start from 1 in the
sum 30V o (L—1)- (D;VAVI") then the term W might lead to
a convergence rate of M, to M that is slower than that given in
(3.7). For example in the dense regime (3.1) and (3.3) show that
the entries of W — W are of larger magnitude than the entries
of Wt — Wt fort > 2.

Before discussing the convergence rate of 1\710 to M we first
find a value of ¢y such that, for large values of n, 1\7[0 is well de-
fined with high probability. We note that the entries of {W*};>4
are uniformly of order @(nfl). Then, under the dense regime,
t = 2is sufficient to guarantee that all the off-diagonal entries of
W are uniformly of order Q(n~* — n=3/21og!/? n) = Q(n"1)
with high probability (c.f. (3.2)) while ¢ = 3 is sufficient to
guarantee that all entries of W' are of order Q(n~1) with high
probability (c.f. (3.3)). If we are under the sparse regime with
B < 1/2 then these same values of ¢ > 2 are still sufficient
to guarantee that the entries of W* are of order Q(n~') (c.f.
(3.5) and (3.6)). Finally, if we are under the sparse regime
with 8 > 1/2 then choosing ¢t > 4 Wlth > B is sufﬁ01ent to

guarantee that the entries W are umformly of order Q(n~
n=3/2p,"*10g"/2 n) = Q(n") with high probability. Now re-
call that the matrix Mo is of the form

o {24310

t=tr,

DAlwt}
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We therefore have, for ¢;; > 3 in the dense regime, t;; > 2 in the
not too sparse regime of 5 < 1/2, or for tU 3 > 3 in general,
that the entries of the inner sum are bounded away from 0 with
high probability. For the dense regime, the condition can be
further relaxed to t;; > 2, as a dense graph has a diameter of 2
and thus all entries of W? are uniformly larger than O with high
probability; see Theorem 10.10 in [31]. Therefore, with high
probability, the elementwise logarithm is well-defined for all
entries of MO Given the existence of Mo, the following result
shows the convergence rate of M, to M.

Theorem 3: Suppose G ~ SBM(B, ®) satisfies Assump-
tion 1, and ty > t, > 2 where ¢, is chosen as described above.
Then M, is well-defined with high probability. Denote

A = max{[| Mo — Mo|r, | Mo — Mo||s}-

We then have the following bounds.
1) (Dense regime) Let p, < 1. Then for t;, > 2 we have

A=0s (n1/2 log/? ) (3.7)

2) (Sparse regime)Let p,, — 0 with p,, >~ n~? for some 3 €
[0,1). Then for ¢, satisfying =3 > 3 we have

A=Op (n1/2p;1/2 10g1/2 )
In addition, if 0 < /3 < 1/2 then for t;, > 2 we have
A=Op (n1/2 “1ogl/? )

In both regimes we have [Myl|p = ©(n) and Mo =
O(n).

In summary, as 3 increases (equivalently, as p,, decreases) so
that the graph G becomes sparser, we could (1) still guarantee
the existence of M when t; is sufficiently large, and (2) con-
trol the convergence rate of | My — My||r and ||[My — Mg ||s
relative to || My||r and || M ||, respectively, through increasing
tr,.

(3.8)

(3.9)

B. Subspace Perturbations and Exact Recovery

Theorem 3 implies that MO is close to My under both Frobe-
nius and infinity norms, i.e., || Mo — My||, /|| Mol = op(1) for
* € {F, o0} and sufficiently large n. Now, by (2.6), M has a
K x K block structure and hence rk(Mg) < K. Furthermore
the eigenvectors of M associated with its non-zero eigenvalues
is sufficient for recovering the community assignments induced
by Z. The following result, which follows from bounds for
Mg — M|« given in Theorem 3 together with perturbations
bounds for invariant subspaces using 2 — oo norm [36], shows
that the embedding F given by the leading eigenvectors of M,
is uniformly close to that of the leading eigenvectors of M.
Therefore K-means or K-medians clustering on the rows of
F will recover the community membership for every node, i.e,
attain strong or exact recovery of Z.

Theorem 4: Under the condition of Theorem 3, let uxuU’
and UXUT be the eigen-decomposition of My and M, re-
spectively. Let d = rk(Mp) and note that U is a n X d matrix.
Let F = Uy be the matrix formed by the columns of U corre-
sponding to the d largest-in-magnitude eigenvalues of M. For
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an X dmatrix Z withrows Z1, Zs, . . ., Z, let || Z||2— denote
the maximum ¢, norms of the {Z,}, i.e.,

1Z]]200 = max | Zi]].

We then have the following results.
i) (Dense regime) Let p,, < 1. Then for t;, > 2 we have

. . log1/2n
i o], - 00 (255
1 1/2
min ||FT - UH —op (22 3.0
TeOyq 2—00

i) (Sparse regime) Let p, — 0 with p, = n =B for some
B €10,1/2). If tg, > 2, we have

log1/2n
"\ nirzp,
/2
”) G.11)

npn

min
TeOy

-], -

. log'
min
TeOy4

FT - UH — O
oo

iii) (Sparse regime) Let p, — 0 with p, =~ n~? for some
B €0,1).1f ;z::{’ > 3, we have,

10g1/2 n
BDRE

1 1/2
Fr-u| oﬂm(ogl/f). (3.12)
2—00 npy

min
TeOy

j:T—U)’F —0

min
TeOy

Given the above convergence rates, clustering the rows of F
using either K -means or K -medians will, with high probablity,
recover the membership of every node in G.

Remark 6: Settings (ii) and (iii) in Theorem 4 both con-
sider the sparse regime but setting (ii) focuses on the case
where p,, = w(n~'/?) and exact recovery is achieved whenever
tr, > 2 while setting (iii) considers the more general scenario
of p, = w(n~") for any fixed but arbitrary 3 < 1. We note that
for ease of exposition we had imposed ; fL 3 > (3 for setting (iii)
but this condition can be relaxed to

tr, — 2
L >, (3.13)
tr,

under which we still have M, is well-defined with high proba-
bility, and have a more complicated bound of
1/2
FT — UH OP{W+(npn)tL/2}
2300 n3/2pL/?

(see (B.71)). The above bound is still sufficient to guarantee that
running K-means or K-medians on the rows of F will recover
the membership of every node in G with high probability; see
Section B.4 in the Supplementary File, available online, for a
rigorous proof.

A recent preprint [34] which appeared on arXiv after the

first version of our paper also studied community recovery
using SVD-based DeepWalk/node2vec and they have a similar

min
TeOq4
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requirement for ¢z, as (3.13); see (3.1) in [34]. For comparison
we note that [34] only derived the convergence rate of F under
Frobenius norm, and thereby prove a weak recovery result which
allows at most o(n'/?) nodes to be misclassified. In contrast the
max-norm concentration of W* in Theorem 2 helps us derive a
2 — oo norm convergence for F , based on which we achieved
the much stronger exact recovery (i.e., there are no mis-classified
nodes). Finally we conjecture that (3.13) for ¢, is sufficient but
not necessary. Our simulation results in Section IV agree with
this conjecture and we leave its verification for future work.

Remark 7 (Extension to DCSBM): The exact recovery re-
sults in Theorem 4 can also be extended to the case of
degree-corrected SBM graphs [47], [48], [49]. Recall that
the edge probabilities for a DCSBM is P = @ZBZ"©®
where © = diag(f;,...,0,) is the diagonal matrix containing
the degree-correction parameters. DCSBM allows heteroge-
neous edge probabilities within each community and thus yields
amore flexible model in comparison with SBM. Section A.4 and
A.5 in the Supplementary File, available online, demonstrates
how to extend the technical derivations for Theorem 4 to the
DCSBM case provided that the {6;} are sufficiently homoge-
neous, i.e., that max; 6; / min; 6, = O(1).

IV. SIMULATION

We now present numerical experiments for the matrix factor-
ization perspective of node2vec/DeepWalk. These experiments
complement our theoretical results in Section III and illustrate
the interplay between the sparsity of the graphs, the choice
of window sizes, and their combined effects on the nodes
embedding.

A. Error Bounds for | My — Mg||p

We first compare the large-sample empirical behavior
of |[Mg — Myl|[r against the theoretical bounds given in
Theorem 3. We shall simulate undirected graphs generated from
a 2-blocks SBM with parameters

0.8p, 0.3p
B(pn) = ( ' 0 8pn> 5

0.3pn,
and sparsity p,, € {1,3n"1/3,3n~1/2 3n~2/3}. While this two
blocks setting is quite simple, it nevertheless displays the effect
of the sparsity p,, and the window size (¢r,,¢y) on the upper
bound for | Mg — My||¢.

For each value of n and sparsity p,, we run 100 indepen-
dent replications where, in each replicate, we generate G ~
SBM(B(p,),©,), and calculate M, for different choices of
(tp,ty). In particular, we consider two types of window size,
namely ty =tz + 1 and ty =t + 3. While ty =1t + 1 is
not commonly used in practice, for simulation purpose this
choice clearly show the effects of the random walks’ length ¢
on the error | My — My||p. In contrast, the choice ty = t7, + 3
is more realistic but also partially obfuscates the effect of ¢ on

= (0.4,0.6), 4.1
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Fig. 1. Sample means and 95% empirical confidence intervals for €1 (1\7[0) based on 100 Monte Carlo replicates under different settings of n, p,, and (¢1, tr7),
with ¢ty — t7, = 1. The X-axis represents different n and Y -axis represents the relative error. The labels on the left-hand side of curves/empirical confidence bands

denote different choices of values for (¢, ).
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(@ pn =1 (b) pr = 3n"1/3
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—1/2 (d) pn = 15”72/3
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Fig.2. Sample means and 95% empirical confidence intervals for €2 (1\7[0) based on 100 Monte Carlo replicates under different settings of n, py, and (¢t1, tr7),
with ¢ty — ¢, = 1. The X-axis represents different n and Y -axis represents the relative error. The labels on the left-hand side of curves/empirical confidence bands

denote different choices of values for (t1,,ty ).

My — Mp||. Recall that, from the discussion prior to Theo-
rem 3, sparser values of p,, require larger values of ¢y to guar-
antee that M is well-defined. The choices for (p,,,n, (tz,tr))
in the simulations are summarized below.

o If p, >3n"/? then n € {100, 200, 300, ... 1500}. We
chose 2 <ty < 7whenty =t + 1andchose 2 < t;, <
5when ty =t + 3.

e Ifp, = 3n %/3 thenn € {800,900, ...,4000}. We chose
4 <ty <T7whenty =ty +1land3 <t < 5whenty =
tr + 3.

We calculate two relative error criteria for the generated 1\7[0,

namely

- |Mo— M|

Mo —Mo||r
M p—
1Mo =g

n1/2p£1/2 log!/? n

We expect that, as n increases, the first criterion converges to 0
while the second criterion remains bounded.

The results of our experiments are presented in Figs. 1 and
2 in the main text and Figs. D1 and D2 in the Supplementary
File, available online. More specifically, Figs. 1 and D1 show the
mean and 95% empirical confidence intervals of the empirical
errors € (1\7[0) across 100 Monte Carlo replicates under different

and EQ(M()) =

simulation settings, where ¢y — tr, is set to 1 and 3, respectively.
Similarly, Figs. 2 and D2 illustrate the empirical errors € (1\7[0).
Relative Error 1 (£1(M)): We first confirm the convergence
of £1 (M) to 0. Figs. 1 and D1 show the means and 95% confi-
dence intervals for £1 (M) based on 100 Monte Carlo replicates
for different values of p,,, (t1,,tr). These figures indicate the
following general patterns as predicted by the theoretical results
in Theorem 3.
e The error ¢; (1\7[0) is smallest in the dense case and deteri-
orates as the sparsity factor p,, decreases.
e The error also depends on (¢, ty) with larger values of
ty — tr, leading to smaller &; (M)
e If the window size is too small, e.g., (tz,try) = (2,3) or
(tr,tr) = (2,5), then My is often times not well-defined.
Relative Error 2 (e3(My)): Figs. 1 and D1 corroborate our
theoretical results in Section III. Nevertheless, there are two

additional questions we should consider. The first is whether
or not the bound ||My — Mg ||p = Op (nl/Qp,_ll/2
Theorem 3 is tight and, if it is tight, the second is whether or
not the condition iij’ > [ is necessary to achieve this rate.
Analogous to the previous two figures, Figs. 2 and D2 show the
means and 95% empirical confidence intervals for the relative

log;l/2 n) in
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TABLE II
PROPORTIONS OF TIMES THAT SGD-BASED AND SVD-BASED NODE2VEC VARIANTS PERFECTLY RECOVER ALL NODES’ MEMBERSHIPS OVER 100 MONTE CARLO
REPLICATES, UNDER DIFFERENT SETTINGS OF 1, py, AND ty;

n SVD-based node2vec | Original node2vec
ty =5 ty =8 ty =5 ty =8
600 1.00 1.00 1.00 1.00
900 1.00 1.00 1.00 1.00
1500 1.00 1.00 1.00 1.00

n SVD-based node2vec | original node2vec
ty =5 ty =8 ty=5 |ty =8
600 0.44 0.42 0.01 0.05
900 0.62 0.63 0.07 0.11
1500 0.90 0.90 0.57 0.28

The graphs are generated from B(pn) with sparsity pn =3n-1/3 (left table) and pn =3n-1/2 (right table).

error £5(My) over 100 Monte Carlo replicates for different
values of p,, and (¢1,, ;7). From these simulations we can answer
the above questions as follows.

® If p, o n 7 is such that 3 < =% then £5(M,) appears
to converge to a constant as n increases. There is thus ev-
idence that the rate n/2p,*/*log"/? n for | My — Mo||p
is optimal. Nevertheless, if ¢y is large relative to p,,
e.g., pn € {3n71/3,3n71/2} and t;, > 6, then £5(My)
appears to converges to 0 which suggests that for a fixed
£ the error rate for |[My — Myl||r can be smaller than

nl/zp;l/2 logl/2 n; this might be due to the convergence
of W' and W' towards the stationary distributions as ¢
increases.

e For cases such as (¢1,ty) € {(3,4),(3,6)} and p, =
3n 2 or (tr,tr) € {(4,5),(3,6)} and p,, = 15n"2/3,
the ¢;’s do not satisty fij’ > B. Nevertheless, £5(M)
still appears to converge to a constant as n increases.
This suggests that ii:? > [ is sufficient but possibly not
necessary for the bound in (3.8) to hold. On the other
hand, for fixed 7 and p,,, the error | M — M || generally
decreases as t;; — ty, increases.

e Finally if (¢1,tv)€{(2,3),(2,5)} and p,€
{3n71/3 3n"1/2} then 5(M) increases with n. This
supports the claim in Theorem 3 of a phase transition for
the error rate of || My — M ||p as ¢, increases.

In summary our simulation results support the conclusion of

Theorem 3. In particular, the error rate in Theorem 3 is sharp and

the condition ii:i’ > 3 is sufficient but perhaps not necessary.

B. Exact Recovery of Community Structure

Theorem 4 together with Remark 6 showed that F combined
with K-means/medians can correctly recover the memberships
of all nodes in a SBM with high probability. We demonstrate
this result for two-block SBMs with block probabilities being

either B(p,,) as given in (4.1) or
0.8pn
0.3p, )

B¥(p,) 1= (O'Sp"

0.8pn,
Note that B(p,,) and B (p,,) corresponds to an assortative and a
dis-assortative structure, respectively. Given specific setting of
B, n, p,, we randomly sample 100 graphs where each vertex
is randomly assigned to one of the two blocks with equal
probability and evaluate the membership recovery performances
of the original node2vec [19] (based on SGD) and node2vec

using matrix factorization (as described [26], [27], [34] and
this paper) followed by clustering using K -means. We set the
window sizes to ty € {5,8} and choose x =5 and L = 200.
For the original node2vec we also set t;, = 1 as the default and
ry = --- =1, = 200, while for the SVD-based node2vec we
set t;, =ty — 3. We report in Tables IT and III the proportions
of times for the 100 simulated graphs that these two variants of
the node2vec algorithm correctly recover the memberships of all
nodes. More specifically, let the true and estimated community
labels be denoted by {7(¢)}; and {7 (i)}, , respectively. The
accuracy of 7 is defined as

HUED A7),

Accuracy(7) = mgin

where the minimization is over all permutations § of {1, ..., K'}.
Thus 7 is an exact recovery if Accuracy(7) = 0.

The numerical results in Tables II and III show that as n
increases, both the original and SVD-based node2vec are more
likely to perfectly recover memberships of all nodes in the
graph, under all different settings of p,,, B, ;7. Furthermore, the
frequency of exact recovery for p, = 3n~/3 is considerably
higher than that for p,, = 3n~'/2. This is consistent with the
results in Theorem 4 as a smaller magnitude for p,, results in
a slower convergence rate for F under both the Frobenius and
2 — oo norms. In addition, the exact recovery performance of
SVD-based node2vec when p,, < n~'/2 and (t1,ty) = (2,5)
suggests that the ¢, threshold for Theorem 4 in (3.13) is possibly
not sharp as % =0 < 8 =1/2. Finally we note that the
SVD-based node2vec has better empirical performance than the
original node2vec in these experiments as well as in the experi-
ments for three-block SBMs and DCSBM s in Section IV-C. This
is consistent with the discussion in Section II. Indeed, the entries
of M are the limit of those for the original node2vec when the
number of sampled paths » — oo and furthermore M, has an
approximately low-rank structure as n increases. In other words,
at least for SBM and DCSBM graphs, the original node2vec can
be viewed as a computationally efficient approximation to the
SVD-based embeddings of M.

C. Embedding Performance

In this section we perform more numerical experiments to take
a closer look at the finite-sample performance of community
detection, using both the original and SVD-based node2vec em-
beddings. We consider both three-blocks SBM and three-blocks
DCSBM according to the following parameter settings.
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TABLE III
PROPORTIONS OF TIMES THAT SGD-BASED AND SVD-BASED NODE2VEC VARIANTS PERFECTLY RECOVER ALL NODES’ MEMBERSHIPS OVER 100 MONTE CARLO
REPLICATES, UNDER DIFFERENT SETTINGS OF n, py, AND t{;

n SVD-based node2vec | original Node2vec
ty =5 ty =8 tu=5| ty =8
600 1.00 1.00 1.00 0.50
900 1.00 1.00 1.00 0.95
1500 1.00 1.00 1.00 1.00

n SVD-based node2vec | original Node2vec
ty =5 ty =8 ty =5 ty =8
600 0.24 0.30 0.00 0.00
900 0.67 0.69 0.00 0.00
1500 0.90 0.90 0.13 0.37

The graphs are generated from B(pn) with sparsity pn =3n-173 (left table) and pn =3n-1/2 (right table).

Accuracy
Accuracy

900 1500
Sample Size

900
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1500 600 1500

900
Sample Size
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@ pn =1 (b) pn = 3n"" (©) pn = 6n"%
1 1 1
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2.0 508 BT 20
Z £ TTTTTT EEH H
<07 <07 =”:=a§ <
0 0.6-
0.5- 0
600 900 1500 600 900 1500 600 900 1500
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_ —1/2 —2/3
(d) pn =1 () pn =3n / (f) pn =61 /

Fig. 3.

Community detection accuracy of node2vec followed by K -means for SBM graphs. The boxplots of the accuracy for each value of n, p,, and t;; are

based on 100 Monte Carlo replications. Boxplots with the slash pattern (resp. dot pattern) summarized the results for the original (resp. SVD-based) node2vec.
Different colors (yellow, green, blue) represent the algorithms implemented for different choices of ¢y € {5, 6, 8}. The first and second row plot the results when

the block probabilities for the SBM is B and B, respectively.

Stochastic Blockmodel: The three-blocks SBMs have block
probabilities being either

0.8 04 0.3 0.8 0.5 0.5
B,=]104 07 05] orBa=|[05 08 05|,
0.3 05 0.9 0.5 0.5 0.8

(4.3)
and block assignment probabilities = = (0.3,0.3,0.4).
Degree-Corrected Stochastic Blockmodel: The DCSBM is a
direct generalization of SBMs with the only difference being
that each node ¢ has a degree-correction parameter 6; and that
the probability of connection between nodes ¢ and j is

pij = 0i0;B7(i)r(j)

instead of p;; = B(;)r(;) as in the case of SBMs. For more on
DCSBMs and their inference, see [47], [48], [49]. We generate
the degree correction parameters 6; as

0 =|Zi| +1—@2n)" Y2, Zy, ..., Z, S N(0,0.25) (4.4)

This procedure for generating 6; is the same as that in [49].

For each value of n and p,, we perform 100 Monte Carolo

replications where we generate graphs from the above SBM
and DCSBM models and test both the original node2vec and
the SVD-based node2vec with t;; = 5,6, 7. Other settings of
the node2vec algorithms are similar to Section IV-B and the
accuracy is measured via (4.2). The results for the SBM graphs
are presented in Fig. 3 of the main paper while those for the
DCSBM graphs are presented in Fig. D3 of the Supplementary
File, available online. We now summarize the main trend in these
figures.

* We get exact recovery when p,, = 1 in both Fig. 3 and
Fig. D3, thereby illustrating that the condition ¢, > 2 in
Theorem 4 is sufficient for exact recovery in the dense
regime.

® When p,, — 0 faster (i.e., the network is more sparse), we
need a larger n to achieve the same level of accuracy. This
is consistent with Theorem 4 as the convergence rate for
F depends on np,,.
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x x

(a) tv = 5, accuracy = 0.82 (b) tv = 6, accuracy = 0.84

(e) tv = 5, accuracy = 0.58 (f) tv = 6, accuracy = 0.57

Fig. 4.
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N

(c) ty = 8, accuracy = 0.89

R\

x x

(d) tv = 8, recovery result

(g) tv = 8, accuracy = 0.60 (h) tv = 8, recovery result

Visualizations of the SVD-based node2vec embeddings (first row) and original node2vec embeddings (second row) with different choices of ¢s.

The embeddings are for a single realization of a SBM graph on n = 600 vertices with block probabilities matrix By (see (4.3)), sparsity p,, = 3n~1/2, and
block assignment probabilities = = (0.3, 0.3,0.4). The embeddings in panels (a)—(c) and (e)—(g) are colored using the true membership assignments while the
embeddings in panels (d) and (h) are colored using the K-means clustering. Accuracy of the recovered memberships for the different embeddings followed by

K-means clustering are also reported for panels (a)—(c) and (e)—(g).

e When B = B, the original node2vec and SVD-based
node2vec have very similar accuracy and thus our theo-
retical analysis of SVD-based node2vec closely reflects
the performance of the original node2vec.

e When B = B; the SVD-based node2vec has higher ac-
curacy compared to the original node2vec. However, the
embeddings generated by these algorithms are still quite
similar. A plausible reason for why the original node2vec
has lower accuracy is because the downstream K -means
clustering is sub-optimal for these embeddings. We il-
lustrate this by visualizing the embeddings for two real-
izations of the SBM and DCSBM graphs where we set
pn = 31712, n = 600. These visualizations (see Fig. 4
in the main text and Fig. D4 in the Supplementary File,
available online) provide us with the following intuitions:
(1) the original and SVD-based node2vec variants yield
similar embedding patterns; (ii) for SVD-based node2vec,
increasing the window size could help separate nodes from
different communities and thereby improve the community
detection accuracy; (iii) although the embeddings appear
similar, K -means clustering yields more accurate member-
ship recovery for the SVD-based node2vec compared to the
original SVD-based node2vec embeddings. For example,
comparing panels (c¢) and (d) in Fig. 4 we see that {-means
clustering recovers most of the membership assignments
forembeddings from the SVD-based node2vec. In contrast,
panels (g) and (h) in Fig. 4 show that K -means clustering is
less accurate for embeddings from the original node2vec.

Indeed, if we replace K-means with Gaussian mixtures
model (GMM) [50], [51] in panels (g) and (h) of Fig. 4
we increase the clustering accuracy from 0.6 to 0.84 which
is close to that of 0.89 for the SVD-based node2vec (see
Fig. D5 of the Supplementary File, available online).

V. APPLICATIONS TO REAL-WORLD NETWORKS

We test the membership recovery performance of node2vec
on three real-world networks, namely, the Zachary’s karate
graph (henceforth, ZK) [52], political blogs graph (henceforth,
PB) [53], and Wikipedia graph (henceforth, WIKI) [8]. In each
of the three graphs, the memberships of all vertices have been
assigned based on specific real-world meanings without missing.
Both ZK and PB contain 2 communities, while WIKI contains
6 communities. ZK is connected with 34 vertices. By conven-
tions [8], [47], we ignore the directions of edges and focus on the
largest connected components of PB and WIKI, which contain
1222 and 1323 vertices, respectively. We refer interested readers
to the references above for more detailed information about the
three real-world network datasets.

For each network dataset, we embed the vertices into the
K -dimensional Euclidian space through both the SVD-based
and original node2vec, and then cluster the embeddings by
K-means to estimate the memberships of each vertex; K is
chosen as the exact number of memberships in each graph. We
test three window sizes ty € {10, 15, 20}. Similar to Section IV,
we sett;, = tyy — b for the SVD-based node2vec and t;, = 1 for
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TABLE IV
UPPER TABLE REPORTS THE MEMBERSHIP RECOVERY ACCURACY OF DIFFERENT EMBEDDING METHODS ON THE ZK AND PB NETWORK DATASETS

Network SVD-based node2vec Original node2vec ASE | LSE | ASE+SP
ty =10 | ty =15 | ty =20 | ty =10 | ty =15 | ty =20
ZK 0.97 0.97 0.97 0.97 0.97 0.97 1.00 | 0.97 0.97
PB 0.96 0.95 0.95 0.96 0.95 0.95 0.64 | 0.51 0.95
Network SVD-based node2vec Original node2vec ASE | LSE | ASE+SP
ty=10 | ty =15 | ty =20 | ty =10 | ty =15 | ty =20
WIKI 0.09 0.09 0.08 0.09 0.10 0.10 0.04 | 0.08 0.07

The lower table reports the ARI of different embedding methods on the WIKI network dataset. ASE and LSE denote
spectral clusterings using the truncated eigendecomposition of the adjacency and normalized Laplacian matrix [1], [7], [8],
respectively. ASE+SP denote spectral clustering using the truncated eigendecomposition of the adjacency matrix together

with a spherical projection step [54], [55].

the original node2vec by default. To measure the membership
recovery performances, we calculate the accuracies between the
estimated memberships and the real memberships for ZK and
PB; see the definition of accuracy in (4.2). For WIKI, because
the criterion of accuracy becomes computationally inflexible,
we alternatively use the adjusted rand index (ARI). Similar
to the accuracy, ARI = 1 indicates the estimated memberships
perfectly recover the real memberships, while ARI = Oindicates
the estimated memberships are assigned randomly. We also com-
pare performances of node2vec algorithms with other popular
spectral embedding algorithms, including the spectral clustering
based on adjacency and normalized Laplacian [1], [7], [8], and
the spectral clustering with projection onto the sphere [54]; for
all methods, we use K -means for the downstream clustering.

The recovery results are summarized in Table IV. The SVD-
based and original node2vec algorithms have similar perfor-
mances, which are generally better than or equivalently to other
methods in all three datasets. In addition, we note the PB dataset
is better modeled as a DCSBM [47]. Recall that, as shown in
Remark 4, node2vec can theoretically attain exact recovery for
DCSBMs and hence the high-accuracy of node2vec on the PB
dataset is expected. Similarly, [54] shows a valid theoretical
guarantee of the spectral clustering with a spherical projection,
when applied to the DCSBM graph. This can also be verified by
the high accuracy of ASE+SP on PB as shown in Table I'V.

VI. DISCUSSION

In this paper we derive perturbation bounds and show exact
recovery for the DeepWalk and node2vec (with p=¢=1)
algorithms under the assumption that the observed graphs are
instances of the stochastic blockmodel graphs. Our results are
valid under both the dense and sparse regimes for sufficient
large t 7, and n. The simulation results corroborate our theoretical
findings; in particular, they show that increasing the sample size
and window size can improve the community detection accuracy
for both sparse SBM and DCSBM graphs.

We emphasize that our paper only include real data analysis
on simple graphs with a small number of nodes just to illustrate
the agreement between our theoretical results and the empir-
ical performance of DeepWalk/node2vec. This is intentional

as DeepWalk and node2vec are widely-used algorithms with
numerous papers demonstrating their uses for analyzing real
graphs in diverse applications. In contrast, our paper is one of
a few that addresses the theory underpinning these algorithms
and is, to the best of our knowledge, the first paper to estab-
lish consistency and exact recovery for SBMs and DCSBMs
using these random-walk-based embedding algorithms. Note
that exact recovery for SBMs can also be achieved using other
algorithms such as those based on semidefinite programming,
variational Bayes, and spectral embedding; see [41], [56], [57]
for a few examples.

There are several open questions for future research:

1) In this paper we only consider the case of p = ¢ = 1 for
node2vec embedding (recall that p = g = 1 is the default
parameter values for node2vec). If p # 1 and/or ¢ # 1
then the transformed co-occurrence matrix 1\710 can no
longer be expressed in terms of the adjacency matrix A
or the transition matrix Wt; this renders the theoretical
analysis for general values of p and ¢ substantially more
involved. One potential approach to this problem is to
consider, similar to the notion of the non-backtracking
matrix in community detection for sparse SBM [58], a
transition matrix associated with the edges of G as opposed
to the transition matrix associated with the vertices in
G. Indeed, if p # g then the transition probability from
a vertex v to another vertex w depends also on the vertex,
say u, preceding v in the random walk. i.e., the transition
probability for (v, w) depends on the choice of (u, v).

In this paper we focus on error bounds (in Frobe-
nius and infinity norms) of node2vec/DeepWalk embed-
ding for stochastic blockmodel graphs and their degree-
corrected variant. An important question is whether or
not stronger limit results are available for these algo-
rithms. For example spectral embeddings of stochastic
blockmodel graphs obtained via eigendecompositions of
either the adjacency or the normalized Laplacian matrices
are well-approximated by mixtures of multivariate Gaus-
sians; see [29], [30] for more precise statements of these
results and their implications for statistical inference in
networks. It is thus natural to inquire if normal approx-
imations also holds node2vec/Deepwalk. We ran several

2)
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3)

4)

one-round simple simulations to visualize the embeddings
of node2vec/DeepWalk when the graphs are sampled from
a SBM with

B— (0.42 0.42 ©.1)

042 05 > and 7w = (0.4,0.6).
The results are summarized in Fig. D6 in the Supplemen-
tary File, available online. In particular, when n is large
these embeddings are also well-approximated by a mix-
ture of multivariate Gaussians. We leave the theoretical
justification of this phenomenon for future work.

As we allude to in the introduction, for simplicity we only
consider (degree-corrected) stochastic blockmodel graphs
in this paper. For the more general inhomogeneous Erd&s-
Rényi random graphs model, we expect that Theorems 2
and 3 still hold, provided that the edge probabilities are
sufficiently homogeneous, i.e., the minimum and maxi-
mum values for the edge probabilities values are of the
same order as n increases. However, the error bounds in
Theorem 4 might no longer apply since the entry-wise
logarithmic transformation of the co-occurrence matrices
can lead to the setting wherein M is no longer low-rank,
e.g., the rank of M can be as large as n the number of ver-
tices. Furthermore, even when M have an approximate
low-rank structure, due to the logarithmic transformation
there is still the question of how the embedding of M|
relates to the underlying latent structure in P.

Finally, in this paper we mainly focus on the node2vec
and DeepWalk embedding through matrix factorization
(SVD-based node2vec), but also compare the SVD-based
node2vec with the original node2vec in the numerical
experiments. As we mentioned in the introduction the
original node2vec algorithm uses (stochastic) gradient
descent (GD/SGD) to optimize (2.4) and obtain the em-
bedding. As (2.4) is non-convex there can be a large
number of local-minima, thereby making the theoretical
analysis intractable unless we assume that the initial es-
timates for GD/SGD are sufficiently close to the global
minima; see e.g., [43], [44] for some examples of results
relating the closeness of the initial estimates and the
convergence rate of GD/SGD. One popular initialization
scheme for GD/SGD is via spectral methods and thus
we can consider using the SVD-based embedding F as
a “warm-start” for (2.4). We leave the precise conver-
gence analysis of the resulting GD/SGD iterations to the
interested reader. We note, however, that while this is
certainly an interesting technical problem, the practical
benefits might be limited. Indeed, the theoretical results in
Section III guaranteed perfect recovery using F while the
empirical evaluations in Sections I'V-B and I'V-C suggest
that clustering based on Fis comparable or even better
than that of the original node2vec. In other words, as the
main objective is to recover the structure in M induced
by P, it is certainly possible that optimizing (2.4) does
not lead to better inference performance due to the noise
in using A as a replacement for P.
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