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AbstractÐWhile a practical wireless network has many tiers
where end users do not directly communicate with the central
server, the users’ devices have limited computation and battery
powers, and the serving base station (BS) has a fixed band-
width. Owing to these practical constraints and system models,
this paper leverages model pruning and proposes a pruning-
enabled hierarchical federated learning (PHFL) in heterogeneous
networks (HetNets). We first derive an upper bound of the
convergence rate that clearly demonstrates the impact of the
model pruning and wireless communications between the clients
and the associated BS. Then we jointly optimize the model
pruning ratio, central processing unit (CPU) frequency and
transmission power of the clients in order to minimize the
controllable terms of the convergence bound under strict delay
and energy constraints. However, since the original problem is not
convex, we perform successive convex approximation (SCA) and
jointly optimize the parameters for the relaxed convex problem.
Through extensive simulation, we validate the effectiveness of our
proposed PHFL algorithm in terms of test accuracy, wall clock
time, energy consumption and bandwidth requirement.

Index TermsÐHeterogeneous network, hierarchical federated
learning, model pruning, resource management.

I. INTRODUCTION

FEDERATED learning (FL) has garnered significant at-

tention as a privacy-preserving distributed edge learning

solution in wireless edge networks [1]±[3]. Since the original

FL follows the parameter server paradigm, many state-of-the-

art works consider a single server with distributed clients as the

general system model in order to study the analytical and em-

pirical performance [2]±[6]. Given that there are U := {u}U
u=1

clients, each with a local dataset of Du := {xa,ya}A
a=1, where
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xa and ya are the ath feature vector and the corresponding label,

the central server wants to train a global machine learning

(ML) model w by minimizing a weighted combination of the

clients’ local objective functions fu(w)’s, as follows

f (w) := ∑
U

u=1
αu fu(w), (1)

fu(w) := (1/|Du|)∑(xa,ya)∈Du
l(w,xa,ya), (2)

where αu is the corresponding weight, and l(w,xa,ya) denotes

the loss function associated with the ath data sample. However,

general networks usually follow a hierarchical structure [7],

where the clients are connected to edge servers, the edge

servers are connected to fog nodes/servers, and these fog

nodes/servers are connected to the cloud server [8]. Naturally,

some recent works [9]±[14] have extended FL to accommodate

this hierarchical network topology.

A client1 does not directly communicate with the central

server in the hierarchical network topology. Instead, the clients

usually perform multiple local rounds of model training before

sending the updated models to the edge server. The edge server

aggregates the received models and updates its edge model,

and then broadcasts the updated model to the associated clients

for local training. The edge servers repeat this for multiple

edge rounds and finally send the updated edge models to

the upper-tier servers, which then undergo the same process

before finally sending the updated models to the cloud/central

server. This is usually known as hierarchical federated learning

(HFL) [11]. On the one hand, HFL acknowledges the practical

wireless heterogeneous network (HetNet) architecture. On the

other hand, it avoids costly direct communication between the

far-away cloud server and the capacity-limited clients [14].

Moreover, since local averaging improves learning accuracy

[7], the central server ends up with a better-trained model.

While HFL can alleviate communication bottlenecks for

the cloud server, data and system heterogeneity amongst the

clients still need to be addressed. Since the clients are usually

scattered in different locations and have various onboard

sensors, the data collected/sensed by these clients are diverse,

causing statistical data heterogeneity that the server cannot

govern. As such, we need to embrace it in our theoretical and

empirical study. Besides, the well-known system heterogeneity

arises from the clients’ diverse computation powers [15].

Recently, some works have been proposed to deal with system

heterogeneity. For example, FedProx [16], anarchic federated

1The terms client and UE are interchangeably used when there is no
ambiguity.
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averaging (AFA) [17] and federated normalized averaging

algorithm (FedNova) [18], to name a few, considered different

local rounds for different clients to address the system hetero-

geneity. More specifically, FedProx adds a proximal term to

the client’s local objective function to handle heterogeneity.

AFA and FedNova present different ways to aggregate clients

trained models’ weights at the server to tackle this system

heterogeneity. However, these algorithms still assume that the

client has and trains the original ML model, i.e., neither

the computation time for the client’s local training nor the

communication overhead for offloading the trained model to

the server is considered in system design.

Model pruning has attracted research interest recently [19],

[20]. It makes the over-parameterized model sparser, which

allows the less computationally capable clients to perform

local training more efficiently without sacrificing much of

the test accuracy. Besides, since the trained model contains

fewer non-zero entries, the communication overhead over the

unreliable wireless link between the client and the associated

base station (BS) also dramatically reduces. However, pruning

generally introduces errors that only partially vanish, causing

the pruned model to converge only to a neighborhood of

the optimal solution [19]. Besides, unlike the traditional FL,

where the model averaging happens only at the central server,

HFL has multiple hierarchical levels that may adopt their own

aggregation strategy. Therefore, model pruning at the local

client level leads to additional errors in the available models

at different levels, eventually contributing to the global model.

As such, more in-depth study is in need to understand the full

benefit of model pruning in hierarchical networks.

A. Related Work

Some recent works studied HFL [9]±[14] and model pruning-

based traditional single server based FL [20]±[24] separately.

In [9], Xu et al. proposed an adaptive HFL scheme, where they

optimized edge aggregation intervals and bandwidth allocation

to minimize a weighted combination of the model training

delay and training loss. Liu et al. proposed network-assisted

HFL in [10], where they optimized wireless resource allocation

and user associations to minimize 1) learning latency for

independent identically distributed (IID) data distribution and

2) weighted sum of the total data distance and learning latency

for the non-IID data distribution. Similar to [9], [10], Luo

et al. jointly optimized the wireless network parameters in

order to minimize the weighted combination of the total

energy consumption and delay during the training process in

[11]. Besides, [12] also proposed an HFL algorithm based

on federated averaging (FedAvg) [1]. In [13], Feng et al.

proposed a mobility-aware clustered FL algorithm owing to

user mobility. More specifically, assuming that all users had an

equal probability of staying at a cluster, the authors derived an

upper bound of the convergence rate to capture the impact of

user mobility, data heterogeneity and network heterogeneity.

Abad et al. also optimized wireless resources to reduce the

communication latency and facilitate HFL in [14].

On the model pruning side, Jiang et al. considered two-

stage distributed model pruning in [20] with traditional single

server based FL setting without any wireless network aspects.

In a similar setting, Zhu et al. proposed a layer-wise pruning

mechanism in [21]. Liu et al. optimized the pruning ratio

and time allocation in [22] in order to maximize the conver-

gence rate in a time division multiple access operated small

BS (sBS). The idea was extended to joint client selection,

pruning ratio optimization and time allocation in [23]. Using

a similar network model, Ren et al. optimized pruning ratios

and bandwidth allocations jointly to minimize a weighted

combination of the FL training time and pruning error in

[24]. These works [22]±[24] decomposed the original problem

into different sub-problems that they solved iteratively in an

attempt to solve the original problem sub-optimally. Moreover,

[22]±[24] considered a simple network system model with a

single BS serving the distributed clients with the wireless links.

B. Our Contributions

While the studies mentioned above shed some light on HFL

and model pruning in the traditional single server based FL,

the impact of pruning on HFL in resource-constrained wireless

HetNet is yet to be explored. On the one hand, the clients

need to train the original model for a few local episodes to

determine the neurons they shall prune, which adds additional

time and energy costs. On the other hand, pruning adds errors

to the learning performance. Therefore, it is necessary to

theoretically and empirically study these errors from different

levels in HFL. Moreover, it is also crucial to justify how and

when one should adopt model pruning in practical wireless

HetNets. Motivated by these, in this work, we present our

pruning-enabled HFL (PHFL) framework with the following

major contributions:

• Considering a practical wireless HetNet, we propose a

PHFL solution in which the clients perform local training

on the initial models to determine the neurons to prune,

perform extensive training on the pruned models, and

offload the trained models under strict delay and energy

constraints.

• We theoretically analyze how pruning introduces errors

in different levels under resource constraints in wireless

HetNets by deriving a convergence bound that captures

the impact of the wireless links between the clients

and server and the pruning ratios. More specifically, the

proposed solution converges to the neighborhood of a

stationary point of traditional HFL with a convergence

rate of O
(
1/
√

UT
)
+O(β 2D2δ th), where U is the total

number of clients, T is the total local iterations, β
quantifies smoothness of the loss function, D2 is an

upper bound of the L2 norm of the model weights, and

0 < δ th < 1 is the maximum allowable pruning ratio.

• Then, we formulate an optimization problem to maxi-

mize the convergence rate by jointly configuring wireless

resources and system parameters. To tackle the non-

convexity of the original problem, we use a successive

convex approximation (SCA) algorithm to solve the re-

laxed convex problem efficiently.

• Finally, using extensive simulation on two popular

datasets and three popular ML models, we show the
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training time of a computationally limited client. To alleviate

this, the UE trains a pruned model by removing some of the

weights of the original model w [19].

Denote a binary mask by mi ∈ R
d and the pruned model

by w̃i :=wi⊙mi, where ⊙ means element-wise multiplication.

Note that training the pruned model w̃i is computationally less

expensive as it has fewer parameters than the original model.

It is worth pointing out that the UE utilizes the state-of-the-art

lottery ticket hypothesis [26] to find the winning ticket w̃i and

the corresponding mask with the following key steps. Denote

the number of parameters required to be pruned by dp. The

UE performs ρ local iterations on the original model wi as

w
ρ
i = wi −η ∑

ρ

Åρ=1
g(w

Åρ
i ), (5)

where η is the step size. The UE then prunes dp entries of

w
ρ
i ∈R

d with the smallest magnitudes3 and generates a binary

mask mi ∈ {0,1}d . To that end, the client obtains the winning

ticket w̃i by retaining the original weights of the corresponding

nonzero entries of the mask mi from the original initial

model wi [26]. Note that other pruning techniques can also

be adopted. Moreover, we denote the pruning ratio by [23]

δi := dp/d. (6)

Given the pruned model w̃
t,0
i := wt

i ⊙mt
i , the loss function of

the UE is rewritten as

fi(w̃
t,0
i ) := [1/|Di|]∑(xa,ya)∈Di

f (w̃t,0
i ,xa,ya), (7)

Each UE updates its pruned model as

w̃t+1
i := w̃

t,0
i −ηg(w̃t,0

i )⊙mt
i. (8)

As such, we denote the loss functions of the jth VC, kth

sBS, lth mBS and central server as f j(w j) := ∑
U j,k,l

i=1 αi fi(w̃i),

fk(wk) := ∑
Vk,l

j=1 α j f j(w j), fl(wl) := ∑
Bl

k=1 αk fk(wk), and

f (w) := ∑
L
l=1 αl fl(wl), respectively. Note that for simplicity,

we consider identical weights, i.e., αi = 1/U j,k,l , α j = 1/Vk,l ,

αk = 1/Bl and αl = 1/L, which can be easily adjusted for

other weighting strategies. Besides, since aggregation happens

at different times and different levels, we need to capture the

time indices explicitly. Let each UE perform κ0 local iterations

before sending the updated model to the associated VC. It is

worth noting that the winning ticket and the corresponding

binary mask are only obtained before these κ0 local rounds

begin. Besides, since training the original model is costly, it is

reasonable to consider ρ ≪ κ0
4. Moreover, although the sBS-

mBS and mBS-central server links are wired, communication

and computation at these nodes incur additional burdens. As

such, we assume that each VC, sBS and mBS perform κ1, κ2

and κ3 rounds, respectively, before sending the trained model

to the respective upper layers. Denote the indices of the current

global round, mBS round, sBS round, VC round and UE’s

3The time complexity to sort the d parameters and then prune the dp

smallest ones depends on the sorting technique. Many sorting algorithms
have logarithmic time complexity, which can be computed quickly in modern
graphical processing units. Following the common practice in literature [22]±
[24], the overhead for pruning is ignored in this work. Moreover, the proposed
method can be readily extended to incorporate the time overhead for pruning.

4In our simulation, we considered ρ < κ0 and observed that even ρ = 1
with κ0 ≥ 5 performed well.

local round by m, t3, t2, t1 and t0, respectively. Besides, similar

to [9], [13], let t := [{(mκ3 + t3)κ2 + t2}κ1 + t1]κ0 + t0 denote

the index of local update iterations.

If t mod κ0 = 0, the UE receives the latest available model

of its associated VC, i.e.,

w
Åt0
i ← w

Åt0
j , (9)

where Åt0 = [{(mκ3 + t3)κ2 + t2}κ1 + t1]κ0. The UE then com-

putes the pruned model w̃
Åt0,0
i and the binary mask m

Åt0
i . It then

performs κ0 local SGD rounds as

w̃
Åt0+κ0
i = w̃

Åt0,0
i −η ∑

κ0

t0=1
g
(
w̃

Åt0+t0,0
i

)
⊙m

Åt0
i . (10)

Each VC j performs t1 = 0, . . . ,κ1 − 1 local rounds. When

(t1 + 1) mod κ1 = 0, the VC’s model gets updated by the

latest available sBS model, i.e.,

w
Åt1
j ← w

Åt1
k , (11)

where Åt1 = {(mκ3+t3)κ2+t2}κ1κ0. Besides, between two VC

rounds, the local model of the VC is updated as

w
Åt1+(t1+1)κ0
j = ∑

U j,k,l

i=1
αiw̃

Åt1+(t1+1)κ0
i = w̃

Åt1+t1κ0,0
j −

η∑
U j,k,l

i=1

[
111

Åt1+t1κ0
i /p

Åt1+t1κ0
i

]
αi ∑

κ0

t0=1
g
(
w̃

Åt1+t1κ0+t0,0
i

)
⊙m

Åt1+t1κ0
i ,

(12)

where w̃
Åt1+t1κ0,0
j := ∑

U j,k,l

i=1 αiw̃
Åt1+t1κ0,0
i and 111

Åt1+t1κ0
i is a binary

indicator function that indicates whether the sBS receives the

trained model of i during the VC aggregation round Åt1 +(t1 +
1)κ0 or not, and is defined as follows:

111
Åt1+t1κ0
i :=

{

1, with probability p
Åt1+t1κ0
i ,

0, otherwise,
, (13)

where p
Åt1+t1κ0
i is the probability of receiving the trained model

over the wireless link and is calculated in the subsequent

section (c.f. (42)). Note that since the sBS has to receive the

gradient over the wireless link, we use the binary indicator

function 111
Åt1+t1κ0
i in (12) as a common practice [13], [27].

The sBS performs t2=0, . . . ,κ2−1local rounds before updat-

ing its model. When (t2 +1) mod κ2 = 0, the sBS updates its

local model with the latest available model at its associated

mBS, i.e.,

w
Åt2
k ← w

Åt2
l , (14)

where Åt2 = (mκ3 + t3)κ2κ1κ0. In each sBS round t2, the sBS

updates its model as

w
Åt2+(t2+1)κ1κ0

k = ∑
Vk,l

j=1
α jw

Åt2+(t2+1)κ1κ0
j = w̃

Åt2+t2κ1κ0,0
k −

η

Vk,l

∑
j=1

α j

κ1−1

∑
t1=0

U j,k,l

∑
i=1

αi

111
Åt2+t̃2
i

p
Åt2+t̃2
i

κ0

∑
t0=1

g
(
w̃

Åt2+t̃2+t0,0
i

)
⊙m

Åt2+t̃2
i , (15)

where w̃
Åt2+t2κ1κ0,0
k

:=∑
Vk,l

j=1 α jw̃
Åt2+t2κ1κ0,0
j,k,l and t̃2 =(t2κ1+t1)κ0.

Similarly, the mBS performs t3 = 0, . . . ,κ3 − 1 local rounds

before updating its local model with the latest available global

model when (t3 +1) mod κ3 = 0, i.e.,

w
mκ3κ2κ1κ0
l ← wmκ3κ2κ1κ0 . (16)

Moreover, between two mBS rounds, we can write

w
(mκ3+(t3+1))κ2κ1κ0

l = w̃
(mκ3+t3)κ2κ1κ0,0
l −
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Algorithm 1: Pruning-Enabled Hierarchical FL

Input: Total global round M, initial model w0

1 Synchronize all edge devices with the initial model w0

2 for All global rounds m = 0 to M−1 do
3 for All mBS rounds t3 = 0,1, . . . ,κ3 −1 do
4 for All sBS rounds t2 = 0,1, . . . ,κ2 −1 do
5 for All VC rounds t1 = 0,1, . . . ,κ1 −1 do
6 for i ∈ U j,k,l in parallel do
7 UE receives the latest available model from

the associated VC
8 Compute binary mask and get the winning

ticket using lottery ticket hypothesis
9 for All local rounds t0 = 1,2, . . . ,κ0 do

10 t ← [{(mκ3 + t3)κ2 + t2}κ1 + t1]κ0 + t0
11 UE updates local model using (8)
12 end
13 end
14 sBS updates VC model using (11) and (12)
15 end
16 sBS update local cell model using (14) and (15)
17 end
18 mBS updates local cell model using (16) and (17)
19 end
20 Central server updates global model using (18)
21 end

Output: Global ML model wM−1

η
Bl

∑
k=1

αk

κ2−1

∑
t2=0

Vk,l

∑
j=1

α j

κ1−1

∑
t1=0

U j,k,l

∑
i=1

αi

111
Åt3
i

p
Åt3
i

κ0

∑
t0=1

g
(
w̃

Åt3+t0,0
i

)
⊙m

Åt3
i , (17)

where w̃
(mκ3+t3)κ2κ1κ0,0
l

:= ∑
Bl

k=1 αkw̃
(mκ3+t3)κ2κ1κ0,0
k and Åt3 =

[((mκ3 + t3)κ2 + t2)κ1 + t1]κ0. Finally, the central server per-

forms global aggregation by collecting the updated models

from all mBSs as follows:

w(m+1)∏3
z=0 κz = w̃m∏3

z=0 κz,0−η ∑
L

l=1
αl ∑

κ3−1

t3=0 ∑
Bl

k=1
αk

κ2−1

∑
t2=0

Vk,l

∑
j=1

α j

κ1−1

∑
t1=0

U j,k,l

∑
i=1

αi

111
Åt3
i

p
Åt3
i

κ0

∑
t0=1

g
(
w̃

Åt3+t0,0
i

)
⊙m

Åt3
i , (18)

where w̃m∏3
z=0 κz,0 := ∑

L
l=1 αlw̃

m∏3
z=0 κz,0

l .

The proposed PHFL process is summarized in Algorithm 1.

III. PHFL: CONVERGENCE ANALYSIS

A. Assumptions

We make the following standard assumptions [7], [13], [20],

[23], [28]:

1) The loss functions are lower-bounded, i.e., f (w)≥ finf.

2) The loss functions are β -smooth, i.e., ∥∇ fi(w) −
∇ fi(w

′)∥ ≤ β∥w−w′∥.

3) Mini-batch gradients are unbiased Eξ∼Di
[g(w̃i)] =

∇ fi(w̃i). Besides, the variance of the gradients is

bounded, i.e., ∥g(w̃i)−∇ fi(w̃i)∥2 ≤ σ2.

4) The divergence of the local, VC, sBS, mBS and global

loss functions are bounded for all i, j, k, l and w, i.e.,

∑
U j,k,l

i=1
αi∥∇ fi(w)−∇ f j(w)∥2 ≤ ε2

vc,

∑
Vk,l

j=1
α j∥∇ f j(w)−∇ fk(w)∥2 ≤ ε2

sbs,

∑
Bl

k=1
αk∥∇ fk(w)−∇ fl(w)∥2 ≤ ε2

mbs,

∑
L

l=1
αl∥∇ fl(w)−∇ f (w)∥2 ≤ ε2.

5) The stochastic gradients are independent of each other

in different iterations.

6) The stochastic gradients are bounded, i.e., E∥g(wi)∥2 ≤
G2.

7) The model weights are bounded, i.e., E∥wi∥2 ≤ D2.

8) The pruning ratio δ t
i ∈ [0,δ th], in which 0 < δ th < 1 and

δ th is the maximum allowable pruning ratio, follows

δ t
i ≥

∥
∥wt

i − w̃
t,0
i

∥
∥2
/∥wt

i∥2. (19)

Since the updated global, mBS, sBS and VC models are not

available in each local iteration t, similar to standard practice

[7], [9], [13], we assume the virtual copies of these models,

denoted by Åwt , Åwt
l , Åwt

k and Åwt
j, respectively, are available.

Besides, we assume that the bounded divergence assumptions

amongst the above loss functions also hold for these vir-

tual models. Moreover, analogous to our previous notations,

we express Å̃wt,0 := ∑
L
l=1 αl ∑

Bl

k=1 αk ∑
Vk,l

j=1 α j ∑
U j,k,l

i=1 αiw̃
t,0
i =

∑
U
u=1 αuw̃

t,0
u and Å̃w0 := Å̃w0,0.

B. Convergence Analysis

Similar to existing literature [7], [9], [13], [20], we consider

the average global gradient norm as the indicator of the

proposed PHFL algorithm’s convergence. As such, in the

following, we seek an θPHFL-suboptimal solution such that
1
T ∑

T−1
t=0 ∥∑

U
u=1 αu∇ fu( Å̃wt,0)⊙ mt

u∥2 ≤ θPHFL and θPHFL ≥ 0.

Particularly, we start with Theorem 1 that requires bounding

the differences amongst the models in different hierarchical

levels. These differences are first calculated in Lemma 1 to

Lemma 4 and then plugged into Theorem 1 to get the θPHFL-

suboptimal bound in Corollary 1.

Theorem 1. When the assumptions in Section III-A hold and

η ≤ 1/β , we have

θPHFL ≤ O

(
f ( Å̃w0)− finf

ηT

)

+O

(
βησ2

U

)

+O
(
δ thβ 2D2

)

︸ ︷︷ ︸

pruning error

+

O
(
βηG2 ·ϕw,0(δδδ ,fff,PPP)

)

︸ ︷︷ ︸

wireless factor

+O
(
β 2

[
L1 +L2 +L3 +L4

])
, (20)

where δδδ = {δ t
1, . . . ,δ

t
U}T−1

t=0 , fff = {ft
1, . . . , f

t
U}T−1

t=0 , PPP =
{Pt

1, . . . ,P
t
U}T−1

t=0 and ft
i is the ith client’s central processing unit

(CPU) frequency in the wireless factor. Besides, the terms L1,

L2, L3 and L4 are

ϕw,0(δδδ ,fff,PPP) =
1

T

T−1

∑
t=0

L

∑
l=1

α2
l

Bl

∑
k=1

α2
k

Vk,l

∑
j=1

α2
j

U j,k,l

∑
i=1

α2
i

[
1

pt
i

−1

]

, (21)

L1 =
1

T

T−1

∑
t=0

L

∑
l=1

αl

Bl

∑
k=1

αk

Vk,l

∑
j=1

α j

U j,k,l

∑
i=1

αiE∥ Åwt
j − w̃t

i∥2, (22)

L2 = [1/T ]∑
T−1

t=0 ∑
L

l=1
αl ∑

Bl

k=1
αk ∑

Vk,l

j=1
α jE∥ Åwt

k − Åwt
j∥2, (23)

L3 = [1/T ]∑
T−1

t=0 ∑
L

l=1
αl ∑

Bl

k=1
αkE∥ Åwt

l − Åwt
k∥2, (24)

L4 = [1/T ]∑
T−1

t=0 ∑
L

l=1
αlE∥ Åwt − Åwt

l∥2. (25)

The proof of Theorem 1 and the subsequent Lemmas are

left in the supplementary materials.

Remark 1. The first term in (20) is what we get for centralized

learning, while the second term arises from the randomness
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of the mini-batch gradients [29]. The third term appears

from model pruning. Besides, the fourth term arises from the

wireless links among the sBS and UEs. It is worth noting that

ϕw,0(δδδ ,fff,PPP) = 0 when all pt
i’s are 1’s. Finally, the last term

is due to the difference among the VC-local, sBS-VC, sBs-

mBS and mBS-global model parameters, respectively, which

are derived in the following.

Remark 2. When the system has no pruning, i.e., all UEs

use the original models, all δ t
i = 0. Besides, under the perfect

communication among the sBS and UEs, we have pt
i = 1. In

such cases, the θPHFL-suboptimal bound boils down to

θPHFL ≤ O
(
( f ( Åw0)− finf)/[ηT ]

)
+O

(
βησ2/U

)
+

O
(
β 2[L1 +L2 +L3 +L4]

)
. (26)

Besides, the last term in (26) appears from the four hier-

archical levels. When U = 1 and there are no levels, i.e.,

L1 = L2 = L3 = L4 = 0, the convergence bound is exactly the

same as the original SGD with non-convex loss function [7].

To that end, we calculate the divergence among the local,

VC, sBS, mBS and global model parameters, and derive the

corresponding pruning errors in each level in what follows.

Lemma 1. When η ≤ 1/[2
√

10κ0β ], the average difference

between the VC and local model parameters, i.e., the L1 term

of (20), is upper bounded as

β 2

T

T

∑
t=0

L

∑
l=1

αl

Bl

∑
k=1

αk

Vk,l

∑
j=1

α j

U j,k,l

∑
i=1

αiE
∥
∥ Åwt

j − w̃t
i

∥
∥2≤ O

(
κ0η2β 2σ2

)
+

O
(
κ2

0 η2β 2ε2
vc

)
+O

(
δ thβ 2D2

)
+O

(
κ0η2β 2G2 ·ϕw,L1

)
, (27)

where ϕw,L1
= 1

T ∑
L
l=1αl∑

Bl

k=1αk ∑
Vk,l

j=1α j ∑
U j,k,l

i=1 αi ∑
T−1
t=0 (1/pt

i −1).

Remark 3. In (27), the first term comes from the statistical

data heterogeneity, while the second term arises from the

divergence between the local and VC loss functions. The third

term emanates from model pruning. Finally, the fourth term

stems from the wireless links among the UEs and sBS.

Lemma 2. When η ≤ 1/[2
√

10κ0κ1β ], the difference between

the sBS model parameters and VC model parameters, i.e., the

L2 term of (20), is upper bounded as

β 2

T

T−1

∑
t=0

L

∑
l=1

αl

Bl

∑
k=1

αk

Vk,l

∑
j=1

α jE
∥
∥ Åwt

k − Åwt
j

∥
∥2≤ O

(
β 4κ4

0 κ2
1 η4ε2

vc

)
+

O
(
κ2

0 κ2
1 η2β 2ε2

sbs

)
+O

(
κ0κ1η2σ2β 2

)
+O

(
δ thβ 2D2

)
+

O
(
κ3

0 κ2
1 β 4η4G2ϕw,L1

)
+O

(
κ0κ1β 2η2ϕw,L2

)
, (28)

where ϕw,L2
= 1

T ∑
T−1
t=0 ∑

L
l=1αl∑

Bl

k=1αk∑
Vk,l

j=1α j ∑
U j,k,l

i=1 α2
i (1/pt

i−1).

Remark 4. The first term in (28) appears from the divergence

of the loss functions of the clients and VC, while the second

term stems from the divergence between the loss function of the

VC and sBS. The rest of the terms are due to the statistical data

heterogeneity, model pruning and wireless links, respectively.

Lemma 3. When η ≤ 1/[2
√

14κ0κ1κ2β ], the average differ-

ence between the sBS and mBS model parameters, i.e., the L3

term of (20), is upper bounded as

[β 2/T ]∑
T−1

t=0 ∑
L

l=1
αl ∑

Bl

k=1
αkE

∥
∥ Åwt

l − Åwt
k

∥
∥2

≤ O
(
κ3

0 κ2
1 κ2

2 η4β 4ε2
vc

)
+O

(
κ4

0 κ4
1 κ2

2 η4β 4ε2
sbs

)
+

O
(
κ2

0 κ2
1 κ2

2 η2β 4ε2
mbs

)
+O

(
κ0κ1κ2η2β 2σ2

)
+

O
(
δ thβ 2D2

)
+O

(
κ3

0 κ2
1 κ2

2 η4β 4G2 ·ϕw,L1

)
+

O
(
κ2

0 κ2
1 κ2

2 β 4η4 ·ϕw,L2
)+O

(
κ0κ1κ2η2β 2G2 ·ϕw,L3

)
. (29)

where ϕw,L3
= 1

T ∑
L
l=1αl ∑

Bl

k=1αk ∑
Vk,l

j=1α
2
j ∑

U j,k,l

i=1 α2
i ∑

T−1
t=0 (1/pt

i−1).

Lemma 4. When η ≤ 1/[6
√

2κ0κ1κ2κ3β ], the average dif-

ference between the global and the mBS models, i.e., the L4

term, is bounded as follows:

[β 2/T ]∑
T−1

t=0 ∑
L

l=1
αlE

∥
∥ Åwt − Åwt

l

∥
∥2≤ O

(
κ4

0 κ2
1 κ2

2 κ2
3 η4β 4ε2

vc

)
+

O
(
κ4

0 κ4
1 κ2

2 κ2
3 η4β 4ε2

sbs

)
+O

(
κ4

0 κ4
1 κ4

2 κ2
3 η4β 6ε2

mbs

)
+

O(κ2
0 κ2

1 κ2
2 κ2

3 β 4η2ε2)+O(κ0κ1κ2κ3β 2η2σ2)+O
(
δ thβ 2D2

)
+

O
(
κ3

0 κ2
1 κ2

2 κ2
3 η4β 4G2ϕw,L1

)
+O

(
κ3

0 κ3
1 κ2

2 κ2
3 β 4η4ϕw,L2

)
+

O(κ3
0 κ3

1 κ3
2 κ2

3 η4β 4G2ϕw,L3
)+O(κ0κ1κ2κ3β 2η2G2ϕw,L4

), (30)

where ϕw,L4
= 1

T ∑
L
l=1αl∑

Bl

k=1α
2
k ∑

Vk,l

j=1α
2
j ∑

U j,k,l

i=1 α2
i ∑

T−1
t=0 (1/pt

i −1).

Note that we have similar observations for (29) and (30) as

in Remark 4. Now, using the above Lemmas, we find the final

convergence rate in Corollary 1.

Corollary 1. When η ≤ 1/[6
√

2κ0κ1κ2κ3β ], the θPHFL bound

of Theorem 1 boils down to

θPHFL ≤ O
(
[ f ( Å̃w0)− finf]/[ηT ]

)
+O(βησ2/U)+

O
(
κ2

0 η2β 2ε2
vc

)
+O

(
κ2

0 κ2
1 η2β 2ε2

sbs

)
+

O
(
κ2

0 κ2
1 κ2

2 η2β 4ε2
mbs

)
+O

(
κ2

0 κ2
1 κ2

2 κ2
3 β 4η2ε2

)
+

O
(
δ thβ 2D2

)

︸ ︷︷ ︸

pruning error

+O
(
βηG2 ·ϕw,0(δδδ ,fff,PPP)

)

︸ ︷︷ ︸

wireless factor

. (31)

Remark 5. In (31), the third, fourth, fifth and sixth terms

appear from the divergence between client-VC, VC-sBS, sBS-

mBS and mBS-global loss functions, respectively.

Remark 6. In typical HFL with no model pruning, i.e., δ t
u = 0,

∀u∈U , O
(
δ thβ 2D2

)
= 0. Besides, when the wireless links are

ignored, the last term in (31) becomes zero. In such a special

case, Corollary 1 boils down to

θPHFL ≤ O
(
[ f ( Å̃w0)− finf]/[ηT ]

)
+O(βησ2/U)+

O
(
κ2

0 η2β 2ε2
vc

)
+O

(
κ2

0 κ2
1 η2β 2ε2

sbs

)
+

O
(
κ2

0 κ2
1 κ2

2 η2β 4ε2
mbs

)
+O

(
κ2

0 κ2
1 κ2

2 κ2
3 β 4η2ε2

)
. (32)

Remark 7. When η =
√

U/T , we have T ≥
1/[72Uκ2

0 κ2
1 κ2

2 κ2
3 β 2]. With a sufficiently large T , when the

trained model reception success probability is 1 for all users in

all time steps, we have θPHFL ≈ O
(
1/
√

UT
)
+O

(
δ thβ 2D2

)
,

where the second term comes from the pruning error.

Therefore, the proposed PHFL solution converges to the

neighborhood of a stationary point of traditional HFL.

IV. JOINT PROBLEM FORMULATION AND SOLUTION

Similar to existing literature [3], [4], [8], [27], we ignore

the downlink delay in this paper since the sBS can utilize

the higher spectrum and transmission power to broadcast the
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updated model. Moreover, since the sBS-mBS and mBS-

cloud server links are wired, we ignore the transmission

delays for these links5. Furthermore, since the sBS, mBS

and the cloud server usually have high computation power,

we also ignore the model aggregation and processing de-

lays6. Therefore, at the beginning of each VC round, i.e.,

t ∋ (m∏
κz

z=0+t0) mod κ0 = 0, we first calculate the required

computation time for finding the lottery ticket as

t
cpd
i = ρ ×

(
bnciDi/ft

i

)
, (33)

where b is the batch size, n is the number of batches, ci is

the CPU cycles to process 1-bit data, Di is UE ui’s each data

sample’s size in bits and ft
i is the CPU frequency. Upon finding

the pruned model, each client performs κ0 local iterations,

which require the following computation time [23]

t
cps

i = κ0 ×
(
bn(1−δ t

i )ciDi/ft
i

)
. (34)

To that end, the UE only offloads the non-zero weights along

with the binary mask to the sBS. As such, we calculate the

uplink payload size of UE i as follows7:

si ≤ d
[
1−δ t

i

]
(FPP+1)+d, (35)

where FPP is the floating point precision. Note that, in (35),

we need 1 bit to represent the sign of the entry. Therefore, we

calculate the uplink payload offloading delay as follows:

t
up
i ≤ d

[(
1−δ t

i

)
(FPP+1)+1

]
/rt

i . (36)

As such, UE i’s total duration for local computing and trained

model offloading is

ttot
i ≤ t

cpd
i + t

cps

i + t
up
i . (37)

We now calculate the energy consumption for performing

the model training, followed by the required energy for of-

floading the trained models. First, let us calculate the energy

consumption to get the lottery ticket as

e
cpd
i = ρ ×0.5ξ bnciDi(f

t
i)

2, (38)

where 0.5ξ is the effective capacitance of UE’s CPU chip.

Similarly, we calculate the energy consumption to train κ0

local iterations using the pruned model as

e
cps

i = κ0 ×0.5ξ bn(1−δ t
i )ciDi(f

t
i)

2. (39)

Moreover, we calculate the uplink payload offloading energy

consumption as follows:

e
up
i ≤ d

[(
1−δ t

i

)
(FPP+1)+1

]
Pt

i /ri. (40)

Therefore, the total energy consumption is calculated as

etot
i ≤ e

cpd
i + e

cps

i + e
up
i . (41)

5The transmissions over the wired sBS-mBS and mBS-cloud server links
happen in the backhaul, and the corresponding delays are quite small. In order
to calculate these delays, one should also consider the overall network loads,
which are beyond the scope of this paper.

6The addition of d parameters and then taking the average have a time
complexity of O(d + 1). With highly capable CPUs at the sBS, mBS, and
central server, the corresponding time delays for parameter aggregation are
usually small and therefore ignored in the literature [9], [10], [23].

7Note that one may send the non-pruned weights and the corresponding
indices, which are unknown until the original initial model is trained for ρ
iterations. We consider an upper bound for the uplink payload, which will be
used during the joint parameters optimization phase.

A. Problem Formulation

Denote the duration between VC aggregation tth. Then, we cal-

culate the probability of successful reception of UE’s trained

model as follows:

pt
i = Pr

{
ttot
i ≤ tth

}
=Pr

{
si≤rt

i

[
tth− t

cpd
i − t

cps

i

]}

= Pr
{

ht
i,k ≥

[
(2χt

i −1)(ωζ 2 + It
i,k)/(P

t
id

−α
i,k )

]}

(a)
= exp

[
− (2χt

i −1)(ωζ 2 + It
i,k)/(P

t
id

−α
i,k )

]
, (42)

where χ t
i =

dfti[(1−δ t
i )(FPP+1)+1]

ω[fti tth−bnciDi(ρ+κ0(1−δ t
i ))]

and (a) follows from the

Rayleigh fading channels between the UE and the sBS.

Notice that the pruning ratio δ t
i , CPU frequency ft

i , trans-

mission power Pt
i and the probability of successful model

reception pt
i are intertwined. More specifically, pt

i depends on

δ t
i , ft

i and Pt
i , given that the other parameters remain fixed.

As such, we aim to optimize these parameters jointly by

considering the controllable terms in our convergence bound

in Corollary 1. Therefore, we focus on each VC round, i.e.,

the local iteration round t at which t mod κ0 = 0. Specifically,

we focus on minimizing the error terms due to pruning and

wireless links, which are given by

O
(
δ thβ 2D2

)
+O

(
βηG2 ·ϕw,0(δδδ ,fff,PPP)

)
. (43)

Remark 8. In the above expression, the first term

appears from the pruning error
12β 2

T ∑
T−1
t=0 ∑

L
l=1 ·

αl ∑
Bl

k=1 αk ∑
Vk,l

j=1 α j ∑
U j,k,l

i=1 αi

(
1 + 2

{
αi

[
1 + α j

(
1 + αk

{
1 +

αl

})]})
δ t

i ∥wt
i∥2 ≤ O

(
δ thβ 2D2

)
, while the second

term comes from the wireless factor
2βη

T ∑
L
l=1 α2

l ·
∑

Bl

k=1 α2
k ∑

Vk,l

j=1 α2
j ∑

U j,k,l

i=1 α2
i ∑

T−1
t=0 (1/pt

i −1)E
∥
∥g̃

(
w̃

t,0
i

)∥
∥2 ≤

O
(βηG2

T ∑
L
l=1 α2

l ∑
Bl

k=1 α2
k ∑

Vk,l

j=1 α2
j ∑

U j,k,l

i=1 α2
i ∑

T−1
t=0 (1/pt

i −1)
)
.

Based on the above observations, we consider a weighted

combination of these two terms as our objective function to

minimize the bound in (43). Using (42) in the wireless factor,

we, therefore, consider the following objective function.

ϕ t(δδδ t ,ffft ,PPPt)= φ1 ∑
L

l=1
αl ∑

Bl

k=1
αk ∑

Vk,l

j=1
α j ∑

U j,k,l

i=1
αiδ

t
i + (44)

φ2

L

∑
l=1

αl

Bl

∑
k=1

αk

Vk,l

∑
j=1

α j

U j,k,l

∑
i=1

αi

[

exp

(
(2χt

i −1)(ωζ 2 + It
i,k)

Pt
id

−α
i,k

)

−1

]

,

where φ1 and φ2 are two weights to strike the balance between

the terms. Note that the wireless factor is multiplied by the

learning rate and gradient in (43). Typically, the learning rate

is small. Besides, the gradient becomes smaller as the training

progresses. As such, the wireless factor term is relatively

small when pt
i > 0 for all UEs and VC aggregation rounds.

The model weights are non-negative. Furthermore, a larger

pruning ratio δ t
i can dramatically reduce the computation and

offloading time, making the wireless factor 0. However, as a

higher pruning ratio means more model parameters are pruned,

we wish to avoid making the δ t
i ’s large to reduce the pruning-

induced errors. The above facts suggest we put more weight on

the pruning error term to penalize more for the δ t
i ’s. As such,

we consider φ1 ≫ φ2. However, in our resource-constrained

setting, a small δ t
i can prolong the training and offloading

time, leading pt
i to be 0, i.e., the sBS will not receive the
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local trained model. Therefore, although φ2 is small, we keep

the wireless factor to ensure pt
i is never 0.

Therefore, we pose the following optimization problem to

configure the parameters jointly.

minimize
δδδ t ,ffft ,PPPt

ϕ t(δδδ t ,ffft ,PPPt), (45)

s.t. (C1) ttot
i ≤ tth, ∀i, (45a)

(C2) etot
i ≤ eth

i , ∀i, (45b)

(C3) 0 ≤ ft
i ≤ fmax

i , ∀i, (45c)

(C4) 0 ≤ Pt
i ≤ Pmax

i , ∀i, (45d)

(C5) 0 ≤ δ t
i ≤ δ th, ∀i, (45e)

where constraint (C1) ensures that the completion of one

VC round is within the required deadline. Constraint (C2)
controls the energy expense to be within the allowable budget.

Besides, (C3) and (C4) restrict us from choosing the CPU fre-

quency and transmission power within the UE’s minimum and

maximum CPU cycles and transmission power, respectively.

Finally, constraint (C5) ensures the pruning ratio to be within

a tolerable limit δ th.

Remark 9. We assume that clients’ system configurations

remain unchanged over time, while the channel state infor-

mation (CSI) is dynamic and known at the sBS. The clients

share their system configurations with their associated sBS.

The sBSs share their respective users’ system configurations

and CSI with the central server. As such, problem (45) is solved

centrally, and the optimized parameters are broadcasted to

the clients. Besides, problem (45) is non-convex with the

multiplications and divisions of the optimization variables in

the second term. Moreover, constraints (C1) and (C2) are

not convex. Therefore, it is not desirable to minimize this

original problem directly. In the following, we transform the

problem into an approximate convex problem that can be

solved efficiently.

B. Problem Transformation

Let us define A(δ t
i , fi,Pi) := exp

[
(2χt

i − 1)(ωζ 2 +

It
i,k)/(P

t
id

−α
i,k )

]
. Given an initial feasible point set (δ

t,q
i ,

f
t,q
i , P

t,q
i ), we perform a linear approximation of this

non-convex expression as follows:

A(δ t
i , fi,Pi)≈A(δ t,q

i , ft,q
i ,Pt,q

i )+∇δ t
i

[
A(δ t,q

i , ft,q
i ,Pt,q

i )
]
(δ t

i −δ
t,q
i )

+∇fti

[
A(δ t,q

i , ft,q
i ,Pt,q

i )
]
(ft

i − f
t,q
i )+

∇Pt
i

[
A(δ t,q

i , ft,q
i ,Pt,q

i )
]
(Pt

i −P
t,q
i ) := Ã(δ t

i , f
t
i,P

t
i), (46)

where A(δ t,q
i , ft,q

i ,Pt,q
i ) = exp

[
(2χ

t,q
i − 1)(ωζ 2 +

Ĩt
i,k)/(P

t,q
i d−α

i,k )
]
, χ

t,q
i =

df
t,q
i [(1−δ t

i )(FPP+1)+1]
ω
[

f
t,q
i tth−bnciDi

(
ρ+κ0(1−δ

t,q
i )

)] and

Ĩt
i,k = ∑

L
l=1 ∑

K
k′=1,k ̸=k′ ∑

Jk′ ,l
j′=1 ∑ui′∈U j′ ,k′ ,l

P
t,q
i′ hi′,k′d

−α
i′,k′ . Moreover,

∇δ t
i

[
A(δ t,q

i , ft,q
i ,Pt,q

i )
]
,

∇fti

[
A(δ t,q

i , ft,q
i ,Pt,q

i )
]

and ∇Pt
i

[
A(δ t,q

i , ft,q
i ,Pt,q

i )
]

are calculated

in (47), (48) and (49), respectively.

As such, we approximate (44) as follows:

ϕ̃ t(δδδ t ,ffft ,PPPt) = ∑
L

l=1
αl ∑

Bl

k=1
αk ∑

Vk,l

j=1
α j ∑

U j,k,l

i=1
αi

(
φ1δ t

i +

Algorithm 2: Iterative Joint Pruning Ratio, CPU Fre-

quency and Transmission Power Selection Process

Input: Initial feasible set (δδδ t,0,ffft,0,PPPt,0), maximum iteration Q,
precision level εprec; set q = 0

22 Repeat:
3 Solve (55) using (δδδ t,q,ffft,q,PPPt,q) to get the optimized (δδδ t ,ffft ,PPPt)
4 q ← q+1 ; δδδ t,q ← δδδ t ; ffft,q ← ffft ; PPPt,q ← PPPt

5 Until converge with εprec precision or q = Q
Output: Optimal (δδδ t ,ffft ,PPPt)

φ2

[
Ã(δ t

i , f
t
i,P

t
i)−1

])
, (52)

where Ã(δ t
i , f

t
i,P

t
i) is calculated in (46).

We now focus on the non-convex constraints. First, let us

approximate the local pruned model computation time as

t
cps

i ≈[κ0bnciDi/f
t,q
i ](1−δ t

i − (1−δ
t,q
i )(ft

i − f
t,q
i )/f

t,q
i )=t̃

cps

i . (53)

Then, we approximate the non-convex uplink model offloading

delay as shown in (50). Using a similar treatment, we write

e
cps

i ≈ κ0ξ bnciDif
t,q
i

[
(δ t,q

i −0.5)ft,q
i −0.5f

t,q
i δ t

i +

(1−δ
t,q
i )ft

i

]
:= ẽ

cps

i . (54)

Similarly, we approximate the energy consumption for model

offloading as shown in (51).

Therefore, we pose the following transformed problem

minimize
δδδ t ,ffft ,PPPt

ϕ̃ t(δδδ t ,ffft ,PPPt), (55)

s.t. (C̃1) t̃
cpd
i + t̃

cps

i + t̃
up
i ≤ tth, (55a)

(C̃2) e
cpd
i + ẽ

cps

i + ẽ
up
i ≤ eth

i , (55b)

(45c),(45d),(45e), (55c)

where the constraints are taken for the same reasons as

in the original problem. Besides, t̃
cpd
i = 2ρbnciDi/f

t,q
i −

ρbnciDif
t
i/(f

t,q
i )2.

Note that problem (55) is now convex and can be solved

iteratively using existing solvers such as CVX [30]. The key

steps of our iterative solution are summarized in Algorithm

2. Moreover, as (55) has 3U decision variables and 5U

constraints, the time complexity of running Algorithm 2 for

Q iterations is O
(
Q× [(3U)3 ×5U]

)
[31]. While Algorithm

2 yields a suboptimal solution and converges to a local

stationary solution set of the original problem (45), SCA-based

solutions are well-known for fast convergence [32]. Moreover,

our extensive empirical study in the sequel suggests that the

proposed PHFL solution with Algorithm 2 delivers nearly

identical performance to the upper bounded performance.

V. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Setting

For the performance evaluation, we consider L = 2, B = 4 and

U = 48. We let each sBS maintain 2 VCs, where each VC

has 6 UEs. In other words, we have U j,k,l = 6,∀ j,k and l,

Vk,l = 2,∀k and l, and Bl = 2,∀l. We assume ω = 1 megahertz

(MHz). We randomly generate maximum transmission power

Pmax, energy budget for each VC aggregation round eth, CPU

frequency fmax and required CPU cycle to process per-bit data

c, respectively, from [23,30] dBm, [10,13] Joules, [1.8,2.8]
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∇δ t
i

[
A(δ t,q

i , ft,q
i ,Pt,q

i )
]
= {ln(2)2χ

t,q
i df

t,q
i A(δ t,q

i , ft,q
i ,Pt,q

i )(ωζ 2 + Ĩt
i,k)[bnciDi(ρ(FPP+1)−κ0)−

f
t,q
i tth(FPP+1)]}/{ωP

t,q
i d−α

i,k × [ft,q
i tth −bnciDi(ρ +κ0(1−δ

t,q
i ))]2}. (47)

∇fi

[
A(δ t,q

i , ft,q
i ,Pt,q

i )
]
= {− ln(2)2χ

t,q
i bncidDiA(δ

t,q
i , ft,q

i ,Pt,q
i )(ωζ 2 + Ĩt

i,k)[(1−δ
t,q
i )(FPP+1)+1]×

(ρ +κ0[1−δ
t,q
i ])}/{ωP

t,q
i d−α

i,k × [ft,q
i tth −bnciDi(ρ +κ0(1−δ

t,q
i ))]2}. (48)

∇Pi

[
A(δ t,q

i , ft,q
i ,Pt,q

i )
]
=−A(δ t,q

i , ft,q
i ,Pt,q

i )(2χ
t,q
i −1)(ωζ 2 + Ĩt

i,k)/[(P
t,q
i )2d−α

i,k ]. (49)

t
up
i ≈ d

(
2+FPP− (1+FPP)δ t

i

)

ω log2(1+P
t,q
i hi,kd−α

i,k /[ωζ 2 + Ĩt
i,k])

+
− ln(2)dhi,kd−α

i,k [(1−δ
t,q
i )(FPP+1)+1]× (Pt

i −P
t,q
i )

ω{ln(1+[Pt,q
i hi,kd−α

i,k ]/[ωζ 2 + Ĩt
i,k])}2(ωζ 2 + Ĩt

i,k +P
t,q
i hi,kd−α

i,k )
:= t̃

up
i . (50)

e
up
i ≈ {dP

t,q
i [(FPP+2)− (FPP+1)δ t

i ]}/{ω log2(1+P
t,q
i hi,kd−α

i,k /(ωζ 2 + Ĩt
i,k))}+

d[(1−δ
t,q
i )(FPP+1)+1]

[

log2

(

1+
P

t,q
i hi,kd−α

i,k

ωζ 2+Ĩt
i,k

)

− P
t,q
i hi,kd−α

i,k

ln(2)(ωζ 2+Ĩt
i,k+P

t,q
i hi,kd−α

i,k )

]

ω{log2(1+P
t,q
i hi,kd−α

i,k /(ωζ 2 + Ĩt
i,k))}2

(Pt
i −P

t,q
i ) = ẽ

up
i . (51)

gigahertz (GHz) and [20,25] for these two VCs. Therefore,

all UEs in a VC have the above randomly generated system

configurations8. Moreover, as described earlier in Section II,

our proposed PHFL has 4 tiers, namely (1) UE-VC, (2) VC-

sBS, (3) sBS-mBS, and (4) mBS-central server.

For our ML task, we use image classification with the pop-

ular CIFAR-10 and CIFAR-100 datasets [33] for performance

evaluation. We use symmetric Dirichlet distribution Dir( Åα)
with concentration parameter Åα for the non-IID data distribu-

tion as commonly used in literature [4], [27]. Besides, we use

1) convolutional neural network (CNN), 2) residual network

(ResNet)-18 [34] and 3) ResNet-34 [34]. The CNN model

has the following architecture: Conv2d(3,128), MaxPool2d,

Conv2d(128, 64), MaxPool2d, Linear(256, 256), Linear(256,

#Labels), whereas the ResNets have a similar architecture

as in the original paper [34]. Moreover, the total number

of trainable parameters depends on various configurations,

such as the input/output shapes, kernel sizes, strides, etc.

In our implementation, the original CNN, ResNet-18 and

ResNet-34 models, respectively, have 151,882; 6,992,138 and

12,614,794 trainable parameters on CIFAR-10, and 175,012;

7,038,308 and 12,660,964 trainable parameters on CIFAR-

100. Besides, with FPP = 32, we have a wireless payload

of about 5.01 megabits (Mbs), 230.7 Mbs and 416.3 Mbs

for CIFAR-10, and 5.8 Mbs, 232.3 Mbs and 417.8 Mbs for

CIFAR-100 datasets for the respective three original models.

B. Performance Study

First, we investigate the pruning ratios δ t
i ’s in different VCs.

When the system configurations remain the same, the pruning

ratio depends on the deadline threshold tth. More specifically,

a larger deadline allows the client to prune fewer model

parameters, given that the energy constraint is satisfied. In-

tuitively, less pruning leads to a bulky model that takes longer

training time. The CNN model is shallower compared to the

8Our approach can easily be extended where all clients can have random
fmax
i ’s, eth

i ’s and Pmax
i ’s. Our approach is practical since these parameters

depend on the clients’ manufacturers and their specific models.

ResNets. More specifically, the original non-pruned ResNet-

18 and ResNet-34 models have about 46 times and 83 times

the trainable parameters of the CNN model, respectively,

on CIFAR-10. Therefore, the clients require a larger tth to

perform their local training and trained model offloading as

the trainable parameters increase.

Intuitively, given a fixed tth, the clients need to prune more

model parameters for a bulky model in order to meet the

deadline and energy constraints. Our simulation results also

show that this general intuition holds in determining the δ t
i ’s,

as shown in Fig. 2, which show the cumulative distribution

function (CDF) of the δ t
i ’s in different VCs. It is worth

noting that the pruning ratios δ t
i ’s in each VC aggregation

rounds are not deterministic due to the randomness of the

wireless channels. We know the optimal variables once we

solve the optimization problem in (55), which depends on the

realizations of the wireless channels. Then, for a given VC

j, we generate the plot by calculating
∑

L
l=1 ∑

Bl
k=1 ∑

Uj,k,l
i=1 1(δ t

i ≤δ)

∑
L
l=1 ∑

Bl
k=1 ∑

Uj,k,l
i=1 i

,

where 1(δ t
i ≤ δ ) is an indicator function that takes value 1

if δ t
i ≤ δ and 0 otherwise. With the CNN model, about 50%

clients have a δ t
i less than 0.23, 0.43, 0.58 and 0.72 in VC-0

in all cells, for 1.3s, 1s, 0.8s and 0.6s deadline thresholds,

respectively, in Fig. 2a. Note that we use δ th = 0.9, i.e., the

clients can prune up to 90% of the neurons. Moreover, we

consider tth = 4s and tth = 6s, to make the problem feasible

for all clients for the ResNet-18 and ResNet-34 models,

respectively. Furthermore, from Fig. 2a - Fig. 2c, it is quite

clear that the UEs in VC-1 have to prune slightly lesser model

parameters than the UEs in VC-0, even though the maximum

CPU frequency fmax of the UEs in VC-0 is 2.58 GHz, which

is about 6.22% higher than the UEs in VC-1. However, due to

the wireless payloads in the offloading phase, the transmission

powers of the clients can also influence the δ t
i ’s. In our setting,

the UEs’ maximum transmission powers are 0.35 Watt and

0.95 Watt, respectively, in VC-0 and VC-1. As such, with a

similar wireless channel, the UEs in VC-1 can offload much

faster than the UEs in VC-0. The above observations, thus,
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TABLE IV: Test Accuracy with Trained wT on CIFAR-10 dataset with κ0 = 5,κ1 = 4,κ2 = κ3 = 2 and T = 100

Energy
Methods Dir( Åα)

With CNN Model With ResNet-18 Model With ResNet-34 Model

Budget Acc Req T [s] Req E [J] Acc Req T [s] Req E [J] Acc Req T [s] Req E [J]

0.5 0.6988

2080

146341 0.7690

6400

245740 0.7809

9600

342161

PHFL 0.9 0.7099 147675 0.7822 245743 0.7986 342157

(Ours) 10 0.7192 147674 0.7937 245741 0.8094 342158

HFL-VC 0.5 0.7038 2224.42 147673 0.7667 17438.07 555371 0.7853 29915.05 890465

859224 (UB) 0.9 0.7128 2224.42 147675 0.7849 17432.27 555439 0.8014 29928.13 890540

(Ours) 10 0.7177 2224.69 147674 0.7951 17439.30 555384 0.8108 29921.44 890519

0.5 0.6066

2080

94998 0.4262

6400

215254 0.1005

9600

366584

R-PHFL 0.9 0.6196 147673 0.4147 216364 0.1262 366109

10 0.6499 94684 0.5220 215769 0.1106 367140

TABLE V: Test Accuracy with Trained wT on CIFAR-100 dataset with κ0 = 5,κ1 = κ2 = κ3 = 2 and T = 100

Energy
Methods Dir( Åα)

With CNN Model With ResNet-18 Model With ResNet-34 Model

Budget Acc Req T [s] Req E [J] Acc Req T [s] Req E [J] Acc Req T [s] Req E [J]

0.5 0.3894

1120

77960 0.4726

3200

122775 0.4729

4800

171032

PHFL 0.9 0.3922 77960 0.4768 122780 0.4889 171029

(Ours) 10 0.3938 77961 0.4816 122778 0.4824 171031

HFL-VC 0.5 0.3982 1138.04 74527 0.4798 8772.6 279067 0.4909 15026.08 446611

(UB) 0.9 0.3966 1138 74526 0.4835 8762.76 279092 0.4893 15029.89 446616

(Ours) 10 0.3950 1137.88 74527 0.4781 8764.94 279068 0.4894 15021.95 446578

429612 0.5 0.2040

1120

50732 0.0916

3200

108627 0.0105

4800

183279

R-PHFL 0.9 0.2326 50779 0.1261 108232 0.0117 183446

10 0.2258 50663 0.1426 108217 0.0101 183644

0.5 0.3487 569.17 37263 0.4747 4391.65 139543 0.4633 7517.81 223324

HFL 0.9 0.3520 569.10 37263 0.4820 4383.76 139545 0.4755 7515.77 223287

(UB) - κ0 10 0.3573 569.03 37263 0.4834 4385.32 139528 0.4815 7517 223257

TABLE VI: Test Accuracy with Trained wT on CIFAR-100 dataset with κ0 = 10,κ1 = κ2 = κ3 = 2 and T = 100

Energy
Methods Dir( Åα)

With CNN Model With ResNet-18 Model With ResNet-34 Model

Budget Acc Req T [s] Req E [J] Acc Req T [s] Req E [J] Acc Req T [s] Req E [J]

0.5 0.3722

2000

144127 0.4691

3200

134359 0.4797

4800

182362

PHFL 0.9 0.3669 144127 0.4721 134358 0.4853 182363

(Ours) 10 0.3702 144128 0.4780 134356 0.4750 182361

HFL-VC 0.5 0.3796 2081.32 143837 0.4717 9710.81 348364 0.4816 15947.54 515916

429612 (UB) 0.9 0.3669 2081.38 143837 0.4682 9705.78 348379 0.4893 15959.39 515991

(Ours) 10 0.3831 2081.24 143837 0.4722 9710.21 348364 0.4825 15955.30 515940

0.5 0.3928 1040.75 71919 0.4676 4860.13 174177 0.4750 7983.24 257939

HFL 0.9 0.3892 1040.68 71918 0.4738 4858.64 174186 0.4873 7987.34 258013

(UB) - κ0 10 0.3917 1040.59 71918 0.4770 4858.41 174172 0.4796 7984.84 257969

TABLE VII: Test Accuracy with Trained wT on CIFAR-100 dataset with κ0 = 5,κ1 = 4,κ2 = κ3 = 2 and T = 100

Energy
Methods Dir( Åα)

With CNN Model With ResNet-18 Model With ResNet-34 Model

Budget Acc Req T [s] Req E [J] Acc Req T [s] Req E [J] Acc Req T [s] Req E [J]

0.5 0.3857

2240

155919 0.4677

6400

245556 0.4935

9600

342061

PHFL 0.9 0.3774 155920 0.4861 245556 0.4898 342063

(Ours) 10 0.3878 155920 0.4771 245555 0.4954 342063

HFL-VC 0.5 0.3948 2275.84 149053 0.4714 17534.56 558164 0.4994 30043.73 893273

859224 (UB) 0.9 0.39 2275.75 149052 0.4808 17531.96 558155 0.5007 30058.09 893273

(Ours) 10 0.3932 2275.71 149052 0.4806 17539.31 558167 0.4979 30040.23 893296

0.5 0.2363

2240

101571 0.1817

6400

216838 0.0168

9600

367556

R-PHFL 0.9 0.2206 101771 0.1972 217151 0.0140 367535

10 0.2433 101791 0.2185 216750 0.0203 366833

and κ0 = 10 on CIFAR-100 datasets for the CNN model.

The performance comparisons for different Åα’s are shown

in Table V - Table VII. From the tables, it is quite clear

that pruning helps with negligible performance deviation from

its original non-pruned counterparts. Besides, for the shallow

CNN model, the performance gain, in terms of test accuracy,

of our proposed PHFL is insignificant compared to the bulky

ResNets. Moreover, increasing κ0 or κ1 generally improves

the test accuracy. However, if the same tth is to be used, it is

beneficial to increase κ0 compared to increasing κ1.

VI. CONCLUSION

This work proposed a model pruning solution to alleviate

bandwidth scarcity and limited computational capacity of

wireless clients in heterogeneous networks. Using the con-

vergence upper-bound, pruning ratio, computation frequency

and transmission power of the clients were jointly optimized

to maximize the convergence rate. The performances were

evaluated on two popular datasets using three popular machine

learning models of different total training parameter sizes. The

results suggest that pruning can significantly reduce training

time, energy expense and bandwidth requirement while incur-

ring negligible test performance.
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