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Abstract

In this paper we study a class of unconstrained and constrained bilevel optimization problems in
which the lower level is a possibly nonsmooth convex optimization problem, while the upper level is
a possibly nonconvex optimization problem. We introduce a notion of ε-KKT solution for them and
show that an ε-KKT solution leads to an O(

√
ε)- or O(ε)-hypergradient based stionary point under

suitable assumptions. We also propose first-order penalty methods for finding an ε-KKT solution of
them, whose subproblems turn out to be a structured minimax problem and can be suitably solved
by a first-order method recently developed by the authors. Under suitable assumptions, an operation
complexity of O(ε−4 log ε−1) and O(ε−7 log ε−1), measured by their fundamental operations, is es-
tablished for the proposed penalty methods for finding an ε-KKT solution of the unconstrained and
constrained bilevel optimization problems, respectively. Preliminary numerical results are presented
to illustrate the performance of our proposed methods. To the best of our knowledge, this paper
is the first work to demonstrate that bilevel optimization can be approximately solved as minimax
optimization, and moreover, it provides the first implementable method with complexity guarantees
for such sophisticated bilevel optimization.

Keywords: bilevel optimization, minimax optimization, penalty methods, first-order methods, opera-
tion complexity
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1 Introduction

Bilevel optimization is a two-level hierarchical optimization in which the decision variables in the upper
level are also involved in the lower level. Generically, it can be written in the following form:

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0, y ∈ argmin
z
{f̃(x, z)|g̃(x, z) ≤ 0}.1 (1)

Bilevel optimization has found a variety of important applications, including adversarial training [45,
46, 57], continual learning [40], hyperparameter tuning [3, 17], image reconstruction [9], meta-learning
[4, 28, 52], neural architecture search [15, 38], reinforcement learning [23, 31], and Stackelberg games [59].
More applications about it can be found in [2, 8, 10, 11, 12, 54] and the references therein. Theoretical
properties including optimality conditions of (1) have been extensively studied in the literature (e.g., see
[12, 13, 43, 58, 62]).

Numerous methods have been developed for solving some special cases of (1). For example, constraint-
based methods [22, 53], deterministic gradient-based methods [16, 17, 20, 24, 44, 51, 52], and stochastic
gradient-based methods [6, 18, 21, 23, 25, 26, 29, 30, 34, 35, 61] were proposed for solving (1) with
g ≡ 0, g̃ ≡ 0, f , f̃ being smooth, and f̃ being strongly convex with respect to y. For a similar case
as this but with f̃ being convex with respect to y, a zeroth-order method was recently proposed in
[5], and also numerical methods were developed in [36, 37, 56] by solving (1) as a single or sequential
smooth constrained optimization problems. Besides, when all the functions in (1) are smooth and f̃ , g̃
are convex with respect to y, gradient-type methods were proposed by solving a mathematical program
with equilibrium constraints resulting from replacing the lower-level optimization problem of (1) by its
first-order optimality conditions (e.g., see [1, 42, 50]). Recently, difference-of-convex (DC) algorithms
were developed in [63] for solving (1) with g ≡ 0, f being a DC function, and f̃ , g̃ being convex
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1For ease of reading, throughout this paper the tilde symbol is particularly used for the functions related to the lower-level
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functions. In addition, a double penalty method [27] was proposed for (1), which solves a sequence of
bilevel optimization problems of the form

min
x,y

f(x, y) + ρkΨ(x, y)

s.t. y ∈ argmin
z

f̃(x, z) + ρkΨ̃(x, z),
(2)

where {ρk} is a sequence of penalty parameters, and Ψ and Ψ̃ are a penalty function associated with the
sets {(x, y)|g(x, y) ≤ 0} and {(x, z)|g̃(x, z) ≤ 0}, respectively. Though problem (2) appears to be simpler
than (1), there is no method available for finding an approximate solution of (2) in general. Conse-
quently, the double penalty method [27] is typically not implementable. More discussion on algorithmic
development for bilevel optimization can be found in [2, 8, 12, 39, 55, 58]) and the references therein.

It has long been known that the notorious challenge of bilevel optimization (1) mainly comes from the
lower level part, which requires that the variable y be a solution of another optimization problem. Due
to this, for the sake of simplicity, we only consider a subclass of bilevel optimization with the constraint
g(x, y) ≤ 0 being excluded, namely,

min
x,y

f(x, y)

s.t. y ∈ argmin
z
{f̃(x, z)|g̃(x, z) ≤ 0}. (3)

Nevertheless, the results in this paper can be possibly extended to problem (1).
The main goal of this paper is to develop an implementable first-order method with complexity

guarantees for solving problem (3). Our key insights for this development are: (i) problem (3) can be
approximately solved as a structured minimax problem that results from a novel penalty approach; (ii)
the resulting structured minimax problem can be suitably solved by a first-order method proposed in [41,
Algorithm 2]. As a result, these lead to development of a novel first-order penalty method for solving
(3), which enjoys the following appealing features.

• It uses only the first-order information of the problem. Specifically, its fundamental operations
consist only of gradient evaluation of g̃ and the smooth component of f and f̃ and also proximal
operator evaluation of the nonsmooth component of f and f̃ . Thus, it is suitable for solving
large-scale problems (see Sections 2 and 3).

• It has theoretical guarantees on operation complexity, which is measured by the aforementioned
fundamental operations, for finding an ε-KKT solution of (3). Specifically, when g̃ ≡ 0, it en-
joys an operation complexity of O(ε−4 log ε−1). Otherwise, it enjoys an operation complexity of
O(ε−7 log ε−1) (see Theorems 3 and 5).

• It is applicable to a broader class of problems than existing methods. For example, it can be
applied to (3) with f , f̃ being nonsmooth and f̃ , g̃ being nonconvex with respect to x, which is
however not suitable for existing methods.

To the best of our knowledge, this paper is the first work to demonstrate that bilevel optimization can
be approximately solved as minimax optimization, and moreover, it provides the first implementable
method with complexity guarantees for the sophisticated bilevel optimization problem (3).

The rest of this paper is organized as follows. In Subsection 1.1 we introduce some notation and
terminology. In Sections 2 and 3, we propose first-order penalty methods for unconstrained and con-
strained bilevel optimization and study their complexity, respectively. Preliminary numerical results and
the proofs of the main results are respectively presented in Sections 4 and 5. Finally, we make some
concluding remarks in Section 6.

1.1 Notation and terminology

The following notation will be used throughout this paper. Let Rn denote the Euclidean space of
dimension n and Rn

+ denote the nonnegative orthant in Rn. The standard inner product and Euclidean
norm are respectively denoted by ⟨·, ·⟩ and ∥ · ∥, unless stated otherwise. For any v ∈ Rn, let v+ denote
the nonnegative part of v, that is, (v+)i = max{vi, 0} for all i. For any two vectors u and v, (u; v)
denotes the vector resulting from stacking v under u. Given a point x and a closed set S in Rn, let
dist(x, S) = minx′∈S ∥x′ − x∥ and IS denote the indicator function associated with S.

A function or mapping ϕ is said to be Lϕ-Lipschitz continuous on a set S if ∥ϕ(x)−ϕ(x′)∥ ≤ Lϕ∥x−x′∥
for all x, x′ ∈ S. In addition, it is said to be L∇ϕ-smooth on S if ∥∇ϕ(x)−∇ϕ(x′)∥ ≤ L∇ϕ∥x− x′∥ for
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all x, x′ ∈ S.2 For a closed convex function p : Rn → R∪ {∞},3 the proximal operator associated with p
is denoted by proxp, that is,

proxp(x) = argmin
x′∈Rn

{
1

2
∥x′ − x∥2 + p(x′)

}
∀x ∈ Rn.

Given that evaluation of proxγp(x) is often as cheap as proxp(x), we count the evaluation of proxγp(x)
as one evaluation of proximal operator of p for any γ > 0 and x ∈ Rn.

For a lower semicontinuous function ϕ : Rn → R∪{∞}, its domain is the set domϕ := {x|ϕ(x) <∞}.
The upper subderivative of ϕ at x ∈ domϕ in a direction d ∈ Rn is defined by

ϕ′(x; d) = lim sup

x′ ϕ→x, t↓0

inf
d′→d

ϕ(x′ + td′)− ϕ(x′)

t
,

where t ↓ 0 means both t > 0 and t → 0, and x′ ϕ→ x means both x′ → x and ϕ(x′) → ϕ(x). The
subdifferential of ϕ at x ∈ domϕ is the set

∂ϕ(x) = {s ∈ Rn
∣∣sT d ≤ ϕ′(x; d) ∀d ∈ Rn}.

We use ∂xi
ϕ(x) to denote the subdifferential with respect to xi. In addition, for an upper semicontinuous

function ϕ, its subdifferential is defined as ∂ϕ = −∂(−ϕ). If ϕ is locally Lipschitz continuous, the above
definition of subdifferential coincides with the Clarke subdifferential. Besides, if ϕ is convex, it coincides
with the ordinary subdifferential for convex functions. Also, if ϕ is continuously differentiable at x , we
simply have ∂ϕ(x) = {∇ϕ(x)}, where ∇ϕ(x) is the gradient of ϕ at x. In addition, it is not hard to
verify that ∂(ϕ1 + ϕ2)(x) = ∇ϕ1(x) + ∂ϕ2(x) if ϕ1 is continuously differentiable at x and ϕ2 is lower or
upper semicontinuous at x. See [7, 60] for more details.

Finally, we introduce two types of approximate solutions for a general minimax problem

Ψ∗ = min
x

max
y

Ψ(x, y), (4)

where Ψ(·, y) : Rn → R∪ {∞} is a lower semicontinuous function, Ψ(x, ·) : Rm → R∪ {−∞} is an upper
semicontinuous function, and Ψ∗ is finite.

Definition 1. A point (xε, yε) is called an ϵ-optimal solution of the minimax problem (4) if

max
y

Ψ(xϵ, y)−Ψ(xε, yε) ≤ ϵ, Ψ(xε, yε)−Ψ∗ ≤ ϵ.

Definition 2. A point (x, y) is called a stationary point of the minimax problem (4) if

0 ∈ ∂xΨ(x, y), 0 ∈ ∂yΨ(x, y).

In addition, for any ϵ > 0, a point (xε, yε) is called an ϵ-stationary point of the minimax problem (4) if

dist (0, ∂xΨ(xε, yε)) ≤ ϵ, dist (0, ∂yΨ(xε, yε)) ≤ ϵ.

2 Unconstrained bilevel optimization

In this section, we consider an unconstrained bilevel optimization problem4

f∗ = min f(x, y)

s.t. y ∈ argmin
z

f̃(x, z). (5)

Assume that problem (5) has at least one optimal solution. In addition, f and f̃ satisfy the following
assumptions.

2When ϕ is a mapping, the norm used in ∥∇ϕ(x)−∇ϕ(x′)∥ is the Frobenius norm.
3For convenience, ∞ stands for +∞.
4For convenience, problem (5) is referred to as an unconstrained bilevel optimization problem since its lower level part

does not have an explicit constraint. Strictly speaking, it can be a constrained bilevel optimization problem. For example,
when part of f and/or f̃ is the indicator function of a closed convex set, (5) is essentially a constrained bilevel optimization
problem.
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Assumption 1. (i) f(x, y) = f1(x, y)+f2(x) and f̃(x, y) = f̃1(x, y)+ f̃2(y) are continuous on X ×Y,
where f2 : Rn → R ∪ {∞} and f̃2 : Rm → R ∪ {∞} are proper closed convex functions, f̃1(x, ·) is
convex for any given x ∈ X , and f1, f̃1 are respectively L∇f1- and L∇f̃1

-smooth on X × Y with

X := dom f2 and Y := dom f̃2.

(ii) The proximal operator associated with f2 and f̃2 can be exactly evaluated.

(iii) The sets X and Y (namely, dom f2 and dom f̃2) are compact.

For notational convenience, we define

Dx := max{∥u− v∥
∣∣u, v ∈ X}, Dy := max{∥u− v∥

∣∣u, v ∈ Y}, (6)

f̃hi := max{f̃(x, y)|(x, y) ∈ X × Y}, f̃low := min{f̃(x, y)|(x, y) ∈ X × Y}, (7)

flow := min{f(x, y)|(x, y) ∈ X × Y}. (8)

By Assumption 1, one can observe that Dx, Dy, f̃hi, f̃low and flow are finite.
The goal of this section is to propose first-order penalty methods for solving problem (5). To this

end, we first observe that problem (5) can be viewed as

min
x,y
{f(x, y)|f̃(x, y) ≤ min

z
f̃(x, z)}. (9)

Notice that f̃(x, y) − minz f̃(x, z) ≥ 0 for all x, y. Consequently, a natural penalty problem associated
with (9) is

min
x,y

f(x, y) + ρ(f̃(x, y)−min
z

f̃(x, z)), (10)

where ρ > 0 is a penalty parameter. We further observe that (10) is equivalent to the minimax problem

min
x,y

max
z

Pρ(x, y, z), where Pρ(x, y, z) := f(x, y) + ρ(f̃(x, y)− f̃(x, z)). (11)

In view of Assumption 1(i), Pρ can be rewritten as

Pρ(x, y, z) =
(
f1(x, y) + ρf̃1(x, y)− ρf̃1(x, z)

)
+
(
f2(x) + ρf̃2(y)− ρf̃2(z)

)
. (12)

By this and Assumption 1, one can observe that Pρ enjoys the following nice properties.

• Pρ is the sum of smooth function f1(x, y)+ρf̃1(x, y)−ρf̃1(x, z) with Lipschitz continuous gradient

and possibly nonsmooth function f2(x)+ρf̃2(y)−ρf̃2(z) with exactly computable proximal operator.

• Pρ is nonconvex in (x, y) but concave in z.

Thanks to this nice structure of Pρ, an approximate stationary point of the minimax problem (11) can
be found by a first-order method proposed in [41, Algorithm 2] (see Algorithm 6 in Appendix A).

Based on the above observations, we are now ready to propose penalty methods for the unconstrained
bilevel optimization problem (5) by solving either a sequence of minimax problems or a single minimax
problem in the form of (11). Specifically, we first propose an ideal penalty method for (5) by solving a
sequence of minimax problems (see Algorithm 1). Then we propose a practical penalty method for (5)
by finding an approximate stationary point of a single minimax problem (see Algorithm 2).

Algorithm 1 An ideal penalty method for problem (5)

Input: positive sequences {ρk} and {ϵk} with limk→∞(ρk, ϵk) = (∞, 0).
1: for k = 0, 1, 2, . . . do
2: Find an ϵk-optimal solution (xk, yk, zk) of problem (11) with ρ = ρk.
3: end for

The following theorem states a convergence result of Algorithm 1, whose proof is deferred to Section
5.1.

Theorem 1 (Convergence of Algorithm 1). Suppose that Assumption 1 holds and that {(xk, yk, zk)}
is generated by Algorithm 1. Then any accumulation point of {(xk, yk)} is an optimal solution of problem
(5).
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Notice that (11) is a nonconvex -concave minimax problem. It is typically hard to find an ϵ-optimal
solution of (11) for an arbitrary ϵ > 0. Consequently, Algorithm 1 is not implementable in general. We
next propose a practical penalty method for problem (5) by applying Algorithm 6 (see Appendix A) to
find an approximate stationary point of a single minimax problem (11) with a suitable choice of ρ.

Algorithm 2 A practical penalty method for problem (5)

Input: ε ∈ (0, 1/4], ρ = ε−1, (x0, y0) ∈ X × Y with f̃(x0, y0) ≤ miny f̃(x
0, y) + ε.

1: Call Algorithm 6 in Appendix A with ϵ ← ε, ϵ0 ← ε3/2, x̂0 ← (x0, y0), ŷ0 ← y0, and L∇h ←
L∇f1 + 2ε−1L∇f̃1

to find an ε-stationary point (xε, yε, zε) of problem (11) with ρ = ε−1.
2: Output: (xε, yε).

Remark 1. (i) The initial point (x0, y0) of Algorithm 2 can be found by an additional procedure. Indeed,
one can first choose any x0 ∈ X and then apply accelerated proximal gradient method [47] to the problem
miny f̃(x

0, y) for finding y0 ∈ Y such that f̃(x0, y0) ≤ miny f̃(x
0, y)+ε; (ii) As seen from Theorem 6 (see

Appendix A), an ϵ-stationary point of (11) can be successfully found in step 1 of Algorithm 2 by applying
Algorithm 6 to (11); (iii) For the sake of simplicity, a single subproblem of the form (11) with static
penalty and tolerance parameters is solved in Algorithm 2. Nevertheless, Algorithm 2 can be modified
into a perhaps practically more efficient algorithm by solving a sequence of subproblems of the form (11)
with dynamic penalty and tolerance parameters instead.

In order to characterize the approximate solution found by Algorithm 2, we next introduce a notion
of ε-KKT solution of problem (5).

Recall that problem (5) can be viewed as problem (9), which is a constrained optimization problem.
In the spirit of classical constrained optimization, one would naturally be interested in a KKT solution
(x, y) of (9) or equivalently (5), namely, (x, y) satisfies f̃(x, y) ≤ minz f̃(x, z) and moreover (x, y) is a
stationary point of the problem

min
x′,y′

f(x′, y′) + ρ
(
f̃(x′, y′)−min

z′
f̃(x′, z′)

)
(13)

for some ρ ≥ 0.5 Yet, due to the sophisticated problem structure, characterizing a stationary point
of (13) is generally difficult. On another hand, notice that problem (13) is equivalent to the minimax
problem

min
x′,y′

max
z′

f(x′, y′) + ρ(f̃(x′, y′)− f̃(x′, z′)),

whose stationary point (x, y, z), according to Definition 2 and Assumption 1, satisfies

0 ∈ ∂f(x, y) + ρ∂f̃(x, y)− (ρ∇xf̃(x, z); 0), 0 ∈ ρ∂z f̃(x, z). (14)

Based on this observation, we are instead interested in a (weak) KKT solution of problem (5) and its
inexact counterpart that are defined below.

Definition 3. The pair (x, y) is said to be a KKT solution of problem (5) if there exists (z, ρ) ∈ Rm×R+

such that (14) and f̃(x, y) ≤ minz′ f̃(x, z′) hold. In addition, for any ε > 0, (x, y) is said to be an ε-KKT
solution of problem (5) if there exists (z, ρ) ∈ Rm × R+ such that

dist
(
0, ∂f(x, y) + ρ∂f̃(x, y)− (ρ∇xf̃(x, z); 0)

)
≤ ε, dist

(
0, ρ∂z f̃(x, z)

)
≤ ε,

f̃(x, y)−min
z′

f̃(x, z′) ≤ ε.

Recently, a hypergradient-based stationary point has been considered in the literature (e.g., [18, 51])
for problem (5) under the assumption that f and f̃ are twice continuously differentiable in Rn×Rm and
f̃(x, ·) is strongly convex for any x ∈ Rn. Under this assumption, the hyper-objective function Φ of (5),
defined as

Φ(x) := f(x, y∗(x)), where y∗(x) = argmin
z

f̃(x, z), (15)

is continuously differentiable. Moreover, following from [18, Equation (2.8)], the hypergradient of (5),
i.e., the gradient of Φ, is given by

∇Φ(x) = ∇xf(x, y
∗(x))−∇2

xy f̃(x, y
∗(x))[∇2

yy f̃(x, y
∗(x))]−1∇yf(x, y

∗(x)) ∀x ∈ Rn. (16)

5The relation f̃(x, y) ≤ minz f̃(x, z) implies that f̃(x, y) = minz f̃(x, z) and hence the complementary slackness condition
ρ(f̃(x, y)−minz f̃(x, z)) = 0 holds.
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In addition, it is not hard to observe that problem (5) is equivalent to

min
x

Φ(x). (17)

In view of this, hypergradient based stationary point and its approximate counterpart are introduced in
the literature (e.g., [18, 51]) for problem (5), based on the classical stationary point and its approximate
counterpart of problem (17). More specifically, x ∈ Rn is called a hypergradient-based stationary point of
problem (5) if ∇Φ(x) = 0, and it is called an ε-hypergradient-based stationary point of (5) if ∥∇Φ(x)∥ ≤ ε
for any ε > 0.

We now study the relationship between an ε-KKT solution and an approximate hypergradient based
stationary point of problem (5). Specifically, under some suitable assumptions, the following theorem
shows that if (x, y) is an ε-KKT solution of problem (5), then x is an O(

√
ε)- or O(ε)-hypergradient-based

stationary point of it. The proof of this theorem is deferred to Subsection 5.1.

Theorem 2. Let ε0, ρ0 > 0 be given and Ω ⊂ Rn be a nonempty compact set. Assume that f and f̃
are continuously differentiable and twice continuously differentiable in Rn × Rm respectively, f̃(x′, ·) is
strongly convex with modulus σ > 0 for all x′ in an open set N containing Ω, ∇f(x′, ·) is L1-Lipschitz
continuous for all x′ ∈ Ω, and that ∇2f̃(x′, ·) is L2-Lipschitz continuous for all x′ ∈ Ω. Suppose that
(x, y) ∈ Ω × Rm is an ε-KKT solution of problem (5) with its associated ρ ≥ ρ0 for some 0 < ε ≤ ε0.
Let y∗(x′) be defined in (15) and

C̄ = max
{
∥∇yf(x

′, y′)∥ : x′ ∈ Ω, ∥y′ − y∗(x′)∥ ≤
√
2σ−1ε

}
, (18)

θ = min
{
(ρσ)−1(ε+ C̄),

√
2σ−1ε

}
, C = max

x′∈Ω
∥∇2

xy f̃(x
′, y∗(x′))[∇2

yy f̃(x
′, y∗(x′))]−1∥. (19)

Then we have

∥∇Φ(x)∥ ≤ (2C + 1)ε+ (C + 1)
(
L1θ +

L2ρθ
2

2
+

L2ε
2

2ρσ2

)
(20)

≤ (2C + 1)ε+ (C + 1)
(
L1

√
2σ−1 +

L2σ
−3/2(ε0 + C̄)√

2
+

ε
3/2
0 L2

2ρ0σ2

)√
ε. (21)

Remark 2. Based on the assumptions in Theorem 2, it is not hard to observe that C̄, C and θ are finite.
It then follows from (21) that ∇Φ(x) = O(

√
ε) holds in general. Nevertheless, this result is improved to

∇Φ(x) = O(ε) when ρ is at least order of ε−1, i.e., ρ ≥ cε−1 for some constant c > 0 independent on ε,
which can be observed from (20). Consequently, under the assumptions stated in Theorem 2, if (x, y) is
an ε-KKT solution of problem (5), then x is an O(

√
ε)- or O(ε)-hypergradient-based stationary point of

it.

We next present a theorem regarding operation complexity of Algorithm 2, measured by the amount
of evaluations of ∇f1, ∇f̃1 and proximal operator of f2 and f̃2, for finding an O(ε)-KKT solution of (5),
whose proof is deferred to Subsection 5.1.

Theorem 3 (Complexity of Algorithm 2). Suppose that Assumption 1 holds. Let f∗, f , f̃ , Dx, Dy,

f̃hi, f̃low and flow be defined in (5), (6), (7) and (8), L∇f1 and L∇f̃1
be given in Assumption 1, ε, ρ, x0,

y0 and zε be given in Algorithm 2, and

L̂ = L∇f1 + 2ε−1L∇f̃1
, α̂ = min

{
1,

√
4ε/(DyL̂)

}
, (22)

δ̂ = (2 + α̂−1)(D2
x +D2

y)L̂+max
{
ε/Dy, α̂L̂/4

}
D2

y,

Ĉ =
4max

{
1

2L̂
,min

{
Dy

ε , 4

α̂L̂

}}[
δ̂ + 2α̂−1(f∗ − flow + ε−1(f̃hi − f̃low) + εDy/4 + L̂(D2

x +D2
y))
]

[
(3L̂+ ε/(2Dy))2/min{L̂, ε/(2Dy)}+ 3L̂+ ε/(2Dy)

]−2

ε3
,

K̂ =
⌈
16(1 + f(x0, y0)− flow + εDy/4)L̂ε

−2 + 32(1 + 4D2
yL̂

2ε−2)ε− 1
⌉
+
,

N̂ =
(⌈

96
√
2(1 + (24L̂+ 4ε/Dy)L̂

−1)
⌉
+ 2
)
max

{
2,

√
DyL̂ε−1

}
× ((K̂ + 1)(log Ĉ)+ + K̂ + 1 + 2K̂ log(K̂ + 1)).
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Then Algorithm 2 outputs an approximate solution (xε, yε) of (5) satisfying

dist
(
0, ∂f(xε, yε) + ρ∂f̃(xε, yε)− (ρ∇xf̃(xε, zε); 0)

)
≤ ε, dist

(
0, ρ∂z f̃(xε, zε)

)
≤ ε, (23)

f̃(xε, yε) ≤ min
z

f̃(xε, z) + ε
(
1 + f(x0, y0)− flow + 2ε3(L̂−1 + 4D2

yL̂ε
−2) +Dyε/4

)
, (24)

after at most N̂ evaluations of ∇f1, ∇f̃1 and proximal operator of f2 and f̃2, respectively.

Remark 3. One can observe from Theorem 3 that L̂ = O(ε−1), α̂ = O(ε), δ̂ = O(ε−2), Ĉ = O(ε−11),

K̂ = O(ε−3), and N̂ = O(ε−4 log ε−1). As a result, Algorithm 2 enjoys an operation complexity of
O(ε−4 log ε−1), measured by the amount of evaluations of ∇f1, ∇f̃1 and proximal operator of f2 and f̃2,
for finding an O(ε)-KKT solution (xε, yε) of (5) satisfying

dist
(
0, ∂f(xε, yε) + ρ∂f̃(xε, yε)− (ρ∇xf̃(xε, zε); 0)

)
≤ ε, dist

(
0, ρ∂z f̃(xε, zε)

)
≤ ε,

f̃(xε, yε)−min
z

f̃(xε, z) = O(ε),

where zε is given in Algorithm 2 and ρ = ε−1.

3 Constrained bilevel optimization

In this section, we consider a constrained bilevel optimization problem6

f∗ = min f(x, y)

s.t. y ∈ argmin
z
{f̃(x, z)|g̃(x, z) ≤ 0}, (25)

where f and f̃ satisfy Assumption 1. Recall from Assumption 1 that X = dom f2 and Y = dom f̃2. We
now make some additional assumptions for problem (25).

Assumption 2. (i) f and f̃ are Lf - and Lf̃ -Lipschitz continuous on X × Y, respectively.

(ii) g̃ : Rn × Rm → Rl is L∇g̃-smooth and Lg̃-Lipschitz continuous on X × Y.

(iii) g̃i(x, ·) is convex and there exists ẑx ∈ Y for each x ∈ X such that g̃i(x, ẑx) < 0 for all i = 1, 2, . . . , l
and G := min{−g̃i(x, ẑx)|x ∈ X , i = 1, . . . , l} > 0.7

For notational convenience, we define

f̃∗(x) := min
z
{f̃(x, z)|g̃(x, z) ≤ 0}, (26)

f̃∗
hi := sup{f̃∗(x)|x ∈ X}, (27)

g̃hi := max{∥g̃(x, y)∥
∣∣(x, y) ∈ X × Y}. (28)

It then follows from Assumption 2(ii) that

∥∇g̃(x, y)∥ ≤ Lg̃ ∀(x, y) ∈ X × Y . (29)

In addition, by Assumptions 1 and 2 and the compactness of X and Y, one can observe that g̃hi and G
are finite. Besides, as will be shown in Lemma 3(ii), f̃∗

hi is finite.
The goal of this section is to propose first-order penalty methods for solving problem (25). To this end,

let us first introduce a penalty function for the lower level optimization problem y ∈ argmin
z
{f̃(x, z)|g̃(x, z) ≤

0} of (25), which is given by

P̃µ(x, z) = f̃(x, z) + µ ∥[g̃(x, z)]+∥2 (30)

for a penalty parameter µ > 0. Observe that problem (25) can be approximately solved as the uncon-
strained bilevel optimization problem

f∗
µ = min

x,y

{
f(x, y)|y ∈ argmin

z
P̃µ(x, z)

}
. (31)

6For convenience, problem (25) is referred to as a constrained bilevel optimization problem since its lower level part has
at least one explicit constraint.

7The latter part of this assumption can be weakened to the one that the pointwise Slater’s condition holds for the lower
level part of (25), that is, there exists ẑx ∈ Y such that g̃(x, ẑx) < 0 for each x ∈ X . Indeed, if G > 0, Assumption 2(iii)
clearly holds. Otherwise, one can solve the perturbed counterpart of (25) with g̃(x, z) being replaced by g̃(x, z) − ϵ for
some suitable ϵ > 0 instead, which satisfies Assumption 2(iii).
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Further, by the study in Section 2, problem (31) can be approximately solved as the penalty problem

min
x,y

f(x, y) + ρ
(
P̃µ(x, y)−min

z
P̃µ(x, z)

)
(32)

for some suitable ρ > 0. One can also observe that problem (32) is equivalent to the minimax problem

min
x,y

max
z

Pρ,µ(x, y, z), where Pρ,µ(x, y, z) := f(x, y) + ρ(P̃µ(x, y)− P̃µ(x, z)). (33)

In view of (30), (33) and Assumption 1(i), Pρ,µ can be rewritten as

Pρ,µ(x, y, z) =
(
f1(x, y) + ρf̃1(x, y) + ρµ ∥[g̃(x, y)]+∥2 − ρf̃1(x, z)− ρµ ∥[g̃(x, z)]+∥2

)
+
(
f2(x) + ρf̃2(y)− ρf̃2(z)

)
. (34)

By this and Assumptions 1 and 2, one can observe that Pρ,µ enjoys the following nice properties.

• Pρ,µ is the sum of smooth function f1(x, y)+ρf̃1(x, y)+ρµ ∥[g̃(x, y)]+∥2−ρf̃1(x, z)−ρµ ∥[g̃(x, z)]+∥2

with Lipschitz continuous gradient and possibly nonsmooth function f2(x) + ρf̃2(y)− ρf̃2(z) with
exactly computable proximal operator;

• Pρ,µ is nonconvex in (x, y) but concave in z.

Due to this nice structure of Pρ,µ, an approximate stationary point of the minimax problem (33) can be
found by a first-order method proposed in [41, Algorithm 2] (see Algorithm 6 in Appendix A).

Based on the above observations, we are now ready to propose penalty methods for the constrained
bilevel optimization problem (25) by solving a sequence of minimax problems or a single minimax problem
of the form (33). Specifically, we first propose an ideal penalty method for (25) by solving a sequence of
minimax problems (see Algorithm 3). Then we propose a practical penalty method for (25) by finding
an approximate stationary point of a single minimax problem (see Algorithm 4).

Algorithm 3 An ideal penalty method for problem (25)

Input: positive sequences {ρk}, {µk} and {ϵk} with limk→∞(ρk, µk, ϵk) = (∞,∞, 0).
1: for k = 0, 1, 2, . . . do
2: Find an ϵk-optimal solution (xk, yk, zk) of problem (33) with (ρ, µ) = (ρk, µk).
3: end for

To study convergence of Algorithm 3, we make the following error bound assumption on the solution
set of the lower level optimization problem of (25). This type of error bounds has been considered in the
context of set-value mappings in the literature (e.g., see [14]).

Assumption 3. There exist θ̄ > 0 and a non-decreasing function ω : R+ → R+ with limθ↓0 ω(θ) = 0
such that dist(z,Sθ(x)) ≤ ω(θ) for all x ∈ X , z ∈ S0(x) and θ ∈ [0, θ̄], where

Sθ(x) := argmin
z
{f̃(x, z) : ∥[g̃(x, z)]+∥ ≤ θ}.

We are now ready to state a convergence result of Algorithm 3, whose proof is deferred to Section
5.2.

Theorem 4 (Convergence of Algorithm 3). Suppose that Assumptions 1-3 hold and that {(xk, yk, zk)}
is generated by Algorithm 3. Then any accumulation point of {(xk, yk)} is an optimal solution of problem
(25).

Notice that (33) is a nonconvex -concave minimax problem. It is typically hard to find an ϵ-optimal
solution of (33) for an arbitrary ϵ > 0. As a result, Algorithm 3 is generally not implementable. We next
propose a practical penalty method for problem (25) by applying Algorithm 6 (see Appendix A) to find
an approximate stationary point of (33) with a suitable choice of ρ and µ.

Algorithm 4 A practical penalty method for problem (25)

Input: ε ∈ (0, 1/4], ρ = ε−1, µ = ε−2, (x0, y0) ∈ X × Y with P̃µ(x
0, y0) ≤ miny P̃µ(x

0, y) + ε.
1: Call Algorithm 6 in Appendix A with ϵ ← ε, ϵ0 ← ε5/2, x̂0 ← (x0, y0), ŷ0 ← y0, and L∇h ←

L∇f1 + 2ρL∇f̃1
+ 4ρµ(g̃hiL∇g̃ + L2

g̃) to find an ε-stationary point (xε, yε, zε) of problem (33) with

ρ = ε−1 and µ = ε−2.
2: Output: (xε, yε).
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Remark 4. (i) The initial point (x0, y0) of Algorithm 4 can be found by a similar procedure as described

in Remark 1 with f̃ being replaced by P̃µ; (ii) The choice of ρ = ε−1 and µ = ε−2 is crucial in terms
of the order of ε for Algorithm 4 to find an O(ε)-KKT solution of problem (25) with a best operation
complexity among all possible choices of ρ and µ, which can be observed from the proof of Theorem 5.
Intuitively, the lower level penalty parameter µ has to be larger than the upper level parameter ρ in terms
of the order of ε so that the incurred error from the lower level constraint violation is not magnified
(see (92) in Lemma 8). (iii) As seen from Theorem 6 (see Appendix A), an ϵ-stationary point of (33)
can be successfully found in step 1 of Algorithm 4 by applying Algorithm 6 to (33); (iv) For the sake of
simplicity, a single subproblem of the form (33) with static penalty and tolerance parameters is solved in
Algorithm 4. Nevertheless, Algorithm 4 can be modified into a perhaps practically more efficient algorithm
by solving a sequence of subproblems of the form (33) with dynamic penalty and tolerance parameters
instead.

In order to characterize the approximate solution found by Algorithm 4, we next introduce a notion
of ε-KKT solution of problem (25).

By the definition of f̃∗ in (26), problem (25) can be viewed as

min
x,y
{f(x, y)|f̃(x, y) ≤ f̃∗(x), g̃(x, y) ≤ 0}. (35)

Its associated Lagrangian function is given by

L(x, y, ρ, λ) = f(x, y) + ρ(f̃(x, y)− f̃∗(x)) + ⟨λ, g̃(x, y)⟩. (36)

In the spirit of classical constrained optimization, one would naturally be interested in a KKT solution
(x, y) of (35) or equivalently (25), namely, (x, y) satisfies

f̃(x, y) ≤ f̃∗(x), g̃(x, y) ≤ 0, ρ(f̃(x, y)− f̃∗(x)) = 0, ⟨λ, g̃(x, y)⟩ = 0, (37)

and moreover (x, y) is a stationary point of the problem

min
x′,y′
L(x′, y′, ρ, λ) (38)

for some ρ ≥ 0 and λ ∈ Rl
+. Yet, due to the sophisticated problem structure, characterizing a stationary

point of (38) is generally difficult. On another hand, notice from Lemma 3 and (36) that problem (38)
is equivalent to the minimax problem

min
x′,y′,λ̃′

max
z′

{
f(x′, y′) + ρ

(
f̃(x′, y′)− f̃(x′, z′)− ⟨λ̃′, g̃(x′, z′)⟩

)
+ ⟨λ, g̃(x′, y′)⟩+ IRl

+
(λ̃′)

}
,

whose stationary point (x, y, λ̃, z), according to Definition 2 and Assumptions 1 and 2, satisfies

0 ∈ ∂f(x, y) + ρ∂f̃(x, y)− ρ(∇xf̃(x, z) +∇xg̃(x, z)λ̃; 0) +∇g̃(x, y)λ, (39)

0 ∈ ρ(∂z f̃(x, z) +∇z g̃(x, z)λ̃), (40)

λ̃ ∈ Rl
+, g̃(x, z) ≤ 0, ⟨λ̃, g̃(x, z)⟩ = 0.8 (41)

Based on this observation and also the fact that (37) is equivalent to

f̃(x, y) = f̃∗(x), g̃(x, y) ≤ 0, ⟨λ, g̃(x, y)⟩ = 0, (42)

we are instead interested in a (weak) KKT solution of problem (25) and its inexact counterpart that are
defined below.

Definition 4. The pair (x, y) is said to be a KKT solution of problem (25) if there exists (z, ρ, λ, λ̃) ∈
Rm ×R+ ×Rl

+ ×Rl
+ such that (39)-(42) hold. In addition, for any ε > 0, (x, y) is said to be an ε-KKT

solution of problem (25) if there exists (z, ρ, λ, λ̃) ∈ Rm × R+ × Rl
+ × Rl

+ such that

dist
(
0, ∂f(x, y) + ρ∂f̃(x, y)− ρ(∇xf̃(x, z) +∇xg̃(x, z)λ̃; 0) +∇g̃(x, y)λ

)
≤ ε,

dist
(
0, ρ(∂z f̃(x, z) +∇z g̃(x, z)λ̃)

)
≤ ε,

∥[g̃(x, z)]+∥ ≤ ε, |⟨λ̃, g̃(x, z)⟩| ≤ ε,

|f̃(x, y)− f̃∗(x)| ≤ ε, ∥[g̃(x, y)]+∥ ≤ ε, |⟨λ, g̃(x, y)⟩| ≤ ε,

where f̃∗ is defined in (26).

8The relations in (41) are equivalent to 0 ∈ −g̃(x, z) + ∂IRl
+
(λ̃).
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We are now ready to present an operation complexity of Algorithm 4, measured by the amount of
evaluations of ∇f1, ∇f̃1, ∇g̃ and proximal operator of f2 and f̃2, for finding an O(ε)-KKT solution of
(25), whose proof is deferred to Subsection 5.2.

Theorem 5 (Complexity of Algorithm 4). Suppose that Assumptions 1 and 2 hold. Let f∗, f , f̃ , g̃,
Dx, Dy, f̃hi, f̃low, flow, f̃

∗, f̃∗
hi, and g̃hi be defined in (5), (6), (7), (8), (26), (27) and (28), L∇f1 , L∇f̃1

,

Lf̃ , L∇g̃, Lg̃ and G be given in Assumptions 1 and 2, ε, ρ, µ, x0, y0 and zε be given in Algorithm 4,
and

λ̃ = 2ε−1[g̃(xε, zε)]+, λ̂ = 2ε−3[g̃(xε, yε)]+, (43)

L̃ = L∇f1 + 2ε−1L∇f̃1
+ 4ε−3(g̃hiL∇g̃ + L2

g̃), (44)

α̃ = min
{
1,

√
4ε/(DyL̃)

}
, δ̃ = (2 + α̃−1)(D2

x +D2
y)L̃+max

{
ε/Dy, α̃L̃/4

}
D2

y,

C̃ =
4max{1/(2L̃),min{Dyε

−1, 4/(α̃L̃)}}
[(3L̃+ ε/(2Dy))2/min{L̃, ε/(2Dy)}+ 3L̃+ ε/(2Dy)]−2ε5

×
(
δ̃ + 2α̃−1[f∗ − flow + 2ε−1(f̃hi − f̃low) + ε−3g̃2hi + εDy/4 + L̃(D2

x +D2
y)]
)
,

K̃ =
⌈
32(1 + f(x0, y0)− flow + εDy/4)L̃ε

−2 + 32ε3
(
1 + 4D2

yL̃
2ε−2

)
− 1
⌉
+
,

Ñ =
(⌈

96
√
2
(
1 + (24L̃+ 4ε/Dy)L̃

−1
)⌉

+ 2
)
max

{
2,

√
DyL̃ε−1

}
× [(K̃ + 1)(log C̃)+ + K̃ + 1 + 2K̃ log(K̃ + 1)].

Then Algorithm 4 outputs an approximate solution (xε, yε) of (25) satisfying

dist
(
0, ∂f(xε, yε) + ρ∂f̃(xε, yε)− ρ(∇xf̃(xε, zε) +∇xg̃(xε, zε)λ̃; 0) +∇g̃(xε, yε)λ̂

)
≤ ε, (45)

dist
(
0, ρ(∂z f̃(xε, zε) +∇z g̃(xε, zε)λ̃)

)
≤ ε, (46)

∥[g̃(xε, zε)]+∥ ≤ ε2G−1Dy(ε
2 + Lf̃ )/2, (47)

|⟨λ̃, g̃(xε, zε)⟩| ≤ ε2G−2D2
y(ρ

−1ϵ+ Lf̃ )
2/2, (48)

|f̃(xε, yε)− f̃∗(xε)| ≤ max
{
ε
(
1 + f(x0, y0)− flow + 2ε5(L̃−1 + 4D2

yL̃ε
−2) +Dyε/4

)
,

ε2G−2D2
yLf̃ (ε

2 + εLf + Lf̃ )/2
}
, (49)

∥[g̃(xε, yε)]+∥ ≤ ε2G−1Dy(ε
2 + εLf + Lf̃ )/2, (50)

|⟨λ̂, g̃(xε, yε)⟩| ≤ εG−2D2
y(ε

2 + εLf + Lf̃ )
2/2, (51)

after at most Ñ evaluations of ∇f1, ∇f̃1, ∇g̃ and proximal operator of f2 and f̃2, respectively.

Remark 5. One can observe from Theorem 5 that L̃ = O(ε−3), α̃ = O(ε2), δ̃ = O(ε−5), C̃ = O(ε−23),

K̃ = O(ε−5), and Ñ = O(ε−7 log ε−1). As a result, Algorithm 4 enjoys an operation complexity of
O(ε−7 log ε−1), measured by the amount of evaluations of ∇f1, ∇f̃1, ∇g̃ and proximal operator of f2
and f̃2, for finding an O(ε)-KKT solution (xε, yε) of (25) satisfying

dist
(
0, ∂f(xε, yε) + ρ∂f̃(xε, yε)− ρ(∇xf̃(xε, zε) +∇xg̃(xε, zε)λ̃; 0) +∇g̃(xε, yε)λ̂

)
≤ ε,

dist
(
0, ρ(∂z f̃(xε, zε) +∇z g̃(xε, zε)λ̃)

)
≤ ε,

∥[g̃(xε, zε)]+∥ = O(ε2), |⟨λ̃, g̃(xε, zε)⟩| = O(ε2),

|f̃(xε, yε)− f̃∗(xε)| = O(ε), ∥[g̃(xε, yε)]+∥ = O(ε2), |⟨λ̂, g̃(xε, yε)⟩| = O(ε),

where f̃∗ is defined in (26), λ̂, λ̃ ∈ Rl
+ are defined in (43), zε is given in Algorithm 4 and ρ = ε−1.

4 Numerical results

In this section we conduct some preliminary experiments to test the performance of our proposed methods
(Algorithms 2 and 4) with dynamic update on penalty and tolerance parameters. All the algorithms are
coded in Matlab and all the computations are performed on a desktop with a 3.60 GHz Intel i7-12700K
12-core processor and 32 GB of RAM.
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4.1 Unconstrained bilevel optimization with linear upper level and quadratic
lower level

In this subsection, we consider unconstrained bilevel optimization with linear upper level and quadratic
lower level in the form of

min cTx+ dT y + I[−1,1]n(x)

s.t. y ∈ argmin
z

xT Ãz + zT B̃z + d̃T z + I[−1,1]m(z),
(52)

where Ã ∈ Rn×m, B̃ ∈ Rm×m, c ∈ Rn, d, d̃ ∈ Rm, and I[−1,1]n(·) and I[−1,1]m(·) are the indicator
functions of [−1, 1]n and [−1, 1]m respectively.9

For each pair (n,m), we randomly generate 10 instances of problem (52). Specifically, we first
randomly generate c, d with all the entries independently chosen from the standard normal distribution,
and Ã with all the entries independently chosen from a normal distribution with mean 0 and standard
deviation 0.01. We then randomly generate an orthogonal matrix U by performing U = orth(randn(m)),
an m×m diagonal matrix D with its diagonal entries independently chosen from a normal distribution
with mean 0 and standard deviation 0.01 and then projected to R+, and set B̃ = UDUT . In addition,
we randomly generate ŷ ∈ [−1, 1]m with all the entries independently chosen from a normal distribution
with mean 0 and standard deviation 0.1 and then projected to [−1, 1]m, and choose d̃ such that ŷ is an
optimal solution for the lower level optimization of (52) with x = 0.

Notice that (52) is a special case of (5) with f(x, y) = cTx + dT y + I[−1,1]n(x) and f̃(x, z) =

xT Ãz+ zT B̃z+ d̃T z+I[−1,1]m(z) and can be suitably solved by Algorithm 2. For the sake of efficiency,
we implement a variant of Algorithm 2 with dynamic update on penalty and tolerance parameters.
Specifically, we set ρk = 5k−1, εk = ρ−1

k and xε−1 = 0. For each k ≥ 0, we run Algorithm 2 with (ε, ρ) =

(εk, ρk) and (xεk−1
, ỹεk−1

) as the initial point to generate (xεk , yεk), where ỹεk−1
∈ argminz f̃(xεk−1

, z) is
found by CVX [19]. We terminate the process once εk̄ ≤ 10−4 and (xεk̄ , yεk̄) satisfies

f̃(xεk̄ , yεk̄)−min
z

f̃(xεk̄ , z) ≤ 10−4

for some k̄ and output (xεk̄ , yεk̄) as an approximate solution of (52), where the value of minz f̃(xεk̄ , z) is
computed by CVX.

The computational results of the aforementioned variant of Algorithm 2 for the instances randomly
generated above are presented in Table 1. In detail, the values of n and m are listed in the first two
columns. For each pair (n,m), the average initial objective value f(xε−1

, ỹε−1
) and the average final

objective value f(xεk̄ , yεk̄) over 10 random instances are given in the rest of columns. One can observe
that the approximate solution (xεk̄ , yεk̄) found by this method significantly reduces objective function
value compared to the initial point (xε−1

, ỹε−1
).

n m Initial objective value Final objective value
100 100 -0.35 -101.67
200 200 -0.53 -194.91
300 300 -0.48 -307.43
400 400 -0.44 -401.71
500 500 -0.05 -527.45
600 600 0.99 -644.53
700 700 0.49 -759.54
800 800 -1.23 -872.77
900 900 -2.07 -1004.27
1000 1000 -1.06 -1107.61

Table 1: Numerical results for problem (52)

4.2 Constrained bilevel linear optimization

In this subsection, we consider constrained bilevel linear optimization in the form of

min cTx+ dT y + I[−1,1]n(x)

s.t. y ∈ argmin
z

{
d̃T z + I[−1,1]m(z)

∣∣Ãx+ B̃z − b̃ ≤ 0
}
,

(53)

9The notation [−1, 1]n denotes the set {x ∈ Rn|xi ∈ [−1, 1], i = 1, . . . , n.}.
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where c ∈ Rn, d, d̃ ∈ Rm, b̃ ∈ Rl, Ã ∈ Rl×n, B̃ ∈ Rl×m, and I[−1,1]n(·) and I[−1,1]m(·) are the indicator
functions of [−1, 1]n and [−1, 1]m respectively.

For each triple (n,m, l), we randomly generate 10 instances of problem (53). Specifically, we first
randomly generate c and d with all the entries independently chosen from the standard normal distri-
bution. We then randomly generate Ã and B̃ with all the entries independently chosen from a normal
distribution with mean 0 and standard deviation 0.01. In addition, we randomly generate ŷ ∈ [−1, 1]m
with all the entries independently chosen from a normal distribution with mean 0 and standard deviation
0.1 and then projected to [−1, 1]m and choose d̃ and b̃ such that ŷ is an optimal solution of the lower
level optimization of (53) with x = 0.

Notice that (53) is a special case of (25) with f(x, y) = cTx + dT y + I[−1,1]n(x), f̃(x, z) = d̃T z +

I[−1,1]m(z) and g̃(x, z) = Ãx + B̃z − b̃ and can be suitably solved by Algorithm 4. For the sake
of efficiency, we implement a variant of Algorithm 4 with dynamic update on penalty and tolerance
parameters. Specifically, we set ρk = 5k−1, µk = ρ2k, εk = ρ−1

k and xε−1
= 0. For each k ≥ 0, we

run Algorithm 4 with (ε, ρ, µ) = (εk, ρk, µk) and (xεk−1
, ỹεk−1

) as the initial point to generate (xεk , yεk),

where ỹεk−1
satisfies P̃µk

(xεk−1
, ỹεk−1

) ≤ minz P̃µk
(xεk−1

, z)+ εk with P̃µk
being given in (30), which can

be found by the accelerated proximal gradient method [48]. We terminate the process once εk̄ ≤ 10−4

and (xεk̄ , yεk̄) satisfies

∥[g̃(xεk̄ , yεk̄)]+∥ ≤ 10−4, f̃(xεk̄ , yεk̄)− f̃∗(xεk̄) ≤ 10−4

for some k̄ and output (xεk̄ , yεk̄) as an approximate solution of (53), where f̃∗ is defined in (26) and the

value f̃∗(xεk̄) is computed by CVX [19].
The computational results of the aforementioned variant of Algorithm 4 for the instances randomly

generated above are presented in Table 2. In detail, the values of n, m and l are listed in the first three
columns. For each triple (n,m, l), the average initial objective value f(xε−1 , ŷ) with ŷ being generated
above10 and the average final objective value f(xεk̄ , yεk̄) over 10 random instances are given in the rest of
the columns. One can observe that the approximate solution (xεk̄ , yεk̄) found by this method significantly
reduces objective function value compared to the initial point (xε−1

, ŷ).

n m l Initial objective value Final objective value
100 100 5 -0.51 -34.83
200 200 10 -0.15 -121.41
300 300 15 1.56 -208.44
400 400 20 -0.04 -298.25
500 500 25 1.45 -384.77
600 600 30 0.75 -470.31
700 700 35 0.09 -568.26
800 800 40 -0.98 -629.61
900 900 45 1.21 -689.00
1000 1000 50 1.44 -781.79

Table 2: Numerical results for problem (53)

5 Proof of the main results

In this section we provide a proof of our main results presented in Sections 2 and 3, which are particularly
Theorems 1-5.

5.1 Proof of the main results in Section 2

In this subsection we prove Theorems 1, 2 and 3. We first establish a lemma below, which will be used
to prove Theorem 1 subsequently.

Lemma 1. Suppose that Assumption 1 holds and (xε, yε, zε) is an ϵ-optimal solution of problem (11)
for some ϵ > 0. Let f , f̃ , f∗, flow and ρ be given in (5), (8) and (11), respectively. Then we have

f̃(xε, yε) ≤ min
z

f̃(xε, z) + ρ−1(f∗ − flow + 2ϵ), f(xε, yε) ≤ f∗ + 2ϵ.

10Note that (xε−1 , ỹε−1 ) may not be a feasible point of (53). Nevertheless, (xε−1 , ŷ) is a feasible point of (53) due to
xε−1 = 0 and the particular way for generating instances of (53). Besides, (53) can be viewed as an implicit optimization
problem in terms of the variable x. It is thus reasonable to use f(xε−1 , ŷ) as the initial objective value for the purpose of
comparison.
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Proof. Since (xε, yε, zε) is an ϵ-optimal solution of (11), it follows from Definition 1 that

max
z

Pρ(xε, yε, z) ≤ Pρ(xε, yε, zε) + ϵ, Pρ(xε, yε, zε) ≤ min
x,y

max
z

Pρ(x, y, z) + ϵ.

Summing up these inequalities yields

max
z

Pρ(xε, yε, z) ≤ min
x,y

max
z

Pρ(x, y, z) + 2ϵ. (54)

Let (x∗, y∗) be an optimal solution of (5). It then follows that f(x∗, y∗) = f∗ and f̃(x∗, y∗) =
minz f̃(x

∗, z). By these and the definition of Pρ in (11), one has

max
z

Pρ(x
∗, y∗, z) = f(x∗, y∗) + ρ(f̃(x∗, y∗)−min

z
f̃(x∗, z)) = f(x∗, y∗) = f∗,

which implies that
min
x,y

max
z

Pρ(x, y, z) ≤ max
z

Pρ(x
∗, y∗, z) = f∗. (55)

It then follows from (11), (54) and (55) that

f(xε, yε) + ρ(f̃(xε, yε)−min
z

f̃(xε, z))
(11)
= max

z
Pρ(xε, yε, z)

(54)(55)

≤ f∗ + 2ϵ,

which together with f̃(xε, yε)−minz f̃(xε, z) ≥ 0 implies that

f(xε, yε) ≤ f∗ + 2ϵ, f̃(xε, yε) ≤ min
z

f̃(xε, z) + ρ−1 (f∗ − f(xε, yε) + 2ϵ) .

The conclusion of this lemma directly follows from these and (8).

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let {(xk, yk, zk)} be generated by Algorithm 1 with limk→∞(ρk, ϵk) = (∞, 0).
By considering a convergent subsequence if necessary, we assume without loss of generality that limk→∞(xk, yk) =
(x∗, y∗). We now show that (x∗, y∗) is an optimal solution of problem (5). Indeed, since (xk, yk, zk)
is an ϵk-optimal solution of (11) with ρ = ρk, it follows from Lemma 1 with (ρ, ϵ) = (ρk, ϵk) and
(xε, yε) = (xk, yk) that

f̃(xk, yk) ≤ min
z

f̃(xk, z) + ρ−1
k (f∗ − flow + 2ϵk), f(xk, yk) ≤ f∗ + 2ϵk.

By the continuity of f and f̃ , limk→∞(xk, yk) = (x∗, y∗), limk→∞(ρk, ϵk) = (∞, 0), and taking limits as
k →∞ on both sides of the above relations, we obtain that f̃(x∗, y∗) ≤ minz f̃(x

∗, z) and f(x∗, y∗) ≤ f∗,
which clearly imply that y∗ ∈ argminz f̃(x

∗, z) and f(x∗, y∗) = f∗. Hence, (x∗, y∗) is an optimal solution
of (5) as desired.

We next prove Theorem 2.

Proof of Theorem 2. Since (x, y) is an ε-KKT solution of problem (5) with its associated ρ ≥ ρ0, it
follows from Definition 3 that there exists z ∈ Rm such that

∥∇xf(x, y) + ρ∇xf̃(x, y)− ρ∇xf̃(x, z)∥ ≤ ε, (56)

∥∇yf(x, y) + ρ∇y f̃(x, y)∥ ≤ ε, (57)

ρ∥∇y f̃(x, z)∥ ≤ ε, f̃(x, y)−min
z′

f̃(x, z′) ≤ ε. (58)

Using (56), the triangle inequality, and the assumptions that x ∈ Ω, ∇f(x′, ·) is L1-Lipschitz contin-
uous and ∇2f̃(x′, ·) is L2-Lipschitz continuous for all x′ ∈ Ω, we have

∥∇xf(x, y
∗(x)) + ρ∇2

xy f̃(x, y
∗(x))(y − z)∥

≤ ∥∇xf(x, y) + ρ∇xf̃(x, y)− ρ∇xf̃(x, z)∥+ ∥∇xf(x, y
∗(x))−∇xf(x, y)∥

+ ρ∥∇xf̃(x, y
∗(x)) +∇2

xy f̃(x, y
∗(x))(y − y∗(x))−∇xf̃(x, y)∥

+ ρ∥∇xf̃(x, z)−∇xf̃(x, y
∗(x))−∇2

xy f̃(x, y
∗(x))(z − y∗(x))∥

≤ ε+ L1∥y − y∗(x)∥+ ρL2

2
∥y − y∗(x)∥2 + ρL2

2
∥z − y∗(x)∥2. (59)
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By (57), (58) and a similar argument as for deriving (59), one has

∥∇yf(x, y
∗(x)) + ρ∇2

yy f̃(x, y
∗(x))(y − z)∥

≤ ∥∇yf(x, y
∗(x))−∇yf(x, y)∥+ ∥∇yf(x, y) + ρ∇y f̃(x, y)∥+ ρ∥∇y f̃(x, z)∥

+ ρ∥∇y f̃(x, y
∗(x)) +∇2

yy f̃(x, y
∗(x))(y − y∗(x))−∇y f̃(x, y)∥

+ ρ∥∇y f̃(x, z)−∇y f̃(x, y
∗(x))−∇2

yy f̃(x, y
∗(x))(z − y∗(x))∥

≤ L1∥y − y∗(x)∥+ 2ε+
ρL2

2
∥y − y∗(x)∥2 + ρL2

2
∥z − y∗(x)∥2.

Using this inequality, (16), (19) and (59), we obtain that

∥∇Φ(x)∥ = ∥∇xf(x, y
∗(x))−∇2

xy f̃(x, y
∗(x))[∇2

yy f̃(x, y
∗(x))]−1∇yf(x, y

∗(x))∥

= ∥∇xf(x, y
∗(x)) + ρ∇2

xy f̃(x, y
∗(x))(y − z)

−∇2
xy f̃(x, y

∗(x))[∇2
yy f̃(x, y

∗(x))]−1[∇yf(x, y
∗(x)) + ρ∇2

yy f̃(x, y
∗(x))(y − z)]∥

≤ ∥∇xf(x, y
∗(x)) + ρ∇2

xy f̃(x, y
∗(x))(y − z)∥

+ ∥∇2
xy f̃(x, y

∗(x))[∇2
yy f̃(x, y

∗(x))]−1∥ · ∥∇yf(x, y
∗(x)) + ρ∇2

yy f̃(x, y
∗(x))(y − z)∥

≤ (2C + 1)ε+ (C + 1)
(
L1∥y − y∗(x)∥+ ρL2

2
∥y − y∗(x)∥2 + ρL2

2
∥z − y∗(x)∥2

)
. (60)

Recall from the assumption that x ∈ Ω ⊂ N and f̃(x′, ·) is strongly convex with modulus σ > 0 for
all x′ ∈ N . It follows from these, (58) and the definition of y∗(x) in (15) that

∥y − y∗(x)∥2 ≤ 2σ−1
(
f̃(x, y)−min

z′
f̃(x, z′)

)
≤ 2σ−1ε, (61)

which together with x ∈ Ω and (18) implies that ∥∇yf(x, y)∥ ≤ C̄. Using this, (57), (58), x ∈ Ω ⊂ N ,

∇y f̃(x, y
∗(x)) = 0, and the assumption that f̃(x′, ·) is strongly convex with modulus σ > 0 for all x′ ∈ N ,

we have

∥y − y∗(x)∥ ≤ σ−1∥∇y f̃(x, y)−∇y f̃(x, y
∗(x))∥ = σ−1∥∇y f̃(x, y)∥

≤ (ρσ)−1(∥∇yf(x, y) + ρ∇y f̃(x, y)∥+ ∥∇yf(x, y)∥) ≤ (ρσ)−1(ε+ C̄), (62)

∥z − y∗(x)∥ ≤ σ−1∥∇y f̃(x, z)−∇y f̃(x, y
∗(x))∥ = σ−1∥∇y f̃(x, z)∥ ≤ (ρσ)−1ε. (63)

It then follows from (61), (62) and the definition of θ in (19) that ∥y − y∗(x)∥ ≤ θ. By this, (60) and

(63), one can conclude that (20) holds. In addition, in view of (19), one has θ ≤
√
2σ−1ε and

ρθ2 = min
{
ρ−1σ−2(ε+ C̄)2, 2ρσ−1ε

}
≤ min

{
ρ−1σ−2(ε0 + C̄)2, 2ρσ−1ε

}
≤
√
2σ−3/2(ε0 + C̄)

√
ε.

Using these inequalities, (20), ε ≤ ε0 and ρ ≥ ρ0, we see that (21) holds.

We next prove Theorem 3. Before proceeding, we establish a lemma below, which will be used to
prove Theorem 3 subsequently.

Lemma 2. Suppose that Assumption 1 holds and (xε, yε, zε) is an ϵ-stationary point of (11). Let Dy,

flow, f̃ , ρ, and Pρ be given in (6), (8) and (11), respectively. Then we have

dist
(
0, ∂f(xε, yε) + ρ∂f̃(xε, yε)− (ρ∇xf̃(xε, zε); 0)

)
≤ ϵ, dist

(
0, ρ∂z f̃(xε, zε)

)
≤ ϵ,

f̃(xε, yε) ≤ min
z

f̃(xε, z) + ρ−1(max
z

Pρ(xε, yε, z)− flow).

Proof. Since (xε, yε, zε) is an ϵ-stationary point of (11), it follows from Definition 2 that

dist
(
0, ∂x,yPρ(xε, yε, zε)

)
≤ ϵ, dist

(
0, ∂zPρ(xε, yε, zε)

)
≤ ϵ.

Using these and the definition of Pρ in (11), we have

dist
(
0, ∂f(xε, yε) + ρ∂f̃(xε, yε)− (ρ∇xf̃(xε, zε); 0)

)
≤ ϵ, dist

(
0, ρ∂z f̃(xε, zε)

)
≤ ε.

In addition, by (11), we have

f(xε, yε) + ρ(f̃(xε, yε)−min
z

f̃(xε, z)) = max
z

Pρ(xε, yε, z),
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which along with (8) implies that

f̃(xε, yε)−min
z

f̃(xε, z) ≤ ρ−1(max
z

Pρ(xε, yε, z)− flow).

This completes the proof of this lemma.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Observe from (12) that problem (11) can be viewed as

min
x,y

max
z
{Pρ(x, y, z) = h(x, y, z) + p(x, y)− q(z)} ,

where h(x, y, z) = f1(x, y) + ρf̃1(x, y) − ρf̃1(x, z), p(x, y) = f2(x) + ρf̃2(y), and q(z) = ρf̃2(z). Hence,
problem (11) is in the form of (99) with H = Pρ. By Assumption 1 and ρ = ε−1, one can see that h is

L̂-smooth on its domain, where L̂ is given in (22). Also, notice from Algorithm 2 that ϵ0 = ε3/2 ≤ ε/2
due to ε ∈ (0, 1/4]. Consequently, Algorithm 6 can be suitably applied to problem (11) with ρ = ε−1 for
finding an ϵ-stationary point (xε, yε, zε) of it.

In addition, notice from Algorithm 2 that f̃(x0, y0) ≤ miny f̃(x
0, y)+ε. Using this, (11) and ρ = ε−1,

we obtain

max
z

Pρ(x
0, y0, z) = f(x0, y0) + ρ(f̃(x0, y0)−min

z
f̃(x0, z)) ≤ f(x0, y0) + ρε = f(x0, y0) + 1. (64)

By this and (104) with H = Pρ, ϵ = ε, ϵ0 = ε3/2, x̂0 = (x0, y0), Dq = Dy, and L∇h = L̂, one has

max
z

Pρ(xε, yε, z) ≤ max
z

Pρ(x
0, y0, z) + εDy/4 + 2ε3(L̂−1 + 4D2

yL̂ε
−2)

(64)

≤ 1 + f(x0, y0) + εDy/4 + 2ε3(L̂−1 + 4D2
yL̂ε

−2).

It then follows from this and Lemma 2 with ϵ = ε and ρ = ε−1 that (xε, yε, zε) satisfies (23) and (24).

We next show that at most N̂ evaluations of ∇f1, ∇f̃1, and proximal operator of f2 and f̃2 are
respectively performed in Algorithm 2. Indeed, by (7), (8) and (11), one has

min
x,y

max
z

Pρ(x, y, z)
(11)
= min

x,y
{f(x, y) + ρ(f̃(x, y)−min

z
f̃(x, z))} ≥ min

(x,y)∈X×Y
f(x, y)

(8)
= flow, (65)

min
(x,y,z)∈X×Y×Y

Pρ(x, y, z)
(11)
= min

(x,y,z)∈X×Y×Y
{f(x, y) + ρ(f̃(x, y)− f̃(x, z))}

(7)(8)

≥ flow + ρ(f̃low − f̃hi).

(66)

For convenience of the rest proof, let

H = Pρ, H∗ = min
x,y

max
z

Pρ(x, y, z), Hlow = min{Pρ(x, y, z)|(x, y, z) ∈ X × Y × Y}. (67)

In view of these, (55), (64), (65), (66), and ρ = ε−1, we obtain that

max
z

H(x0, y0, z)
(64)

≤ f(x0, y0) + 1, flow
(65)

≤ H∗
(55)

≤ f∗,

Hlow

(66)

≥ flow + ρ(f̃low − f̃hi) = flow + ε−1(f̃low − f̃hi).

Using these and Theorem 6 with ϵ = ε, x̂0 = (x0, y0), Dp =
√
D2

x +D2
y, Dq = Dy, ϵ0 = ε3/2, L∇h = L̂,

α = α̂, δ = δ̂, and H, H∗, Hlow given in (67), we can conclude that Algorithm 2 performs at most

N̂ evaluations of ∇f1, ∇f̃1 and proximal operator of f2 and f̃2 respectively for finding an approximate
solution (xε, yε) of problem (5) satisfying (23) and (24).

5.2 Proof of the main results in Section 3

In this subsection we prove Theorems 4 and 5. Before proceeding, we define

r = G−1Dy(ρ
−1ϵ+ Lf̃ ), B+

r = {λ ∈ Rl
+ : ∥λ∥ ≤ r}, (68)

where Dy is defined in (6), G is given in Assumption 2(iii), and ϵ and ρ are given in Algorithm 4. In
addition, one can observe from (26) and (30) that

min
z

P̃µ(x, z) ≤ f̃∗(x) ∀x ∈ X , (69)

which will be frequently used later.
We next establish several technical lemmas that will be used to prove Theorem 4 subsequently.
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Lemma 3. Suppose that Assumptions 1 and 2 hold. Let Dy, Lf̃ , G, f̃∗, f̃∗
hi and B+

r be given in (6),
(26), (27), (68) and Assumption 2, respectively. Then the following statements hold.

(i) ∥λ∗∥ ≤ G−1Lf̃Dy and λ∗ ∈ B+
r for all λ∗ ∈ Λ∗(x) and x ∈ X , where Λ∗(x) denotes the set of

optimal Lagrangian multipliers of problem (26) for any x ∈ X .

(ii) The function f̃∗ is Lipschitz continuous on X and f̃∗
hi is finite.

(iii) It holds that
f̃∗(x) = max

λ
min
z

f̃(x, z) + ⟨λ, g̃(x, z)⟩ −IRl
+
(λ) ∀x ∈ X , (70)

where IRl
+
(·) is the indicator function associated with Rl

+.

Proof. (i) Let x ∈ X and λ∗ ∈ Λ∗(x) be arbitrarily chosen, and let z∗ ∈ Y be such that (z∗, λ∗) is a pair
of primal-dual optimal solutions of (26). It then follows that

z∗ ∈ argmin
z

f̃(x, z) + ⟨λ∗, g̃(x, z)⟩, ⟨λ∗, g̃(x, z∗)⟩ = 0, g̃(x, z∗) ≤ 0, λ∗ ≥ 0.

The first relation above yields

f̃(x, z∗) + ⟨λ∗, g̃(x, z∗)⟩ ≤ f̃(x, ẑx) + ⟨λ∗, g̃(x, ẑx)⟩,

where ẑx is given in Assumption 2(iii). By this and ⟨λ∗, g̃(x, z∗)⟩ = 0, one has

⟨λ∗,−g̃(x, ẑx)⟩ ≤ f̃(x, ẑx)− f̃(x, z∗),

which together with λ∗ ≥ 0, (6) and Assumption 2 implies that

G

l∑
i=1

λ∗
i ≤ ⟨λ∗,−g̃(x, ẑx)⟩ ≤ f̃(x, ẑx)− f̃(x, z∗) ≤ Lf̃∥ẑx − z∗∥ ≤ Lf̃Dy, (71)

where the first inequality is due to Assumption 2(iii), and the third inequality follows from (6) and Lf̃ -

Lipschitz continuity of f̃ (see Assumption 2(i)). By (68), (71) and λ∗ ≥ 0, we have ∥λ∗∥ ≤
∑l

i=1 λ
∗
i ≤

G−1Lf̃Dy and λ∗ ∈ B+
r .

(ii) Recall from Assumptions 1(i) and 2(iii) that f̃(x, ·) and g̃i(x, ·), i = 1, . . . , l, are convex for any
given x ∈ X . Using this, (26) and the first statement of this lemma, we observe that

f̃∗(x) = min
z

max
λ∈B+

r

f̃(x, z) + ⟨λ, g̃(x, z)⟩ ∀x ∈ X . (72)

Notice from Assumption 2 that f̃ and g̃ are Lipschitz continuous on their domain. Then it is not hard to
observe that max{f̃(x, z)+⟨λ, g̃(x, z)⟩|λ ∈ B+

r } is a Lipschitz continuous function of (x, z) on its domain.
By this and (72), one can easily verify that f̃∗ is Lipschitz continuous on X . In addition, the finiteness
of f̃∗

hi follows from (27), the continuity of f̃∗, and the compactness of X .
(iii) One can observe from (26) that for all x ∈ X ,

f̃∗(x) = min
z

max
λ

f̃(x, z) + ⟨λ, g̃(x, z)⟩ −IRl
+
(λ) ≥ max

λ
min
z

f̃(x, z) + ⟨λ, g̃(x, z)⟩ −IRl
+
(λ)

where the inequality follows from the weak duality. In addition, it follows from Assumption 1 that the
domain of f̃(x, ·) is compact for all x ∈ X . By this, (72) and the strong duality, one has

f̃∗(x) = max
λ∈B+

r

min
z

f̃(x, z) + ⟨λ, g̃(x, z)⟩ −IRl
+
(λ) ∀x ∈ X ,

which together with the above inequality implies that (70) holds.

Lemma 4. Suppose that Assumptions 1 and 2 hold and that (xε, yε, zε) is an ϵ-optimal solution of

problem (33) for some ϵ > 0. Let flow, f , P̃µ, f
∗
µ, ρ and µ be given in (8), (25), (30), (31) and (33),

respectively. Then we have

P̃µ(xε, yε) ≤ min
z

P̃µ(xε, z) + ρ−1(f∗
µ − flow + 2ϵ), f(xε, yε) ≤ f∗

µ + 2ϵ. (73)

Proof. The proof follows from the same argument as the one for Lemma 1 with f∗ and f̃ being replaced
by f∗

µ and P̃µ, respectively.

16



Lemma 5. Suppose that Assumptions 1-3 hold. Let f̃low, f
∗, f̃∗

hi, f
∗
µ be defined in (7), (25), (27) and

(31), and Lf , ω and θ̄ be given in Assumptions 2 and 3. Suppose that µ ≥ (f̃∗
hi− f̃low)/θ̄

2. Then we have

f∗
µ ≤ f∗ + Lfω

(√
µ−1(f̃∗

hi − f̃low)
)
. (74)

Proof. Let x ∈ X , y ∈ argminz{f̃(x, z)|g̃(x, z) ≤ 0} and z∗ ∈ argminz P̃µ(x, z) be arbitrarily chosen.

One can easily see from (30) and (69) that f̃(x, z∗) + µ ∥[g̃(x, z∗)]+∥2 ≤ f̃∗(x), which together with (7)
and (27) implies that

∥[g̃(x, z∗)]+∥2 ≤ µ−1(f̃∗
hi − f̃low). (75)

Since µ ≥ (f̃∗
hi−f̃low)/θ̄2, it follows from (75) that ∥[g̃(x, z∗)]+∥ ≤ θ̄. By this relation, y ∈ argmin

z
{f̃(x, z)|g̃(x, z) ≤

0} and Assumption 3, there exists some ẑ∗ such that

∥y − ẑ∗∥ ≤ ω(∥[g̃(x, z∗)]+∥), ẑ∗ ∈ argmin
z

{
f̃(x, z)

∣∣ ∥[g̃(x, z)]+∥ ≤ ∥[g̃(x, z∗)]+∥} . (76)

In view of (30), z∗ ∈ argminz P̃µ(x, z) and the second relation in (76), one can observe that ẑ∗ ∈
argminz P̃µ(x, z), which along with (31) yields f(x, ẑ∗) ≥ f∗

µ. Also, using (76) and Lf -Lipschitz continuity
of f (see Assumption 2), we have

f(x, y)− f(x, ẑ∗) ≥ −Lf∥y − ẑ∗∥
(76)

≥ −Lfω(∥[g̃(x, z∗)]+∥).

Taking minimum over x ∈ X and y ∈ argminz{f̃(x, z)|g̃(x, z) ≤ 0} on both sides of this relation, and
using (25), (75), f(x, ẑ∗) ≥ f∗

µ and the monotonicity of ω, we can conclude that (74) holds.

Lemma 6. Suppose that Assumptions 1-3 hold. Let f̃low, flow, f , f̃ , f
∗, f̃∗, f̃∗

hi, ρ and µ be given in (7),
(8), (25), (26), (27) and (33), and Lf , ω and θ̄ be given in Assumptions 2 and 3, respectively. Suppose

that µ ≥ (f̃∗
hi − f̃low)/θ̄

2 and (xε, yε, zε) is an ϵ-optimal solution of problem (33) for some ϵ > 0. Then
we have

f(xε, yε) ≤ f∗ + Lfω
(√

µ−1(f̃∗
hi − f̃low)

)
+ 2ϵ,

f̃(xε, yε) ≤ f̃∗(xε) + ρ−1
(
f∗ − flow + Lfω

(√
µ−1(f̃∗

hi − f̃low)
)
+ 2ϵ

)
,

∥[g̃(xε, yε)]+∥2 ≤ µ−1
(
f̃∗(xε)− f̃low + ρ−1

(
f∗ − flow + Lfω

(√
µ−1(f̃∗

hi − f̃low)
)
+ 2ϵ

))
.

Proof. By (30), (69), and the first relation in (73), one has

f̃(xε, yε) + µ ∥[g̃(xε, yε)]+∥2
(30)
= P̃µ(xε, yε)

(69)(73)

≤ f̃∗(xε) + ρ−1(f∗
µ − flow + 2ϵ).

It then follows from this and (7) that

f̃(xε, yε) ≤ f̃∗(xε) + ρ−1(f∗
µ − flow + 2ϵ), ∥[g̃(xε, yε)]+∥2 ≤ µ−1(f̃∗(xε)− f̃low + ρ−1(f∗

µ − flow + 2ϵ)).

In addition, recall from (73) that f(xε, yε) ≤ f∗
µ + 2ϵ. The conclusion of this lemma then follows from

these three relations and (74).

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let {(xk, yk, zk)} be generated by Algorithm 3 with limk→∞(ρk, µk, ϵk) = (∞,∞, 0).
By considering a convergent subsequence if necessary, we assume without loss of generality that limk→∞(xk, yk) =
(x∗, y∗). We now show that (x∗, y∗) is an optimal solution of problem (25). Indeed, since (xk, yk, zk) is
an ϵk-optimal solution of (33) with (ρ, µ) = (ρk, µk) and limk→∞ µk =∞, it follows from Lemma 6 with
(ρ, µ, ϵ) = (ρk, µk, ϵk) and (xε, yε) = (xk, yk) that for all sufficiently large k, one has

f(xk, yk) ≤ f∗ + Lfω
(√

µ−1
k (f̃∗

hi − f̃low)
)
+ 2ϵk,

f̃(xk, yk) ≤ f̃∗(xk) + ρ−1
k

(
f∗ − flow + Lfω

(√
µ−1
k (f̃∗

hi − f̃low)
)
+ 2ϵk

)
,∥∥[g̃(xk, yk)]+

∥∥2 ≤ µ−1
k

(
f̃∗(xk)− f̃low + ρ−1

k

(
f∗ − flow + Lfω

(√
µ−1
k (f̃∗

hi − f̃low)
)
+ 2ϵk

))
.
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By the continuity of f , f̃ and f̃∗ (see Assumption 1(i) and Lemma 3(ii)), limk→∞(xk, yk) = (x∗, y∗),
limk→∞(ρk, µk, ϵk) = (∞,∞, 0), limθ↓0 ω(θ) = 0, and taking limits as k →∞ on both sides of the above

relations, we obtain that f(x∗, y∗) ≤ f∗, f̃(x∗, y∗) ≤ f̃∗(x∗) and [g̃(x∗, y∗)]+ = 0, which along with
(25) and (26) imply that f(x∗, y∗) = f∗ and y∗ ∈ argminz{f̃(x∗, z)|g̃(x∗, z) ≤ 0}. Hence, (x∗, y∗) is an
optimal solution of (25) as desired.

We next prove Theorem 5. Before proceeding, we establish several technical lemmas below, which
will be used to prove Theorem 5 subsequently.

Lemma 7. Suppose that Assumptions 1 and 2 hold and that (xε, yε, zε) is an ϵ-stationary point of
problem (33) for some ϵ > 0. Let Dy, g̃, ρ, µ, Lf , Lf̃ and G be given in (6), (25), (33) and Assumption
2, respectively. Then we have

∥[g̃(xε, zε)]+∥ ≤ (2µG)−1Dy(ρ
−1ϵ+ Lf̃ ), (77)

∥[g̃(xε, yε)]+∥ ≤ (2µG)−1Dy(ρ
−1ϵ+ ρ−1Lf + Lf̃ ). (78)

Proof. We first prove (77). Since (xε, yε, zε) is an ϵ-stationary point of (33), it follows from Definition 2
that dist(0, ∂zPρ,µ(xε, yε, zε)) ≤ ϵ. Also, by (30) and (33), one has

Pρ,µ(x, y, z) = f(x, y) + ρ(f̃(x, y) + µ ∥[g̃(x, y)]+∥2)− ρ(f̃(x, z) + µ ∥[g̃(x, z)]+∥2). (79)

Using these relations, we have

dist
(
0, ∂z f̃(xε, zε) + 2µ

l∑
i=1

[g̃i(xε, zε)]+∇z g̃i(xε, zε)
)
≤ ρ−1ϵ.

Hence, there exists s ∈ ∂z f̃(xε, zε) such that

∥∥∥s+ 2µ
l∑

i=1

[g̃i(xε, zε)]+∇z g̃i(xε, zε)
∥∥∥ ≤ ρ−1ϵ. (80)

Let ẑxε
and G be given in Assumption 2(iii). It then follows that ẑxε

∈ Y and −g̃i(xε, ẑxε
) ≥ G > 0 for

all i. Notice that [g̃i(xε, zε)]+g̃i(xε, zε) ≥ 0 for all i and ∥zε − ẑxε
∥ ≤ Dy due to (6). Using these, (80),

and the convexity of f̃(xε, ·) and g̃i(xε, ·) for all i, we have

f̃(xε, zε)− f̃(xε, ẑxε
) + 2µG

l∑
i=1

[g̃i(xε, zε)]+ ≤ f̃(xε, zε)− f̃(xε, ẑxε
)− 2µ

l∑
i=1

[g̃i(xε, zε)]+g̃i(xε, ẑxε
)

≤ f̃(xε, zε)− f̃(xε, ẑxε
) + 2µ

l∑
i=1

[g̃i(xε, zε)]+(g̃i(xε, zε)− g̃i(xε, ẑxε
))

≤ ⟨s, zε − ẑxε⟩+ 2µ

l∑
i=1

[g̃i(xε, zε)]+⟨∇z g̃i(xε, zε), zε − ẑxε⟩

= ⟨s+ 2µ
l∑

i=1

[g̃(xε, zε)]+∇z g̃i(xε, zε), zε − ẑxε
⟩ ≤ ρ−1Dyϵ, (81)

where the first inequality is due to −g̃i(xε, ẑxε
) ≥ G for all i, the second inequality follows from

[g̃i(xε, zε)]+g̃i(xε, zε) ≥ 0 for all i, the third inequality is due to s ∈ ∂z f̃(xε, zε) and the convexity
of f̃(xε, ·) and g̃i(xε, ·) for all i, and the last inequality follows from (6) and (80). In view of (6), (81),
and Lf̃ -Lipschitz continuity of f̃(x, y) (see Assumption 2), one has

∥[g̃(xε, zε)]+∥ ≤
l∑

i=1

[g̃i(xε, zε)]+
(81)

≤ (2µG)−1(ρ−1Dyϵ+ f̃(xε, ẑxε
)− f̃(xε, zε))

≤ (2µG)−1(ρ−1Dyϵ+ Lf̃∥ẑxε
− zε∥)

(6)

≤ (2µG)−1Dy(ρ
−1ϵ+ Lf̃ ).

Hence, (77) holds.
We next prove (78). Since (xε, yε, zε) is an ϵ-stationary point of (33), it follows from Definition 2

that dist(0, ∂x,yPρ,µ(xε, yε, zε)) ≤ ϵ. In addition, notice from (34) that Pρ,µ is the sum of a smooth
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function and a possibly nonsmooth function that is separable with respect to x, y and z. Conse-
quently, ∂x,yPρ,µ = ∂xPρ,µ × ∂yPρ,µ, which together with dist(0, ∂x,yPρ,µ(xε, yε, zε)) ≤ ϵ implies that
dist(0, ∂yPρ,µ(xε, yε, zε)) ≤ ϵ. By this relation and (34), one has

dist
(
0, ∂yf(xε, yε) + ρ∂y f̃(xε, yε) + 2ρµ∇y g̃(xε, yε)[g̃(xε, yε)]+

)
≤ ϵ.

Hence, there exists s ∈ ∂yf(xε, yε) and s̃ ∈ ∂y f̃(xε, yε) such that

∥s+ ρs̃+ 2ρµ∇y g̃(xε, yε)[g̃(xε, yε)]+∥ ≤ ϵ. (82)

Let Ā(xε, yε) = {i|g̃i(xε, yε) > 0, 1 ≤ i ≤ l}, ẑxε and G be given in Assumption 2(iii). It then follows
that ẑxε ∈ Y and −g̃i(xε, ẑxε) ≥ G > 0 for all i. Using these and the convexity of g̃i(xε, ·) for all i, we
have

⟨∇y g̃(xε, yε)[g̃(xε, yε)]+, yε − ẑxε
⟩ =

∑
i∈Ā(xε,yε)

⟨∇y g̃i(xε, yε), yε − ẑxε
⟩[gi(xε, yε)]+

≥
∑

i∈Ā(xε,yε)

(g̃i(xε, yε)− g̃i(xε, ẑxε
))[g̃i(xε, yε)]+

≥
∑

i∈Ā(xε,yε)

G[g̃i(xε, yε)]+ = G
l∑

i=1

[g̃i(xε, yε)]+ ≥ G ∥[g̃(xε, yε)]+∥ , (83)

where the first inequality follows from the convexity of g̃(xε, ·) and the second inequality is due to
−g̃i(xε, ẑxε

) ≥ G. It then follows from this, (82) and (83) that

Dyϵ ≥ ∥s+ ρs̃+ 2ρµ∇y g̃(xε, yε)[g̃(xε, yε)]+∥ · ∥yε − ẑxε∥
≥ ⟨s+ ρs̃+ 2ρµ∇y g̃(xε, yε)[g̃(xε, yε)]+, yε − ẑxε⟩
= ⟨s+ ρs̃, yε − ẑxε⟩+ 2ρµ⟨∇y g̃(xε, yε)[g̃(xε, yε)]+, yε − ẑxε⟩
(83)

≥ − (∥s∥+ ρ∥s̃∥) ∥yε − ẑxε
∥+ 2ρµG ∥[g̃(xε, yε)]+∥

≥ −(Lf + ρLf̃ )Dy + 2ρµG ∥[g̃(xε, yε)]+∥ , (84)

where the last inequality follows from ∥yε − ẑxε∥ ≤ Dy and the fact that ∥s∥ ≤ Lf and ∥s̃∥ ≤ Lf̃ , which

are due to (6), s ∈ ∂yf(xε, yε), s̃ ∈ ∂y f̃(xε, yε) and Assumption 2(i). By (84), one can immediately see
that (78) holds.

Lemma 8. Suppose that Assumptions 1 and 2 hold. Let f , f̃ , g̃, Dy, flow, f̃
∗ and Pρ,µ be given in (5),

(6), (8), (26) and (33), Lf , Lf̃ and G be given in Assumptions 1 and 2, (xε, yε, zε) be an ϵ-stationary
point of (33) for some ϵ > 0, and

λ̃ = 2µ[g̃(xε, zε)]+, λ̂ = 2ρµ[g̃(xε, yε)]+. (85)

Then we have

dist
(
∂f(xε, yε) + ρ∂f̃(xε, yε)− ρ(∇xf̃(xε, zε) +∇xg̃(xε, zε)λ̃; 0) +∇g̃(xε, yε)λ̂

)
≤ ϵ, (86)

dist
(
0, ρ(∂z f̃(xε, zε) +∇z g̃(xε, zε)λ̃)

)
≤ ϵ, (87)

∥[g̃(xε, zε)]+∥ ≤ (2µG)−1Dy(ρ
−1ϵ+ Lf̃ ), (88)

|⟨λ̃, g̃(xε, zε)⟩| ≤ (2µ)−1G−2D2
y(ρ

−1ϵ+ Lf̃ )
2, (89)

|f̃(xε, yε)− f̃∗(xε)| ≤ max
{
ρ−1(max

z
Pρ,µ(xε, yε, z)− flow), (2µ)

−1G−2D2
yLf̃ (ρ

−1ϵ+ ρ−1Lf + Lf̃ )
}
,

(90)

∥[g̃(xε, yε)]+∥ ≤ (2µG)−1Dy(ρ
−1ϵ+ ρ−1Lf + Lf̃ ), (91)

|⟨λ̂, g̃(xε, yε)⟩| ≤ (2µ)−1ρG−2D2
y(ρ

−1ϵ+ ρ−1Lf + Lf̃ )
2. (92)

Proof. Since (xε, yε, zε) is an ϵ-stationary point of (33), it easily follows from (79), (85) and Definition
2 that (86) and (87) hold. Also, it follows from (77) and (78) that (88) and (91) hold. In addition, in
view of (85), (88) and (91), one has

|⟨λ̃, g̃(xε, zε)⟩|
(85)
= 2µ ∥[g̃(xε, zε)]+∥2

(88)

≤ (2µ)−1G−2D2
y(ρ

−1ϵ+ Lf̃ )
2,

|⟨λ̂, g̃(xε, yε)⟩|
(85)
= 2ρµ ∥[g̃(xε, yε)]∥+∥2

(91)

≤ (2µ)−1ρG−2D2
y(ρ

−1ϵ+ ρ−1Lf + Lf̃ )
2,
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and hence (89) and (92) hold. Also, observe from the definition of Pρ,µ in (33) that

P̃µ(xε, yε)−min
z

P̃µ(xε, z) = ρ−1(max
z

Pρ,µ(xε, yε, z)− f(xε, yε)).

Using this, (8), (30) and (69), we obtain that

f̃(xε, yε) + µ ∥[g̃(xε, yε)]+∥2
(30)
= P̃µ(xε, yε) = min

z
P̃µ(xε, z) + ρ−1(max

z
Pρ,µ(xε, yε, z)− f(xε, yε))

(8)(69)

≤ f̃∗(xε) + ρ−1(max
z

Pρ,µ(xε, yε, z)− flow). (93)

On the other hand, let λ∗ ∈ Rl
+ be an optimal Lagrangian multiplier of problem (26) with x = xε. It

then follows from Lemma 3(i) that ∥λ∗∥ ≤ G−1Lf̃Dy. Using these and (91), we have

f̃∗(xε) = min
y

{
f̃(xε, y) + ⟨λ∗, g̃(xε, y)⟩

}
≤ f̃(xε, yε) + ⟨λ∗, g̃(xε, yε)⟩

≤ f̃(xε, yε) + ∥λ∗∥∥[g̃(xε, yε)]+∥ ≤ f̃(xε, yε) + (2µ)−1G−2D2
yLf̃ (ρ

−1ϵ+ ρ−1Lf + Lf̃ ).

By this and (93), one can see that (90) holds.

We are now ready to prove Theorem 5.

Proof of Theorem 5. Observe from (34) that problem (33) can be viewed as

min
x,y

max
z
{Pρ,µ(x, y, z) = h(x, y, z) + p(x, y)− q(z)} ,

where h(x, y, z) = f1(x, y) + ρf̃1(x, y) + ρµ ∥[g̃(x, y)]+∥2 − ρf̃1(x, z)− ρµ ∥[g̃(x, z)]+∥2, p(x, y) = f2(x) +
ρf̃2(y) and q(z) = ρf̃2(z). Hence, problem (33) is in the form of (99) with H = Pρ,µ. By Assumption 1,

(28), (29), ρ = ε−1 and µ = ε−2, one can see that h is L̃-smooth on its domain, where L̃ is given in (44).
Also, notice from Algorithm 4 that ϵ0 = ε5/2 ≤ ε/2 = ϵ/2 due to ε ∈ (0, 1/4]. Consequently, Algorithm 6
can be suitably applied to problem (33) with ρ = ε−1 and µ = ε−2 for finding an ϵ-stationary point
(xε, yε, zε) of it.

In addition, notice from Algorithm 4 that P̃µ(x
0, y0) ≤ miny P̃µ(x

0, y) + ε. Using this, (33) and
ρ = ε−1, we obtain

max
z

Pρ,µ(x
0, y0, z)

(33)
= f(x0, y0) + ρ(P̃µ(x

0, y0)−min
z

P̃µ(x
0, z)) ≤ f(x0, y0) + ρε = f(x0, y0) + 1. (94)

By this and (104) with H = Pρ,µ, ϵ = ε, ϵ0 = ε5/2, x̂0 = (x0, y0), Dq = Dy and L∇h = L̃, one has

max
z

Pρ,µ(xε, yε, z) ≤ max
z

Pρ,µ(x
0, y0, z) + εDy/4 + 2ε5(L̃−1 + 4D2

yL̃ε
−2)

(94)

≤ 1 + f(x0, y0) + εDy/4 + 2ε5(L̃−1 + 4D2
yL̃ε

−2).

It then follows from this and Lemma 8 with ϵ = ε, ρ = ε−1 and µ = ε−2 that (xε, yε, zε) satisfies the
relations (45)-(51).

We next show that at most Ñ evaluations of ∇f1, ∇f̃1, ∇g̃ and proximal operator of f2 and f̃2 are
respectively performed in Algorithm 4. Indeed, by (7), (8), (28), (30) and (33), one has

min
x,y

max
z

Pρ,µ(x, y, z)
(33)
= min

x,y
{f(x, y) + ρ(P̃µ(x, y)−min

z
P̃µ(x, z))} ≥ min

(x,y)∈X×Y
f(x, y)

(8)
= flow, (95)

min{Pρ,µ(x, y, z)|(x, y, z) ∈ X × Y × Y}
(33)
= min{f(x, y) + ρ(P̃µ(x, y)− P̃µ(x, z))|(x, y, z) ∈ X × Y × Y}

(30)
= min{f(x, y) + ρ(f̃(x, y) + µ∥[g̃(x, y)]+∥2 − f̃(x, z)− µ∥[g̃(x, z)]+∥2)|(x, y, z) ∈ X × Y × Y}
≥ flow + ρ(f̃low − f̃hi)− ρµg̃2hi, (96)

where the last inequality follows from (7), (8) and (28). In addition, let (x∗, y∗) be an optimal solution
of (25). It then follows that f(x∗, y∗) = f∗ and [g̃(x∗, y∗)]+ = 0. By these, (7), (30) and (33), one has

min
x,y

max
z

Pρ,µ(x, y, z) ≤ max
z

Pρ,µ(x
∗, y∗, z)

(33)
= f(x∗, y∗) + ρ

(
P̃µ(x

∗, y∗)−min
z

P̃µ(x
∗, z)

)
(30)
= f(x∗, y∗) + ρ(f̃(x∗, y∗) + µ∥[g̃(x∗, y∗)]+∥2 −min

z
{f̃(x∗, z) + µ∥[g̃(x∗, z)]+∥2})

(7)

≤ f∗ + ρ(f̃hi − f̃low). (97)
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For convenience of the rest proof, let

H = Pρ,µ, H∗ = min
x,y

max
z

Pρ,µ(x, y, z), Hlow = min{Pρ,µ(x, y, z)|(x, y, z) ∈ X × Y × Y}. (98)

In view of these, (94), (95), (96), (97), ρ = ε−1 and µ = ε−2, we obtain that

max
z

H(x0, y0, z)
(94)

≤ f(x0, y0) + 1, flow
(95)

≤ H∗
(97)

≤ f∗ + ρ(f̃hi − f̃low) = f∗ + ε−1(f̃hi − f̃low),

Hlow

(96)

≥ flow + ρ(f̃low − f̃hi)− ρµg̃2hi = flow + ε−1(f̃low − f̃hi)− ε−3g̃2hi.

Using these and Theorem 6 with ϵ = ε, x̂0 = (x0, y0), Dp =
√
D2

x +D2
y, Dq = Dy, ϵ0 = ε5/2, L∇h = L̃,

α = α̃, δ = δ̃, and H, H∗, Hlow given in (98), we can conclude that Algorithm 4 performs at most Ñ
evaluations of ∇f1, ∇f̃1, ∇g̃ and proximal operator of f2 and f̃2 for finding an approximate solution
(xε, yε) of problem (25) satisfying (45)-(51).

6 Concluding remarks

For the sake of simplicity, first-order penalty methods are proposed only for problem (3) in this paper.
It would be interesting to extend them to problem (1) by using a standard technique (e.g., see [49]) for
handling the constraint g(x, y) ≤ 0. This will be left for the future research.
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A A first-order method for nonconvex-concave minimax prob-
lem

In this part, we aim to find an ϵ-stationary point of the nonconvex-concave minimax problem

H∗ = min
x

max
y
{H(x, y) := h(x, y) + p(x)− q(y)} , (99)

which has at least one optimal solution and satisfies the following assumptions.

Assumption 4. (i) p : Rn → R ∪ {∞} and q : Rm → R ∪ {∞} are proper convex functions and
continuous on dom p and dom q, respectively, and moreover, dom p and dom q are compact.

(ii) The proximal operators associated with p and q can be exactly evaluated.

(iii) h is L∇h-smooth on dom p× dom q, and moreover, h(x, ·) is concave for any x ∈ dom p.

Recently, an accelerated inexact proximal point smoothing (AIPP-S) scheme was proposed in [32]
for finding an approximate stationary point of a class of minimax composite nonconvex optimization
problems, which includes (99) as a special case. When applied to (99), AIPP-S requires the exact
solution of maxy

{
h(x′, y)− q(y)− 1

2λ∥y − y′∥2
}
for any λ > 0, x′ ∈ Rn, and y′ ∈ Rm. However, h is

typically sophisticated and the exact solution of such problem usually cannot be found. Consequently,
AIPP-S is generally not implementable for (99). In addition, a first-order method was proposed in [64]
which enjoys a first-order oracle complexity of O(ε−3 log ε−1) for finding an ϵ-primal stationary point x′

of (99) that satisfies ∥∥∥λ−1(x′ − argmin
x

{
max

y
H(x, y) +

1

2λ
∥x− x′∥2

}∥∥∥ ≤ ϵ

for some 0 < λ < L−1
∇h. Yet, this method does not suit our needs since our aim is to find an ϵ-stationary

point of (99) introduced in Definition 2. In what follows, we present a first-order method proposed in
[41, Algorithm 2] for finding such an ϵ-stationary point of (99).

For ease of presentation, we define

Dp = max{∥u− v∥
∣∣u, v ∈ dom p}, Dq = max{∥u− v∥

∣∣u, v ∈ dom q}, (100)

Hlow = min{H(x, y)|(x, y) ∈ dom p× dom q}. (101)

Given an iterate (xk, yk), the first-order method [41, Algorithm 2] finds the next iterate (xk+1, yk+1)
by applying [41, Algorithm 1], which is a slight modification of a novel optimal first-order method [33,
Algorithm 4], to the strongly-convex-strongly-concave minimax problem

min
x

max
y

{
hk(x, y) = h(x, y)− ϵ∥y − y0∥2/(4Dq) + L∇h∥x− xk∥2

}
. (102)

For ease of reference, we next present a modified optimal first-order method [41, Algorithm 1] in
Algorithm 5 below for solving the strongly-convex-strongly-concave minimax problem

min
x

max
y

{
h̄(x, y) + p(x)− q(y)

}
, (103)
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where h̄(x, y) is σx-strongly-convex-σy-strongly-concave and L∇h̄-smooth on dom p × dom q for some

σx, σy > 0. In Algorithm 5, the functions ĥ, akx and aky are defined as follows:

ĥ(x, y) = h̄(x, y)− σx∥x∥2/2 + σy∥y∥2/2,

akx(x, y) = ∇xĥ(x, y) + σx(x− σ−1
x zkg )/2, aky(x, y) = −∇yĥ(x, y) + σyy + σx(y − ykg )/8,

where ykg and zkg are generated at iteration k of Algorithm 5 below.

Algorithm 5 A modified optimal first-order method for problem (103)

Input: τ > 0, z̄0 = z0f ∈ −σxdom p,11 ȳ0 = y0f ∈ dom q, (z0, y0) = (z̄0, ȳ0), ᾱ = min
{
1,
√
8σy/σx

}
,

ηz = σx/2, ηy = min {1/(2σy), 4/(ᾱσx)}, βt = 2/(t + 3), ζ =
(
2
√
5(1 + 8L∇h̄/σx)

)−1
, γx = γy =

8σ−1
x , and ζ̂ = min{σx, σy}/L2

∇h̄
.

1: for k = 0, 1, 2, . . . do
2: (zkg , y

k
g ) = ᾱ(zk, yk) + (1− ᾱ)(zkf , y

k
f ).

3: (xk,−1, yk,−1) = (−σ−1
x zkg , y

k
g ).

4: xk,0 = proxζγxp(x
k,−1 − ζγxa

k
x(x

k,−1, yk,−1)).

5: yk,0 = proxζγyq(y
k,−1 − ζγya

k
y(x

k,−1, yk,−1)).

6: bk,0x = 1
ζγx

(xk,−1 − ζγxa
k
x(x

k,−1, yk,−1)− xk,0).

7: bk,0y = 1
ζγy

(yk,−1 − ζγya
k
y(x

k,−1, yk,−1)− yk,0).
8: t = 0.
9: while

γx∥akx(xk,t, yk,t) + bk,tx ∥2 + γy∥aky(xk,t, yk,t) + bk,ty ∥2 > γ−1
x ∥xk,t − xk,−1∥2 + γ−1

y ∥yk,t − yk,−1∥2
do

10: xk,t+1/2 = xk,t + βt(x
k,0 − xk,t)− ζγx(a

k
x(x

k,t, yk,t) + bk,tx ).
11: yk,t+1/2 = yk,t + βt(y

k,0 − yk,t)− ζγy(a
k
y(x

k,t, yk,t) + bk,ty ).

12: xk,t+1 = proxζγxp(x
k,t + βt(x

k,0 − xk,t)− ζγxa
k
x(x

k,t+1/2, yk,t+1/2)).

13: yk,t+1 = proxζγyq(y
k,t + βt(y

k,0 − yk,t)− ζγya
k
y(x

k,t+1/2, yk,t+1/2)).

14: bk,t+1
x = 1

ζγx
(xk,t + βt(x

k,0 − xk,t)− ζγxa
k
x(x

k,t+1/2, yk,t+1/2)− xk,t+1).

15: bk,t+1
y = 1

ζγy
(yk,t + βt(y

k,0 − yk,t)− ζγya
k
y(x

k,t+1/2, yk,t+1/2)− yk,t+1).
16: t← t+ 1.
17: end while
18: (xk+1

f , yk+1
f ) = (xk,t, yk,t).

19: (zk+1
f , wk+1

f ) = (∇xĥ(x
k+1
f , yk+1

f ) + bk,tx ,−∇yĥ(x
k+1
f , yk+1

f ) + bk,ty ).

20: zk+1 = zk + ηzσ
−1
x (zk+1

f − zk)− ηz(x
k+1
f + σ−1

x zk+1
f ).

21: yk+1 = yk + ηyσy(y
k+1
f − yk)− ηy(w

k+1
f + σyy

k+1
f ).

22: xk+1 = −σ−1
x zk+1.

23: x̂k+1 = proxζ̂p(x
k+1 − ζ̂∇xh̄(x

k+1, yk+1)).

24: ŷk+1 = proxζ̂q(y
k+1 + ζ̂∇yh̄(x

k+1, yk+1)).

25: Terminate the algorithm and output (x̂k+1, ŷk+1) if

∥ζ̂−1(xk+1 − x̂k+1, ŷk+1 − yk+1)− (∇h̄(xk+1, yk+1)−∇h̄(x̂k+1, ŷk+1))∥ ≤ τ.

26: end for

We are now ready to present the first-order method [41, Algorithm 2] for finding an ϵ-stationary point
of (99) in Algorithm 6 below.

11For convenience, −σxdom p stands for the set {−σxu|u ∈ dom p}.
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Algorithm 6 A first-order method for problem (99)

Input: ϵ > 0, ϵ0 ∈ (0, ϵ/2], (x̂0, ŷ0) ∈ dom p× dom q, (x0, y0) = (x̂0, ŷ0), and ϵk = ϵ0/(k + 1).
1: for k = 0, 1, 2, . . . do
2: Call Algorithm 5 with h̄ ← hk, τ ← ϵk, σx ← L∇h, σy ← ϵ/(2Dq), L∇h̄ ← 3L∇h + ϵ/(2Dq),

z̄0 = z0f ← −σxx
k, ȳ0 = y0f ← yk, and denote its output by (xk+1, yk+1), where hk is given in

(102).
3: Terminate the algorithm and output (xε, yε) = (xk+1, yk+1) if

∥xk+1 − xk∥ ≤ ϵ/(4L∇h).

4: end for

The following theorem presents the iteration complexity of Algorithm 6, whose proof is given in [41,
Theorem 2].

Theorem 6 (Complexity of Algorithm 6). Suppose that Assumption 4 holds. Let H∗, H Dp, Dq,
and Hlow be defined in (99), (100) and (101), L∇h be given in Assumption 4, ϵ, ϵ0 and x0 be given in
Algorithm 6, and

α = min

{
1,
√
4ϵ/(DqL∇h)

}
,

δ = (2 + α−1)L∇hD
2
p +max {ϵ/Dq, αL∇h/4}D2

q ,

K =

⌈
16(max

y
H(x0, y)−H∗ + ϵDq/4)L∇hϵ

−2 + 32ϵ20(1 + 4D2
qL

2
∇hϵ

−2)ϵ−2 − 1

⌉
+

,

N =
(⌈

96
√
2
(
1 + (24L∇h + 4ϵ/Dq)L

−1
∇h

)⌉
+ 2
){

2,
√
DqL∇hϵ−1

}
×

(
(K + 1)

(
log

4max
{

1
2L∇h

,min
{

Dq

ϵ , 4
αL∇h

}}(
δ + 2α−1(H∗ −Hlow + ϵDq/4 + L∇hD

2
p)
)

[(3L∇h + ϵ/(2Dq))2/min{L∇h, ϵ/(2Dq)}+ 3L∇h + ϵ/(2Dq)]
−2

ϵ20

)
+

+K + 1 + 2K log(K + 1)

)
.

Then Algorithm 6 terminates and outputs an ϵ-stationary point (xε, yε) of (99) in at most K + 1 outer
iterations that satisfies

max
y

H(xε, y) ≤ max
y

H(x̂0, y) + ϵDq/4 + 2ϵ20
(
L−1
∇h + 4D2

qL∇hϵ
−2
)
. (104)

Moreover, the total number of evaluations of ∇h and proximal operator of p and q performed in Algo-
rithm 6 is no more than N , respectively.
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