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ABSTRACT. In this paper, we prove global in time existence, uniqueness and
stability of mild solutions near vacuum for the 4-wave inhomogeneous kinetic
wave equation, for Laplacian dispersion relation in dimension d = 2,3. We
also show that for non-negative initial data, the solution remains non-negative.
This is achieved by connecting the inhomogeneous kinetic wave equation, for
such dimensions, to the cubic part of the quantum Boltzmann equation for
bosons, with Maxwell or hard potential and no collisional averaging.

1. Introduction. The problem of understanding the behavior of large systems
of nonlinear interacting waves is of fundamental importance in the community of
mathematical physics. However, with the size of the system being extremely large,
deterministic prediction of its evolution in time is practically impossible and one
resorts to a kinetic description. The kinetic theory of waves, referred to as wave
turbulence theory, provides a mesoscopic framework for studying averaging quanti-
ties of the system e.g. the point energy spectrum, but still obtaining a statistically
accurate prediction in time. This is in general achieved through the means of an
effective equation, which in the case of wave turbulence is the kinetic wave equation

This paper focuses on the global in time well-posedness and stability of the 4-
wave space inhomogeneous kinetic wave equation for initial data close to vacuum,
Laplacian dispersion relation and physical dimension d = 2,3. The main idea of
the paper is that, for such dimensions, it is possible to connect the inhomogeneous
kinetic wave equation to the cubic part of the quantum Boltzmann equation for
bosons, with Maxwell or hard potential and no collisional averaging, see Lemma
3.1 for more details. Since the well-posedness of Boltzmann-type equations near
vacuum has been widely studied [31, 29, 24, 5, 46, 6, 47, 40, 38, 20, 2, 1, 45, 4,
23, 22, 37] in the past, we employ techniques of the classical kinetic theory for
Boltzmann-type equations to address existence, uniqueness and stability of global
in time mild solutions (see Section 2 for the precise definition of a mild solution)
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to the spatially inhomogeneous (KWE). Up to the author’s knowledge, this is the
first paper which addresses the global in time well-posedness of the inhomogeneous
kinetic wave equation.

1.1. The inhomogeneous kinetic wave equation and functional spaces. We
study the global in time well-posedness and stability of the space inhomogeneous
kinetic wave equation for 4-wave interactions when the initial data are near vacuum
in dimension d = 2,3. The equation for 4-wave interactions is given by

atf+v Vﬂ?f = C[f]v
{f(t=0) ~ . W

where the collisional kernel is

(t,z,v) /5 ff1f2f3(f f_fz_fs> dvi dvg dvg,  (2)

the resonant manifolds are given by

Y=v+uv —vy— 3,

Q=wl) +w) —w(vy) —w(vs),
w : R? — R is the dispersion relation, and we denote f := f(t,z,v), fi := f(t,x,v;)
for i € {1,2,3}. In this paper we consider the classical Laplacian dispersion relation
w(v) = [vf?, so

= of* + [v1]? = |va|® — Jug .

The initial data fy are assumed to be exponential near vacuum. More specifically,

given «, 8 > 0, the initial data will lie in the Banach space of Maxwellian bounded
continuous functions:

Moy = {f € C(RY x RL,R) : sup | f(z, v)[el 4o < OO} ,

x,v

endowed with the norm
171 = sup | (, v)le=+oF,
z,v
Of particular importance will be the set of non-negative initial data:
M;r’ﬁ ={f€Map: flz,v) >0, VY(z,v) € R*xR*}.
The natural space for the mild solutions we will study, is the Banach space

. i ={f € C([0,00), Mag) : [|f]l < oo},
where the norm is given by

1l = sup £ @)]-
t>0
We will also be writing
S(j,,@ ={feSap: ft) GMaﬂ,VtZO}.

We note that the space S, g continuously embeds in the space C([0, 17, L}M), since
M, 5 embeds in L;‘,’y. Indeed, given ¢ > 0, we have

lg®llzs, < lg® / s T ddu = (@) Prlg@)]l. (3)

Hence
||g||C([O,T],L;1v) < (aB)~ 27 |g|l- (4)
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1.2. Backround. The kinetic wave equation was first introduced independently by
Peierls [39] who worked on solid state physics, and Hasselmann [27, 28] in his work
on water waves. Later, the topic was revived by Zakharov and collaborators [48, 49]
who provided a broad framework applying to various Hamiltonian systems satisfy-
ing weak nonlinearity, high frequency, phase randomness assumptions. Nowadays,
the kinetic theory of waves, known as wave turbulence theory, is fundamental to the
study of nonlinear waves, having applications e.g. in plasma theory [11], oceanog-
raphy [30, 21] and crystal thermodynamics [43]. For an introduction to this broad
research field, see e.g. Nazarenko [35], Newell-Rumpf [36].

The homogeneous kinetic wave equation. The homogeneous 4-wave (KWE), i.e.
equation (1) with no spatial dependence, can be formally derived from the cubic
nonlinear Schrédinger equation (NLS) with periodic boundary conditions

i0u 4 Au = Nul|?u, x€TY, (5)

and asymptotically describes the point-energy distribution of the Fourier modes of
the solution to (5) for Gaussian initial data in the weak nonlinearity limit-large box
limit A — 0, L — oo.

The first rigorous result regarding derivation of the homogeneous (KWE) was
obtained in the pioneering work of Lukkarinen and Spohn [32], who were able to
reach the kinetic timescale, which the time that one expects the kinetic behav-
ior of the system to emerge, for the cubic nonlinear Schrédinger equation (NLS)
at statistical equilibrium, leading to a linearized version of the kinetic wave equa-
tion (see also [18]). The key idea in [32] is to use Feynmann diagrams in order to
control higher order correlations and has inspired most of the subsequent works.
The derivation for random data out of statistical equilibrium was first addressed
by Buckmaster, Germain, Hani, Shatah [7] using Strichartz estimates to control
the error term. However, the derivation was shown to times much smaller than
the kinetic timescale. Later, Collot and Germain [9, 10], inspired by the ideas of
[32] (construction of an approximate solution, control of the higher order terms via
Feynmann diagramms) estimated the error in Bourgain spaces instead of Strichartz
spaces and were able reach the kinetic timescale up to arbitrarily small polynomial
loss. At the same time, a similar result was obtained independently by Deng and
Hani [12]. Later, in a pioneering work, Deng and Hani [13] reached the kinetic
timescale for the cubic (NLS), which provides the first full derivation of the homo-
geneous (KWE) for (NLS). The same authors addressed propagation of chaos and
full range of scaling laws in [14, 15]. Recently, they extended the derivation to longer
times in [16]. Under the assumption of multiplicative noise, Staffilani and Tran [44]
reached the kinetic timescale as well for the Zakharov-Kuznetsov equation.

Regarding the well-posedness of the homogeneous (KWE), the question of local
existence and uniqueness for 4-wave interactions was first addressed in [17] for ve-
locity isotropic solutions and Laplacian dispersion relations. It is also proved in [17]
that the equation admits global, measure valued, weak solutions, and that conden-
sation can occur. Existence and uniqueness of radial weak solutions to a slightly
simplified version of the 4-wave kinetic equation for general power-law dispersion
has been proved in [34]. For general solutions, optimal local well-posedness was
shown in [19]. The results of [19] hold in L* for more general dispersion relations,
and in L? for Laplacian dispersion relation. Additionally, stability of solutions in
L? near equilibrium was recently shown in [33], while stability and cascades of the
Kolmogorov-Zakharov spectrum was shown in [8].
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The inhomogeneous kinetic wave equation. The inhomogeneous (KWE) appears in
the physics literature [48, 49], where existence of a transport term is physically
relevant. In particular, this type of equations are widely used in the prediction of
wave propagation in the ocean. Moreover, Spohn [43] discusses the emergence of an
inhomogeneous kinetic wave equation, which he calls phonon Boltzmann equation,
and addresses its connection to nonlinear waves. Therefore, addressing its global
well-posedness would be a question of physical interest.

The inhomogeneous 4-wave (KWE) (1) can be formally derived from the cubic
nonlinear Schroédinger equation in the whole space

i0pu + Au = Mul?u, x € R% (6)

by taking the rescaled Wigner transform

1 oz 2, ;v

Welu)(t, z,v) = WedE/u(t,x + i)u(t,x - i)el?'z dz,
of the solution to (6) for Gaussian initial data exhibiting randomness at a scale ~ €
with an envelope at a scale ~ 1. Upon rescaling to the kinetic time, the solution
of (1) is asymptotically described by W€ul(¢,z,v) in the weak nonlinearity-high
frequency limit A\,e — 0. Roughly speaking, the Wigner transform provides a
measure of the amount of energy of u (in L?) localized in phase space at position x
and frequency v/e.

Regarding the rigorous derivation of the inhomogeneous (KWE), the first rigor-
ous result justifying a derivation of a 3-wave inhomogeneous kinetic wave equation
from dispersive dynamics was recently obtained by the author in collaboration with
Collot and Germain [3], who derived the inhomogeneous (KWE) up to an arbitrarily
small polynomial loss of the kinetic time scale for dispersion relations close to Lapla-
cian and quadratic nonlinearities. In the stochastic setting, where time-dependent
forcing is permitted in the equation, Hannani, Rosenzweig, Staffilani, and Tran [26]
have made contributions to the study of a KdV-type equation, reaching the kinetic
time, while recently Hani, Shatah and Zhu [25] studied inhomogeneous turbulence
for Wick NLS. Up to the author’s knowledge, well-posedness of the inhomogeneous
(KWE) has not been addressed in the past, and this is the aim of present paper.

1.3. Connection with the quantum Boltzmann equation. Although the in-
homogeneous (KWE) can be derived from the Schrodinger equation as described
above, it can be seen as a simplified model of the quantum Boltzmann equation for
bosons

which describes the evolution of the probability density of a gas of quantum parti-
cles, where both classical collisional effects as well as the Bose-Einstein condensate
for bosons at low temperature are taken into consideration. The collisional operator
in (7) is given by

QUL = [ WPbw) (£ 0+ DO+ R) = FA 0+ ) 1+ FD)) dodon
)

where f = f(t,!l?/l)), fl = f(t7$,’l)1), f/ = f(t7.’t,’l),)7 f{ = f(taxu’vll)a Ui=7v1—0
denotes the relative velocity of the incoming particles with velocities v, v1, w € S 1



GLOBAL WELL POSEDNESS OF THE INHOMOGENEOUS KINETIC 5

denotes their unit relative position, v’, v] are the velocities after the elastic collision
given by:
vV =0+ (W u)w,

9)

In (8), v € (1 — d, 1] represents the type of potential considered. When < 0 the
potential is soft, when v = 0 we have Maxwell molecules, when 0 < 7 < 1 the
potential is moderately hard, and when v = 1 the potential is hard. Of particular
interest to us will be the Maxwell molecules and the hard potentials. The function
b:[—1,1] — R is a measurable, non-negative, even function which represents the
collisional averaging and is referred as the angular cross-section.

Note that due to cancellations the operator Q[f] is essentially the sum of the clas-
sical quadratic Boltzmann operator plus a cubic quantum term, which corresponds
to the Bose-Einstein condensate i.e.

QU1 = Qalf, f) + Qqu(f, [, f), (10)

v = v — (W u)w.

where

Qu(f, f) = / [ul7b(i - w) (f' f1 = ff1) dwdvy, (11)

Rd xSd—1
Quuifoff) = [ Wb ) (5 (1) = PR+ F) dodor. (12

One reason that physicists study equations of the type (1) rather than the full
equation (7) is that the distribution function f (i.e. the solution of the quantum
Boltzmann equation for bosons) at very low temperature becomes large near the
mean velocity: |v] << 1= f >> 1, so the quadratic term fs f3— f f1 can be omitted
in comparison with the cubic term fafs(f + f1) — ff1(f2 + f3), see e.g. Section C
of [41]. For instance, the equilibrium (i.e. the Bose-Einstein distribution) of the
original equation at very low temperature is large near v = 0:

1 1

e ~ pEEL for v <<1, 0<a<<l1, b>0,

and m—b;w is indeed an equilibrium for (1). This type of equilibria for the (KWE)
are called Rayleigh-Jeans distributions.

1.4. Statement of the main results. We now state the main results of this
paper. We first prove global in time existence, uniqueness and stability of mild
solutions, when the initial data are near vacuum:

Theorem 1.1. Let o, >0 and 0 < R < ﬁ, where Kq g > 0 is the constant
given in (28). Let fo € My g with || fol| < R. Then equation (1) has a unique mild

solution f satisfying the bound
|f(t,z,v)| < 2Re~ ==t =Bl (¢t 2 v) € [0,00) x RY x R%. (13)
Additionally, if fo,g0 € Ma,g with ||foll,llgoll < R, and f,g are the corresponding
mild solutions to (1), the following stability estimate holds:
£ (t,2,0) — g(t,2,0)] < 2||fo — golle™ =t =PI y(t,2,v) € [0,00) x R? x %ad.)
14

Remark 1.2. The uniqueness claimed holds in the class of solutions of (1) satisfying
the bound (13).
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When the initial data are non-negative, we show that the corresponding solution
of (1) remains non-negative in time:

Theorem 1.3. Let o, >0 and 0 < R < 4\/‘%1%, where Kq g > 0 is the constant
4,8
given in (28). Let fy € MIB with || foll < R. Then, there exists a unique non-
negative mild solution of (1) with
0< f(t,z,v) < 2Re~ o=t =Blvl* V(t, x,v) € [0,00) x R x R%
Theorem 1.1 is proved in Section 4, while Theorem 1.3 is proved in Section 5.

Remark 1.4. As described in Subsection 1.3 a solution f of the inhomogeneous
(KWE) (1) approximates a solution of the quantum Boltzmann equation (7) when
f >> 1. However, in this paper the solutions we obtain are small. In the future, we
plan addressing the well posedness of (1) for initial data which become large near
v =0, in order for these solutions to be relevant for (7) as well.

1.5. Strategy of the proofs. The main idea of the present paper is to connect
equation (1) to the cubic part of the quantum Boltzmann equation for bosons with
hard potential and no collisional averaging, and then employ techniques used in the
context of kinetic theory of particles.

In particular, we show that (1) is connected to (8) follows: the collisional operator
(2) is equivalent to the cubic part of (8) for v = d — 2 and constant angular cross-
section b. Thus for d = 2, (1) corresponds to Maxwell molecules, while for d = 3 to
hard potentials.

After establishing the above connection in Lemma 3.1, and the appropriate a-
priori bounds, we prove global well-posedness and stability using the contraction
mapping principle. However, to prove existence of a non-negative solution for non-
negative initial data, we use a more delicate argument which takes advantage of the
monotonicity properties of the equation. We achieve that by employing a strong tool
from the kinetic theory of particles, namely the Kaniel-Shinbrot iteration, which is
an iterative scheme constructing monotone sequences of subsolutions and superso-
lutions which in turn converge to the solution of the nonlinear equation, as long as
an appropriate beginning condition is satisfied.

The Kaniel-Shinbrot iteration was introduced for the first time by Kaniel and
Shinbrot in [31] for local in time mild solutions to the Boltzmann equation and used
by Illner and Shinbrot [29] to provide global in time mild solutions to the Boltzmann
equation for small initial data. Later, it has been further used in the context of
the Boltzmann equation as well as for Boltzmann-type equations such as inelastic
Boltzmann equation, Boltzmann-Enskog equation, relativistic Boltzmann equation,
binary-ternary Boltzmann equation, gas mixtures, see e.g. [24, 5, 46, 6, 47, 40, 38,
20, 2, 1, 45, 4, 23, 22]. Recently, the Kaniel-Shinbrot iteration has been used for
the quantum Boltzmann equation for hard spheres in [37].

This is the first paper employing the Kaniel-Shinbrot iteration in the context of
wave turbulence and in particular the inhomogeneous kinetic wave equation (1). We
should mention that this technique relies on the the inhomogeneous nature of the
problem, i.e. the fact that, for small enough initial data, the transport dominates
the collisions under time evolution. Therefore, we would not expect such techniques
to apply in the space homogeneous problem.
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2. Gain and loss operators and the notion of a mild solution. In this sec-
tion, we first write the kinetic wave equation in gain and loss form and introduce
the notion of a mild solution to (1).

2.1. Gain and loss operators. Namely, notice that (1) can be equivalently writ-
ten as
atf+v‘vxf:G(faf,faf)7L(f’f,f»f)v (15)

where the generalized gain operator G and loss operator L are given by

G(f,g,h,]f)(t,l'ﬂJ) = ~/]R3d 5(2)5(Q)h2k3(f+g1)d1]1 dv2 d’U3a

L(f,g,h,k)(t,z,v) = - 0(2)6(2) fgr(ha + k3) duy dva dus.

We note that the gain and loss operators are increasing with respect to non-negative
inputs. Moreover, the gain operator is linear with respect to h,k and linear with
respect to the vector (f,g). Similarly, the loss operator is linear with respect to
f» g and linear with respect to the vector (h, k). In particular, we have the linearity
decompositions

G(f.g,h k)= G(f,§,h, k)

=G(f,9.h—hk) +G(f, g,k — k) + G(f = f,g — G, h, k), (16)
and

L(f,g,h, k) = L(f,§,h, k)

= L(f = f,9:h.k) + L(f,g = §, b, k) + L(f,3,h — b,k — k). (17)

Finally, we note that the loss term is local with respect to the first input i.e. we
can write
L(f,9,h. k) = fR(g,h, k),
where
R(g,h, k) = 3(X)d(Q2)g1(ha + k3) dvy dvs dvs.
R3d
The operator R is also clearly increasing for non-negative inputs.

2.2. The transport operator. We now define the transport operator, which is
a composition of function ¢(t,z,v) with the Hamiltonian flow, and will be the
fundamental operation for constructing mild solutions. Namely, we define # :
C°([0,00), Ly ,,) = C°([0,00), Ly, ,,) as:

g (t,z,v) = g(t,x + tv,v). (18)

This operator is an invertible isometry, since the free flow is measure preserving.
Indeed, fixing arbitrary ¢ > 0, we have
g Olles, = [ otz wo)ldedo= [ Jgta0)ldedo = g0y,
' R4 x R4 R4 x R4 '

which after taking supremum in time implies that # is an isometry on C°([0, 00),
L},)ie.

197 lco(0.00).22 ) = lgllco(to.00).22 ) (19)
The inverse operator —# : C°([0,00), L} ,,) — C°([0,00), Ll ) is clearly given by

T,V

g (t,x,0) = g(t,x — tv,v), (20)
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and is an isometry on C°([0, ), LL ) as well.

x,v)

2.3. Notion of a mild solution. Consider a formal solution f of (1). Using (15),
the chain rule and integrating in time, we obtain

FEW) = fo+ / G*(f. 1.1, f)(r) dr / LH(f S f) () dr, £20,  (21)

where we denote L#(f, g, h, k) := (L[f,g,h, k))*, G#(f,g,h, k) := (G[f,g,h, k])7.
One can easily verify that L#[f,g,h,k| = f#*R#[g,h, k], where R¥[g, h, k] :=
(R[g, h, k])”. Clearly, the operators G, L#, R# share the same monotonicity and
linearity properties as G, L, R respectively. In particular, there hold the linearity
decompositions:

G*(f1,91,h1, k1) — G#(fa2, 92, ha, ka)
= G*(f1,91,h1 — ha, k1) + G#(f1, 91, ha, k1 — ko)
+G*(fi = far g1 — g2, ha, k2), (22)
and
L#(f1, 91, s k) = L¥(fo, g2, ho, k)
= L*(f1 = fo, g1, b1, k1) + L#(f2,01 — g2, )
+ L#(fa, 92, h1 — ha, k1 — k2). (23)
Motivated by (21), we give the definition of a mild solution to (1) with as follows:

Definition 2.1. Let a,8 > 0 and fy € M,z We say that a function f €
C°([0,00), L} ,,) is a mild solution of (1) with initial data fo if f# € Su, and
the following integral equation holds

FE) = fo+ / G*(f, f.1,f)(r)dr — / LH(f S f) () dr, £20. (24)

3. A-priori estimates. The goal of this section is to establish the basic global
in time a-priori estimates, namely Proposition 3.4, which will be of fundamental
importance for proving well-posedness and stability for equation (1).

We first provide a key computation which connects the wave kinetic kernel (2)
with the cubic part of the quantum Boltzmann kernel (8) for d = 2,3, and will allow
us to use estimates used in the context of the Boltzmann equation, namely Lemma
3.2 and Lemma 3.3 in order to prove Proposition 3.4.

Lemma 3.1. Let v,v; € RY, and denote

I(v,v1) = 5(v+wv; —vg — 1)3)5(|v|2 + |v1|2 — |’U2|2 — |v3|2) dvy dvs.
R2d
Then
Wy—
I(v,01) = =7 o — o2,

where wq—1 denotes the area of the (d — 1)-dimensional unit sphere.

Proof. Substituting v3 = v + vy — vo, we get

(v, 01) :/ 5([val? + [0+ v1 — va]? — [0]2 — [02]2) doa.
R
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But notice that

v+v V=
ool +lo+or—va 2= fo2—[or]* = 2 (o2 — of® = R?), a= T, R= 21‘.
So

I(v,01) = / 5(2(Jvs — af? — B) dvp = 221 / r-1502 — R2) dr
Rd 0

_ Wi /°° 5(r—R) +5(T+R)rd,1 dr
2 °R
wi—1R¥? wyq

4 -2d
0

Now, we present the two estimates which will be useful to us in the proof of
Proposition 3.4 and have been used in the context of Boltzmann-type equations,
see e.g. [29, 2, 4, 37]. For convenience of the reader, we provide the proofs below.
The first estimate is on the time integral of a traveling Maxwellian:

Lemma 3.2. Let 2o, uy € R?, with ug # 0 and o > 0. Then, the following estimate
holds

oo
/ e—a|mo+7uo|2 dr < ﬁa—1/2|u0|—1.
0

Proof. By triangle inequality, we have
Tluo| — |zo| < |zo + Tug| = emelzotTuol® < o—alrluol=lzo)® w7 > .
Therefore integrating in 7, we obtain

o 2 > 2 o0 2
/ efa\mofru(ﬂ dr S / efoc(‘r\ug|f|:1:0|) dr S a71/2|u0|71/ e Y dy
0 —00

— 00
< vraPlug| 7,
and the estimate is proved. O

The second estimate is a convolution-type bound:

Lemma 3.3. Let ¢ € (—d,0]. Then for any v € R? there holds the uniform
convolution estimate

/ lv — U1|q€*mv1\2 dvy < l@*d/Qﬂ-d/Q + M’
Rd a d+q

where wq—1 denotes the area of the (d — 1)-dimensional unit sphere.

Proof. Since g € (—d, 0], we have

_ 2 _ 2
/ v — %P1 doy S/ el dv1+/ [v —v1]? dvr
R4 [v—v1|>1 lv—v1|<1

Sﬁ—d/z/ e~ lzl? dx—i—/ ly|? dy
Rd ly|<1

d

+oo 1
= 3~ (/ e dr) +wd,1/ rd=1+a gy
—o00 0

— —d/2 d/2 wd_l. 25
R (25)

O
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We are now ready to prove the necessary a-priori estimates on the gain and the
loss operators:

Proposition 3.4. Let f g, h,k € C([0,00),LL ). Then, there hold the estimates:

s Hav

/olL#<f797h,k)(r)dT < Kapa 2|1 Mg MR+ D (26)

< Kapa™ PN - (K I+ Hll9™ ]

/O G*(f,g.h,K)(r) dr D, (@)

where

wa—1T [ Wd—1
Kd,B _ = <6 d/27rd/2 + 2d_3> , (28)

and wq—1 denotes the area of the (d — 1)-unit sphere.

Proof. We estimate the gain first. Notice that by the definition of the norm of M, s

we have , ,
P, 0)] < em TR

and the same is true for g#, h# k#.
Now on the resonant manifold, there holds v + v; = vy + vz and |[v|? + |v|? =
|va|? + |v3|? which readily implies
v —wa* + v — vs|* = 2Jv]* — 2(v, v + v3) + |v2|* + |vs]?
= 3[v)? + |1 ]® — 2(v,v +v1)
= v — v |2
Hence
|z +7(v —vo)|?> + |z + T(v — v3)|?
= |z|* + |z|* + 27(x, 2v — vy — v3) + T2 (Jv — va|? + |v — v3]?)
= |z|? + |z|> + 27{z,v — v1) + T2|v — v1]?
=z +|z+10v—v)%

Then, using Fubini’s theorem, we take

/ "G (f, g by ) (2 0) dr
0

< [l - I+ o [ [ s

« ezt (=) P +z+7(v—v3)|* ;= B(|v2|*+|v3]*)

X (e‘a|m|2_m”‘2 +e_a‘z+t(“_”1)‘2_5|”1‘2> dvy 2 3dT
< 2| - [[F# UL+ [l e =210
x / 5(2)5(Q)e PPl / el gy
R3d 0
< 2vma™ 2 |[W#| - IR# LA+ g eeter e

></ |vfvl\*le*m”llQI(v,vl)dvl (29)
Rd

Wd— ﬁ — —alz|*—=Blv
< =g o IRE I RN+ g fDe =2
2
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X / v — vl\dﬂge*m”l|2 dvy (30)
Rd

Wd— ﬁ _ Wd— —

<P WA+ Do e et =21erF (31)

= Kapo  P[I#(I MR IC# I+ g feet=t=2rT,

where to obtain (29) we use Lemma 3.2, to obtain (30) we use Lemma 3.1, and to
obtain (31) we use Lemma 3.3 for ¢ = d — 3 € (—d, 0]. Bringing the exponential to
the other side and taking supremum over z,v and t > 0, we obtain estimate (27).

The argument for the loss is similar but simpler since it does not require use of the
conservation laws, so we omit the proof. O

4. Well-posedness and stability for arbitrary data near vacuum. In this
section, we will use the a-priori estimates stated in Proposition 3.4 to prove Theorem
1.1 through a fixed point argument.

Proof of Theorem 1.1. We will use the contraction mapping principle. Define the
closed set

E={g9€Sap : llgll <2R} C Sap-

Recalling the inverse transport operator —# given in (20), we define the operator
T:E— E by

t t
Tg(t):fo+/ G#(g*#,gf#,g*#,g’#)(ﬂdT*/ L#(g7#,97%,97%,g7%)(7) dr.
0 0

We first prove that 7 maps into E. Indeed, for g € F, using triangle inequality
and Proposition 3.4, we have

t
19l < 1 foll + 'H [ 6ttt g ar

t
/L#(g*#,g*#,g*#vg’#)(T)dT
0
< R+4Kq 3072 |g||?
< R+ 32Ky 30" Y/?R?

= (1+32K430"Y2R)R
< 2R,

1

so T : E — E. Now, by the triangle inequality, the trilinearity decompositions
(16)-(17), and Proposition 3.4, for h,g € E, we obtain

_ 2 2
I7h = Tgll < 4Kaza™ 2(||R]° + 2]l - llgll + llgll*) IR — gl
< 48Kqpa~2R?||h — g||
1
< A —gll, (32)

thus 7 : E — E is a contraction. By the contraction mapping principle, 7 has a
unique fixed point g € E. Then f := g~# is clearly the unique mild solution to (1),
corresponding to the initial data fy.
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To prove (33), let f, g be the solutions corresponding to fo, go respectively. Then,
we have

f#(t)_g#(t) :f0_90+/0 (G# (f7f7f’f) (T)_G# (g7gagag) (T)) dr

t
- [ @150 0 = I (0.9.0.0) () dr - 33)
Now, by the triangle inequality, and an estimate similar to (32), we obtain
1
7% = g*[ll < llfo = goll + S [IlS# = g*

thus |Hf# - g#m < 2|l fo — go]|, and (33) follows. O

9

5. Existence of a non-negative solution. In this section, we prove existence of
a non-negative solution, when the initial data are non-negative. In order to achieve
that, instead of using a fixed point argument, we will take advantage of the gain and
loss form of the equation. We will rely on a strong tool from classical kinetic theory,
which preserves the monotonicity properties of the equation, namely the Kaniel-
Shinbrot iteration. More specifically, let fo € MI”@ and (uo#, lé#) € M«:ﬂ X M;ﬂ.
For n € N, consider the initial value problems:

dr

_n # p# = G#*
Fra ER7 (U1, Un—1,Un—1) =G (ln—1,ln—1,ln—1,ln—1), (34)
17(0) = fo,
LA N = g*
W + upy ( n—1;tn—1, n—l) = (Un—17un—17un—1a un—1)7 (35)
By basic ODE theory, solutions to (34)-(35) are given inductively by
t
l#(t) = foexp (—/ R#(Un—laun—lvun—l)(T) dT)
0
t
+ / G#(lnflalnflvlnflvln71>(7—) (36)
0
t
X exp </ R# (U —1, U —1, tn—1)(5) ds) dr,
and
¢
uf(t) = foexp (—/ R# (-1, ln—1,ln—1)(7) dT)
0
¢
+ [ GH et ) (0) (37)
0

¢
X exp (—/ R#(ln_l,ln_l,ln_l)(s) ds) dr.

Proposition 5.1. Let a,8 > 0, fy € M:,B and (l#,uo#) € M:,B X M:,B' Let
17 u? be the corresponding solutions to (36)-(37) for n = 1, and assume that the
following beginning condition holds for any t > 0:

ol/4

AKy/2

0< I <) <uf(t) <ulf < eelal®=Blvl* (38)
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Then for alln € N and t > 0, we have
o< < << )<t

(39)

Additionally, the sequences I, u pointwise converge to a common limit f# such
that f is a non-negative mild solution of the (1) with initial data fo.

Proof. We first will prove (39) inductively. For n = 1, (39) holds due to the begin-
ning condition (38). Assume (39) holds for n, we will show it also holds for n + 1.
It suffices to show

) < T () < ulf (1) < uff (1),
By the induction’s assumption, and the monotonicity properties of R#, G#, we have
R#(una Un, un) < R#(un—la Un—1, un—l)a
G#(ln—la ln—la ln—lv ln—l) S G#(lna lna lna ln)v

so the solution’s formula (36) implies [ < lfﬂ. Similarly,
R¥* (L1, 1, ln—1) < R (ln, L, 1),
G (U, Uy Uy Un) < GF (U1, U1, U1, U 1)
so (37) implies u? 1 < u¥f, while
R¥ (L, o) < R¥ (U s ), GF (L by s 1) < GF (U, i, i, ),

thus (36)-(37) imply lfH < ufﬂ. Hence, (39) follows by induction.

Now, fixing t > 0. By (39), the sequence (7 (t)),, is increasing and upper bounded
so [7#(t) 17 (t), while the sequence (u¥(t)), is decreasing and lower bounded so
uf (t) \, u” (t). Moreover, by (39) we have

0 < 1#(t) <u™(t) < ulf.

Integrating (36)-(37) in time and using the dominated convergence theorem to let
n — 00, we obtain

z#(t)+/0 l#(T)R#(u,u,u)(T)T:foJr/o G#(1,1,1,1)(r) dr, (40)

t t
W (8) + / W (D RE (LD () T = fo + / G u,u)(F)dr. (41)
0 0
Subtracting (40)-(41), using the facts that
1# R (u,u,u) = L¥ (Lu,u,u),  u? R¥*(1,1,1) = L (u,1,1,1),
and the triangle inequality, we obtain
t
[ (t) — 1% ()| g/ |G# (w, u,u,u)(T) — G#(1,1,1,1)(7)| dr
0
; (42)
—I-/ |L#(l,u,u,u)(7') —L#(u,l,l,l)(r)‘ dr.
0
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By the trilinearity decomposition (16)-(17) of L# and G#, we have the expansions
G# (u,u,u,u) — G¥(1,1,1,1)
= G#(u,u,u,u -0+ G#(u,wu -Ll)+ G#(u —Lu-11]1),

and
L# (L uyu,u) — L7 (u,1,1,1)
= L#(l — u,u,u,u) + L7 (u,u — L,u,u) + L7 (u, l,u — Lu —1).

Then, (42), triangle inequality, (3.4), and inequality of (38) imply

_ 2 2
llw# = # | < Eapa™/2 (6|[u[|* + aflo || - 0%+ 2[)0#)11*) lJu* — %]

< Kapo™ P2l |[[u* - 1%

3
< e =,
thus u = [. Clearly f :=w =1, is a mild solution of (1). O
Now, with the aid of Proposition 5.1, we will prove Theorem 1.3:

Proof of Theorem 1.3. To prove existence, we aim to use Proposition 5.1 for an

appropriate choice of (l(’;7£ ,u#) € MI,B X ./\/l;tﬁ. Namely, we define l# = 0 and
u# = Ceel"=BlI* where

C=2R(1—+/1—R7Yfol) =0, (43)

which is well-defined since || fo|| < R. Moreover, notice that C' satisfies the equation

Ifoll+ S Ky faie? =, (4)

and is estimated as follows:

2
€ =2R(1 - VI= Rl = 1 lf(;!—lnm <ollfoll <2R. (45)

Solving (36)-(37) for ¥, u¥ | we obtain
t
l#(t) = foexp (—/ R# (ug, ug, uo) (7) dT) ,
0

¢
u#(t) :f0+/ G# (ug, uo, uo, uo) (7) dr.
0

We clearly have 0 = l# < lf(t) < u# (t). Moreover, by (45) we have
al/4

12"

d,B

Therefore, in order to apply Proposition 5.1, it suffices to show that ufﬁ (t) < u# for
(38) to hold. Indeed, by Lemma 3.4, bound (27), and equation (44), we have

2 2
wf () < el (1o + 2K a0 2 |

alzl2—Blv? 1 12 _
< el (ol 5K o )

lufll = C < 2R <
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—alz|?=Bv|? 1 —
— e~ lzl"=Bv] <||f0||+2K;7/520z 1/4C2>
— Ceelzl*=Blvf?

_
=ug ,

so (38) is satisfied for this choice (l# , u# ). Thus, existence of a non-negative mild
solution to (1) is guaranteed by Proposition 5.1. Moreover, by (45), there holds the
bound

| 2

f#(t) < uo# — Ce—alal’=Blv < 9Re~elzl*=Blv
Thus, existence of such a solution is proved. Uniqueness follows immediately from
Theorem 1.1. O
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