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Abstract

Text analysis is an interesting research area in data science and has various ap-
plications, such as in artificial intelligence, biomedical research, and engineering. We
review popular methods for text analysis, ranging from topic modeling to the recent
neural language models. In particular, we review Topic-SCORE, a statistical ap-
proach to topic modeling, and discuss how to use it to analyze MADStat - a dataset
on statistical publications that we collected and cleaned.

The application of Topic-SCORE and other methods on MADStat leads to inter-
esting findings. For example, 11 representative topics in statistics are identified. For
each journal, the evolution of topic weights over time can be visualized, and these
results are used to analyze the trends in statistical research. In particular, we pro-
pose a new statistical model for ranking the citation impacts of 11 topics, and we
also build a cross-topic citation graph to illustrate how research results on different
topics spread to one another.

The results on MADStat provide a data-driven picture of the statistical research
in 1975-2015, from a text analysis perspective.

Keywords: BERT, journal ranking, knowledge graph, neural network, SCORE, Stigler’s
model, Topic-SCORE, topic weight

Data and code: The data and code for text analysis conducted in this article can be found
at multiple repositories, including the journal website (https://www.annualreviews.org/
doi/abs/10.1146/annurev-statistics-040522-022138), GitHub (https://github.com/
ZhengTracyKe/MADStat-Text), and Harvard Dataverse (https://dataverse.harvard.
edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YIXS6B).
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1 Introduction

Text analysis is an interdisciplinary research area in data science, computer science, and

linguistics. It aims to use computers to process a large amount of natural language data and



extract information or features. Research in text analysis and Natural Language Process-
ing (NLP) is especially useful for developing auto-piloting cars, chatbots (e.g., chatGPT),
and artificial intelligence in health care and biomedical engineering. In the past decades,

numerous methods were proposed for text analysis. T'wo approaches are especially popular.

e Topic modeling. This approach has a strong statistical flavor. Given a large collection
of text documents, this approach assumes that all these documents only discuss a few
topics (e.g., “finance”, “politics”, “sports”, etc.). Each document discusses the topics
with different weights, and given that a particular topic is being discussed, the words

in the document are generated from a distribution specific to that topic.

e Neural network modeling. This is a rapidly developing area. It models the generation
of text documents via deep neural networks, and train the model with massive text
corpora (e.g., English Wikipedia) and domain knowledge. The trained model will be

used for different down-stream tasks.

The neural network approach has proven effective in many NLP tasks (e.g., text classifi-
cation and machine translation), and has gained immense popularity, particularly among
technology titans such as Google and Meta. However, this approach is internally complex,
expensive to train, and resource-intensive. These factors substantially restrict the use of the
neural network approach, especially for some common NLP users such as social scientists
who only have a few hundreds of text documents from a specific domain of interest. The

topic modeling approach provides a valuable alternative and has the following benefits.

e (Transparency and interpretability). Many users prefer an approach that is (a) not a
blackbox but a more transparent step-by-step algorithm, (b) easy to understand and
tune (so users can modify it as needed), and (c) where the results (e.g., the extracted

features) are easy-to-interpret (see [9, 10]).

o (Analytical accessibility). Topic modeling approaches are relatively simple and allow
for delicate theoretical analysis. Especially, some of these methods are shown to enjoy
statistical optimality. In comparison, neural network approaches are much harder to

analyze and often have no theoretical guarantee.
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Topic-SCORE [28] is an especially interesting topic modeling method. It is fast, effective,
and enjoys nice theoretical properties. It is also a flexible idea and can adapt to several
different settings. These characteristics make Topic-SCORE especially appealing when we
analyze the MADStat data set (to be introduced below).

One goal of this paper is to review popular topic modeling methods, from the rudi-
mentary topic models in the 1990s to the more recent multi-gram topic models, with a
focus on Topic-SCORE and related problems. In addition, we review the neural network
approaches. Large neural language model is a rapidly developing area (with new research
emerging on a weekly basis), making it hard to conduct a comprehensive review. Since the
focus of this paper is on the topic modeling approach and the MADStat data set, we keep
the review of neural network approaches relatively brief.

Another goal of this paper is to analyze the MADStat dataset using text analysis
techniques. MADStat [19] is a large-scale high-quality data set on statistical publications.
We collected and cleaned the dataset, with substantial time and efforts. It consists of
the bibtex (title, author, abstract, keywords, references) and citation information of 83,331
research papers published in 36 representative journals in statistics and related fields during
1975-2015. The dataset contains detailed citation, bibtex, and author information for each
paper (aka. paper-level data). It can be used to study research problems that can not be
addressed with other data resources that have only journal-level data or include no author
information. Using MADStat, for instance, one can easily find the top 30 most-cited papers
within our data range, whereas it is unclear how to do so using Google Scholar.

Text analysis on MADStat yields several findings. First, we use Topic-SCORE to iden-
tify 11 representative research topics in statistics, and visualize the evolution of the overall
weight of statistical publications on each topic. Second, we extend Topic-SCORE to TR-
SCORE, a method for ranking research topics by their citation exchanges, and we also build
a knowledge graph to visualize how the research results on one topic disseminate to others.
Third, we rank all 36 journals and suggest that Annals of Statistics, Biometrika, JASA,
and JRSS-B are the four most influential journals in statistics. Last, we find that the (per-
author) paper counts in statistics were steadily decreasing, suggesting that publishing in

statistics has becoming more and more competitive. Our results provide an evidence-based



picture of the whole statistics community, and so can be viewed as a data-driven review of
statistical research, from a text analysis persective. The results may help administrators
or committees for decision making (e.g., promotion and award) and help researchers make
research plan and build networks. We use statistics as the object of study, but the same
techniques can be used to study other fields (e.g., physics).

Obtaining a large-scale, high-quality data set such as MADStat is a challenging and
time-consuming task. Particularly, many public data (e.g., Google Scholar) are quite noisy,
and many online resources do not permit large-volume downloads. The data set must also
be carefully cleansed; we accomplish this through a combination of manual labor and
custom-developed computer algorithms. See Section A of the supplement for more detailed
discussion on data collection and cleaning.

Below in Section 2, we review the recent advances on topic modeling. In Section 3, we
briefly review neural network language models. In Section 4, we present some preliminary
results about MADStat (paper counts, network centrality, journal ranking). In Section 5,
we analyze the text data in MADStat using Topic-SCORE as the main tool. In Section 6,
we propose TR-SCORE (an extension of Topic-SCORE) for ranking different topics, and

we also construct a cross-topic knowledge graph. Section 7 contains a brief discussion.

2 Topic Models and their Applications

Topic model is one of the most popular models in text analysis. [7] proposed the latent
semantic indexing (LSI) as an ad-hoc approach to word embedding. Later, [17] proposed
a probabilistic model for LSI, which is nowadays known as the topic model. Hofmann’s
topic model can be described as follows. Given n documents written with a vocabulary of
p words, let X € RP*™ be the word-document-count matriz where X (j,7) is the count of
the jth vocabulary word in document i. Write X = [z, 29, ..., 2,] so x; € RP is the vector
of word counts for document i. Suppose document ¢ has N; words. For a weight vector (all

entries are non-negative with a unit sum) €2; € R?, we assume

x; ~ Multinomial(N;, €2;), 1<i<n. (2.1)



Here, €; is both the probability mass function (PMF) for x; and the vector of population
word frequency; in addition, we implicitly assume the words are drawn independently from
the vocabulary with replacement. Next, while there are a large number of documents, we
assume there are only K “topics” discussed by these documents, and K is a relatively small
integer. Fix 1 < i < n and consider document i. For a weight vector w; € RX and PMFs
Ay, ..., Ag € RP we assume: (a) w;(k) is document i’s ‘weight’ on topic k, 1 < k < K, and
(b) given that the document is (purely) discussing topic k, the population word frequency
vector is A,. Combining (a)-(b) and (2.1), it is reasonable to assume Q; = > 7, w;(k)Ay.
Write Q = [Q,Qa,...,Q,], A=[A1,..., Ak, and W = [wy, wy, ..., w,]. It follows that

Q= AW. (2.2)

We call A and W the topic matriz and the topic weight matriz, respectively.
From time to time, we may normalize X to the word-document-frequency matrix D =
[dy,...,d,] € RP*™ where D(j,i) = X(i,7)/N; (N;: total number of words in document i

as above). The primary goal of topic modeling is to estimate (A, W) using X or D.

2.1 Anchor words and identifiability of the topic model

We call a word an anchor word of a given topic if its occurrence almost always indicates that
the topic is being discussed. Consider the Associated Press (AP) [15] data set for example.
A pre-processed version of the data set consists of 2246 news articles discussing three
topics “politics”, “finance”, and “crime” [28]. In this example, we may think “gunshot”
and “Nasdaq” as anchor words for “crime”, and “finance”, respectively. In Model (2.1)-
(2.2), we can make the concept more rigorously: we call word j an anchor word of topic k
if Ax(7) # 0 and Ay(j) =0 for all £ # k.

The notion of anchor word is broadly useful. First, it can be used to resolve the
identifiability issue of the topic model. Without any extra conditions, Model (2.1)-(2.2) is
non-identifiable (i.e., given an 2, we may have multiple pairs of (A4, W) satisfying 2 = AW).
To make the model identifiable, we may assume rank(W) = K and impose the anchor-
word condition (which requires that each of the K topics has at least one anchor word).

The anchor-word condition was first proposed by [2] for topic models, which in turn was
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adapted from the separability condition [11] for nonnegative matrix factorization (NMF).
Second, anchor words are useful in methodological developments: many topic modeling
methods critically depend on the assumption that each topic has one or a few anchor
words; for instance, see Section 2.2 and 2.3 for descreptions of Topic-SCORE and anchor-
word searching methods. Last but not the least, a challenge in real applications is that
both the number of topics K and the meanings of each estimated topics are unknown;
we can tackle this with the (estimated) anchor words. See Section 5 for our analysis of
the MADStat data for example, where we use the estimated anchor words to decide K,

interpret each estimated topic, and assign an appropriate label for each of them.

2.2 Topic-SCORE: A spectral approach to estimating the topic

matrix A

In Hofmann’s topic model (2.1)-(2.2), we can view D = AW+ (D—W) = “signal” + “noise”,
where (typically) rank(AW) = K < min{n,p}. To estimate A in such a “low-rank signal
matrix plus noise” scenario, it is preferable to emply a Singular Value Decomposition (SVD)
approach, as SVD is effective in both dimension reduction and noise reduction.
Topic-SCORE [28] is an SVD approach to topic modeling, consisting of two main ideas:
SCORE normalization and utilizing a low-dimensional simplex structure in the spectral
domain. In detail, [28] pointed out that a prominent feature of text data is the severe
heterogeneity in word frequency: the chance of one word appears in the documents may
be hundreds of times larger than that of another. This heterogeneity poses great chal-
lenges for textbook SVD approaches, so the vanilla SVD must be combined with proper
normalizations. [28] proposed a pre-SVD approach, where for a diagonal matrix M they
constructed, they mapped the data matrix D to M~Y2D. Unfortunately, while the pre-
SVD normalization may reduce the effects of severe heterogeneity to some extent, a major
part of them persists. To overcome the challenge, [28] proposed a post-SVD normalization
as follows. Let &, be the k-th left singular vector of M~/2D. They normalized &, ..., &k
by dividing each of them by fl entry by entry. This gives rises to a matrix R € RvE-1
where R(i, k) = &,41(i)/€1(i) (by Perron’s theorem [18], all entries of £ are positive under



a mild condition). [28] argued that, by combining the pre-SVD normalization and post-
SVD normalizations, one can satisfactorily alleviate the effects of severe word-frequency
heterogeneity. The post-SVD normalization was inspired by the SCORE normalization
(proposed by [20] for analyzing network data with severe degree heterogeneity), thus the
name Topic-SCORE.

[28] discovered a low-dimensional simplex S with K vertices as follows. For 1 <i < p,
let 7 be the ith row of R, and view each #; as a point in R¥~!. They pointed out: (a)
when word ¢ is an anchor word, then (up to small noise; same in (b)) 7; falls on one of the
vertices of S; (b) when word ¢ is a non-anchor word, 7; is in the interior of S.

This simplex structure reveals a direct relationship between Rand A (A is the quantity
of interest) and gives rise to the Topic-SCORE approach as follows. Let 0y, ..., 0k be the
estimates of the vertices of S. We can write each 7; uniquely as a convex linear combination
of 01, ...,0x, with a barycentric coordinate vector m; € RX. Topic-SCORE estimates A by
A= MY Qdiag(él)[ﬁl, ..., )" (subject to a column-wise renormalization), where diag(é’l) is
the diagonal matrix whose diagonal entries are from fl. In a noiseless case where D = AW,
28] showed that A= A, so the approach is valid. An interesting problem here is how to use
the rows of R to estimate the vertices of S (i.e., Vertex Hunting (VH)). This problem was
studied in hyperspectral unmixing and archetypal analysis, with many available algorithms.
28] recommended the sketched vertex search (SVS) algorithm [23] for its superior numerical
performance. See [26] for more discussion on this.

The major computation cost of Topic-SCORE comes from the SVD step, which can be
excuted relatively fast. For this reason, Topic-SCORE is fast and can easily handle large
corpora. For example, it takes only a minute to process the MADStat corpus in Section 5.

Topic-SCORE is also theoretically optimal in a wide parameter regime [28].

2.3 The anchor-word-searching methods for estimating A

[2, 1] proposed an anchor-word-searching approach which estimates A by finding anchor
words from the word-word co-occurrence matrix () = DD’. This method first normalizes

each row of () to have unit-¢'-norm, with the resulting matrix denoted by @. It then applies



a successive projection algorithm to rows of ), to get a subset S C {1,2,...,p} containing
exactly one estimated anchor word per topic. The method then estimates A by either a
direct reconstruction or minimizing some objective functions (e.g., KL-divergence). [2, 1]
are among the first works that utilize the anchor-word condition for topic modeling and
provide explicit error rates. A challenge it faces is that the rows of Q) are in a very high-
dimensional space. Similar to Topic-SCORE, their anchor-word-searching also relies on a
K-vertex simplex, except for a major difference: this simplex is in RP while the simplex
in Section 2.2 is in RE~! (e.g., in the aforementioned AP dataset, K = 3, but p is a few
thousands). This gives Topic-SCORE an important edge (in both theory and computation)
when it comes to vertex hunting (VH) and subsequent steps of estimating A. In particular,
Topic-SCORE improves the error rate in [2, 1].

[4] proposed a different anchor-word-searching approach. Recall that W € RE*™ is
the topic weight matrix; see Model (2.1)-(2.2). Letting ¢ = ||[Wkl|2/||Wk||1, where Wy is

WiWs <g—’;/\g—z,f0r1§k7€€§[{. For the same Q

kth row of W, they assumed TWillTWell

as above, let S; be the set of indices j such that Q(i,j) attains the maximum value of
row 4. [4] proposed an approach and showed that if (a) the above assumption holds, and
(b) the model is noiseless (i.e., D = AW), then the approach can fully recover the set of
anchor words from the index sets S, S, ..., S,. Extending the idea to the real case (where
D = AW + “noise”), they obtained an estimate for the set of anchor words, and then a

procedure for estimating A.

2.4 Other approaches for estimating A: EM algorithm and NMF

approaches

The EM algorithm is a well-known approach to fitting latent variable models. It was
noted (e.g. [34]) that Model (2.1)-(2.2) is equivalent to a latent variable model, so we
can estimate A using the EM algorithm. Such an approach is interesting but faces some
challenges. First, it does not explicitly use any anchor-word condition, so the model being
considered is in fact non-identifiable (see Section 2.1). Also, since min{n,p} is typically

large, the convergence of the EM algorithm remains unclear; even when the EM algorithm
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converges, the local minimum it converges to is not necessarily the targeted (A, W) (which
is uniquely defined under a mild anchor-word condition; see Section 2.1).

Also, note that Model (2.1)-(2.2) implies D = AW + “noise”, where (D, A, W) are
all (entry-wise) non-negative matrices; hence, the problem of estimating (A, W) can be
recast as a non-negative matrix factorization (NMF) problem. There are many NMF al-
gorithms (e.g., see [14]), which are proved to be successful in applications such as image
processing [31], recommender systems, and bioinformatics. However, a direct use of them
in topic modeling faces challenges. The noise in most NMF settings is additive and ho-
moscedastic, but the noise matrix D — E[D] in the topic model is non-additive and severely
heteroscedastic, as indicated by the multinomial distribution. In Model (2.1)-(2.2), the
variance of D(7j,4) is proportional to word j’s frequency in document i. Because of se-
vere word-frequency heterogeneity, the variances of D(j,4i) may have different magnitudes,

hence, a direct application of NMF algorithms often yields non-optimal error rates.

2.5 Estimating the topic weight matrix W

In Model (2.1)-(2.2), D = AW + “noise”, and both A and W are unknown. While most
existing works focused on estimating A, W is also of interest (e.g., see Section 5). To
estimate W, a natural approach is to first obtain an estimate A for A, and then estimate
W by fitting the model D = AW + “noise”. Recall that W = [wy, ..., w,]. [28] proposed
a weighted least square approach, where for each 1 < ¢ < n, it estimates w; by w; =
argmin,, ||O(d; — Aw)||?, with © € RP*? being a diagonal weight matrix (as w; € RX and K
is typically small, this is is a low-dimensional regression problem). To handle severe word-
frequency heterogeneity, [28] suggested © = M ~2, with the same M as in Section 2.2. For
our study on the MADStat data in Section 5, we find that taking © = I, also works fine,
if a ridge regularization is added. Noting that the word count vector z; is distributed as
Multinomial(N;, Aw;), we can also estimate w; by some classical approaches, such as MLE,
where we replace A by A in the likelihood.

The above raises a question: Since D = AW + “noise”, can we first estimate W and

then use W to estimate A? There are two concerns. First, in some settings, the optimal
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rate for estimating A is faster than that of estimating W (see Section 2.6). Therefore, if we
first estimate 17 and then use W to estimate A, then we may achieve the optimal rate in es-
timating W but likely not in estimating A. If we first estimate A and then use A to estimate
W, we have optimal rates in estimating both. Second, many approaches for estimating A
rely on the assumption that each topic has some anchor words (see Sections 2.2-2.3). If we
extend them to estimate W, we need to similarly assume that each topic has some pure
documents (document i is pure if w;(k) = 1 and w;(¢) = 0 for ¢ # k). However, in many
applications, it is more reasonable to assume the existence anchor words than the existence
of pure documents (especially when documents are long). Therefore, though the roles of A

and W may appear symmetrical to one other, they are not symmetrical in reality.

2.6 The optimal rates for estimating (A, W)

For simplicity, as in many theoretical works on topic modeling, we assume Ny = ... N, = N;
i.e., documents have the same length. We may have either a long-document (LD) case where
N/p = 0(1) or a short-document (SD) case where N/p = o(1) (p: size of the vocabulary).

Consider the rate for estimating A. For any estimate 121, we measure the loss by the
(*-error: L(A,A) = Zle |A;, — Aglr (subject to a permutation in the K columns of A).
The minimax rate is defined as R,, = inf 5 sup, EE(A, A). In the LD case, when K is finite,
R, =< +/p/(Nn) up to a multi-log(p) factor (e.g., \/log(p)) [28]; when K grows with (n, p),
R, = K+/Kp/(Nn), also up to a multi-log(p) factor [4]. In the SD case, the optimal rate
is unclear. Some minimax upper bounds were derived [2, 28], but they do not yet match
the minimax lower bound. The difficulty of the SD case is that the majority of words have
a zero count in most documents, which poses challenges in theoretical analysis.

Consider the rate for estimating W. Similarly, for any estimate I, we measure the loss
by LW, W) = L3 Wi — willy (up to a permutation in the K rows in W) and define
the minimax rate as R,, = inf}; supyy, EL(W,W). [45] showed that R, = VK/N. In an
apparently parallel work, [29] considered the Frobenius loss n~"/ QH/W — W||r and showed
that the minimax rate is K \/1/_N . The minimax rates are flat in n: This is not surprising,

because the number of free parameters in W is proportional to n.

12



2.7 Estimating the number of topics K

Almost all topic learning algorithms assume K as known a priori, but K is rarely known
in real applications. How to estimate K is therefore a fundamental problem.

To estimate K in such a “low-rank matrix plus noise” situation, a standard approach
is to use the scree plot: for a threshold ¢, we estimate K as the number of singular values
of X that exceed t. [28] showed that this estimator is consistent, under some regularity
conditions. This method does not need topic model fitting and is fast and easy-to-use,
but how to select a data-driven ¢ is an open question. Alternatively, one may select K
using BIC or other information criteria: for each candidate of K, we obtain (A, W) by
applying a topic learning algorithm, and estimate K by the candidate that minimizes BIC.
Also, alternatively, one may use the cross validation (CV) approaches, by estimating a
topic model for each candidate K and each training-validation split. A commonly-used
validation loss is the perplezity. It measures the predictive power of a trained language
model on the held-out test set. To use perplexity, we usually assume w; are iid generated,
so the approach is more appropriate for the Bayesian version of the topic model to be
introduced in Section 2.9; we can also use a full Bayesian approach by imposing a prior
on K and selecting K to minimize the marginal likelihood [41]. In both the BIC and CV
approaches, we need to fit the topic model many times, so the computational cost is high.

In simulation studies, it has been noted that (a) none of these methods is uniformly
better than others, and which method is the best depends on the data set, and (b) the
popular perplexity approach often over-estimates K. For these reasons, in real applications,
whenever some inside information is available, we hope to use them to help determine K.
For example, in the study of MADStat (see Section 5), we investigate the estimated anchor
words by Topic-SCORE for different K, and use our knowledge of the statistical community
to choose the K with the most reasonable results. In some applications, what the best K is
depends on the perspectives of the users, and even experts may differ in their opinions. In

such a case, we may want to consider several different K. Such a flexibility may be helpful.
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2.8 Global testing associated with topic models

The problem of global testing is closely related to the problem of estimating of K. The
goal is to test Hy : K =1 versus H; : K > 1. Global testing is a fundamental problem: if
no method can reliably tell between K =1 and K > 1, it is merely impossible to estimate
K or estimate the matrices (A, W) in Model (2.1)-(2.2).

Recall that x; ~ Multinomial(N;, Aw;), 1 < i <n, in Model (2.1)-(2.2). [6] proposed a
test statistic ¢, called DELVE. They showed that when K = 1, although the model has
many unknown parameters, 1, — N (0, 1), and the limiting distribution does not depend
on unknown parameters. This result is practically useful. For example, we can use it to
compute an approximate p-value and use the p-value to measure the research diversity of
different authors in the MADStat dataset; see Section 3.3 of [19] for a similar use of global
testing in the network setting [21, 22].

Denote by A, the second largest (in magnitude) eigenvalue of ¥4 = A'[diag(Alx)]tA.
Similar as in Section 2.6, we assume N; = N for 1 < i < N. Consider the DELVE test that
rejects Hy if [i,| > t, for a threshod ¢ > 0. [6] showed that this test achieves a sharp phase
transition as follows. If |\a|/\/p/(Nn) — oo, for an appropriate ¢, the sum of the Type T
and Type IT errors of the DELVE test converges to 0 as p — oo. If |A\o|//p/(Nn) — 0, for
any test, the sum of the Type I and Type II errors converges to 1. Compared with earlier
works (e.g., [28, 4]), such a result is more satisfying. In earlier works, we usually assume
all eigenvalues of ¥4 are at the order of O(1). Here, we may have Ay = o(1), especially

when p < Nn.

2.9 The latent Dirichlet topic model and its estimation

The latent Dirichlet allocation (LDA) model by [5] is one of the most popular topic mod-
els, and it can be viewed as a Bayesian version of the Hofmann’s topic model. In the
LDA model, we start with Model (2.1)-(2.2) and further assume that the topic weight
vectors wi, ws,...,w, are iid. drawn from a Dirichlet distribution with parameters

= (aq,...,ak), where ap > 0 and Z,{;l ar = 1. The LDA model has parameters

«
(A, ) and treats w;’s as latent variables. In such a setting, (A,«a) are estimated by a
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variational EM algorithm, and the posterior of w;’s can be obtained using MCMC. This is
essentially the approach proposed by [5]. Compared to Model (2.1)-(2.2), LDA does not
assume any structure on the topic matrix A. Therefore, if our goal is to estimate A, all
those methods in Sections 2.2-2.3 are still applicable. In particular, compared to the varia-
tional EM approach of [5], Topic-SCORE in Section 2.2 is not only faster but also provides
desired theoretical guarantees [28]. On the other hand, LDA puts a Dirichlet prior on the
topic weights w;. This allows us to learn the posterior distribution of w and may provide
additional insights. Recall that in Section 2.5, we have proposed a regression approach to
estimating W (without any priors on W). The regression approach is still useful for the
LDA model (e.g., we can use this method to estimate the parameter « in the LDA model,

and plug the estimated value to the variational EM algorithm).

2.10 The m-gram topic models

Hofmann’s topic model and the LDA are so-called bag-of-word or uni-gram models, as they
only model the counts of single words, neglecting word orders and word context. There are
several ideas about extending these models to incorporate word orders and word context.

One idea is to simply expand the vocabulary to include phrases. For example, we may
include all possible m-grams in the vocabulary (an m-gram is a sequence of m words).
Unfortunately, even for a small m, the size of this vocabulary is too large, making topic
estimation practically infeasible. To address the issue, we may only include a subset of
carefully selected m-grams. For example, we may exclude low-frequency phrases or apply
a phrase retrieval algorithm [13]. Once the vocabulary is determined, we treat each item
in the vocabulary as a “word” and model them by (2.1)-(2.2) same as before; the resulting
model is still a uni-gram model in flavor.

Another idea is the bigram topic model [44]. For each 1 < i < n, document i is
modeled as an ordered sequence of words satisfying a Markov chain with a transition matrix
M; € RP*P (p: vocabulary size), where M;(j, {) is the probability of drawing word ¢ when the
word immediately preceding it is word j. For transition matrices Ay, Ao, ..., Ax € RP*P,

M,; = Zszl w;(k) Ay, where each Ay, is treated as a “topic” and w; € R¥ is the topic weight
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vector as before. [44] proposed a Gibbs EM algorithm for estimating the parameters and
showed that, compared to the unigram topic model, this bigram model led to a better

predictive performance and more meaningful topics on two real-world datasets.

2.11 Supervised topic models

In many applications, we observe not only text documents but also some response variables
associated with documents. For example, many online customer reviews contain numeric
ratings; we treat a review as a text document and the corresponding rating as the response.
We would like to build a joint model for text and response, to help predict future ratings.

The model in [27] is a supervised topic model of this kind. This paper studied the
problem of how to use news articles to improve financial models. They focused on the
news articles in Dow Jones Newswire. These articles are tagged with the identifier of a
firm (the study excluded articles tagged with multiple firms). They model the news article
with Model (2.1)-(2.2) and K = 2 (so there are only two topics), where the two topics are
“positive sentiment” and “negative sentiment”, respectively. In such a simple case, for any
1 <i<n,let w; = (a;,1 — a;) be the topic weight of document i as before (w; captures
the “sentiment” level of article ). Meanwhile, let y; be the stock return of the firm being
tagged with document i. They assume that P(y; > 0) = f(a;) for an (unknown) function f
that is monotone increasing. This model jointly models text and return data, allowing for
a better estimation of w; (which in turn may lead to a better prediction of stock returns).
Compared with other approaches that also estimate news sentiment and use it to predict
returns, this approach has a substantial improvement on real-data performance. Moreover,

see [33] for other supervised topic models with a similar flavor.

3 Deep neural network approaches to natural language
processing

The deep neural network approaches to natural language processing (DNN-NLP) have

become very popular recently, with successes observed in a variety of NLP tasks such as
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text classification, question answering, machine translation, among others [36].

In statistics, a “model” is a generative model with some unknown parameters we need
to estimate. In DNN-NLP, researchers use the term “model” slightly differently: a neural
language model usually refers to a pre-trained neural network equipped with estimated

parameters. A neural language model usually consists of three components as follows.

e A neural network architecture. This is the core of a neural language model. It specifies
how an input text is processed to generate the desirable output. The encoder-decoder
structure is commonly used: the encoder is a neural network that maps the input text
into a numeric vector (a.k.a., the encoder state), and the decoder converts the encoder
state to the targeted output (e.g., a variable-length sequence of tokens). Many neural

network models were inspired by new architectures proposed in the literature.

e The NLP tasks used to train the neural networks. A neural language model usu-
ally targets on one specific task (e.g., machine translation) or several specific NLP
tasks (e.g., the BERT model [8] outputs document embeddings, which can be used
in various downstream tasks). In either case, pre-training the neural networks (i.e.,
estimating the parameters) must use specific NLP tasks to define the objective func-
tion. Hence, the same architecture may lead to different neural language models if

they are pre-trained using different NLP tasks.

e The text corpora and domain knowledge used in training. Even with the same archi-
tecture and the same NLP tasks in training, the resulting neural language model still
varies with the training corpora. One strategy is selecting training corpora to obtain a
domain-specific language model. For example, BERT has variants such as BioBERT
[32] trained using publications in biomedicine. Besides domain-specific corpora, other

knowledge such as a domain-specific vocabulary can also be employed.

The research on DNN-NLP has multiple goals, including but not limited to (a) Pre-
diction of the next word given the previous words in a sentence (e.g., GPT family [37]),
(b) Extraction of numeric features from text (e.g., BERT family [8]), and (c¢) modeling
the (synatic and semantic) relationships of words (e.g., word2vec [35]). DNN-NLP is a
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fast-developing area, which is hard to review comprehensively (especially as our focus is
on the topic modeling approaches and the MADStat data). For these reasons, we select a
few interesting topics in DNN-NLP to review, focusing on (a) popular DNN architectures
for NLP, (b) BERT, a powerful feature extraction tool developed by Google Inc. We also
discuss word embedding and how to apply a neural language model (e.g., BERT) to a text

corpus in our own research (see Remarks 1-2).

3.1 Commonly used neural network architectures

Some well-known network architectures for NLP include the convolutional neural networks
(CNNs), recursive neural networks (RNNs), and transformers. CNNs and RNNs are more
traditional, and transformers have become very popular in recent years.

CNNs use structural layers (e.g., convolutional layers and pooling layers) to capture
the spacial patterns in the input, and are extensively used in signal (speech, image, video)
processing. In processing a text document, sometimes it is not important whether certain
words appear, but rather whether or not they appear in particular localities. Hence, CNNs
are also useful for NLP tasks such as sentence modeling [24] and sentiment analysis [12].

RNNs are especially useful for sequence data with variable-lengths, making them suit-
able for text analysis. The long short-term memory (LSTM) network [16] is the most
popular variant of RNNs. In the vanilla RNNs, information may be diluted with successive
iterations, preventing the model to “remember” important information from the distant
past. LSTMs add neurons (called “gates”) to retain, forget, or expose specific information,
so it can better capture the dependence between two far-apart words in the sequence. The
standard LSTMs are unidirectional (i.e., text is processed left-to-right). It is preferred to
process text bidirectionally, as a word may depend on the words behind it. The bidirec-
tional LSTMs combine outputs from left-to-right layers and right-to-left layers.

The transformers [43] are a type of architectures based on the attention mechanism [3].
In a traditional encoder-decoder pair, the encoder maps the input sequence into a fixed-
length vector, and the decoder has access to this vector only. The attention mechanism

allows the encoder to pass all the hidden states (not just the final encoded vector) to the
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decoder, along with annotation vectors and attention weights to tell the decoder which
part of information to “pay attention to”. The attention mechanism was shown to be
much more effective than RNNs in processing long documents. [43] proposed a special
architecture called transformer that uses self-attention within each of the encoder and
decoder and cross-attention between them. The transformer has become the most popular
architecture in NLP. For example, the encoder part of the transformer is the building block
of models like BERT (see below), and the decoder part of the transformer is the building
block of models like GPT [37] for text generation.

3.2 BERT

The bidirectional encoder representations from transformers (BERT) is a state-of-the-art
language model developed by Google AI Language [8], which provides a numerical rep-
resentation for each sentence. As mentioned before, a neural language model consists of
three components: architecture, pre-training tasks, and training corpora. For architec-
ture, BERT uses the transformer encoder with bi-directional self-attention. For training
corpora, BERT uses the BooksCorpus (800M words) [47] and English Wikipedia (2,500M
words). The main innovation of BERT is in the pre-training tasks it used: BERT was
pre-trained using two tasks, the masked language modeling (MLM) and next sentence pre-
diction (NSP). In MLM, some tokens of the input sequence are randomly masked, and the
objective is to predict those masked tokens from their left and right contexts. In NSP, the
input are two sentences A and B from a corpus, and the objective is to tell if B is the next
sentence of A. These tasks do not require manual labeling of text.

BERT has been applied to different downstream NLP tasks, with superior performances.
Numerous language models have been created based on BERT, such as modifications of
the architecture (e.g., ALBERT and DistillBERT) and pre-training tasks (e.g., RoBERTa
and ELECTRA), adaptation to other languages (e.g., XLM and ERNIE), and inclusion
of domain-specific corpora (e.g., BioBERT and UmlsBERT). See [38] for a comprehensive
survey.

Remark 1. Another major goal of NLP is to learn the syntactic and semantic relation-
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ships between words. To do this, a standard approach is word embedding (i.e., find vector
representations of words). Despite the fact that word embedding is frequently used in neu-
ral language models (often as the first layer), its primary purpose is to understand or mimic
various syntactic and semantic regularities in natural languages. A frequently mentioned
example is that vector(“king”) — vector(“man”) + vector(“woman”) & vector(“queen”).
Word2vec [35] is a popular word embedding model. It was trained using a Google News
corpus, and its performance was tested on a semantic-syntactic relationship question set
manually created by the authors.

Remark 2. Many modern DNN-NLP tools (such as BERT) are owned by high-tech
companies. They were trained with a huge amount of data and efforts, and many parts
of them are not publicly available. A typical NLP user has his/her own (domain-specific)
text corpus (1K to 10K documents), which are not large enough to re-train BERT (say).
To help these users to apply modern DNN-NLP tools, there are two approaches: transfer
learning and fine tuning. In the first approach, the user inputs his/her own documents
to the BERT (say) and obtain an embedded vector for each document. The embedded
vectors can then be used as features for downstream analysis. In the second approach, a
user may alter the parameters of the pre-trained model. By adding additional layers to
the neural networks, one can convert the output of a pre-trained neural language model
to the targeted output of a downstream task (e.g., document classification). Next, all the
parameters—those in the pre-trained model and those for the added layers—are updated
together (this can done by running stochastic gradient descents starting from parameters

of the pre-trained models).

4 MADStat basics: paper counts, journal ranking,
and network centrality

The multi-attribute dataset on statisticians (MADStat) contains the bibtex (e.g., author,
title, abstract, journal, year, references, etc.) and citation information of 83,331 papers

from 47,311 authors, spanning 41 years (1975-2015). We collected and cleaned the dataset
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with substantial time and efforts and have made it publicly available (the links to download
the dataset can be found in [19]). In the supplementary material, we present (a) details
on data collection and cleaning, (b) the list of the 36 journals and their abbreviations, and
(c) supplementary results of the text analysis conducted in this paper (such as selection
of K for Topic-SCORE). In this section, we discuss some basic findings on the data set,

including paper counts, network centrality, and journal ranking.

4.1 Paper counts

The paper counts provide valuable information for studying how the productivity of statis-
ticians evolve over time. In the left panel of Figure 1, the red curve presents the number
of papers per year and the blue curve presents the number of active authors per year (an
author is active in a given year if he/she publishes at least 1 paper in that year). In both
curves, we notice a sharp increase near 2005-2006, possibly because several new journals
(AoAS, Bay, EJS) were launched between 2006 and 2008; see Table 3 of the supplementary
material. The middle panel of Figure 1 presents the yearly paper counts, defined as the
average number of papers per active author. We consider both standard count and frac-
tional count, where for an m-author paper, each author is counted as published 1 and 1/m
papers, respectively. In the standard count, the yearly paper counts increase between 1975
and 2009, from about 1.2 paper per author to about 1.4 paper per author, and decrease
after 2009, to about 1.3 paper per author in 2015. In the fractional count, the yearly paper
counts always decrease, from about 0.85 paper per author in 1975 to about 0.5 paper per
author in 2015. This can be explained by that the average number of authors per paper has
been steadily increaseing over the years. See the right panel of Figure 1, where we present
the average number of authors per paper; the curve is seen to be steadily increasing.

The above counts can be further explained by Figure 9 of the supplementary material,
in which (a) the paper count each year is partitioned into the counts of m-author papers
for different m and (b) the author count each year is partitioned into the counts of k-year-
senior author for different k. The results show some interesting patterns, and we refer the

readers to Section D of the supplementary material for details.
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Figure 1: Left: total numbers of papers and active authors in each year. Middle: average
number of papers per author in each year. Right: average number of authors per paper in

each year.

4.2 Network centrality

Network centrality (e.g., most-collaborative authors) provides information for the leader-
ship and trends in statistical research. Table 1 presents the top 10 authors who have the
most coauthors, the most citers (a citer for any given author is any other author who has
cited this author), and the most citations, respectively. Table 4 (Appendix, Section E)
presents the top 10 most-cited papers. Note that the numbers of coauthors, citers, and
citations here are all counted using only the papers in our data range, so there may be
some biases in our ranking. For example, in Table 4, if we instead use the citation counts
by Google Scholar on December 31, 2022, then the papers Benjamini & Hochberg (1995)
on FDR, Donoho & Johnstone (1994) on wavelets, and Efron et al. (2004) on LARS will
receive better rankings, as these papers have many citations from papers outside our data
range. Despite this, our approach is still valuable. For example, using our data, we can
provide the ranking (e.g., by number of citations) for any author or any paper in our data
set, but how to do this using Google Scholar is unclear: We need to build a large database
for the citation relationships between many authors and papers and spend substantial time
cleaning such citation data. Compared to Google Scholar, our citation data are of higher
quality, so our results on network centrality shed new light that Google Scholar cannot

provide.
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Table 1: The top 10 authors ordered by the number of coauthors, citers, and citations,

respectively (we only count co-authors and citations within the range of MADStat).

Author name #Coauthors | Author name #Citers | Author name #Citations
Raymond Carroll 234 Donald B. Rubin 5337 Peter Hall 6847
Peter Hall 222 Nan Laird 5079 Donald B. Rubin 6825
N. Balakrishnan 186 Bradley Efron 4500 Jianging Fan 5726
Jeremy Taylor 159 Robert Tibshirani 4076 | Robert Tibshirani 5074
Joseph Ibrahim 158 Peter Hall 3789 Nan Laird 5040
Geert Molenberghs 146 Arthur P. Dempster 3406 | Bradley Efron 4589
James S. Marron 130 Scott Zeger 3311 | Raymond Carroll 4415
Malay Ghosh 119 Kung Yee Liang 3231 Scott Zeger 3802
Emmanuel Lesaffre 119 Trevor Hastie 3174 | Trevor Hastie 3582
Xiaohua Zhou 119 Raymond Carroll 3110 Kung Yee Liang 3366

4.3 Citation patterns and the sleeping beauties

Identification of representative citation patterns is an interesting problem, as it helps dis-
tinguish short-term citation effects from long-lasting citation effects. By a careful study of
the yearly citation curves of individual papers, we identify four representative citation pat-
terns: “sleeping beauty,” “transient,” “steadily increasing,” and “sudden fame.” “Sleeping
beauty” refers to the papers that receive low citations within a few years after publication
but become frequently cited after a certain point (a.k.a. “waking up”). Representative
papers include the lasso paper, Tibshirani (1996), and the FDR paper, Benjamini and
Hochberg (1995). “Transient” refers to the papers that receive a good number of citations
for a few years shortly after publication, but then their citations drop sharply and remain
low for years. “Steadily increasing” refers to those papers whose citations have been in-
creasing at a modest rate for many years, with a large number of citations over a relatively
long time period. Representative papers include Dempster et al. (1977) on EM algorithm.
“Sudden fame” refers to papers that receive a large number of citations shortly after publi-
cation and the citations remain high for many years. Representative papers include Liang
and Zeger (1986) on longitudinal data, Gelfand and Smith (1990) on marginal densities,
and Efron et al. (2004) on LARS. See Figure 2.
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Figure 2: Yearly citation curves for 4 papers. Left to right: “sleeping beauty” (Tibshirani
(1996) on Lasso), “transient”, “steadily increasing” (Dempster, Laird and Rubin (1977) on EM
algorithm), and “sudden fame” (Liang and Zeger (1986) on GLM).

The “sleeping beauty” pattern is especially interesting. To identify the sleeping beau-
tifies in our data range, we use the metric suggested by [25]. It outputs a measure B;
for each paper i (the details are in the supplementary material); the larger B;, the more
likely this paper is a sleeping beauty. We select the 300 papers with the largest maximum
number of yearly citations and arrange them in the descending order of B;. Table 5 and
Figure 10 in the supplementary material show the papers with largest B;, such as Tibshi-
rani (1996), Azzalini (1985), Hubert & Arabie (1985), Hill (1975), Marcus et al. (1976),
Lunn et al. (2000), Rosenbaum & Rubin (1983), Bai & Saranadasa (1996), Holm (1979),
Clayton (1978), and Fan & Li (2001).

4.4 Journal ranking

Journal ranking has been widely used in appointing to academic positions, awarding re-
search grants and ranking universities and departments. A common approach is the Impact
Factor (IF), but IF is known to have some issues [42]. We instead use the Stigler’s model
[40] for journal ranking: Given N journals, let pq,...,un € R be their export scores; for
two papers ¢ and j published in journal ¢ and m, respectively, let C;; be the indicator of a
citation from i to j. We assume P(C;; = 1|C;;+Cj; = 1) = exp(pr— i)/ [1+exp(pee— pm))]-
We fit this model using the quasi-likelihood approach in [42]. For comparison, we also con-
sider the PageRank approach (with the same tuning parameter « as suggested in [42]).
Among the 36 journals (see Table 3), there are relatively few citation exchanges between

the 3 journals focusing on probability and the other 33 journals, so we exclude these 3
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Figure 3: Journal ranking. Each point is a journal (x-axis: ranking by PageRank, y-axis: ranking

by Stigler’s model). See Table 3 of the supplement for the full journal names.

probability journals. For each journal pair, we count the citations between them using a
10-year window. For instance, if 2014 is the “current year,” then we count one citation from
journal ¢ to journal j if and only if a paper published in journal ¢ in 2014 has cited a paper
published in journal j between 2005 and 2014. This gives rise to a 33 x 33 between-journal
citation matrix for 2014. Last, we take the sum of the two matrices for 2014 and 2015 to
improve the stability and reliability of results. This is the final data matrix fed into journal
ranking. The results are in Figure 3.

Both approaches rank AoS, Biometrika, JASA, and JRSSB as the top four. In particu-
lar, both approaches rank AoS as number 1 and Biometrika as number 3; PageRank ranks
JASA as number 2 , and the Stigler approach ranks JRSSB as number 2. The rankings
of two methods are quite consistent with each other. A few exceptions are CSDA, EJS,
JMVA, JRSSA, JTSA, and SMed. We notice that PageRank weighs each citation equally,
while the Stigler model gives citations from higher-ranked journals larger weight than those
from lower-ranked journals [42]. The results of PageRank are fairly close to that of ranking
by citation numbers, but the results of the Stigler approach may be significantly different.
A closer look at the citation counts reveals that a large proportion of citations of SMed,
CSDA, JMVA, and EJS are self-citations, and after these self-citations are excluded, most

citations to these journals are from journals with relatively low rankings. This explains
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why these journals are ranked relatively high by PageRank but relatively low by Stigler’s
model. Also, while neither JTSA nor JRSSA has a large number of citations, most of their
citations come from journals with high rankings; consequently, the two journals are ranked

much higher by Stigler’s model than by PageRank.

5 Application of Topic-SCORE to the MADStat data
set

In this section, we apply Topic-SCORE (see Section 2.2) to analyze the abstracts in MAD-
Stat. We use all paper abstracts for the time period of 1990-2015 in 33 journals, excluding
the 3 probability journals AIHPP, AoP, and PTRF (see Table 3 about the full journal list),
since the topics in these journals are very different from in the other 33 journals. This gives
a total of 63, 187 abstracts. We then perform a word screening by removing stop words and
infrequent words, which gives rise to a vocabulary of 2, 106 words. Finally, we compute the
length of each abstract by the number of words (a word not in the aforementioned vocabu-
lary is not counted) and remove approximately the 10% shortest abstracts. We have 56, 500
remaining abstracts. The details of pre-precessing are in Section G of the supplementary
material. The final data matrix is X = [z1,...,2,] € RP*" with (p,n) = (2106, 56500);

same as in Section 2, x; € RP contains the word counts of the ith paper abstract.

5.1 Anchor words and the 11 identified topics

To apply Topic-SCORE, we need to decide the number of topics. This is a hard problem (see
Section 2.7) and we tackle it by combining the scree plot, substantial manual efforts, and
our knowledge of the statistical community (see Section H of the supplementary material).
We find that that K = 11 is the most reasonable choice.

Since K = 11, there are 11 discovered research topics by Topic-SCORE. To interpret
and label these topics, we introduce a rule for selecting ‘representative’ words and papers
for each topic. The anchor words (see Section 2.1) appear only in one topic. For example,

“lasso” and “prior” may be anchor words for the topics of “variable selection” and “Bayes”,
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Figure 4: For 1 < k < K (where K = 11), Panel k is the barplot of the 20 words j that have the

largest weight a;(k) among all words (the length of each bar is the value of a;(k)).

respectively. Given A, define the topic loading vector a; € R¥ for each word j by a;(k) =

Ap(9) /[0, Ag(5)), 1 < k < K. Note that 0 < a;(k) < 1 and in theory a;(k) = 1 if and

only if word j is an anchor word of topic k. Fix 1 < k < K. The most frequent anchor word

in topic k is the word j where j = argmax,{a;(k) : 1 < j < p}. Similarly, we can define

the m-th most frequent anchor word for any m > 1. Figure 4 shows the 20 most frequent

anchor words for each of the 11 estimated topics. Based on these words, we suggest a name

for each topic as in the second column of in Table 2. To check if the proposed labels are

reasonable and get more insight of each topic, we also use W to identify representative
papers. For each 1 < k < 11, we pull out the top 300 papers with the largest w;(k) (the

titles of top-3 within each topic is given in Table 8 of the supplementary material). We

manually review the titles of these papers and come up with a list of suggested research
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Table 2: Interpretation of the 11 estimated topics.

Topic Label

Abbreviati

iCorresponding Research Topics

10

11

Bayesian statistics
Bio & medical
statistics

Clinical trials
Experimental
design

Hypothesis testing
Statistical
inference

Latent variables

Machine learning

Mathematical
statistics
Regression
analysis

Time series

Bayes

Bio/Med.

Clinic.

Bayesian methods

Observational studies, genetics, genomics

Clinical trials, causal inference

Exp.Design Experimental design

Hypo.Test

Inference

Latent.Var

Mach.Lear

Hypothesis testing, goodness of fit

Confidence intervals, bootstrapping, empirical likelihood

Latent variable model, incomplete data, mixtures, clustering, factor
model, graphical model, variable selection, categorial data analysis,
dimension reduction

n.Machine learning, computation, EM algorithm, Monte Carlo

methods, clustering

Math.Stats. Asymptotics, mathematical statistics, probability, stochastic

Regression

Time Se-

ries

process
Linear models, nonparametric regression, quantile regression,
semi-parametric models

Time series, longitudinal data, stochastic processes, survival

analysis

topics umbrellaed by each of the brief topic label. See the third column of Table 2.

Our topic learning results are based on abstract similarity (i.e., the research areas

covered by the same topic have similar word counts in their abstracts). Such a similarity

does not necessarily imply the similarity in the intellectual content of the paper. Also,

our goal here is to use statistical methods to identify a few interpretable topics, and it is

possible that some research topics in the data set are not well represented here.

5.2 Topic weights for representative authors

How to estimate the research interests of an author is an interesting problem. It helps us

understand an author’s research profile and may be useful in decision making (e.g., award,

funding, promotion); it may also help this author to plan for future research. We estimate
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Berger, James Bickel, Peter Carroll, Raymond Donoho, David
Bayes ) O O —J
Bio./Med. — O [ [
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Exp.Design 7 3 ./ ]
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Inference ] O O 1
Latent.Var. 1 O —]
Mach.Learn. C 1 [ —
Math. Stats. [ | ] O
Regression [ ] — 1
Time Series ] 0 - [—
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Fan, Jianging Hall, Peter Jordan, Michael Lin, Xihong
Bayes 7 —J
Bio./Med. ] [ |
Clinic. [T O O —
ExpDesign  [] O = —
Hypo. Test O O [— O
Inference I — O -
Latent.Var. 0 [ — [
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Liu, Jun Roeder, Kathryn Wasserman, Larry Zhang, Cun—Hui
Bayes 0 | | [—
Bio./Med. O ] [ [l
Clinic. O O [— -
Exp.Design O [— — 0
Hypo. Test O 0 — -
Inference O — —
Latent.Var. — O ] (]
Mach.Learn. — - —
Math.Stats. [ o |
Regression [ O o
Time Series O [— [— [—

T T T T
-0.04 -0.04 0.00

Figure 5: The overall topic interests of some authors. For interpretation purpose, we select some

authors we are familiar with, but similar figures can be generated for other authors.

the research interest of an author as follows. For an author a, let N, C {1,2,...,n} be
the collection of papers he/she published in our data range. Each paper i has an estimated
topic weight vector w; for its abstract. A reasonable metric of author a’s interest on topic
kis w, (k) = ﬁ > ien, Wi(k), 1 <k < 11. Let w(k) be the average of w;(k) over all 56,500
abstracts. We define the centered topic interest vector of author a by z, = w, — w € R
The entries of z, sum to 0, so it has both positive and negative entries. We are interested
in its positive entries, since z,(k) > 0 indicates a greater-than-average weight on topic k.
We can compute the vector z, for almost every author in our data range. Table 9
of the supplementary contains the results of 80 selected authors. Figure 5 presents z,
for 12 representative authors. We have some interesting findings. 1) James Berger has a
prominently high weight on Bayes; Raymond Carroll and Jianging Fan have prominently

high weights on Regression; and Michael Jordan and Jun Liu have prominently high weights

on Mach.Learn. These results are reasonable: Berger has many works in Bayesian statistics
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and decision theory; Carroll has many works in semiparametric models; Fan has many
works in nonparametric regression and high dimensional variable selection; Jordan has
many works in machine learning, nonparametric Bayes, and Bayesian computation; and
Liu has many works in Bayesian computation and MCMC. 2) Peter Hall has notably
high weights on Inference, Mach.Learn., and Regression; Xihong Lin has notably high
weights on Clinic., Regression, and Bio./Med.; Larry Wassermann has notably high weights
on Inference, Mach.Learn., and Bayes; and Cun-Hui Zhang has notably high weights on
Inference, Regression, and Math.Stat.. 3) Figure 5 suggests that the research interests of
Peter Bickel, David Donoho, and Kathryn Roeder are relatively diverse, covering many
topics; these are consistent with our impression of these authors and the information of 11

topics in Table 2.

5.3 Topic trends

How to characterize the evolvements of statistical research over time is an interesting prob-
lem [30]. We tackle it by combining the estimated topic weights and the time and journal

information of each paper.
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Figure 6: The yearly average topic weights (averaged for all 33 journals), 1990 — 2015.
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First, we study how the yearly average topic weights change over time. Recall that
w; is the estimated topic weight vector for paper ¢ by Topic-SCORE. For each year, we
compute the average topic weight for all papers published in this year, smoothed by a
weighted moving average in a 3-year window (weights: 0.25, 0.50, and 0.25). See Figure 6.
We observe that the 5 topics, Math.Stat., Regression, Bio./Med., Bayes, and Hypo. Test,
have higher-than-average weights, suggesting that they have attracted more attention; from
1990 to 2015, the weight of Bio./Med. increases relatively fast, the weights of Math.Stat.
and Hypo. Test gradually decrease, and the weights of Regression and Bayes are relatively
flat. Among the remaining 6 topics, Mach.Learn. increases quickly; its weight has passed
the overall average starting from 2014 (Latent. Var. is another topic where the weight is
steadily increasing).

Second, we select a few journals and study how the evolution of the yearly average
topic weights for each journal. In Section 4.4 we have ranked the 33 journals (excluding 3
probability journals) by the Stigler’s model and PageRank. We select the 7 journals with
highest average ranks: AoS, Bka, JASA, JRSSB, Bcs, JMLR, and Sini. For each journal,
we obtain the yearly average topic weight (i.e., the average of w; among papers published
in this journal each year) and smooth the curves as before. The results are in Figure 12 of
the supplementary material. A partial result is shown in Figure 7. Each panel corresponds
to a topic. Fixing a topic k, for each journal, we plot the kth entry (subject to smoothing
over time) in the yearly average of w;’s among papers published in this journal. These
curves of different journals for the same topic can be used to study journal friendliness to
this topic.

We observe that in some time periods, some journals are clearly in favor of some topics.
When this happens, we say that this journal is “friendly” to this topic. In Figure 7,
we list the “friendliest” journals for 11 topics. Note that the short label of a topic may
not be accurate for all research topics it covers, and it is preferable to consult Table 2
(e.g. Time Series includes longitudinal data and survival analysis, and it is why this topic
has a high weight in the journal Bcs). Among the 7 journals, JMLR has a significantly
higher weight on Mach.Learn. than on the other topics, Bcs has a significantly higher
weight on Bio./Med. and Clinic., and AoS has a considerably higher weight on Math.Stat..
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Furthermore, the 4 journals, A0S, Bka, JASA and JRSSB, are traditionally considered the
leading journals in statistical method and theory. Among these 4 journals, AoS is friendlier
to Math.Stat., Inference, Hypo.Test, Regression, and FExp.Design; JASA is friendlier to
Mach.Learn., Bio./Med., Clinic. and Time Series; JRSSB is friendlier to Mach.Learn.,
Bayes, and Var.Select.; and Bka is friendlier to Bayes and Regression (JASA publishes
more on Clinic. and Bio./Med. than Bka; this is possibly due to that JASA has a case-

study sector).

Bio./Med. | & - Math.Stats.
. —— AoS
) —— JASA
° N —— Bcs
prs . —&— Sini
£l g o - - - Average
19‘90 19‘95 20‘00 20‘05 20‘10 20‘15 19‘90 19‘95 20‘0() 20‘05 20‘10 20‘15 19‘90 19‘95 20‘00 2(;05 20‘10 2(;15
Topic Journal | Topic Journal Topic Journal Topic Journal
Bayes Bka Exp.Design Sini Latent.Var.  JMLR (04-07) | Regression  AoS (90-02)
JRSSB | Hypo.Test  Bes (90-98) JRSSB (08-12) | Time Series Bes

Bio./Med. Bes AoS (02-15) | Mach.Learn. JMLR
Clinic. Bes Inference AoS Math.Stats.  AoS

Figure 7: Top: the yearly average topic weights for selected journals during 1990-2015 (the
complete result is in Figure 12 of supplementary material). Bottom: the friendliest journal (out

of 7 selected journals) for each topic.

6 TR-SCORE: an extension of Topic-SCORE for topic
ranking

Topic-SCORE is a flexible idea and can be extended in many directions. In this section, we
extend Topic-SCORE by proposing Topic-Ranking-SCORE (TR-SCORE) as new approach
to ranking the citation impacts of different topics. Since TR-SCORE is directly motivated
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by the analysis of MADStat, we focus our discussion on the MADStat dataset in this
section but keep in mind that the idea is useful in other applications.

In Section 4, we have discussed how to use citation exchanges to rank different jour-
nals. We can extend the idea to topic ranking, but there is a major challenge: citation
exchanges between papers or journals are well-defined and directly observable, but cita-
tion exchanges between research topics are not well-defined and directly observable. We
tackle this by combining the abstracts and the citation data: we first propose a model that
jointly models text abstracts and citations, including an idea to measure the (unobserved)
citation exchanges between research topics. We then introduce TR-SCORE, and use it to
rank different topics and to construct a knowledge graph visualizing the cross-topic citation

exchanges.

6.1 The Hofmanm-Stigler model for abstract and citation data

Consider n papers in MADStat, where the abstract data are summarized in a p x n word-
document-count matrix X = [z1,z,...,x,] as in Section 2 (p is the vocabulary size), and
citation data are summarized in an adjacency matrix ¢' € R™", where C;; = 1 if there is
a citation from paper ¢ to paper j and Cj; = 0 otherwise, 1 <17,j < n.

We propose the Hofmann-Stigler model to jointly model the data matrices X and C: It
combines the Hofmann’s topic model in Section 2 and the Stigler’s model in Section 4.4.
We assume that all the paper abstracts focus on K different research topics Cq,Cs, ... ,Ck.
Inspired by the Stigler’s model, we introduce pu = (i1, po, - . ., i)', where iy, is the export
score associated with topic k, 1 < k < K. Intuitively, a topic with a larger export score
means that it has larger impacts. Now, fix 1 < ¢ < n and consider paper 7. Similarly
as in Section 2, let w; € RE be the weight vector of document i (i.e., w;(k) is the weight
that abstract i puts on topic k). When paper i is cited by another paper j, we have two

different ways to attribute this particular citation count.

e (Orthodoz Citation Attribution (OCA)). We simply attribute the citation to paper i.

o (Topic Weight Citation Attribution (TWCA)). We attribute the citation to each of
the K topics, with weights w;(1), ..., w;(K), respectively (note that S r_, w;(k) = 1).

33



In Section 4.4, we have discussed journal ranking, in which OCA is a good choice. For
topic ranking, TWCA is more appropriate. Under TWCA, we view p/'w; = Z,{;l prw; (k)

as the export score of paper i and assume the Bernoulli variables C;; and C}; satisfy

exp(p'w; — p'w;)

This gives the model of the citation exchange matrix C'. To model the word-document-

count matrix X, we use the same model as in Section 2:
x; ~ Multinomial( N;, Aw;), A e RPEq; € RE, (6.2)

where A is the topic matrix as in Section 2 and NV; is the size (total word count) of document
i. For identifiability, we assume median(puy, ..., ux) = 0. Also, for simplicity, we assume
X and C are independent (but their distributions are related by w;’s), and this can be
relaxed. We call (6.1)-(6.2) the Hofmann-Stigler model.

6.2 Topic-Ranking SCORE (TR-SCORE)

We propose TR-SCORE for topic ranking. The input are X, C'; and the number of topics
K, and the output is an estimated export score vector ji. TR-SCORE has three steps.

1. (Topic matriz estimation). Apply Topic-SCORE (e.g., Section 2.2) to get A e RPK,

2. (Topic weight estimation). For 1 <1 < n, estimate w; by w; = (A’A - )\IK)_lfl’di,

where A\ > 0 is a regularization parameter which we usually fix at A = 0.3.

3. (Topic ranking). Plug w,...,w, into (6.1) and obtain an estimate fi for the export

A

score vector u. Rank topics according to the descending order of iy, fis, .. ., fik-

We discuss Step 3 in detail. We use a quasi-likelihood method with over-dispersion to obtain
fi. Recall that C' is the adjacency matrix of between-paper citations. Write C' = C + C’
(ie., Cij = Cy + Cj;). Recall that W = [wy, ws, . .., w,] € RE™ is the topic weight matrix.
Let 7(x) = €*/(1+¢e") denote the logistic function. We now slightly modify (6.1) to assume

E[C|IC]=CoQ, Var(C|C)=¢[Qo(1—-9Q)], with Q=7(1,4W —W'pl)), (6.3)
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where o is the Hadamard product, Var(C|C) and (1 — Q) are both element-wise operations,
and ¢ > 0 is the dispersion parameter. Model (6.1) corresponds to fixing ¢ = 1, but a
better strategy is to estimate ¢ from data, as commonly used in fitting count data (e.g., see
[42] for a similar strategy for fitting the Stigler’s model). When W is known, we estimate
W1, fho, - - ., g by maximizing the quasi-likelihood, which is equivalent to maximizing the
likelihood of model (6.1). This is done by first fixing g3 = 0 and treating (6.1) as a
generalized linear model with (K — 1) predictors and N := 3, ; 1{C;; = 1} samples, so
that it can be solved by a standard package. We then re-center i1, fio, . . ., fix so that their
median is 0. The dispersion parameter is estimated by ¢ = N+K+1 Z(i,j):iq,ajg(gi‘ —
Ci;Q05)?/[Ci; (1 — Qij)], where Qi = 7(f'w; — f'w;). So far, W is assumed known. For
unknown W, we use the same procedure, except that W is replaced by the W from Step 2.

6.3 Topic-ranking and a cross-citation graph

In Section 5, we have applied Topic-SCORE to a set of 56,500 (pre-processed) abstracts
and identified 11 representative research topics in statistics. We now use TR-SCORE to
the same set of abstracts and rank all 11 topics. We also build a cross-topic citation graph
(as a type of knowledge graph) to visualize the dissemination of knowledge across areas
(an important research topic in the area of modern knowledge discovery [39]).

We first build a cross-topic citation graph. This is a weighted and directed graph with
11 nodes, each being a discovered topic. We propose two definitions of edge weights. In the
first one, let Nye = Y7, i(k)i; (€)Cyj and Pog = Nio/ (s Niow), for 1 < k, ¢ < 11,
where C' is the between-paper citation adjacency matrix and w; is the topic weight vector
of abstract i. Here Ny, is the (allocated) citation counts from topic k to topic ¢, and Py, is
the proportion of citations to topic ¢ among all citations from topic k. We use P € R1*
as the weighted adjacency matrix of this graph. In the second definition, we group all
papers based on the ‘dominant topic’ - the topic with the largest weight in w; (if there is
a tie, pick the smaller k). Let w} € {ey,eq,...,ex} denote the group label of abstract i.
Define Ny, = S0} (k)i (0)Cy; and Py = Npy/(3om_1 Ni)- We then use P* € R

as the weighted adjacency matrix. This definition uses “winner takes all” to allocate each
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Topic Export Score

. Math.Stats. 3.474

Exp.I8esign .
Regression 1.688
Mach.Learn. 1.671
Inference 1.131
g Bayes 0.159
XS rics Exp.Design 0.000
’ Time Series -0.142
Latent. Var. -0.240
Hypo.Test -1.279
Clinic. -1.611
Bio./Med. -5.427

Figure 8: Left: The weighted directed graph for cross-topic citations. The diameter of a node
(topic) is proportional to the total citations the topic has received from other topics, and the
width of an edge is proportional to the weight defined in the text. An edge is presented if
the weight is bigger than 0.09. Right: The estimated export scores of 11 topics (subject to
median(fi, ..., fi11) = 0).

citation to a single pair of topics. The two matrices P and P* are shown in Tables 10-11
of the supplementary material. Both definitions make sense, but the second one leads to a
‘sparser’ graph, which is presented in Figure 8 (the first one is relegated to Figure 13).

In Figure 8 (left), the width of the edge from node k to node ¢ is proportional to Py,
and the edge is presented only when P}, > 0.09. We have interesting observations. First,
Ezxp.Design has relatively few citation exchanges with other topics and the majority of the
citations it receives are from the topic itself. Since a one-way edge from node k£ to node /¢
is presented when P}, > 0.09, no edge from or to Ezp.Design is shown in Figure 8. Second,
Regression and Math.Stat. are the two topics that have attracted the most citations from
other topics, and Bio./Med. and Inference are the two that have cited other topics most
often. Third, each of Bayes, Variable Selection, and Mach.Learn. has considerably many
outgoing and incoming citations. Last, Hypo. Test and Inference form a close pair, and most
in-between citations are from Inference to Hypo.Test; Clinic. and Bio./Med. form a close
pair, and the citation exchanges are relatively balanced between them.

We then consider topic ranking. Figure 8 (right) shows the export scores of 11 topics
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by TR-SCORE. Math.Stats. is the highest-ranked topic. This is reasonable, as the focus of
Math.Stats. is mathematical analysis and probability, which may have a long-lasting impact
on other topics in statistics. Regression and Mach.Learning are also highly ranked. This
is also understandable, as the two topics cover many “hot” research topics (see Table 2).
The rankings of Bio./Med. and Clinic. are relatively low; one reason is that a significant

fraction of their impacts are over research areas outside our data range.

7 Conclusion

Text analysis is a rapidly developing research area in data science. In this paper, we have
surveyed recent methods for text analysis, ranging from topic modeling to neural language
models. For topic modeling, we have discussed the anchor word condition, several different
algorithms, optimal rates, and extensions to bigram and supervised models. In particular,
we focus on Topic-SCORE, a fast algorithm that enjoys appealing theoretical properties.
For neural language models, we provided a brief introduction to its key components, re-
viewed the popular BERT and word embedding models, and discussed how to apply them
to solve downstream NLP tasks.

We have also presented a data set, MADStat, about academic publications in statistics.
It was collected and cleaned by ourselves with substantial efforts. We have made it publicly
available at http://zke.fas.harvard.edu/MADStat.html. In this paper, we analyzed
text abstracts of the papers in MADStat, using the Topic-SCORE algorithm. We discovered
11 representative topics and visualized the trends and pattens in statistical research. We
also proposed the Hoffman-Stigler model to jointly model text abstracts and citation data
and the TR-SCORE algorithm for ranking the citation impacts of 11 topics. These results
are not only applications of text analysis but also can be viewed as a data-driven review of
the academic statistical community.

Nowadays, a vast amount of text data are generated on a daily basis. Recent ad-
vancements in Natural Language Processing (NLP) have revolutionized our everyday lives.
This also provides a big opportunity to statistics. The statistical approaches to NLP are

typically transparent, sample-efficient, fast-to-compute, and theoretically tractable, mak-
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ing them a suitable choice for many ordinary NLP users (who may have a moderate-size
domain-specific corpus but cannot access the data and resources owned by those tech gi-
ants). On the other hand, statistical text analysis is still quite under-developed. Even for
topic modeling, there are still many unresolved problems, such as how to estimate the num-
ber of topics and how to improve the accuracy when the documents are extremely short.
We hope that this review article provides useful information to researchers interested in
this area. We also hope that the MADStat dataset, which we collected and shared with
public, serves as a good platform for testing existed methods and inspiring new research in

text analysis.
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A Data collection and cleaning

One might think that our data sets is easy to obtain, as it seems that BibTeX and citation
data are easy to download. Unfortunately, when we need a large-volume high-quality data
set, this is not the case. For example, the citation data by Google Scholar is not very
accurate, and many online resources do not allow for large volume downloads. Our data
are downloaded using a handful of techniques including, but not limited to, web scraping.
The data set was also carefully cleaned by a combination of manual efforts and computer
algorithms we developed. Both data collection and cleaning are sophisticated and time-
consuming processes, during which we have encountered a number of challenges.

The first challenge is that, for many papers, we need multiple online resources to acquire
the complete information. For example, to download complete information of a paper, we
might need online resources 1, 3, and 5 for paper 1, whereas online resources 2, 4, and 6
for paper 2. Also, each online resource may have a different system to label their papers.
As a result, we also need to carefully match papers in one online resource to the same ones
in another online resource. These make the downloading process rather complicated.

The second challenge is name matching and cleaning. For example, some journals list
the authors only with the last name and first initial, so it is hard to tell whether “D.
Rubin” is Donald Rubin or Daniel Rubin. Also, the name of the same author may be
spelled differently in different papers (e.g., “Kung-Yee Liang” and “Kung Yee Liang”). A
more difficult case is that different authors may share the same name (e.g., Hao Zhang at
Purdue University and Hao Zhang at Arizona State University). To correctly match the
names and authors, we have to combine manual efforts with some computer algorithms.

Last, an online resource frequently has internal inconsistencies, syntax errors, encoding

issues, etc. We need a substantial amount of time and efforts to fix these issues.

B Disclaimer

It is not our intention to rank a researcher (or a paper, or an area) over others. For example,

when we say a paper is “highly cited,” we only mean that the citation counts are high,
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and we do not intend to judge how important or influential the paper is. Our results on
journal ranking are based on journal citation exchanges, but we do not intend to interpret
the ranking more than the numerical results we obtain from the algorithms we use.

As our data set is drawn from real-world publications, we have to use real names, but we
have not used any information that is not publicly available. For interpretation purposes,
we frequently need to suggest a label for a research group or a research area, and we wish to
clarify that the labels do not always accurately reflect all the authors/papers in the group.
Our primary interest is the statistics community as a whole, and it is not our intention to
label a particular author (or paper, or topic) as belonging to a certain community (group,
area).

While we try very hard to create a large-scale and high-quality data set, the time and
effort one can invest in a project is limited. As a result, the scope of our data set is lim-
ited. Our data set focuses on the development of statistical methods and theory in the
past 40 years, and covers research papers in 36 journals between 1975 and 2015 (we began
downloading data in 2015). These journals were selected from the 175 journals on the 2010
ranked list of statistics journals by the Australian Research Council (see Section C). Jour-
nals on special themes and most journals on econometrics, interdisciplinary research, and
applications are not included (see Section 6.1 for detailed description). As a result, papers
on econometrics, interdisciplinary research, and applications may be underrepresented.

Due to the limited scope of our data set, some of our results may be biased. For
example, for the citations a paper has received, we count only those within our data range,
so the resultant citation counts may be lower than the real counts the paper has received.
Alternatively, for each paper, we can count the citation by web searching (e.g., Google
Scholar, which is known to be not very accurate), or by reference matching (e.g., Web of
Science and Scopus). Our approach allows us to perform advanced analysis (e.g., ranking
authors/papers by citation counts, reporting the most cited authors and papers, excluding
self-citations, and calculating cross-journal citation). For such analysis, it is crucial that
we know the title, author, author affiliation, references, and time and place where it is
published for each paper under consideration. For each of the two alternative approaches,

we can gather such information for a small number of papers, but it is hard to obtain such
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information for 83,336 papers as in our data set.

A full scope study of a scientific community is impossible to accomplish in one paper.
The primary goal of our paper is to serve as a starting point for this ambitious task by
creating a template where researchers in other fields (e.g., physics) can use statisticians’
expertise in data analysis to study their fields. For these reasons, the main contributions

of our paper are still valid, despite some limitations discussed above.

C The list of 36 journals

The 36 journals are selected as follows. We start with the 175 journals in the 2010 ranked
list of statistics journals provided by the Australian Research Council (ARC). ! The list
was used for performance evaluation of Australian universities, as part of its program of
Ezxcellence in Research for Australia. The 175 journals are divided into four categories: A*,
A, B, and C'. For our study, first, we include all 9 Category A* journals, where two of them
(AOP and PTRF) are probability journals. Second, we include all Category A journals,
except the strongly themed journals in applied probability or in engineering (Advances in
Applied Probability, Electronic Journal of Probability, Finance and Stochastics, Journal of
Applied Probability, Stochastic Processes and their Applications, Theory of Probability and
its Applications, Technometrics, Queueing Systems, Random Structures & Algorithms).
Last, there are about 50 journals in Category B covering a wide range of themes, where
we only select the journals on methodology and theory, such as Australian & New Zealand
Journal of Statistics, Bayesian Analysis, Canadian Journal of Statistics, etc. We do not

include any Category C' journals.

D Additional results on paper counts

Figure 1 presents the number of papers per year and the number of active authors per year.
These results can be further explained using Figure 9. In Figure 9 (left), we present the

number of m-authored papers in each year for m = 1,2, 3 and m > 4, respectively. It is seen

'https://wuw.righttoknow.org.au/request/616/response/2048/attach/3/2010.
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Table 3: For each of the 36 journals, we present the full name, abbreviated name, starting
time, total number of authors, total number of papers, and impact factors in 2014 and

2015. For each journal, our data set consists of all papers between a certain year (i.e.,

the starting time) and 2015. The starting time is not necessarily the year the journal was

launched.
Abbrev. | Starting | # of # of
Full name of the journal Name Time | Papers | Authors | IF2014 | IF2015
1| Ann. Inst. Henri Poincare Probab. Stat. AIHPP 1984 967 1152 1.27 1.099
2 | Annals of Applied Statistics AoAS 2007 729 1824 0.942 | 0.769
3 | Annals of Probability AoP 1975 3318 2277 2.032 | 1.842
4 | Annals of Statistics AoS 1975 4168 3065 1.729 | 1.968
5 | Annals of the Institute of Statistical Mathematics | AISM 1975 2016 2056 3.055 | 3.528
6 | Australian & New Zealand Journal of Statistics AuNZ 1998 592 968 0.509 0.62
7 | Bayesian Analysis Bay 2006 138 314 1.519 | 1.031
8 | Bernoulli Bern 1997 1065 1446 1.829 | 1.412
9 | Biometrics Bes 1975 4347 5357 1.491 | 1.603
10 | Biometrika Bka 1975 3359 3239 2.94 2.114
11 | Biostatistics Biost 2002 732 1575 1.642 | 1.336
12 | Canadian Journal of Statistics CanJS 1985 1202 1542 1.676 1.41
13 | Communications in Statistics-Theory and Methods | CSTM 1976 8390 8041 0.424 | 0.437
14 | Computational Statistics & Data Analysis CSDA 1983 4656 6725 0.713 0.6
15 | Electronic Journal of Statistics EJS 2007 703 1156 1.303 | 0.903
16 | Extremes Extrem | 2008 176 262 1.5 1.68
17 | International Statistical Review ISRe 1975 855 1128 2.081 | 1.711
18 | Journal of Computational and Graphical Statistics | JCGS 1997 907 1488 2.319 | 2.038
19 | Journal of Machine Learning Research JMLR 2001 1332 2362 1.544 2
20 | Journal of the American Statistical Association JASA 1975 5154 5686 0.939 | 1.676
21 | Journal of the Royal Statistical Society JRSSB 1975 1682 1882 2.742 | 3.125
Series B-Statistical Methodology
22 | Journal of Applied Statistics JoAS 1993 2219 3798 1.18 1.058
23 | Journal of Classification JClas 1984 435 551 0.569 | 0.587
24 | Journal of Multivariate Analysis JMVA 1976 3574 3601 2.286 | 2.357
25 | Journal of the Royal Statistical Society JRSSA 1975 1117 1821 4 5.197
Series A-Statistics in Society
26 | Journal of the Royal Statistical Society JRSSC 1975 1359 2282 1.753 | 1.615
Series C-Applied Statistics
27 | Journal of Statistical Planning and Inference JSPI 1977 6111 6372 0.818 | 0.869
28 | Journal of Time Series Analysis JTSA 2000 692 925 0.939 | 1.387
29 | Journal of Nonparametric Statistics JNS 1998 817 1187 0.586 | 0.556
30 | Probability Theory and Related Fields PTRF 1986 2164 1874 1.657 | 2.025
31 | Statistical Science StSci 1993 564 980 1.59 1.641
32 | Scandinavian Journal of Statistics ScalJS 1977 1393 1730 2.154 | 1.741
33 | Statistica Sinica Sini 1991 1685 2235 0.718 | 0.63
34 | Statistics and Computing SCmp 1993 907 1518 1.032 | 1.155
35 | Statistics € Probability Letters SPLet 1984 7063 6670 1.382 | 0.952
36 | Statistics in Medicine SMed 1984 6743 9575 2.942 | 2.817
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that the fraction of single author papers have been steadily decreasing, and the fraction of
papers with 3 or more authors have been steadily increasing. One possible reason is that,
as statistics becomes increasingly more interdisciplinary, publishing in statistical journals
has been increasingly more challenging, as statisticians need to coauthor with researchers
from other scientific areas, for their data sets or expertise in their areas, and often works
on methods and theory alone are not adequate for publication. Figure 9 (right) presents
the number of active authors with k-year seniority in each year for k in some different
ranges. We say that an author is k-year-senior in year ¢ if this author’s first paper appears
in year t — k in our data set. The plot shows a significant increase of authors with seniority
< 3 years, suggesting that the statistics community has attracted more and more junior
authors. The cohort with seniority < 3 years and the cohort with seniority > 10 years have
the largest and second largest fractions. One possible explanation is that a more senior
author tends to have more junior collaborators (e.g., a senior professor tends to have more
Ph.D students than a less senior professor); such forged collaborations have improved the
productivity of both the senior cohort and the junior cohort.
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Figure 9: Left: the total number of m-authored papers in each year, for different m. Right:
the total number of k-year-senior active authors in each year, for different k£ (an author
who publishes the first paper in year ¢ has a seniority of k in year ¢ + k).

E Additional results on network centrality

Table 4 presents the top 10 most-cited papers. Note that the numbers of coauthors, citers,
and citations here are all counted using only the papers in our data range, so there may be

some biases in our ranking. See Section 4.2 for more discussion on ranking (and especially
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comparisons between ranking with our data set and ranking with the Google Scholar data).

Table 4: The most-cited papers (only the citations within MADStat are counted).

Rank Author Year Title Journal Citation
1 Dempster et al. 1977 Maximum likelihood from incomplete data via EM algorithm JRSSB 2241
2 Liang & Zeger 1986 Longitudinal data-analysis using generalized linear-models Bka 1437
3 Tibshirani 1996 Regression shrinkage and selection via the Lasso JRSSB 1327
4 Gelfand & Smith 1990 Sampling-based approaches to calculating marginal densities JASA 950
5 Laird & Ware 1982 Random-effects models for longitudinal data Bes 844
6 Rubin 1976 Inference and missing data Bka 834
7 Efron 1979 Bootstrap methods - another look at the Jackknife AoS 789
8 Fan & Li 2001 Variable selection via nonconvex ... and its oracle properties JASA 775
9 Benjamini & Hochberg 1995 Controlling the False Discovery Rate - A ... multiple testing JRSSB 695
10 Breslow & Clayton 1993 Approximate inference in generalized linear mixed models JASA 689

F The sleeping beauty citation patterns

The “sleeping beauty” pattern is especially interesting. To identify papers with such a
pattern, we need a metric. We adapt the approach in [25]. Fix a paper i. Suppose T;
years (or months/quarters) have passed since its publication by the end of 2015. Let n;(t),
1 <t < T;, be the number of citations the paper receives in year t. Suppose the citation

counts reach the peak at year ¢ = ¢;. The sleeping beauty metric is defined to be
Bi= Y [ni(t})/t; = na(t)/t] /[(nilt) v 1) /8). (F.1)

t:1<t<t*

Intuitively, between Year 1 and ¢y, the citation counts may grow superlinearly, linearly, or
sublinearly, and B; is positive, approximately 0, or negative, respectively. If paper i is a
sleeping beauty, then we expect that (a) n;(¢;) (maximum number of yearly citations) is
large, and (b) B; is large (i.e., we expect the citation counts to grow superlinearly between
Year 1 and ¢} so B; is large). Note also that for a sleeping beauty, the citation counts may
drop after Year ¢; but should remain at a relatively high level for at least a few more years.
Since “sleeping beauty” is a special kind of highly cited papers, we start by selecting
the 300 papers with the largest maximum number of yearly citations. We then arrange
all papers according to the sleeping beauty measure B;. Table 5 presents the 14 papers

(among the 300) with the largest B;, and Figure 10 of the supplement presents the citation
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curve n;(t) for the first 8 papers on the list. All of these papers show a clear sleeping beauty

pattern, suggesting that the introduced measure is reasonable.

Table 5: The 14 papers with the largest sleeping beauty measures B (among the 300 papers

that have the largest maximum yearly citation counts). TC is total citation counts.

Paper Journal TC' B Paper Journal TC B
1. Tibshirani (1996) JRSSB 1327 145 || 8. Bai & Saranadasa (1996) Sini 86 77
2. Azzalini (1985) ScaJS 288 139 || 9. Holm (1979) ScalJS 265 75
3. Hubert & Arabie (1985) JClas 179 115 || 10. Clayton (1978) Bka 393 70
4. Hill (1975) AoS 280 82 11. Fan & Li (2001) JASA 775 69
5. Marcus et al. (1976) Bka 218 80 || 12. Turnbull (1976) JRSSB 346 69
6. Lunn et al. (2000) SCmp 198 79 | 13. Pickands (1975) AoS 234 67
7. Rosenbaum & Rubin (1983) Bka 413 78 | 14. Benjamini & Hochberg (1995) JRSSB 695 65
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Figure 10: The yearly citation curves for the first 8 papers in Table 5.

G Pre-processing of the abstract data

The standard preprocessing includes: (i) tokenization, which breaks each abstract into a

bag of words; (ii) removing numbers and punctuations; (iii) removing stop words, such as

a, the, this, those, me; and (iv) stemming, which helps unify different forms of the same

word, such as testing, test, and tests. The default functions in the R package tm are not

customized for the content of statistical abstracts. We thus add some manual adjustment.

First, our dictionary only allows single words, and for important phrases we must in-

clude, we have to suppress them first. For example, when tokenizing the documents, we
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encounter phrases such as test error and monte carlo. We suppress them by testerror and
montecarlo respectively, before we insert them to the dictionary. Second, stemming may
sometimes mistakenly combine words with significantly different meanings. For example,
the words measurement and measure have the same stem measur, but very different mean-
ing in our context. To make sure that they are stemmed differently, we replace measurement
by measurementl before stemming, so the stems of measurement and measure become mea-
surl and measur respectively. Third, the default stop word list in the R package tm does
not cover all “topic-irrelevant words” for the analysis of statistical abstracts. We manually
add a list of 289 words (some overlap with the default stop words) to the stop word list.
These words include (a) common words used in statistical abstracts, such as data, estima-
tion, paper, method, propose, and discuss; (b) words related to the copyright information
of the journal or the press, such as springer, wiley, royal, and sinica; and (c) words arising
from citing references in the abstract, such as bickel, berger, and fan.

After the above steps, the vocabulary contains more than 60, 000 words, the majority of
which have extremely low frequencies in the corpus. Additionally, some abstracts become
quite short after removing stop words. As argued in [28], removing low-frequency words
and short documents can increase the signal-to-noise ratio. To this end, we first remove all
words that appear in fewer than 100 abstracts. This reduces the vocabulary to p = 2, 106.
We then remove approximately the 10% shortest abstracts and retain a total of n = 56, 500

abstracts.

H Selection of the number of topics K

First, we check the scree plot of the text corpus matrix D; see Figure 11. The elbow points
are 4 and 16. We thus consider the range of 4 < K < 16.

Next, for each 4 < K < 16, we run topic-SCORE (Step 1 of TR-SCORE) to obtain
A and then follow the approach in Section 5 to find the most frequent anchor words for
each topic. We use these anchor words to investigate the research areas covered by each
discovered topic.

For example, Table 6 displays the 20 most frequent anchor words of each topic, based
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Figure 11: Scree plot of the text corpus matrix D. Left: top 30 singular values. Right:

omitting first two singular values for a better visualization.

on the output of topic-SCORE for K = 4 and K = 5, respectively. We compare the two
outputs and re-order the topics for K = 5 so that the first 4 topics have a one-to-one
correspondence to the topics for K = 4. After checking the anchor words of the 5th topic
for K = 5 and using our knowledge of the field of statistics, we think this topic can be
interpreted as “Regression” and is meaningful. We thus prefer K =5 to K = 4.

Similarly, we successively compare each pair of nested values of K. For each of 5 < k <
11, we find that increasing K from k — 1 to k leads to the discovery of new topics that
are meaningful. However, when we increase K from 11 to 12, it is not the case. Table 7
displays the 20 most frequent anchor words for each topic in the output of K = 12. We
use the anchor word list to match each topic with one of the 11 topics in the output of
K =11 (see Figure 4 of the main article). We find that 11 out of the 12 discovered topics
can be matched to one of 11 topics in Figure 4. The 12th discovered topic (last row of
Table 7) is not very meaningful to be listed as a new topic (the ‘anchor words’ such as rootn,
longmemori, censorship may be used by abstracts in different research areas of statistics).
We thus prefer K = 11 to K = 12. We also investigate 12 < K < 16 and find that these
results are all less interpretable than that of K = 11. We decide that K = 11 is the most
appropriate choice.

How to select K in a topic model is a well-known challenging problem. To our best
knowledge, there exists no method that works universally well. In theory, the singular
values of D (i.e., the scree plot) contain information of K [28], but the scree plot of our

data set is not informative enough for us to pin down the exact value of K (see Figure 11,
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Table 6: The 20 most frequent anchor words of each topic when K = 4 (top) or K =5
(bottom). We have re-ordered topic labels so that the first 4 topics for K = 5 have similar

interpretations as the topics for K = 4.

Topic Frequent anchor words

1 latin, doptim, block, nonregular, satur, resolut, orthogon, prime, array, cyclic, aoptim,
neighbor, urn, divis, combinatori, extrapol, optim, search, incomplet, criteria

2 agespecif, birth, frailti, longitudin, pollut, socioeconom, subjectspecif, timevari, wait,
age, survivor, air, landmark, regist, missing, femal, day, tempor, geograph, nonignor

3 noncompli, complianc, antiretrovir, depress, physician, metaanalysi, particip,
metaanalys, unmeasur, causal, timetoev, propens, prognost, intervent, therapi, chronic,
symptom, coronari, patient, outcom

4 cramervon, hotel, lagrang, goodnessoffit, distributionfre, onesampl, pvalu, cointegr,
hypothes, onesid, chisquar, twosampl, stepdown, fdr, null, score, chi, pearson, diagnost,
roc

Topic Frequent anchor words

1 aoptim, doptim, latin, nonregular, twolevel, factori, aberr, twofactor, design, block,
satur, prime, resolut, orthogon, cyclic, array, balanc, optim, column, divis

2 hit, queue, semimarkov, traffic, statespac, forecast, evolutionari, shock, markov, repair,
markovchain, renew, state, wind, mcmc, hidden, discretetim, segment, epidem,
metropolishast

3 noncompli, complianc, metaanalys, depress, causal, metaanalysi, unmeasur, outcom,
prognost, particip, coronari, timetoev, surrog, antiretrovir, dropout, physician,
confound, smoke, elder, exposur

4 cramervon, kolmogorovsmirnov, null, hotel, omnibus, test, goodnessoffit, lagrang, wald,
hypothesi, wilcoxon, twosampl, distributionfre, onesampl, neyman, cointegr, pvalu,
chisquar, ttest, permut

5 regress, singleindex, ridg, backfit, explanatori, cook, lasso, spline, regressor, quantil,

predictor, varyingcoeffici, curs, penalti, penal, bspline, oracl, coeffici, tensor, variabl

where we only use the plot to determine a range of possible K). The perplexity [5] is a

commonly used metric to assess the goodness-of-fit of a topic model. We may select K

by minimizing the perplexity, but this approach is known to be unstable [46]. Tt tends to

select a very large K on our data set, making the interpretation/labeling of topics difficult.

Other ideas of estimating K include the Bayesian approach which puts a prior on K and

computes the posterior, but it is unclear how to combine this idea with the topic-SCORE

algorithm. We have tried many different approaches and found that the most satisfactory

one is investigating the interpretability of discovered topics using our knowledge of the

field, as described above.

48



Table 7: The 20 most frequent anchor words of each topic when K = 12. We have re-
ordered topic labels so that the first 11 topics have similar interpretations as the topics for
K =11 (see Figure 4 of the main article).

Topic

Manual label

Frequent anchor words

1

Bayes

jeffrey, improp, frequentist, default, fuzzi, highthroughput, opinion, dirichlet, speci,
probabilist, text, belief, pivot, protein, microarray, dna, census, genom, thousand,
dissimilar”

Bio./Med.

epidemiolog, prospect, undertaken, alzheim, misclassif, environment, polymorph,
ascertain, ecolog, retrospect, genomewid, smoke, matern, risk, conduct, suscept,
coronari, occup, popul, missing

Clinic.

treatment, surrog, causal, propens, placebo, assign, unmeasur, effect, benefici, intervent,
trial, imbal, subgroup, clinician, therapi, random, clinic, baselin, outcom, physician

Exp.Design

aoptim, latin, design, twolevel, block, satur, nonregular, twofactor, factori, aberr,
minimum, twophas, orthogon, fraction, resolut, experiment, balanc, multistag, doptim,
divis

Hypo.Test

stepdown, familywis, fals, discoveri, bonferroni, twosid, cdf, reject, onesid, pvalu,
conserv, realdata, hypothes, configur, competitor, microarray, nomin, favor, bootstrap,
control

Inference

confid, interv, width, shorter, biascorrect, edgeworth, coverag, squar, logarithm, rate,
cap, underestim, mse, meansquar, pointwis, toler, upper, deconvolut, discontinu, slower

Latent.Var.

proxi, instrument, forest, manifest, predictor, insur, latent, household, explanatori,
exogen, sex, childhood, nonrespons, concomit, imput, variabl, interview, bernoulli,
predict, enter

Mach.Learn.

metropoli, boost, algorithm, particl, expectationmaxim, descent, faster, iter, svim, slow,
updat, metropolishast, mcmc, step, sampler, path, noisi, gibb, heurist, nonsmooth

Math.Stats.

probab, expans, walk, nonneg, gumbel, mild, theorem, weak, ddimension, compact,
equivari, trim, densiti, establish, element, omega, proof, press, stein, random

10

Regression

regress, regressor, quantil, coeffici, smoother, band, least, calibr, shrink, linear, ordinari,
logist, spline, backfit, scalar, influenti, equivari, leverag, leastsquar, error

11

Time Series

time, surviv, intervalcensor, gap, failur, multist, forecast, shock, censor, transplant,
semimarkov, repair, periodogram, seri, occurr, event, declin, onset, drift, shortterm

12

(unclear)

infinitedimension, nconsist, gamma, twoparamet, rootn, unknown, phi, inadmiss,
nuisanc, mles, longmemori, weibul, threeparamet, ornsteinuhlenbeck, frailti, mestim,
paramet, censorship, theta, semiparametr

I High-weight papers in each of the 11 topics

In Section 5, we perform topic learning using the abstracts of 56, 500 papers and identify 11

topics. We propose a label for each topic using the topic loading vectors (see Figure 4 of the

main article). The short label is often insufficient to describe all the research topics that

this topic covers. We further study each topic by investigating papers with high weights

on this topic.
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Table 8: For each of the 11 topics, the titles of the three papers that have the highest topic
weight in that topic (last column: topic weight in that topic).

Topic Title Weight
On Bartlett correction of empirical likelihood in the presence of nuisance parameters 0.68
Bayes On the asymptotics of residuals in autoregressive moving average processes with one 0.56
autoregressive unit root
A note on universal admissibility of scale parameter estimators 0.56
Analytic methods for 2-stage case-control studies and other stratified designs 0.51
Bio./Med. | Reay and hope versus British Nuclear Fuels plc: issues faced when a research project 0.51
formed the basis of litigation
Statistical analysis in genetic studies of mental illnesses 0.5
Estimating a multiplicative treatment effect under biased allocation 0.61
Clinic. Identifying and estimating net effects of treatments in sequential causal inference 0.6
Advanced issues in the design and conduct of randomized clinical trials: the bigger the 0.59
better?
Optimal block designs for triallel cross experiments 0.91
Exp.Design An infinite family of non-embeddable quasi-residual designs 0.89
Minimum aberration (S?) S™* designs 0.89
A momentum-threshold autoregressive unit root test with increased power 0.51
Hypo.Test | An unbiased test for the bioequivalence problem 0.51
An example of a 2-sided wilcoxon signed rank test which is not unbiased 0.5
Some inequalities in elementary special-functions with applications to nonparametric 0.8
Inference | statistical-inference
Increasing the confidence in Students t-interval 0.79
Coverage-adjusted confidence intervals for a binomial proportion 0.79
Variable selection in model-based clustering: a general variable role modeling 0.76
Latent.Var. | The influence of variable selection - a Bayesian diagnostic perspective 0.75
On Spitzer’s formula for the moment of ladder variables 0.66
Java-ML: a machine learning library 0.57
Mach.Learn. | A genetic algorithm tutorial 0.56
A gradient algorithm locally equivalent to the EM algorithm 0.54
Comparison of level-crossing times for Markov and semi-Markov processes 0.49
Math.Stats. | Estimation of conditional L;-median from dependent observations 0.48
Stochastic ordering of multivariate normal distributions 0.47
Regression depth with censored and truncated data 0.8
Regression | Continuum regression and ridge-regression 0.73
The peculiar shrinkage properties of partial least squares regression 0.67
Some theoretical properties of the geometric and alpha-series processes 0.83
Time Series | Non-parametric estimation with doubly censored data 0.75
Fitting semi-Markov models to interval-censored data with unknown initiation times 0.75

For each 1 < k < 11, we sort the paper abstracts in the descending order of w;(k).

Table 8 shows the titles of the three abstracts with the largest w;(k).

The results are

largely consistent with the proposed topic labels. Moreover, for each topic k, by reading

the titles of the 300 papers with highest weights on this topic, we come up with a list of
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suggested research topics umbrellaed by this topic. See Table 2 of the main article.

J The topic interests of 80 representative authors

In Section 5, we use the output of topic learning to define a centered topic interest vector
2, € R for each author a. To recap, for each author a, let N, C {1,2,...,n} be the
collection of papers published by this author in our data range, where each paper i has an

estimated topic weight vector w; for its abstract. The centered topic interest vector z, is
Za = Wq — W,

where w, is the average of w; over all abstracts in N, and w be the average of w; over
all (n = 56,500) abstracts. The entries of z, sum to 0, and so it has both positive and
negative entries. We are interested in positive entries of z,: Author a has greater-than-
average weight on topic k if z,(k) > 0, for 1 < k < 11. See Figure 5 and details therein.
We now use z, to define the “major topics” of author a and show the results for 80

representative authors. Fix an author a. We call topic k a “major topic” of author a if
k X .
2q(k) > 50% 1@%}1{1{2‘1(@}

We may change 50% to (50% £ 5%) but the results are similar.
Table 9 presents the major topics of 80 authors with highest citations (ordered alpha-
betically). We remark again that the short topic labels may not be accurate for all research

areas each topic covers, and it is always useful to consult Table 2 of the main article.

K Topic trends in 7 representative journals

In Section 5.3, we have selected a few journals and study how the evolution of the yearly
average topic weights for each journal. Based on the journal ranking by the Stigler’s model
and PageRank (see Section 4.4), we select the 7 journals with highest average ranks: AoS,
Bka, JASA, JRSSB, Bcs, JMLR, and Sini. For each journal, we obtain the yearly average

topic weight (i.e., the average of w; among papers published in this journal each year) and
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Table 9: The major topics for the 80 authors with highest citations (Topic & is a major topic
for author a if z,(k) > 0.5-max;<g<11{2.(k)}). The short topic labels such as ‘Mach.Learn.’
may not be accurate to describe all research areas each topic covers, and it is always useful

to consult Table 2 of the main article for the interpretation of each topic.

Name

Major Topics

‘ Name

Major Topics

Anderson, Per
Azzalini, Adelchi
Barndorff-nielsen, Ole
Benjamini, Yoav
Berger, James

Besag, Julian

Best, Nicky

Bickel, Peter

Breslow, Norman
Biithlmann,, Peter
Carlin, Bradley
Carroll, Raymond
Clayton, David
Cook, Dennis

Cox, David
Dempster, Arthur P.
Dette, Holger
Donoho, David

Efron, Bradley

Fan, Jianqing
Fleming, Thomas R.
Friedman, Jerome
Gelfand, Alan

Gill, Richard
Green, Peter

Hall, Peter

Hérdle, Wolfgang
Hastie, Trevor
Ibrahim, Joseph
Johnstone, lain
Jones, M. C.
Kalbfleisch, John D.
Laird, Nan

Lawless, Jerry

Li, Ker Chau

Li, Runze

Liang, Kung Yee
Lin, Danyu Y.

Lin, Xihong
Lindsay, Bruce
Lipsitz, Stuart

Time Series

Bayes, Mach.Learn.
Math.Stats.

Hypo.Test, Inference
Bayes

Mach.Learn.

Bio./Med., Latent.Var.,
Clinic., Mach.Learn.
Math.Stats., Mach.Learn.,
Regression

Regression

Latent.Var.
Mach.Learn., Clinic.
Regression

Bio./Med.

Regression

Latent.Var.

Inference, Time Series
Exp.Design

Inference, Regression,
Math.Stats., Mach.Learn.
Inference

Regression

Clinic.

Mach.Learn., Latent.Var.
Mach.Learn., Latent.Var.
Math.Stats.
Mach.Learn., Latent.Var.
Inference

Regression

Mach.Learn.

Clinic., Bayes, Bio./Med.
Inference, Math.Stats.
Math.Stats., Regression
Time Series, Bio./Med.
Clinic.

Time Series, Bio./Med.
Regression

Regression, Latent.Var.
Bayes, Bio./Med.

Time Series, Bio./Med.,
Regression

Clinic., Regression
Bayes, Mach.Learn.

Clinic., Regression, Bio./Med.

Little, Roderick
Louis, Thomas A.
Mammen, Enno
Marron, James S.
Meccullagh, Peter
Meng, Xiao-li
Molenberghs, Geert
Miiller, Hans-georg
Owen, Art

Pepe, Margaret
Prentice, Ross
Raftery, Adrian
Rao, Jon N. K.
Rice, John

Roberts, Gareth
Robins, James
Rosenbaum, Paul R.
Rotnitzky, Andrea
Rubin, Donald B.
Ruppert, David
Silverman, Bernard W.
Smith, Adrian
Spiegelhalter, David
Stone, Charles J.

Stute, Winfried

Tibshirani, Robert
Tsiatis, Anastasios
Tsybakov, Alexandre

Wand, Matt P.
Ware, James
Wasserman, Larry
Wei, Lee-jen
West, Mike
Wu, Chien Fu
Ying, Zhiliang
Zeger, Scott
Zhao, Lueping
Zhu, Lixing
Zou, Hui

Clinic., Latent.Var.
Clinic.

Regression

Mach.Learn.

Bayes, Math.Stats.
Mach.Learn.

Clinic., Bio./Med.
Regression

Latent.Var., Math.Stats.,
Mach.Learn.

Bio./Med.

Bio./Med.

Latent.Var., Mach.Learn.
Inference, Regression
Time Series, Mach.Learn.
Mach.Learn.

Clinic., Time Series
Clinic.

Clinic.

Clinic.

Regression

Mach.Learn., Regression
Mach.Learn., Bayes
Clinic., Mach.Learn.
Regression, Inference,
Latent.Var.

Regression, Hypo.Test,
Math.Stats.

Mach.Learn.

Clinic.

Regression, Inference,
Math.Stats.

Regression

Clinic., Latent.Var.
Inference, Mach.Learn.
Time Series
Mach.Learn., Time Series
Exp.Design

Time Series, Regression
Clinic., Time Series
Bio./Med., Regression
Regression, Hypo.Test
Latent.Var., Mach.Learn.,
Regression
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smooth the curves as before. The results are in Figure 12. While we may plot the average

weights of different topics in the same journal, we choose to plot the average weights of

the same topic in different journals. In Figure 12, each panel corresponds to a topic, and

different curves in each panel represent different journals.
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Figure 12: The yearly average topic weights for 7 selected journals during 1990-2015, and
the friendliest journal (out of these 7 journals) for each topic.
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L The cross-topic citation weights

In Section 6.3, we have introduced two definitions of the cross-topic-citation graph. In the
first definition, for each 1 < k # ¢ < K, there is a directed edge from topic k to topic ¢
with Weight PM = ng/(zgzl Nkm)7 where

n

Nie =Y (k) (0)C5.

ij=1
In the second definition, for each 1 < k # ¢ < K, there is a directed edge from topic k to
topic £ with weight P}, = N;,/(3°%_, Ny ), where

n

Ny =Y _ai(k)yw;(0)Cy,  with 0] € {er,en,... ex}.

ij=1
Here, w} encodes the ‘dominant topic’, i.e., W} = e if and only if £ = argmax{l < m <
K : w;(m)}. The two 11 x 11 weighted adjacency matrices P and P* are presented in
Table 10 and Table 11, respectively.

Exp @slgn

Figure 13: The cross-topic citation graph associated with P* (the width of edge if propor-
tional to the weight of this edge; only edges with a weight > 0.11 are shown).

It is seen from Tables 10-11 that distribution of elements in P are more heavy tailed.

As a result, if we apply the same threshold P to P* to get two binary matrices, the one
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Table 10: The cross-topic citation matrix P* (by dominant topics). The diagonal elements
show the proportions of within-topic-citations. The off-diagonal elements that are > 0.09
are marked grey. This matrix is used to construct the graph in Figure 8 of the main article.

Bayes Bio./Med Clinic. Exp.Des Hypo.Test Inference Latent.Var Mach.Learn Math.Stats Regression Time Seri.
Bayes .230 .057 .046 .013 .070 .056 .066 127 .130 134 .072
Bio./Med. .096 .143 .099 .029 .081 .048 .070 .081 .081 .169 101
Clinic. .076 .090 .339 .050 .064 .034 .060 .061 .036 .098 .091
Exp.Design | .029 .049 .079 .562 .056 .030 .034 .034 .039 .064 .024
Hypo.Test .062 .048 .038 .019 .454 .049 .038 .041 .092 112 .048
Inference .088 .054 .034 .026 .103 .242 .064 .063 124 148 .054
Latent.Var. | .092 .053 .047 .014 .048 .046 .256 .116 .079 .203 .046
Mach.Learn.| .123 .055 .039 .017 .048 .044 .097 .312 .087 122 .056
Math.Stats. | .102 .041 .018 .013 .068 .071 077 073 .347 .126 .064
Regression | .073 .047 .030 .015 .055 .050 .096 .061 .087 431 .055
Time Series | .089 .072 .066 .013 .057 .045 .046 .076 .090 141 .303

Table 11: The cross-topic citation matrix P (by topic weights). The diagonal elements
show the proportions of within-topic-citations. The off-diagonal elements that are > 0.11
are marked grey. This matrix is used to construct the graph in Figure 13.

Bayes Bio./Med Clinic. Exp.Des Hypo.Test Inference Latent.Var Mach.Learn Math.Stats Regression Time Seri.
Bayes 125 .101 .076 .031 107 .072 .068 .092 123 .138 .068
Bio./Med. 113 .108 .084 .034 .099 .072 .070 .090 117 139 .073
Clinic. 111 107 .108 .040 .096 .068 .071 .088 .109 128 073
Exp.Design | .088 .090 .080 .207 .086 .063 .056 .075 .099 .108 .048
Hypo.Test 119 .099 .075 .033 .130 .073 .063 .083 .126 138 .063
Inference .108 .099 073 .034 101 .100 .074 .091 118 138 .064
Latent.Var. | .110 .100 077 .031 .090 .077 .101 .099 112 .138 .064
Mach.Learn.| .115 102 .076 .034 .094 .076 077 .110 114 135 .068
Math.Stats. | .116 .100 .073 .033 107 .073 .067 .086 .135 144 .065
Regression | .113 .100 .072 .032 .100 .074 .070 .088 125 .159 .066
Time Series | .112 107 .083 .028 .092 .069 .067 .091 112 132 .106

associated with P is sparser and may be more interesting. For this reason, we choose to
present the graph associated with P (thresholded at 0.09) in the main text; see Figure 8.
The graph associated with P* (thresholded at 0.11) is shown in Figure 13.

The diagonal elements of P and P* show the proportion of within-topic-citations for
each topic. We observe that Ezp.Design, Hypo.Test, Math.Stats. and Regression are the
topics whose proportions of within-topic-citations are relatively high, and that Bio./Med.,
Inference and Latent. Var are the topics whose proportions of within-topic-citations are

relatively low.
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