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We generalize R. P. Stanley’s celebrated theorem that the h∗-
polynomial of the Ehrhart series of a rational polytope has 
nonnegative coefficients and is monotone under containment 
of polytopes. We show that these results continue to hold for 
weighted Ehrhart series where lattice points are counted with 
polynomial weights, as long as the weights are homogeneous 
polynomials decomposable as sums of products of linear forms 
that are nonnegative on the polytope. We also show nonneg-
ativity of the h∗-polynomial as a real-valued function for a 
larger family of weights.
We explore the case when the weight function is the square 
of a single (arbitrary) linear form. We show stronger results 
for two-dimensional convex lattice polygons and give concrete 
examples showing tightness of the hypotheses. As an applica-
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tion, we construct a counterexample to a conjecture by Berg, 
Jochemko, and Silverstein on Ehrhart tensor polynomials.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

Let P ⊆ Rd be a rational convex polytope, that is, a polytope with vertices in Qd, and 
let w : Rd → R be a polynomial function, often called a weight function. A computational 
problem arising throughout the mathematical sciences is to compute, or at least estimate, 
the sum of the values w(x) := w(x1, . . . , xd) over the set of integer points belonging to 
P , namely

ehr(P,w) =
∑

x∈P∩Zd

w(x).

Weighted sums of the above type are also a classical topic in convex discrete geometry 
where they have been studied for a long time under the name polynomial valuations [2,
12,33,36]. They appear in the work of Brion and Vergne [19], who used weighting in the 
context of Euler-Maclaurin formulas. Other ideas of what it means to be weighted have 
been proposed later on, for instance, by Chapoton [22], who developed a related q-theory 
for the case when w(x) is a linear form, also by Stapledon [41], who explored a grading 
with piece-wise linear functions, and by Ludwig and Silverstein [31], who introduced and 
studied Ehrhart tensor polynomials based on discrete moment tensors.

Important applications of such weighted problems appear, for instance, in enumerative 
combinatorics [3,24], statistics [21,23], non-linear optimization [25], and weighted lattice 
point sums, which have played a key role in the computation of volumes and integrals 
over polytopes [9].

The sum of the weighted integer points in the n-th dilate of the rational polytope P
for nonnegative integers n ∈ N is given by the weighted Ehrhart function ehr(nP, w). 
The main object of this article is the generating function

Ehr(P,w; t) =
∑

n≥0
ehr(nP,w)tn

called the weighted Ehrhart series. The fact that the weighted Ehrhart series is a rational 
function has been known for a long time, e.g., it has been used in computational software 
for at least ten years ([8,18]). For our purposes we see in Proposition 2.4 why Ehr(P, w; t)
is a rational function of the form

Ehr(P,w; t) =
h∗
P,w(t)

(1 − tq)r+m+1
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whenever P is an r-dimensional rational polytope; here m = deg(w), h∗
P,w(t) is a poly-

nomial of degree at most q(r + m + 1) − 1, and q denotes the smallest positive integer 
such that qP has vertices in Zd, called the denominator of P .

We say that the empty polytope has denominator 1. We call h∗
P,w(t) the weighted 

h∗-polynomial of P and its list of coefficients the weighted h∗-vector of P with respect 
to the weight w.

From the rationality of Ehr(P, w; t), it follows that the weighted Ehrhart function 
ehr(nP, w) is a quasi-polynomial in n, that is, it has the form

ehr(nP,w) =
d+m∑

i=0
Ei(n)ni

where the coefficients Ei : N → R are periodic functions with periods dividing the 
denominator of P . The leading coefficient of the h∗-polynomial is equal to the integral of 
the weight w over the polytope P ; these integrals were studied in [4], [5] and [9]. If w = 1, 
that is, if ehr(nP, w) = |nP ∩Zd|, then we recover the classical Ehrhart theory counting 
lattice points in dilates of polytopes. Even in this case, it is an NP-hard problem to 
compute all of the coefficients Ei. See [6,14] for excellent introductions to this topic.

In the classical case of w = 1, a fundamental theorem by Richard P. Stanley, often 
called Stanley’s nonnegativity theorem, states that the h∗-polynomial of any rational 
polytope has only nonnegative integer coefficients [38]. Even stronger, for rational poly-
topes P and Q such that P ⊆ Q, Stanley proved h∗

P,1(t) ≼ h∗
Q,1(t) where ≼ denotes 

coefficient-wise comparison. This last property has been known as h∗ monotonicity prop-
erty. For details and proofs see e.g., [17,38,39].

Positivity and nonnegativity of coefficients is important in algebraic combinatorics (see 
e.g., [40] and its references), but we must stress that one nice aspect of our results is they 
connect to the nonnegativity of the associated h∗-polynomial as real-valued functions. 
This is a topic that goes back to the work on real algebraic geometry by Hilbert, Pólya, 
Artin and others (see [32,35]), and it has seen renewed activity in the classical methods of 
moments, real algebraic geometry, and sums of squares decompositions for polynomials 
because it provides a natural approach for optimization algorithms (see [13,32]).

Motivated by this prior work and context, our article discusses the nonnegativity and 
monotonicity properties of the coefficients of weighted h∗-polynomials, as well as their 
non-negativity as real-valued functions.

1.1. Our contributions

In contrast to its classical counterpart, the weighted h∗-polynomial may have negative 
coefficients, even when the weight function is nonnegative over the polytope and all of 
its nonnegative dilates. For example, when P is the line segment [0, 1] ⊆ R, one can 
calculate that
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Ehr(P, 1; t) = 1
(1 − t)2 and Ehr(P, x2; t) = t2 + t

(1 − t)4 ,

and so their sum is

Ehr(P, x2 + 1; t) = 2t2 − t + 1
(1 − t)4 .

As can be seen in this simple example, adding Ehrhart series corresponding to weights 
of different degrees may introduce negative coefficients to the h∗-polynomial since the 
rational functions have different denominators. We therefore focus on homogeneous poly-
nomials as weight functions. For an investigation of how to deal with more general weights 
see [24].

We now consider the following, slightly more general setup, where the weight function 
w may depend not only on the coordinates of the points nP ∩Zd but also on the scaling 
factor n. For any rational polytope P ⊆ Rd, the cone over P (or homogenization of P ) 
is the rational polyhedral cone in Rd+1 defined as

C(P ) := cone(P × {1}) = {c(p, 1) | c ≥ 0, p ∈ P}.

For any polynomial w in d + 1 variables we consider the weighted Ehrhart series

Ehr(P,w; t) =
∑

x∈C(P )∩Zd+1

w(x)txd+1 .

Let C(P )∗ be the cone consisting of the linear functions on Rd+1 which are nonnegative 
on C(P ). If the cone C(P ) is defined by linear inequalities ℓ1 ≥ 0, . . . , ℓm ≥ 0, then 
C(P )∗ is a polyhedral cone generated by nonnegative linear combinations of ℓ1, . . . , ℓm. 
We focus on the following two families of polynomials in d + 1 variables as weights 
functions:

(i) the semiring RP consisting of sums of products of linear forms in C(P )∗. Each element 
of RP has the form c1ℓa1 + · · ·+ ckℓak where c1, . . . , ck are positive real numbers and 
ℓa1 , . . . , ℓak are monomials in the generators ℓ1, . . . , ℓm of C(P )∗; and

(ii) the semiring SP consisting of sums of nonnegative products of linear forms on P . If a 
product of linear forms is nonnegative on P , then each of the linear forms involved is 
either nonnegative on all of P or appears with an even power; otherwise the product 
would change sign across the hyperplane where the linear form vanishes. Therefore, 
an element of SP has the form s1ℓa1 + · · · + skℓak where s1, . . . , sk are squares 
of products of any linear forms and ℓa1 , . . . , ℓak are monomials in the generators 
ℓ1, . . . , ℓm of C(P )∗.

In RP each of the linear forms involved are nonnegative on P . In contrast, in SP , 
each product is nonnegative but the individual linear forms may have negative values in 
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P . Thus we have RP ⊆ SP . Both semirings are contained in the preordering generated 
by ℓ1, . . . , ℓm consisting of elements of the form s1ℓa1 + · · · + skℓak where si are arbi-
trary squares of polynomials instead of just squares of products of linear forms. See, for 
example, [32].

The main results of this article are the following.

Nonnegativity Theorem. (Theorem 2.6). Let P be a rational polytope, C(P ) its cone, and 
C(P )∗ the dual cone of linear functions on Rd+1 which are nonnegative on C(P ). Let 
RP and SP be, respectively, the semirings of sums of products of linear forms in C(P )∗
and of sums of nonnegative products of linear forms on P .

1. If the weight w is a homogeneous element of RP , then the coefficients of h∗
P,w(t) are 

nonnegative.
2. If the weight w is a homogeneous element of SP , then h∗

P,w(t) ≥ 0 for t ≥ 0.

As we mentioned before Stanley also showed that the classical h∗-polynomials satisfy 
a monotonicity property: for lattice polytopes P and Q, of possibly different dimension, 
such that P ⊆ Q, we have h∗

P (t) ≼ h∗
Q(t) where ≼ denotes the coefficient-wise inequalities 

[39]. This can be seen as a generalization of the nonnegativity theorem when we set P = ∅
in which case the Ehrhart series and thus the h∗-polynomial is zero. Now we are able to 
prove the following:

First Monotonicity Theorem. (Theorem 2.8). Let P, Q ⊆ Rd be rational polytopes, P ⊆
Q, and let g be a common multiple of the denominators δ(P ) of P and δ(Q) of Q. Then, 
for all weights w ∈ RQ,

(1+ tδ(P ) + · · ·+ tg−δ(P ))dimP+m+1h∗
P,w(t) ≼ (1+ tδ(Q) + · · ·+ tg−δ(Q))dimQ+m+1h∗

Q,w(t) .

In particular, if P ⊆ Q are polytopes with the same denominator, then taking g = δ(P ) =
δ(Q) gives

h∗
P,w(t) ≼ h∗

Q,w(t). (1)

Second Monotonicity Theorem. (Theorem 2.9). Let P, Q ⊆ Rd be rational polytopes of 
the same dimension D = dimP = dimQ, P ⊆ Q, and let g be a common multiple of the 
denominators δ(P ) of P and δ(Q) of Q. Then, for all weights w ∈ SQ,

(1 + tδ(P ) + · · · + tg−δ(P ))D+m+1h∗
P,w(t) ≤ (1 + tδ(Q) + · · · + tg−δ(Q))D+m+1h∗

Q,w(t)

for all t ≥ 0. In particular, if P ⊆ Q are polytopes with the same denominator and 
dimension, then taking g = δ(P ) = δ(Q) gives

h∗
P,w(t) ≤ h∗

Q,w(t) for all t ≥ 0. (2)
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We wish to emphasize that while Theorem 2.6 is a generalization of Stanley’s nonnega-
tivity theorem, Theorem 2.8 is closer in spirit to Pólya’s theorem on positive polynomials
which says that if a homogeneous polynomial f ∈ R[X1, . . . , Xn] is strictly positive on 
the standard simplex

∆n := {(x1, . . . , xn) ∈ Rn | x1, . . . , xn ≥ 0, x1 + · · · + xn = 1},

then for sufficiently large N , all of the nonzero coefficients of (X1 + · · ·+Xn)Nf(X1, . . . ,
Xn) are strictly positive. Note also, the semiring RP is a homogenized version of the 
semiring appearing in Handelman’s theorem [27] which says that all polynomials strictly 
positive on a polytope P lie in the semiring generated by the linear forms which are 
nonnegative on the polytope. We remark that all homogeneous polynomials are sums 
of (unrestricted) products of linear forms and it is an important problem to find such 
decompositions (see [1,34,37] and references therein). Thus our restriction to RP and SP

is a natural approach to understanding nonnegativity and bringing us close to the best 
possible result.

To study the limitations of our results we focus on the case when the weight is given by 
a single arbitrary linear form. In this case we strengthen our results for two dimensional 
lattice polygons.

Theorem 3.3. For every (closed) convex lattice polygon P and every linear form ℓ, the 
h∗-polynomial of P with respect to w(x) = ℓ2(x) has only nonnegative coefficients.

In particular, this shows that the weighted h∗-polynomial of any convex lattice polygon 
has nonnegative coefficients, even when the linear form takes negative values on the 
polygon. Furthermore, we provide examples that show that this result is no longer true 
if the assumptions on the polytope or weight are relaxed. In particular, we construct 
a 20-dimensional lattice simplex and a linear form such that the h∗-polynomial with 
respect to the square of the linear form has a negative coefficient (Example 3.7). These 
results have interpretations and implications in terms of generating functions of Ehrhart 
tensor polynomials. In particular, the example mentioned above gives a counterexample 
to a conjecture of Berg, Jochemko and Silverstein [11, Conjecture 6.1] on the positive 
semi-definiteness of h2-tensor polynomials of lattice polytopes (Corollary 4.4).

Unlike the classical results of Stanley for w = 1, where techniques from commutative 
algebra can be applied since the Ehrhart series is actually the Hilbert series of a graded 
algebra, we do not see an obvious connection to commutative algebra methods. Instead, 
to prove Theorems 2.6 and 2.8 we consider the cone homogenization of polytopes and 
half-open decompositions and follow a variation of the triangulation ideas first outlined 
by Stanley in [38]. While this methodology has been used by many authors since then 
[7,17,29], we require a careful analysis of the properties of the semirings RP and SP . 
For this we consider multivariate generating functions for half-open cones and provide 
explicit combinatorial interpretations using generalized q-Eulerian polynomials [42]. The 
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q-Eulerian polynomials and their relatives frequently appear in enumerative and geomet-
ric combinatorics [10,15,20,28].

This article is organized as follows. In Section 2 we give an explicit formula for the 
weighted multivariate generating function for half-open simplicial cones (Lemma 2.2). 
This formula then allows us to show the rationality of the (univariate) weighted Ehrhart 
series (Proposition 2.4) as well as the first part of Theorem 2.6 by specialization and using 
half-open decompositions. The second part of Theorem 2.6 is obtained by considering 
subdivisions of the polytope induced by the linear forms involved in the weight function. 
A more refined analysis then also allows us to prove the monotonicity Theorems 2.8
and 2.9. In Section 3 we focus on the case when the weight function is given by a square 
of a single linear form and prove Theorem 3.3. We also show that the assumptions on 
convexity, denominator, dimension and degree are necessary by providing examples. In 
Section 4 we describe the connections and implications of our results to Ehrhart tensor 
polynomials. In particular, we show that weighted Ehrhart polynomials can be seen as 
certain evaluations of Ehrhart tensor polynomials (Proposition 4.1), and thus, positive 
semi-definiteness of h2-tensor polynomials is equivalent to nonnegativity of weighted 
h∗-polynomials with respect to squares of linear forms (Proposition 4.2). In particular, 
Example 3.7 disproves [11, Conjecture 6.1] (Corollary 4.4).

2. Nonnegativity and monotonicity of weighted h∗-polynomials

2.1. Generating series

Let P ⊆ Rd be a rational polytope of dimension r with denominator q and let w :
Rd → R be a polynomial of degree m. In this section we will see that Ehr(P, w; t) is a 
rational function of the form

Ehr(P,w; t) =
h∗
P,w(t)

(1 − tq)r+m+1 ,

where h∗
P,w(t) is a polynomial of degree at most q(r + m + 1) − 1. Our main goal is 

to study positivity properties of the numerator polynomial. Our approach uses general 
multivariate generating series of half-open simplicial cones and specializing to obtain 
the univariate generating function of the homogenization C(P ) following ideas outlined 
in [38] but requiring careful analysis of the semirings RP and SP .

For a polynomial w(x) in d variables, the multivariate weighted lattice point generating 
function of the cone C is 

∑
x∈C∩Zd w(x)zx where zx = zx1

1 · · · zxd
d is a monomial in d

variables. We will now show that this generating function is a rational function and give 
an explicit formula when the weight is a product of linear forms.

Our expression uses the following parametrized generalization of Eulerian polynomials. 
For λ ∈ [0, 1], let Aλ

d(t) be the polynomial defined by
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∑

n≥0
(n + λ)dtn = Aλ

d(t)
(1 − t)d+1 .

If λ = 1, then this is the usual Ehrhart series of a d-dimensional unit cube, and A1
d(t)

is the Eulerian polynomial, all of whose roots are real and nonpositive. If λ = 1
r for 

some integer r ≥ 1 then rdAλ
d(t) equals the r-colored Eulerian polynomial [42]. For each 

λ ∈ [0, 1] the polynomial Aλ
d(t) also has only real, nonpositive roots [16, Theorem 4.4.4]. 

In particular, all of its coefficients are nonnegative. We formally record this in a lemma.

Lemma 2.1 ([16, Theorem 4.4.4]). For any integer d ≥ 1 and real number λ ∈ [0, 1], the 
coefficients of Aλ

d(t) are nonnegative.

Our computations additionally use some concepts which we now introduce. For con-
sistency, we assume that the polytopes live in the d-dimensional space Rd while cones 
live in the ambient space Rd+1.

Let C be a half-open (r+1)-dimensional simplicial cone in Rd+1 generated by nonzero 
integer vectors v1, . . . , vr+1 ∈ Zd+1 with the first k facets removed where 0 ≤ k ≤ r + 1. 
More precisely,

C = {c1v1 + · · · + cr+1vr+1 | c1, . . . , ck > 0, ck+1, . . . , cr+1 ≥ 0}.

Since C is simplicial, every point α ∈ C can be written uniquely as

α = x + s1v1 + · · · + sr+1vr+1

where s1, . . . , sr+1 are nonnegative integers, and x is in the half-open parallelepiped

Π = {λ1v1 + · · · + λr+1vr+1 | 0 < λ1, . . . ,λk ≤ 1, 0 ≤ λk+1, . . . ,λr+1 < 1}.

We obtain the following explicit formula for the multivariate generating function of a 
half-open simplicial cone if the weight is a product of linear forms. Since every polynomial 
is a sum of product of linear forms, namely monomials, this gives a formula to compute 
the generating function for any polynomial weight.

Proposition 2.2. Let C be an (r + 1)-dimensional half-open simplicial cone in Rd+1 with 
generators v1, . . . , vr+1 in RP . Let w = ℓ1 · · · ℓm be a product of linear forms in d + 1
variables. Then

∑

α∈C∩Zd+1

w(α)zα

=
∑

x∈Π∩Zd+1

⎛

⎝zx
∑

I1⊎···⊎Ir+1=[m]

∏

i∈I1

ℓi(v1) · · ·
∏

i∈Ir+1

ℓi(vr+1)
r+1∏

j=1

A
λj(x)
|Ij | (zvj )

(1 − zvj )|Ij |+1

⎞

⎠ (3)



E. Bajo et al. / Advances in Mathematics 444 (2024) 109627 9

where Π is the half-open parallelepiped as above and each x ∈ Π is written x = λ1(x)v1 +
· · · + λr+1(x)vr+1. The innermost sum runs over all the ordered partitions of [m] into 
r+ 1 (possibly empty) parts and I1 ⊎ · · ·⊎ Ir+1 denotes the disjoint union of these parts.

Note that when m = 0 and the weight is constant, there is only the partition into 
empty sets where by definition the products are all 1 (empty products) and the Eulerian 
polynomials are all 1.

Proof. Using that any α ∈ C is α = x + s1v1 + · · · sr+1vr+1 for x ∈ Π, the generating 
function is

∑

α∈C∩Zd+1

w(α)zα

=
∑

α∈C∩Zd+1

(
m∏

i=1
ℓi(α)

)
zα

=
∑

x∈Π∩Zd+1

∑

s1≥0
· · ·

∑

sr+1≥0

m∏

i=1
ℓi(x + s1v1 + · · · + sr+1vr+1)

︸ ︷︷ ︸
(∗)

zx+s1v1+···+sr+1vr+1 .

Since x ∈ Π is x = λ1(x)v1 + · · ·+λr+1(x)vr+1, using linearity of each ℓi we can expand 
out

(∗) =
∑

I1⊎···⊎Ir+1=[m]

[
∏

i∈I1

ℓi((s1 + λ1(x))v1)
]
· · ·

⎡

⎣
∏

i∈Ir+1

ℓi((sr+1 + λr+1(x))vr+1)

⎤

⎦

=
∑

I1⊎···⊎Ir+1=[m]

[
∏

i∈I1

ℓi(v1)
]
· · ·

⎡

⎣
∏

i∈Ir+1

ℓi(vr+1)

⎤

⎦

× (s1 + λ1(x))|I1| · · · (sr+1 + λr+1(x))|Ir+1|,

where i ∈ Ij represents the term (sj + λj(x))vj being chosen from ℓi when multiplying 
out. Placing this into our original series, we obtain

∑

α∈C∩Zd+1

w(α)zα

=
∑

x∈Π∩Zd+1

zx
∑

I1⊎···⊎Ir+1=[m]

∏

i∈I1

ℓi(v1) · · ·
∏

i∈Ir+1

ℓi(vr+1)
r+1∏

j=1

⎛

⎝
∑

sj≥0
(sj + λj(x))|Ij |zsjvj

⎞

⎠ .

(4)

For the innermost sum on the right, we can write for each j
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∑

sj≥0
(sj + λj(x))|Ij |(zvj )sj =

A
λj(x)
|Ij | (zvj )

(1 − zvj )|Ij |+1 . (5)

This completes the proof. !

In order to show that Ehr(P, w; t) is a rational function for any rational polytope 
P we consider partitions into half-open simplices. Given affinely independent vectors 
u1, . . . , ur+1 ∈ Rd, the half-open simplex with the first k ∈ {0, 1, . . . , r + 1} facets 
removed is defined as

∆ =
{

r+1∑

i=1
ciui | c1, . . . ck > 0, ck+1, . . . , cr+1 ≥ 0,

r+1∑

i=1
λi = 1

}
,

and the homogenization of ∆ is the half-open simplicial cone

C(∆) = {c1v1 + · · · + cr+1vr+1 | c1 > 0, . . . , ck > 0, ck+1 ≥ 0, . . . , cr+1 ≥ 0}

where vi = (ui, 1) for all i.
Given an r-dimensional polytope P and a triangulation, we can partition P into half-

open simplices in the following way. Let q be a generic point in the relative interior of 
P and let S = conv{u1, . . . , ur+1} be a maximal cell in the triangulation where conv{·}
denotes the convex hull. We say that a point p ∈ S is visible from q if (p, q] ∩ S = ∅. A 
half-open simplex, denoted HqS, is then obtained by removing all points that are visible 
from q, which can be seen to be equal to

HqS = {c1u1 + · · · + cr+1ur+1 ∈ S | ci > 0 for all i ∈ Iq}

where Iq = {i ∈ [r + 1] | ui not visible from q}.
The following is a special case of a result of Köppe and Verdoolaege [30].

Theorem 2.3 ([30]). Let P be a polytope, q ∈ aff P be a generic point and S1, . . . , Sm be 
the maximal cells of a triangulation of P . Then

P = HqS1 ⊎HqS2 ⊎ · · · ⊎HqSm

is a partition into half-open simplices.

With the notation as in the previous theorem, it follows that

C(P ) = C(HqS1) ⊎ C(HqS2) ⊎ · · · ⊎ C(HqSm), (6)

that is, the homogenization C(P ) of P can be partitioned into half-open simplicial cones. 
This, together with Proposition 2.2, allows us to show rationality of Ehr(P, w; t).
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Proposition 2.4. For any rational polytope P of dimension r and any degree-m form w
on C(P ), the weighted Ehrhart series is a rational function of the form

Ehr(P,w; t) =
h∗
P,w(t)

(1 − tq)r+m+1

where q is a positive integer such that qP has integer vertices and h∗
P,w(t) is a polynomial 

of degree at most q(r + m + 1) − 1.

Proof. Let S1, . . . , Sm be the maximal cells of a triangulation of P using no new vertices, 
that is, for all i, the vertex set of Si is contained in the vertex set of P . Let

P = HqS1 ⊎HqS2 ⊎ · · · ⊎HqSm

be a partition into half-open simplices, and let

Ehr(HqSi, w; t) =
∑

x∈C(HqSi)∩Zd+1

w(x)txd+1

for all i. By equation (6), we have

Ehr(P,w; t) = Ehr(HqS1, w; t) + · · · + Ehr(HqSm, w; t).

It thus suffices to prove the claimed rational form for all half-open simplices in the 
partition.

Let ∆ = HqSi be a rational half-open simplex in the partition. Let v1, . . . , vr+1 ∈ Zd+1

be generators of the half-open simplical cone C(∆). Since the triangulation of P used 
only vertices of P , we can choose v1, . . . , vr+1 ∈ Zd+1 such that their last coordinates 
are all equal to q.

Since every degree-m form is a sum of monomials, each of which is a product of linear 
forms, it furthermore suffices to consider the case when w is a product of linear forms. 
The weighted Ehrhart series is obtained by substituting z1 = · · · = zd = 1 and zd+1 = t

into the generating function in Proposition 2.2. Thus

Ehr(∆, w; t)

=
∑

x∈Π∩Zd+1

⎛

⎝txd+1
∑

I1⊎···⊎Ir+1=[m]

∏

i∈I1

ℓi(v1) · · ·
∏

i∈Ir+1

ℓi(vr+1)
r+1∏

j=1

A
λj(x)
|Ij | (tq)

(1 − tq)|Ij |+1

⎞

⎠ ,

where Π is the half-open parallelepiped in C(∆) and each x ∈ Π is written x = λ1(x)v1 +
· · · + λr+1(x)vr+1.

Since |I1| + · · · |Ir+1| + r + 1 = m + r + 1, we have

r+1∏

j=1

1
(1 − tq)|Ij |+1 = 1

(1 − tq)m+r+1 . (7)
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Then we have

h∗
∆,w(t) =

∑

x∈Π∩Zd+1

txd+1
∑

I1⊎···⊎Ir+1=[m]

∏

i∈I1

ℓi(v1) · · ·
∏

i∈Ir+1

ℓi(vr+1)
r+1∏

j=1
A

λj(x)
|Ij | (tq). (8)

Thus the claim follows with h∗
P,w(t) = h∗

HqS1,w
(t) + · · · + h∗

HqSm,w(t). !

Remark 2.5. In the multivariate version of the weighted Ehrhart rational function, the 
denominators do not simplify nicely as in (7). When bringing all constituents of the 
multivariate generating function of C(P ) in a common denominator this affects the 
positivity of the numerator polynomial.

2.2. Nonnegativity

We are now ready to prove the main theorem stated in the introduction. Recall that 
RP is the semiring consisting of sums of products of nonnegative linear forms on P and 
SP is the semiring consisting of sums of nonnegative products of linear forms on P .

Theorem 2.6 (Nonnegativity Theorem). Let P be a rational polytope.

1. If the weight w is a homogeneous element of RP , then the coefficients of h∗
P,w(t) are 

nonnegative.
2. If the weight w is a homogeneous element of SP , then h∗

P,w(t) ≥ 0 for t ≥ 0.

Proof. Let P be a rational polytope of dimension r.
For (1), it suffices to prove the statement when the weight is a product of nonnega-

tive linear forms on C(P ). The proof follows from the argument given in the proof of 
Proposition 2.4 where h∗

P,w(t) is expressed as a sum of polynomials h∗
∆,w(t) as given in 

Equation (8) where ∆ ranges over all half-open simplices in a half-open triangulation 
of P . Each of the vectors vi in Equation (8) is a generator of C(P ). Thus, if w ∈ RP , 
h∗

∆,w(t) has nonnegative coefficients and so does h∗
P,w(t) as a sum of these polynomials.

For (2), let w be a product of linear forms ℓ1, . . . , ℓm on C(P ), and assume w is 
nonnegative on P . First suppose ℓ1, . . . , ℓm all have rational coefficients. Subdivide P
into rational polytopes using the hyperplanes ℓ1 = 0, . . . , ℓm = 0. Let s be a positive 
integer such that sQ has integer coordinates for every r-dimensional polytope Q that is 
part of the subdivision. Then s is divisible by the denominator q = δ(P ) of P . On each 
such polytope Q, each linear form ℓi is either entirely nonnegative or entirely nonpositive, 
and the number of nonpositive ones is even because their product w is nonnegative. Thus 
after changing the signs of an even number of the linear forms on Q, which does not 
change w, we can apply the part (1) result to obtain that

Ehr(Q,w; t) = hQ(t)
(1 − ts)r+m+1 =

h∗
Q,w(t)(1 + tδ(Q) + . . . + ts−δ(Q))r+m+1

(1 − tδ(Q))r+m+1(1 + tδ(Q) + . . . + ts−δ(Q))r+m+1
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where hQ(t) has nonnegative coefficients for every polytope Q in the subdivision since 
h∗
Q,w(t) has nonnegative coefficients by part (1). The weight w is zero on the boundaries 

where the polytopes overlap in the subdivision, so the Ehrhart series of P is the sum 
of Ehrhart series of the r-dimensional polytopes in the subdivision. Summing them up 
gives

Ehr(P,w; t) = h(t)
(1 − ts)r+m+1 ,

for some polynomial h(t) with nonnegative coefficients. Since s is divisible by the de-
nominator q of P , we have

h∗
P,w(t)

(1 − tq)r+m+1 = h(t)
(1 − ts)r+m+1 = h(t)

((1 − tq)(1 + tq + t2q + · · · + ts−q))r+m+1 ,

so

h∗
P,w(t)(1 + tq + t2q + · · · + ts−q)r+m+1 = h(t).

The polynomial h(t) has nonnegative coefficients, so h(t) > 0 for t > 0. It follows that 
h∗
P,w(t) > 0 for all t > 0. This proves part (2) when the linear forms have rational 

coefficients.
To deal with irrational coefficients, note that for a fixed polytope P , the map that 

sends a weight w to the corresponding h∗-polynomial h∗
P,w(t) is a linear, hence contin-

uous, map from the vector space of homogeneous degree m polynomials to the vector 
space of degree ≤ r + m polynomials. The set of polynomials h∗ satisfying h∗(t) ≥ 0
when t ≥ 0 is a closed set. Thus we obtain the result (2) for linear forms with irrational 
coefficients as well. !

2.3. Monotonicity

In this subsection we generalize Stanley’s monotonicity result for the h∗-polynomial 
for rational polytopes to a weighted version by proving Theorem 2.8. Our proof follows a 
similar structure as the proof of nonnegativity. We start by proving a version of the claim 
for pyramids over half-open simplices and then extend it to all rational polytopes. This 
will become useful when comparing h∗-polynomials of polytopes of different dimension 
in the general case.

Given a half-open r-dimensional rational simplex F ⊆ Rd, say

F = {λ1v1 + · · · + λr+1vr+1 | λ1, . . . ,λk ≥ 0,λk+1, . . . ,λr+1 > 0,λ1 + · · · + λr+1 = 1} ,

and a rational point u ∈ Rd not in the affine span of F , we let the pyramid of u over F
be
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Pyr(u, F ) := {µu + λ1v1 + · · · + λr+1vr+1 |

µ,λ1, . . . ,λk ≥ 0,λk+1, . . . ,λr+1 > 0, µ + λ1 + · · · + λr+1 = 1}.

We denote the s-fold pyramid of u1, . . . , us ∈ Qd over F by

Pyr(s)(u1, . . . , us, F ) := Pyr(u1,Pyr(u2, . . .Pyr(us, F ))),

now a half-open simplex of dimension s + r.

Lemma 2.7. Let F ⊆ Rd be a half-open r-dimensional rational simplex with denominator 
δ(F ) and let ∆ be an s-fold pyramid over F with denominator δ(∆). For all g ≥ 1
divisible by δ(∆) and all w = ℓ1 · · · ℓm ∈ R∆,

(1 + tδ(F ) + · · · + tg−δ(F ))r+m+1h∗
F,w(t) ≼ (1 + tδ(∆) + · · · + tg−δ(∆))s+r+m+1h∗

∆,w(t).

Proof. Let v1, . . . , vr+1 ∈ 1
δ(F )Z

d be vertices of F , labeled such that

F = {λ1v1 + · · · + λr+1vr+1 | λ1, . . . ,λk ≥ 0,λk+1, . . . ,λr+1 > 0,λ1 + · · · + λr+1 = 1} .

Suppose u1, . . . , us ∈ 1
δ(∆)Z

d are such that ∆ = Pyr(s)(u1, . . . , us, F ), that is, suppose

∆ = {µ1u1 + · · · + µsus + λ1v1 + · · · + λr+1vr+1 |

µ1, . . . , µs,λ1, . . . ,λk ≥ 0,λk+1, . . . ,λr+1 > 0,

µ1 + · · · + µs + λ1 + · · · + λr+1 = 1}.

Considering the cone C(F ) with generators of last coordinate g and fundamental 
parallelepiped

Πg(F )=
{
λ1

(
gv1
g

)
+ · · · +λr+1

(
gvr+1
g

)
| 0 ≤ λ1, . . . ,λk < 1, 0 < λk+1, . . . ,λr+1≤1

}
,

we obtain by Proposition 2.2

Ehr(F,w; t)

=

∑

x∈Πg(F )∩Zd+1

txd+1
∑

I1⊎···⊎Ir+1=[m]

∏

i∈I1

ℓi(gv1) · · ·
∏

i∈Ir+1

ℓi(gvr+1)
r+1∏

j=1
A

λj(x)
|Ij | (tg)

(1 − tg)r+m+1 . (9)

Analogously, considering the cone C(∆) with generators of last coordinate g and 
fundamental parallelepiped
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Πg(∆) =
{
µ1

(
gu1
g

)
+ · · · + µs

(
gus
g

)
+ λ1

(
gv1
g

)
+ · · · + λr+1

(
gvr+1
g

)
|

0 ≤ µ1, . . . , µs,λ1, . . . ,λk < 1, 0 < λk+1, . . . ,λr+1 ≤ 1
}
,

we obtain by Proposition 2.2

Ehr(∆, w; t) =

∑

x∈Πg(∆)∩Zd+1

txd+1
∑

I1⊎···⊎Is+r+1=[m]

∏

i∈I1

ℓi(gv1) · · ·
∏

i∈Ir+1

ℓi(gvr+1)
∏

i∈Ir+2

ℓi(gu1) · · ·
∏

i∈Is+r+1

ℓi(gus)
s+r+1∏

j=1
A

λj(x)
|Ij | (tg)

(1 − tg)s+r+m+1
.

(10)

Observe that Πg(F ) ⊆ Πg(∆). In particular, the points in Πg(F ) are those in Πg(∆)
with µ1 = · · · = µs = 0. Therefore, for every x ∈ Πg(F ) ∩ Zd+1, each term in the 
inner sum of the numerator of (9) appears as a term of the numerator of (10) with 
Ir+2 = · · · = Is+r+1 = ∅ (where λr+1(x) = · · · = λs+r+1(x) = 0). Thus, since w ∈ R∆, 
the nonnegativity of the remaining terms implies that

(1 − tg)r+m+1 Ehr(F,w; t) ≼ (1 − tg)s+r+m+1 Ehr(∆, w; t).

Recalling that the denominators of the Ehrhart series Ehr(F, w; t) and Ehr(∆, w; t) are 
(1 − tδ(F ))r+m+1 and (1 − tδ(∆))s+r+m+1, respectively, we cancel these denominators and 
get the desired claim

(1 + tδ(F ) + · · · + tg−δ(F ))r+m+1h∗
F,w(t)

≼ (1 + tδ(∆) + · · · + tg−δ(∆))s+r+m+1h∗
∆,w(t). !

We are now ready to prove the monotonicity theorems stated in the introduction. 
Recall that RQ is the semiring consisting of sums of products of nonnegative linear 
forms on Q.

Theorem 2.8 (First Monotonicity Theorem). Let P, Q ⊆ Rd be rational polytopes, P ⊆ Q, 
and let g be a common multiple of the denominators δ(P ) of P and δ(Q) of Q. Then, 
for all weights w ∈ RQ,

(1+ tδ(P ) + · · ·+ tg−δ(P ))dimP+m+1h∗
P,w(t) ≼ (1+ tδ(Q) + · · ·+ tg−δ(Q))dimQ+m+1h∗

Q,w(t) .

In particular, if P ⊆ Q are polytopes with the same denominator, then taking g = δ(P ) =
δ(Q) gives

h∗
P,w(t) ≼ h∗

Q,w(t) (11)

Proof. If P is empty, then h∗
P,w(t) = 0, so the statement becomes part (1) of the Non-

negativity Theorem (Theorem 2.6) above. Now let us assume that P is nonempty. We 
can extend a half-open triangulation of P to a half-open triangulation of Q as follows.
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Let T be a half-open triangulation of P into simplices of dimension dimP with de-
nominators dividing δ(P ). Choose u1, . . . , us ∈ Q ∩ 1

gZ
d, where s = dimQ − dimP , so 

that for each F ∈ T the s-fold pyramid ∆F = Pyr(s)(u1, . . . , us, F ) ⊆ Q is a half-open 
simplex of dimension dimQ. This is always possible by, for example, starting with a 
triangulation of P using no new vertices and choosing u1, . . . , us successively from the 
vertices of Q that do not lie on the affine hull of the previous ones together with P . 
Let Pyr(s)(P ) denote the union of the ∆F which form a half-open triangulation. By 
Lemma 2.7, for every F ∈ T ,

(1+tδ(F )+· · ·+tg−δ(F ))dimP+m+1h∗
F,w(t) ≼ (1+tδ(∆F )+· · ·+tg−δ(∆F ))dimQ+m+1h∗

∆F ,w(t).
(12)

The left-hand side of (12) is equal to (1 − tg)dimP+m+1 Ehr(F, w; t) and the right-hand 
side of (12) is equal to (1 − tg)dimQ+m+1 Ehr(∆F , w; t). Therefore, summing over all 
F ∈ T yields

(1 − tg)dimP+m+1 Ehr(P,w; t) ≼ (1 − tg)dimQ+m+1 Ehr(Pyr(s)(P ), w; t). (13)

Next we extend the half-open triangulation of Pyr(s)(P ) to a half-open triangulation T ′

of the entire polytope Q. This can be done by using a sequence of pushings (or placings) 
of the vertices of Q that are not in P to extend the triangulation of Pyr(s)(P ) to Q; see 
page 96 and Section 4.3 of [26] for more details. Using a generic point in Theorem 2.3
to be in the interior of Pyr(s)(P ) the resulting triangulation of Q becomes half-open. 
Each half-open simplex in T ′ has dimension dimQ and denominator dividing g. By 
Proposition 2.4, for each ∆ ∈ T ′, (1 − tg)dimQ+m+1 Ehr(∆, w; t) is a polynomial with 
nonnegative coefficients. Therefore,

(1 − tg)dimQ+m+1 Ehr(Pyr(s)(P ), w; t) ≼ (1 − tg)dimQ+m+1 Ehr(Q,w; t). (14)

From (13) and (14) it follows that

(1 − tg)dimP+m+1 Ehr(P,w; t) ≼ (1 − tg)dimQ+m+1 Ehr(Q,w; t).

Equivalently,

(1 + tδ(P ) + · · · + tg−δ(P ))dimP+m+1h∗
P,w(t)

≼ (1 + tδ(Q) + · · · + tg−δ(Q))dimQ+m+1h∗
Q,w(t). !

Theorem 2.9 (Second Monotonicity Theorem). Let P, Q ⊆ Rd be rational polytopes of 
the same dimension D = dimP = dimQ, P ⊆ Q, and let g be a common multiple of the 
denominators δ(P ) of P and δ(Q) of Q. Then, for all weights w ∈ SQ,

(1 + tδ(P ) + · · · + tg−δ(P ))D+m+1h∗
P,w(t) ≤ (1 + tδ(Q) + · · · + tg−δ(Q))D+m+1h∗

Q,w(t)
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for all t ≥ 0. In particular, if P ⊆ Q are polytopes with the same denominator and 
dimension, then taking g = δ(P ) = δ(Q) gives

h∗
P,w(t) ≤ h∗

Q,w(t) for all t ≥ 0. (15)

Proof. Let w be a product of linear forms ℓ1, ..., ℓm on the homogenization C(P ) such 
that w is nonnegative on P and ℓ1, . . . , ℓm have rational coefficients. Now, let us use the 
hyperplanes ℓ1 = 0, ..., ℓm = 0, as in the proof of Theorem 2.6 (2), to subdivide P and 
Q into rational polytopes P ′

1, . . . , P
′
k and Q′

1, . . . , Q
′
k, P ′

i ⊆ Q′
i, respectively. Note, if any 

of these polytopes in the subdivision has dimension smaller than D then it is included 
in one of the hyperplanes and thus its h∗-polynomial is zero. Thus, we can compute the 
Ehrhart series of P and Q by summing up the series of those subpolytopes P ′

i s and Q′
is

where dim(P ′
i ) = dim(Q′) = D, and we may assume that each P ′

i in the subdivision of 
P that we consider is contained in a unique polytope Q′

i in the subdivision of Q.
As before, every linear form ℓi with 1 ≤ i ≤ m is either entirely nonpositive or entirely 

nonnegative on each such polytope P ′
i ⊆ Q′

i. Hence, we can change the signs of an even 
number of linear forms on P ′

i and Q′
i without changing the weight w since the product 

of these linear forms is nonnegative.
Let g′ be a positive integer multiple of all the denominators of P ′

i s and Q′
is in the 

subdivisions that additionally is also a multiple of g. We may now apply Theorem 2.8 to 
all P ′

i ⊆ Q′
i and obtain that

(1+ tδ(P
′
i ) + · · ·+ tg

′−δ(P ′
i ))D+m+1h∗

P ′
i ,w

(t) ≼ (1+ tδ(Q
′
i) + · · ·+ tg

′−δ(Q′
i))D+m+1h∗

Q′
i,w

(t) .

We can rewrite this as

(1 − tg
′)D+m+1 Ehr(P ′

i , w; t) ≼ (1 − tg
′)D+m+1 Ehr(Q′

i, w; t) .

Since the weight w is zero on the boundaries of the subdivision given by the linear 
forms ℓ1, . . . , ℓm, we can add up the inequalities for all pairs of polytopes Pi ⊆ Qi

obtaining the following

(1 − tg
′)D+m+1 Ehr(P,w; t) ≼ (1 − tg

′)D+m+1 Ehr(Q,w; t) . (16)

The left hand side of the inequality (16) equals

(1 + tg + · · · + tg
′−g)D+m+1(1 + tδ(P ) + · · · + tg−δ(P ))D+m+1h∗

P,w(t)

and similarly for Q. Thus, we obtain that the polynomial (1 + tg + · · · + tg
′−g)D+m+1

multiplied with

(1 + tδ(Q) + · · ·+ tg−δ(Q))D+m+1h∗
Q,w(t)− (1 + tδ(P ) + · · ·+ tg−δ(P ))D+m+1h∗

P,w(t) (17)
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has only nonnegative coefficients. In particular, evaluations at t ≥ 0 of the product are 
nonnegative. Since (1 + tg + · · · + tg

′−g)D+m+1 > 0 the nonnegativity of the evaluation 
of the second factor at nonnegative reals follows.

For linear forms with irrational coefficients as well as for an arbitrary element of SP , 
we can argue again by linearity and continuity of the coefficients of the h∗-polynomials 
as in the proof of Theorem 2.8. !

Unlike the unweighted case of Stanley [39] the following example shows that the 
monotonicity in (15) need not hold when the polytopes do not have the same dimension:

Example 2.10. Consider w = ℓ2 for ℓ(x) = 2x1 + 3x2, v1 = (3, −2), v2 = (2, −2), v3 =
(2, −1), P = conv(v1, v2), Q = conv(v1, v2, v3). We have ℓ(v1) = 0, ℓ(v2) = −2, ℓ(v3) = 1. 
Both P and Q are unimodular simplices, thus there is only one lattice point in the 
fundamental parallelepiped, namely 0. Thus, by Lemma 3.1 with all λi = 0, we obtain

h∗
Q,w(t) = t2(ℓ(v1) + ℓ(v2) + ℓ(v3))2 + t(ℓ(v1)2 + ℓ(v2)2 + ℓ(v3)2) = t2 + 5t

h∗
P,w(t) = t2(ℓ(v1) + ℓ(v2))2 + t(ℓ(v1)2 + ℓ(v2)2) = 4t2 + 4t

Thus, the coefficients of the h∗ polynomials are not monotone, and neither are the values 
since h∗

Q,w(1) = 6 < 8 = h∗
P,w(1). !

Remark 2.11. As was shown in Example 2.10, the monotonicity in (15) does not need to 
hold for rational polytopes P, Q ⊆ Rd, P ⊆ Q, of different dimension. In this case, the 
same arguments as in the proof of Theorem 2.9 nevertheless yield the existence of an 
integer g divisible by δ(P ) and δ(Q) such that

(1+ tδ(P ) + · · ·+ tg−δ(P ))dimP+m+1h∗
P,w(t) ≤ (1+ tδ(Q) + · · ·+ tg−δ(Q))dimQ+m+1h∗

Q,w(t)

for all t ≥ 0 if the linear forms involved in the weight function have rational coefficients. 
Here we are no longer able to choose any g divisible by δ(P ) and δ(Q), as the integer g
depends on linear forms involved.

3. Squares of arbitrary linear forms

In this section we focus on weights given as squares of arbitrary linear forms, not 
necessarily in RP and h∗-polynomials of polygons in the plane, and strengthen Theo-
rem 2.6 in this special case. We prove that if P is a convex lattice polygon and the weight 
w(x) = ℓ(x)2 is given by a square of a linear form ℓ(x) then the coefficients of h∗

P,w(t)
are nonnegative, regardless of whether ℓ(x) is nonnegative on P or not. This result is 
established in Theorem 3.3 below. This is a reformulation of results on the positivity of 
Ehrhart tensor polynomials of lattice polytopes considered in [11]. See Section 4 below. 
Here, we present a proof that is arguably more elementary. We also present examples 
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that show the limitations of our results if the conditions on the degree, dimension, de-
nominator or convexity are removed.

3.1. Lattice polygons

We begin by providing the following more concise version of Equation (8) in the case 
of the weight being given as a square of a linear form that holds in any dimension.

Lemma 3.1. Let ℓ : Rd → R be a linear form. The h∗-polynomial h∗
∆,w(t) with respect to 

the weight w = ℓ2 of any rational simplex ∆ = conv{u0, . . . , ur} with denominator q is 
given by the sum of the contributions

q2
((∑

(1 − λi)ℓ(ui)
)2

t2q +
(∑

ℓ2(ui) +
(∑

ℓ(ui)
)2

−
(∑

λiℓ(ui)
)2

−
(∑

(1 − λi)ℓ(ui)
)2)

tq +
(∑

λiℓ(ui)
)2)

txd+1 (18)

of each lattice point x =
∑

λi(x)(qui, q) ∈ Π(∆) ∩Zd+1 in the fundamental parallelepiped 
where all summations are taken for indices i from 0 to r.

Proof. If w(x) = ℓ(x)2 then the weight is a product of m = 2 linear forms and the con-
tributions of each lattice point in the fundamental parallelepiped given in Equation (8)
is a linear combination of products of Aλ

0 (t) = 1,

Aλ
2 (t) = (1 − λ)2t2 + (1 + 2λ− 2λ2)t + λ2 and Aλ

1 (t) = (1 − λ)t + λ

for 0 ≤ λ ≤ 1. More precisely, we use the homogenized linear form ℓ′ associated with ℓ
that takes in account the scaling factor in Equation (8). Then ℓ′(qui, q) = qℓ′(ui, 1) =
qℓ(ui) and we get that the contribution of any such point x =

∑
λi(qui, q) is

q2

⎛

⎝
∑

0≤i≤r

Aλi
2 (tq)ℓ2(ui) + 2

∑

0≤i<j≤r

Aλi
1 (tq)Aλj

1 (tq)ℓ(ui)ℓ(uj)

⎞

⎠ txd+1 ,

where the first sum corresponds to the ordered partitions [2] = I0⊎I1⊎ · · ·⊎Ir into r+1
parts where |Ii| = 2 for some i and the second sum corresponds to partitions for which 
|Ii| = |Ij | = 1 for some i ̸= j.

The factor q2 is present in both cases. The coefficients of t2q and 1 (times txd+1) of 
the polynomial above are easily seen. Indeed, the first sum contributes 

∑
(1 −λi)2ℓ2(ui)

and the second sum contributes 2 
∑

(1 − λi)(1 − λj)ℓ(ui)ℓ(ui) to the coefficient of t2q. 
Combining these, we obtain (

∑
(1 − λi)ℓ(ui))2 as claimed. Analogous arguments yield 

the coefficient of 1 of every contribution.
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A similar analysis gives that the coefficient of tq is equal to

∑

i

(1 + 2λi − 2λ2
i )ℓ2(ui) + 2

∑

i<j

(
(1 − λi)λj + (1 − λj)λi

)
ℓ(ui)ℓ(uj)

=
∑

i

(1 + 2λi − 2λ2
i )ℓ2(ui) + 2

(
∑

i

λiℓ(ui)
)⎛

⎝
∑

j

(1 − λj)ℓ(uj)

⎞

⎠

− 2
∑

i

λi(1 − λ1)ℓ2(ui)

=
∑

i

ℓ2(ui) + 2
(
∑

i

λiℓ(ui)
)⎛

⎝
∑

j

(1 − λj)ℓ(uj)

⎞

⎠ .

By squaring both sides of the identity

∑

i

ℓ(ui) =
(
∑

i

λiℓ(ui)
)

+

⎛

⎝
∑

j

(1 − λj)ℓ(uj)

⎞

⎠

we get the claimed coefficient of tq. !

Lemma 3.2. Let ∆ ⊆ R2 be a half-open triangle with vertices in Z2, let ℓ : R2 → R be 
a linear form and let w(x) = ℓ2(x). If the h∗-polynomial h∗

∆,w(t) of ∆ with respect to 
w(x) = ℓ2(x) has negative coefficients then the following two conditions must both be 
satisfied.

(i) ∆ is neither completely closed nor completely open, and
(ii) the line ker ℓ intersects the relative interior of two sides of ∆ that are either both 

“open” or both “closed”.

Proof. Let u0, u1, u2 be the vertices of ∆. We argue by induction over the area of ∆.
We begin by assuming that ∆ has area 1/2, the minimal area among all triangles with 

vertices in the integer lattice. In this case, the half-open fundamental parallelepiped 
Π(∆) contains exactly one lattice point x = λ0(u0, 1) + λ1(u1, 1) + λ2(u2, 1) where 
λ0, λ1, λ2 ∈ {0, 1}.

If ∆ is completely closed then λ0 = λ1 = λ2 = 0 and by Lemma 3.1,

h∗
∆,w(t) =

(∑
ℓ(vi)

)2
t2 +

(∑
ℓ(vi)2

)
t .

Similarly, if ∆ is completely open, then λ0 = λ1 = λ2 = 1 and

h∗
∆,w(t) =

(∑
ℓ(ui)

)2
t3 +

(∑
ℓ(ui)2

)
t4
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In particular, in both cases we see that the h∗-polynomial has only nonnegative coeffi-
cients. Thus, if a half-open lattice triangle has a negative coefficient condition (i) needs 
to be satisfied, that is, ∆ is neither completely open nor closed. In this case, λ0, λ1, λ2
are not all equal.

We consider the case λ0 = λ1 = 0 and λ2 = 1. Then, by Lemma 3.1,

h∗
∆,w(t) =
= (ℓ(u0) + ℓ(u1))2t3

+
(
ℓ2(u0) + ℓ2(u1) + ℓ2(u2) + (ℓ(u0) + ℓ(u1) + ℓ(u2))2 − ℓ2(u2) − (ℓ(u0) + ℓ(u1))2

)
t2

+ ℓ2(u2)t.

The first and last coefficient are squares and thus always nonnegative. The coefficient of 
t2 can be simplified to

(ℓ(u0) + ℓ(u2))2 + (ℓ(u1) + ℓ(u2))2 − ℓ2(u2) .

We observe that if ℓ(u2) has the same sign as ℓ(ui), i = 0, 1, then (ℓ(ui) + ℓ(u2))2 −
ℓ2(u2) ≥ 0 and thus the coefficient is nonnegative. It follows that h∆,w(t) can have a 
negative coefficient only if ℓ(u2) has a different sign than both ℓ(u0) and ℓ(u1), that is, 
ker ℓ separates u2 from u0 and u1 as claimed. The case λ0 = λ1 = 1 and λ2 = 0 follows 
analogously. This proves the claim if ∆ has minimal area.

Now we assume that ∆ has area greater than 1/2 and that the result has already been 
proved for all ∆ of smaller area. In order to prove the claim it suffices to show that if ∆
does not satisfy at least one of the conditions (i) or (ii) then it can be partitioned into 
half-open triangles that have h∗-polynomials with only nonnegative coefficients; then, by 
additivity also the h∗-polynomial of ∆ is nonnegative and the proof will follow.

If ∆ has area greater than 1/2 then it contains at least one lattice point aside of its 
vertices, either in the relative interior of a side or in the interior of the triangle. By 
coning over the sides in which this point is not contained we obtain a subdivision into 
two or three smaller lattice triangles. By induction hypothesis it suffices to show that 
this subdivision can be made half-open in such a way that the half-open triangles in the 
partition do not satisfy both condition (i) and (ii).

This is indeed always possible. In Fig. 1 the case of an interior lattice point and 
a subdivision into three smaller triangles is considered. The first row shows how to 
partition a completely closed triangle into smaller triangles that violate conditions (i) or 
(ii), depending on the position of ker ℓ. If ∆ is completely open, then open and closed 
sides are flipped. The second row shows how such a partition is established in case ∆ is 
half-open but ker ℓ intersects in an open and a closed side. The non-intersected side can 
be removed in the case that it is excluded.

The case of a partition into two triangles can be treated in a similar way. !
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Fig. 1. Subdivision of triangle using an internal integer point. Each edge is marked with + or − to indicate 
which simplex includes it; the simplex containing + contains the edge and the simplex containing − excludes 
it.

Theorem 3.3. For every (closed) convex lattice polygon P and every linear form ℓ, the 
h∗-polynomial of P with respect to w(x) = ℓ2(x) has only non-negative coefficients.

Proof. If ker ℓ does not intersect the interior of P , then the statement follows from 
Theorem 2.6. Otherwise, ker ℓ intersects the boundary of P twice: either in two vertices, 
or in a vertex and the interior of a side, or the interior of two sides.

If ker ℓ intersects the boundary of P in two vertices, then the h∗-polynomial of P is 
the sum of the h∗-polynomials of the two (closed) lattice polygons ker ℓ divides P into. 
This is because lattice points in ker ℓ are weighted with 0. The h∗-polynomial of both 
lattice polygons in the subdivision have only nonnegative coefficients by Theorem 2.6
and so does their sum.

In the other two cases, if ker ℓ intersects in a vertex and the interior of a side, or in 
the interior of two sides, the polygon can be subdivided into half-open triangles that do 
not satisfy the conditions (i) and (ii) in Lemma 3.2 as depicted in Fig. 2: if the convex 
hull of the corresponding vertex and side/the two sides is a triangle, we take this closed 
triangle and extend it to a half-open triangulation as shown in the picture; if the convex 
hull of the two intersected sides is a quadrilateral, we partition this quadrilateral into a 
closed triangle and a half-open one along its diagonal; the rest of the polygon is again 
subdivided into half-open triangles that do not intersect ker ℓ, as depicted.

In all cases, the half-open triangles used in the half-open triangulation violate the con-
ditions given in Lemma 3.2. Thus their h∗-polynomials have only nonnegative coefficients 
and so does their sum. !
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Fig. 2. Half-open triangulations of a polygon in the cases where ker ℓ intersects the boundary of the polygon 
in a vertex and the interior of a side (left) or two sides (middle/right). Removed/open faces are denoted by 
“−”, closed/non-removed faces with “+”. The convex hull of the corresponding vertex/sides is depicted in 
gray. All half-open triangles violate conditions (i) and (ii) of Lemma 3.2.

3.2. Negative examples

In this section we provide examples that show that most assumptions in Theorem 3.3
are necessary and cannot be further relaxed. Our examples are explicit and can be 
computed either by applying Equation (8) and/or by using LattE ([8]).

We begin with an example that shows that the nonnegativity of the h∗-polynomial for 
lattice polygons does not extend to weight functions that are squares of degree higher 
than 2.

Example 3.4. Let w(x) = (2x1 − x2)2(2x2 − x1)2 and P be the standard triangle with 
vertices v0 = (0, 0), v1 = (1, 0), and v2 = (0, 1). Then

h∗
P,w(t) = t(8 + 81t− 6t2 + t3).

While the classical Ehrhart theory deals with convex polytopes, in the two-dimensional 
case, Stanley’s nonnegativity theorem and our Theorem 2.6 can be extended to non-
convex polygons without holes as any such polygon can be dissected into (half-open) 
triangles. Next we give an example of a non-convex quadrilateral and weight given by 
a square of a linear form that shows that Theorem 3.3 does not extend to non-convex 
quadrilaterals.

Example 3.5. Let w(x) = ℓ(x)2 where ℓ(x) = x1 and P = v0v1v2v3 be the non-convex 
quadrilateral with vertices v0 = (1, 0), v1 = (−3, −1), v2 = (2, 0), v3 = (−3, 1) as depicted 
in Fig. 3. Then

h∗
P,w(t) = t(23 − 4t + 9t2).

Next, we note that Theorem 3.3 does not hold for rational polygons, not even in the 
case of “primitive” triangles as illustrated in the next example.
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v0

v1

v2

v3

ker ℓ

Fig. 3. Example of a non-convex lattice quadrilateral that has an h∗-polynomial with negative coefficients 
with respect to a weight w(x) = x2

1.

Example 3.6. For any integer q ≥ 1, let ∆q ⊆ R2 be the rational triangle with vertices

u0 = (1, 1) , u1 =
(

1, q − 1
q

)
and u2 =

(
q + 1
q

, 1
)

that has denominator q. Let ℓq : R2 → R be the linear form defined by ℓq(x) = 2q(1 −
q)x1 + q(2q − 1)x2. Then

ℓq(u0) = q

ℓq(u1) = 1 − q

ℓq(u2) = 2 − q .

The half-open fundamental parallelepiped spanned by (qu0, q), (qu1, q), (qu2, q) con-
tains exactly q lattice points, namely

yi = (i, i, i) for all 0 ≤ i ≤ q − 1 .

By Lemma 3.1 we see that every non-zero coefficient of the h∗-polynomial of ∆ with 
respect to wq(x) = ℓq(x)2 arises from the contribution of exactly one of the yis, namely 
yi contributes to the coefficient of tj if and only if j ≡ i mod q. Thus, h∗

∆q,wq
(t) has 

a negative coefficient if and only if the contribution of one of the lattice points in the 
half-open parallelepiped has a negative coefficient.

We focus on

yq−1 = (q − 1, q − 1, q − 1) = q − 1
q

(qu0, q) + 0 · (qu1, q) + 0 · (qu2, q).

By Lemma 3.1, the second term in the contribution of yq−1, and therefore the coefficient 
of t2q−1, is equal to q2 times

q2 + (1 − q)2 + (2 − q)2 + (q + (1 − q) + (2 − q))2

−
(
q − 1
q

q

)2
−

(1
q
q + (1 − q) + (2 − q)

)2
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which is equal to −q4 + 6q3 − 3q2. This evaluates to a negative number for all integers 
q ≥ 6. As a consequence, the h∗-polynomial of ∆q with respect to the weight wq(x) =
ℓq(x)2 has a negative coefficient in front of t2q−1 for all integers q ≥ 6. For example, if 
q = 6 then h∗

∆q,wq
(t) equals

2304t17 + 1764t16 + 1296t15 + 900t14 + 576t13 + 324t12 − 108t11 + 756t10

+1476t9 + 2052t8 + 2484t7 + 2772t6 + 900t5 + 576t4 + 324t3 + 144t2 + 36t

Last but not least, we show that the assumption on the dimension cannot be removed 
in Theorem 3.3 by providing an example of a 20-dimensional lattice simplex P and a 
linear form such that h∗

P,w(x) has a negative coefficient where w(x) = ℓ(x)2. This also 
establishes a counterexample to a conjecture of Berg, Jochemko, Silverstein [11], see 
Section 4 below for details.

Example 3.7. We consider the 19-dimensional simplex ∆ = conv{u0, . . . , u19} where u0
is the origin, u1, . . . , u18 are the standard basis vectors e1, . . . , e18 and

u19 = (1, 1, 1, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1,−1, 3)
= 3e19 + e1 + . . . + e9 − e10 − . . .− e18,

and the pyramid ∆′ = conv (0 ∪ ∆ × 1) ∈ R20 which is a 20-dimensional simplex with 
vertices 0 and vi := (ui, 1), 0 ≤ i ≤ 19. Let ℓ : R20 → R be the linear functional defined 
by

ℓ(vi) =
{

1 if 0 ≤ i ≤ 9
−1 if 10 ≤ i ≤ 19 .

We claim that the h∗-polynomial of ∆′ with respect to w(x) = ℓ(x)2 has a negative 
coefficient in front of t11.

To see this, we observe that the determinant of the matrix with columns vi, 0 ≤ i ≤ 19
equals −3, that is, the normalized volume of ∆′ is 3 and the half-open fundamental 
parallelepiped Π(∆′) contains exactly three lattice points. Those are y0 = 0,

y1 = 2
3

9∑

i=0
(vi, 1) + 1

3

19∑

i=10
(vi, 1) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 10, 10) ,

y2 = 1
3

9∑

i=0
(vi, 1) + 2

3

19∑

i=10
(vi, 1) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 10, 10) .

By Lemma 3.1, the coefficient of t11 in the contribution of yj , j = 1, 2, equals
∑

ℓ2(vi) + (
∑

ℓ(vi))2 − (
∑

λiℓ(vi))2 − (
∑

(1 − λi)ℓ(vi))2
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where λ0 = · · · = λ9 = 2/3 and λ10 = · · · = λ19 = 1/3 for y1, and for y2 the values are 
flipped. In both cases, the term evaluates to

20 + (0)2 −
(2

3 · 10 + 1
3 · (−10)

)2
−

(1
3 · 10 + 2

3 · (−10)
)2

= −20
9 .

Note that y0 = 0 does not contribute to the t11-coefficient of the h∗-polynomial. In 
summary, the coefficient of t11 equals 2 · −20

9 < 0 and is thus negative.

4. Ehrhart tensor polynomials

In this section we discuss the results of the previous section in relation to results 
and conjecture on Ehrhart tensor polynomials which were introduced by Ludwig and 
Silverstein [31].

For any integer r ∈ N, let T r be the vector space of symmetric tensors of rank r on 
Rd. The discrete moment tensor of rank r of a lattice polytope P ⊂ Rd is defined as

Lr(P ) =
∑

x∈P∩Zd

x⊗r ,

where x⊗r = x ⊗ · · · ⊗ x and x⊗0 := 1. Discrete moment tensors were introduced by 
Böröczky and Ludwig [12]. Note that for r = 0 we recover the number of lattice points 
in P , |P ∩Zd|. Ludwig and Silverstein [31, Theorem 1] showed that there exist maps Lr

i , 
0 ≤ i ≤ d + 1, from the family of lattice polytopes to T r such that

Lr(nP ) =
d+r∑

i=0
Lr
i (P )ni

for all integers n ≥ 0, that is, the discrete moment tensor Lr(nP ) is given by a polynomial 
in the nonnegative integer dilation factor. The polynomial is called the Ehrhart tensor 
polynomial. Equivalently, if P is a d-dimensional lattice polytope,

∑

n≥0
Lr(nP )tn =

hr
0(P ) + hr

1(P )t + · · · + hr
d+r(P )tr+d

(1 − t)d+r+1

for tensors hr
0(P ), hr

1(P ), . . . , hr
r+d(P ) ∈ T r. The numerator polynomial is called the hr-

tensor polynomial of P [11]. Observe that for r = 0 we recover the usual Ehrhart and 
h∗-polynomial of a lattice polytope.

The vector space of symmetric tensors T r is isomorphic to the vector space of multi-
linear functionals (Rd)r → R that are invariant under permutations of the arguments. 
In particular, for any v1, . . . , vr ∈ Rd,

Lr(P )(v1, . . . , vr) =
∑

x∈P∩Zd

(xT v1) · · · (xT vr) .
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Thus, weighted Ehrhart polynomials can be seen as evaluations of Ehrhart tensor poly-
nomials in the following sense.

Proposition 4.1. Let w(x) = ℓ1(x) · · · ℓr(x) be a product of linear forms where each linear 
form ℓi : Rd → R is given by ℓi(x) = xT vi for some vi ∈ Rd. Let P be a d-dimensional 
lattice polytope. Then

ehr(nP,w) =
d+r∑

i=0
Lr(P )(v1, . . . , vr)ni

and, equivalently,

h∗
P,w(t) =

d+r∑

i=0
hr
i (P )(v1, . . . , vr)ti .

Proof. For any integer n ≥ 0,

ehr(nP,w) =
∑

x∈nP∩Zd

xT v1 · · ·xT vr = Lr(nP )(v1, . . . , vr) =
d+r∑

i=0
Lr
i (nP )(v1, . . . , vr)ni .

The claim for the h∗-polynomials follows similarly. !

In the case that r = 2, symmetric tensors can be identified with symmetric matrices 
via their values on pairs of standard vectors. Via this identification, a tensor is called 
positive semi-definite if the corresponding matrix is positive semi-definite. In particular, 
L2(P ) =

∑
x∈P∩Zd xxT is always positive semi-definite. However, the coefficients of the 

Ehrhart tensor polynomial and the h2-tensor polynomial need not be in general [11], 
similarly as the coefficients of the usual Ehrhart polynomial are not positive in general. 
The following relation between the positivity of weighted h∗-polynomials and the posi-
tive semi-definiteness of the coefficients of the h2-tensor polynomial is a consequence of 
Proposition 4.1.

Proposition 4.2. For any lattice polytope P ⊂ Rd, the h2-tensor polynomial of P has only 
positive semi-definite coefficients if and only if h∗

P,w(t) has only nonnegative coefficients 
for each weight that is a square of a linear form w(x) = ℓ2(x).

Proof. Let Mi = h2
i (P ) ∈ R2×2 be the coefficients of the h2-polynomial of P . By Propo-

sition 4.1, for any linear form ℓ(x) = vTx on Rd, h∗
P,w(t) =

∑
i v

TMivti. Thus, h∗
P,w(t)

has only nonnegative coefficients for all weights w(x) = ℓ(x)2 if and only if the matrices 
Mi are all positive semi-definite. !

In [11] Berg, Jochemko and Silverstein investigated when h2-tensor polynomials have 
only positive semi-definite coefficients. They proved that the coefficients are indeed pos-
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itive semi-definite for lattice polygons [11, Theorem 5.2] and conjectured that this holds 
more general in arbitrary dimensions [11, Conjecture 6.1]. By Proposition 4.2, it follows 
that Theorem 3.3 is equivalent to [11, Theorem 5.2]; the proof given in Section 3 is 
arguably simpler.

Corollary 4.3 ([11, Theorem 5.2]). The h2-tensor polynomial of any lattice polygon has 
only positive semi-definite coefficients.

Furthermore, Example 3.7 provides a 20-dimensional lattice polytope together with a 
weight w(x) = ℓ(x)2 that is a square of a linear form such that hP,w(t) has a negative 
coefficient. By Proposition 4.2 this establishes a counterexample to [11, Conjecture 6.1].

Corollary 4.4. There exists a 20-dimensional lattice polytope whose h2-tensor polyno-
mial has a coefficient that is not positive semi-definite. In particular, this disproves [11, 
Conjecture 6.1]

5. Open question

In Theorem 2.6 we have proved sufficient conditions on the homogeneous weight func-
tion that yield nonnegative coefficients of the h∗-polynomial. We also have shown our 
results are tight, in particular, in Section 3.2 we have seen that Theorem 2.6 can fail if 
the assumptions are relaxed, even in the simple case of a square of a single linear form.

We end this article posing a natural question.

Question 5.1. Can we precisely characterize the family of homogeneous weights that yield 
nonnegative coefficients of the h∗-polynomial?
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