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tion, we construct a counterexample to a conjecture by Berg,
Jochemko, and Silverstein on Ehrhart tensor polynomials.
© 2024 Elsevier Inc. All rights reserved.

1. Introduction

Let P C R? be a rational convex polytope, that is, a polytope with vertices in Q¢, and
let w : R — R be a polynomial function, often called a weight function. A computational
problem arising throughout the mathematical sciences is to compute, or at least estimate,
the sum of the values w(x) := w(x1,...,zq) over the set of integer points belonging to
P, namely

ehr(P,w) = Z w(x).

zeEPNZ4

Weighted sums of the above type are also a classical topic in convex discrete geometry
where they have been studied for a long time under the name polynomial valuations |2,
12,33,36]. They appear in the work of Brion and Vergne [19], who used weighting in the
context of Euler-Maclaurin formulas. Other ideas of what it means to be weighted have
been proposed later on, for instance, by Chapoton [22], who developed a related g-theory
for the case when w(z) is a linear form, also by Stapledon [41], who explored a grading
with piece-wise linear functions, and by Ludwig and Silverstein [31], who introduced and
studied Ehrhart tensor polynomials based on discrete moment tensors.

Important applications of such weighted problems appear, for instance, in enumerative
combinatorics [3,24], statistics [21,23], non-linear optimization [25], and weighted lattice
point sums, which have played a key role in the computation of volumes and integrals
over polytopes [9].

The sum of the weighted integer points in the n-th dilate of the rational polytope P
for nonnegative integers n € N is given by the weighted Ehrhart function ehr(nP,w).
The main object of this article is the generating function

Ehr(P,w;t) = Z ehr(nP,w)t"

n>0

called the weighted Ehrhart series. The fact that the weighted Ehrhart series is a rational
function has been known for a long time, e.g., it has been used in computational software
for at least ten years ([8,18]). For our purposes we see in Proposition 2.4 why Ehr(P, w;t)
is a rational function of the form

hp,w (1)
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whenever P is an r-dimensional rational polytope; here m = deg(w), hp,,(t) is a poly-
nomial of degree at most ¢(r + m + 1) — 1, and ¢ denotes the smallest positive integer
such that ¢P has vertices in Z%, called the denominator of P.

We say that the empty polytope has denominator 1. We call hp,,(t) the weighted
h*-polynomial of P and its list of coefficients the weighted h*-vector of P with respect
to the weight w.

From the rationality of Ehr(P,w;t), it follows that the weighted Ehrhart function
ehr(nP,w) is a quasi-polynomial in n, that is, it has the form

d+m

ehr(nP,w) = Z E;(n)n
i=0

where the coefficients F; : N — R are periodic functions with periods dividing the
denominator of P. The leading coefficient of the h*-polynomial is equal to the integral of
the weight w over the polytope P; these integrals were studied in [4], [5] and [9]. If w = 1,
that is, if ehr(nP,w) = |[nP N Z?|, then we recover the classical Ehrhart theory counting
lattice points in dilates of polytopes. Even in this case, it is an NP-hard problem to
compute all of the coefficients E;. See [6,14] for excellent introductions to this topic.

In the classical case of w = 1, a fundamental theorem by Richard P. Stanley, often
called Stanley’s monnegativity theorem, states that the h*-polynomial of any rational
polytope has only nonnegative integer coefficients [38]. Even stronger, for rational poly-
topes P and @ such that P C @, Stanley proved h},(t) = hg (t) where < denotes
coeflicient-wise comparison. This last property has been known as h* monotonicity prop-
erty. For details and proofs see e.g., [17,38,39].

Positivity and nonnegativity of coefficients is important in algebraic combinatorics (see
e.g., [40] and its references), but we must stress that one nice aspect of our results is they
connect to the nonnegativity of the associated h*-polynomial as real-valued functions.
This is a topic that goes back to the work on real algebraic geometry by Hilbert, Pdlya,
Artin and others (see [32,35]), and it has seen renewed activity in the classical methods of
moments, real algebraic geometry, and sums of squares decompositions for polynomials
because it provides a natural approach for optimization algorithms (see [13,32]).

Motivated by this prior work and context, our article discusses the nonnegativity and
monotonicity properties of the coefficients of weighted h*-polynomials, as well as their
non-negativity as real-valued functions.

1.1. Our contributions

In contrast to its classical counterpart, the weighted h*-polynomial may have negative
coeflicients, even when the weight function is nonnegative over the polytope and all of
its nonnegative dilates. For example, when P is the line segment [0,1] C R, one can
calculate that
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1 ) 2+t
Ehr(P,l,t) = m and Ehr(P,x ,t) = (1—7t)4’

and so their sum is

22 —t+1

Ehr(P, 2?2 +1;t) = ————.
r( 7$ + 7) (1_t)4

As can be seen in this simple example, adding Ehrhart series corresponding to weights
of different degrees may introduce negative coefficients to the h*-polynomial since the
rational functions have different denominators. We therefore focus on homogeneous poly-
nomials as weight functions. For an investigation of how to deal with more general weights
see [24].

We now consider the following, slightly more general setup, where the weight function
w may depend not only on the coordinates of the points nP N Z< but also on the scaling
factor n. For any rational polytope P C R?, the cone over P (or homogenization of P)
is the rational polyhedral cone in R%*! defined as

C(P) := cone(P x {1}) = {c(p,1) | ¢ > 0,p € P}.
For any polynomial w in d + 1 variables we consider the weighted Ehrhart series

Ehr(P, w;t) = Z w(z)tTatt,
zeC(P)NZI+1

Let C(P)* be the cone consisting of the linear functions on R?*! which are nonnegative
on C(P). If the cone C(P) is defined by linear inequalities ¢; > 0,...,¢, > 0, then
C(P)* is a polyhedral cone generated by nonnegative linear combinations of ¢1, ..., fy,.
We focus on the following two families of polynomials in d + 1 variables as weights
functions:

(i) the semiring Rp consisting of sums of products of linear forms in C(P)*. Each element
of Rp has the form ¢y £t + - - - 4 ¢ €* where ¢4, ..., ¢ are positive real numbers and
£er ... £% are monomials in the generators £1,..., ¥4, of C(P)*; and

(ii) the semiring Sp consisting of sums of nonnegative products of linear forms on P. If a
product of linear forms is nonnegative on P, then each of the linear forms involved is
either nonnegative on all of P or appears with an even power; otherwise the product
would change sign across the hyperplane where the linear form vanishes. Therefore,
an element of Sp has the form s10%* + .- + sl where s1,...,S; are squares
of products of any linear forms and ¢%!,... (% are monomials in the generators
Ly,..., by of C(P)*.

In Rp each of the linear forms involved are nonnegative on P. In contrast, in Sp,
each product is nonnegative but the individual linear forms may have negative values in
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P. Thus we have Rp C Sp. Both semirings are contained in the preordering generated
by £1,...,4, consisting of elements of the form s1£** + - .- 4 s,£% where s; are arbi-
trary squares of polynomials instead of just squares of products of linear forms. See, for
example, [32].

The main results of this article are the following.

Nonnegativity Theorem. (Theorem 2.6). Let P be a rational polytope, C(P) its cone, and
C(P)* the dual cone of linear functions on R which are nonnegative on C(P). Let
Rp and Sp be, respectively, the semirings of sums of products of linear forms in C(P)*
and of sums of nonnegative products of linear forms on P.

1. If the weight w is a homogeneous element of Rp, then the coefficients of h};w(t) are
nonnegative.
2. If the weight w is a homogeneous element of Sp, then hp,,(t) > 0 fort > 0.

As we mentioned before Stanley also showed that the classical h*-polynomials satisfy
a monotonicity property: for lattice polytopes P and @), of possibly different dimension,
such that P C @, we have hp(t) < h¢)(t) where < denotes the coefficient-wise inequalities
[39]. This can be seen as a generalization of the nonnegativity theorem when we set P = ()
in which case the Ehrhart series and thus the hA*-polynomial is zero. Now we are able to
prove the following;:

First Monotonicity Theorem. (Theorem 2.8). Let P,Q C R? be rational polytopes, P C
Q, and let g be a common multiple of the denominators §(P) of P and §(Q) of Q. Then,
for all weights w € Rg,

(1+t5(P) 4o +tg—6(P))dim P+m+1h>1kj7w(t) < (1 —I—té(Q) 4. .+t9—5(Q)>dim Q+m+1h22’w(t) )

In particular, if P C Q are polytopes with the same denominator, then taking g = 6(P) =
4(Q) gives

hpw(t) 2 hgu(t)- (1)

Second Monotonicity Theorem. (Theorem 2.9). Let P,Q C R? be rational polytopes of
the same dimension D = dim P = dim @, P C Q, and let g be a common multiple of the
denominators (P) of P and §(Q) of Q. Then, for all weights w € Sq,

1+ 4.4 tg_‘s(P))Der*lh}w(t) <A4+0@ 4.4 tg_‘;(Q))DerHh*QM(t)

for all t > 0. In particular, if P C @ are polytopes with the same denominator and
dimension, then taking g = 6(P) = §(Q) gives

Paw(t) < hG o (t) for allt > 0. (2)
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We wish to emphasize that while Theorem 2.6 is a generalization of Stanley’s nonnega-
tivity theorem, Theorem 2.8 is closer in spirit to Pdlya’s theorem on positive polynomials
which says that if a homogeneous polynomial f € R[X7, ..., X,] is strictly positive on
the standard simplex

Api={(z1,...,2n) ER" | 21,..., 2, > 0,21 + -+ 2, = 1},

then for sufficiently large IV, all of the nonzero coefficients of (X1 +-- -+ X,,)N (X1, ...,
X,,) are strictly positive. Note also, the semiring Rp is a homogenized version of the
semiring appearing in Handelman’s theorem [27] which says that all polynomials strictly
positive on a polytope P lie in the semiring generated by the linear forms which are
nonnegative on the polytope. We remark that all homogeneous polynomials are sums
of (unrestricted) products of linear forms and it is an important problem to find such
decompositions (see [1,34,37] and references therein). Thus our restriction to Rp and Sp
is a natural approach to understanding nonnegativity and bringing us close to the best
possible result.

To study the limitations of our results we focus on the case when the weight is given by
a single arbitrary linear form. In this case we strengthen our results for two dimensional
lattice polygons.

Theorem 3.3. For every (closed) convex lattice polygon P and every linear form ¢, the
h*-polynomial of P with respect to w(x) = £?(x) has only nonnegative coefficients.

In particular, this shows that the weighted h*-polynomial of any convex lattice polygon
has nonnegative coefficients, even when the linear form takes negative values on the
polygon. Furthermore, we provide examples that show that this result is no longer true
if the assumptions on the polytope or weight are relaxed. In particular, we construct
a 20-dimensional lattice simplex and a linear form such that the h*-polynomial with
respect to the square of the linear form has a negative coefficient (Example 3.7). These
results have interpretations and implications in terms of generating functions of Ehrhart
tensor polynomials. In particular, the example mentioned above gives a counterexample
to a conjecture of Berg, Jochemko and Silverstein [11, Conjecture 6.1] on the positive
semi-definiteness of h2-tensor polynomials of lattice polytopes (Corollary 4.4).

Unlike the classical results of Stanley for w = 1, where techniques from commutative
algebra can be applied since the Ehrhart series is actually the Hilbert series of a graded
algebra, we do not see an obvious connection to commutative algebra methods. Instead,
to prove Theorems 2.6 and 2.8 we consider the cone homogenization of polytopes and
half-open decompositions and follow a variation of the triangulation ideas first outlined
by Stanley in [38]. While this methodology has been used by many authors since then
[7,17,29], we require a careful analysis of the properties of the semirings Rp and Sp.
For this we consider multivariate generating functions for half-open cones and provide
explicit combinatorial interpretations using generalized ¢-Eulerian polynomials [42]. The
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g-Eulerian polynomials and their relatives frequently appear in enumerative and geomet-
ric combinatorics [10,15,20,28].

This article is organized as follows. In Section 2 we give an explicit formula for the
weighted multivariate generating function for half-open simplicial cones (Lemma 2.2).
This formula then allows us to show the rationality of the (univariate) weighted Ehrhart
series (Proposition 2.4) as well as the first part of Theorem 2.6 by specialization and using
half-open decompositions. The second part of Theorem 2.6 is obtained by considering
subdivisions of the polytope induced by the linear forms involved in the weight function.
A more refined analysis then also allows us to prove the monotonicity Theorems 2.8
and 2.9. In Section 3 we focus on the case when the weight function is given by a square
of a single linear form and prove Theorem 3.3. We also show that the assumptions on
convexity, denominator, dimension and degree are necessary by providing examples. In
Section 4 we describe the connections and implications of our results to Ehrhart tensor
polynomials. In particular, we show that weighted Ehrhart polynomials can be seen as
certain evaluations of Ehrhart tensor polynomials (Proposition 4.1), and thus, positive
semi-definiteness of h2-tensor polynomials is equivalent to nonnegativity of weighted
h*-polynomials with respect to squares of linear forms (Proposition 4.2). In particular,
Example 3.7 disproves [11, Conjecture 6.1] (Corollary 4.4).

2. Nonnegativity and monotonicity of weighted h*-polynomials
2.1. Generating series

Let P C R? be a rational polytope of dimension r with denominator ¢ and let w :
R? — R be a polynomial of degree m. In this section we will see that Ehr(P,w;t) is a
rational function of the form

P (t)
Ehr(P,w;t) = W,
where hp,,(t) is a polynomial of degree at most ¢(r + m + 1) — 1. Our main goal is
to study positivity properties of the numerator polynomial. Our approach uses general
multivariate generating series of half-open simplicial cones and specializing to obtain
the univariate generating function of the homogenization C(P) following ideas outlined
in [38] but requiring careful analysis of the semirings Rp and Sp.

For a polynomial w(x) in d variables, the multivariate weighted lattice point generating
function of the cone C' is ) .-nza w(x)2® where 2% = 27" --- 27" is a monomial in d
variables. We will now show that this generating function is a rational function and give
an explicit formula when the weight is a product of linear forms.

Our expression uses the following parametrized generalization of Eulerian polynomials.
For \ € [0,1], let A)(t) be the polynomial defined by
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Z(n + )\)dtn _ A:}(t) )

_ 4)d+1
= (1-1)

If A = 1, then this is the usual Ehrhart series of a d-dimensional unit cube, and A}(#)
is the Eulerian polynomial, all of whose roots are real and nonpositive. If A = % for
some integer r > 1 then r¢A}(t) equals the r-colored Eulerian polynomial [42]. For each
A € [0, 1] the polynomial A}(¢) also has only real, nonpositive roots [16, Theorem 4.4.4].
In particular, all of its coefficients are nonnegative. We formally record this in a lemma.

Lemma 2.1 ([16, Theorem 4.4.4]). For any integer d > 1 and real number X € [0,1], the
coefficients of A}(t) are nonnegative.

Our computations additionally use some concepts which we now introduce. For con-
sistency, we assume that the polytopes live in the d-dimensional space R? while cones
live in the ambient space R4+1.

Let C be a half-open (r+1)-dimensional simplicial cone in R4*! generated by nonzero
integer vectors vy,...,vU,41 € 7411 with the first k facets removed where 0 < k < r + 1.
More precisely,

C={cqvi+ - +cp1v41|c1,.- -,k >0, Cht1,...,¢r01 > 0}
Since C' is simplicial, every point o € C' can be written uniquely as
a=x+ 8101+ + Spp1Vrg1
where s1,...,s,+1 are nonnegative integers, and z is in the half-open parallelepiped
D={ Mo+ 4+ Xp10r11 | 0< A1, A < 1,0 < Mg, oo Apgg < 1}

We obtain the following explicit formula for the multivariate generating function of a
half-open simplicial cone if the weight is a product of linear forms. Since every polynomial
is a sum of product of linear forms, namely monomials, this gives a formula to compute
the generating function for any polynomial weight.

Proposition 2.2. Let C be an (r + 1)-dimensional half-open simplicial cone in R4 with
generators vi,...,vy+1 in Rp. Let w = {1 -4y, be a product of linear forms in d + 1
variables. Then

Z w(a)z®

aceCNZd+!

r+1 pM(@) (29)

= Z 2T Z HE (v1) H L (Vpy1 H(lfz‘vw (3)

zelINZ4+1 LW Wi, 1=[m]i€l1 i€y
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where I1 is the half-open parallelepiped as above and each x € 11 is written x = A1 (x)vy +
o4+ Arg1(2)vrg1. The innermost sum runs over all the ordered partitions of [m] into
r+1 (possibly empty) parts and Iy ¥ ---W 1.1 denotes the disjoint union of these parts.

Note that when m = 0 and the weight is constant, there is only the partition into
empty sets where by definition the products are all 1 (empty products) and the Eulerian
polynomials are all 1.

Proof. Using that any a € C' is @« = x + s1v1 + -+ Sp110,41 for x € 11, the generating
function is

Z w(a)z®

acCNZd+1
m
- ¥ (H&(a))za
aeCNZ4+1l \i=1

m
E E . E H[Z(J; + 8101 + -+ 8r+1’U7.+1) ZI+51U1+-..+57‘+1U7‘+1.

zelINZ4+! 5120 Sp41204=1

()

Since € Il is © = A1 (z)v1 + - - - + Ary1 (@) V41, using linearity of each ¢; we can expand
out

(%) = Z H 0i((s1 + Al(x))vl)] H Ci((sp41 + Arg1(2))vrg1)

LW Wl 1=[m] Li€el i€lr41

= > H&(m)] | T )

11@-<~Lﬂlr+1:[m] Licly i€L~+1

x (514 M @) (sppn 4+ A ()l

where ¢ € I; represents the term (s; + \j(x))v; being chosen from ¢; when multiplying
out. Placing this into our original series, we obtain

Z w(a)z®

aeCNZd+t

r+1
S Y e Y M I s T Sy
rellNZa+1 I W W, 1=[m] i€l i€l 11 7=1 \s;>0

(4)

For the innermost sum on the right, we can write for each j
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X (@) ¢ _u;
5 (s + Ayl ey = L)

— G+
30 (1 z“y)‘ i
This completes the proof. O

In order to show that Ehr(P,w;t) is a rational function for any rational polytope
P we consider partitions into half-open simplices. Given affinely independent vectors
U1,...,ur11 € R the half-open simplex with the first & € {0,1,...,7 + 1} facets
removed is defined as

r+1 r+1
A= {Zciui |c1y.o e >0,Ck41, vy Crp1 > O’Z)‘i = 1} ,
i=1 i=1
and the homogenization of A is the half-open simplicial cone

CA)={civi+ -+ crp1v41 |1 >0,...,¢, > 0,641 > 0,...,¢41 >0}

where v; = (u;, 1) for all .

Given an r-dimensional polytope P and a triangulation, we can partition P into half-
open simplices in the following way. Let ¢ be a generic point in the relative interior of
P and let S = conv{uy,...,ur4+1} be a maximal cell in the triangulation where conv{-}
denotes the convex hull. We say that a point p € S is visible from ¢ if (p,q] NS =0. A
half-open simplex, denoted H,S, is then obtained by removing all points that are visible
from g, which can be seen to be equal to

H,S ={ciu1 + -+ crp1urp1 € S| ¢; >0 forall i € I}

where I, = {i € [r 4+ 1] | u; not visible from ¢}.
The following is a special case of a result of Képpe and Verdoolaege [30].

Theorem 2.3 (/30]). Let P be a polytope, q € aff P be a generic point and Si,..., Sy be
the mazimal cells of a triangulation of P. Then

P = HSiWwHSoW--- W HyS,y,
is a partition into half-open simplices.
With the notation as in the previous theorem, it follows that
C(P) = C(HgS1)WC(HyS2) W -0 C(HySym), (6)

that is, the homogenization C(P) of P can be partitioned into half-open simplicial cones.
This, together with Proposition 2.2, allows us to show rationality of Ehr(P, w;t).
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Proposition 2.4. For any rational polytope P of dimension r and any degree-m form w
on C(P), the weighted Ehrhart series is a rational function of the form

hpw(t)

where q is a positive integer such that P has integer vertices and h},’w(t) s a polynomial
of degree at most q(r + m + 1) — 1.

Proof. Let S1,...,.5,, be the maximal cells of a triangulation of P using no new vertices,
that is, for all 4, the vertex set of S; is contained in the vertex set of P. Let

P = H,S1 9 H S0 -0 HyS,,
be a partition into half-open simplices, and let

Ehr(H,S;, w;t) = Z w(z)trir
z€C(HyS; ) NZ4+1

for all i. By equation (6), we have
Ehr(P,w;t) = Ehr(H,S1,w;t) + - - - + Ehr(HySy,, w; t).

It thus suffices to prove the claimed rational form for all half-open simplices in the
partition.

Let A = H,S; be a rational half-open simplex in the partition. Let vy, ..., v,11 € Z4?
be generators of the half-open simplical cone C(A). Since the triangulation of P used
only vertices of P, we can choose v1,...,v,41 € 79t such that their last coordinates
are all equal to g.

Since every degree-m form is a sum of monomials, each of which is a product of linear
forms, it furthermore suffices to consider the case when w is a product of linear forms.
The weighted Ehrhart series is obtained by substituting z; = -+ =24 =1 and z411 =1
into the generating function in Proposition 2.2. Thus

Ehr(A, w;t)
r+1 AN ()(tQ)

zellNZa+! LWl 1=[m]i€l1 €141

where II is the half-open parallelepiped in C(A) and each x € II is written = Ay (z)vy +

ot A1 (T)vp.
Since |I1| + -+ |Ly1| +7+ 1 =m+r+ 1, we have

r+1 1

1
.1_[1 (1-— tq)IIjH-l = (1-— tq)m+r+1' (7)

j=
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Then we have

-
maw®) = > e S T [] o HA ). (8)

z€llNZ4+1 LYWl 1=[m]i€lx 1€l 41
+

Thus the claim follows with A}, (t) = hiy g, () + -+ hip g (). O

Remark 2.5. In the multivariate version of the weighted Ehrhart rational function, the
denominators do not simplify nicely as in (7). When bringing all constituents of the
multivariate generating function of C'(P) in a common denominator this affects the
positivity of the numerator polynomial.

2.2. Nonnegativity

We are now ready to prove the main theorem stated in the introduction. Recall that
Rp is the semiring consisting of sums of products of nonnegative linear forms on P and
Sp is the semiring consisting of sums of nonnegative products of linear forms on P.

Theorem 2.6 (Nonnegativity Theorem). Let P be a rational polytope.

1. If the weight w is a homogeneous element of Rp, then the coefficients of h*P’w(t) are
nonnegative.
2. If the weight w is a homogeneous element of Sp, then hj%w(t) >0 fort>0.

Proof. Let P be a rational polytope of dimension r.

For (1), it suffices to prove the statement when the weight is a product of nonnega-
tive linear forms on C(P). The proof follows from the argument given in the proof of
Proposition 2.4 where h} ,(t) is expressed as a sum of polynomials A} () as given in
Equation (8) where A ranges over all half-open simplices in a half-open triangulation
of P. Each of the vectors v; in Equation (8) is a generator of C(P). Thus, if w € Rp,
h’; ., (t) has nonnegative coefficients and so does hp ,(t) as a sum of these polynomials.

For (2), let w be a product of linear forms ¢1,...,¢,, on C(P), and assume w is
nonnegative on P. First suppose /1, ...,%,, all have rational coefficients. Subdivide P
into rational polytopes using the hyperplanes ¢, = 0,...,¢,, = 0. Let s be a positive
integer such that s@ has integer coordinates for every r-dimensional polytope @ that is
part of the subdivision. Then s is divisible by the denominator ¢ = §(P) of P. On each
such polytope @, each linear form /; is either entirely nonnegative or entirely nonpositive,
and the number of nonpositive ones is even because their product w is nonnegative. Thus
after changing the signs of an even number of the linear forms on ), which does not
change w, we can apply the part (1) result to obtain that

ho(t) h ()1 4190 g5 0(@)yrmetl
Ehr(Q,w;t) = (1 —ts)r+m+l (1 — 3(@))r+mt1(1 4 40(Q) 4 . 4 ¢5=9(Q))r+m+1
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where hg(t) has nonnegative coefficients for every polytope @ in the subdivision since
h{ ., (t) has nonnegative coefficients by part (1). The weight w is zero on the boundaries
where the polytopes overlap in the subdivision, so the Ehrhart series of P is the sum
of Ehrhart series of the r-dimensional polytopes in the subdivision. Summing them up
gives

h(t)
Ehr(P,w,t) = W,

for some polynomial Ah(t) with nonnegative coefficients. Since s is divisible by the de-
nominator g of P, we have

M (t) h(t) h(t)

(= 0=l = (=)t~ (L= 0)(1 4 00 4 24 o f- 0t

SO
PO (L4274 82 4o 77T = (3,

The polynomial h(t) has nonnegative coefficients, so h(t) > 0 for ¢ > 0. It follows that
hp.,(t) > 0 for all ¢ > 0. This proves part (2) when the linear forms have rational
coefficients.

To deal with irrational coefficients, note that for a fixed polytope P, the map that
sends a weight w to the corresponding h*-polynomial hp,, (t) is a linear, hence contin-
uous, map from the vector space of homogeneous degree m polynomials to the vector
space of degree < r 4+ m polynomials. The set of polynomials h* satisfying h*(t) > 0
when ¢t > 0 is a closed set. Thus we obtain the result (2) for linear forms with irrational
coefficients as well. O

2.3. Monotonicity

In this subsection we generalize Stanley’s monotonicity result for the hA*-polynomial
for rational polytopes to a weighted version by proving Theorem 2.8. Our proof follows a
similar structure as the proof of nonnegativity. We start by proving a version of the claim
for pyramids over half-open simplices and then extend it to all rational polytopes. This
will become useful when comparing h*-polynomials of polytopes of different dimension
in the general case.

Given a half-open r-dimensional rational simplex F' C R, say

F:{A1U1+"‘+)‘T+1vr+l|)‘17"'3)‘16207)\k+1a"'a)\r+1>Oa)‘1+"'+>‘7”+1:1}3

and a rational point u € R not in the affine span of F, we let the pyramid of u over F
be
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Pyr(u, F) := {pu+ Avp + -+ A\pp10Ury1 |
P ALy Ak > 0, A kg1, Appr > 0,4+ Ay -+ Ay = 11
We denote the s-fold pyramid of u,...,us € Q% over F by
Pyr(S) (ula sy Us, F) = Pyr(ula Pyr(UQa s Pyr(u37 F)))a
now a half-open simplex of dimension s + r.
Lemma 2.7. Let F C R? be a half-open r-dimensional rational simplex with denominator
O(F) and let A be an s-fold pyramid over F with denominator 6(A). For all g > 1
divisible by §(A) and allw =41 -4y, € R,
(1 + t&(F) 4ot tg—S(F))r—O—m—&-lh}’w(t) < (1 + té(A) NI tg—é(A))s+r+m+1h*A’w (t)

Proof. Let v1,...,vu41 € ﬁZd be vertices of F', labeled such that

F={Avi+ -+ g1 [ A, A 20, X1, A > 0,0 + -+ Ay = 1}

Suppose u1, ..., us € ﬁld are such that A = Pyr®(uy, ..., us, F), that is, suppose

A= {prur + -+ psts + v+ A1t |
Mla"'a,usaAla"'a)\k207)‘/€+17"'5A7‘+1 > 0,
pa st s A+ Ay = 11

Considering the cone C(F) with generators of last coordinate g and fundamental
parallelepiped

Hg(F)z{A1 <g”1)+-~-+xr+1 (9”;“) 10< A, e <1,0< )\k+1,...,)\r+1<1},

we obtain by Proposition 2.2

Ehr(F, w;t)
r+1 N
Sooooeme S Tt T titoverd) TT AN @)
@€l (F)NZI+! LWl 1=[m]i€lr i€lrq1 j=1
- gy - (9)

Analogously, considering the cone C(A) with generators of last coordinate g and
fundamental parallelepiped
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Ay = Lo (95 oo (955 ) ag (99 4 (9P
(8= {on () () o (%) e ()

OS,U,l,...,ILLS,Al,...,Ak<1,O<)\k+1,...,)\r+1Sl},

we obtain by Proposition 2.2
Ehr(A, w;t) =

sr+1
goan 3 I eitogvn) -+ IT iCgors) I €ilgun) -+ I itous) JI AN
j=1

€I, (A)NZ A+ LW W, =[m]i€l, i€14 i€L, s 23—

(1 — tg)s+r+7n+1
(10)

Observe that II,(F) C II,(A). In particular, the points in II,(F') are those in II,(A)
with u3 = -+ = ps = 0. Therefore, for every x € II,(F) N Z%*1 each term in the
inner sum of the numerator of (9) appears as a term of the numerator of (10) with
Iyo = =Igyry1 = (where A\ryq1(z) =+ = Agyrp1(x) = 0). Thus, since w € Ra,
the nonnegativity of the remaining terms implies that

(1 — 9T Ehr(F,w; t) < (1 —t9) T Ehe(A, w; t).

Recalling that the denominators of the Ehrhart series Ehr(F,w;t) and Ehr(A, w;t) are
(1 —t2UE)r+mtl and (1 —¢9(A))str+m+1 regpectively, we cancel these denominators and

get the desired claim

(L4 20 o o dENrEmtt s (1)
< (1 + té(A) 4ot tgfé(A))SnLrerJrlh*A’w(t). O
We are now ready to prove the monotonicity theorems stated in the introduction.

Recall that R is the semiring consisting of sums of products of nonnegative linear
forms on Q.

Theorem 2.8 (First Monotonicity Theorem). Let P,Q C RY be rational polytopes, P C @Q,
and let g be a common multiple of the denominators 6(P) of P and 6(Q) of Q. Then,
for all weights w € Rg,

(1+t6(P) 4. ._’_tg—é(P))dim P+m+1h}7w(t) <1 +49@) 4. .+t9—5(Q))dim Q+m+1h*Q7w(t) )

In particular, if P C Q are polytopes with the same denominator, then taking g = 6(P) =
5(Q) gives

Paw(t) 2 hg (1) (11)

Proof. If P is empty, then h} () = 0, so the statement becomes part (1) of the Non-
negativity Theorem (Theorem 2.6) above. Now let us assume that P is nonempty. We
can extend a half-open triangulation of P to a half-open triangulation of @ as follows.
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Let T be a half-open triangulation of P into simplices of dimension dim P with de-
nominators dividing §(P). Choose u1,...,us € QN éZd, where s = dim @) — dim P, so
that for each F' € T the s-fold pyramid Ap = Pyr(s)(ul, ..y us, F) C Q is a half-open
simplex of dimension dim (. This is always possible by, for example, starting with a
triangulation of P using no new vertices and choosing uq, ..., us successively from the
vertices of (Q that do not lie on the affine hull of the previous ones together with P.
Let Pyr(s)(P) denote the union of the Ap which form a half-open triangulation. By
Lemma 2.7, for every F € T,

(1+t6(F)+~ . .+tg—6(F))dim P+m+1h} (t) < (]_—Hf(S(AF)-i-‘ . ._i_tg—é(Ap))dim Q+m+1h2 (t)
YW - Fy,w
(12)
The left-hand side of (12) is equal to (1 — ¢9)4m P+m+1 Ehy(F w;t) and the right-hand
side of (12) is equal to (1 — t9)dm@+m+1 Ehr(Ap, w;t). Therefore, summing over all
F €T yields

(1 — t9) 4 PEMFLEhy (P ) < (1 — ¢9)3m @+ Bhr(Pyr(®) (P), w; t). (13)

Next we extend the half-open triangulation of Pyr(®)(P) to a half-open triangulation T”
of the entire polytope @. This can be done by using a sequence of pushings (or placings)
of the vertices of ) that are not in P to extend the triangulation of Pyr(s)(P) to Q; see
page 96 and Section 4.3 of [26] for more details. Using a generic point in Theorem 2.3
to be in the interior of Pyr(s)(P) the resulting triangulation of ) becomes half-open.
Each half-open simplex in 7" has dimension dim @ and denominator dividing g. By
Proposition 2.4, for each A € T’ (1 — t9)4m@+m+1 Ehr(A, w;t) is a polynomial with
nonnegative coefficients. Therefore,

(1 — 9)dimQ@Emt Bhy(Pyr®) (P), wit) < (1 — )W Bhp(Q,wit).  (14)
From (13) and (14) it follows that
(1 — t9)dm PHrmtl phe(Pow; t) < (1 — t9)3m@Hm L Ehr(Q, w; t).
Equivalently,

(1 + t&(P) NI tg—é(P))dim P+m+1h};w(t)
< (1+ 9@ 4.y tg*fi(Q))dimQerJrlh*Q LB, O
Theorem 2.9 (Second Monotonicity Theorem). Let P,Q C R? be rational polytopes of
the same dimension D = dim P =dim @, P C Q, and let g be a common multiple of the

denominators §(P) of P and 6(Q) of Q. Then, for all weights w € Sg,

(1 + $5(P) 4ot tg—zS(P))D+m+1h*P7w(t) < (1 + $5(Q) 4t tg_J(Q))D+m+lh22,w(t)
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for all t > 0. In particular, if P C @ are polytopes with the same denominator and
dimension, then taking g = 6(P) = §(Q) gives

hpw(t) < Ry (t) for allt > 0. (15)

Proof. Let w be a product of linear forms ¢4, ..., £,, on the homogenization C(P) such
that w is nonnegative on P and ¢4, ..., ¢, have rational coefficients. Now, let us use the
hyperplanes ¢; = 0, ..., ¢, = 0, as in the proof of Theorem 2.6 (2), to subdivide P and
@ into rational polytopes P[,..., P, and Q',...,Q}, P/ C Q}, respectively. Note, if any
of these polytopes in the subdivision has dimension smaller than D then it is included
in one of the hyperplanes and thus its A*-polynomial is zero. Thus, we can compute the
Ehrhart series of P and @ by summing up the series of those subpolytopes P/s and Q}s
where dim(P}) = dim(Q’) = D, and we may assume that each P/ in the subdivision of
P that we consider is contained in a unique polytope @} in the subdivision of Q.

As before, every linear form ¢; with 1 < ¢ < m is either entirely nonpositive or entirely
nonnegative on each such polytope P/ C @Q}. Hence, we can change the signs of an even
number of linear forms on P/ and Q) without changing the weight w since the product
of these linear forms is nonnegative.

Let ¢’ be a positive integer multiple of all the denominators of P/s and Q}s in the
subdivisions that additionally is also a multiple of g. We may now apply Theorem 2.8 to
all P/ C @} and obtain that

(L4820 g OEDDEmL s, (1) 2 (1482090 4o g9 0@y PHmt s, (2).
We can rewrite this as
(1 — 9P+ Ehe (P! wit) < (1 —t9) P+ Ehe(Q), wit) .

Since the weight w is zero on the boundaries of the subdivision given by the linear
forms #1,...,0,, we can add up the inequalities for all pairs of polytopes P; C Q;
obtaining the following

(1 —t9)PHm L Ehr (P w; t) < (1 — t9) P+ Ehr(Q, w; ) . (16)
The left hand side of the inequality (16) equals
(1 R AT tg'fg)D+m+1(1 + t6(P) 4t tgfé(P))DerJrlh};,w (t)

and similarly for Q. Thus, we obtain that the polynomial (1 + t9 4 - 4 t9'~9)D+m+1
multiplied with

(1+t5(Q)_~_._.+tg—6(Q))D+m+1h*Q’w(t)_(1+t5(P)_|_...+t9—5(P))D+m+1h*P7w(t) (17)
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has only nonnegative coefficients. In particular, evaluations at ¢ > 0 of the product are
nonnegative. Since (1 +t9 +--- + tglfg)D“"+1 > 0 the nonnegativity of the evaluation
of the second factor at nonnegative reals follows.

For linear forms with irrational coefficients as well as for an arbitrary element of Sp,
we can argue again by linearity and continuity of the coefficients of the h*-polynomials
as in the proof of Theorem 2.8. O

Unlike the unweighted case of Stanley [39] the following example shows that the
monotonicity in (15) need not hold when the polytopes do not have the same dimension:

Example 2.10. Consider w = ¢2 for {(z) = 2x1 + 322, v1 = (3,-2),v2 = (2,—2),v3 =
(2,—1), P = conv(vy,v2), @ = conv(vy,ve,vs). We have £(vy) = 0,4(ve) = —2,€(v3) = 1.
Both P and @ are unimodular simplices, thus there is only one lattice point in the
fundamental parallelepiped, namely 0. Thus, by Lemma 3.1 with all A; = 0, we obtain

h . (t) = t2((v1) + £(v2) + £(v3))? + t(£(v1)* + £(v2)* + L(v3)?) = t* + Bt
W (1) = t2(E(v1) + £(02))2 + t(£(01)? + £(v2)?) = 4¢% + 4t

Thus, the coefficients of the h* polynomials are not monotone, and neither are the values
since hg, (1) =6 <8 =hp,(1). O

Remark 2.11. As was shown in Example 2.10, the monotonicity in (15) does not need to
hold for rational polytopes P,@Q C R¢, P C @, of different dimension. In this case, the
same arguments as in the proof of Theorem 2.9 nevertheless yield the existence of an
integer g divisible by §(P) and §(Q) such that

(1 +t6(P) 4. +t9—5(P))dim P+m+1h*P,w(t> <@ +t5(Q) 4. +t9—5(Q))dim Q+m+1h22’w (t)

for all ¢ > 0 if the linear forms involved in the weight function have rational coefficients.
Here we are no longer able to choose any g divisible by d(P) and §(Q), as the integer g
depends on linear forms involved.

3. Squares of arbitrary linear forms

In this section we focus on weights given as squares of arbitrary linear forms, not
necessarily in Rp and h*-polynomials of polygons in the plane, and strengthen Theo-
rem 2.6 in this special case. We prove that if P is a convex lattice polygon and the weight
w(z) = {(x)? is given by a square of a linear form £(z) then the coefficients of h},(t)
are nonnegative, regardless of whether ¢(z) is nonnegative on P or not. This result is
established in Theorem 3.3 below. This is a reformulation of results on the positivity of
Ehrhart tensor polynomials of lattice polytopes considered in [11]. See Section 4 below.
Here, we present a proof that is arguably more elementary. We also present examples
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that show the limitations of our results if the conditions on the degree, dimension, de-
nominator or convexity are removed.

3.1. Lattice polygons

We begin by providing the following more concise version of Equation (8) in the case
of the weight being given as a square of a linear form that holds in any dimension.

Lemma 3.1. Let £ : R — R be a linear form. The h*-polynomial hA . (t) with respect to
the weight w = €2 of any rational simplex A = conv{ug, ..., u,} with denominator q is
given by the sum of the contributions

s ((2(1 — ), ) 2 4 (Z 2+ (3 é(ui))Z - Aie(ui))Q
_ (2(1 - /\i)f(ui))2> a4 (Z )\ié(ui))2> ry (18)

of each lattice point x = > X\i(x)(qui, q) € I(A)NZ4*E in the fundamental parallelepiped
where all summations are taken for indices i from 0 to r.

Proof. If w(z) = ¢(x)? then the weight is a product of m = 2 linear forms and the con-
tributions of each lattice point in the fundamental parallelepiped given in Equation (8)
is a linear combination of products of A}(t) =1,

AJ() = (1= A2+ (14+20 =222t 4+ A2 and A1) = (1 — Nt + A

for 0 < A < 1. More precisely, we use the homogenized linear form ¢ associated with £
that takes in account the scaling factor in Equation (8). Then ¢'(qu;,q) = ¢¢'(u;,1) =
¢¢(u;) and we get that the contribution of any such point = > A\;(quy, q) is

DD AFENAu) +2 D AN () AY (1) 0(u;)0(uy) | £

0<i<lr 0<i<j<r

where the first sum corresponds to the ordered partitions [2] = IgW 1 W---W I, into r+1
parts where |I;| = 2 for some ¢ and the second sum corresponds to partitions for which
|I;| = |I;] =1 for some i # j.

The factor ¢? is present in both cases. The coefficients of t27 and 1 (times t%4+1) of
the polynomial above are easily seen. Indeed, the first sum contributes > (1 — \;)20%(u;)
and the second sum contributes 2> (1 — A;)(1 — A\;)€(u;)¢(u;) to the coefficient of ¢24.
Combining these, we obtain (32(1 — A;)f(u;))” as claimed. Analogous arguments yield
the coeflicient of 1 of every contribution.
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A similar analysis gives that the coefficient of ¢¢ is equal to

S (142X — 222)P(u;) + 2 Z(u — AN+ (1 - )\j))\i)ﬁ(ui)f(uj)

- 2(1 42X — 222) 0% (u;) + 2 (Z )\iﬁ(ui)> 2(1 — M)l (uy)

=23 X1 = M) ()

J

By squaring both sides of the identity

Zé(ul) = (Z A%(“i)) + Z(l = Aj)€(uy)

J
we get the claimed coefficient of t9. 0O

Lemma 3.2. Let A C R? be a half-open triangle with vertices in Z2, let £ : R> — R be
a linear form and let w(x) = €%(zx). If the h*-polynomial hA . (t) of A with respect to
w(r) = £3(x) has negative coefficients then the following two conditions must both be
satisfied.

(i) A is neither completely closed nor completely open, and
(ii) the line ker ¢ intersects the relative interior of two sides of A that are either both
“open” or both “closed”.

Proof. Let ug,u1,us be the vertices of A. We argue by induction over the area of A.
We begin by assuming that A has area 1/2, the minimal area among all triangles with
vertices in the integer lattice. In this case, the half-open fundamental parallelepiped
II(A) contains exactly one lattice point & = Ag(ug,1) + A1(u1,1) + Aa(u2,1) where
Aos A1, A2 € {0,1}.
If A is completely closed then A\g = A\; = A3 = 0 and by Lemma 3.1,

A = (D)) 2+ (X twn?) .

Similarly, if A is completely open, then A\g = A\; = Ao = 1 and

Maw® = (3 b)) e 4 (3 tw)?) ¢
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In particular, in both cases we see that the h*-polynomial has only nonnegative coeffi-
cients. Thus, if a half-open lattice triangle has a negative coefficient condition (i) needs
to be satisfied, that is, A is neither completely open nor closed. In this case, Ag, A1, Ao
are not all equal.

We consider the case \y = Ay =0 and Ay = 1. Then, by Lemma 3.1,

Aw(t) =
= (L(up) + K(ul))Qt?’
n (e?(uo) 2 (ur) + 2 (uz) + (Uug) + £(ur) + (u2))? — £ (us) — (C(uo) + K(u1))2>t2

+ 2 (up)t.

The first and last coefficient are squares and thus always nonnegative. The coefficient of
2 can be simplified to

(€(uo) + €(uz))® + (C(ur) + 0(u2))* = £*(uz) .

We observe that if ¢(uz) has the same sign as £(u;), i = 0,1, then (€(u;) + €(u2))? —
?%(uz) > 0 and thus the coefficient is nonnegative. It follows that ha ., (f) can have a
negative coefficient only if £(uz) has a different sign than both ¢(ug) and £(uq), that is,
ker ¢ separates uo from ug and u; as claimed. The case \g = Ay = 1 and Ay = 0 follows
analogously. This proves the claim if A has minimal area.

Now we assume that A has area greater than 1/2 and that the result has already been
proved for all A of smaller area. In order to prove the claim it suffices to show that if A
does not satisfy at least one of the conditions (i) or (ii) then it can be partitioned into
half-open triangles that have h*-polynomials with only nonnegative coefficients; then, by
additivity also the h*-polynomial of A is nonnegative and the proof will follow.

If A has area greater than 1/2 then it contains at least one lattice point aside of its
vertices, either in the relative interior of a side or in the interior of the triangle. By
coning over the sides in which this point is not contained we obtain a subdivision into
two or three smaller lattice triangles. By induction hypothesis it suffices to show that
this subdivision can be made half-open in such a way that the half-open triangles in the
partition do not satisfy both condition (i) and (ii).

This is indeed always possible. In Fig. 1 the case of an interior lattice point and
a subdivision into three smaller triangles is considered. The first row shows how to
partition a completely closed triangle into smaller triangles that violate conditions (i) or
(ii), depending on the position of ker¢. If A is completely open, then open and closed
sides are flipped. The second row shows how such a partition is established in case A is
half-open but ker ¢ intersects in an open and a closed side. The non-intersected side can
be removed in the case that it is excluded.

The case of a partition into two triangles can be treated in a similar way. O
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ker(?)
+ + + + ker(¢)
— + » —
+ - + +
+ +
ker(¢)
-+ -+
+ - + - ker(¢)
— + > +
+ - + -
+ +

Fig. 1. Subdivision of triangle using an internal integer point. Each edge is marked with + or — to indicate
which simplex includes it; the simplex containing + contains the edge and the simplex containing — excludes
it.

Theorem 3.3. For every (closed) convex lattice polygon P and every linear form £, the
h*-polynomial of P with respect to w(z) = ¢*(x) has only non-negative coefficients.

Proof. If ker/ does not intersect the interior of P, then the statement follows from
Theorem 2.6. Otherwise, ker ¢ intersects the boundary of P twice: either in two vertices,
or in a vertex and the interior of a side, or the interior of two sides.

If ker ¢ intersects the boundary of P in two vertices, then the h*-polynomial of P is
the sum of the h*-polynomials of the two (closed) lattice polygons ker ¢ divides P into.
This is because lattice points in ker ¢ are weighted with 0. The A*-polynomial of both
lattice polygons in the subdivision have only nonnegative coefficients by Theorem 2.6
and so does their sum.

In the other two cases, if ker ¢ intersects in a vertex and the interior of a side, or in
the interior of two sides, the polygon can be subdivided into half-open triangles that do
not satisfy the conditions (i) and (ii) in Lemma 3.2 as depicted in Fig. 2: if the convex
hull of the corresponding vertex and side/the two sides is a triangle, we take this closed
triangle and extend it to a half-open triangulation as shown in the picture; if the convex
hull of the two intersected sides is a quadrilateral, we partition this quadrilateral into a
closed triangle and a half-open one along its diagonal; the rest of the polygon is again
subdivided into half-open triangles that do not intersect ker ¢, as depicted.

In all cases, the half-open triangles used in the half-open triangulation violate the con-
ditions given in Lemma 3.2. Thus their h*-polynomials have only nonnegative coefficients
and so does their sum. 0O
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ker £ - +

-+ - -+
+

T T ‘
/ ker ¢
k

er{

T
|
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+

[y

Fig. 2. Half-open triangulations of a polygon in the cases where ker ¢ intersects the boundary of the polygon
in a vertex and the interior of a side (left) or two sides (middle/right). Removed/open faces are denoted by
“—7_ closed/non-removed faces with “+”. The convex hull of the corresponding vertex/sides is depicted in
gray. All half-open triangles violate conditions (i) and (ii) of Lemma 3.2.

3.2. Negative examples

In this section we provide examples that show that most assumptions in Theorem 3.3
are necessary and cannot be further relaxed. Our examples are explicit and can be
computed either by applying Equation (8) and/or by using LattE ([8]).

We begin with an example that shows that the nonnegativity of the h*-polynomial for
lattice polygons does not extend to weight functions that are squares of degree higher
than 2.

Example 3.4. Let w(z) = (2v1 — 22)?(222 — 21)? and P be the standard triangle with
vertices vg = (0,0),v1 = (1,0), and vy = (0,1). Then

hpw(t) = t(8 + 81t — 6t° + t%).

While the classical Ehrhart theory deals with convex polytopes, in the two-dimensional
case, Stanley’s nonnegativity theorem and our Theorem 2.6 can be extended to non-
convex polygons without holes as any such polygon can be dissected into (half-open)
triangles. Next we give an example of a non-convex quadrilateral and weight given by
a square of a linear form that shows that Theorem 3.3 does not extend to non-convex
quadrilaterals.

Example 3.5. Let w(z) = £(2)? where {(z) = 1 and P = vgv1vav3 be the non-convex

quadrilateral with vertices vo = (1,0),v; = (=3, —1),v2 = (2,0),v3 = (=3, 1) as depicted
in Fig. 3. Then

Po(t) =t(23 — 4t 4+ 9t7).

Next, we note that Theorem 3.3 does not hold for rational polygons, not even in the
case of “primitive” triangles as illustrated in the next example.
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Fig. 3. Example of a non-convex lattice quadrilateral that has an h*-polynomial with negative coefficients
with respect to a weight w(z) = 2.

Example 3.6. For any integer ¢ > 1, let A, C R? be the rational triangle with vertices

-1 1
ug = (1,1),u; = <1, q_> and ug = <&71)
q q

that has denominator ¢. Let £,: R? — R be the linear form defined by ¢,(z) = 2¢(1 —
q)x1 + q(2¢ — 1)z5. Then

Eq(UO) =q
ly(ur) =1—¢
ly(u2) =2 —¢q

The half-open fundamental parallelepiped spanned by (qug, q), (qu1,q), (qua, q) con-
tains exactly ¢ lattice points, namely

yi = (i,4,1) foral0<i<qg-—1.

By Lemma 3.1 we see that every non-zero coefficient of the h*-polynomial of A with
respect to w,(z) = £,(x)? arises from the contribution of exactly one of the y;s, namely
y; contributes to the coefficient of ¢/ if and only if j = ¢ mod ¢. Thus, h*Aq,wq (t) has
a negative coefficient if and only if the contribution of one of the lattice points in the
half-open parallelepiped has a negative coefficient.

We focus on

q
Yg-1=(¢—1,g—1,g—1)= T(qumq) +0- (qui,q) +0- (qua, q).

By Lemma 3.1, the second term in the contribution of y,_1, and therefore the coefficient
of 2971 is equal to ¢° times

C+A1-qP+2-9°+@+1—q) +(2—-q)?

)
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which is equal to —¢* + 6¢® — 3¢®. This evaluates to a negative number for all integers
g > 6. As a consequence, the h*-polynomial of A, with respect to the weight w,(z) =
l,(x)? has a negative coefficient in front of t2¢~1 for all integers ¢ > 6. For example, if
q =6 then h} ., (t) equals

2304¢17 + 1764t 4 1296t + 900t + 576¢13 + 324¢12 — 108t + 756¢1°
+1476t° + 2052t% + 248417 + 27725 + 900t° + 576¢* 4 3243 + 144¢% + 36t

Last but not least, we show that the assumption on the dimension cannot be removed
in Theorem 3.3 by providing an example of a 20-dimensional lattice simplex P and a
linear form such that h} () has a negative coefficient where w(x) = ¢(x)*. This also
establishes a counterexample to a conjecture of Berg, Jochemko, Silverstein [11], see
Section 4 below for details.

Example 3.7. We consider the 19-dimensional simplex A = conv{uo,...,u19} where ug
is the origin, w1, ..., u;g are the standard basis vectors eq, ..., e1s and

U9 = (1a 17 17 17 17 17 17 13 1) _17 _17 _17 _11 _17 _13 _17 _17 _1a 3)

=3ei9+e1+...+e—e9g—...—e€1s,

and the pyramid A’ = conv (0U A x 1) € R?° which is a 20-dimensional simplex with
vertices 0 and v; := (u;,1), 0 <4 < 19. Let £: R?® — R be the linear functional defined
by

1 if0<:<9
(v;) = nu=t=
—1 if10<7<19.

We claim that the h*-polynomial of A’ with respect to w(z) = ¢(z)? has a negative
coefficient in front of ¢!

To see this, we observe that the determinant of the matrix with columns v;, 0 <7 < 19
equals —3, that is, the normalized volume of A’ is 3 and the half-open fundamental

parallelepiped II(A’) contains exactly three lattice points. Those are yg = 0,

9 19
2 1
n = gg(vul)Jrgl;(w,l) = (1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,10,10),
1 9 9 19
Y2 = 3 ('Ui,l)‘i'_Z('Ui,l) = (1a1,1a17171a17171a0,0a07070a07070a0,2a10,10)'
3i:O 3i:10

By Lemma 3.1, the coefficient of ¢!!

D W)+ QW) = O Xib(v)? = (1= Ni)e(v:)?

in the contribution of y;, j = 1,2, equals
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where \g = -+ =Xg =2/3 and A\jg = --- = A9 = 1/3 for y;, and for y, the values are
flipped. In both cases, the term evaluates to

20 + (0)* — <§.10+%-(—10))2— (%-10+§~(—10))2_%.

Note that 9 = 0 does not contribute to the t'!'-coefficient of the h*-polynomial. In
summary, the coefficient of ¢'! equals 2 - _TZO < 0 and is thus negative.

4. Ehrhart tensor polynomials

In this section we discuss the results of the previous section in relation to results
and conjecture on Ehrhart tensor polynomials which were introduced by Ludwig and
Silverstein [31].

For any integer » € N, let T" be the vector space of symmetric tensors of rank r on
R?. The discrete moment tensor of rank r of a lattice polytope P C R? is defined as

rp) = Y a®

zePNZ4

where 29" = 2 ® --- ® x and £®° := 1. Discrete moment tensors were introduced by
Boroczky and Ludwig [12]. Note that for 7 = 0 we recover the number of lattice points
in P, |PNZ4|. Ludwig and Silverstein [31, Theorem 1] showed that there exist maps L,
0 <i<d+1, from the family of lattice polytopes to T" such that

d+r
L"(nP) =Y LI (P)n’
=0

for all integers n > 0, that is, the discrete moment tensor L”(nP) is given by a polynomial
in the nonnegative integer dilation factor. The polynomial is called the Ehrhart tensor
polynomial. Equivalently, if P is a d-dimensional lattice polytope,

hg(P) + hi(P)t 4 -+ hl, (P)t"+?
Z L' (nP)t" = (1 —t)d+r+l

n>0

for tensors hy(P), hi(P),...,h;, 4(P) € T". The numerator polynomial is called the h"-
tensor polynomial of P [11]. Observe that for r = 0 we recover the usual Ehrhart and
h*-polynomial of a lattice polytope.

The vector space of symmetric tensors T" is isomorphic to the vector space of multi-
linear functionals (R4)” — R that are invariant under permutations of the arguments.
In particular, for any vy, ..., v, € RY,

L"(P)(v1,...,v) = Z (zTv) - (2T v,) .
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Thus, weighted Ehrhart polynomials can be seen as evaluations of Ehrhart tensor poly-
nomials in the following sense.

Proposition 4.1. Let w(x) = ¢1(x) - - - £.(x) be a product of linear forms where each linear
form £; : R® — R is given by {;(x) = xTv; for some v; € R, Let P be a d-dimensional
lattice polytope. Then

d+r
ehr(nP,w) = Z L"(P) (v, ... ,v.)n'
=0

and, equivalently,

d+r
hpw(t) = Y hi(P)(vr,..., vt
i=0
Proof. For any integer n > 0,
d+r
ehr(nP,w) = Z 2Tvy - aTv. = L"(nP)(ve,. .., v,) = Z Li(nP)(v1,...,v.)n".
zeENPNZ4 =0

The claim for the h*-polynomials follows similarly. 0O

In the case that » = 2, symmetric tensors can be identified with symmetric matrices
via their values on pairs of standard vectors. Via this identification, a tensor is called
positive semi-definite if the corresponding matrix is positive semi-definite. In particular,
L*(P) =Y, cpnzaxa’ is always positive semi-definite. However, the coefficients of the
Ehrhart tensor polynomial and the h?-tensor polynomial need not be in general [11],
similarly as the coefficients of the usual Ehrhart polynomial are not positive in general.
The following relation between the positivity of weighted h*-polynomials and the posi-
tive semi-definiteness of the coefficients of the h%-tensor polynomial is a consequence of
Proposition 4.1.

Proposition 4.2. For any lattice polytope P C R?, the h?-tensor polynomial of P has only
positive semi-definite coefficients if and only if h},’w(t) has only nonnegative coefficients
for each weight that is a square of a linear form w(z) = £*(x).

Proof. Let M; = hZ(P) € R**? be the coefficients of the h%-polynomial of P. By Propo-
sition 4.1, for any linear form /(x) = vz on RY, hp.,(t) =22 v M;vtt. Thus, R (1)
has only nonnegative coefficients for all weights w(x) = £(z)? if and only if the matrices
M; are all positive semi-definite. O

In [11] Berg, Jochemko and Silverstein investigated when h2-tensor polynomials have
only positive semi-definite coefficients. They proved that the coefficients are indeed pos-
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itive semi-definite for lattice polygons [11, Theorem 5.2] and conjectured that this holds
more general in arbitrary dimensions [11, Conjecture 6.1]. By Proposition 4.2, it follows
that Theorem 3.3 is equivalent to [11, Theorem 5.2]; the proof given in Section 3 is
arguably simpler.

Corollary 4.3 (/11, Theorem 5.2]). The h*-tensor polynomial of any lattice polygon has
only positive semi-definite coefficients.

Furthermore, Example 3.7 provides a 20-dimensional lattice polytope together with a
weight w(x) = £(x)? that is a square of a linear form such that hp, () has a negative
coefficient. By Proposition 4.2 this establishes a counterexample to [11, Conjecture 6.1].

Corollary 4.4. There exists a 20-dimensional lattice polytope whose h2-tensor polyno-
mial has a coefficient that is not positive semi-definite. In particular, this disproves [11,
Congjecture 6.1]

5. Open question

In Theorem 2.6 we have proved sufficient conditions on the homogeneous weight func-
tion that yield nonnegative coefficients of the h*-polynomial. We also have shown our
results are tight, in particular, in Section 3.2 we have seen that Theorem 2.6 can fail if
the assumptions are relaxed, even in the simple case of a square of a single linear form.

We end this article posing a natural question.

Question 5.1. Can we precisely characterize the family of homogeneous weights that yield
nonnegative coefficients of the h*-polynomial?
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