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1. Introduction
Extreme weather events are on the rise [1] and increasingly impacting cities and urban regions 
[2]. Urban populations are at risk from multiple types of extreme events including heat waves, 
drought, wildfires, extreme precipitation, and coastal storms. At the same time, urban greening 
and nature-based solutions (NbS) have emerged as key approaches to address climate and 
weather extremes [3] while also seeking to have a positive impact on urban social and 
environmental inequities. Both NbS and the concept of ‘green infrastructure’ have been used to 
elevate urban nature to the same status and treatment as other infrastructures like transportation 
or electricity [4]. Nature-based solutions, which are “actions to protect, sustainably manage, and 
restore natural or modified ecosystems that address societal challenges effectively and 
adaptively, simultaneously providing human well-being and biodiversity benefits” [5]  are 
increasingly seen and used as broad adaptation and mitigation strategies, and one that comes 
with additional benefits rarely associated with grey infrastructure [6,7]. However, framing NbS 
as infrastructure comes with a potential problem: If the fundamental differences between (semi) 
natural and built infrastructures - that the former is comprised of living entities - are lost in 
translation and NbS are treated like technical, engineered solutions, they may become vulnerable 
to the same weather events that they are expected to help cities cope with [8]. The functions NbS 
rely on are based on biological and ecological processes, many of them variable over time and 
strongly influenced by circumstances (life stage, vitality, community composition) (Grilo et al. in 
review). For example, different tree species are more or less sensitive to droughts that often 
coincide with heatwaves, making their contribution to urban cooling far from given [9–11]. 
Additionally, NbS interventions are often hyper-local and contain novel ecological entities, with 
unknown capacity to deal with different pressures and disturbances [12–14]. Thus, there is an 
urgent need to build knowledge around how, when, and under what circumstances different NbS 
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can be expected to perform as intended [15]. One step towards building, and then constantly 
updating, such knowledge is to establish practices for monitoring and evaluating NbS.

However, context always matters. Exposure and vulnerability to emerging weather 
patterns are unevenly distributed in space and across different groups of urban residents e.g. 
[16,17]. Such inequities call for targeted, context-specific, and reliable interventions that can 
address disproportionate impacts and risks. Natural spaces in cities fit inside the built 
environment and are impacted by social processes, human activity, and management or lack of 
management. We conceptual cities as complex social-ecological-technological systems (SETS) 
[7,18], and understanding any particular dynamic requires working with a range of social, 
ecological, and technological processes that both have their dynamics, but also interact with each 
other to produce sometimes complicated or even complex urban system dynamics that underpin 
any individual or collection observed pattern. For example, NbS performance such as the cooling 
provided by urban trees may depend on  (i) a Social system component - whether local 
management is active, such as watering during hot or dry summer days, on the size and age of 
trees (young trees are more susceptible to drought or human impacts and also provide less 
shading and evapotranspiration than mature trees), on (ii) a Technological system component - 
whether nearby buildings shade trees and limit photosynthetic activity, as well on (iii) an 
Ecological system component - the quality of soil concerning nutrient availability and whether 
soil may be compacted by human activity or other means that and may limit water infiltration. 
Thus, a host of Social, Ecological, and Technological factors can affect the performance of NbS, 
not only concerning urban trees for cooling but any NbS across a range of urban environments 
both within and across cities. 

We suggest that monitoring NbS is essential to improve understanding of NbS performance and 
so will require measuring NbS performance across a range of social, ecological, and 
technological infrastructure contexts and potential impacts or filters [19] Grilo et al. in review) in 
any given city or neighbourhood to improve our understanding and potential for effective 
management of how NbS function and deliver (or not) core benefits for climate and weather 
regulation.

To provide useful knowledge, monitoring of urban climate needs to be done with appropriate, 
context-driven spatial and temporal resolutions to match short timescales and hyper-local 
distribution of local flooding and heat wave events that are additionally modified by locally 
heterogeneous and complex urban infrastructure. Monitoring methods for assessing urban 
climate, and heat in particular, include modelling, remote sensing, mobile sensors, and ground-
based sensors. Recent technological advancement has made high-quality ground-based sensors 
available at relatively low cost, enabling deployment in relatively large numbers. Deployment 
and experimental designs can also be very flexible thanks to self-sufficient, low-power operation, 
and wide-spread wireless connectivity to internet cloud services via long-range, low-frequency 
networks.
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In this study, we focus on the use and utility of ground-based sensors for monitoring NBS 
performance over time. The study asks how different green elements, or potential NbS, perform 
under different conditions. To do so, it develops a novel analytical approach drawing on the 
high-resolution, continuous data from our sensor array. In the next sections we first describe the 
methodological and analytical approach and then discuss the outcomes, both in terms of NbS 
performance and the utility of ground-based sensors.

2. Material and methods
2.1. The case study - Stockholm Royal Seaport
Since 2010, the Stockholm Royal Seaport (SRS) district, situated north of the old town (see inset 
in Fig.1), has been the flagship of sustainable urban development in Stockholm [20]. It became a 
testbed for both piloting Stockholm’s green area factor (GAF) and green space index (GSI) - a 
tool for ensuring that more green elements are built into development projects, more information 
in a later section.  Also, through various collaborations with academia, new ways of working and 
uses of new technology are being piloted [20]. As such, it provides a relevant natural experiment 
for evaluating whether such state-of-the-art sustainable districts and their NbSs provide sufficient 
climate adaptation and mitigation capacities. This work addresses this unmet need by evaluating 
the cooling performance of 5 distinct nature-based solutions and strengthening ecological-
technological linkages and interactions.

2.2. Typology of Nature-based solutions and locations under investigation
The SRS district features a diverse range of green infrastructure elements. We investigate a 
representable subset that includes 5 distinct urban green elements - forest parks, green 
courtyards, rain beds, lawns, and green sedum roofs, and contrast them against non-green 
reference sites. Our categorisation is based on previous work [21] where NbSs can be distinctly 
placed on the green-grey spectrum [22]. We identified 3 locations for each NbS type that act as 
replicas, bringing the total number to 18 locations. The spatial distribution of the sites is 
presented in Figure 1 a and photographs provide a visual representation of each NbS type. The 
weather stations were attached to lamp posts, at the height of 2 m, often at the boundary of NbS. 
All sensor locations fit within a circle with a 1 km diameter, covering an area of 78.5 ha. The 
average distance between sensors is 503 m. Site selection covers a wide range of the area-volume 
of vegetation - from low area-volume green roofs and lawns to moderate rainbeds and 
courtyards, to high forest parks, as summarised in table 1, including a wide spread in Green 
Space Index (GSI, see fig.1a inset) We focus on small-scale NbSs because they are widely used 
in cities and are considered as sufficiently green interventions. However, the knowledge about 
their performance in the Swedish urban context remains limited. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4711713
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Figure 1. a) A 3D map of the Stockholm Royal Seaport district (Google Earth) and its relative location, 
marked by the white circle, to the old town (upper left inset). Colour-coded locations of 18 weather 
stations indicate 6 site types under investigation with their respective colour-coded Green Space Index 
(lower right inset). There are 5 green elements, forest parks (white), green courtyards (yellow), green 
roofs (violet), rain gardens (cyan), lawns (green), and 1 non-green reference site (red) b). The top row 
shows representative photographs of each site type and the bottom row shows the top view, where yellow 
dots indicate weather stations. 

2.3. Green Space Index (GSI)
The SRS is the first district in Stockholm to use GSI (Grönytefaktor, GYF in Swedish, also 
known as Green Area Factor, GAF) for integrating green and grey infrastructures on a local level 
of a single plot to achieve 0.6 GSI. The green space index means that the green elements are 
integrated into new housing blocks from the very beginning, from the first planning documents 
to the detailed drawings (See Boverket guides link). GSI describes a geometrical area-based 
ratio, not the volume, between grey and green components of an urban landscape. Special 
infrastructure features such as trees, bushes, and permeable surfaces can boost the GSI index. 
This is calculated by using additional coefficients which appear to be arbitrary not least because 
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it is unclear to which ecosystem services they refer. For this reason, in our work, we used area-
based calculations only. We used satellite imagery to calculate GSI for each location within a 
50x50m plot area where average GSI for the respective sites is for reference sites 0.06 ± 0.09, 
rain gardens 0.14 ± 0.05, green roofs 0.22 ± 0.10, lawns 0.79 ± 0.12, green courtyard 0.87 ± 
0.05, forest parks 0.92 ± 0.03. To be relevant for climate adaptation efforts in cities, GSI needs to 
include volume or vertical surfaces and establish an evidence base that captures the climate 
mitigation performance of vegetation. This work connects the GSI index with the cooling 
performance of NbS.

Many courtyards in the north of SRS meet the 0.6 GSI target. They do not feature in our study 
due to a diverse ownership structure that significantly slowed down the permission process of 
installing weather stations. Instead, we monitored green courtyards, located in an older part of 
SRS, on city-owned ground, marked by blue circles in Figure 1a, which were built before the 
inception of GSI. However, they would meet the 0.6 GSI target.

Vegetarian type, 
biodiverse Site conditions Average area, dimensions, 

sensor placement wrt NbS

Forest 
parks

Trees, dominantly 
mature pine and spruce, 
highly biodiverse

Large area, often on a 
slope, shaded, 
sheltered from wind

>2ha 
(100 -120) x (200-300) m 
middle 

green 
courtyards

Mixed, 10+ mature 
trees, bushes, large-area 
grass, mod. Biodiverse, 
raised garden beds

Moderate area, 
enclosed by building

0.42 ha 
(60-65) x (50-115) m
middle

Sedum 
roofs

Moss alike, low 
biodiverse

Small to Moderate 
area, open, elevated, 
exposed to sun and 
wind

0.23 ha 
13 x 190 m
middle

lawns Grass, low biodiverse
Moderate area, open 
but still in between 
buildings 

0.2 ha 
(25-70) x (25-55) m
edge

Rain beds
Mixed, 10+ young trees, 
long grass, flowers, 
highly biodiverse

Small area alongside 
roads and mid-rise 
tenant buildings

0.03 ha
6 x 50 m
edge

Table 1. Differentiating the sites through their character is arranged by descending average area.

2.4. Embedded NbSs - typology of the urban landscape 
Urban landscapes modify local microclimate, leading to the urban heat island phenomenon. That 
is when cities' interiors are warmer than suburban and rural areas. This is because cities are 
densely populated and compact. They consume electricity and fuel in large quantities, have less 
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vegetation to provide shade and cooling, and are built of materials that store and absorb energy 
from the sun. Reversing these trends constitutes the roadmap toward reducing temperature in 
cities and improving outdoor thermal comfort. A comprehensive example is the cooling strategy 
of Singapore City featuring 80+ measures that utilise vegetation, urban geometry, air flow, water 
bodies, infrastructure, material and surfaces, shading, transport, and energy [23]. Each of these 
factors individually can raise and reduce urban heat locally. Collectively, they produce distinct 
urban microclimates. When comparing urban heat between two different locations or NbSs, these 
factors might work together or against each other to exacerbate or diminish differences. [24] 
categorised a subset of these factors into local climate zones by focusing on the surface cover, 
structure, and geometry. Their work demonstrates rising air temperatures with higher urban 
density. Using this framework, NbSs under investigation resides in two local climate zones: mid-
rise (6-8 stories) open at the centre of SRS and mid-rise compact to the north and west (see Fig. 
1). All these factors are fundamental when studying differences in cooling performance between 
urban NbSs which we cover in the discussion section.

2.5. Heterogeneity of urban landscape, the proximity of NbSs, and spatial resolution of 
sensors

Green and blue infrastructure in SRS are accessible, diverse, and in high supply [25]. The 
compact and heterogeneous urban landscape makes separating contributions of individual NbSs 
challenging. We selected locations that reduce heterogeneity as much as possible by examining 
maps and pictures before the installation. In addition to GSI, table 1 compares the sites in terms 
of vegetation type, site conditions, and areas. After installation, the replicability and proximity is 
captured by data and can be assessed through variance analysis between and within site types 
(see Fig. 2). Sensors integrate nearby environments and record the local character of a place with 
a sufficient spatial resolution. The sensors’ spatial resolution depends on the urban landscape. 
For instance, in open landscapes, such as lawns and green roofs, weather stations have a smaller 
spatial resolution as they integrate bigger areas than those placed at compact, enclosed places 
such as courtyards surrounded by buildings or rain gardens along narrow street canyons. The 
lower spatial resolution also softens the requirement of placing a sensor at the centre of NbS, 
which is often impractical and unavailable, for example, due to the lack of proper infrastructure 
(i.e. bespoke posts, fences). Instead, it is much more practical to install sensors at the boundaries 
of NbS and use already existing infrastructure, such as lamp posts.

2.6. Sensors
In this work, we used wireless solar-powered weather stations from Barani 
(https://www.baranidesign.com/) that do not require an external power supply. This significantly 
simplified installation and increased flexibility for choosing optimal locations. The weather 
station included a set of 3 sensors. First, MeteoHelix measures air temperature, humidity, and 
pressure and meets quality standards set by the World Meteorological Organisation. Second, 
MeteoRain records precipitation with 0.2 mm resolution (0.2 litres per square metre) with 2% 
accuracy. Third, MeteoWind detects wind speed and direction. All weather stations were 
installed on lamp posts at around 2.5 m above the ground, except green rooftops. All sensors 
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were connected to a web-based online platform via the widely available Sigfox network in 
Stockholm. The platform provides a flexible dashboard for data visualisation, download, and 
forwarding to external data platforms, for example, managed by municipalities.

2.7. Raw data
The raw data are time traces of local weather variables from 18 locations, displayed in Figure 2, 
and fully accessible through the data repository [26]. The variables include air temperature, 
relative humidity, solar irradiation, and precipitation, each recorded every 10 minutes, during 
March and September 2021 (left column) and a 25-day time window in July (right column). Each 
colour-coded time trace represents an average of three sites of the same NbS type. Aggregating 
gives rise to distinct means and standard deviations, displayed as solid lines and shaded areas, 
respectively. They were used to quantify differences between the sites. Figure 2 displays daily 
sums, maxima, means, and minima for the variables, as indicated. These traces constitute a 
complete database in the analysis. In this paper, we present results on how air temperature and 
solar irradiation vary as a function of GSI.
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Figure 2. Real-time traces of variables collected by wireless weather stations at 18 locations, including 5 
NbS types and non-green references. Each line represents an average reading calculated from three 
individual sites apart from reference sites, where individual traces are plotted due to high variability. The 
grey-shaded areas indicate periods displayed in the right column, while the red-shaded areas indicate two 
heatwaves when air temperature exceeds 25°C for at least five consecutive days. MISU and Bromma 
references are located outside the SRS district area, at the Meteorological Institute of Stockholm 
University and Bromma airport. 
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3. Calculation and Analysis
The analysis employs a mixture of time-invariant statistical and analytical methods. Analysed 
period includes June and July 2021, unless specified. Being the warmest months in Sweden, we 
expect the biggest differences. Daily values were used throughout the data analysis.

All variables from the weather station are non-stationary, as confirmed by the Augmented 
Dickey-Fuller (ADF) test. For non-stationary time series, subtraction of a reference time series 
(i.e. differentiating step) is necessary before standard statistical analysis (such as t-test) can be 
performed to quantify differences between sites. However, from the onset, the differentiating 
step becomes problematic due to the heterogeneity of the urban landscape because there is not a 
site with ‘average’ climate conditions. Therefore, we refrain from selecting an arbitrary urban 
site that acts as a differentiating reference as it would artificially embed its urban landscape 
together with its unique local climate in the analysis, leading to biased results. To circumvent 
this, we take advantage of the dense grid of weather stations and use the site under investigation 
as a differentiating reference, allowing us to quantify how each NbS differs from all its 
neighbouring sites, individually and collectively.

Figure 3 shows an example of a differentiating step for the daily maximum air temperature at 
three sites - a green roof, a non-green square, and a forest park. Each line is the result of daily 
ΔTMAX = Tgreen_roof_1 - Tsite_x, where the site_x is another site from the SRS area. Please 
note that the site_x excludes sites of the same type (i.e. Tgreen_roof_2,3). Then, all values are 
collected in a histogram which follows normal Gaussian distribution and therefore can be used 
for standard statistical analysis. Histograms can be seen as a distinct thermal micro-climate for 
each site compared to the collective, SRS district-wide conditions. For instance, a green roof, a 
non-green square, and a forest park exhibit air temperatures that are on average warmer (μΔTmax

= 0.49°C), neutral (0.03°C), or cooler (-0.88°C), respectively. The full set of values is displayed 
in Figure 4.

Figure 3 also displays shorter periods when the air temperature largely deviates from the 
average. This means that the non-stationarity of data was significantly reduced but not 
completely removed. For instance, in the first week of June, the green roof was warmer by at 
least ΔTMAX = 1.0°C than the SRS district and up to 2.5°C warmer than the forest park, in 
contrast to the overall average ΔTMAX = 0.49°C. In the second week of June, this difference 
almost disappeared. Local air temperature at forest parks shows a similar temporal response but 
with the opposite cooling effect (see Fig. 3). Such short-term differences coincide with rainy and 
cloudy conditions and are simply missed by widely used statistical analyses and sparse temporal 
resolution. However, they are still experienced by residents and nature. Therefore, reducing the 
cooling performance of NbS to a single number requires caution and detailed temporal 
consideration which can be addressed via real-time monitoring and careful analysis.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4711713
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Figure 3. Analytical method for defining a thermal micro-climate at NbS sites. Each time trace is a result 
of a differentiation step ΔTMAX = Tgreen_roof_1 - Tsite_x. The adjacent histogram aggregates all daily 
ΔTmax values, giving rise to a thermal difference for the district-wide conditions.

4. Results
Figure 4 gathers fitting parameters for all sites, as described in the analysis section. They are 
plotted against GSI for daily ΔTmax, averaged across June and July (Fig. 4a), and during May 
only (Fig. 4b). While most sites reside within the temperature band ΔTMAX = ± 0.25 °C, some 
end up in one of four quarters marked by two axes: cold-hot (ΔTmax), green-grey (GSI) such as 
cold-grey Rain Gardens. However, with standard deviations as large as 0.6 °C, differences 
between sites are statistically insignificant, however present. This was confirmed by time-
invariant statistical analysis (i.e. Pearson t-test, Student t-test, Kruskal-Wallis test), resulting in 
an almost perfect correlation (c ≅ 1) with no significant difference (p > 0.05). The only 
significantly different pair is Forest Park (yellow pentagons at the cold-green quarter) and Green 
Roof (pink squares at the hot-grey quarter). They correspond to the coolest and the warmest NbS 
in the SRS area, respectively, reaching ΔTMAX up to ± 0.75 °C. There are also days when ΔTMAX

rises to up to 2.5 °C (Green Roof 1) and drops to - 3.0 °C (Forest Park 2). 

Figures 4a and b also include distant reference sites, such as Bromma Airport (8.7 km away from 
SRS) and the Department of Meteorology of Stockholm University (MISU, 2.5 km away). 
Despite their different urban landscapes they still show a statistically insignificant deviation from 
SRS-district-wide background temperature, ΔTMAX = ±0.25 °C. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4711713
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Figure 4. a,b) Thermal micro-climate comparison concerning SRS-wide conditions for five types of NbS 
and reference sites as a function of GSI in a) June and July and b) during May only. c) Daily sum of solar 
irradiance at each site. d) Variance in daily Tmax among all the sites showing a deflection point at 21 °C, 
where the differences start to increase.

Figure 4c shows a daily dose of solar irradiance (I), defined as the total amount of light energy 
(radiant flux) received by a surface per unit area, per unit time, measured in kW/m2, (W = J/s). 
Interestingly, solar irradiance varies four-fold across the sites during June and July, ranging from 
sub-10 kW/m2 in the Forest Parks to above 40 kW/m2 at the Green Roofs. These differences 
decrease outside of the summer months as seen in Figure 2, where each site features a distinct 
seasonal parabolic-shaped response with different peak values. We also notice an ordering which 
to a large extent follows an increase in the relative amount of vegetation - the greener the site the 
lower solar irradiation, due to shading. Rain Gardens are an exception to this trend as they are 
situated within narrow street canyons running from south to north, that provide consistent 
shading with as little sunlight as in the Forest Parks despite little vegetation. There is a site in 
each quarter defined by two axes: dark-bright (I), and grey-green (GSI), for example, dark-grey 
Rain Gardens and bright-green Lawns and Courts.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4711713
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Figure 4 b exemplifies how seasons drive differences in ΔTmax between NbS, as they become 
smaller before and after the summer months. Figure 4 d shows the same phenomenon by plotting 
how the variance in Tmax between all sites varies with overall Tmax. As long as Tmax remains 
below 21°C, the differences stay relatively constant, within the 0.1 - 0.4°C range. Above 20°C, 
the differences increased with the characteristic slope of 0.055, reaching up to 0.8°C.

5. Discussion
5.1. Urban heat and cooling hypothesis of NbSs
The urban heat island phenomenon can be abated, according to the literature, by several 
interacting factors including the extent and composition of vegetation and its shading effect [27]. 
Our case study was designed to test the robustness of this hypothesis in a not well-studied Nordic 
context [28,29]. In our experiment, solar irradiation (I) and green area cover (GSI) show a trend 
that points towards the expected pattern of cooler air temperatures and increased relative 
humidity in greener and better-shaded locations. However, this was only a trend; we did not find 
statistically significant differences in the air temperature between most sites. The lack of 
differences is intriguing when compared with other studies [28–31]. There, day-time 
temperatures in small and medium urban parks (0.5 - 5 ha) were cooler than their urban 
surroundings,  by 0.5-0.8°C in Stockholm, Sweden [29], and by 0.7°C in Leeds, England [31]. 
Bowler et al. (2010) estimated an average of 0.94°C for 24 urban parks, which is modest in 
comparison to cities in southern Europe (e.g.  1-3°C cooling in Lisbon, Portugal [30]). Contrary 
to common practice in the literature, such comparisons must be taken very cautiously; too often 
they disregard geographic and urban contexts, climatic gradients, varied reference sites, mixed 
variables (e.g. surface vs. air temperatures), sparse spatiotemporal resolution of data, and varied 
data treatment, which de facto make it impossible to generalise [32,33]. In our study, we suspect 
that prevailing winds in a small study location on the waterfront may strongly influence local 
microclimate measurements, a hypothesis that needs testing but points to the need to examine 
how regional weather patterns may affect local weather monitoring data. Therefore, our work 
opens the door to a richer conversation about the broader context of NbS which is 
underrepresented in current literature and practice. Namely, to what extent and in what 
circumstances can one expect local NbS to provide ecosystem services such as cooling? 
We structure this discussion by moving from large to small-scale factors, ending with 
practicalities of experimental design and analytics which have significant bearings on reported 
values.

5.2. Scale and context
NbSs are situated and embedded solutions, subjected to larger factors such as seasonal trends and 
the surrounding urban landscape. In the SRS-Nordic context, the cooling effect is not large 
enough to be pronounced statistically significant at the level of a single NbS. Therefore, we 
argue caution and not taking ecosystem functions and services such as cooling for granted. 
Interventions for improving local climate need to be considered at the district scale.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4711713
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Our results demonstrate that regional dynamics dominate SRS’s climate and that these are too 
strong to be significantly affected by local variation in the urban landscape. At larger scales, the 
cooling of vegetation is visible also in Stockholm, if of modest magnitude. Our results agree with 
an observation that cities with 30% urban green cover and annual average precipitation of 500-
800 mm should expect the cooling magnitude to be within the range of 0.25 - 0.5°C [33]. The 
urban landscape of SRS which contains 30% of the green cover appears too homogeneous, and 
its local NbSs are too small to alter the regional climate. Such high levels of green cover likely 
have a smoothing effect on the SRS’s thermal profile. Therefore, in the process of implementing 
NbSs, we argue that there is a need to identify thresholds for landscape heterogeneity to know at 
what size a single local NbS can be expected to have a cooling effect. 

Another aspect of embedded solutions is the connectivity to larger ecological entities such as 
large parks and bodies of water. Our case study district shares its boundaries in equal parts with 
the brackish waters of the Baltic Sea to the East, the primarily green Stockholm National Urban 
Park to the West, and a compact urban area to the South. Each of these neighbouring areas is of 
comparable size relative to SRS (approx. 80 ha). The proximity to water and the large park 
should reduce the heat island effect inside SRS since their cooling is known to extend 20 - 300 m 
beyond their boundaries [30,34]. This influence is likely aided by good air circulation among 
SRS’s mid-rise buildings.

Local NbSs, regardless of type, need to add up to a substantial total green cover before they can 
be expected to have an impact. In light of these findings, it is important to highlight that urban 
NbS, as long as healthy, will still provide multiple functions at the local level beyond regulation 
of local climate which shouldn't be overlooked, including facilitation of human-nature relations, 
providing habitat for biodiversity and supporting human mental and physical health [19,35].

5.3. Seasons and extreme weather
The background climate also determines the seasonal asymmetric trend seen in the intensity of 
urban-rural surface temperature differences [32]. The continental climate of Stockholm produces 
a seasonal response that drops sharply with the background temperature on both sides of the 
summer months [36]. Although differences in the surface temperature are much larger than in the 
air temperature we still observe a seasonal response in our data. Looking long-term, the 
relatively large difference in ΔTmax between Forest Parks and Green Roofs only occurs during 
the warmest months, June and July. Before and after the summer (Apr, May, Aug, Sept) ΔTmax
at most sites converge to the band within 0 ± 0.25°C (see Fig. 4b). Note that the original order 
still holds. We attribute this effect to reduced solar irradiance and vegetation activity. The daily 
amount of solar irradiance dropped below 30 kW/m2 and the absolute difference between sites 
was below 200 W/m2 (max-min) due to cloud cover and the angle of solar incident. Reduced 
vegetation activity leads to lower evapotranspiration and less shading. One could also 
hypothesise that there would be bigger differences between NbSs during extreme weather events 
as they amplify heterogeneities locked in the urban habitat. However, the summer of 2021 was 
an average year for temperatures, including the number of heatwaves. This supports our 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4711713
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observations of unpronounced local differences that increase in a nonlinear fashion as days get 
warmer (see Fig. 4 d).

5.4. Shading and vegetation contributions to urban cooling.
Local air temperature data (ΔTmax Fig 4a) resembles the parabolic shape of solar irradiance 
(Fig. 2), confirming that solar energy drives air temperature. However, solar irradiance does not 
account for the entire cooling effect. This is evident when comparing sites with similar solar 
irradiance. Still, with very different GSI scores, such as Forest Parks and Rain Gardens (see 
Fig. 4a). This allows us to separate contributions from shading and the amount of vegetation to 
urban cooling. 

Shaded and grey Rain Gardens provided 0.25°C of cooling on average in June and July, while 
the cooling performance of shaded and abundantly green Forest Parks reached up to 0.75°C (3-
fold improvement with 0.5°C of relative difference). Similarly, by comparing sunny places with 
different GSI scores, we observed that air at Green Roofs was hotter by ΔTmax = 0.75 °C on 
average, while Lawns and Green Courts managed to reduce their Tmax down to the district level 
and even below, ΔTmax = 0°C and -0.25°C (up to 1°C of relative difference), despite receiving 
similar amount of solar energy (see Fig. 4a). We attribute this effect to high GSI scores and 
enclosed urban morphology.

5.5. Implication of the experimental design
Up-to-date, real-time information about urban NbSs is much needed as cities and NbSs within 
them become increasingly more vulnerable to the changing climate, a factor potentially 
confounding climate adaptation efforts. In this study, we found local wireless sensors to be an 
efficient, flexible, and inexpensive way of tracking, with extremely high spatiotemporal 
resolution, in situ whether NbSs perform as expected. It is challenging to account for all 
contributing factors that influence the cooling performance of urban NbSs. The literature points 
to, among other factors, human population and precipitation [33], climate gradients [32,36], the 
ratio of impervious surfaces [37], wind patterns, vegetation, and shading [23]. Faced with such 
complexity, in situ measurements enabled by ground-based sensors appear to be a direct and 
reliable approach for quantifying the cooling performance of urban NbSs. However, many cities 
have less than a handful of weather stations, and existing academic knowledge on the air cooling 
performance of NbSs, not least in the Nordics, is based on very sparse spatiotemporal data sets 
[29]. Sensor technology can improve the quality and help establish long-term ecological urban 
observatories. Exemplary cities in this regard include Oslo in Norway [38] Bern, in Switzerland 
[39], and Leeds in the UK [31]. Our study adds Stockholm to this list. Thanks to a dense network 
of local sensors our work reaffirmed the importance of the context including regional scale 
dynamics in the Nordics which should be accounted for in the following studies and addressed 
more thoroughly by the academic community. 
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However, to better capture the interplay between the regional context and the provisioning of 
ecosystem services in cities, we call for a mixed-method approach, rather than an apparent path 
of expanding the network of sensors even further. We believe that a mixed method that integrates 
a combination of ground-based sensors, remote sensing, and modelling would be better suited to 
generate a more holistic understanding of urban dynamics including the context-dependent 
cooling performance of NbS and other ecosystem services, leading to more resilient nature-based 
urban planning and adaptive real-time management of green spaces.

5.6. Implications of the Analytical Approach
In our study, a dense network of sensors with real-time monitoring provided a high-quality 
spatiotemporal resolution, allowing us to capture short-lived “extreme” events that are often 
missed by other types of methods, such as remote sensing, due to their inherently lower 
resolutions. Yet, the short-lived variations, for example in air temperature, can still get buried 
under time-invariant statistical methods that lack temporal sensitivity. To perform statistical tests 
such as T-test, the common practice is to remove day-to-day variations by subtracting a daily 
mean that disregards the data's temporal dimension. For instance, even when local air 
temperatures at local NbSs are statistically identical, large and intermittent differences still occur 
between them. In 2021, the largest temperature differences were up to 3°C in maximum at noon 
and 5°C in minimum at night. Therefore, we suggest presenting time traces and aggregated 
values side-by-side, as shown in Fig. 2, which we believe strikes the right balance between 
complexity and clarity. This balance can be altered by aggregating data on much shorter 
timescales, for example by computing weekly moving averages, rather than monthly, as 
presented here, to more accurately represent the real-time nature of the urban heat phenomenon. 
This approach can help increase consistency in reported values of ΔTmax, widely quoted in the 
literature.

The same network of sensors also enabled us to quantify district-wide conditions and perform a 
robust comparison between NbSs. This approach overcomes the challenges of finding a 
“representative”, yet illusive reference site due to a highly heterogeneous and dense urban 
landscape [31]. Choosing the district-wide condition as a reference also minimizes systematic 
bias in choosing a particular site that hinders meaningful comparisons between studies. This can 
be observed in Fig. 4a, where even the same types of NbSs, Courtyards, and Lawns, show 
dissimilar ΔTmax, implying that other factors than GSI have a bearing on the cooling 
performance.

6. Conclusions
Recent technological advances have made meteorological stations affordable and portable while 
preserving high measurement quality. We use this novel form of harnessing data to understand 
the performance of nature-based solutions across seasonal variation and under extreme weather 
conditions in terms of their direct impact on the local climate. Our results show that the 
relationship between vegetation and cooling is not straightforward and that care needs to be 
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taken when designing the experiment and analytical approach. While not explicitly part of the 
study design, we see an indication that scale and overall urban morphology may, at least in the 
urban context of our study, have a stronger effect on local climate than vegetation type. 
Furthermore, we found some support for the hypothesis that different vegetation types (the 
different NbSs) have different functional responses to dry spells and heat. Had the time series 
included more extreme conditions this may have been more clearly visible. Our results point to 
the need to better understand the scale effects and functional responses to extreme weather 
events for a better understanding of when urban vegetation can support tentative solutions to 
climate-related problems, and the importance of field-based monitoring and evaluation to 
advance understanding of the real-world performance of urban NbSs.
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