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Abstract

The Zintl compound TlInTe, is an intriguing material because of its outstanding thermoelectric
properties atambient pressure. Interestingly, it has recently been found that TlInTe, exhibits a
V-shape dependence of the superconducting critical temperature (T,.) under increasing pressure,
which has been linked to the reversed behavior of the Raman active A; phonon mode and anharmonic
effects. In this study, we have performed first-principles calculations of the electron-phonon
interactions and the superconducting properties of TlInTe, in order to understand this unusual
pressure-induced response. In contrast to experiment, we find a dome-shaped pressure-induced
dependence of T, with a maximum value of 0.23 K at 18 GPa, significantly lower than the experimental
results. Electron doping has the potential to adjust the T, to fall within the experimental range, but it
necessitates considerably high levels of doping. Furthermore, our analysis of the phonon spectra and
phonon lifetimes, including anharmonic effects, show that anharmonicity is unlikely to influence the
superconducting properties of TlInTe,. It remains an open question whether there is indeed an
unusual V-shape T, dependence with pressure or whether the phonon-mediated theory of
superconductivity used here breaks down in this system.

1. Introduction

Chain crystal structures from the T1Se family, such as TlInSe,, TIGaTe,, and TlInTe,, exhibit exciting properties
atambient pressure [ 1—4]. For example, TlInTe, has an exceptionally low value of lattice thermal conductivity
(~0.5 W/mK at room temperature) [5], and TlInSe, is considered to have outstanding thermoelectric properties
[6]. However, relatively limited research has been conducted on this material class under pressure [7—10].

According to the first high-pressure Raman study on TlInTe, performed by S Ves in 1990, it was suggested
that a structural transition from the tetragonal to hexagonal phase may occur in the 7-17 GPa range, but the type
of symmetry in the new phase could not be determined [7]. The next work, conducted 30 years later, used
Raman spectroscopy, x-ray diffraction, and transport measurements along with first-principles crystal structure
prediction to investigate pressure-induced structural and electronic transitions [10]. It was found that the system
undergoes a superconducting transition at 5.7 GPa with a reported critical temperature (T.) of 3.8 K. Further
compression resulted in a decrease in the critical temperature to a minimum of 2.9 K at 10 GPa, followed by an
increase to a maximum observed value of 4.3 K at 25 GPa. This V-shape behavior of T was correlated with the
pressure dependence of the Raman active A, mode, where the T, decreases (increases) as the A, mode hardens
(softens), respectively.

The potential role of the Agmode s compelling because it is well known that, at ambient conditions, TlInTe,
is an anharmonic system, where the anharmonicity is considered to be responsible for the ultralow value of the
lattice thermal conductivity [1, 5, 1 1-13]. Additionally, a recent theoretical study employing a minimal model of
superconductivity that takes into account the anharmonic decoherence of the optical phonons predicted a non-
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monotonic behavior of T, under pressure, in qualitative agreement with the V-shape curve observed
experimentally [14].

The focus of this ab initio study is to analyze the structural, electronic, vibrational, and superconducting
properties of TlInTe, as a function of pressure. First, we show that the tetragonal phase remains dynamically
stable within the 0-30 GPa range, consistent with the latest experiments [10]. Second, in stark contrast to the
experimental results that found a V-shaped pressure-induced dependence of T, we find a dome-shaped
pressure-induced dependence with a maximum T, value 0f 0.23 K at 18 GPa, approximately 20 times smaller
than the largest experimental value. To further understand this discrepancy, we investigated the effect of
anharmonicity on both the phonon dispersion and the phonon lifetimes at 0 and 14 GPa. Our theoretical results
show that, at 0 K, the anharmonic renormalization of the harmonic phonon frequencies is negligible and the
low-frequency phonons have extremely high lifetimes, which suggest that anharmonic effects should play a
minor role in the superconducting properties of TlInTe,. We also analyzed the effect of doping and found that T
values in the experimental range could, in principle, be reached but only for large doping levels.

2. Methods

First-principles calculations were carried out with the Quantum ESPRESSO (QE) package [15, 16]. We employed
the optB86b-vdW functional [17-21] and optimized norm-conserving Vanderbilt pseudopotentials
(ONCVPSP) [22] from the Pseudo Dojo library [23] generated with the relativistic Perdew—Burke—Ernzerhof
parametrization [24]. The 5d'%65°6p" orbitals for T1, 4d'°5s*5p" for In, and 4d'°55°5p* for Te were included as
valence electrons. A plane wave kinetic-energy cutoff of 80 Ry for the wavefunctions and 400 Ry for the charge
density and potential were used. For the Brillouin-zone integration of the 8-atom unit cell, we used a I'-centered
12 x 12 x 12 k-mesh [25] with a Methfessel-Paxton smearing [26] width 0f 0.01 Ry. The atomic positions and
lattice parameters were optimized until the total energy was converged within 10~ ° Ry and the force on each
atom was less than 10~ * Ry/ A.The dynamical matrices and the linear variation of the self-consistent potential
were computed using density-functional perturbation theory (DFPT) [27] on the irreducible set of a regular

4 X 4 x 4 q-mesh. The electron-phonon (e-ph) interactions were first evaluated on a I"-centered 12 x 12 x 12
k-mesh and an irreducible set of aregular 4 x 4 x 4 q-mesh. For each q-point, the e-ph matrix elements were
linearly interpolated to a denser 60 x 60 x 60 k-mesh [28].

The EPW [29-31] code was used to investigate the e-ph interactions and estimate the critical temperature for
select pressures. The electronic wavefunctions required for the Wannier-Fourier interpolation [32, 33] were
calculated on a T'-centered 8 x 8 x 8 k-mesh. Thirty maximum localized Wannier functions (sp> hybridized
orbitals for Tl, In, and Te) were used to describe the electronic structure. Uniform 60 x 60 x 60 k-point and
30 x 30 x 30 q-point grids were employed in the e-ph coupling calculations.

Anharmonic effects can be computed through approaches based on stochastic sampling, ab initio molecular
dynamics, explicit computation of higher order interatomic force constants (IFCs), or special displacements
[34-42]. Here, the ALAMODE package [39, 43, 44] was used to compute anharmonic phonon frequencies and
phonon linewidths through the real-space supercell apporach employinga2 x 2 x 2 supercell of 64 atoms. This
required the extraction of the second-, third-, and fourth-order IFCs. The second-order IFCs were extracted by
performing displacements of 0.01 A foratoms in the supercell and computing the Hellmann-Feynman forces
for the displaced configuration. The anharmonic third- and fourth-order IFCs were extracted in a similar way as
the second-order terms but with a displacement of 0.04 A. There were no cutoff radii specified for the
computation of the second- and third-order terms, including all interactions, however, the fourth-order term
used a cutoft radius to only include nearest neighbor interactions for every atomic pair. The IFCs that contain a
combination of atoms whose pair is larger than the cutoff radius is set to zero. The fitting error for the fourth-
order IFCs was 0.20% at 14 GPa. Setting the nearest neighbor distances up to 8 Bohr required the calculation of
over 800 displacements. Using the default distance of 10 Bohr would have significantly increased the
computational cost and would have required calculating over 3500 displacements for a 64 atom unit cell.
Considering the substantial computational cost for a larger cutoff radius, and the small fitting error achieved for
nearest neighbors, the use of the smaller cutoff seems appropriate in this case. The anharmonic phonons were
obtained by solving the self-consistent phonon (SCPH) equation. Both the q-mesh and the inner q’-mesh in the
SCPH were setto4 x 4 x 4. The phonon linewidths were calculated by taking the imaginary part of the
anharmonic self-energyona 10 x 10 x 10 gq-mesh.

3. Crystal properties

Atambient conditions, TlInTe, adopts the tetragonal crystal structure, with space group I4/mcm (No. 140) [45].
The unit cell consists of covalently bonded tetrahedral chains of [InTe,] along the c-axis, as shown in figure 1
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Figure 1. (a) Top and (b) side view of the tetragonal crystal structure of TIInTe,. The In-Te polyhedra enclose the weakly bonded Tlin
the structure.
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Figure 2. Lattice parameters along a (filled symbols) and ¢ (open symbols) axes as a function of pressure. Blue circles correspond to
results from this work, while red squares and black diamonds correspond to theoretical and experimental results from [10].

[46]. The tetrahedrons connect to each other by the corner shared Te atoms, with the In atom residing in the
middle of the tetrahedron. The T] atoms occupy the center of a distorted octagon formed by 8 Te atoms (2
different side lengths), with the Tl and Te atoms ionically bonded. The weak bonding of the Tl atoms is
characteristic of rattler structures where loosely bound atoms in a regular periodic crystal lattice have large
amplitude vibrations. The rattling model has been demonstrated in TlInTe, [5] and shown to be typical for
materials with low lattice thermal conductivity [47, 48].

A possible tetragonal to hexagonal structural phase transition in the 7-17 GPa range was pointed out in [7],
but the Raman measurements did not allow for the determination of the symmetry in the new phase. On the
other hand, a recent study did not find any evidence of a phase transition from the x-ray diffraction patterns
taken up to 33.5 GPa, but predicted that the tetragonal structure undergoes a phase transition to a body-centered
cubic Pm3m phase at 50 GPa through an intermediate distorted orthorhombic Pbcm phase that appears at
37.5 GPa[10]. We find that the tetragonal structure indeed remains dynamically stable up to 30 GPa, the
maximum pressure investigated in our work, consistent with the latest study [10]. In addition, as shown in
figure 2, the present theoretical results for the pressure dependence of in-plane and out-of-plane lattice
parameters are in very good agreement with the theoretical and experimental data reported in [10], confirming
that there is no structural phase transition in the 0-30 GPa pressure range.

4. Electronic properties

According to experimental measurements, T1InTe; is a semiconductor with an indirect band gap of
approximately 1.0 eV [49-51], and undergoes a semiconductor-to-semimetal transition at 4 GPa[10]. Our
density functional theory (DFT) calculations return a lower band gap value 0f 0.29 eV and a semiconductor-to-
semimetal transition at 2 GPa, as expected within the PBE scheme employed in this work. We also carried out
electronic structure calculations with the modified Becke-Johnson (MB]) exchange-correlation potential [52]
that has been shown to provide a good description of band gaps in crystalline solids. With MBJ, we find that the
band gap increases to 0.71 eV, in agreement with previous DFT calculations [10, 53, 54], and the semiconductor-
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Figure 3. Calculated electronic band structure and density of states (DOS) of TlInTe, at (a)-(d) 6, 14, 21, and 28 GPa.

to-semimetal transition shifts to 4 GPa. However, the role of the MBJ potential is secondary when describing the
electronic structure in the vicinity of the Fermi level (Eg) in metallic systems.

To confirm this, we performed band structure calculations at 0 GPa (semiconducting) and 24 GPa
(metallic), with and without the MBJ potential. As shown in figure S1 in the Supplemental Material [55], the MB]
potential at 0 GPa does a good job of reproducing the band features of the PBE calculation while shifting the
conduction and valence bands away from the Fermi level. Meanwhile, at 24 GPa, there is no appreciable
difference in the band structure near the Fermi level. As a result, the density of states (DOS) at the Fermi level for
the two sets of calculations are almost identical for pressure points where the system is in the metallic regime.
Lastly, band structure calculations at 0 and 24 GPa with the inclusion of spin—orbit coupling (SOC) indicate that
the SOC has a negligible effect (see figure S1 in the Supplemental Material [55]). Since our primary interest is to
investigate the superconducting properties of TlInTe,, which is predominately influenced by the electronic
structure at the Fermi level, we performed all subsequent calculations at the PBE level without the inclusion
of SOC.

The evolution of the electronic band structure and total DOS as pressure increases from 6 to 28 GPa is
depicted in figure 3. At 6 GPa, the valence and conduction bands cross the Fermi level in the vicinity of the M and
Zhigh-symmetry points and along the X-P direction, respectively. Around 14 GPa, the conduction band along
the I'-Z direction is also pushed down below the Fermi level, and the valence and conduction bands start to
overlap. This results in an over two fold increase in the DOS at Er. Past this point, the DOS changes very little
with increasing pressure. From the projected DOS (see figure S2 in the Supplemental Material [55]), we infer that
in the 6-28 GPa pressure range, the main contribution at the Fermi level comes from Te 5p, In 5s, and T1 6p
states. Our band structure results are in good agreement with previous electronic calculations both at ambient
and high pressure [10, 54].

Next, we investigated the effect of pressure on the Fermi surface topology of TlInTe, [56]. In a number of
systems [57—61], the emergence or disappearance of superconductivity has been associated with a Lifshitz
transition [62]. This transition is manifested as a subtle change in the Fermi surface topology (e.g., the
appearance or disappearance of a pocket or a neck on the Fermi surface) driven by external parameters, such as
doping or pressure, and without breaking the crystal symmetry. Our theoretical analysis clearly shows that the
crystal structure remains the same up to 30 GPa, but the topology of the Fermi surface evolves as a function of
pressure, as shown in figure S3 in the Supplemental Material [55]. We observe that at 6 GPa the Fermi surface is
comprised of individual electron and hole pockets. As pressure increases, the electron pockets connect and grow
tubular necks forming an umbrella-shaped Fermi surface. It has been proposed that the appearance of these
tubular necks could be responsible for the onset of superconductivity in TlInTe, [10].
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Figure 4. Calculated phonon dispersion, phonon density of states (PHDOS), isotropic Eliashberg spectral function (@?F(w)), and

electron-phonon coupling strength () of TlInTe; at (a)-(d) 6, 14, 21, and 28 GPa. The total PHDOS (black line) is decomposed with
respect to the vibrations of the Tl (blue line), In (green line), and Te (red line) atoms.

5. Vibration and electron-phonon properties

Figure 4 displays the calculated phonon dispersion and atomic projected phonon density of states (PHDOS) at 6,
14,21, and 28 GPa. The partial decomposed PHDOS shows that the spectrum can be separated into three
frequency regions with different atomic contributions. The low-frequency region up to about 10 meV is linked
to vibrations from all three types of atoms. The intermediate-frequency region from approximately 10 to
20 meV has little to zero contribution from the lighter In atoms and is characterized almost entirely by Te
vibrations. The high-frequency region above 20 meV has evenly mixed contributions from the In and Te atoms
with no contribution from the heavier Tl atoms. As pressure increases, there is a general hardening of all phonon
branches across the Brillouin zone, except for the A, Raman active mode that has a dome-shaped dependence,
peaking around 10 GPa, as shown in figure S4 in the Supplemental Material [55]. Our results capture well the
pressure trends of the Agand E, modes observed experimentally, the former being slightly downshifted by about
1-2 meV. This level of underestimation is comparable to the one found for the A, mode in other systems [63, 64].
We further analyze the Eliashberg spectral function, a*F(w), and the e-ph coupling strength, ), in
conjunction with the PHDOS. The comparison between o F(w) and PHDOS in figure 4 shows that, for all
calculated pressures, the modes below 15 meV are responsible for more than two thirds of the total
e-ph coupling strength of the system. The remaining third mainly comes from the intermediate-frequency
modes of Te, with only a small part from the high-frequency modes of In and Te. We note that in the
intermediate region lies the aforementioned Raman active A, mode whose dome-shaped frequency dependence
and its broadening linewdith as pressure increases has been suggested to lead to strong e-ph coupling and
anharmonicity, and therefore was used to explain the V-shape T, behavior as a function of pressure extracted
from transport measurements in [10]. Based on the calculated A, we find that the A;mode does not play a major
role in the e-ph coupling in TlInTe,. In addition, it has been shown that the strong anharmonicity in this
material is linked to the low-frequency rattling mode of Tl atoms [5, 12], and, from the projected PHDOS, we see
that the A, mode is mainly associated with the vibration of the Te atoms. Our anharmonic calculations presented
later also show that the A;mode does not appear to be influenced by anharmonic effects. Figure 5 summarizes
the dependence of the DOS at the Fermi level and A as a function of pressure. Compression, from 6 to 15 GPa,
results in an increase in A as the DOS at the Fermi level increases. Past this pressure point, the general hardening
of all phonon modes triggers a decrease in A. The corresponding critical temperatures estimated with the Allen-
Dynes modified McMillian formula [65, 66] and a Coulomb pseudopotential of 1* = 0.1 using QE are shown in
figure 5(c). Superconductivity calculations for select pressures performed with EPW give similar A and T values.
We find that T1InTe, does not exhibit superconductivity until 10 GPa, and the T, only reaches a maximum value
0f0.23 K at 18 GPa. These results differ from the experimental findings in two significant ways: the V-shape
curve of superconductivity is not recovered and the critical temperature is off by an order of magnitude.
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Figure 5. (a) DOS at the Fermi level, (b) electron-phonon coupling strength (), and (c) critical temperature (T,) for pressures ranging
from 0 to 28 GPa. The black circles correspond to calculations done with QE, while the blue circles were calculated with EPW.
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Figure 6. Phonon lifetimes at (a) 0 GPaand (b) 14 GPa calculated at 0 K (blue circles) and 300 K (red circles).

6. Discussion

The significant anharmonicity in the rattling motion of Tl atoms enclosed within the cage-like Thompson cubes
formed by surrounding Te atoms has been proven to be a major contributor to the remarkably low lattice
thermal conductivity observed in TlInTe; [1, 5], as it results in ultra-low phonon lifetimes [12, 13]. To this end,
we calculated the phonon frequencies including quartic anharmonic effects within the SCPH theory. As shown
in figure S5 in the Supplemental Material [55], the phonon spectra at 14 GPa computed within the harmonic
approximation with DFPT in QF and frozen-phonon in ALAMODE are found to be in good agreement. Taking
into account aharmonic effects, we observed that the phonons between 5 and 20 meV are slightly hardened with
increasing temperature, while the high-frequency optical phonons remain relatively unchanged, in agreement
with calculations at 0 GPain [12]. These findings suggest that anharmonic effects are not expected to affect the
superconducting properties of TlInTe,. To further support this point, we also calculated the phonon lifetimes at
0and 300 K for 0 and 14 GPa. The comparison in figure 6 demonstrates that the lifetimes of low-frequency
phonons at 0 K are much larger than those at 300 K for both pressure values. Since smaller lifetimes are linked to
anharmonic effects, this plot implies that while TlInTe, might be strongly anharmonic at room temperature, the
anharmonicity is dampened at low temperatures.

We further explored whether doping could enhance the superconducting transition temperature and bring
the results in line with experimental observation. We simulated electron doping using a jellium model for two
carrier densities of 0.25 and 0.50 electrons/u.c. Figures S6 and S7 in the Supplemental Material [55] show the
band structures and phonon dispersion relations for the doped compound at 6, 10, 14, and 21 GPa. Across all
pressures, the DOS at Ex for the smaller doping remains comparable to the undoped compound. This behavior
changes for the higher doping as a new state crosses the Fermi level along the N-X direction, leading to a more
than 25% increase in the DOS at Er. In the case of phonons, there is a general softening of all modes which
becomes more pronounced as doping increases. The cumulative effect of the increase in the DOS at the Fermi
level and the softening of the phonon modes results in a significant enhancement of the predicted e-ph phonon
coupling and critical temperature. As shown in figure 7, the calculated T is of the same order of magnitude as the
experimental value, but the T, dependence with pressure does not display the V-shape behavior found
experimentally, instead decreasing almost linearly with increasing pressure independent of the doping
concentration. Pressure effects on the critical temperature have been found to lead to vastly different behaviors
depending on the system [67-69].

Lastly, we analyzed closely the superconductivity results presented by Yesudhas et al [10]. As illustrated in
figure 6(b) of [ 10], the material only enters in a superconducting state with zero resistance at 19.5 GPa.
Additionally, in the 5.7-19 GPa interval, there is a finite resistance (see figure 6(a) of [ 10]) which suggests that in
this pressure range the system could be in a mixed state characteristic of a type-II superconductor [70]. This
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respectively. The green circles correspond to the experimental onset T, data taken from [10].

latter observation is also supported by the resistance versus temperature curves for varying magnetic fields at
10.1 GPain figure 6(c) of [10], showing that as the system goes in this mixed state, the resistance exhibits a
gradual decrease as the temperature is lowered instead of a discontinuous drop to zero [70]. We also note that the
V-shape pressure dependence of T. was obtained using the onset T [10] (i.e., the temperature where the
resistance starts to drop), while the calculated critical temperature corresponds to the zero-resistance T... Other
factors, such as the appearance of competing electronic phases under pressure, non-hydrostatic pressure
conditions in the experimental setup, and the presence of phase inhomogeneities in the sample, can also notably
affect the critical temperature and may explain the discrepancy with theory [64, 71-74].

7. Conclusions

We performed an ab initio study to investigate the structural, electronic, vibrational, and superconducting
properties of TIInTe, under pressure. Contrary to experiment, we did not find a V-shape T, behavior with
pressure, and, in addition, the estimated T is an order of magnitude smaller than the experimental values.
Doping could, in principle, bring the T, within the experimental range, but the required doping levels are quite
large. Furthermore, our calculations of the phonon spectra and phonon lifetimes with anharmonic effects
demonstrate that anharmonicity is not expected to affect the superconducting properties of TlInTe,. We
conclude by asserting that further experimental and theoretical studies are required to elucidate not only the
pressure range in which TlInTe, is superconducting and the dependence of T with pressure, but also to explore
whether other mechanisms may contribute to superconductivity in this system.
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