| )
Check for
updates

Quantum Time-Space Tradeoffs for Matrix Problems

Paul Beame”
Computer Science & Engineering
University of Washington
Seattle, WA, USA
beame@cs.washington.edu

ABSTRACT

We prove lower bounds on the time and space required for quantum
computers to solve a wide variety of problems involving matrices,
many of which have only been analyzed classically in prior work.

Using a novel way of applying recording query methods we show
that for many linear algebra problems—including matrix-vector
product, matrix inversion, matrix multiplication and powering—
existing classical time-space tradeoffs also apply to quantum algo-
rithms with at most a constant factor loss. For example, for almost
all fixed matrices A, including the discrete Fourier transform (DFT)
matrix, we prove that quantum circuits with at most T input queries
and S qubits of memory require T = Q(n?/S) to compute matrix-
vector product Ax for x € {0, 1}". We similarly prove that matrix
multiplication for n X n binary matrices requires T = Q(n>/V5S).
Because many of our lower bounds are matched by deterministic al-
gorithms with the same time and space complexity, our results show
that quantum computers cannot provide any asymptotic advantage
for these problems at any space bound.

We also improve the previous quantum time-space tradeoff lower
bounds for n X n Boolean (i.e. AND-OR) matrix multiplication from
T = Q(n2'5/51/2) toT = Q(n2'5/51/4) which has optimal expo-
nents for the powerful query algorithms to which it applies. Our
method also yields improved lower bounds for classical algorithms.
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1 INTRODUCTION

Matrix computations are fundamental and critically important in
scientific computing, optimization, and machine learning among
others. If quantum computers have a significant advantage over
classical devices for these computations then it would yield a wide
range of applications for them.

This prospect has seemed promising in that. with input presented
an unconventional form, the HHL algorithm of Harrow, Hassidim,
and Lloyd [14, 19] can efficiently e-approximate properties of solu-
tions of well-conditioned linear systems with exponential quantum
advantage over the best current classical algorithms. Many exten-
sions of the HHL algorithm have also been proposed using the quan-
tum singular value transform (qSVT) framework [17, 21]. Despite
initial hope of exponential speed-up for this framework, a series of
papers by Tang and co-authors, and others (e.g. [12, 13, 16, 27]) has
shown that, given a comparable input format to the HHL algorithm,
these quantum algorithms can be replaced by classical ones with
only a polynomial blowup in the running time.

This begs the question: What is the conventional quantum com-
plexity of standard classical problems like explicitly computing the
linear-system solutions, multiplying or inverting matrices, com-
puting matrix-vector products, and computing the low rank ap-
proximation of a matrix? By the polynomial method, we know that
computing a single inner product of n-bit vectors requires Q(n)
quantum queries [6] but linear algebra computations generally
involve Q(n) or Q(n?) such computations. Sherstov [24], generaliz-
ing results of Klauck, Spalek, and de Wolf [20] for the OR function,
gave a strong direct product lower bound for quantum query com-
plexity proved using the polynomial method, which yields strong
lower bounds for inner products involving many disjoint input vec-
tors. However, the matrix problems in linear algebra are very far
from direct product problems since the vectors involved are highly
correlated with each other so this does not help.

We resolve these questions for quantum computation of a wide
array of linear algebra problems, proving lower bounds for quantum
computation that are asymptotically the same as the best classical
lower bounds. That is, for each fixed bound on the amount of mem-
ory allowed, we derive asymptotically the same time lower bound
for the quantum algorithm as the time lower bound on classical
algorithms with the same number of classical bits. Quantum mem-
ory is an even more critical resource than classical memory since
it is a measure of the maximum number of qubits that maintain
coherence at any time during the algorithm’s execution; the first
general-purpose fault-tolerant quantum computers will likely have
very limited memory. Since many of the problems also have deter-
ministic algorithms whose time and memory usage matches our
lower bounds, our results show that there is provably no asymptotic
quantum advantage at all in solving these linear algebra problems!
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Our lower bounds hold in a query model where algorithms per-
form arbitrary input-independent unitary transformations on their
state between quantum queries. This is sufficiently general that
our lower bounds also apply to any reasonable model of quantum
computation—including quantum circuits with a (classical) input
is stored in quantum-readable read only memory (QROM). The
keys to proving our bounds are new results improving on strong
direct product theorems for matrix-vector products and matrix
multiplication. While our bounds have the form of such theorems
(success probability decays exponentially with the number of out-
puts), they also apply with almost completely overlapping sets of
inputs, in contrast to the disjoint inputs necessary for direct product
theorems.

While there is a large body of work proving strong classical time-
space tradeoffs (e.g. [2, 3, 7, 11, 22, 28]) and a large body of work
analyzing unrestricted quantum query algorithms versus their clas-
sical randomized counterparts (e.g [4, 6, 10, 15, 23, 25, 26]), there
are just a few previous papers that analyze the quantum memory
required to make use of these quantum queries. Klauck, Spalek,
and de Wolf [20] extended the classical method of Borodin and
Cook [11] for proving time-space tradeoffs to quantum circuits
using their strong direct production theorem for OR. They showed
that algorithms making T quantum queries and using S qubits of
quantum memory require T = ©(n!-* /S1/2) to sort lists of length n,
and require T = Q(n%5/8Y2) to compute nxn Boolean matrix prod-
uct. Ambainis, Spalek, and de Wolf [5] extended this direct product
approach to 2-sided error algorithms computing k-threshold func-
tions producing similar tradeoff lower bounds for systems of linear
inequalities/equalities. After a long gap in results because of the
difficulty of applying these methods Hamoudi and Magniez [18],
used a refinement of the compressed oracle method of Zhandry [29],
which uses a recording query basis that allows one to keep track
of a quantum query algorithm as a superposition of basis states
that have a natural classical query interpretation, to prove that any
quantum algorithm that finds K disjoint collisions in an input of
length n with T quantum queries and S qubits of memory must
have T = Q(KN'/3/51/3) and reproved the sorting lower bound
of [20] using this method.

Our linear algebra lower bounds and methods. The strongest clas-
sical time-space tradeoff lower bounds for linear algebra problems
are due to Abrahamson [3] who developed a powerful general
method based on matrix rigidity. This yields state-of-the-art lower
bounds for computation of Fourier transforms, convolution, matrix-
vector products, matrix multiplication, matrix inversion, matrix
powering, and linear system solving. The lack of any analogous
results for quantum computation has been a substantial gap in our
understanding. Our results show that all of the linear algebraic
time-space tradeoff lower bounds shown by Abrahamson [3] also
apply to quantum computers that can adaptively decide when to
produce output values. Since many of these classical lower bounds
are tight, there is hybrid classical-quantum algorithms also provide
no advantage. In the full paper [9] we use results of [8] to derive
asymptotically equivalent lower bounds for the stronger model
of quantum cumulative memory complexity. A summary of our
time-space tradeoff lower bounds is in Table 1.
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Table 1: Summary of our quantum lower bounds, along with
prior work. Bounds apply for input elements coming from
any fixed subset D of a field with d = |D|.

Problem Quantum Bound Source
Matrix-Vector Product T =Q(n?logd /S) Cor 3.3
Discrete Fourier Transform T = Q(n?logd /S) Cor 3.4
Convolution T = Q(n?logd /S) Cor 3.4
Binary Integer Multiplication T = Q(n?/(Slog?n)) Cor 3.5
Matrix Triple Product T =Q(n*logd /S) Cor 3.6
f(A,B,C) = ABC
Matrix Cubing T =Q(n*logd /S) Cor 3.6
Matrix Inversion T =Q(n*logd /S) Cor 3.6
System of Linear Equations T =Q(n’logd /S) Cor 3.7
Matrix Multiplication T=Q(n? \/lmgT/S ) Thm 4.1
Matrix Squaring T=0Q(n? \/logT/S ) Full paper
Boolean Matrix Multiplication T = Q(n%5/51/2) [20]

T = Q(n?3/S14) Thm 5.4
Boolean Matrix Squaring T = Q(n%%/5'*) Full paper

So far, compressed oracle arguments have followed a two-step
pattern: First, show that the total amplitude of states with some
form of unusual progress (i.e., the partial information so far is un-
expectedly determinative of the answer) is small, Then show that
without unusual progress the total amplitude of quantum states
where many outputs are produced is small by breaking the algo-
rithm’s final state into mutually orthogonal components, each with
small amplitude on the correct answers, typically using classical
ideas.

However, with linear algebra problems, there is no form of un-
usual progress and no clear way to break states up into mutually
orthogonal basis states. Instead, for most of our bounds, we use the
recording query framework to allocate portions of the algorithm’s
state to a small number of non-orthogonal components (or buckets)
that share some set of inputs that they know nothing about. We
can then apply a classical argument to show that each component
must have small amplitude on correct answers obtain the overall
bound using the triangle inequality. For matrix multiplication, we
need an exponential number of buckets but use flexibility in bucket
allocation to show that only a small number can be used to cover
almost all the amplitude.

Improved bounds for Boolean matrix operations. We improve the
previous lower bound for quantum algorithms computing Boolean
matrix multiplication given in [20] from T = Q(nz'S/Sl/z) toT =
Q(n%5/51/%). We also improve the classical lower bound tradeoff of
T = Q(n3/S) for circuits (where T is circuit size and S is the circuit
width) shown in [20] to T = Q(n®/S'/2). This answers a question
of Klauck, Spalek, and de Wolf [20] who ventured that this was the
likely tight tradeoff for classical computation of Boolean matrix
multiplication. Our classical bound also dominates Abrahamson’s
T = Q(n>°/S bound for S > n in the more general branching
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program model [2]. The exponents of n and S in our bounds are
optimal for the general circuit models to which they apply. We
prove these bounds using a more sophisticated embedding of k-fold
direct product of OR into an arbitrary subset of k outputs of Boolean
matrix multiplication. This embedding hinges on the number of
colors needed for a certain kind of coloring of subsets of the n X n
grid.

Finally, we convert lower bounds for Boolean matrix-vector prod-
ucts and systems of inequalities given in [5, 20] to yield instances
hard for space S that do not depend on S.

2 PRELIMINARIES
We define the binary entropy function Hy : [0,1] — R, by Ha(p) =
—plogy p = (1= p)log,(1-p).

PROPOSITION 2.1 (SHANNON). The number of subsets of [k] of size
at most ak is at most 212(@) k.,

Definition 2.2. An m X n matrix is (g, h, ¢)-rigid iff every k x w
submatrix where k < g and w > n — h has rank at least ck. We call
(g, h, 1)-rigid matrices (g, h)-rigid.

Matrix rigidity is a robust notion of rank and is an important
property for proving time-space and cumulative complexity lower
bounds for linear algebra. Fortunately, Yesha gives an explicit exam-
ple of such a matrix and Abrahamson proved that there are many
rigid square matrices.

PROPOSITION 2.3 (LEMMA 3.2 IN [28]). The n X n Discrete Fourier
Transform (DFT) matrix is (n/4,n/4,1/2) rigid.

PROPOSITION 2.4 (LEMMA 4.3 IN [3]). There is a constanty € (0, %)
such that at least a 1—d~1(2/3)Y™ fraction of the matrices over D"*"
with |D| = d are (yn, yn)-rigid.

Unitary quantum circuits with oracle states. Throughout this pa-
per, we consider quantum circuits that seek to compute target
functions f : D" — R™. Let d = |D| and assume the existence of
a bijective map v: D — {0,...,d — 1} that gives us an ordering
on the elements of D. A T query quantum circuit is specified using
input independent unitaries Uy, . . ., Ur. These unitaries define a se-
quence of quantum states |{/1) ¢, ... [{1) ¢ that an algorithm enters
during its execution. We can think of each of these state |/;) as a
linear combination of basis vectors |i, p, w) where i represents an
index to query, p represents a phase for the query, and w contains
all the remaining qubits of the state.

Similar to [4, 18, 29], we define a general oracle operator
O that interacts with an input register that start in a state
[0) 0. Given a distribution D over D", we can make |f9)y =
Yixepn VPrx~p[X = X’]|X) to represent an input sampled
from D. We define our oracle operator O as O |i,p,w)|X) =
wzu(xi ) li, p, w) |X). Thus the joint state of the input and quan-
tum circuit at the end of the computation is given by |y1) =
Ur0...0Uy [0)¢ 1Y) -

The output of the quantum circuit is determined by measuring
the work register of |/) ;- in the standard basis and applying some
input-independent post-processing function q to interpret the result
as an output 7 € R/ where J C [m]. The correctness of these
outputs is then determined by measuring the input registers in
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the standard basis to obtain the input X and evaluating whether
7 is consistent with f(X) which we denote by writing 7||f(X). In
general we can define the projector IT; where:

I = Z li, p, W, x1, ..., Xn) (i, p, W, X1, . . ., Xn|
LD, W, X1, Xn

st q(W)|1f (x1,-...%n)
and [q(w)|zk

The probability that the circuit produces a correct partial assign-
ment of at least k outputs is given by ||IIj. |¢7)||%. For a given partial
assignment q(w) to some outputs, we can define IT;(,,) to be the
projection onto the values of |X) where g(w)||f(X). More specifi-
cally we have that:

Mg(w) = ), 1) (oo, xl (1)

X15..05Xn
st g(w) | f (x1etn)

By construction when g always produces a partial assignment of at
least k elements we have that IIy. = 3; . |, p, w) i, p, w| @I 44y

Space Bounded Quantum Computation. Without loss of gener-
ality, we think of quantum circuits as starting in the all |0) state
and cycling between applying input queries O, arbitrary input-
independent computation Uy, and intermediate measurements as
in Figure 1. Adopting the notation of [8], we will consider the set of
consecutive O, Uz, and measurement gates as layer L;. The space
of layer L; is the number of qubits that are passed from layer L;
to L;4+1 and is denoted S;. We define the space of a circuit as the
maximum space of any layer, the time as the total number of layers,
and the cumulative memory as the sum over all the S;.

Intermediate measurements enable circuits to produce parts of
their output early and discard unnecessary ancillary qubits. Some
prior quantum time-space tradeoff lower bounds required the quan-
tum circuit to declare which outputs are produced at each layer
(e.g. sorting, Boolean matrix multiplication, and systems of linear
inequalities [5, 20]); however the recent collision-finding bounds in
[18] extend the output model for quantum circuits to include indi-
cator qubits specifying which (if any) outputs are being produced
at each layer. This allows them to prove lower bounds against quan-
tum algorithms that dynamically decide when they want to produce
outputs based on their observed inputs. While our Boolean matrix
bounds build on those in [20] and thus require a fixed time for
each output bit, our linear algebra bounds work with this dynamic
output model.

Our time-space tradeoffs follow the Borodin-Cook method, and
thus rely on dividing a quantum circuit into blocks that each are
unlikely to produce many correct outputs. We prove that these
blocks cannot produce many outputs in the unitary quantum cir-
cuits model and then apply the results to our space bounded model
using the differed measurement principle. After the first block, a
quantum circuit will have some input-dependent state that can
help it produce more outputs. Fortunately, a result by Aaronson
(modified to work on mixed states) lets us bound how much this
initial state can amplify the success probability.

PropPosITION 2.5 ([1]). Let C be a quantum circuit, p be an S-qubit
(possibly mixed) state, and 7ty be the S-qubit maximally mixed state.
If C starting in initial state p produces some output z with probability
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Figure 1: A general quantum circuit with T queries.

p, then C starting in state mmix will produce z with probability at
least p/2%5.

The recording query technique and quantum lower bounds. Here
we review the methods developed in [18, 29] that allow us to analyze
what a quantum circuit learns about its input by making quantum
queries. We will assume that |1/g) o is the equal superposition state
over all inputs. We can exchange the general query operator O with
a recording query operator R defined as follows:

Definition 2.6 (adapted from [18]). Let S; be the unitary oper-
ator where: S | L) = VLE Yyen lv), 51\/% Yyeply) = |1), and

S1$ XyeD ws v(y) ly) = ﬁ YyeD a)g V() ly) for all p # 0.
Let S = (Dipw ® (S{@n)xl,-»-,xn and O be the standard oracle

operator O |i, p, w, X1, ...,Xp) = (ug v(xi) li, p, w,x1,...,xp) . Then
the recording query oracle operator R is defined as SOS.

S introduces L as a new value for the input registers. The
L symbol indicates that the algorithm knows nothing about that
register of the oracle. By adding and correctly manipulating the L
symbols in the oracle’s registers, we can record what the algorithm
knows about the input. Since S? = I, we can exactly characterize
how the states of quantum circuits with oracles O and R relate.

ProposITION 2.7 ([18]). Let C be a quantum circuit that for each
Jj < t applies unitary U; after the j-th query. Let S be the unitary
operation and R be the recording query oracle from Definition 2.6. Let

1
192) = UiOUp-1 ... ULOU(10); o ® =5 3 1 X))

X150 Xn €D

.....

be the states of C with oracle O or R respectively. Then |;) = S |P;).

In other words, it is impossible to distinguish the final state |{1)
of a circuit with standard oracle O from the output with recording
oracle R if we apply S to the registers of R after the final query.
Thus the success probability of a quantum circuit with T queries
is given by [[Tsuce [Y7)1I* = [ITsuceS |¢7)|*. Note that while |¢7)
may have inputs in the L state, Proposition 2.7 tells us that S |¢7)
will never have an input that is L. Thus when considering recording
query oracles, it is safe to keep our current definitions of ITsycc
and I (,,) which will always project out any basis state where an
input is assigned to L. We leverage the following property of |¢1)
to bound the success probability of short quantum circuits.

PROPOSITION 2.8 (FACT 3.2 IN [18]). The state |¢;) from Propo-
sition 2.7 is a linear combination of basis states |i, p, w, x1, ..., Xp)
where at most t of the x; are different from L.
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3 QUANTUM MATRIX-VECTOR PRODUCTS

In this section, we consider the task of — for a fixed matrix A €
F™>*" — computing the function f(x) = Ax for inputs x € D™ using
a quantum circuit. We note that this is a fundamentally harder task
than is considered in many quantum machine learning papers (for
example [19]) as we require the circuit to output a classical vector
y € F” rather than either a quantum state encoding the entries of
y in the amplitudes or an estimate of y™ My.

Also unlike many prior quantum time-space tradeoffs, including
sorting [8, 18, 20] and Boolean matrix multiplication [20] (and our
Theorem 5.4), but like those of 18] for disjoint collisions, our matrix-
vector product and matrix multiplication lower bounds apply to
circuits that can adaptively decide when to produce each output
based on the observed inputs.

Tueorem 3.1. Letm ben© (D) Let A be an mxn matrix over a field
F that is (g(m), h(n), c)-rigid for ¢ € (0,1/2]. Then any quantum
circuit using time T and space S that computes a function f : D" —
F™ for D C F with d = |D| given by f(x) = Ax with success
probability larger than 273 requires that T is Q(g(m) h(n) logd /S);
more precisely, T must be Q(min{g(m) nlogd, mh(n)logd}/S).

This theorem follows from the following key lemma, proven in
the next subsection, which lets us bound the number of correct
outputs produced by a shallow quantum circuit.

LEMMA 3.2. Let A be any (k, h, ¢)-rigid m X n matrix over a finite
field F and let f : D™ — F™ for D C F be defined by f(x) = Ax.
Then for « > 0 and for input x sampled uniformly from D" and
any quantum circuit C with at most ah queries to x, the proba-
bility that C produces k correct output values of f(x) is at most
[h/(ck)] (2"(®) /| D]~k

Note: For & < 0.1717 we have 1 — « — H2(«) > 1/6 and hence
the bound is at most [h/(ck)]|D| =K/ for d > 2.

Proor or THEOREM 3.1 FROM LEMMA 3.2. First observe that as
S > logynand T > n we know that T - S is Q(nlogn) which is
Q(g(m)nlog|D|) if g(m) < (12/c)logy n. Therefore we can as-
sume without loss of generality that g(m) > (12/c) log, n.

Let C be a quantum circuit with T queries and space S, write
h = h(n), g = g(m), and let « = 0.1717. We partition C into
[T/(eh)] sub-circuits that each have at most ah queries. By com-
bining Proposition 2.5 and Lemma 3.2, we know that each sub-
circuit can produce k < g correct outputs with probability at most
928 [h/(ck)] d-ck/e < h 228 —ck/6

Now suppose that h 225d7¢9/6 > 275 /T ThenT235 > d<9/6/h >
de9/8/n > de9/r2 by the assumption on g. Since S > log, n and T
is at most polynomial in n (or the bound applies already), T235
is at most 2¢'5 for some constant ¢’ > 0. This implies that S is
Q(g(m)logd) andsince T > n, we get that T-Sis Q(g(m) nlog |D|).

Otherwise set k < g to be the smallest integer such that
h225d=ck/6 < 275/T. Then the probability that a sub-circuit
produces k correct outputs is at most 275/T. This gives k
{[Glogz(hT) +185]/(clog, d)-|, which is at most ¢*S/log, d for
some constant ¢* > 0 since S is Q(log n) which is Q(log(hT)).

Taking a union bound over the sub-circuits, the probability that
any of them produces k correct outputs is at most 275, Since f has
m outputs, this means that [T/(ah)] (k—1) > mSince T > n > ah,
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we have 2Tk > amh. Plugging in our upper bound on k we have
that 2¢*TS/log, d > amh and hence T - S is Q(mhlogd) which is
Q(mh(n)log|D|) as claimed. O

Applying Theorem 3.1 with Proposition 2.4 we obtain:

CoROLLARY 3.3. LetF be a field and D C F such thatd = |D| > 2.
For all but a 2-©(") fraction of A € D"*"", quantum circuits using
space S require Q(n® logd /S) queries to compute Ax for x € D™.

Using Theorem 3.1 we many time-space lower bounds for re-
lated problems. See the full paper [9] for the full details, which are
identical to their classical counterparts proven in [3].

Since the discrete Fourier transform (DFT) matrix is rigid [28],
Theorem 3.1 yields a time-space tradeoff for computing the DFT.
Likewise since convolution between random vectors can be ex-
pressed as a matrix-vector product with a random Toeplitz matrix —
which is rigid with high probability [3] — we also get a time-space
tradeoff for convolution.

COROLLARY 3.4. LetF be a field and D C F such thatd = |D].
Any quantum circuit that computes the discrete Fourier transform
of vectors in D™ (or the convolution of pairs of vectors in D) in
time T and space S with probability at least 275 requires T to be
Q(n%logd /S).

Since convolution of vectors in {0, 1}" is a sub-function of mul-
tiplication between 2n [log n] bit binary numbers we obtain:

COROLLARY 3.5. A quantum circuit that multiplies two n bit binary
numbers in time T and space S with probability at least 25 requires
T to be Q(n?/(Slog? n)).

Let B (Y) denote the vector formed by stacking the transposes
of the rows of matrix B (¥). Then Y = ABCiff ¥ = (A® CT)8B
[3]. When A and C are random matrices, (A® CT) is a rigid matrix
[3]. Thus we can use Theorem 3.1 to get a time-space tradeoff
for computing the product of three matrices. Since ABC can be
embedded as a sub-function of f(X) = X> and f(X) = X!, this
also gives us an equivalent tradeoff for matrix cubing and matrix
inversion [3].

COROLLARY 3.6. LetF be a field and D C F such thatd = |D|. Any
quantum circuit that computes the product ABC on inputs A,B,C €
D™ or the cube A3 or inverse A~! in time T and space S with
probability at least 25 requires T that is Q(n*logd /5).

Since it is possible to invert a matrix by solving n systems of
n linear equations, one of those systems must take Q(n>logd /5)
time to solve.

COROLLARY 3.7. Let F be a field and D C F such thatd = |D|.
Any quantum circuit that solves any n X n system of linear equations
over D in time T and space S with probability at least 2~5 requires T
that is Q(n3logd /S)

Following the methods of [8], all of the quantum time-space
product lower bounds proven in this section can be extended to
asymptotically equivalent lower bounds on the stronger notion of
cumulative memory complexity.
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3.1 Bounding the Success Probability of Small
Depth Quantum Circuits

ProoOF oF LEMMA 3.2. Letd = |D|. For simplicity we will assume
that g(w)—the output as a function of the measured value of the
work register—always produces k outputs.! Let A be a (k, h, ¢)-rigid
matrix. By Proposition 2.8 after ¢t < ah queries in the recording
query oracle model, we can write the state as:

IEDY >

Lp,w IC[n], |I|<t, yeD!

Aipwly bW D L g ()

for some @ p 1,y With ;5 1y |ti p,w,1,y|* = 1. Thus by Proposi-
tion 2.7, the final state of the algorithm in the non-recording query
oracle setting is given by: |{;) = S |§;) and since S behaves as the
identity on |{/) ; and the |i, p, w) are orthogonal basis states, we

can rewrite |if;) as:

Z ﬁi,p,w li,p,w) ®
IC[n], |I|<t, yeD!

iLp,w

Sp" B 1)1 1L

for some fjp w and ﬁ;I;W such that a;jpwry = Bipw ﬁ;ZW

Zipw |ﬁi,p,w|2 = 1 and for each choice of i, p, w, we have that

LpW 2 _
ZI,y |ﬁ[,[; -

which is ||HkS |¢t>||2 where I1;(,,) is defined as in Equation (1)
and is the projection of IT; onto fixed values of g(w), equals

Zﬁi,p,wu,p,wm[nq(ms?" > ﬁ;;f;"ﬂynm[n]\f]
Lp,w IC[n], |I|<t
yeDI

1. With this decomposition, the success probability,

2

Since X p |Bip,wl® = 1 and the basis states |i, p, w) are orthog-
onal, we have
2

1S 0 < oty 557 Z ﬁ;‘ﬁ,WthID[n]\I - 3)
Lp,w, IC[n], |I|<t
yEDI

We now fix i, p, w and let Ay(,,) be the submatrix of A restricted
to the rows defined by the set of the k output values U associated
with g(w). We can describe II4(.,) as a projection onto basis states
%) = |x1, ..., xn) such that Ag(,)x = g(w).

Since the basis states |y); |L)[,]\s for distinct I are orthogonal in
the recording query basis, they remain orthogonal in the standard
basis after the S operator is applied. However, the subsequent
application of the I1;(,,) projector makes these vectors no longer
orthogonal.

To handle this, we bucket the sets I C [n] with |I| < ¢ into a small
number of buckets, B4, . . ., so that for each bucket B; we can bound:

pe =g SE™ >0 B ) 1D ol
Ie By, yeD!
and then we can use Cauchy-Schwarz to bound the success proba-
bility as a sum of the .

Our key observation is that if a bucket of recording query basis
states completely misses querying a fixed set of input variables that
could determine a set of r output values, then one cannot do better
than randomly guess those output values and the total contribution
from that bucket has amplitude at most d-rlz,

!If in general q(w) produces more than k outputs, we only consider its first k outputs.
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LEMMA 3.8. Let U C [m] be a set of output indices and V C [n]
be a set of input indices with |V| = |U| = r such that the submatrix
Ay,v is full rank. Fix q € FY and define I14 to be the projection map
onto the span of the set of basis states |x) with x € D" such that
Ayx = q. Then for any collection B of setsI C [n] \ V and any
quantum state Yre g yepi My [Y)1 |4) [n]\1 We have

s >

IeB, yeD!

1

Ny 191 1L [n) \I” T

PRrOOF. By definition each I € 8 satisfies INV = @, so
®
neSP )
IeB, yeD!
=S| 1L)y ©

NLy |91 1L (a1

2

MLy 111D [y auv) |

IeB, yeD!
=Hq[81®j L)y ® S?("_j) Z MLy 191 1L [\ (rov) |
IeB, yeD!
=1,[ Z — [y)y oSy Z Ly 191 1L (ap ov) |-

i
y'eDV d IeB, yeD!

Now Sl®(n—j) ZIEB, yeD! 771,y|y>1|J—>[n]\(IUV) is equal to
ZZE(DU{_L})["I\V 8z |2)\v for some amplitudes J, satisfying

ZZE(DU{L}) v |82]% = 1. For each value of z € DI"I\V since the

sub-matrix Ay y is invertible, there is a unique value y, € DV
such that Ay (y, U z) = q so we get that

2

IeB, yeD!

= ”Hq[ Z

y'EDV

I, 52" 1y 19110 ol

N 2

\Za ze(DU{L})nJ

[ > & D wwiav]lf

zeD["]\V y’ eDV

> Slydv el < 5

zeDI[n\V

ly' )y ® 812 v 1|

||1
T

since 3, c plnnv 6,12 < 1.

O

Next we decompose the set of all I with |I| < t into buckets so
that we can apply the above.

LEmMMA 3.9. Let A be a (k, h,c)-rigid matrix and let kK’ = [ck].
Then for every subset U of k rows of A, there is a collection of disjoint
k’-subsets of columns from [n], V1,...,V; for£ = [h/k’] < [h/(ck)]
and corresponding sets of rows Uy, ...,Up C U such that for each
j € €], the k' X k" submatrix Ay, v, is full rank. (In particular the
union, W, of the sets V; has size at least h.)Ifc =1 then all Uj=U.

Proor. Fix U € [m] with |U| = k. The following procedure
constructs such a collection, one set at a time. We maintain a subset
of W columns that is the union of the V; constructed so far. Suppose
that [W| < h. Then, by the (k, h, ¢)-rigidity of A, the submatrix
Ay [n]\w has rank at least k". Hence there is a k" X k" submatrix
Au,v; of Ay, [n)\w that has full rank k’. We now add V; to the
collection of k”-sets of columns, record its corresponding row set
Uj, and set W « W UV;. This produces exactly [h/k’] subsets. O
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Fix the collection of sets V1, . .., V¢ given by Lemma 3.9. Let k”" =

Lak’|. Suppose that V; = {i,...,ig} C [n] withi; < ---
For each A € ([k,,J) define the set V’1 to be the subset of V; that
has the k”’ elements of V; indexed by A removed. (That is, ij» ¢ Vj’1
iff j/ € A.) Then |Vj’1| =k’ — k" > ¢(1 — a)k. There are a total of
(k) < 2 (@¥ oHy (a) K

sets of the form Vj’l. These sets have two useful properties: first any

< g

possible values of A and hence [h/k’] -

subset of [n] with size at most ah must miss some Vj’1 and second

if the entries of x corresponding to some VA are uniformly random,
then for any set of k indices in Ax, at least c(1 — a)k of these values
are also uniformly random.

LEMMA 3.10. Fort < ah and everyI C [n] with |I| < t, there is
some j < [h/k'] and ) € (1)) such that I € [n] \ V.

Proor. Fix such a set I with |I| < t.Since t < ah, |Uje[¢ Vil 2
h, and the sets V; are disjoint, by averaging there is some set V;
that has at most an « fraction of its elements in I. Hence V; has at
most k”/ < ak’ elements of I. Choose a set A € ([k,,]) that contains
the indices within Vj of all of the elements of V; N I. Then by

construction I N V]{1 =0 m}

By applying Lemma 3.10 we can associate each I C [n] with
|I| < t with a pair (j,A) such thatI € [n] \ Vj’1 and define bucket
8}1 to consist of all such sets I associated with pair (j, 4).(Though
some sets I could be associated with multiple pairs (j, 1), we choose
only one such pair for each I.) Further, define a set Uf CUj € [m]
of the rows of Ag(,,) with |U]f1| =k’ — k" such that the submatrix
Agaya is full rank. Such a subset of rows must exist since A;; 2

g >

is a full rank matrix. Then let qj.L = q(w)|;2 be the portion of the
J

assignment g(w) on the rows of U]fl.
We are now ready to provide an upper bound on the success
probability from Equation (3).

1wy ST" >,

IC[n], |I|<t, yeD!

=gemSE” >0 >, D)

Jjele] Ae([k'l) Ieﬂ;‘, yeD!

<> > g SP" >

jelel Ae([k’ ) IeB}, yeD!

B 1 1D

B 1) 10l

B 1) 10 mpull”

Applying Lemma 3.8 with r = k' — k", q = q?, U= UJ’.1, V= Vj’l,
and B = B]A., we have that

(USSHEDY

Ie B}, yeD!

1 1

zpw
ﬂ dk =k < d(1-a) k"

lydr L) n]\I“

and hence using Equation (4) we obtain that
”Hk3|¢t>|l < t’( )/al(1 DK < h/k’] (2H2(@) jg(-a))k’

Without loss of generality in our desired bound we can assume
that 2H2(@) /g(1=@) < 1 Therefore the bound still applies when we
replace k’ by the potentially smaller ck as required. O
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4 QUANTUM MATRIX MULTIPLICATION

While our matrix-vector product lower bound has led to all the
applications so far, including the matrix triple product lower bound,
our matrix multiplication lower bound requires a separate argument
using ideas from the classical lower bound in [3]. Implementing
this requires a much more subtle way of applying our bucketing
method for states that allows us to concentrate on just a subset of
the buckets containing most of the total amplitude.

THEOREM 4.1. Let F be a field and D C F with d = |D|. Then
any quantum circuit C that uses time T and space S and computes
the function f : p¥* — pr’ given by f(A, B) = AB with success
probability larger than 1/T must have T that is Q(n*+flogd /S).

LEMMA 4.2. Lety € (0,1/2) and f : p"* x p"* — forD CF
with |D| = d be defined by f(A,B) = AB. Then for any constant
B > 0 and quantum circuit C with at most h = ﬂyn\/m queries to
input matrices A, B sampled uniformly from D™, the probability that
A and B are (yn, yn)-rigid and C produces k correct output values of

F(A, B) is at most 16 min(k, n) VE/2 (2H2 (4B) 1q1=4F)k/4

Note that for f < 0.0429 we have 1 — 45 — Hy(4f) > 1/6 so the
bound is at most 16 min(k, n) Vk/2g=k/24

PRrROOF OF THEOREM 4.1 FROM LEMMA 4.2. Lety € (0,1/2) be the
constant given by Proposition 2.4. By that proposition, the probabil-
ity that either of two matrices A and B chosen uniformly randomly
from D" is not (yn, yn)-rigid is at most 2d=1(2/3)¥". Let C be
a quantum circuit with T queries and space S. Let f = 0.0429,
d = |D|, and set k = |-48(55 +5)/log, d-|. We partition C into

[T/(ﬁyn\/k/Z)-‘ sub-circuits that have at most fyn+/k/2 queries

each. Without loss of generalities there are at most n? such sub-
circuits. By combining Proposition 2.5 with Lemma 4.2, we know
that for a uniformly random input, the probability that A and B are
(yn, yn)-rigid matrices and a fixed sub-circuit can produce k outputs
is at most 16k V¥/22253-k/2¢ Therefore the probability that A and
B are (yn, yn)-rigid matrices and one of the sub-circuits produces
k correct outputs is at most 16k Vk/2925 g=k/24p2 Combining this
with the probability that one of A or B is not (yn, yn)-rigid, the
probability that there is a sub-circuit that produces k correct out-
puts is at most 16k Vk/2925g=k/24p2 4 24=1(2/3)%/" Since we can
assume without loss of generality that T < n3, for sufficiently large
n,2d~1(2/3)%" < 1/(2T) and kVk/2 < 2k/48 < gk/48 Plugging in
our value of k and the fact that S > log, n without loss of generality
gives a probability of at most

16k VK225 g=k/2432 | 91 (2/3)2r" < 1622547 K/48p2 4 1/(2T)
1/(2T) +1/(2T) = 1/T.

IA

Since C must be correct with probability larger than 1/T, this im-
plies that (k — 1) [T/(/syn\/k/z)}

k gives us that T is Q(n3+/log d/+/S +log T). Since S > log, n and
our bound trivially holds when T is w(n®+/log d) there is a constant

¢ > 0 such that ¢S > log, T. Thus T is Q(n®/log d/S). O

>

n?. Plugging in our value of
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4.1 Bounding Success

ProoF oF LEmMMA 4.2. Let C = AB, Ijjgia(a) (Iiigia(p)) be the
projection onto inputs where A and B are (yn, yn)-rigid matrices,
and define Iyjgig = Tlyigiq Allrigid B- Assume that g(w)—the output
as a function of the measured value of the work register—produces
exactly k outputs; we ignore anything it produces after the first k.
We will use [A] to denote the set of indices of elements in A and
likewise for [B] and [C]. By Proposition 2.8, after t < h queries in
the recording query basis, our state can be written as:

|¢¢) =
i,p,w

EC[A]FC[B], |E|+|F|<t
xEDE,yeDF

Z % pwEFx,y b0 W) X LY ANE W F L) (B)\F

for some i,p,w,E,F,x,y with Zi,p,w,E,F,x,y |ai,p,w,E,F,x,y|2 =1 We
first apply an analogous series observations and decompositions to
those that allowed us to derive (3) from (2) in the case of matrix-
vector product: By Proposition 2.7, the final state in the standard
oracle setting |¢/;) = S |¢$;). Because S behaves as the identity on
|} ¢ and each distinct choice of |i, p, w) gives an orthogonal basis
state, [/+) equals X; 5 1 Bip,w i p, W) ® ¥i p 1y for some f; p 1 with
Zi,p,w |ﬂi,p,w|2 =1and

. _ o®2n? Lp, W
\PI’P’W - Sl Z ﬁE,F,x,y
EC[A],FC[B]
|E|+|F|<t
xeDE,yeDF

g L) anE W F L) [BI\F

i,p,w
ﬁ E,F.x,y
Now the probability over the choices of the input matrices and the
result of the quantum algorithm making ¢ queries that the matrices
A and Bare both (yn, yn)-rigid and the algorithm produces k correct

output values from C = AB is at most:

“Hknrigid S |¢t>||z = “Hknrigid Z ﬁi,p,w |i)P= w) ® \Pi,p,sz

iLp,w

= 2 Wil - Mg ooy Migia ol

i,p,w

for some ﬁzf;‘;y such that Y gy y | |2 = 1 for each i, p, w.

< mase g Mrigia¥i o] 5)
For the rest of the proof we fix an i, p, w to achieve the maximum
value in (5) and prove an upper bound on the resulting probability.
This fixes the output values g(w); we write G C [C] with |G| = k
for the set of indices of the outputs given by g(w). To keep notations
simpler in the remainder of the proof we observe that (5) is upper
bounded by the maximum of

2 2
[M4(G) MrigiaSE2" Z BEFxy 1B 1L pane [Wr L) s Fll
EC|A],FC[B]
|E|+|F| <t (6)
xeDE,yeDF

over all B pxy With Y px y |,BE,F,x,y|2 =1, all sets G C [C] with
|G| = k and all assignments g(G) to G.

We will split the sum in (6) over the different sets E and F of
queried input indices depending on how they relate to the set of
output indices given by G. Let r(G) be the set of rows containing
elements of G and ¢(G) be the set of columns containing elements
of G.
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We define a light row of E to be an element of r(G) that contains
at most fyn elements of E and define a light column of F to be an
element of ¢(G) that contains at most fyn elements of F. Since
[E| +|F] <t < ﬁyn\/k_/Z we have < \/m rows of E in r(G)
and < \/m columns of F in ¢(G) that are not light. We define

L(E) € r(G), to be any set of |r(G)| — b/k/ZJ light rows of E and

L’(F) C ¢(G) to be any set of ¢(G) — {\/k_/ZJ light columns of F.
Therefore [{(i’,j’) € G | i’ ¢ L(E), j' ¢ L' (F)}| < k/2 so at least
k/2 elements of G are in light rows of E or in light columns of F.
Therefore for every pair (E, F) at least one of the sets of outputs
GrL(E) ={({",j))eG |V E.E(E)}orGL(F) ={({",j))eG|j €
L’ (F)} has size > k/4.

Let & be the set of all E C [A] with |E| < ¢ such that G has > k/4
outputs in light rows and ¥ be the set of all F C [B] with |F| <t
such that G has > k/4 outputs in light columns. We separately
bound the contribution to (6) from pairs (E, F) with E € & and
F € ¥ . The analyses of the two cases are completely symmetric
up to matrix transposition. It will be convenient to focus on the
case F € ¥ that there are many outputs of G in light columns and
compute an upper bound on

2 2
[M4(G) MiigiaSE2" Z ZﬁE,F,x,y 1 1L ape W) F 1L ()\Ff-
EC[A] FeF
|E|<t yeDF (7)
xeDE

The case that E € & has exactly the same upper bound as (7)
by applying the argument to the transposed product BT AT and
corresponding transposed sets FT, ET, and GT. Hence, the quantity
in (6) is at most 4 times that of (7).

To upper bound (7), we first remove the projection oper-
ator Ilyigia g from Ilg)Iigid = Ilg(G)Irigid Allrigid B to get
4(G)Miigid A- We then rewrite this combined projection operator
as Ig(6)rigid A = 2A (ynyn)-rigid 114 ® HA( ) where I14 is the
projection onto the specific matrix A and for each A, 14 2(G) is the
projection onto the choices for matrix B such that C = AB agrees
with g(w). We therefore obtain that (7) is at most

|2, Maemgg)
A (yn,yn)-rigid

2 2
SE NN Brray 0E IL e W) F 1L (a1l
EC[A] FeF
|E|<t yeDF
xeDE

= > maemA,sET)

A (yn,yn)-rigid

> D BaBi, 140 4

A’e(Du{L})[Al FeF

yeDF
=l >} Balaya

[HA S®n
A (yn,yn)-rigid

q(G)

ly)F |J—>[B]\F||2

Z ﬁ?,y ly)F |J->[B]\F]H2

FeF
yGDF (8)

q(G)

for some f4 and ﬁ?y such that ZAE(DU{J_})"Z |Bal? = 1 and
L FeF,yeDro Iﬂﬁyl2 = 1 for each A. Since Il ()4 only projects

onto the [B] input registers, each distinct choice of |A)| 4} gives
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orthogonal states so (8) equals

2
> Bl ISP Y B 1wE 1D a1 F
A (yn,yn)-rigid Fe¥
yeDF
< 1 9
I Lt F;fﬂwanu el - ©)
yEDF

We fix a (yn, yn)-rigid matrix A that maximizes (9) and partition
the set ¥ based on the set £’ (F) which contains all but precisely

[\/k/ZJ columns in ¢(G). Therefore we can rewrite (9) as

2
Zm A ) S8 o L,; ﬁéygﬁlbw]\p (10)
(e i

Since the different choices of F, and hence different choices of H,
correspond to orthogonal basis states, we can upper bound (10) by

le(G)] n?
(W_J) I gy 2 ) ﬁ?,yly>F|¢>[BJ\F||2(~H)

(Li/(i)J) FeF
L (F)=c(G)\H
yEDF
We fix the set H achieving the maximum value in (11) which
fixes the value of £/ (F) = ¢(G) \ H. This fixes the set GL '(F) of
elements in G that are in light columns of F (equivalently, not in
H) which, since F € ¥, contains at least k/4 elements of G. Let G’

be a fixed subset of k/4 of the elements of G€ ) By construction

we have ¢(G’) € L’ (F). By only requiring that the outputs in G’
are correct and using the fact that |¢(G)| < min(k, n), we therefore

can upper bound HHkHrigidS |¢t)||2 by the maximum value of

4 min(k,n (G' S®" Z ﬁFy [yYF |LY(B1\F (12)
FC[B]
c(G") € L'(F), yeDF
over all G’ € [C] with |G| = k/4 and B, y with Y ;4 y|2 =1

For each j € ¢(G’), let k; be the number of elements of G’ in
column j. Our overall strategy is to consider the j € ¢(G’) one by
one, and show that the total amplitude on states where these k;
outputs are correct conditioned on the success for previous values
of j is of the form d~%%/ for some fixed constant § > 0. These are
k; outputs of the matrix-vector product Ay/ where y/ is the j-th
column of B and the fact that ¢(G’) € £’(F) implies that F has
made at most fyn queries to y(j ).

We could try to apply the ideas of Lemma 3.2 to this collection
of matrix-vector problems and create a set of buckets that is the
product of the sets of column buckets for each j and bound each
bucket separately. However, unlike Lemma 3.2, the value of many
of the k;j can be very small, as low as 1, and the upper bounds using
Lemmas 3.8 and 3.9 would yield a probability bound larger than 1.

Instead, we need a stronger argument to show that, except for a
portion that is exponentially small in k, all of the amplitude can be
allocated to a very small number of buckets. The following lemma
gives the inductive step that allows us to define those buckets.
Rather than thinking about each column j € ¢(G’) as separate
matrix-vector problems, it works by considering all of the answers
in G at once.
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LEMMA 4.3. Let G’ C [C] with |G'| = k/4 and F' be a set
of F C [B] such that ¢(G') € L'(F). Let 6p,y € C satisfy
ZFegm’yeDF |5F,y|2 = 1. Let C’ > 2 and define « = C’f. Then
thereisan ¥ C F’ andS%’y such thatZFeT-u’yer |51,”,y|2 =1land

I SE™ D 6ry l)r 1) (el
Fe¥, yeDF

21+Hz(a) k/4 2 2
= d(1-a)k/4 C’” q(G") Sl®n Z 51’*13/|y>1’|J‘>[B]\FH :
Fe¥F”, yeDF

Proor. For each j € ¢(G’), define UV to be the set of row indices
of G’ in column j and let k; = |Uj|. Define ¢; = {yn/kj] apply
Lemma 3.9 for each j, and let V VJ_ be the collection of disjoint
subsets of [n] of size k; found for each j such that each k; X k;j
sub-matrix AU . ; has full rank.

For each F € ¥’ and i € ¢(G’), define F/ to be the set of row
indices of elements of F in column j; since ¢(G”) € L’ (F), we have
|[F/| < Pyn. For each i € [¢;] define

j_
m; = Z

Fe¥, yeDF

8F,yl* - IF/ n V.

Since Xr 4 |SF, y|2 =1, mj can be viewed as the expected size of
the overlap between the recorded queries in the j-th column of the

matrix B and each VJ Since for each j, the sets V] are disjoint and
[F/| < Pyn we have 3¢ [£] ml. < ﬁyn.. Therefore, for each j, we
€ [¢;] such that m;j < Byn/t; < Bk;.

Since Y. jec(gr) kj = |G’| = k/4, the expected total overlap be-
tween the recorded queries in the columns of G and the chosen
< 2 Pkj = Bk /4. Define ¥
to be the set of F € #” such that 3 ; [Fin Vli' > ak/4 = C'pk/4.

J

have some index i;
sets VZJ for those columns is }; ; m{ )
J J

By Markov’s inequality we have Y pc g yeDF |OF, yl C’ﬁk/4 <
1/C’. We split our analysis for #” into two parts due to sets F in
F" and ' \ F’, respectively.

Let F € 7", write k = Y pcqn yeDF |5p,y|2 < 1/C’.ForF €

F"’, define 51’__’!/ = §F’y/\/z. Then ZFE(]:w!yGDF |51/~",y|2 =1and

A S > Seylode 1Ol
FeF”, yeDF
< Sy st Y Sy e’ ()
Fe¥F", yeDF

We now consider ¥ \ F”’. By definition, for F € ' \ ¥/,
we have 3 ; |FV n Vli| < ak/4. By definition we have }; |Vli| =
Zj k;j = k/4 so F must miss more than (1 — &)k/4 elements of the
setV = U](Vli X {j }) of size k/4. For each subset V’ of V of size
k/4— | ak /4] we define a bucket By that contains sets F that must
the elements of V” and assign each F € ¥/ \ ¥’ to a unique bucket
in an arbitrary fixed way. There are at most ot (a)k/4
so:

such buckets
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5. 1) e 11 51\

2,

FeF\F”, yeDF

[Tz a(G) S?nz
2
¥ I SE Y ony e adianl]

S (
V'V FeBy
[V'|=k/4— | ak/4] yeDF

< 2K N I oSBT 1Ly Y 6ry 1) F 1L B Puv)
FEBV/
yeDF

i

vV'cv
|V’ |=k/4— | atk /4] (14)

using the triangle and Jensen’s inequalities.
Now;, applying the Sl® n’ operator in (14) will convert the | L)y

to a uniform superposition of all [y’ )y forally’ € DY’ and convert

2FeBy, OFy [Y)F |L)[B]\(FUV’) to some superposition of ly”’) €
yeDF
DB with amplitudes some Sy’ y~ such that 3 |5V/,y"|2 =
2 FeBy,yeDF |5F,y|2- Therefore, we can rewrite (14) as
2
Hy(a)k
2 g, Z Y)ve| ® > vy 19 s
q(G g 14 Y [B]\V'
VeV e lev e pIn\V/
|V'|=k/4=|ak/4]
(15)
We now consider the application of IT4 26" Let Vj’ C Vl] be
J

the set of row indices in column j of V/ C [B] and consider the
corresponding set of columns in A. Since A ;,; has full rank, there

is a subset Ug C U/ with |U({| = |Vj’| so that AUng} also has full

rank. Now define G C G’ to be U jec () (Uj X { j }) with size [V'].
For each j, the outputs in Uj x { j } C [C] can be expressed as

the matrix-vector product A +M for some |Vj' | x |V]’| matrix

. J
UiV,
M defined by the product of the Uj X ([n] \ V.’ ) submatrix of the

fixed matrix A and y{ Since A, V’ is full rank for each value

n]\V’

of M given by y[ there is precisely one value of yV, that will

] \V/ >
yield the output values q(Uj x { j}). Putting the propertles for the
columns of ¢(G’) together, there is precisely one value ¢’ € DV’
that yields the output values q(Gy). So (15) is at most

Hy(a)k
27 Y Mg, Z 1y )y | ® D vy 9 sy
(G g \% y Y7 [B]\V
Vvl e lev N
[V’ |=k/d—| ak/4]
2
= of (@) K/ H — 8.y l9) (5
a y lJ/[B\V’
V’CV dV'l L, D
|V'|=k/4—ak/4]
_ oHy(a)k/4 1 2
— ofa(a) k/ Z T Z 157,y
V'cv FeBy,,yeDF
[V’ |=k/4=| ak/4]
H, (o) k/4
Hy () k/4 . 2 2
=2 le’l Z 19Fy1" = d(1-a)k/4 (16)

FeF\F",yeDF

since the buckets By partition ¥/ \ .
We now combine the contributions from ¥’/ and ¥’ \ F"’. Ap-
plying Jensen’s inequality together with the bounds in (13) and (16)
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we obtain that

”n?(c')sfgnz Z S,y 192p 10 a1\l
Fe¥’, yeDF

<o) S2 S ony o Wl
FeF\F", yeDF

2 2
+||H3(G,)S{®” Z Sk 1Y) F 1L (B)\Fl )
Fe¥”, yeDF
21+H2(f1) k/4 2 A 2 v 2
< —imar * oSt 25 Sk, e sl 0
FefF”, yeDF

COROLLARY 4.4. Let G' C [C] with |G'| = k/4, ¥ be a set of
F ¢ [B] such that c(G") € L'(F), and Lpe g yepr |6F,yl* =1 for
some O, y. Then
2+H, (45) k/4
A ®n? 2 _ 2
I SE™ D% ey lwe 10Nl < = Gme
Fe¥, yeDF

Proor. Let M be the maximum value of

I ) SE™ Y ory e 1L syl
Fe¥’, yeDF

over all choices of ¥ and d,;, with the required properties. This
corollary follows from Lemma 4.3 with C’ = 4 by observing that
the term multiplied by 2/C’ is also upper bounded by M and hence
M < 2U+H2(4B) k/4 ) g(1=4B) k/4 4 01/, O

Finally, plugging the bound from Corollary 4.4 into (12), we
obtain that the probability that A and B are both (yn, yn)-rigid and

C produces k correct output values for C = AB, ”Hknrigids |q5t)||2,

k/4
is at most 16 min(k, n) Vk/2 (2H2(4ﬁ) /d(1_4ﬁ)) as desired. O

5 QUANTUM BOUNDS FOR BOOLEAN
MATRIX OPERATIONS

In this section we focus on Boolean matrix operations, which use
(AND, OR) inner product which we denote by u e v = \/;(u; A v;)
and we extend this e notation to matrices.

5.1 Boolean Matrix Multiplication

Unlike what we have shown for algebraic problems, one can apply
Grover’s algorithm to each output of Boolean matrix multiplication
to obtain a quantum advantage. For any constant c this gives quan-
tum circuits computing n X n Boolean matrix multiplication A e B
with error at most n=¢ using space O(log n) and O(n?> log n). This
is in contrast to the following result of Abrahamson which shows
that classical algorithms as fast as this quantum algorithm require
space Q(n®) rather than O(log n).

PROPOSITION 5.1 ([2]). There is a probability distribution on input
matrices and constants 0 < ¢1 < ¢ under which classical algorithms
(branching programs) for Boolean matrix multiplication A @ B using
space S require time T for which T - S is ©(n3”) for T < ¢;n?> and
O(n®) for T > con?>.
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For quantum circuits, Klauck, Spalek, and de Wolf [20] proved the
following time-space tradeoff lower bound which nearly matches
the Grover-based upper bound when the space S is O(log n).

PROPOSITION 5.2 ([20]). Any bounded error quantum circuit that
computes the n X n Boolean matrix multiplication Ae B with T queries
and space S requires T that is Q(n?>/5%).

Unlike our results in linear algebra results and Abrahamson’s
bounds, Proposition 5.2 only applies to circuits, where it is natural
that the set of output values produced in each part of the compu-
tation is fixed independent of the input. It uses an embedding of
the direct product of OR functions into any fixed set of k outputs
of the Boolean matrix multiplication problem together with part
(b) of the following strong direct product theorem.

ProPOSITION 5.3 ([20]). There are positive constants ¢ and y such
that the following hold: (a) Any randomized algorithm making at
most ekn queries has success probability at most 27vk in computing
OR’,ﬁ. (b) Any quantum algorithm making at most ek+/n queries has
success probability at most 27Y% in computing ORﬁ.

Using a more efficient embedding of OR computations into out-
puts of the matrix multiplication problem we obtain the following
improved lower bound for quantum computation.

THEOREM 5.4. Any quantum circuit computing n X n Boolean
matrix multiplication A B with T queries and space S and success
probability more than 2~5 must have T that is Q(n2'5/51/4).

Both the exponent of n and that of S in our bound are optimal:
The Grover-based algorithm shows that exponent of n is optimal
since there is only a gap of O(logS/4 n) for space @(logn). At the
other end of the scale, in our quantum query model, an algorithm
with space 3n? can query and completely remember both matrices in
2n? time, after which a global unitary transformation will produce
the n? bits of output needed in the remaining qubits of working
memory; hence the exponent of 1/4 on S cannot be reduced.

Via similar improvement we also obtain the following theorem
for classical computation, which dominates the lower bound of
Proposition 5.1 for all values of S.

THEOREM 5.5. Any classical circuit (or other sequential model in
which each output value is produced at a fixed time step) computing
n X n Boolean matrix-multiplication with T queries and space S with
success probability more than 275 must have T that is Q(n3/VS).

This answers a question of Klauck, Spalek, and de Wolf [20] who
ventured that this might be the likely tight tradeoff for classical
computation of Boolean matrix multiplication. Like the quantum
lower bound it has optimal exponents for the model to which it
applies. Our full paper [9] includes the details of the proof.

Theorem 5.4 follows from the following key lemma.

LEMMA 5.6. There are constants ¢,¢’ > 0 such that for any integer
k < n%/100 and quantum circuit C with at most ek3/4nl/? queries
to x, the probability that C produces k correct output values of n X n
Boolean matrix multiplication A e B is at most 27k,

ProorF oF THEOREM 5.4 VIA LEMMA 5.6. By applying Lemma 5.6
with k = n%/101, we see that T must be Q(n?) and hence without
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loss of generality we can assume that VS < an for some arbitrarily
small constant & > 0. Let ¢ and y be the constants from Lemma 5.6.
Let ¢ = 3/(2y) and define k = cS. Therefore for & < 1/(10+/c) we
obtain that 5Vk = 5VcS < n/2. By Lemma 5.6, since k < nz/100,
any quantum query algorithm with at most ek*4n!/2 queries has
success probability at most 27Y% = 2735 of producing k correct
outputs.

We prove the contrapositive of the theorem statement: Suppose
that T < Enz‘s/(cS)l/4 = enz's/k1/4. When we divide C into layers
with ek3/4n1/2 quantum queries each, there are at most n? /k layers.
Since there are a total of n? outputs, there must be some layer i
during which at least k outputs are produced. Let E be the set of
the first k outputs produced in layer i. By the argument above since
the space is at most S, by Proposition 2.5 the probability that these
k outputs are correct given the S qubits of input-dependent initial
state at the beginning of layer i is at most 225 times larger than that
of a circuit without them and the same number of queries, which is
at most 225 . 2735 = 275 which is what we needed to show. O

The proof of this key lemma is based on our improved method
for embedding the direct product of OR functions into outputs of
the Boolean matrix multiplication problem; this uses the following
definition of an L-coloring of subsets of [n] X [n].

Definition 5.7. For E C [n] X [n] an L-coloring of E is a map
x : E — [L] such that (1) within each color class either all rows are
distinct or all columns are distinct, and (2) for each color ¢ there is
arectangle given by sets Ry C [n] of rows and Cy C [n] of columns
such that the set of points of color ¢ is precisely EN (R X Cr). (Note
that the rectangles R, X C; may overlap, but their overlap must not
contain any points in E.) We say that a rectangle R X C € [n] X [n]
is colorable iff E N (R X C) either has all its elements in different
rows or all its elements in different columns.

LEMMA 5.8. LetE C [n]X[n] with|E| = k andL < n be an integer
with L < n/2. IfE has an L-coloring then OR]fn/LJ is a sub-function
of the function that produces the k outputs of A ® B indexed by E for

n X n Boolean matrices A and B.

ProoF SKETCH. Write E = UileE{ where E; is the set of (i, j) in
E in color class £. We now divide [n] into L disjoint blocks b1, . .., by,
of atleast [n/L] > 2 elements each. Given the coloring and division
into blocks, we define a partial assignment to the matrices A and B:

e If color class ¢ consists of points that do not share a column,
for each (i, j) € E¢, we set all entries of A; 5, to 1 and leave
all entries of By, ; unset.

o If color class ¢ consists of points that do not share a row, for
each (i, j) € Eg, we set all entries of B, ; to 1 and leave all
the entries of A; j,, unset.

o All entries of A and B that are not defined by the above two
cases are set to 0.

It is not hard to check that the subfunction property holds. O

The lower bound of [20] corresponds to the trivial k-coloring
that colors each element of E differently. For integer k > 0 define
L(k) to be the minimum number of colors L such that for all subsets
E C [n] X [n] with |E| < k, there is an L-coloring of E.
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LEMMA 5.9. There are constants c,c’ > 0 such that the following
holds. Let k be an integer such that L(k) < n/2. For any quantum
circuit C with at most ckn'/?/L(k)'/? queries to x, the probability
that C produces k correct output values of n X n Boolean matrix
product A e B is at most 27k,

PRrOOF. Let E be any fixed set of k output positions in Ae B. States
with different choices of E are orthogonal to each other so we show
that for each fixed value of E the probability that the algorithm is
correct has the given bound. Let L < L(k) be such that there is an
L-coloring of E. By Lemma 5.8, ORkn/LJ is a sub-function of the
k outputs indexed by the set E. Since L < n/2, [n/L] > 2n/(3L)
and v/|[n/L] > 4\/n/_L/5. Choose ¢ = 4¢/5and ¢’ = y for ¢ and y
given in Proposition 5.3. By that proposition, the probability that

C produces these k outputs correctly is at most 27Y% = 27k o

Then Lemma 5.6 follows from Lemma 5.9 and a bound on L(k).
LeEMMA 5.10 (CoLorING LEMMaA). V2k < L(k) < 2V6k < 5Vk.

Proor. The lower bound follows from a set E consisting of a
grid of side L with the lower triangular part removed which has
k = L(L+1)/2 points, has two trivial L-colorings which are optimal
since all L diagonal points must have different colors or they would
violate the coloring conditions.

We now prove the upper bound on L(k). Suppose that for some
¢ with 0 < ¢ < Vk, we can always find a colorable rectangle R x C
containing r > cVk elements of E. Then we claim that L(k) < %\/E
as follows: First color that set with one color and apply induction
to color the remaining k€ = k — r elements of E’. By induction
there will be at most % vk’ = % k — r colors needed to color E’.
Now k —r < k — cVk < k — cVk +c*/2 = (Vk - ¢/2)%. Therefore,
Vk —r < Vk — ¢/2 and hence the number of colors needed to color
E’, %Vk —-r < %\/E — 1. It follows that at most % Vk colors are
needed to color E as required.

In the following we prove that we can always find a colorable
rectangle R X C containing at least \/k_/6 elements of E, which
implies the statement of the lemma by the above argument.

For any column j we write E/ for the set of i such that (i, j) € E.
We will have two candidates for the color class. The first candi-
date is given by the points in some row i with the largest number
of elements of E. The second candidate is the colorable rectangle
R x C given by the following procedure. This maintains a colorable
rectangle, initially empty, that contains a large portion of the rows
where the elements of E occur in the columns in C.

R—@;,C—@;D «— @
While there is a j such that |E/ \ (RUD)| > %|Ej|

C « CU{j}

R« (R\Ej)U(E/\ (RUD))

D« DU(RNE)

Observe that the rectangle R X C contains exactly one element of

E in every row, every row of D X C contains at least two elements
of E, and there are no elements of E in ([n] \ (RU D)) X C. Also,
when we add j to C in the loop, we have |E/ \ (RU D)| = §|Ej|,
and therefore have |R N E/| < %|Ej |. It follows that |R| increases
by at least %|Ej | during that iteration and |D| increases by at most
%|Ej| and hence we have |D| < |R|.
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We let s be the larger of |R|, which is the size of this second
candidate for the color class, and the length of the longest row in E.
For convenience, write Z =RUD, Z = [n] \ Z,and C = [n] \ C.

We have |Z| < 2|R| < 2s and EN (Z X C) = @. When the proce-
dure finishes, for every column j € C, fewer than 2/3 of its points
are in rows of Z and hence more than 1/3 of its points are in rows
of Z. That is, we must have |E/ \ Z| < %|E1| and |[E/ N Z| > %|EJ|
so [EN(ZxC)| > %|Eﬂ (Z x C)|. As Z x C has no points of E and
each row has at most s points of E, the total number of points is

k=[En([n] x[nD)| =|EN(Zx [nD)]|+|EN(Z x [n])]
|Z|s +|EN (Z x [n])| = |Z|s + |[EN (Z x C)|
|Z|s +2lEN (Z X C)| < |Z|s + 2|Z|s = 3|Z|s < 65°.

k/6.

IN

IN

Therefore s > =

Lemma 5.10 also holds with 2v2 + 2 = 4.828437.. in place of 24/6.
Lemma 5.6 is a immediate corollary of Lemmas 5.9 and 5.10 which
completes the proof of Theorem 5.4.

5.2 Boolean Matrix-Vector Products

Klauck, Spalek, and de Wolf [20, Theorem 23] proved that for ev-
ery space bound S in o(n/log n), there is an n X n Boolean matrix
AS) such that every bounded-error quantum circuit with space
S computing Boolean matrix-vector product AS) exinT queries
requires that T is Q(+/n3/S). Though the bound itself is good this
does not yield a single function that is hard for all space bounds,
as the matrix A(S) changes depending on the value of S. The same
space dependent matrix AS) was also used in [5] to prove similar
bounds for problems involving linear inequalities.

In our full paper using the matrices A we remove the depen-
dence of the matrix on S with only a small loss in parameters (and
we show a similar improvement on [5] for linear inequalities):

THEOREM 5.11. There is a fixed m X n Boolean matrix A with
m < nlog, n such that for every S that is o(n/logn) every bounded-
error quantum circuit with space at most S that computes Boolean

matrix-vector product A e x in T queries requires that T is Q(1/n3/S).
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