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ABSTRACT

Green infraztructure plays an essential role in cities due to the ecosystem services it provides. Howewer, theze
elements are shaped by social and ecological factors that influence their distributon and diverzity, affecting
ecological functons and human well-being. Here, we analyzed neighborhood tree diztribution - trees in pocket
parks, squares and along streets — in Lisbon (Portugal) and modelled tree abundance and taxonomic and func-
tonal diversity, at the parizh and local scalez, considering a comprehensive list of social and ecological factors.
For the functional analyzes, we included functional traitz linked to dispersal, resilience to important perturba-
tons in coastal Mediterranean cities, and ecosystem services delivery. Our results show not only that trees are
mnevenly diztributed acrozs the city, but that there iz a strong influence of zocial factors on all biological indices
considered. At the parish and local zeales, abundance and diversity rezponded to different factors, with abun-
danee being linked to both social and ecological variablez. Although the influence of social factors on urban trees
can be expected, by modelling their influence we can quantify how muoch humans modify urban landscapes at a
smuctural and functional level. These associations can underlie potential biodiversity filters and should be
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analyzed over time to inform decisions that support long-term ecological resilience, maximize trait functional
expression, and increase equity in ecosystem services delivery.

1. Introduction

As human populations grow and urbanization expands, the diversity
and dynamics of urban green infrastructure reflect social and ecological
contexts, embodying the complexity of urban areas throughout time
(Grimm et al., 2008; McPhearson et al., 2022). These local contexts are
known to shape green infrastructure's composition and distribution,
often leading to an uneven delivery of ecosystem services (Grilo et al.,
2022).

The distribution and diversity of urban trees, in particular, are sha-
ped by ecological and social factors that often interact and influence tree
location, survival, establishment, and growth (Mullaney et al., 2015).
The ecological factors include abiotic conditions such as climate, hy-
drology, soil type, pollution, and land use, as well as biotic interactions
(Bigsby et al., 2014; Bourne and Conway, 2014; Groffman et al., 2014;
Nitoslawski et al., 2017; Roman et al., 2018; Smart et al., 2020). The
social factors reflect specific cultural and socio-demographic back-
grounds, influencing species symbolism and landscape periodic trends
(Avolio et al., 2018; D'Amato et al., 2023). For instance, areas of higher
income and educational status have been linked to a higher abundance
of street trees (Neckerman et al., 2009; Kirkpatrick et al., 2011; Pham
et al,, 2017; Shams et al.,, 2020), which enhances walkability and
livability, often leading to environmental injustices (Tooke et al., 2010;
Sarkar et al., 2015). Urban trees can also be influence by economic in-
centives and constraints, as well as governance decisions, due to their
role in city beautification movements and vegetation management sys-
tems (Huang et al., 2007; Nitoslawski et al., 2017; Pham et al., 2017;
Roman et al., 2018, 2021; Berghauser Pont et al., 2019; Smart et al.,
2020). The built infrastructure of cities, including development history
and street type, can condition the space allocated for trees, affecting
their establishment and growth (Pham et al., 2017; Smart et al., 2020).

These complex and interacting social-ecological variables can also
affect tree functional traits by filtering their functional expression, with
consequences on fitness and survival (Williams et al., 2009; Grilo et al.,
2022). Furthermore, given that higher functional diversity is associated
with higher ecological resilience and delivery of multiple ecosystem
services, social-ecological filtering processes can also affect citizens'
health and quality of life (McPhearson et al., 2023). For example, hin-
dering climatic conditions or management budget constraints that pre-
vent the irrigation of plants can affect specific traits like Specific Leaf
Area. This, in turn, may affect the delivery of important ecosystem
services for human well-being, such as climate regulation (Grilo et al.,
2022; McPhearson et al., 2022).

The social-ecological factors that influence urban trees can act at
broader or finer scales (Kendal et al., 2012), according to city expansion
patterns, extreme weather events (Luck et al., 2009), different gover-
nance regimes within a city (Troy et al., 2007), and microclimatic
conditions (Grilo et al., 2020). However, to date, few studies have
addressed the complex relationships between biodiversity and social-
ecological contexts in urban areas at different spatial scales (Pham
et al., 2017; Roman et al., 2018; D'Amato et al., 2023). These studies
either analyze few factors and a single scale of analysis, or compare
street trees across different cities, or limited areas, within a city (Pham
et al.,, 2017). These approaches do not reflect potential biodiversity
filtering processes nor consider other trees at the neighborhood level, as
they focus only on urban forests or street trees. Nonetheless, both street
trees, and the trees of small pocket parks and squares - hereafter
neighborhood trees - are particularly important in older and denser
urban matrixes (Breger et al., 2019), since they are the most abundant
public green element in heavily built-up areas, that lack space for sizable
green areas (Keller and Konijnendijk, 2012; Graca et al., 2018). These

trees have a vital role in ensuring cities' livability and citizens' well-
being (Bartens et al., 2009; Nowak et al., 2018; Dodman et al., 2022),
and serve as ecological corridors that connect larger green spaces,
allowing for the dispersal of fauna (Mullaney et al., 2015).

In this study, we look at different facets of neighborhood trees' di-
versity: i) at the taxonomic (abundance, species richness, Shannon di-
versity index, evenness, beta diversity) and ii) at the functional
(divergence and evenness) levels, across two spatial scales (civil parish
and local scales). We then analyze the relationship between each bio-
logical index and a comprehensive and diverse list of social and
ecological factors that can act as potential biodiversity filters. Specif-
ically, this study asks: i. How are neighborhood trees taxonomically and
functionally distributed across the city? ii. Are they mostly associated
with social or ecological factors? iii. Do these relationships differ if we
analyze broader and finer scales? By exploring these questions, we aim
to identify the most important variables that can act as biodiversity
filters. We conducted this study in Lisbon, Portugal, a historical city with
strong environmental commitments, including an increase in the area
occupied by green infrastructure and the creation of local biodiversity
and climate change adaptation plans (Luz et al., 2019), which led to the
city receiving the 2020 European Green Capital award. By analyzing
multiple biological indices and spatial scales, we can gain a better un-
derstanding of how social-ecological factors may be affecting neigh-
borhood trees and potential ecosystem services delivery, providing
useful and spatialized information for urban planning and management
strategies.

2. Methodology
2.1. Study area

The study was performed in Lisbon, the capital of Portugal, a coastal
city on the north bank of the mouth of the Tagus river (38 4300 N;
9 0759 W). Lisbon has a Mediterranean climate, characterized by hot
and dry summers and cold and rainy winters, with an annual mean
temperature of 17.2 C, and a mean annual precipitation of 704.8 mm
(1960 2022 average; PORDATA, 2023). It covers an area of 8545 ha
(ha), with a resident population of 545,000, though it surpasses 1
million people daily due to tourism and commuting movements (INE,
2021). The city has expanded along the river into the interior, growing
steadily until the 1950s, when many new neighborhoods and avenues
were built, and experienced a sharp growth after the 1970s. Currently, it
includes 24 civil parishes, which represent the smallest administrative
jurisdiction in Portugal, and 2823 census tracts, relatively small and
permanent statistical subdivisions within each parish at which census
are analyzed (INE, 2021) (Fig. 1). For the purposes of this paper, the
local scale considered represents these census tracts.

2.2. Neighborhood trees and traits data

Lisbon's tree data (n  65,796) was retrieved from a publicly avail-
able tree census database currently being developed by the municipality
of Lisbon (CML, 2022). This dataset includes the location and, when
available, the species identification of trees that are not embedded in
large green spaces (Fig. 1). Trees that are not considered neighborhood
trees (for example, trees in cemeteries that are not experienced by the
overall public) were excluded from this study. To calculate taxonomic
and functional indices, we excluded trees not identified at the species
level, and analyzed species synonyms according to The Plant List (2010)
to uniformize all species names. In the few cases where some individuals
were only identified to the genus level, as a matter of probability we
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considered them as the species with mest individuals. For funchional
analyzes, we considered the species collectively attaining 70 3% of the
relative abundanes, secing that this has been considered an adequate
proportion to functonally characterize a plant commumity (Pakeman
and Ouested, 2007), making up a total of 20 taxa. Within these, 1528
individuals were identified az Platanus sp., which we have considered as
Platanus x hybrida due to a clear higher abundance of this species over
other Platanus species (Table 51). In order to increase result robusiness
at the finer scale, only census tracts with =3 epecies were used to

For functional analyses, we retrieved trait information at the species
lewel from several publicly available information sources, priontized
according to the following eriteria: 1) Portuguese databases; 2) [berian
databases; 3) urban trees databases; 4) other databases (Table 52). The
traits selected for thiz study were intended to consider a number of
potential functions linked to traits, namely: 1. survival and regeneration,
— heat, drought, pests, and sea proximity, 1. Capacity to regulate
climate, iv. capacity to provide acsthetic experiences, and v. allerge-
nicity. The specific traits considered are listed in Table 1. Here, our goal
was not to analyze each trait individually, rather to compare the overall
potential functional diversity of different areas within the city, and
doing =0, we can understand which locations have higher and lower
potential ecological resilience and can potentially provide multiple
ccogystem services (Gross et al, 2017).

The continuous numerical traits (longevity, height, leaf, flower, sead
size) were categorized as ordinal (ecoded az 1 for low, 2 for medium, 3 for
high) using Jenks natural breaks. Traits already categorized as high,
medium, or low in trait databases were used as such. When diserep-
database pricritization criteria. Some categorical traite were trans-
formed into binary traite (coded as 0 for no and 1 for yes), namely
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leaves), reproduction strategy (monoecious flowers), leaf arrangement
{broad leaves), and leaf shape (simple leaves) (Table 53).

2.3. Social-ecological variables

A comprehensive set of zocial and ecological factors was selected
based on a bibliographic analysiz, in order to understand which vari-
ables can potentially influence urban tree abundance and diversity
(Grilo et al, 2022). The ecological vanables analyzed encompassed a
range of environmental, biophyzical, and ecological landscape compo-
nents, including climatic vanables at the macro and microscale, hy-
drology, soil type, atmosphernie pollution, and land uwse (Tablez 2, 54)
(Mitoelawski et al., 2017; Pham et al, 2017; Roman «t al., 201 8; Smart
et al, 2020). Az in other studies, we have considered noise pollution a
proxy of urbanization level (Sordelle =t al, 2020). The social factors
analyzed mncluded walking potential, residents' social-demographic
characteristics, city amemties, and development vear (Tables 2, 54).
At the loeal seale, to enhance the robusiness of the analyziz, we have
only considered the social-scological variables that have values in >50
% of the census tracts. Further details on methodological approaches are
provided in Table 55. All epatial analyzes were performed uzing ArcMap
v10.8.1.

2.4 Sratistical analysiz

2.4.]. Taxonomic and fuinctional analysiz

We analyzed neighborhood trees 1. abundanee, il epecies richness;
1i1. Shannon diversity index (which includes species abundance, with
distribution of species abundances, with lower values indicating uneven
distributions; Jost, 2010). Simpson diversity index and Simpeon's in-
verse were performed but presented similar results to the Shannon di-
verzity index, and therefore, are not shown. All statistical analyzes were
performed in R (B Core Team, 2022). Species richness and Shannon
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Flg. 1. Location of Lizbon's neighborhood trees and large parks within the civil parishes and census tracts.
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diversity index were caleulated using the specnumber and diversicy
functions, respectively, within the vegan package (Olizanen =t al | 2022).
Evenness was calculated by dividing the imverse Simpson index by
species richness. Associations between tree abundance and species
tions. At the functional level, to evaluate functional diversity we
considered 1. functional divergence (degree of functional dissimilarity
within the community, with higher values indicating high degree of
niche differentiation and poesible incereased ecosystem function; Mazon
etal, 2005, Villeger et al., 2008); and 1. functional evenness (regularity
with which species abundances are distributed in the functional space,
with lower values meaning uneven distributions; Maszon et al | 20035,
Mason and de Bello, 2013). Non-binary traits were scaled, and Gower
indices were calculated with the dbFD functon within the FD' package
with the eqilliex correction (Laliberte ot al | 201 4).

2.4.2 Beta diversity

To measure vanability in specics composition across spatial units
within cach spatial scale, we caleulated beta diversity using a site per
species matrix with species presence-absence data for Sgrensen dissim-
ilarity measures. The Sgrensen dissimilanty index measures the pro-
portion of exclusive species among assemblages and can be partibonsd

[ Parishaa
[ Gormus tacts

Abundance Species richness

B 5] ] ]

96,4 -630,1 30,6 - 18578 | i1,5-18,7 0,9 -0, 1
I 30,2 - 8004 18670 - aadd g a8 -31 208,27 -&08.9
B =555 - 20505 44899 - 11553,6 2476 6070 = 1903,6
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into turnover and nestedness. Turmover (Simpson dissimilarity) reflects
the effect of epecies replacement among sites, while nestedness (differ-
ences In species richness when species-poor assemblages are nested in
speeies-rich assemblages (Xu et al, 2020). Beta diversity was caleun-
lated using the beta mult and beto pair funchons within the betapart
packape (Baselga et al_, 2023).

2.4.3. Modelling

To aceount for poesible spatial autocorrelation, we performed Moran
teste at the parizh and local ecalez, using the coordinates of each parizh
analysiz was performed with the Moran ] funchon within the ape pack-
age (Paradiz and Schliep, 2012). Spatial autocorrelation was significa-
tive at the local level. To model tree distribution and diversity, all social-
ecological wvariables values were normalized. To understand which
social-ecological varniables presented the strongest associations with
neighborhood trees, we performed Spearman correlations. At the parish
seale, the best candidate variables were considered for generalized ad-
ditive modelling (GAM), to account for non-linear relationships.
Considering the significative spatial autocorrelation found at the local
seale, we performed generalized additive mixved models (GAMM) with
the parishes of each census tract used as emoothed terme. At the local

Functional divergence
= (]

a8 -24.0
241 - 52,0
521 -2&1

0,1-62
| EEER
[T

Fig. 2. Spatial distribution of the abundance (A, E), species richness (B, F), and functional divergence (G, G) of neighborhood trees in Lizbon, Portugal. A, B, C
represent the resultz at the parish zeale, and E, F, G represent the results at the local scale. At the local zeale, only census racts with >10 ha and 20 neighborhood
trees were considered. For functional divergence, only census tracts with 70 % of identified treez were included (the censuz tracts not analyzed are represented in
bl:nl;].Mmshmmpupmﬁmmmespaﬁﬂunﬂmhhni.Paﬁshesmmapadﬂedmmg. L
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level, we only considered tracts with 10 ha and 20 neighborhood trees
to enhance the robustness of the analyzsis. We restricted the number of
variablez included in the models to five, to aveld GAM/GAMM over-
fithing. To mimmize co-lineanty effects in the regression models, among
the independent variables with »70 % correlation, only one variable
was retained. From all possible models for each dependent variable, we
retained the best-performing one (lowest AIC and highest R?), for which
all participating independent variables presented a significant contri-
bution. To avold overfitting, we reduced the number of nods in the
smoothed functons and used a restricted maximum likebhood esti-
mator. Models were obtained using the gam and gamm functions and the
fithng procedure and rezulte of cach model were analyzed with gam
check, within the meev package (Wood, 2011).

3. Results
3.1. Neighborhood tree distribution and diversicy

To account for the influence of parizh and census tract area on tree
proportion to the respective area (parish area and 1. tree abundance: r=
0.78, p < 0.001, 1. species nichness: r = 0.74, p < 0.001; census tract
area and 1 r= —0.66, p < 0.00], and 1. r= —0.65, p < 0.00]1]}. At both
spatial secales, the distribution of these mndices vaned across Lisbon
(Fige. 2, 81, 52). At the parish scale, tree abundance was higher in the
city's central and most urbanized area — Santo Anténio, Parque das
Magoes, Arroios and Avenidaz Movas. The parishez with a lower abun-
dance of neighborhood trees are highly covered by an urban forest -
Ajuda, Beato, Aleantara, and Benfica. The most abundant neighborhood
trees in Lisbon compriee 15 genera: Celts sp., Jacaranda sp., Platanus sp.,
Pinea zp., Acer zp., Populus sp., Cerciz sp., Praxinus sp., Tipuana sp., Prunus
zp., Olea sp., Melia sp., Grevillea zp., Robimia sp., Tilia sp., with one species
(Celtiz australiz) presenting a much higher abundanece than other species
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(Fige. 3, B1).

Regarding species richness, parishes within the city center presented
a higher diversity, namely Santa Maria Maior, Misericordia, Santo
(Fiz. 2). Trees' Shannon diversity index and evenness were higher in
most parishes of the historie center and adjacent areas (Fig. 51). The
composition of neighborhood trees analyzed through beta diversity,
was 0.86, with 0.78 related to species turmover. Therefore, Lishon's
parizhes have a high variation in neighborhood trees, which iz mainly
explained by specics replacement. The most bult-up arcas of the city
have higher values of beta diversity (Fig. 51). At the functional level,
divergence and evenness also showed higher values in the most urban-
ized areas of Lisbon, and the lowest values were mainly found in oriental
and northern parishes (Figz. 2, 51).

At the local seale, our results show that few locations within each
parizh account for the highest values found for all indiees (Fiz=. 2, 52).
For beta diversity, variation in species composition between census
tracts was 0.99, which iz explained by species turnover.

3.2 Tree associations with social-ecological factors

At both scales, the strongest correlations betwesn neighborhood
trees’ taxonomic and functional indices and the social-ecological wvari-
ables analyzed, showed that species richness, Shannon diversity ndex,
and evenness were mostly associated with social factors (Tables 3, 4, 85,
56, 57, 58). City amenities and residents’ socio-demographic character-
istics presented the highest positive correlations. Abundance was
strongly aseociated with both ecological and social factors at broader
and finer scales, including positive aszociations with city elements and
negative associations with green areas (Tables 3, 4, 85, 86).

Orverall, both GAM and GAMM resulte showed that the best statistical

Fig. 3. Images of locations in Lisbon without neighborhood trees (A), with neighborhood trees in a pocket park (B), with high abundance of neighborhood trees with
low diversity (Platonus x hybrido and Celtis austratiz) (C), and with high abundance of neighborhood trees with high diversity (D). Photos by Filipa Grilo.
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Table 5

Science of the Total Environment 929 (2024) 172552

Summary statistics for the smoothed function from each final GAM model used to analyze the relationship between abundance, species richness, Shannon diversity
index, evenness, functional divergence (Fdiv), functional evenness (Feve) and the social (S) and ecological (E) variables analyzed. Includes estimated degrees of
freedom (edf), F and P statistics, deviance and adjusted R2. Variables names are specified in Table 2.

Indices Scale Social-ecological factors Trend edf F value Adj. R?
Abundance Parish (E) Clay U 1.9 5.0 0.02 0.58
(E) NO 1.0 17.6 0.001
(S) Buildings(ar) 1.8 9.2 0.002
Local (E) LST 3.5 17.7 <0.001 0.35
(S) Public 1.0 58.2 <0.001
(S) Roads 3.6 30.0 <0.001
Species richness Parish (S) Buildings(n) 1.0 17.9 0.0004 0.80
(S) Public 1.0 17.2 0.0004
Local (S) Public 1.8 22,5 <0.001 0.25
(S) Roads 3.7 28.0 <0.001
Shannon index Parish (S) Buildings(n) 1.0 81.8 <0.001 0.78
Local (S) Public 1.0 25.6 <0.001 0.43
(S) Roads 3.8 86.7 <0.001
Evenness Parish (S) Familiesl 2 1.9 10.7 0.001 0.45
Local (S) Buildings(ar) 3.4 15.4 <0.001 (0.58
(S) Roads 3.7 173.8 <0.001
Fdiv Parish (S) Buildings<1945 1.0 65.0 <0.001 0.74
Local (S) Roads 3.7 242.9 <0.001 0.71
Feve Parish (S) Buildings(n) 1.0 65.7 <0.001 0.74
Local (S) Roads 3.5 163.9 <0.001 0.62

models for the indices considered highlight the importance of social
factors, particularly city elements, to urban tree distribution and di-
versity, at both spatial scales (Table 5, Figs. S3, S4). Taxonomic and
functional diversity showed positive associations with the presence of
buildings at broader scales, and total road length and number of public
elements at finer scales. For abundance, the best models included social
and ecological variables at both scales: soil type (clay), pollution (ni-
trogen oxide) and city elements (area of buildings) at the parish scale,
and macroclimate (land surface temperature) and city elements (road
length and number of public elements) at the local scale (Table 5,
Figs. S3, S4).

4. Discussion

Our study showed that neighborhood tree abundance and taxonomic
and functional diversity vary spatially with social-ecological factors. The
models obtained revealed strong associations between all biological
indices and social factors, at broader and finer scales. Tree abundance
was linked to both ecological and social factors. By considering multiple
spatial scales, we were able to analyze the factors influencing trees at an
administrative scale (parish scale) and at an ecosystem services delivery
scale (local scale). Since neighborhood trees are mostly chosen and
planted by humans, the demonstrated influence of social factors could
be expected. Nonetheless, by modelling the importance of these factors,
our study was able to quantify how much humans modify urban land-
scapes at structural and functional levels. This information can help
policy makers to make informed decisions that promote ecological
resilience and long-term ecosystem services delivery.

Overall, neighborhood trees were associated with higher urbaniza-
tion levels, namely buildings (broader scale) and roads (finer scale). At
the parish scale, the areas with the highest values for all indices are older
than those with lower values, and have recently been subject to strong
ecological rehabilitation measures. These include abundant and diverse
tree planting by the municipality, and active management, conducted by
both parish councils and the municipality. Seeing that Lisbon is a
consolidated city, and most built-up areas have a smaller surface of large
parks and gardens, these actions are important to reduce the urban heat
island effect, increase walkability, promote ecological corridors and
increase citizens' well-being. The models obtained showcase this top-
down awareness in having an abundant and diverse landscape where
most citizens live. However, it is important to highlight that the distri-
bution of all indices at the finer scale showed that these trees are

concentrated in few census tracts, and therefore, their benefits are
provided to a small percentage of the population. In addition, evenness
and beta diversity values indicate that throughout the city, only a few
species are dominating (particularly Celtis australis). This tendency oc-
curs in other cities worldwide, where despite there being a high species
richness, only a reduced number of species dominate, which decreases
the overall diversity of urban biodiversity (Lohr et al., 2014; Ma et al.,
2020; Galle et al., 2021; Jiao et al., 2021). This could be of concern since
it could imply lower ecological functioning and ecosystem services de-
livery, with consequences on ecological resilience and human well-being
(McPhearson et al., 2023).

Other studies have shown linkages between urban morphology and
social-economic factors, and street tree abundance and diversity,
particularly in more recently developed cities in North America (Pham
et al., 2013; Bigsby et al., 2014; Ma et al., 2020). Yet, in these cities,
street trees are more abundant and diverse in wealthier and more
recently built areas. This occurs due to development patterns of urban
sprawl that account for larger planting areas that can accommodate
more species (Nitoslawski et al., 2017), increasing taxonomic diversity
outside the city center (Pham et al., 2017; Roman et al., 2021). Still, as
opposed to our study, most of these studies do not analyze diversity in
proportion to the area, which can greatly influence the results, given
that most cities have different sized neighborhoods or boroughs (Galle
et al., 2021).

The municipal efforts to green the most built-up areas within the city
are also seen at the functional level. The positive linkages between
functional indices and urbanization reveal that areas where dwellers live
or work potentially benefit from multiple ecosystem services delivery
and have higher levels of ecological resilience. However, at the broader
scale, functional divergence distribution showed that despite the high
tree coverage and species richness, trees in the oriental and more
recently built part of the city, are functionally similar. In other studies
that focus on entire sets of trees within cities, it is shown that cities with
high species richness in densely urbanized areas tend to have func-
tionally similar species (Knapp et al., 2008, 2012; Nock et al., 2013).
This could be of concern, considering that low functional diversity is
associated with a lower capacity to respond to environmental changes
and provide multiple ecosystem services (Cadotte et al., 2011). Still,
despite the importance of functional diversity, few studies and munic-
ipal management plans are centered around functional traits (Nock
et al., 2013).

In our models, tree abundance was strongly associated with social
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and ecological variables at both scales. These models show the impor-
tance of both factors for tree abundance, since they influence tree
establishment and survival (Nitoslawski et al., 2017; Smart et al., 2020).
The associations with soil type could reflect the increasing concern by
urban planners to plant adequate species to local hydrological and
edaphic conditions (expressed in Lisbon's tree regulation), to guarantee
trees' survival, and increase abundance (Roman et al., 2018). On the
other hand, trees' negative association with air pollution (broad scale)
and an inverted-U-shaped curve association with summer surface tem-
peratures (fine scale), can indicate positive links between tree abun-
dance and ecosystem services delivery (air quality mitigation and
microclimate regulation, respectively), contributing to human health
and well-being (Muyshondt et al., 2022). To specifically understand
cause-effect relationships between indices and these variables, long-
term studies are needed.

An aspect that should be accounted for is the possible influence of
these social-ecological factors on the ability of traits to functionally
express and generate benefits, acting as biodiversity filters (Coleman
et al., 2022; Grilo et al., 2022). For example, high levels of urbanization
can affect traits' functional expression due to limited space for the trees'
healthy development (McElhinney and Harper, 2019). In addition, air
pollution emissions and adverse soil type can negatively affect tree
establishment and growth (Canetti et al., 2017; Mukherjee and Agrawal,
2018), and increase vulnerability to pests (Ball et al., 2007); high tem-
peratures can decrease leaf area development, and accelerate flowering,
affecting climate regulation and pollination services (Cleland et al.,
2007; Teskey et al., 2015). Therefore, an important next step for
research would be to analyze direct cause-effect relationships between
trees and social-ecological variables, in order to better understand if
these are acting as biodiversity filters and inform management strategies
to prevent the loss of desired ecosystem services. To do so, it would be
essential to analyze these biological indices and social-ecological vari-
ables across a wide temporal scale, as well as consider trees' eco-
physiological status. Such long-term studies are rare but critical to
advance knowledge, as they can help local practitioners plan targeted
actions to increase and diversify urban trees, fostering effective man-
agement and policy making, contributing to multifunctionality and local
resilience.

Our study builds knowledge on the importance of social-ecological
factors for urban tree abundance, as well as taxonomic and functional
diversity. However, some limitations to this study should be considered
for a more comprehensive understanding of the results, namely the
inability to analyze the entire set of i. neighborhood trees, due to the
lack of species identification (n 16,600); ii. census tracts, due to
having very few trees and/or social-ecological variables. Nonetheless,
our study provides insights about the importance of analyzing urban
trees at multiple biological levels and spatial scales to support planning
decisions.

5. Conclusions

In this study, we analyzed neighborhood tree distribution and di-
versity across Lisbon at broader and local scales, from taxonomic and
functional perspectives, while focusing on their association with social-
ecological factors. We found strong associations between social vari-
ables and all the indices analyzed. Ecological factors were associated
with tree abundance. These relationships should be analyzed in the long-
term, to ensure that ecosystem services are continuously being deliv-
ered. By comparing tree abundance and diversity at broader and finer
scales, our study showed how important it is to not generalize results at
larger scales due to the possibility of overestimations, with higher res-
olutions highlighting critical areas where trees are needed. This is
particularly important in older cities, due to the lack of green spaces and
inability to reconfigure the urban morphology.
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