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Abstract

Urban street trees offer cities critical environmental and social benefits. In New York City

(NYC), a decadal census of every street tree is conducted to help understand and manage

the urban forest. However, it has previously been impossible to analyze growth of an individ-

ual tree because of uncertainty in tree location. This study overcomes this limitation using a

three-step alignment process for identifying individual trees with ZIP Codes, address, and

species instead of map coordinates. We estimated individual growth rates for 126,362 street

trees (59 species and 19% of 2015 trees) using the difference between diameter at breast

height (DBH) from the 2005 and 2015 tree censuses. The tree identification method was

verified by locating and measuring the DBH of select trees and measuring a set of trees

annually for over 5 years. We examined determinants of tree growth rates and explored

their spatial distribution. In our newly created NYC tree growth database, fourteen species

have over 1000 unique trees. The three most abundant tree species vary in growth rates;

London Planetree (n = 32,056, 0.163 in/yr) grew the slowest compared to Honeylocust (n =

15,967, 0.356 in/yr), and Callery Pear (n = 15,902, 0.334 in/yr). Overall, Silver Linden was

the fastest growing species (n = 1,149, 0.510 in/yr). Ordinary least squares regression that

incorporated biological factors including size and the local urban form indicated that species

was the major factor controlling growth rates, and tree stewardship had only a small effect.

Furthermore, tree measurements by volunteer community scientists were as accurate as

those made by NYC staff. Examining city wide patterns of tree growth indicates that areas

with a higher Social Vulnerability Index have higher than expected growth rates. Continued

efforts in street tree planting should utilize known growth rates while incorporating commu-

nity voices to better provide long-term ecosystem services across NYC.
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Introduction

Urban streets trees provide many benefits or ecosystem services [2–5]. Cities, including New

York City (NYC), Los Angeles, and Chicago, are undertaking programs to increase the num-

ber of street trees in an effort to increase ecosystem services, or the contributions of nature to

people, and ensure their equitable distribution [6–9]. Urban trees are often planted as small

saplings. Many residents prefer the benefits of larger street trees, but larger trees also pose chal-

lenges with pruning needs and possible disservices, such as pollen and pavement damage, but

may also influence crime [10–17]. However, it is only after decades of growth that trees mature

and many of the ecosystem services provided by urban trees are realized [18–22]. In order to

make planning decisions [23], minimize environmental injustices [24–26], and predict future

ecosystem services [27], it is important to understand the effect of biological properties and

urban form on street tree growth rates.

Studies examining urban tree growth have traditionally focused on forest patches [28],

examined regional variations [29] or used urban-to-rural gradients to simulate the impacts of

future climate change [e.g. 30, 31]. Urban-to-rural gradients have highlighted the effect of mul-

tiple parameters on growth rates [32–34]. For example, in studies across the Eastern United

States, transitioning from rural forests to urban forests showed more rapid growth and basal

area increments in the urban setting than a rural setting [33, 35, 36]. Similarly in Berlin, dense

urban environments with higher temperatures and less precipitation had higher growth rates

[37]. Yet, other research examining multiple species across cities in the United Kingdom had

varied results [38].

However, street trees are different than urban forest patches. In addition to regional cli-

matic characteristics related to temperature and precipitation, urban form (local built urban

environment) and social factors, including local stewardship, impact urban street tree growth

rates [39–45]. Street trees—located on or near a road—are often planted in tree pits (small cut-

outs in sidewalks), or in elongated areas of soil between roads and/or a sidewalk (often termed

a road verge or tree lawn). In Central Ohio, urban trees within 2m of pavement had slower

growth rates compared to nearby woodlots [32]. City inspectors in Montreal tracked the long-

term average growth rate of street trees and found that tree species, side of the street (north,

south, east, or west), obstructions such as signage, and zoning all had an impact on growth

rates [46]. Other studies have focused on tree pits and found varied results suggesting size, soil

type, and design may impact tree growth [47, 48]. In addition, social factors and management,

including stewardship, tree planting by larger, well established groups, and socio-demographic

characteristics have been shown to positively impact growth [49]. As trees grow and mature,

the costs and benefits change; thus accurate growth estimates could aid urban planning as

municipalities try to maximize ecosystem services. However, few citywide studies or databases

of street tree growth are available.

Monitoring street tree growth rates across an entire city—regardless of city size—is time

consuming and requires substantial effort. Tree growth rates can be determined by measuring

annual tree rings obtained from tree cores, measuring the tree’s diameter at breast height

(DBH) and knowing the age of a tree, or through repeated measurements of DBH. Measuring

cores can give detailed annual data over long-time spans but is labor intensive and requires

specialized equipment. Instead, DBH measurements have become a common practice. While

variability in repeat measurements of DBH can occur due to placement of the measuring tape

and tree morphology [50], citizen or community scientists can easily measure and electroni-

cally record DBH with low-cost equipment coupled to smartphones, thereby enabling a census

of large numbers of trees. Such measurements can help to obtain an accurate snapshot of the

urban forest [51], and in smaller studies, community science data has also been used for
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determining growth [52]. Community scientists expand the scope of the work feasible for eco-

logical studies [53] while also elevating public interest and understanding [54, 55].

In addition to empirical field estimates, growth predictions can be made from existing data-

bases, such as iTree and Urban Tree, based on trees from representative cities [52, 56, 57]. The

models can then be adjusted for local context, including the number of frost-free days, location

of tree (e.g., street tree, park, or forest), crown light exposure, health of the tree, and size of the

tree [e.g. 58]. These generalized, broad-based models are based on limited tree data from select

cities, but are regularly used to make predictions at both the tree level and regional level.

The New York City Parks and Recreation Department has supported a decadal street tree

census since 1995, yielding data for 1995, 2005 and 2015. These data are available via the NYC

OpenData portal (https://opendata.cityofnewyork.us/). Most recently in the 2015 NYC Trees-

Count! Tree census, 666,134 street trees were mapped, including characteristics of species,

DBH, and level of stewardship, by over 2200 community scientists, TreeCounts paid interns,

and NYC Parks Department employees [1]. While the data within these censuses could pro-

vide unprecedented insight into street tree growth rates across NYC, inaccurate geolocation of

the surveyed trees in the 1995 and 2005 datasets has prevented such analyses.

Drawing on two iterations of the NYC Tree Census (2005 and 2015) collected by both paid

staff and community scientists, we established a non-invasive method for determining urban

street tree growth in NYC that did not rely on tree geolocation data. First, we applied a novel

approach to align the NYC tree census data from 2005 and 2015 based on address and tree spe-

cies. Next, we conducted two ground truthing surveys to verify the approach. Third, we calcu-

lated individual tree growth of 126,362 street trees in NYC representing 59 species. Next, we

analyzed how the biological factors and urban form impact the rates of tree growth across

NYC. Finally, to better understand the environmental justice implications, we explored how

the distribution and variations in tree growth might impact local communities of varying

socio-demographic backgrounds. Understanding the factors influencing urban tree growth

will help urban planners make better decisions around green infrastructure that maximize eco-

system services for all communities across urban areas for decades into the future.

Methods

New york city tree census data

This study uses the 2005 and 2015 NYC tree census data to calculate growth rates. We used the

2005–2006 TreesCount! Street Tree Census (termed 2005 data) [59] and the 2015–2016 Trees-

Count! Street Tree Census (termed 2015 data) [1] that are available from the NYC Open Data

Portal (https://opendata.cityofnewyork.us/). The 2005 census surveyed 592,130 trees and the

2015 census surveyed 666,134 trees. The surveys were conducted by both community scientists

and paid employees. In 2005, the dataset does not indicate who collected the data. In 2015, the

dataset indicates if the data were collected by community scientist volunteers, TreesCount staff

who were hired specifically to help with the tree count, or NYC Parks Department employees.

The dataset contains information pertaining to location (e.g., address, latitude, and longitude),

tree species, tree diameter at breast height (DBH), descriptions of the tree health, and descrip-

tions of the tree environment such as the tree pit and sidewalk. Errors in the latitude and longi-

tude from the 2005 dataset make it challenging to use this data to definitively locate the same

tree in the 2005 and 2015 data. The methodologies to determine latitude and longitude were

improved in 2015 by using block edges and distances from intersections to properly locate

trees. Because of improved location data, detailed street tree maps are available (https://tree-

map.nycgovparks.org/). In future tree censuses, it will be possible to relocate each tree, but this
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is currently not possible. To align the 2005 and 2015 data and calculate growth rates, this study

tests and verifies an address-based, tree-species approach.

The downloaded tree census data were cleaned to enable alignment of the datasets (Fig 1,

steps 1 and 2). A minimalistic approach was taken. The common names of each tree were

made uniform. The addresses were simplified to remove punctuation and expand abbrevia-

tions. Multiple trees of the same species at one address were removed to avoid overlap (Fig 1,

step 3). In order to overcome the errors in latitude and longitude in locating the trees, a meth-

odology was developed where the datasets were aligned by ZIP Code, address, and tree species

(Fig 1, step 4). Both ZIP Code and address were used as street names and building numbers

can repeat across NYC. This resulted in alignment of trees between datasets, including unique

trees in both data sets that were the same species at the same address and ZIP Code with no

redundancy. For example, if the combined 2005 and 2015 datasets showed one Gingko and

one Red Oak at the same address and ZIP Code, they would both align and be utilized. How-

ever, if one address had two London Planetrees, they both have to be removed for non-unique-

ness. This alignment method could introduce potential bias if the same species is planted in

series throughout a neighborhood and thus might be removed from the database more fre-

quently in particular areas of the city. It is also possible that areas with few addresses, such as

larger commercial or industrial buildings or along parks, may have more trees listed per the

fewer addresses and thus also removed.

After database alignment, the tree growth data required further cleaning through a multi-

step method based on descriptive statistics of the measured DBH values (Fig 1 Step 5).

Descriptive statistics of the cleaned dataset are presented in the results section. The database

cleaning was designed to remove three potential errors (Fig 1, step 5): negative growth rates

(e.g., a tree was removed and replaced with a smaller sapling of the same species between 2005

and 2015), large errors or outliers in DBH measurements, and the erroneous alignment of

trees.

Fig 1. Summary of data processing, cleaning and analysis methods for the 2005 and 2015 datasets. The number of trees used at each step is shown for

before and after alignment.

https://doi.org/10.1371/journal.pone.0304447.g001
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Some trees (n = 18,238, 12.7%) in the dataset showed negative growth. Three potential mecha-

nisms of negative growth were investigated and used to determine if some or all of the trees should

be removed from the dataset. First, clear errors were observed; for example, some 2005 data appear

to be recorded as circumference and not diameter. Second, ground-truthing indicated that if a

mature tree was replaced with a sapling of the same species, this would be recorded as a large nega-

tive tree growth event and these should be removed. Third, rounding or variability during mea-

surement could cause errors in tree growth calculations. For example, if a tree didn’t grow, a slight

error in measurements that resulted in rounding up or down in the 2005 and 2015 census and

could easily lead to apparent growth of plus or minus two inches. Thus, we chose a conservative

approach that growth of -5 inches was possible and part of measuring errors and used this as a cut-

off (Fig 1, step 5a). The observed distribution of growth rates supports this choice.

To finish cleaning the data, we removed further outliers of trees that appeared to grow ‘too

fast’ or ‘too slow’. First, small saplings with a 2005 DBH equal to 0” (n = 52) or trees with 2005

DBH 41” and larger (n = 1266) in the 2005 data were removed (Fig 1 step 5b). This step

removed trees with DBH that had been rounded down to 0” and the few large trees (<1%) that

might skew data. In order to remove further outliers, trees were grouped by their 2005 DBH in

1” increments to account for smaller trees growing at faster rates. We removed 5% of trees

with the smallest and largest growth in each 1” increment (Fig 1 step 5c). The final aligned

NYC Tree Growth dataset included 126,362 trees (21% of 2005 data and 19% of 2015 data

based on initial counts; and 88% of initially aligned trees (see results)). Even with the removed

trees, this newly created NYC Tree Growth dataset appears to be the largest dataset available

for tree growth and offers a unique opportunity to examine a multitude of factors that might

impact tree growth across an urban landscape.

Database validation

Two tree monitoring programs were undertaken to ground truth and verify the methods to

align and clean the 2005 and 2015 datasets. First, in order to validate the database alignment

methods, in Spring 2019, we ground-truthed locations with tree records in both the 2005 and

2015 datasets in the 10024, 10025, and 10027 ZIP Codes (hereafter NYC ground-truth valida-

tion). Once located, if a tree was present or accessible it was identified and the DBH measured

to validate growth rates by comparing the 2019 data to 2005 and 2015 NYC data. If a tree was

not present or accessible, the reason was noted to determine the likelihood of finding the same

tree in the aligned database. Second, in order to further validate variations in tree growth rates

observed in the decadal citywide database (e.g., by species and by initial tree DBH), we moni-

tored the DBH of trees in a four-block zone in the 10027 ZIP Code approximately annually

beginning in 2015 or 2016 through 2021 (hereafter NYC temporal validation). All DBH mea-

surements were performed at a height of 4.5 feet and measured to the hundredths of an inch

(NYC Tree census data was rounded to the whole inch).

Statistical analyses

Variation in tree growth rates in the newly created NYC Tree Growth dataset were explored

based on properties of the tree, stewardship, and the surrounding local environment (Table 1).

Analyses accounted for biological properties, such as species, tree health, and DBH in 2005 as

a proxy for tree age, stewardship of the tree, local urban form based on location, properties of

the tree pit, street width, nearby land use zoning, building height, and population density

(Table 1). The data utilized comes from the 2015 Tree Census, MapPLUTO, NYC Street Cen-

terline (CSCL), the American Community Survey (ACS), and the CDC/ATSDR Social Vulner-

ability Index (SVI) (Table 1) [60–63].
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All statistical analyses were performed using Python v3.6.6 with Pandas v1.0.3 and Statsmo-

dels v0.13 except the Generalized Variance Inflation Factor (GVIF) [65] to quantify collinear-

ity which was calculated with the car package in R. All data and scripts (except ones done in

ArcGIS) are available on GitHub (https://github.com/bmaillou/NYCTreeGrowth). In the final

aligned decadal NYC Street Tree Growth dataset, growth rate was determined by calculating

the difference in DBH (growth) between 2005 and 2015 for each individual tree and dividing

by ten years. In the ground-truth and temporal validation datasets, growth rates were deter-

mined by calculating the Theil-Sen Slope as it minimizes the impact of outliers. The non-

parametric Kendall rank correlation coefficient was utilized to assess the goodness of fit of the

calculated growth rates. A student t-test was used when comparing two parameters and an

ANOVA with the Tukey post-hoc test was utilized when comparing three or more parameters.

An Ordinary Least Squares (OLS) regression was performed to determine the controls on

growth rate. The goal of the OLS was to determine the effect of species, tree guards, and

Table 1. Parameters used in this paper to better understand the controls on tree growth. The numbers next to each name indicate the source of the data.

Description Name Data Type Values

Common name for the tree species spc_common1 Categorical Species Name

Diameter at breast height in 2005 dbh_051 Continuous 1–40 inches

Category of user who collected tree data user_type 1 Categorical Volunteer, TreesCount Staff, NYC Parks Staff

User’s perception of tree health Health1 Categorical Good, fair, poor

Location of tree in relation to curb Curb_loc1 Categorical OnCurb, OffsetFromCurb

The number of signs of stewardship around the tree steward1 Categorical None, 1or2, 3or4, 4ormore

Presence and type of tree guard Guards1 Categorical Harmful, Helpful, None, Unsure

Sidewalk damage adjacent to the tree sidewalk 1 Categorical Damage, NoDamage

Indicates any problem with the tree roots root_blocked1 Categorical Yes, no

Indicates any problem with the tree trunk trunk_altererd1 Categorical Yes, no

Indicates any problem with the tree branches Branch_problems1 Categorical Yes, no

Name of borough where the tree is located Borough1 Categorical Manhattan, Bronx, Brooklyn Queens, Staten Island

The side/quadrant of the road where the tree is located Roadside_location2 Categorical North, South, East, West

Width of street ST_WIDTH3 Continuous Width of the street where the tree is located. Range:0–90 ft. Mean:

34.2 feet

Zoning of tax lot LandUse4 Categorical Landuse of the lot closest to the tree: Multifamily, open&recreation

(open&ec), Single family, non-residential (non-res)

Built Floor Area Ratio. Indicates height of building. BuiltFAR4 Continuous Value of building closest to tree: Range:0–85, mean:1.2.

Population density of the census tract where the tree is

located.

Pop_density5 Continuous Value from the census tract where the tree is located. Range

0–481,072, mean 42732 persons per square mile

Index of the CDC/ATSDR Social Vulnerability Index (SVI)

of the census tract where the tree is located

SVI_Vulnerability6 Continuous Value from the census tract where the tree is located. Values are 0–1

with 1 being more vulnerable.

Range: 0.02–1.00, mean: 0.54

1. Data obtained from the NYC Tree Database

2. Roadside location was calculated using the ArcGIS Pro software by determining the road direction by applying the linear directional mean function of the NYC street

centerline data and then linking the trees to their closest road section using the Near function and finally assigning the roadside location to the trees.

3. Street widths were also obtained from the NYC Street Centerline data. They were attributed to the trees as the width of each tree’s respective closest road section, as

described in the footnote 2.

4. Data obtained from MapPLUTO [62]. They were attributed to the trees using the Spatial Join function in ArcGIS Pro.

5. Data obtained from the American Community Survey (ACS) [63]. They were attributed to the trees using the Spatial Join function in ArcGIS Pro at the census tract

scale.

6. Data obtained from CDC/ATSDR Social Vulnerability Index (SVI) [60, 64]. They were attributed to the trees using the Spatial Join function in ArcGIS Pro. Data were

not used in the OLS regression model but for comparisons to residuals.

https://doi.org/10.1371/journal.pone.0304447.t001
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stewardship on observed growth rates along with the efficacy of using of community science

volunteers. The OLS was controlled for both biological factors and urban form that could

impact growth rates. This includes controlling for DBH in 2005 (“dbh_05”) since tree age is

not known and younger trees generally grow faster, tree size was controlled for as a surrogate.

The continuous data were normalized by subtracting the mean and dividing by twice the stan-

dard deviation to enable comparison with the categorical data [66]. The residuals or the differ-

ence between the predicted growth rates from the OLS and observed growth rates were used to

determine areas where tree growth was faster or slower than expected.

Results

Growth rate observations

Our alignment of the 2005 and 2015 New York City (NYC) Tree census databases by tree spe-

cies, ZIP Code, and address (Fig 1) resulted in 143,192 trees with two DBH measurements.

After further cleaning of the database (Fig 1), the final NYC Tree Growth dataset included

126,362 trees of 59 species. Of the 59 species, 14 species included more than 1000 individuals

each and an additional 10 species included 100 to 1000 trees (Fig 2A, Table 2). The mean street

tree growth rate was 0.275±0.233 in/yr (+/- 1 standard deviation; 0.699±0.594 cm/yr) with a

minimum of -0.5 in/yr (-1.27 cm/yr) and a maximum of 1.6 in/yr (4.06 cm/yr). 7706 (6%) of

trees had a negative growth rate. The remainder of the results are presented in inches as the

NYC databases are in inches and the data are rounded to the nearest inch to minimize conver-

sions and errant decimals. Inches are likely most relevant to the policy makers. 118,585 (94%)

of trees had a growth rate between 0 and 1 inches/yr (Fig 2A).

To verify that the same trees could be re-located and the database alignment and cleaning

methods were justified, ninety-one locations in the cleaned NYC Tree growth dataset were vis-

ited and ground-truthed. Eighty-six trees were located; two trees were missing, two were

blocked by construction, and one was in the process of being cut down. Out of the eighty-six

trees, the majority (n = 73, 85%) had positive growth rates from 0.0 to 0.64 inches/yr, consis-

tent with NYC Tree growth dataset (Figs 2B and 3A–3C). Fifty-three trees had a Kendall tau

equal to one indicating the three DBH measurements (2005, 2015, 2019) monotonically

increased (e.g., Fig 3A). Seven trees (8%) had a DBH that decreased by 5 inches or more

between 2005 and 2015 and upon inspection of the trees, pictures of the trees, and examining

the data; five had obviously been removed between 2005 and 2015 and replaced with a smaller

tree of the same species that then grew between 2015 and 2019 (e.g., Fig 3B), one appears to be

a data entry error in the 2015 NYC data (1 instead of 10), and one appears to a measurement

error in the 2005 NYC data. The tree with the data entry error still had a positive slope. Based

on these findings of the ground-truth validation, we justified removing trees from the database

in which a DBH decreased by 5 inches or more. Eight trees had more ambiguous negative

growth based on the 2005 and 2015 DBH values where measurement errors and rounding

could possibly lead to a negative growth (Fig 2C) but only seven of these when including the

2019 data were represented by a negative slope/Kendall tau (Fig 2B).

To better understand growth, forty-four trees were monitored approximately annually

starting in 2015 or 2016 until 2021 as a temporal validation of growth rates in urban NYC trees

(Fig 3D–3F). All (100%) of the trees had a positive growth rate from 0 to 0.73 in/yr (Fig 3D–

3F, Fig 1C). Twenty-eight (64%) of the trees had a Kendall tau of 1 (Fig 3D, Fig 2C). Thirty-six

of the trees measured annually also had a datapoint from the 2015 NYC Tree Census Data

with only one also having a datapoint from the 2005 Tree Census Data (Fig 3E). NYC Tree

338569 (Fig 3E) was linear when including the 2015 NYC data and the temporal validation

data but not when including the 2005 NYC data. This could be due to a change in growth rate
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Fig 2. Histograms of tree growth from the different datasets used in this study. If a tree had three or more points the Kendall

tau is included to show the goodness of fit for all trees. A +1 indicates a monotonic increase in DBH when growth rates are

calculated and a -1 indicates a monotonic decrease. Bins of 0.1 in/yr were chosen as this is the smallest possible increment for

the NYC Tree census data. (A) Tree growth in trees from the NYC Tree censuses. (B) NYC ground-truthed validation, growth

rates of 86 locations with tree records in both the 2005 and 2015 datasets that were revisited and DBH measured. (C) NYC
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or a measurement error. Overall, our temporal validation highlighted annual measurements

performed as part of this study were similar to data from the NYC Tree growth dataset.

Spatial patterns of tree growth, density, and size

The street tree growth rates, density, and size varied across the city when averaged by ZIP

Code (Fig 4). Mean growth rates were the slowest in Manhattan and southern Brooklyn and

faster in Staten Island along with parts of Queens and the Bronx (Fig 4, boroughs are labeled

on the map). Public street tree density was greatest in much of Manhattan, southern Brooklyn,

and eastern Queens. Street trees also varied in size across the city (Fig 4) where Manhattan and

the southern Bronx had the smallest DBH trees and southern Brooklyn and eastern Queens

had trees with larger DBH.

Factors impacting tree growth

The data were further analyzed to better understand the parameters that impact tree growth

and the observed spatial patterns. Initial analyses focused on how growth rates vary based on

properties of the tree (e.g., species, health, presence of root damage, etc), properties around the

tree (presence of guard, location relative to curb, etc), and the surrounding urban form (street

width, building height, etc) (Table 1). The largest variations in growth rate were observed by

species (Fig 5, Table 2). Out of the 15 most abundant species, Silver Linden has the fastest

observed mean growth rates (0.510±0.213 in/yr for 1,149 trees). London Planetree is the most

abundant tree (n = 32,058) but has the slowest mean growth rate (0.163±0.215 in/yr).

The mean tree growth rates were compared by observed health, stewardship, and surround-

ing environment of the tree (Fig 5). Trees categorized as “Good” health in 2015 (health_15)

temporal validation, growth rates of 44 trees in a four-block zone in the 10027 ZIP Code measured approximately annually

between 2015 and 2022.

https://doi.org/10.1371/journal.pone.0304447.g002

Table 2. Summary of the newly created NYC tree growth dataset. The growth dataset grouped by species is compared to the top trees in the 2015–2016 TreesCount!

Street Tree Census (termed 2015 data) as taken from NYC data [1]. The growth database is missing two trees that are in the top 15 of the 2015 data: Cherry (rank = 7) and

Sophora (rank = 10).

Growth Database 2015 Data

Common Name Abundance Rank Number of Trees Mean

DBH 2005 (in)

Mean Growth Rate (in/yr) Abundance

Rank

London Planetree (Platanus x acerifolia) 1 32,058 22.5 0.163 1

Honeylocust (Gleditsia thriacanthos) 2 15,974 9.1 0.356 2

Callery Pear (Pyrus calleryana) 3 15,903 6.6 0.334 3

Norway Maple (Acer platanoides) 4 13,149 13.4 0.174 5

Pin Oak (Quercus palustris) 5 11,563 16.8 0.352 4

Littleleaf Linden (Tilia cordata) 6 6,343 9.7 0.318 6

Ginkgo (Ginkgo biloba) 7 5,518 9.0 0.257 9

Green Ash (Fraxinus pennsylvanica) 8 4,893 10.9 0.366 12

Red Maple (Acer rubrum) 9 4,116 10.1 0.273 11

Silver Maple (Acer saccharinum) 10 3,948 20.4 0.265 14

Japanese Zelkova (Zelkova serrata) 11 3,643 8.2 0.425 8

Sweetgum (Liquidambar styraciflua) 12 2,620 11.0 0.308 15

Silver Linden (Tilia tomentosa) 13 1,149 6.7 0.510 17

Northern Red Oak (Quercus rubra) 14 1,026 12.7 0.375 16

American Linden (Tilia americana) 15 868 10.8 0.399 13

https://doi.org/10.1371/journal.pone.0304447.t002
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grew faster (0.289 in/yr) than trees categorized as “Fair” (0.222 in/yr) and “Poor” (0.162 in/yr;

Fig 5). Trees located (curb_loc_15) “OnCurb” (0.276 in/yr) grew faster than “OffsetFrom-

Curb” (0.255 in/yr). Signs of Stewardship in 2015 (steward_15) did not improve mean growth

rates; trees classified with “3or4” signs of stewardship had the slowest (0.258 in/yr) growth rate

compared to more stewardship (“4orMore”) (0.298 in/yr) or less stewardship (“None” (0.275

in/yr) or “1or2” (0.279 in/yr)). Trees with “Harmful” guards in 2015 (guards_15) such as tall

and narrow or guards that allow soil to build up against the trunk [67] had slower mean

growth rates (0.255 in/yr) than “Helpful” (0.271 in/yr), “None” (0.276 in/yr) or “Unsure”

(0.283 in/yr). Trees located by a damaged (“Damage”) sidewalk in 2015 (Sidewalk_15) had

faster mean growth rates (0.281 in/yr) than those trees located by sidewalks with “NoDamage”

(0.271 in/yr). Having a root blocked (“root_blocked” “yes”), trunk altered (“trunk_altered”

“yes”) and branch problems (“branch_problems” “yes”) were all associated with slower mean

growth rates than compared to each “no” (Fig 5). The borough the tree was located in (bor-

ough_15) had a significant impact on growth. The Bronx (0.299 in/yr) and Staten Island

(0.304 in/yr) have the fastest mean growth rates whereas Manhattan (0.240 in/yr) has the slow-

est. Trees located on the “South” side of the street (roadside_location) grew the fastest. Trees

in front of “Single Family” in LandUse grew faster (0.281 in/yr) than “non-Res” (non-Residen-

tial) (0.268 in/yr), “MultiFamily” (0.265 in/yr) and “Open&Rec” (0.252 in/yr).

Using Pearson correlation coefficient, we examined the correlation between continuous

variables on the observed growth rates. Growth rates were negatively correlated with the DBH

in 2005 (“tree_dbh_05”), Built Floor Area Ratio (BuiltFAR; higher number the taller the build-

ing), population density (“pop_density”), and street width (“st_width”) (Table 3). Except for

Fig 3. Diameter at breast height (DBH) versus time for select trees from the different studies to highlight the variety of responses observed. Orange

points are from the NYC Tree censuses and blue points were measured in ground truthing and temporal validation. The color of the best fit lines represents the

points they were fit to. A-C) represent trees that were remeasured in ground truthing. D-F) represent trees that were measured multiple times in temporal

validation of growth rates. The points and darker line represent a typical example tree and the lighter lines show the remainder of the data for each type. (A)

Trees with positive growth between the 2005 and 2015 NYC datasets; representative of the majority of cases. (B) Trees with a DBH decrease of less than -5 in

between the 2005 and 2015 NYC datasets. (C) Trees with a DBH decrease of between 0 and -5 in for 2005 and 2015 NYC datasets. (D) A typical tree that was

monitored annually and has linear growth along with all other samples. (E) The only tree for which we have two NYC Tree census points and annual data

points. It is not clear why only one tree had 2005 data. (F) A tree that was measured annually but did not grow highlighting that zero growth is possible.

https://doi.org/10.1371/journal.pone.0304447.g003

PLOS ONE Controls on urban tree growth

PLOS ONE | https://doi.org/10.1371/journal.pone.0304447 July 11, 2024 10 / 23

https://doi.org/10.1371/journal.pone.0304447.g003
https://doi.org/10.1371/journal.pone.0304447


the r for “tree_dbh_05” (r = -0.373) the other r values were much smaller but still significant

(Table 3).

Community science data

The 2015 NYC Tree census was conducted by three different groups; NYC Parks staff, Trees-

Count paid staff, and volunteers. Only the 2015 dataset denotes who made the measurement;

the sources of measurement data is not available for the 2005 data. In some studies, experts

replicate a fraction of measurements by community scientists to check for accuracy. In the

2015 data, trees were only analyzed once by one group and thus direct comparisons between

experts and community scientists are not possible but with the large dataset it is possible to

compare the overall values. The NYC Parks staff measured 26% of the trees. Mean growth

rates of trees measured by NYC Parks staff (0.279 in/yr) were not significantly different than

trees measured by TreesCount staff (0.277 in/yr), which measured 42% of the trees (Fig 5).

Volunteers measured 32% of the trees and had a significantly lower mean growth rate of 0.270

in/yr (Fig 5). However, volunteer measurements were spatially heterogeneous. Volunteers

measured 76% of the trees in Manhattan which contrasts to only 5% of the trees in Staten

Island measured by volunteers (Fig 6). The spatial heterogeneity indicates that volunteers and

staff most likely measured different species of trees of different sizes in different boroughs with

different growth rates.

Fig 4. Maps of NYC tree data at the ZIP Code level. The large map shows mean growth rates whereas the two insets show the number of trees per km2 and

the mean diameter at breast height (DBH). The data is only for the trees in the NYC Tree Growth dataset. The five boroughs of New York City are labeled and

outlined in thicker black for reference for subsequent maps. The shapefiles are available from the NYC Open Data Portal (https://opendata.cityofnewyork.us/).

https://doi.org/10.1371/journal.pone.0304447.g004
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Fig 5. Forest plot to summarize impact of categorical data (Table 1) on growth rates. The vertical gray line is the overall mean of 0.275 in/yr. Each

horizontal line goes from the 25th to 75th percentile with the point being the mean. The letters on the right are the statistically significant groups as

determined with an ANOVA and a Tukey post-hoc test within that subgroup if there are three or more parameters or a t-test when two parameters.

Significant differences are determined based on p<0.05.

https://doi.org/10.1371/journal.pone.0304447.g005
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Ordinary least squares regression analysis

Given the large number of factors that had significant variations with tree growth (Fig 5), a

multiple linear regression was performed (Fig 7) in order to explore the relative importance of

factors on tree growth. All factors from Fig 5 were included or controlled for in the model. The

results were controlled for biological factors (properties of the tree) and the local urban form

(properties of the area around the tree, and nearby built environment, Table 1, Fig 5). This

includes controlling for tree size (dbh_05) as a surrogate for age since younger trees generally

grow faster and negatively correlates with growth rates (Table 3). Two of the parameters that

were controlled for (Roadside_location and trunk_altered) were not significant, but were still

left in the analysis since they were significant in Fig 5. The Generalized Variance Inflation Fac-

tors (GVIFs) were all less than three indicating minimal collinearity.

Overall, tree species had the biggest effect on growth rates. Silver Linden and Pin Oaks had

largest positive effect on growth rates whereas Norway Maples, Red Maples, and Gingkos had

the smallest negative. The effect between the slowest and fastest species was 0.243 in/yr or 2.43

inches in DBH growth between the decadal surveys (Fig 7). Differences in stewardship had

only a small effect on observed growth rates. Increasing signs of stewardship (steward_15)

were associated with no effect on growth rates and only trees with no sign of stewardship had a

small positive effect of 0.011 in/yr. Again, the presence of tree guards (guards_15) had mixed

results. Having no guards (“None”) (0.014 in/yr) or “Helpful” (0.015 in/yr) both had a positive

effect of increasing growth rates as compared to “Harmful” guards. There were statistical dif-

ferences on growth rates based on who measured the trees; TreesCount Staff had a small

(-0.005 in/yr) but significant negative impact on growth rates whereas volunteers were no dif-

ferent than New York City Park Staff.

Comparing growth to social vulnerability

To determine if the growth of street trees could be a mechanism to help address past injustices

and unequal tree distribution, we examined if growth rates are faster or slower than expected

in neighborhoods of high social vulnerability across NYC. Overall, our results indicate that

street trees are growing at faster than expected rates in areas of high social vulnerability. The

OLS model of tree growth was utilized to determine if tree growth was under- (growing

slower) or over-performing (growing faster) compared to predictions with growth rates aver-

aged at the ZIP Code level (Fig 8). In this comparison the ordinary least squares regression was

performed again but without controlling for borough (borough_15) which was used in the pre-

vious model. This change was made in order to remove this arbitrary spatial correction and

resulted in the Roadside_location (a controlled variable) becoming significant with a small

effect. Middle and southern Manhattan, southern Brooklyn and Southern Staten Island all had

negative residuals and slower than expected growth rates whereas large portions of Brooklyn,

Queens, and Staten Island have higher than expected growth rates (Fig 8). The most vulnerable

populations based on the CDC/ATSDR Social Vulnerability Index (SVI) of the census tract

Table 3. Pearson correlation coefficients. The data is between growth rates from the NYC growth database and con-

tinuous data (Table 1) that may impact growth rates.

Parameter Correlation coefficient p-value

DBH in 2005 (tree_dbh_05) -0.373 <0.001

Built Floor Area Ratio (BuiltFAR) -0.046 <0.001

population density (pop_density) -0.038 <0.001

street width (st_width) -0.011 <0.001

https://doi.org/10.1371/journal.pone.0304447.t003
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where the tree is located 1) are centered in Northern Manhattan, the Bronx, northern Queens

and central Brooklyn (Fig 8). Across New York City, we found a significant positive relation-

ship between SVI and growth rate, such that in areas of higher SVI, growth rates are faster

than predicted (i.e., the residuals increase; Fig 9).

Discussion

Every 10 years New York City (NYC) undertakes the monumental task of inventorying all

street trees. This data has been used to understand ecosystem services in NYC and to plan

more equitable future tree planting to improve the urban landscape [9]. However, from the

time of planting it can take decades before trees reach maturity and their full benefits are real-

ized; reliable estimates of growth rates could be used to help improve planning and design. To

our knowledge street tree growth rates across the whole of NYC have not been previously pub-

lished due to the challenge of aligning individual tree locations (latitudes and longitudes)

across multiple surveys. The database of street tree growth rates presented here includes

126,362 street trees of 59 species. Based on ground truthing and a temporal validation with

annual measurements between 2015–2021, the large number of trees in the growth database

appears to parallel the 2015 Street tree census. Thus, while the database incorporates only 19%

of 2015 street trees—given the methods used to exclude ambiguous individuals and ensure

accurate growth estimates—the dataset appears to capture the overall pattern of NYC street

trees and can be used to explore citywide patterns of growth and the factors influencing growth

rates.

Fig 6. Percentage of trees measured by volunteers, TreesCount paid staff and NYC parks staff for each borough.

https://doi.org/10.1371/journal.pone.0304447.g006
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Across the city, the growth rates varied between -0.5in/year to 1.6in/year (mean growth

rate = 0.275±0.233 in/yr). Our growth rates mirror those estimated in other studies from mod-

els such as iTree with growth rates between 0.2–0.3 in/year [27, 58]. However, in our database,

of the 15 most abundant species in 2015, 10 species had growth rates over 0.3 in/year (Table 1).

Species was the largest predictor of growth rates. For example, Silver Linden had the fastest

average growth rate at 0.510 in/yr. On the other hand, London Planetree, the most abundant

tree species in the growth database and the 2015 TreesCount! Street Tree Census, had the slow-

est growth rate at 0.163 in/yr. However, the London Planetree still had a negative effect on

Fig 7. Ordinary least squares regression of factors controlling growth rate data. The parameters are shown by Effect Estimate on Tree Growth (in/yr). If the

Effect Estimate intersects zero, it is not significant and grayed; if the Effect Estimate is significant at the 0.05 level, it is shown in Black. Analysis includes the 15

most common species in the growth database (shown here and Table 2). All other species were grouped into ‘other’ and used as the reference. The adjusted R2

was 0.252 with a root mean square error (RMSE) of 0.202 in/yr.

https://doi.org/10.1371/journal.pone.0304447.g007
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growth even when controlling for size which was largest mean DBH by species in 2005 sug-

gesting these trees might grow slower than expected as typically London Planetrees are known

to have fast growth rates [68]. Across species, growth rates were higher in trees without root

blockage or problems reported with branches or trunk alteration. Street trees planted on the

South side of streets had slightly, but significantly faster growth rates, which may reflect better

sun exposure, compared to other street orientations but this effect disappeared in the full OLS

model. Finally, trees located in single family residential zones had above average growth rates

whereas those planted in open space had the slowest, which likely reflects older, slower grow-

ing trees located around park and open spaces. Based on the requirements of urban planners,

tree species can now be chosen based on growth characteristics for each species, along with

urban form characteristics, above already present generalizable models. However, further in-

depth modeling is still needed to understand all the factors impacting growth rates in NYC.

Many previous studies have examined survival and mortality rates of street trees [86], but

few examine growth rates. Estimates of turnover and mortality in urban trees varies widely

depending on species, age, and size [69, 70]. One study in NYC found an annual street tree

mortality rate of 4.4%, with higher more variable mortality rates for younger trees [71].

Assuming a 4.4% annual mortality rate (36% mortality over ten years given exponential

Fig 8. Residuals between observed and predicted growth rates averaged by ZIP code. The Predicted growth rates were based on ordinary least squares (OLS)

regression excluding borough. Positive residual values indicate faster than expected growth rates and negative values indicate slower than expected growth

rates. The inset shows the CDC/ATSDR Social Vulnerability Index (SVI) with higher numbers indicating more vulnerable neighborhoods. The 19 ZIP codes

with less than 100 trees and ZIP codes 11224 and 11691 which were heavily flooded during Hurricane Sandy were removed leaving a total of 155 ZIP Codes.

The spatial data are publicly available from the NYC Open Data Portal (https://opendata.cityofnewyork.us/ and Center for Disease Control Agency for Toxic

Substances and Disease Registry Social Vulnerability Index (http://svi.cdc.gov).

https://doi.org/10.1371/journal.pone.0304447.g008
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decay), only 64% of the trees in the 2005 dataset would be present in 2015. The dataset of

growth rates in this paper is significantly larger than other published datasets including the

study from Montreal (~28,000 trees) [46] and databases used for growth estimates that contain

about 20,000 trees [56, 57]. Assuming all trees are resampled (~600,000) at the next street tree

census in 2025, the trees are explicitly located for realignment with the 2015 database, and a

survival of 64% of trees over ten years, this growth dataset should further expand to approxi-

mately 380,000 trees or almost three times the current study. This would be an unprecedented

database to support future street tree planting campaigns.

However, careful attention is needed for planning the next tree census. If the location tech-

niques from the 2015 census are used it should be possible to relocate almost all the tree pits in

2025. An improved online map of the NYC Street Trees already makes it easy to find 2015 cen-

sus data (https://tree-map.nycgovparks.org/tree-map). Furthermore, the data from the 2015

census can be used to predict and ground-truth the 2025 DBH measurements which should be

measured more accurately than to the inch. Field scientists could be asked in real-time through

the app to remeasure a tree if it falls outside predicted growth or to assess and document if

something has changed. This should enable determinations of growth, mortality, removal, or

replacement for all street tree locations and would be an impressive step forward for the NYC

tree census. Finally, the 2025 census should seek to better capture parameters that may be

impacting growth rates [44].

There are numerous other factors that can impact growth, including stewardship of street

trees, soil properties, tree pit size and characteristics, and local idiosyncratic effects like con-

struction and scaffolding around trees [3, 72]. Signs of stewardship and tree guards (short pro-

tective fences around tree pits) have been shown to decrease street tree mortality [71] however

Fig 9. The CDC/ATSDR social vulnerability index (SVI) versus growth rate residuals. The symbols are colored by growth rate residuals to match the y-axis

and the colors on the main map from Fig 8.

https://doi.org/10.1371/journal.pone.0304447.g009
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in this study the effects on growth are small and variable. The majority of trees had no sign of

stewardship and this was associated with a positive effect on growth rates when compared to

trees with stewardship. Furthermore, the absence or presence of a helpful tree guard had the

same positive effect compared to those labeled in 2015 as a “harmful” tree guard. The variable

effects of stewardship here might reflect the limited way in which stewardship was observed

and recorded in the tree census or stewardship might be a secondary factor impacting growth.

The NYC Parks Department is charged with maintaining the ~600,000 street trees, but with

limited budget and capacity relies on local stewards, including residents, civic organizations,

or building superintendents, to care for street trees. Other studies with more in-depth observa-

tional and ethnographic methods have shown the important impacts of stewardship for both

the stewards and the trees [73]. Other tree properties than growth, such as mortality, along

with other ecosystem services, such as connections to nature and feelings about the neighbor-

hood, should guide the presence of guards and stewardship decisions.

Residents and community scientists are critical for undertaking and completing large scale

monitoring projects. These projects would not be feasible without the help of volunteers; how-

ever, it is critical to evaluate and balance community science benefits with accuracy in data col-

lection. In the 2015 NYC Tree Census dataset, volunteers who served as community scientists

measured 32% of the trees. The raw data suggests that the volunteers’ measurements of DBH

indicated slower estimates of growth rates, possibly due to measurements errors, compared to

those taken by NYC staff (Fig 4). However, upon further investigation, it was found that the

volunteers were concentrated in Manhattan, which is the borough with a high density of small,

and slow growing, street trees (Figs 3 and 8). The ordinary least squares regression further sup-

ported the conclusion that the volunteer measurements were as reliable as paid NYC staff, as it

showed no statistical difference in the observed effect between the volunteers and NYC Parks

staff. Interestingly, the paid NYC TreesCount staff had a small but significant negative effect

on growth rates indicating training methods might need to be revisited. This result is consis-

tent with previous studies that shows volunteers routinely measure DBH to within an inch of

experts, but may be less accurate in estimating other parameters [51]. With continued training

of volunteers, the NYC Parks staff should be confident they are obtaining reliable DBH

measurements.

The spatially explicit database highlights that even after controlling for biological factors

and urban form that faster than expected growth rates are occurring in areas of with a higher

Social Vulnerability Index (SVI) (Figs 7 and 8), and thus may serve to improve ecosystem ser-

vice provisioning in those locations. Previous work, including in NYC, has clearly shown that

inequalities exist in ecosystem services across urban environments with lower urban canopy

coverage in low-income, communities of color [26, 74–78]. Street trees are one potential

method for helping to combat this problem but require space for proper tree pits, planting,

care, and time for growth. The Million Trees NYC planting campaign increased the number of

trees in NYC [9], but did not fully address the stated equity goals or needs of underserved

areas. Recent research highlights how the majority of trees were planted in existing open

spaces, which are unequally distributed by race and class, and thus, historical disparities still

persist across NYC [79, 80]. Given the historical unequal distribution of street trees [e.g. see

26, 81, 82, 83], the distribution of faster growing trees may be potential good news and a path

forward for mitigating inequities within NYC. We found the areas of NYC with a higher Social

Vulnerability Index have above average growth rates (Figs 7 & 8). Strategic plantings and opti-

mal choices of tree species may help to lessen distributional inequalities over time. Along with

urban planners, communities can utilize known growth rates across species to aid in making

informed decisions that account for community-based needs to improve their green space [84,

85].
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