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Abstract We present an embedded-hybridizable discontinuous Galerkin finite ele-
ment method for the total pressure formulation of the quasi-static poroelasticity
model. Although the displacement and the Darcy velocity are approximated by
discontinuous piece-wise polynomials, H (div)-conformity of these unknowns is en-
forced by Lagrange multipliers. The semi-discrete problem is shown to be stable
and the fully discrete problem is shown to be well-posed. Additionally, space-time
a priori error estimates are derived, and confirmed by numerical examples, that
show that the proposed discretization is free of volumetric locking.
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1 Introduction

Poroelasticity models are systems of partial differential equation that describe
the physics of deformable porous media saturated by fluids. They were originally
developed for geophysics applications in petroleum engineering but nowadays they
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are also widely used for biomechanical modeling. The first poroelasticity models
were derived by Biot [4l[5]. Since then, mathematical properties and numerical
methods for these models have been widely studied. Here we give a brief literature
review.

Early studies on linear poroelasticity models include well-posedness analysis
and finite element discretizations for quasi-static [44L[43] and dynamic [39[401[49]
models. For quasi-static models with incompressible elastic grains, Murad et al.
[30] observed spurious pressure oscillations of certain finite element discretizations
for small time and studied their asymptotic behavior. Phillips and Wheeler [33]
connected these pressure oscillations to volumetric locking due to incompressibility
of the displacement. They further developed numerical methods in [32[33] coup-
ling mixed methods and discontinuous Galerkin methods that do not show pressure
oscillations. Yi [46L[47.[48] proposed numerical methods coupling mixed and non-
conforming finite elements that are also free of pressure oscillations. An analysis
to address the volumetric locking problem for poroelasticity was first presented
in [26] adopting mixed methods for linear elasticity. Various numerical methods
avoiding this locking problem have since been studied using nonconforming or
stabilized finite elements [273821L6], the total pressure formulation [28[3T}[14],
and exactly divergence-free finite element spaces [221[19]. A non-symmetric interior
penalty discontinuous Galerkin method was numerically shown to be locking free
for small enough penalty parameter in [37].

Discontinuous Galerkin methods are known to be computationally expensive.
A remedy for this was provided by Cockburn et el. [10] by introducing the hybrid-
izable discontinuous Galerkin (HDG) framework for elliptic problems. Indeed, ele-
ment unknowns can be eliminated from the problem resulting in a global problem
for facet unknowns only. The number of globally coupled degrees-of-freedom can
be reduced even further using the embedded discontinuous Galerkin (EDG) frame-
work [II[17]; where the HDG method uses a discontinuous trace approximation,
the EDG method uses a continuous trace approximation. HDG, and related hybrid
high-order (HHO), methods have recently been introduced for the poroelasticity
problem [I525[7]. These discretizations consider the primal bilinear form for linear
elasticity. In contrast, in this paper we adopt the total pressure formulation [28]3T]
and present novel HDG and EDG-HDG methods for the quasi-static poroelasti-
city models. (It is possible to also consider an EDG method for the poroelasticity
model, however, such a discretization is sub-optimal.) The total pressure formula-
tion provides a natural decoupling of the linear elasticity and Darcy equations in
the incompressible limit. Indeed, in this limit our discretizations reduce to the ex-
actly divergence-free HDG and EDG-HDG discretizations of [34[36] for the Stokes
problem and the hybridized formulation of [3] for the Darcy problem. We further
remark that the total pressure formulation has been applied also in the context of
magma/mantle dynamics problems [23\[24] where it was shown to be advantage-
ous in the context of coupled physics problems beyond quasi-static poroelasticity
problems.

We present an analysis of the proposed HDG and EDG-HDG methods in which
we show that the space-time discretizations are well-posed. We further determine
an a priori error estimate for all unknowns that is robust in the incompressible limit
and for arbitrarily small specific storage coefficient. We remark that the stand-
ard approach of analyzing time-dependent problems is to use discrete Gronwall
inequalities. However, this results in error bounds with a coefficient that grows
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exponentially in time. We present an alternative approach that avoids this expo-
nential term.

The remainder of this paper is organized as follows. We present Biot’s consol-
idation model in Section[2l The HDG and EDG-HDG methods for Biot’s model is
presented in Section [3] together with a stability proof for the semi-discrete prob-
lem. Well-posedness and a priori error estimates for the fully discrete problem are
shown in Section [4] The analysis is verified by numerical examples in Section
and conclusions are drawn in Section [6l

2 Biot’s consolidation model

To introduce Biot’s consolidation model, let us introduce the following nota-
tion. Let 2 C Rd, d = 2,3 be a bounded polygonal domain with a boundary
partitioned as 32 = 'pUT'r and 82 = I'p U 'y, where I'e N I['p = 0, |I'p| > 0,
I'bNIr =0, and |I'p| > 0. We denote the unit outward normal to 92 by n and
we denote by I = (0,7] the time interval of interest.

Let f: 2 x I — R? be a given body force and let ¢ : £2 x I — R be a given
source/sink term. Furthermore, let k > 0 be a scalar constant that represents
the permeability of the porous media, ¢y > 0 the specific storage coefficient, and
0 < a < 1 the Biot—Willis constant. Denoting Young’s modulus of elasticity by F
and Poisson’s ratio by v, in the case of plane strain, the Lamé constants are given
by A=Ev/((1+v)(1—2v))and p= E/(2(1 +v)).

Biot’s consolidation model describes a system of equations for the displacement
of the porous media, v : £2x I — R?, and the pore pressure of the fluid p : 2xI —
R. Denoting by o = 2ue(u) + AV - ul — apl the total Cauchy stress, where I is the
d X d-dimensional identity matrix, this model is given by

—V.o=f, Oi(cop+aV -u) — V- (kVp) =g, in 2x1. (2.1)
Following [28], by introducing the total pressure pr := —AV-u+ap and the Darcy
velocity z := —kVp, we may write Biot’s consolidation model also as:

-V - 2ue(u) +Vpr = f in 2x1, (2.2a)
—V-u—X""(pr —ap) =0 in 2x1, (2.2b)

Ot (cop + A a(ap —pr))+V-z=g in 2x1, (2.2¢)
K '24+Vp=0 in 2x 1, (2.2d)

which will be the formulation studied in this article. Noting that o = 2ue(u) —prl,
we close the model by imposing the following boundary and initial conditions:

u=0 onlIp x I, (2.3a)
p=20 on I'p x I, (2.3b)
z-n=20 on I'r x I, (2.3¢)
on=20 on I'p x I, (2.3d)
p(z,0) = po(x) in £2, (2.3¢)
u(x,0) = uo(x) in £2. (2.3f)
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In the remainder of this article we assume that co, ,u_l, k, and p are bounded
above by a constant C'. We furthermore assume that there exists a vi such that
0 <v. <v<0.5on 2. As a consequence, Cyp < X\ with Cy = 20" /(1 — 2v™).

3 The embedded-hybridizable discontinuous Galerkin method
3.1 Notation

On a Lipschitz domain D in R?, we denote by WP (D) the usual Sobolev spaces
for ! > 0and 1 < p < oo (see, for example, [1]). When p = 2, we define on H'(D) =
W'2(D) the norm Il; p and semi-norm |-, ,. We note that L*(D) = H°(D) is
the Lebesque space of square integrable functions with norm |||, = |||, p and
inner product (-,-)p. Vector-valued function spaces will be denoted by [L? (D)]d
and [H'(D)]*
<.’ '>S-

Let X be a Banach space and J = (0,7], T > 0 a time interval. We denote

by C’O(J; X)) the space of continuous functions f : J — X, which is equipped with
the norm || ([ o7, x) = sup,e7 [/ ()] x- By C*(J; X), k > 0, we denote the space

of continuous functions f : J — X such that 8 f € C°(J,X) for 1 < i < k. For
1 < p < oo, WEP(J; X) is defined to be the closure of C*(J; X) with respect to
the norm

. The L*-inner product over a surface S C R?~! will be denoted by

T k ]
1 lmacr = [ 2 10RO
=0

We note that for k =0, W*P(J; X) = LP(J; X).

Let T; be a family of shape-regular simplicial triangulations of the domain
2. We will denote the diameter of an element K € T by hgk, the meshsize by
h = maxgeT;, hi, and the sets of interior facets and facets that lie on I'p, I'p,
I'r, and I'r by, respectively, ]-',il, ]—',?, }',1;, ]-',If, and ]-'g. The set of all facets is
denoted by Fj and their union is denoted by I. On the boundary of an element
K, we denote by nx the outward unit normal vector, although, where no confusion
will occur we drop the subscript K. On the mesh and skeleton we define the inner
products

(D)= D (GP)k, ($¥)or = D ($,¥)ox, if ¢, are scalar,
KeTy, KeTy,
d d

()0 = Z(¢i,¢i)97 (9, V)oT;, == Z<¢i,’l/)i>a7’h, if ¢, 1) are vector-valued.
=1 =1

The norms induced by these inner products are denoted by |-l and |||y, ,
respectively.

Sets of polynomials of degree not larger than [ > 0 defined on, respectively,
an element K € T, and a facet F' € Fj, will be denoted by P;(K) and P;(F). As
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approximation spaces we then use:

Vi i= {on € [E(Q)]": on € [Pu(K)]*, ¥ K € Ta}
V= {on € [L2(T0)" : on € Pe(F)) ¥V F € Fo, 5n =0o0n I'p},
Qn={an € L*(2): qn €Pp1(K), ¥ K € Tr}, (3.1)
Qp, = {a, € L*(Iv) : @, €Px(F)V F € Fa},
Qh = {t, € Qy ¥y =0on I'n}.
Element and facet function pairs will be denoted by boldface, for example,
v = (h,0r) € Ve =V x Vi, @y, = (4n,0y) € Q) 1= Qn X Q,
Py, = (Yn,y,) € Q) = Qn x Q)
and it will also be useful to define X, := V', x Q;, x V, x Qg.

Remark 3.1 The HDG method seeks an approximation in X, with Vi, Vi, Qn,
Q) and Q?l defined in eq. . If V}, is replaced by V;, N C°(Ip) then we obtain
the EDG-HDG method. The analysis in this paper holds for both the HDG and
EDG-HDG methods. For notational purposes, in the analysis, X, and V' will
refer both to the HDG and EDG-HDG spaces.

For the analysis of the HDG and EDG-HDG methods we assume that the exact
solution is such that:
ut) €V = {ve [H' ()" : vl =0} N [H2(2)",
pr(t) € Q= H' (%),
2(t) e Z:={ve H'(R)

p(t) € Q" :={ge H'(2) : qlr, =0 on I'p} N H*(2).

]d:v~n:OonFF},

Denoting by V, Q, Z, and QO the trace spaces of, respectively, V, @, Z, and Q°
to the mesh skeleton, we introduce the extended spaces

V(h):=V,+V xV, Z(h) = Vi + Z,
Q(h) = Q, +QxQ, Q"(h) =Qh +Q° xQ".
Norms on the extended spaces V' (h), Q(h), and Q°(h) are defined as:
I3 = Nle@lie + > ki v = 3l3x Yo € V(h),
KET,
oI5 = llolls + D Aol x, Yo € V(h),
KeTy,
lanlll = llanle + >~ Ao llanllf va,, € Q(h).
KeT,

To conclude this section, we remark that C' > 0 will denote a constant inde-
pendent of h and the model parameters.
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3.2 The semi-discrete problem

In this section, we present the semi-discrete problem and provide an energy es-
timate for this discretization. The fully-discrete problem is presented in Section[3.3]
which is analysed in Section [4]

The semi-discrete HDG method for Biot’s consolidation model egs. and
is given by: Find (up, z1) € C°(I; V}, x V3,) and (Pr,n,Pp) € CHI; @, x QY) such
that for all (v, @y, wh, @) € Vi X Q) X Vi x QY

an(up,vp) + bn(Vn, prp) = (f, vh)ﬂ , (3.2a)
bu(un, qrp) — (A" (pra — apn), qrn) , =0, (3.2b)
(n_lzh, wy) , + bn((wn,0),p,) =0, (3.2¢)
(8¢ (copr + A" (apn — prh)) vqn) o — bn((21,0),q1,) = (9,qn) ;> (3.2d)
where
ap(u,v) :=2ue(u),e(v))o + Z <Zh‘%(u —1),v — V)oK (3.3a)
KeT
— ue(u)n, v — v)or — 2pe(v)n, u — w)oT,
br(v,q) === (¢, V-v)e + (7, (v =) -nor. (3.3b)

To analyze the HDG and EDG-HDG methods, let us recall some properties of
the bilinear forms ap and by,. It was shown in [34) Lemma 4.2] and [9, Lemma 2]
that there exist constants C' and 8o > 0 such that for 8 > fo,

an(vn,vn) > Cullonll;  Yon € Vi (3.4)
Additionally, ap, satisfies the following continuity result [9, Lemma 3]:
an(u,v) < Cpllull llvll, — Yu,v e V(h). (3.5)

The bilinear form by, satisfies the following stability results:

b
inf sup _n(vn,an) >C, (3.6a)
0,€Qn 0#v, eV, [valll, llnlll,

inf  sup bn((wn, 0), ar) > C, (3.6b)
0,€Q5, 0£w,evy [wnllg llgnlll,

where the first inequality was shown in [35] Lemma 1] and [36, Lemma 8] and the
second is proven in Appendix [A] Continuity of the bilinear form b, was established
in [34]:

bn (v, @)| < Clllv[ll,lllgll, Vv e V(h),qeQh) (3.7)

Lemma 3.1 (Consistency) Let (u,pr,z,p) be a solution to egs. (2.2) and (2.3)
and let w, pp, and p be the traces of, respectively, u, pr, and p on the mesh skeleton.

Then (u, pr, z,p) satisfies eq. (3.2).

Proof The proof is standard and follows by integration by parts, smoothness of
the solution to egs. (2.2) and (2.3)), single-valuedness of v5, and g, on element
boundaries, and using that v, =0 on I'p and g, =0 on I'p. a



Analysis of EDG-HDG for Biot 7

The following theorem now shows energy stability of the semi-discrete problem.
Theorem 3.1 (Stability) Suppose that (wn,pry,, zn,py) € CH(I; X1,) is a solu-
tion to eq. (3.2) with f € WH(I; L*(2)) and g € L*(I; L*(R2)). Let X(t) > 0 and
Y (t) > 0 be defined by:

X(t)* =an(un(t), un(t))

+ (A (pra(t) — apu(t)) ,pra(t) — apn (1)), + (copn(t), pr(t))

V() = (k" 2n(t), 20 (1))

Then, there exists C > 0, independent of t > 0, such that

(nax, 1£(s)ll ¢

i [o@llgas+ s ([ gt as) : | e

X(t) < X(0) +c{,r1/2

and

([ rer ds); < 0[xO+ w2 as, 176)

0<s<t

w2 [0 laas+n 7 ([ lstol dsﬂ. (3.8b)

Proof We first note that by the inf-sup condition eq. (3.6b)), eq. (3.2¢), and the
Cauchy—Schwarz inequality,

th(t)”n <C sup |br ((wr, 0), py,)|
0Fwh €V lwn |l (3.9)
1 .
<C sup [e 2, wn)] <Cr @)l -
ozwnevh  |lwnllg

Now, in eqgs. (3.2al), 3 2c and (3.2d) set (vn,wn,q;) = (Otun, 2n,Py,). Take the

time derivative of eq. and set qpp, = —prp- Adding the resulting equations
we find: L4
mxw Y () = (F(1), dun(t) o + (900, pu (1)) (3.10)

Integrating eq. ( in time from 0 to ¢ results in

%(X(t)2 _ X(O)Q) + /Ot Y(5)2 ds = /Ot [(f(s),@tuh(s))g + (g(s),ph(s))g] ds

Integration by parts, Young’s inequality and eq. imply
t
LX) = X(0)) + /O Y (s)* ds < (f(1), un(t)) o = (£(0),un(0))g
t
- [ @ure).un(s)) g as

t 1 t
+c/ ||g(s)||?2ds—|—f/ Y (s)? ds
0 2 (0]
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Coercivity of ap, eq. (3.4) and a discrete Korn’s inequality imply that
lun(®)ll < Cu™ " 2an (un, un)'? < Cp™ X (1),

Therefore, by the Cauchy-Schwarz inequality, for any ¢t > 0,

X(t)? +/O Y(s)?ds <X(0)* + Cp~"/? (Hf(t)HQ X&)+ £0)] X(O))

+C/fl/2/0 ||5tf(8)HQX(S)dS+C/o o)l o=
(3.11)

To obtain eq. (3.8a]), we may assume, without loss of generality, that

orgf%(tX(s) = X(¢t) > 0. (3.12)

Note that if eq. (3.12]) does not hold, then there exists a t s such that maxo<s<; X(s) =

X (tar) for 0 < tpr < t. The estimate eq. (3.8a]) for X (t57) then implies eq. (3.8al)
for X (t). From eqs. (3.11)) and (3.12]), we then find

X(t) —l—/o Y (s)"ds
< (XO) + O 2 (Ol + 17Ol + [ 1050 X0 (313

t
+C [ late) s

Define a(t) := (C fot ||g(s)||?2 ds)l/2 > 0. If a(t) < X(t), dividing eq. 1) by
X (t) implies

t
X () < X0+ Cu 2 (1@l + 1£0) o +/0 10:f(s)ll o ds) + ex(t).
Note that this inequality holds trivially if X (¢) < a(t). Proceeding, we find

X() < X(0) + O (2 max, 1£(s) o + / 1007 ($)]ly s ) + a()
1/2

= X0)+ 0 (2 g 15+ [ 1076 0s) +0 ([ as)lEas)

so that eq. (3.8a]) follows. Equation ([3.8b]) follows by combining eq. (3.8a)) and
eq. (3.13). O
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3.3 The fully discrete problem

To define the fully discrete scheme, let {t"},., . be a uniform partition of
I and let At > 0 be the corresponding time step. We will denote the value of
a function f(t) at t = t" by f* := f(t"). For a sequence {f"}, -, def" =

P i _f "' Jefines a first order difference operator. Note that we use the superscript
n to denote the time level. This is not to be confused with the normal vector
n. Using Backward Euler time stepping, the fully discrete problem reads: Find
(quLl,pgiZl, £+1,p2+1) € Xy, with n > 0, such that

an(u "Hv n) + br(vn, P ) = (" o) g (3.14a)
bn(up ™ qr) + A7 (app T = it arn) , = 0, (3.14b)
(k712 wa) o + bn((wn, 0), PR ) =0, (3.14c)
A ((copp ™ an)a + A app ™ — it t agn) o) — ba((217,0),q,),  (3.14d)

= 4; ((coph, an)2 + X" (aph — Prn, aan)e) + (9" an) o »
for all (vh, qrp, wh,qy) € X1 We first show that eq. (3.14]) is well-posed.
Theorem 3.2 There exists a unique solution to eq. (3.14)).

Proof 1t is sufficient to show that if the data is equal to zero then the solution is
zero. As such, suppose that f"™ =0, g"™ = 0, p7, = 0, and p} = 0. Then,
setting vy, = uZH, qrn = —pTTltl, wp, = Atz,tf“, and q;, = Atp’”'l in eq. (3.14)
and adding the equations, we obtain:

an(up ™ wn ™) + co o I + AT e T = pREM I + 57 At = 0.

Coercivity of ay, eq. , positivity of k and A, and nonnegativity of co directly
imply that uZJrl = 0 and zlfrl = 0. Substituting u;”l = 0 in eq. (3.14a)),
p’%}tl = 0 follows from the inf-sup condition eq. . This then implies p; "~ =0
since a, A > 0.

Using a BDM local lifting of the normal trace [12 Proposition 2.10], there exists
Wy, € Vi, such that (wp, - n, pr ey, = ||p"+1||87_ Setting 2! = 0, pp Tt =0

and choosing wy = wp in eq. 1D we obtain pZ'H = 0. This completes the
proof. a

Let us also note that the fully-discrete scheme eq. results in divergence-
conforming solutions for the displacement wj, and velocity zj. To see this, set
vp, =0, q, =0,w, =0,and ¢grp, = 0in eq. and note that since uj,-n € Py (F)
and uy =0 on I'p,

[un -n] =0, Vr € F, VF € F\Fr, (3.15a)
up -n=up - n, Ve e F, VFe&Fr. (3.15b)

Similarly, by setting vy, = 0, g1, = 0, wp = 0, and g, = 0 in eq. (3.2), and noting
that zj, - n € Py(F), we find that

[2h -n] =0, VxeF, VFe&F\Fp. (3.16)
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4 A priori error estimates

To facilitate the a priori error analysis, we introduce various interpolation

operators. First, let ITy

Iz — vzl < Chi |2l g, 1<C<k+1
The elliptic interpolation operator, I} := (IIgM, I13') - [Hl(.Q)]d
defined by:

an (T u, v1) = an((u, uw), vy), Yoy, € V.

: [Hl(Q)]d — V4 be the BDM interpolation operator [8,
Section II1.3], [18, Lemma 7] with the following interpolation estimate:

(4.1)

—)Vh is

Standard a priori error estimate theory for second order elliptic equations imply

an(u — O u,u — TP w)? < Cpt?Ri ull, g

1<l<k+1.

(4.2)

By Ilg, I1g, and HQo we denote the L?-projections onto, respectively, @ and

the trace spaces Qh and Qh Given the interpolation/projection operators, the
numerical initial data is set by imposing the interpolation/projection of continuous

initial data as follows:

(o, 1

HV u(O)), (HQpTh(O)v ﬁQpTh(O))v HVZ(O)v (Han(O), ﬁan(O)))'

(4.3)

In the error analysis it will be convenient to split the error into approximation

and interpolation errors:

wahzq{)*ef)a W =u,pr,z,p,
£\ro*5h:é§*é?, £ = u,pr,p,
where
ei—u—HeH el =y — MM, el =z—1Iyz,
L =p—Igp, ep =pn — llgp, €£T =pr — lgpr,

and where

éizu\po H?/Hu éZzﬂh—fT\e/nu, = p|ro — Hgop, éng
ey, =prlro — Hopr, €5, =Dry — Hopr.

Following the convention introduced earlier in this paper, we use boldface notation

h
€z = Zh — Hvza

h
epr = prh — HgpT,

for element/facet error pairs, i.e., eé = (eé, éé) and e? = (e’g, éé’) for £ = u, pr, p.

It will also be useful to introduce the following error estimates: let i be a
regular enough function defined on [0,T] x D, for some domain D C R%, then, as

a consequence of Taylor’s theorem (see Appendix ,

> Atf|owy™
m=1

n
I,
At deey™
m=1

—di™[Jo,p < At||0ee|| L1 (1;22(DY) >

lo,p < CRY|O| L1 (1111 (DY)

’l/] =D, pPT-

(4.5a)

(4.5b)

QoP,
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Lemma 4.1 Let {A;}i,{Bi}i, {E:i}i, and {D;}; be nonnegative sequences. Sup-
pose these sequences satisfy

Ai+i83§A%+iEiAi+iDi, (4.6)
i=0 i=1 i=0

for alln > 0. Then for anyn > 0,

" 1/2

An < Ao + Xn: Ei + (Z Di) , (4.7a)
(Z BE) <cC <A0 +> B+ (Z Di) ) , (4.7b)
i=0 =1 =0

with C' > 0 independent of n.

Proof First, note that eq. (4.6) and eq. (4.7a)) directly imply eq. (4.7b)). It is there-
fore sufficient to prove eq. (4.7a)). Similar to the assumption made in the proof of
Theorem we assume without loss of generality that 0 < A, = maxgo<i<n As.

If A, < (Z?:o Di)l/Q, then eq. l| is satisfied trivially. On the other hand, if
An > (X0, Di)1/2, then eq. |D implies

n

Ai+§n:B? sAoAnJrAan:EiJFA"(ZD")W'

i=0 i=0 i=0
The result now follows by dividing by A,. a

Before addressing the main result (Theorem [4.1)) of this section, we first de-
termine the error equation.

Lemma 4.2 (Error equation) Suppose that {(u},ppy, 21, Ph) n>1 S the solu-
tion of (3.14) with the numerical initial data (4.3). The approzimation and inter-
polation errors satisfy

an(el™ ™ vn) + b (vn, e )

+ bh(dteﬁ’nH, qary) + >\71(dt(0“32’7wrl - e’;’TnH), agn + qrn) o

+ Hil(eg,n+17 wh)Q - bh((eizl”ki»la O)a qh)

+ bi((wn, 0), ep" )2 + (codeer™ ™ qn) 2
=by(deer " qpy) + 87T wn) o + (co(@p" T — diedlgp™ ), an) e

A (@™ = deIop™ ) — (Oepitt — diIlgpyt), agn) o,

fOT’ any (’Uhath7wh7qh) S Xh

Proof By Lemma [3.1] we can substitute (u"+17p%+1,z"+17p"+1), the solution
ti

of egs. and (2.3) evaluated at t = t" 1 into eq. (3.2). Then, subtracting
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eq. (3.14), applying d¢ to the second equation of the resulting set of equations,
and adding all the equations, we obtain using eq. (4.4):

h,n+1 h, n+1)

an(ey" ", vn) + bu(vn, ey
+bn(deen ™ qry) + A (de(aep ™ = e, agn + grn) o
+ 7™ wn) o = ba((e2 77, 0), q)
+ bn((wr, 0), e;f "o + (codtep’ oan)e
N S
+ bn (deel™ ™ qpp) + A7 (dy (cvel’""'1 - eZI,’Tn+1), aqn + qrh) o
+ N el wn) o — br((el™1,0),q,)
+ br((wn, 0), In+1)+(00(3tp”+ —dtUQp ") an)e

AN @(@p" T = deTTop™™) — (O™ — diTlopEt), agn)o.

—ah(e

The result follows by noting that: as (e}, v;,) = 0 by definition of ITY; by, (v, e{,;”l)
br((wp,0), e ) = 0 because Il and IIg are L? projections into Q) and
Q,,, respectively, and V - Vi, = Qun; br((eL™71,0),q,) = 0 by the commut-
ing property of the BDM interpolation operator I[IoV -v = V - IIyv for v €
[Hl(Q)] the H(div)-conformity of el %! and the boundary conditions on I'r;
and A7 (di (el ™ — ") agn + grr) 2 = 0 because Il is the L-projection
into Qp. a

We are now ready to prove an a priori error estimate for the HDG and EDG-
HDG methods eq. (3.14).

Theorem 4.1 Let (u,pr,z,p) be a solution to egs. and on the time
interval I = (0,T) and let 4, pr, and p be the traces of, respectively, u, pr, and
p on the mesh skeleton. Let (uy,,pr,, zn,Pn) € Xp be the solution to eq. .
Suppose the numerical initial data is imposed according to eq. . The following
error estimates hold:

o/ ? ™ = phllg + A2 la(™ = pR) — (0F — PEn)llg
n 1/2
et = wpl, + 62 (YA - Fl) < CiAt+ Con!, (4.8a)
=1
p 2 — P, < C1At+ Csh!, (4.8D)
where

C1 =Cmax {cg/*> X"} I, prllwan 1,202y -

Cs :C(u1/2 N/l e, Ay T 12 1/2|

+max {c 2, A} Ip ozl o, () ),

|Z||00(1;HI(Q))

Cs =C (' 2 10¢ull L1 (1 mries (2 +max {eg/%, /2

+ Hfl/QT

} ||p7pT||W1>1(I;H’(.Q))

1/2||ZHC'0(I;H1(Q)))-
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h,n+1 h,n+1 eh n+1

Proof Choose vj, = diel" 1, th = —ep' T, wy =€y’ ,and g, = in
the error equation in Lemma [4.2] Then,
ah(ez,n—i-l dy h,n+1) 4 —1(eh n+1 h,n+1)Q
+ (codteh mtl oh "+1) + A" (dt(aeg mtl eZ’T"+1), aeg’n"'l eh "+1)Q
__ bh(dtel n+1, ZTn+1) Tk 1( I,n+1’eg,n+1)n
+ (co(@ep™ ! = diTTgp™ ™), ey " g

AT (@™ = dedgp™ ) — (BT — delIgpy), aep ™ g

Using a(a —b) = %(a2 +(b—a)® —b?) > %(a2 — b?) and multiplying both sides of
the resulting inequality by At, we arrive at

-1
co hont12 B2 A hontl  hyntl hyn
Z (lep™ % = lep™17) + “5= (laep ™ = b B = llaep™ = e 3
1 _
+ S an(el™ el —an(el el™) + 1 Al
< — Atbh(dtei’""'l, e;f’Tn+1) + Am_l(ei’m'l, eg’""'l)g

+ At(co(atpn+1 — dtHQp"+1), eZ’"+1)Q
+ AT AL (a(3p™ T = didTgp™ ) — (DTt — deITgpitt), e ™ g
In+1 +In+1 +I§L+1 +IZ+1~

(4.9)
We define
Af = %Oueg 2+ LHae —eprlle + lah(eu e,
B = %Atne?in%,
so that eq. can be written as
A2 +2B2 < A2 4Tttt (4.10)

We proceed by bounding I3, I3, I, and I%, starting with I7.
Restricting the error equation in Lemma for vy, with general index i, we
find the error equation

ah(eZ’i,vh) =+ bh(vme;”’Ti) =0 VYo, € V.

By eq. -, the above equality, eq. ., the equivalence between [|-|||, and
Il 5% eq. (5.5)], and eq. (3.4),
) by (v h,i —a hyi g
h h h» h s Uh
Cllelill, < sup  mcor) g, Zonlentvn)
ormv, Tonll,  ormeve  lloall, (4.11)

; 1/2
< Culllel’|ll, < Cu'’? (an(el’ el™)) ",

implying that
—1/2y _h,i
w2 llepll, < CAs (4.12)
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We may now bound I} using eq. 1} and eq. 1}

|y < CAt 2| dves ], A
‘ (4.13)
A bound for I3 follows from the Cauchy—Schwarz and Young’s inequalities:

I} < Atlby(deel)’, en?)| < CAt||deel’

i
Il lllep;|

-1
o , Lk ,
I < w7 At aller e < =5 Atller|[E + BY.

Using the Cauchy—Schwarz and triangle inequalities, we bound I3 as follows:

1§ < cot|0rp' = diTop'alle} |
< coAt([|0wp’ — dip'll @ + lldeey [l 2) lep Il
< (2c0) 2 At(|0ip — dip'[l 2 + diel ]| 2) A

To estimate I}, we first derive an auxiliary result. By the assumption that Chp < A

(see Section [2)),
Aa?leptE < 247! (llael = epiillE) + 207 e
<27 (llacy = ebillI7) +2(Ce) " llep 1%

Combining this estimate with eq. we obtain:
A2l o < C A (4.14)
The Cauchy—Schwarz and triangle inequalities, together with eq. now imply
I < X 'aAt|a(@p' — didlgp') — (9 — dillgpr)|elley ' llo
<XV Ao’ - 'l + alldiey o + 10wk — dwllo + dieyll o) A
If we define

B =Cp' 2 At||ldrel " ||, + (2c0)'? At([|0wp" — dep'll 2 + lldeey || 2)
+ C/\_1/2At(oz||8tpi — dip’l| + o drel’

).

@ + 180’ — depr|| @ + ||deen)

1 _
D; :%Atnegﬂné,
we find, using eq. (4.10)), that
(A%41 — AY) + By < EBig1Aip1 + Diga. (4.15)

Summing now for i = 0 to ¢ = n — 1, and using Ap = 0, we obtain, after shifting
indices and using Do > 0 and Bg = 0,

Ai+zn:Bf- < zn:EjAj+2n:Dj. (4.16)
j=1 j=1 j=1
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Then, by Lemma we obtain

+ (zn:B?)m <C Zn:E + (zn:Di)l/2 : (4.17)
=1 =1 =1

To prove eq. 1} we therefore need to estimate ;" ; E; and (3°7 4 D)2,
By egs. (3.4) and (4.2)), we note that

1/2AtZH|dte ||| < CAtZ(ah dteu ,dteI z))1/2

=1 =1

n
< CcAy'? Zhl ldeu'lliq, 0 < O:ul/2hl||atu||L1(I;Hl+1(Q)) )

=1

where we used Atdsu® = J ::,1 Oru(s)ds for the last inequality. Using this estimate,

together with egs. (4.5a)) and (4.5b)), we find:

ZEFCZ{ V2 At deen I, + (2c0)* At(|0ep” — dip'lle + [ldrey )
= i=1

+ AT 1/2At(a|\8tp —dip'lle + allde,”

lle + 18pr — diprlle + ldiepy |

)

<Cp'’*n’ 10ewll L1 (7, 27141 2y

+ C'max {01/27 1/2} (At [|Otp, attpT”Ll(I;Lz(Q)) + h! [|9¢p, atpT”Ll(I;Hl(J’Z))) :
(4.18)
Next, by eq. (1)),
n n Fdil
-1 21
D= 30 5D Al < On (AR S () oy
i=1 i=1 i=1 (4.19)

< CrTITR |2 G0 (1,01 02y

where in the last inequality nAt < T' is used. Combining eq. (4.17) with egs. (4.18)
and (4.19) and the coercivity of ap eq. (3.4)), we find:

1/2

1/2 ”

_1/2 h,n 1/2 . h, —1/2 - hyij 2
bl + AT llaep™ = el + w2l I, + 57 (30 At el )

=1
<Ccp’?n! 0sull L1 (1,111 (2

+ C' max {c1/2, 1/2} (At |O¢ep, 8ttpT||L1([;L2(Q)) +h! [|9ep, atpTHLl(l;Hl(Q)))
+ Cr™HPTM 2R llzllcor;mt 0y
<c1 At + Czhl

(4.20)
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where

c1 =C'max {01/27 _1/2} [|Oeep, 6ttpT||L1(I;L2(Q))

<C max {01/2, _1/2} llp, pr |l yyas (L2 (R))
ca =C ("0t o (g () + max {2 A2 10w, 0o | o (11 )

+r7YAT 1/2HZ||CO(1;Hl(n)))-

Next, by eq. (4.4]), the triangle inequality, and the approximation error eq. -,

1/2
P lap™ = pp) — @0F — Pl g + p' 2 lu — upll,
1/2

— i in2
R (ZAtHz —zh||9)
=1
n 1/2

_ 2 I,
V2 Jlaey™ = eplg + w2k, + (23 D)

a2 Ip™ = il + A7

<ct"* leb™ o + A
1=1
—|—C1At+02hl.
(4.21)
Note that
1/2 n
co'? ||e "I, < Ceg 2R I l,.qz »
A2 laey™ = epltlly < CATVERN (9™ o + IPF] ),
l
12 el™ M, < Cut 2R u |y g -

When combined with eqgs. (4.19)) and (4.21]),

2 a(p™ = pp) = 0F — Pl o + 13l = urll,

1/2
SR (A A G) S A (et e,
1=1

o Ip" = il + A

(4.22)

where

_ 1/2 —1/2p1/2
”anzﬂ + A l/g(Hpn”zﬂ + ||pTTL“HzQ) + / ||un||z+1,g +r72TY (B3 HCO(I Hl(n))>
~1/2p1/2

c3 =C (cé/2

=C (e + A7) I o+ A7 WPl + 172 [ g, + 5 I#llcogriangan ) -

(4.23)
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Let us have a closer look at ca+c3. Using the Sobolev embedding W*4(I; H(12)) —
Co(I; H'(2)) for (s,q) = (1,1) and (s,q) = (2,1),

c2 +c3 SC(/‘I/Z {Hatu”Ll(I;HHl(m) + HunHl+1,Q} + ”71/2T1/2||Z||C°(I;H’<9))
1/2 y—
+ max {Co/ s A 1/2} {||8tp, atpT”Ll(I;Hl(Q)) + ||pn||z79 + \\p?lll,g})

—1/2

<C (M2 {l0vull s 1001 )y + 1l oo o} + 57 2T 22l oo

1/2 y—
+max{co/ ' A 1/2}{”atp?atpT”Ll(I;Hl(Q))+ ||p:pT||C’0(I;Hl(Q))})

~1/2p1/2

SC(/,LI/Z ||uHW1'1(I;HH’1(Q)) + kK ||Z||CO(I;HL(~Q))

1/2 —
-I—max{co/ ,>\ 1/2} ”pva”WlJ([;Hz(n)) ),

proving eq. (4.83]

Finally, eq. 14‘.8bi follows from eq. (4.4)) and the triangle inequality, eq. (4.12]),
eq. (4.20), and usual interpolation estimates for the L?-projection:

—1/2 n n —1/2 I.n
n2Np% = Pallly < 72 llenlll, + CAs

< caAt+ (Cu_l/Q Pl + c2) h! (4.24)
< c1 At + (lel/2 Iprllcor, () + c2) 0!

Let us have a closer look at the constant in front of the second term:

CN71/2 ||PT||CO(1,HI(Q)) + c2
<O 2110vull g1 (15111 () + max Lg% A2 100p, pr | 11 110022
+ 572 T2 2 ooy + O Iprllcogr a2y
SC(ul/Q||8tu||L1(1;Hz+1(Q)) + max {c5/ %, u~ 1%} I, prllw i (.m0
+ “_I/QTI/Q||Z||CO(1;H1(Q)))7

where in the last step we used that C*A™1/2 < 1}/, This proves eq. l) a

We end this section by noting that the estimates in Theorem [4.1] for the dis-
placement, Darcy velocity, and total pressure are unconditionally robust in the
incompressible limit ¢co — 0 and A — oo.

5 Numerical examples

We now validate our theoretical analysis. As stated previously in remark
the analysis in this paper holds both for HDG and EDG-HDG. As such, both
methods are implemented using the Netgen/NGSolve finite element library [41]
42]. Numerical results are compared to analytical solutions and some benchmark
problems.
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5.1 Convergence rates for a static problem

We consider a test case proposed in [31, Example 1]. Consider the static Biot

problem eq. (2.2)) on {2 where eq. (2.2¢) is replaced by
cop+ A talap—pr)+V-z=g in . (5.1)

We consider a domain {2 with four curved boundaries parametrized as

I ={wel01]: z1 =w+ycos(rw) sin(mw), z2 = — cos(mw) sin(rw)} ,
I ={we0,1]: 21 =1+ vcos(mw) sin(rw), z2 = w — 7y cos(rw) sin(rw)}
Iz ={wel,0]: z1 =w+ycos(nw)sin(mw), z2 =1 — 7 cos(rw) sin(mw)} ,
I'y={we1,0]: z1 =~cos(mw)sin(rw), z2 =w — v cos(mw) sin(rw)},

with v = —0.08. We then define I'p = [1 UI3Uly, ['p =11UI%, I'r = 1%, and
I'r = I3 U I's. The solution to the Biot problem is taken as

sin(rz1) cos(mxe) 4+ 3 /(2))

— cos(mx1) sin(mx2) + x3/(2\) | p = bsin(mz1) sin(wx2). (5.2)

u=a

This solution eq. is used to set the body force f, the source/sink term g,
and inhomogeneous boundary conditions. As parameters we set a = 104, b = 7,
k=107, @ = 0.1 and ¢g = 107°. We consider both mild incompressibility
(v = 0.4) and quasi-incompressibility (v = 0.49999) and consider two values for
E, namely E = 10* and E = 1. Furthermore, we consider the rates of convergence
for the lowest order (k = 1) and a higher order (k = 3) approximation (with k the
polynomial approximation in eq. )

Theorem does not present an estimate in the L?-norm for the displacement
and only a suboptimal estimate for the Darcy velocity. Nevertheless, since our main
objective here is to show the robustness of the discretization in the incompressible
limit, we present in Tables [5.1] and [5.2] for the HDG and EDG-HDG schemes,
respectively, the errors and rates of convergence of all unknowns in the L2-norm.
Let us first observe that the velocity and displacement converge at rate k + 1 and
that the pressures converge at rate k. These are optimal rates of convergence.
We furthermore observe that the errors for all unknowns are independent of the
value of Poisson’s ratio v and for the modulus of elasticity F. It is particularly
interesting to note that the choice £ = 10* and v = 0.49999 (corresponding to
A 1.7 108) does not affect the quality of the approximation. This confirms the
robustness of the error estimates in Theorem [£-1] in the incompressible limit.

5.2 Convergence rates for the quasi-static problem

We now consider a manufactured solution for the quasi-static problem eq. (2.2)
on the unit square. We divide the boundary of our domain into

Flz{(xl,xg)Eagi.’L'Q:O}, FQZ{(x1,£C2)€aQZx1=1},
FgZ{(zl,:L‘Q)EaQZIQ:l}, F4:{(I1,932)€8911’1=0},
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Table 5.1 Rates of convergence for HDG the test case described in Section for E=1or
E =10% v =0.4 or v = 0.49999, and for k = 1 or k = 3. Here r is the rate of convergence.

Cells Jup—ullg 7 llprh—prllg v lza—2z2llp v lpn—plg
k=1, E=10% v=04

384 4.2¢-07 2.0 4.7¢-02 1.1 5.6e-09 2.1 1.3e-01 1.0
1536 1.1e-07 2.0 2.2e-02 1.1 1.3e-09 2.1 6.3e-02 1.0
6144 2.6e-08 2.0 1.0e-02 1.1 3.3e-10 2.0 3.2e-02 1.0
24576 6.6e-09 2.0 5.0e-03 1.0 8.1e-11 2.0 1.6e-02 1.0
k=1, E=10% v = 0.49999

384 4.3e-07 2.0 6.7e-02 1.2 3.9¢-09 2.1 1.3e-01 1.0
1536 1.1e-07 2.0 2.9e-02 1.2 9.6e-10 2.0 6.3e-02 1.0
6144 2.7¢-08 2.0 1.3e-02 1.1 2.4e-10 2.0 3.2e-02 1.0
24576 6.7e-09 2.0 6.3e-03 1.1 5.9e-11 2.0 1.6e-02 1.0
k=3, E=10% v=04

384 3.2e-10 4.0 9.1e-05 3.0 5.0e-12 4.0 1.8e-04 3.0
1536 2.0e-11 4.0 1.1e-05 3.1 3.0e-13 4.0 2.3e-05 3.0
6144 1.2e-12 4.0 1.3e-06 3.0 1.8e-14 4.0 2.8¢-06 3.0
24576 7.6e-14 4.0 1.7e-07 3.0 1.1e-15 4.0 3.5e-07 3.0
k=3, E=10% v = 0.49999

384 3.6e-10 4.0 1.7e-04 3.1 2.6e-12 4.0 1.8e-04 3.0
1536 2.2¢-11 4.0 2.0e-05 3.1 1.6e-13 4.0 2.3e-05 3.0
6144 1.4e-12 4.0 2.4e-06 3.1 1.0e-14 4.0 2.8e-06 3.0
24576 8.5¢e-14 4.0 2.9e-07 3.0 6.4e-16 4.0 3.5e-07 3.0
k=1,E=1,v=04

384 6.2e-07 3.6 1.3e-02 1.0 3.7e-09 2.1 1.3e-01 1.0
1536 1.1e-07 2.5 6.3¢-03 1.0 9.6e-10 2.0 6.3e-02 1.0
6144 2.6e-08 2.1 3.2¢-03 1.0 2.6e-10 1.9 3.2e-02 1.0
24576 6.6e-09 2.0 1.6e-03 1.0 7.2e-11 1.9 1.6e-02 1.0
k=1 E=1, v=0.49999

384 6.4e-07 3.7 1.3e-02 1.0 3.9e-09 2.1 1.3e-01 1.0
1536 1.1e-07 2.5 6.3e-03 1.0 9.5¢-10 2.0 6.3e-02 1.0
6144 2.7¢-08 2.0 3.2¢-03 1.0 2.4e-10 2.0 3.2e-02 1.0
24576 6.7e-09 2.0 1.6e-03 1.0 5.9e-11 2.0 1.6e-02 1.0
k=3, E=1v=04

384 3.4e-10 4.1 1.8e-05 3.0 2.2e-12 3.7 1.8e-04 3.0
1536 2.0e-11 4.1 2.3e-06 3.0 2.0e-13 3.5 2.3e-05 3.0
6144 1.2e-12 4.0 2.8¢-07 3.0 1.6e-14 3.7 2.8e-06 3.0
24576 7.6e-14 4.0 3.5e-08 3.0 1.1e-15 3.9 3.5e-07 3.0
k=3, E=1, v=0.49999

384 3.6e-10 4.0 1.8e-05 3.0 2.6e-12 4.0 1.8e-04 3.0
1536 2.2¢-11 4.0 2.3e-06 3.0 1.6e-13 4.0 2.3e-05 3.0
6144 1.4e-12 4.0 2.8¢-07 3.0 1.0e-14 4.0 2.8e-06 3.0
24576 8.5e-14 4.0 3.5e-08 3.0 6.4e-16 4.0 3.5e-07 3.0

andset I'p =11 UI3Uly, I'p=11UIls, I'T =1% and I'r = [3UIy. As exact
solution we take

sin(7t) sin(wz1) sin(mwx2)
sin(rt) sin(mx1) cos(ma2)

, p=sin(r(z1 —z2 — 1)), (5.3)

and set body force terms, source/sink terms, initial and boundary conditions ac-
cordingly. As parameters we set E = 104, k = 1072, a = 0.1, ¢ = 0.1, v = 0.2.
We consider the solution over the time interval I = (0,0.1] and show the rates
of convergence at ¢t = 0.1 in Table [5.3| for HDG and EDG-HDG using k = 1 and
k = 2. We are interested in the spatial rates of convergence and so we implement
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Table 5.2 Rates of convergence for EDG-HDG the test case described in Section for E =1
or E=10% v =0.4 or v = 0.49999, and for k = 1 or k = 3. Here r is the rate of convergence.

Cells Jup—ullg 7 llprh—prllg v lza—2z2llp v lpn—plg
k=1, E=10% v=04

384 5.4e-07 2.1 7.1e-02 1.3 7.7¢-09 2.2 1.3e-01 1.0
1536 1.3e-07 2.0 2.9e-02 1.3 1.7e-09 2.2 6.3e-02 1.0
6144 3.2¢-08 2.0 1.3e-02 1.2 3.7¢-10 2.2 3.2e-02 1.0
24576 8.1e-09 2.0 5.7e-03 1.1 8.7e-11 2.1 1.6e-02 1.0
k=1, E=10% v = 0.49999

384 5.4e-07 2.1 1.6e-01 1.4 3.9¢-09 2.1 1.3e-01 1.0
1536 1.3e-07 2.0 6.0e-02 1.4 9.6e-10 2.0 6.3e-02 1.0
6144 3.3e-08 2.0 2.3e-02 1.4 2.4e-10 2.0 3.2e-02 1.0
24576 8.1e-09 2.0 9.5e-03 1.3 5.9e-11 2.0 1.6e-02 1.0
k=3, E=10% v=04

384 3.4e-10 4.0 9.8¢-05 3.1 5.3e-12 4.0 1.8e-04 3.0
1536 2.1e-11 4.0 1.2e-05 3.1 3.2e-13 4.1 2.3e-05 3.0
6144 1.3e-12 4.0 1.4e-06 3.0 1.9e-14 4.0 2.8¢-06 3.0
24576 8.1e-14 4.0 1.7e-07 3.0 1.2e-15 4.0 3.5e-07 3.0
k=3, E=10% v = 0.49999

384 4.0e-10 4.0 2.0e-04 3.2 2.6e-12 4.0 1.8e-04 3.0
1536 2.4e-11 4.0 2.3e-05 3.1 1.6e-13 4.0 2.3e-05 3.0
6144 1.5e-12 4.0 2.6e-06 3.1 1.0e-14 4.0 2.8e-06 3.0
24576 9.2¢-14 4.0 3.1e-07 3.1 6.4e-16 4.0 3.5e-07 3.0
k=1,E=1,v=04

384 7.0e-07 3.3 1.3e-02 1.0 3.9e-09 2.0 1.3e-01 1.0
1536 1.3e-07 2.4 6.3¢-03 1.0 1.1e-09 1.9 6.3e-02 1.0
6144 3.2¢-08 2.1 3.2¢-03 1.0 3.0e-10 1.8 3.2e-02 1.0
24576 8.0e-09 2.0 1.6e-03 1.0 7.8e-11 1.9 1.6e-02 1.0
k=1 E=1, v=0.49999

384 7.2e-07 3.4 1.3e-02 1.0 3.9e-09 2.1 1.3e-01 1.0
1536 1.4e-07 2.4 6.3e-03 1.0 9.5¢-10 2.0 6.3e-02 1.0
6144 3.3e-08 2.1 3.2¢-03 1.0 2.4e-10 2.0 3.2e-02 1.0
24576 8.1e-09 2.0 1.6e-03 1.0 5.9e-11 2.0 1.6e-02 1.0
k=3, E=1v=04

384 3.7e-10 4.1 1.8e-05 3.0 2.3e-12 3.6 1.8e-04 3.0
1536 2.2¢-11 4.1 2.3e-06 3.0 2.1e-13 3.5 2.3e-05 3.0
6144 1.3e-12 4.0 2.8¢-07 3.0 1.6e-14 3.7 2.8e-06 3.0
24576 8.1e-14 4.0 3.5e-08 3.0 1.1e-15 3.9 3.5e-07 3.0
k=3, E=1, v=0.49999

384 4.0e-10 4.0 1.8e-05 3.0 2.6e-12 4.0 1.8e-04 3.0
1536 2.4e-11 4.0 2.3e-06 3.0 1.6e-13 4.0 2.3e-05 3.0
6144 1.5e-12 4.0 2.8¢-07 3.0 1.0e-14 4.0 2.8e-06 3.0
24576 9.2e-14 4.0 3.5e-08 3.0 6.4e-16 4.0 3.5e-07 3.0

a second order backward differentiation formulae (BDF2) time stepping scheme
and take a time step of At = 1072 so that spatial errors dominate over temporal
errors. In Table we observe optimal rates of convergence for all unknowns,
both for the HDG and EDG-HDG schemes. Furthermore, note that although the
error in the total pressure is relatively large, this has no effect on the errors in
the displacement, velocity and pore pressure of the fluid, which are all magnitudes
smaller.
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Table 5.3 Rates of convergence for HDG and EDG-HDG for the test case described in Sec-
tion for k = 1 and k = 2. Here dofs are the total number of degrees-of-freedom and r is
the rate of convergence.

Dofs lup—ullg 7 llpra—prllpg v llzn—2z2lg r lpn—vplg T
HDG
=
896 1.7e-02 2.5 7.2e+02 1.1 4.1e-03 0.9 1.9e-01 0.7
3456 4.1e-03 2.1 3.6e+02 1.0 1.1e-03 1.9 9.3e-02 1.0
13568 1.0e-03 2.0 1.8e+02 1.0 3.0e-04 1.9 4.6e-02 1.0
53760 2.5e-04 2.0 9.0e+01 1.0 7.6e-05 2.0 2.3e-02 1.0
k=
1632 1.7e-03 1.6 1.1e4+02 1.0 3.5e-04 3.3 2.8e-02 2.3
6336 2.1e-04 3.0 2.7e+01 2.0 4.3e-05 3.0 7.0e-03 2.0
24960 2.7e-05 3.0 6.8e+00 2.0 5.3e-06 3.0 1.8e-03 2.0
99072 3.4e-06 3.0 1.7e+00 2.0 6.8e-07 3.0 4.4e-04 2.0
EDG-HDG

k=1

722 2.2e-02 2.3 7.4e+02 1.1 4.9e-03 0.4 1.8e-01 0.6
2786 5.5e-03 2.0 3.7e+02 1.0 1.2e-03 2.0 9.2e-02 1.0
10946 1.3e-03 2.0 1.8e+02 1.0 3.0e-04 2.0 4.6e-02 1.0
43394 3.3e-04 2.0 9.2e+01 1.0 7.5e-05 2.0 2.3e-02 1.0
k=2

1458 1.8e-03 1.6 1.1e4+02 1.1 4.4e-04 3.0 2.8e-02 2.3
5666 2.4e-04 2.9 2.8e+01 2.0 5.5e-05 3.0 7.0e-03 2.0
22338 3.0e-05 3.0 6.9e+00 2.0 6.7e-06 3.0 1.8e-03 2.0
88706 3.7e-06 3.0 1.7e4+00 2.0 8.5e-07 3.0 4.4e-04 2.0

5.3 The footing problem

The two-dimensional footing problem has been proposed in the literature to
study the locking-free properties of numerical methods for the Biot equations [16]
31]. We follow here the setup of [2] and consider the domain 2 = (—50, 50) x (0, 75)
and model parameters kK = 1074, 0 =10"2, @ = 0.1, E = 3-10%, and v = 0.4995
(so that A ~ 107). We define the boundaries I} = {(z1,22) € 002, |z1] <50/3,22 = 75},
Iy = {(z1,22) € 002, |z1]| > 50/3,22 = 75}, and I's = 92\(I1 U I2) and impose
the following boundary conditions:

on=(0,—00)" on I, on=0o0onIs, wu=0o0nI3 p=0ondR,

where o9 = 10*. As initial conditions we impose u(z,0) = 0 and p(z,0) = 0. We
solve this problem with HDG until 7' = 50 using BDF2 time stepping. We choose
a time step of size At = 1, take k£ = 2 in our finite element spaces, and compute
the solution on an unstructured mesh consisting of 169984 simplices.

We show the solution to this problem at time ¢ = 50 in Figure In this
incompressible limit we observe that the discretization results in pressure and
displacement solutions are free of, respectively, spurious oscillations and locking
effects.
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(¢) Fluid pressure p. (d) Total pressure pr.

Fig. 5.1 The solution to the footing problem of Section in the deformed domain at ¢ = 50.

5.4 The cantilever bracket problem

The cantilever bracket problem was used in [229)33] to study locking phe-
nomena at low permeability and when the storage coefficient is zero. Consider the
domain 2 = (0,1)? and define

F1:{(x1,x2)689, :13220}, Fg:{(xl,xz)e&(), 1‘1:1},
Fg:{(wl,xg)eaﬁ, xzzl}, F4:{(:£1,:c2)€89, x1:0}.

We impose the boundary conditions
z-n =20 on 912, an:(O,—l)T onl3, on=0onI3UIl>, wu=0onlIly.

At t = 0 we set v = 0 and p = 0. The model parameters are chosen as E = 10°,
v=04,a=093 co=0,and k = 1077 [33]. As shown in [33], with these para-
meters continuous Galerkin numerical methods show spurious oscillations in the
pressure on a very short time interval. Therefore, we consider here the time inter-
val I = [0,0.005]. In our discretization we combine the EDG-HDG discretization
with BDF2 time stepping, choose a time step of At = 0.001, set k = 2 in our finite
element spaces, and compute the solution on a mesh consisting of 128 simplices.
We plot the solution in Figure In Figure [5.2a] we observe that the pressure
field at t = 0.001 is free from spurious oscillations, similar to the discontinuous
Galerkin solutions obtained in [33]. We further show in Figure [5.2b] that the pres-
sure solution along the lines z = 0.26, z = 0.33, x = 0.4, and = = 0.46 at ¢t = 0.005
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Pressure

0.24
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y-axis
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(a) Pressure p at ¢t = 0.001. (b) Pressure p along different z-lines.

Fig. 5.2 The solution to the cantilever bracket problem Section using EDG-HDG. Left:
the pressure solution at ¢ = 0.001. Right: the pressure solution along different z-lines at time
t = 0.005.

is free of oscillations, agreeing with other stable finite element methods for this

problem [229/33].

6 Conclusions

An HDG and an EDG-HDG method have been presented and analyzed for the
total pressure formulation of the quasi-static poroelasticity model. Both discretiz-
ation methods are shown to be well-posed and space-time a priori error estimates
show robustness of the proposed methods when A — oo and cp — 0; both methods
are free of volumetric locking. Numerical examples confirm our theory and further
show optimal spatial rates of convergence in the L?-norm.
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A The inf-sup condition for by ((wn,0),qy)

By definition of by eq. (3.3b)),

b ((wn,0),qy,) == —(an, V- wp) o + (@, wn -ndor  Ywp, € Vi, Vg, € QY. (A1)

=:bl (wp,qn) =:b% (wh,dp)

Let g5, € Qp,. It is known (see, for example, [13] Section 4.1.4] or [28, Remark 3.3]) that there
exists w € [H} re (_Q)}d ={v € [HI(Q)]d : |, = 0} such that

~(V-w,qn)o =llanls,  lwlie < Cllallo, (A.2)

for some positive constant C' that only depends on (2. Let IIy : [Hl(_Q)]d — V}j, be the
BDM interpolation operator [8 Section III.3] and observe that by the single-valuedness of g,
continuity of IIy w - n across interior faces, and since g;, =0 on I'p and w =0 on I'p,

by (ITyw, qp,) = @y, Myw - n)ry =0,

ie., ITyw € Kerby := {wp, € V}, : b%(wh,(jh) =0 Vg, € Q,}. Recall also that (g, V-ITyw) o
(qn,V -w)q and ||[ITyw|p < C|lw|l1,o. Then, by eq. (A.2)),

bl (wh, qn) N —(qn, V- IlIyw) g llanll%,

su > = = Cllqn|le-
0#wy, €Ker by ”wh”f? ”HVwH-Q CHQhHQ

Next, let wy, := Lg;, € Py(K)? where L is the local BDM interpolation operator [§] such that

_ _ _ 1/2—
(Lap) -n=1an, |Lanlx < Chylanllox, Ke€T. (A3)
Then
b (wnsan) o lanldr o 11137
p = = -1
otwrev,  llwnlle lwnlle = C ¥ ke hi llwnlle
_ _ 1/2
> Chinhinke( 3 hrcllanl3e)
KeT

Therefore, by [20, Theorem 3.1],

b ,0), bl (wp, + b2 (wp,, g
sup n((wn,0),45) _ sup b (Wh qr) + b5, (Wh, 3p)
0£wp €V, llwnll 2 0£wp €V, lwlle

> (llanlle + hminfink (gThKnahn%K)) > Clllayl,-
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B Error estimates following from Taylor’s theorem

We prove here eqgs. (4.5a) and (4.5b). Let D C R?. Then for v a regular enough function
defined on [0,7T] x D, using Taylor’s theorem,

At[|ory™ — dep™ llo,p = | Atdy™ — (™ =™ Hllo,p

tm
= Bt p(t) (t = tm—1) dtllo,p
tom—1 N, e’
<At

t?‘n.
< At/ 199 (t)llo, p dt

m—1

= A0l L1 (2, g trmiL2(D))s

from which eq. (4.5a)) follows. Next, to show eq. (4.5b) we use the identity

Audrely™ = [ (@(s) — MQdru(s) ds,
tm—
and eq. (4.1). Then, by the approximation property of the L2-projection,

n n tm
At S Jldeel ™ lop < S / N0r(s) = MQarv(s))llo.p ds
m=1 m=17t""

< R0l 11 (1,111 (DY) -
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