
Noname manuscript No.
(will be inserted by the editor)

Analysis of an embedded-hybridizable discontinuous
Galerkin method for Biot’s consolidation model

Aycil Cesmelioglu · Jeonghun J. Lee ·
Sander Rhebergen

Received: date / Accepted: date

Abstract We present an embedded-hybridizable discontinuous Galerkin finite ele-
ment method for the total pressure formulation of the quasi-static poroelasticity
model. Although the displacement and the Darcy velocity are approximated by
discontinuous piece-wise polynomials, H(div)-conformity of these unknowns is en-
forced by Lagrange multipliers. The semi-discrete problem is shown to be stable
and the fully discrete problem is shown to be well-posed. Additionally, space-time
a priori error estimates are derived, and confirmed by numerical examples, that
show that the proposed discretization is free of volumetric locking.
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1 Introduction

Poroelasticity models are systems of partial differential equation that describe
the physics of deformable porous media saturated by fluids. They were originally
developed for geophysics applications in petroleum engineering but nowadays they
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are also widely used for biomechanical modeling. The first poroelasticity models
were derived by Biot [4,5]. Since then, mathematical properties and numerical
methods for these models have been widely studied. Here we give a brief literature
review.

Early studies on linear poroelasticity models include well-posedness analysis
and finite element discretizations for quasi-static [44,43] and dynamic [39,40,49]
models. For quasi-static models with incompressible elastic grains, Murad et al.
[30] observed spurious pressure oscillations of certain finite element discretizations
for small time and studied their asymptotic behavior. Phillips and Wheeler [33]
connected these pressure oscillations to volumetric locking due to incompressibility
of the displacement. They further developed numerical methods in [32,33] coup-
ling mixed methods and discontinuous Galerkin methods that do not show pressure
oscillations. Yi [46,47,48] proposed numerical methods coupling mixed and non-
conforming finite elements that are also free of pressure oscillations. An analysis
to address the volumetric locking problem for poroelasticity was first presented
in [26] adopting mixed methods for linear elasticity. Various numerical methods
avoiding this locking problem have since been studied using nonconforming or
stabilized finite elements [27,38,21,6], the total pressure formulation [28,31,14],
and exactly divergence-free finite element spaces [22,19]. A non-symmetric interior
penalty discontinuous Galerkin method was numerically shown to be locking free
for small enough penalty parameter in [37].

Discontinuous Galerkin methods are known to be computationally expensive.
A remedy for this was provided by Cockburn et el. [10] by introducing the hybrid-
izable discontinuous Galerkin (HDG) framework for elliptic problems. Indeed, ele-
ment unknowns can be eliminated from the problem resulting in a global problem
for facet unknowns only. The number of globally coupled degrees-of-freedom can
be reduced even further using the embedded discontinuous Galerkin (EDG) frame-
work [11,17]; where the HDG method uses a discontinuous trace approximation,
the EDG method uses a continuous trace approximation. HDG, and related hybrid
high-order (HHO), methods have recently been introduced for the poroelasticity
problem [15,25,7]. These discretizations consider the primal bilinear form for linear
elasticity. In contrast, in this paper we adopt the total pressure formulation [28,31]
and present novel HDG and EDG-HDG methods for the quasi-static poroelasti-
city models. (It is possible to also consider an EDG method for the poroelasticity
model, however, such a discretization is sub-optimal.) The total pressure formula-
tion provides a natural decoupling of the linear elasticity and Darcy equations in
the incompressible limit. Indeed, in this limit our discretizations reduce to the ex-
actly divergence-free HDG and EDG-HDG discretizations of [34,36] for the Stokes
problem and the hybridized formulation of [3] for the Darcy problem. We further
remark that the total pressure formulation has been applied also in the context of
magma/mantle dynamics problems [23,24] where it was shown to be advantage-
ous in the context of coupled physics problems beyond quasi-static poroelasticity
problems.

We present an analysis of the proposed HDG and EDG-HDG methods in which
we show that the space-time discretizations are well-posed. We further determine
an a priori error estimate for all unknowns that is robust in the incompressible limit
and for arbitrarily small specific storage coefficient. We remark that the stand-
ard approach of analyzing time-dependent problems is to use discrete Grönwall
inequalities. However, this results in error bounds with a coefficient that grows
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exponentially in time. We present an alternative approach that avoids this expo-
nential term.

The remainder of this paper is organized as follows. We present Biot’s consol-
idation model in Section 2. The HDG and EDG-HDG methods for Biot’s model is
presented in Section 3 together with a stability proof for the semi-discrete prob-
lem. Well-posedness and a priori error estimates for the fully discrete problem are
shown in Section 4. The analysis is verified by numerical examples in Section 5
and conclusions are drawn in Section 6.

2 Biot’s consolidation model

To introduce Biot’s consolidation model, let us introduce the following nota-
tion. Let Ω ⊂ Rd, d = 2, 3 be a bounded polygonal domain with a boundary
partitioned as ∂Ω = ΓP ∪ ΓF and ∂Ω = ΓD ∪ ΓT , where ΓP ∩ ΓF = ∅, |ΓP | > 0,
ΓD ∩ ΓT = ∅, and |ΓD| > 0. We denote the unit outward normal to ∂Ω by n and
we denote by I = (0, T ] the time interval of interest.

Let f : Ω × I → Rd be a given body force and let g : Ω × I → R be a given
source/sink term. Furthermore, let κ > 0 be a scalar constant that represents
the permeability of the porous media, c0 ≥ 0 the specific storage coefficient, and
0 < α < 1 the Biot–Willis constant. Denoting Young’s modulus of elasticity by E
and Poisson’s ratio by ν, in the case of plane strain, the Lamé constants are given
by λ = Eν/((1 + ν)(1− 2ν)) and µ = E/(2(1 + ν)).

Biot’s consolidation model describes a system of equations for the displacement
of the porous media, u : Ω×I → Rd, and the pore pressure of the fluid p : Ω×I →
R. Denoting by σ = 2µε(u) + λ∇ · uI−αpI the total Cauchy stress, where I is the
d× d-dimensional identity matrix, this model is given by

−∇ · σ = f, ∂t(c0p+ α∇ · u)−∇ · (κ∇p) = g, in Ω × I. (2.1)

Following [28], by introducing the total pressure pT := −λ∇·u+αp and the Darcy
velocity z := −κ∇p, we may write Biot’s consolidation model also as:

−∇ · 2µε(u) +∇pT = f in Ω × I, (2.2a)

−∇ · u− λ−1(pT − αp) = 0 in Ω × I, (2.2b)

∂t
(︁
c0p+ λ−1α(αp− pT )

)︁
+∇ · z = g in Ω × I, (2.2c)

κ−1z +∇p = 0 in Ω × I, (2.2d)

which will be the formulation studied in this article. Noting that σ = 2µε(u)−pT I,
we close the model by imposing the following boundary and initial conditions:

u = 0 on ΓD × I, (2.3a)

p = 0 on ΓP × I, (2.3b)

z · n = 0 on ΓF × I, (2.3c)

σn = 0 on ΓT × I, (2.3d)

p(x, 0) = p0(x) in Ω, (2.3e)

u(x, 0) = u0(x) in Ω. (2.3f)
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In the remainder of this article we assume that c0, µ
−1, κ, and µ are bounded

above by a constant C. We furthermore assume that there exists a ν∗ such that
0 < ν∗ ≤ ν < 0.5 on Ω. As a consequence, C∗µ ≤ λ with C∗ = 2ν∗/(1− 2ν∗).

3 The embedded-hybridizable discontinuous Galerkin method

3.1 Notation

On a Lipschitz domainD in Rd, we denote byW l,p(D) the usual Sobolev spaces
for l ≥ 0 and 1 ≤ p ≤ ∞ (see, for example, [1]). When p = 2, we define on Hl(D) =
W l,2(D) the norm ∥·∥l,D and semi-norm |·|l,D. We note that L2(D) = H0(D) is
the Lebesque space of square integrable functions with norm ∥·∥D = ∥·∥0,D and

inner product (·, ·)D. Vector-valued function spaces will be denoted by [L2(D)]
d

and [Hl(D)]
d
. The L2-inner product over a surface S ⊂ Rd−1 will be denoted by

⟨·, ·⟩S .
Let X be a Banach space and J = (0, T ], T > 0 a time interval. We denote

by C0(J ;X) the space of continuous functions f : J → X, which is equipped with
the norm∥f∥C0(J;X) := supt∈J ∥f(t)∥X . By Ck(J ;X), k ≥ 0, we denote the space

of continuous functions f : J → X such that ∂itf ∈ C0(J,X) for 1 ≤ i ≤ k. For
1 ≤ p < ∞, W k,p(J ;X) is defined to be the closure of Ck(J ;X) with respect to
the norm

∥f∥p
Wk,p(J;X)

:=

∫︂ T

0

k∑︂
i=0

∥∂itf(t)∥
p

X dt.

We note that for k = 0, W k,p(J ;X) = Lp(J ;X).

Let Th be a family of shape-regular simplicial triangulations of the domain
Ω. We will denote the diameter of an element K ∈ Th by hK , the meshsize by
h := maxK∈Th

hK , and the sets of interior facets and facets that lie on ΓD, ΓP ,
ΓF , and ΓT by, respectively, F ih, FDh , FPh , FFh , and FTh . The set of all facets is
denoted by Fh and their union is denoted by Γ0. On the boundary of an element
K, we denote by nK the outward unit normal vector, although, where no confusion
will occur we drop the subscript K. On the mesh and skeleton we define the inner
products

(ϕ, ψ)Ω :=
∑︂
K∈Th

(ϕ, ψ)K , ⟨ϕ, ψ⟩∂Th
:=

∑︂
K∈Th

⟨ϕ, ψ⟩∂K , if ϕ, ψ are scalar,

(ϕ, ψ)Ω :=
d∑︂
i=1

(ϕi, ψi)Ω , ⟨ϕ, ψ⟩∂Th
:=

d∑︂
i=1

⟨ϕi, ψi⟩∂Th
, if ϕ, ψ are vector-valued.

The norms induced by these inner products are denoted by ∥·∥Ω and ∥·∥∂Th
,

respectively.

Sets of polynomials of degree not larger than l ≥ 0 defined on, respectively,
an element K ∈ Th and a facet F ∈ Fh will be denoted by Pl(K) and Pl(F ). As
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approximation spaces we then use:

Vh :=
{︁
vh ∈ [L2(Ω)]

d
: vh ∈ [Pk(K)]d , ∀ K ∈ Th

}︁
,

V̄ h :=
{︁
v̄h ∈ [L2(Γ0]

d
: v̄h ∈ [Pk(F )]d ∀ F ∈ Fh, v̄h = 0 on ΓD

}︁
,

Qh :=
{︁
qh ∈ L2(Ω) : qh ∈ Pk−1(K), ∀ K ∈ Th

}︁
,

Q̄h :=
{︁
q̄h ∈ L2(Γ0) : q̄h ∈ Pk(F ) ∀ F ∈ Fh

}︁
,

Q̄
0
h := {ψ̄h ∈ Q̄h : ψ̄h = 0 on ΓP } .

(3.1)

Element and facet function pairs will be denoted by boldface, for example,

vh = (vh, v̄h) ∈ V h := Vh × V̄ h, qh = (qh, q̄h) ∈ Qh := Qh × Q̄h,

ψh = (ψh, ψ̄h) ∈ Q
0
h := Qh × Q̄

0
h,

and it will also be useful to define Xh := V h ×Qh × Vh ×Q0
h.

Remark 3.1 The HDG method seeks an approximation in Xh with Vh, V̄ h, Qh,
Q̄h, and Q̄

0
h defined in eq. (3.1). If V̄ h is replaced by V̄ h ∩C0(Γ0) then we obtain

the EDG-HDG method. The analysis in this paper holds for both the HDG and
EDG-HDG methods. For notational purposes, in the analysis, Xh and V h will
refer both to the HDG and EDG-HDG spaces.

For the analysis of the HDG and EDG-HDG methods we assume that the exact
solution is such that:

u(t) ∈ V := {v ∈ [H1(Ω)]
d
: v|ΓD

= 0} ∩ [H2(Ω)]
d
,

pT (t) ∈ Q := H1(Ω),

z(t) ∈ Z := {v ∈ [H1(Ω)]
d
: v · n = 0 on ΓF } ,

p(t) ∈ Q0 := {q ∈ H1(Ω) : q|ΓP
= 0 on ΓP } ∩H2(Ω).

Denoting by V̄ , Q̄, Z̄, and Q̄
0
the trace spaces of, respectively, V , Q, Z, and Q0

to the mesh skeleton, we introduce the extended spaces

V (h) := V h + V × V̄ , Z(h) := Vh + Z,

Q(h) := Qh +Q× Q̄, Q0(h) := Q0
h +Q0 × Q̄

0
.

Norms on the extended spaces V (h), Q(h), and Q0(h) are defined as:

|||v|||2v := ∥ε(v)∥2Ω +
∑︂
K∈Th

h−1
K ∥v − v̄∥2∂K ∀v ∈ V (h),

|||v|||2v′ := |||v|||2v +
∑︂
K∈Th

h2K |v|22,K , ∀v ∈ V (h),

|||qh|||
2
q := ∥qh∥2Ω +

∑︂
K∈Th

hK ∥q̄h∥
2
∂K ∀qh ∈ Q(h).

To conclude this section, we remark that C > 0 will denote a constant inde-
pendent of h and the model parameters.
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3.2 The semi-discrete problem

In this section, we present the semi-discrete problem and provide an energy es-
timate for this discretization. The fully-discrete problem is presented in Section 3.3
which is analysed in Section 4.

The semi-discrete HDGmethod for Biot’s consolidation model eqs. (2.2) and (2.3)
is given by: Find (uh, zh) ∈ C0(I;V h×Vh) and (pT,h,ph) ∈ C1(I;Qh×Q0

h) such

that for all (vh, qTh, wh, qh) ∈ V h ×Qh × Vh ×Q0
h:

ah(uh, vh) + bh(vh,pTh) =
(︁
f, vh

)︁
Ω
, (3.2a)

bh(uh, qTh)−
(︁
λ−1(pTh − αph), qTh

)︁
Ω

= 0, (3.2b)(︁
κ−1zh, wh

)︁
Ω
+ bh((wh, 0),ph) = 0, (3.2c)(︁

∂t (c0ph + λ−1α (αph − pTh)) , qh
)︁
Ω
− bh((zh, 0), qh) =

(︁
g, qh

)︁
Ω
, (3.2d)

where

ah(u, v) :=(2µε(u), ε(v))Ω +
∑︂
K∈T

⟨2βµhK
(u− ū), v − v̄⟩∂K (3.3a)

− ⟨2µε(u)n, v − v̄⟩∂T − ⟨2µε(v)n, u− ū⟩∂T ,
bh(v, q) :=− (q,∇ · v)Ω + ⟨q̄, (v − v̄) · n⟩∂T . (3.3b)

To analyze the HDG and EDG-HDG methods, let us recall some properties of
the bilinear forms ah and bh. It was shown in [34, Lemma 4.2] and [9, Lemma 2]
that there exist constants C and β0 > 0 such that for β > β0,

ah(vh, vh) ≥ Cµ|||vh|||2v ∀vh ∈ V h. (3.4)

Additionally, ah satisfies the following continuity result [9, Lemma 3]:

ah(u, v) ≤ Cµ|||u|||v′ |||v|||v′ ∀u, v ∈ V (h). (3.5)

The bilinear form bh satisfies the following stability results:

inf
qh∈Qh

sup
0 ̸=vh∈V h

bh(vh, qh)

|||vh|||v|||qh|||q
≥ C, (3.6a)

inf
qh∈Q0

h

sup
0̸=wh∈Vh

bh((wh, 0), qh)

∥wh∥Ω |||qh|||q
≥ C, (3.6b)

where the first inequality was shown in [35, Lemma 1] and [36, Lemma 8] and the
second is proven in Appendix A. Continuity of the bilinear form bh was established
in [34]:

|bh(v, q)| ≤ C|||v|||v|||q|||q ∀v ∈ V (h), q ∈ Q(h). (3.7)

Lemma 3.1 (Consistency) Let (u, pT , z, p) be a solution to eqs. (2.2) and (2.3)
and let ū, p̄T , and p̄ be the traces of, respectively, u, pT , and p on the mesh skeleton.
Then (u,pT , z,p) satisfies eq. (3.2).

Proof The proof is standard and follows by integration by parts, smoothness of
the solution to eqs. (2.2) and (2.3), single-valuedness of v̄h and q̄h on element
boundaries, and using that v̄h = 0 on ΓD and q̄h = 0 on ΓP . ⊓⊔
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The following theorem now shows energy stability of the semi-discrete problem.

Theorem 3.1 (Stability) Suppose that (uh,pTh, zh,ph) ∈ C1(I;Xh) is a solu-
tion to eq. (3.2) with f ∈W 1,1(I;L2(Ω)) and g ∈ L2(I;L2(Ω)). Let X(t) ≥ 0 and
Y (t) ≥ 0 be defined by:

X(t)2 =ah(uh(t),uh(t))

+
(︁
λ−1 (︁pTh(t)− αph(t)

)︁
, pTh(t)− αph(t)

)︁
Ω
+

(︁
c0ph(t), ph(t)

)︁
Ω
,

Y (t)2 =
(︁
κ−1zh(t), zh(t)

)︁
Ω
.

Then, there exists C > 0, independent of t > 0, such that

X(t) ≤ X(0) + C

[︃
µ−1/2 max

0≤s≤t
∥f(s)∥Ω

+ µ−1/2

∫︂ t

0

∥∂tf(s)∥Ω ds+ κ−1/2

(︃∫︂ t

0

∥g(s)∥2Ω ds

)︃ 1
2
]︃
, (3.8a)

and(︃∫︂ t

0

Y (s)2 ds

)︃ 1
2

≤ C

[︃
X(0) + µ−1/2 max

0≤s≤t
∥f(s)∥Ω

+ µ−1/2

∫︂ t

0

∥∂tf(s)∥Ω ds+ κ−1/2

(︃∫︂ t

0

∥g(s)∥2Ω ds

)︃ 1
2
]︃
. (3.8b)

Proof We first note that by the inf-sup condition eq. (3.6b), eq. (3.2c), and the
Cauchy–Schwarz inequality,⃦⃦

ph(t)
⃦⃦
Ω

≤ C sup
0 ̸=wh∈Vh

|bh((wh, 0),ph)|
∥wh∥Ω

≤ C sup
0 ̸=wh∈Vh

|(κ−1zh, wh)|
∥wh∥Ω

≤ Cκ−1 ∥zh(t)∥Ω .
(3.9)

Now, in eqs. (3.2a), (3.2c) and (3.2d) set (vh, wh, qh) = (∂tuh, zh,ph). Take the
time derivative of eq. (3.2b) and set qTh = −pTh. Adding the resulting equations
we find:

1

2

d

dt
X(t)2 + Y (t)2 = (f(t), ∂tuh(t))Ω + (g(t), ph(t))Ω . (3.10)

Integrating eq. (3.10) in time from 0 to t results in

1

2
(X(t)2 −X(0)2) +

∫︂ t

0

Y (s)2 ds =

∫︂ t

0

[︁
(f(s), ∂tuh(s))Ω + (g(s), ph(s))Ω

]︁
ds.

Integration by parts, Young’s inequality and eq. (3.9) imply

1

2
(X(t)2 −X(0)2) +

∫︂ t

0

Y (s)2 ds ≤ (f(t), uh(t))Ω − (f(0), uh(0))Ω

−
∫︂ t

0

(∂tf(s), uh(s))Ω ds

+ C

∫︂ t

0

∥g(s)∥2Ω ds+
1

2

∫︂ t

0

Y (s)2 ds.
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Coercivity of ah eq. (3.4) and a discrete Korn’s inequality imply that

∥uh(t)∥Ω ≤ Cµ−1/2ah(uh,uh)
1/2 ≤ Cµ−1/2X(t).

Therefore, by the Cauchy-Schwarz inequality, for any t ≥ 0,

X(t)2 +

∫︂ t

0

Y (s)2 ds ≤X(0)2 + Cµ−1/2
(︂
f(t)

⃦⃦
Ω
X(t) +

⃦⃦
f(0)

⃦⃦
Ω
X(0)

)︂
+ Cµ−1/2

∫︂ t

0

∥∂tf(s)∥Ω X(s) ds+ C

∫︂ t

0

⃦⃦
g(s)

⃦⃦2
Ω
ds.

(3.11)

To obtain eq. (3.8a), we may assume, without loss of generality, that

max
0≤s≤t

X(s) = X(t) > 0. (3.12)

Note that if eq. (3.12) does not hold, then there exists a tM such that max0≤s≤tX(s) =
X(tM ) for 0 ≤ tM < t. The estimate eq. (3.8a) for X(tM ) then implies eq. (3.8a)
for X(t). From eqs. (3.11) and (3.12), we then find

X(t)2 +

∫︂ t

0

Y (s)2 ds

≤
(︂
X(0) + Cµ−1/2 (︁ ∥f(t)∥Ω + ∥f(0)∥Ω +

∫︂ t

0

∥∂tf(s)∥Ω ds
)︁)︂
X(t)

+ C

∫︂ t

0

∥g(s)∥2Ω ds.

(3.13)

Define α(t) :=
(︁
C
∫︁ t
0
∥g(s)∥2Ω ds

)︁1/2
> 0. If α(t) ≤ X(t), dividing eq. (3.13) by

X(t) implies

X(t) ≤ X(0) + Cµ−1/2 (︁ ∥f(t)∥Ω + ∥f(0)∥Ω +

∫︂ t

0

∥∂tf(s)∥Ω ds
)︁
+ α(t).

Note that this inequality holds trivially if X(t) < α(t). Proceeding, we find

X(t) ≤ X(0) + Cµ−1/2
(︂
2 max
0≤s≤t

∥f(s)∥Ω +

∫︂ t

0

∥∂tf(s)∥Ω ds
)︂
+ α(t)

= X(0) + Cµ−1/2
(︂
2 max
0≤s≤t

∥f(s)∥Ω +

∫︂ t

0

∥∂tf(s)∥Ω ds
)︂
+ C

(︂∫︂ t

0

∥g(s)∥2Ω ds
)︂1/2

,

so that eq. (3.8a) follows. Equation (3.8b) follows by combining eq. (3.8a) and
eq. (3.13). ⊓⊔
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3.3 The fully discrete problem

To define the fully discrete scheme, let {tn}0≤n≤N be a uniform partition of
I and let ∆t > 0 be the corresponding time step. We will denote the value of
a function f(t) at t = tn by fn := f(tn). For a sequence {fn}n≥1, dtf

n :=
fn−fn−1

∆t defines a first order difference operator. Note that we use the superscript
n to denote the time level. This is not to be confused with the normal vector
n. Using Backward Euler time stepping, the fully discrete problem reads: Find
(un+1
h ,pn+1

Th , zn+1
h ,pn+1

h ) ∈ Xh, with n ≥ 0, such that

ah(u
n+1
h , vh) + bh(vh,p

n+1
Th ) =

(︁
fn+1, vh

)︁
Ω
, (3.14a)

bh(u
n+1
h , qTh) + λ−1 (︁αpn+1

h − pn+1
Th , qTh

)︁
Ω

= 0, (3.14b)(︁
κ−1zn+1

h , wh
)︁
Ω
+ bh((wh, 0),p

n+1
h ) = 0, (3.14c)

1
∆t

(︁
(c0p

n+1
h , qh)Ω + λ−1(αpn+1

h − pn+1
Th , αqh)Ω

)︁
− bh((z

n+1
h , 0), qh), (3.14d)

= 1
∆t

(︁
(c0p

n
h, qh)Ω + λ−1(αpnh − pnTh, αqh)Ω

)︁
+

(︁
gn+1, qh

)︁
Ω
,

for all (vh, qTh, wh, qh) ∈ Xh. We first show that eq. (3.14) is well-posed.

Theorem 3.2 There exists a unique solution to eq. (3.14).

Proof It is sufficient to show that if the data is equal to zero then the solution is
zero. As such, suppose that fn+1 = 0, gn+1 = 0, pnTh = 0, and pnh = 0. Then,
setting vh = un+1

h , qTh = −pn+1
Th , wh = ∆tzn+1

h , and qh = ∆tpn+1
h in eq. (3.14)

and adding the equations, we obtain:

ah(u
n+1
h ,un+1

h ) + c0 ∥pn+1
h ∥2Ω + λ−1 ∥αpn+1

h − pn+1
Th ∥2Ω + κ−1∆t ∥zn+1

h ∥2Ω = 0.

Coercivity of ah eq. (3.4), positivity of κ and λ, and nonnegativity of c0 directly
imply that un+1

h = 0 and zn+1
h = 0. Substituting un+1

h = 0 in eq. (3.14a),
pn+1
Th = 0 follows from the inf-sup condition eq. (3.6a). This then implies pn+1

h = 0
since α, λ > 0.

Using a BDM local lifting of the normal trace [12, Proposition 2.10], there exists

w̃h ∈ Vh such that ⟨w̃h · n, p̄n+1
h ⟩∂Th

= ∥p̄n+1
h ∥2

∂Th
. Setting zn+1

h = 0, pn+1
h = 0

and choosing wh = w̃h in eq. (3.14c), we obtain p̄n+1
h = 0. This completes the

proof. ⊓⊔

Let us also note that the fully-discrete scheme eq. (3.14) results in divergence-
conforming solutions for the displacement unh and velocity znh . To see this, set
vh = 0, qh = 0, wh = 0, and qTh = 0 in eq. (3.2) and note that since unh ·n ∈ Pk(F )
and ūnh = 0 on ΓD,

Junh · nK = 0, ∀x ∈ F, ∀F ∈ F\FT , (3.15a)

unh · n = ūnh · n, ∀x ∈ F, ∀F ∈ FT . (3.15b)

Similarly, by setting vh = 0, qTh = 0, wh = 0, and qh = 0 in eq. (3.2), and noting
that znh · n ∈ Pk(F ), we find that

Jznh · nK = 0, ∀x ∈ F, ∀F ∈ F\FP . (3.16)
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4 A priori error estimates

To facilitate the a priori error analysis, we introduce various interpolation

operators. First, let ΠV : [H1(Ω)]
d → Vh be the BDM interpolation operator [8,

Section III.3], [18, Lemma 7] with the following interpolation estimate:

∥z −ΠV z∥K ≤ ChℓK ∥z∥ℓ,K , 1 ≤ ℓ ≤ k + 1. (4.1)

The elliptic interpolation operator, Πell
V := (Πell

V , Π̄
ell
V ) : [H1(Ω)]

d → V h is
defined by:

ah(Π
ell
V u, vh) = ah((u, u), vh), ∀vh ∈ V h.

Standard a priori error estimate theory for second order elliptic equations imply

ah(u−Πell
V u,u−Πell

V u)
1
2 ≤ Cµ1/2hℓ−1

K ∥u∥ℓ,Ω 1 ≤ ℓ ≤ k + 1. (4.2)

By ΠQ, Π̄Q, and Π̄Q0 we denote the L2-projections onto, respectively, Qh and

the trace spaces Q̄h and Q̄
0
h. Given the interpolation/projection operators, the

numerical initial data is set by imposing the interpolation/projection of continuous
initial data as follows:

((u0h, ū
0
h), (p

0
Th, p̄

0
Th), z

0
h, (p

0
h, p̄

0
h))

= ((Πell
V u(0), Π̄

ell
V u(0)), (ΠQpTh(0), Π̄QpTh(0)), ΠV z(0), (ΠQ0p(0), Π̄Q0p(0))).

(4.3)

In the error analysis it will be convenient to split the error into approximation
and interpolation errors:

ω − ωh = eIω − ehω, ω = u, pT , z, p, (4.4a)

ξ|Γ 0 − ξ̄h = ēIξ − ēhξ , ξ = u, pT , p, (4.4b)

where

eIu = u−Πell
V u, ehu = uh −Πell

V u, eIz = z −ΠV z, ehz = zh −ΠV z,

eIp = p−ΠQp, ehp = ph −ΠQp, eIpT = pT −ΠQpT , ehpT = pTh −ΠQpT ,

and where

ēIu = u|Γ 0 − Π̄
ell
V u, ēhu = ūh − Π̄

ell
V u, ēIp = p|Γ 0 − Π̄Q0p, ēhp = p̄h − Π̄Q0p,

ēIpT = pT |Γ 0 − Π̄QpT , ēhpT = p̄Th − Π̄QpT .

Following the convention introduced earlier in this paper, we use boldface notation
for element/facet error pairs, i.e., eIξ = (eIξ , ē

I
ξ) and e

h
ξ = (ehξ , ē

h
ξ ) for ξ = u, pT , p.

It will also be useful to introduce the following error estimates: let ψ be a
regular enough function defined on [0, T ]×D, for some domain D ⊂ Rd, then, as
a consequence of Taylor’s theorem (see Appendix B),

n∑︂
m=1

∆t∥∂tψm − dtψ
m∥0,D ≤ ∆t∥∂ttψ∥L1(I;L2(D)), (4.5a)

∆t
n∑︂

m=1

∥dteI,mψ ∥0,D ≤ Chl∥∂tψ∥L1(I;Hl(D)), ψ = p, pT . (4.5b)
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Lemma 4.1 Let {Ai}i, {Bi}i, {Ei}i, and {Di}i be nonnegative sequences. Sup-
pose these sequences satisfy

A2
n +

n∑︂
i=0

B2
i ≤ A2

0 +
n∑︂
i=1

EiAi +
n∑︂
i=0

Di, (4.6)

for all n ≥ 0. Then for any n ≥ 0,

An ≤ A0 +
n∑︂
i=1

Ei +
(︂ n∑︂
i=0

Di
)︂1/2

, (4.7a)

(︂ n∑︂
i=0

B2
i

)︂1/2

≤ C

(︃
A0 +

n∑︂
i=1

Ei +
(︂ n∑︂
i=0

Di
)︂1/2)︃

, (4.7b)

with C > 0 independent of n.

Proof First, note that eq. (4.6) and eq. (4.7a) directly imply eq. (4.7b). It is there-
fore sufficient to prove eq. (4.7a). Similar to the assumption made in the proof of
Theorem 3.1, we assume without loss of generality that 0 < An = max0≤i≤nAi.

If An ≤
(︁∑︁n

i=0Di
)︁1/2

, then eq. (4.7a) is satisfied trivially. On the other hand, if

An >
(︁∑︁n

i=0Di
)︁1/2

, then eq. (4.6) implies

A2
n +

n∑︂
i=0

B2
i ≤ A0An +An

n∑︂
i=0

Ei +An
(︂ n∑︂
i=0

Di
)︂1/2

.

The result now follows by dividing by An. ⊓⊔

Before addressing the main result (Theorem 4.1) of this section, we first de-
termine the error equation.

Lemma 4.2 (Error equation) Suppose that {(unh,pnTh, znh ,pnh)}n≥1 is the solu-
tion of (3.14) with the numerical initial data (4.3). The approximation and inter-
polation errors satisfy

ah(e
h,n+1
u , vh) + bh(vh, e

h,n+1
pT )

+ bh(dte
h,n+1
u , qTh) + λ−1(dt(αe

h,n+1
p − eh,n+1

pT ), αqh + qTh)Ω

+ κ−1(eh,n+1
z , wh)Ω − bh((e

h,n+1
z , 0), qh)

+ bh((wh, 0), e
h,n+1
p )Ω + (c0dte

h,n+1
p , qh)Ω

=bh(dte
I,n+1
u , qTh) + κ−1(eI,n+1

z , wh)Ω + (c0(∂tp
n+1 − dtΠQp

n+1), qh)Ω

+ λ−1(α(∂tp
n+1 − dtΠQp

n+1)− (∂tp
n+1
T − dtΠQp

n+1
T ), αqh)Ω ,

for any (vh, qTh, wh, qh) ∈ Xh.

Proof By Lemma 3.1, we can substitute (un+1, pn+1
T , zn+1, pn+1), the solution

of eqs. (2.2) and (2.3) evaluated at t = tn+1, into eq. (3.2). Then, subtracting
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eq. (3.14), applying dt to the second equation of the resulting set of equations,
and adding all the equations, we obtain using eq. (4.4):

ah(e
h,n+1
u , vh) + bh(vh, e

h,n+1
pT )

+ bh(dte
h,n+1
u , qTh) + λ−1(dt(αe

h,n+1
p − eh,n+1

pT ), αqh + qTh)Ω

+ κ−1(eh,n+1
z , wh)Ω − bh((e

h,n+1
z , 0), qh)

+ bh((wh, 0), e
h,n+1
p )Ω + (c0dte

h,n+1
p , qh)Ω

=ah(e
I,n+1
u , vh) + bh(vh, e

I,n+1
pT )

+ bh(dte
I,n+1
u , qTh) + λ−1(dt(αe

I,n+1
p − eI,n+1

pT ), αqh + qTh)Ω

+ κ−1(eI,n+1
z , wh)Ω − bh((e

I,n+1
z , 0), qh)

+ bh((wh, 0), e
I,n+1
p ) + (c0(∂tp

n+1 − dtΠQp
n+1), qh)Ω

+ λ−1(α(∂tp
n+1 − dtΠQp

n+1)− (∂tp
n+1
T − dtΠQp

n+1
T ), αqh)Ω .

The result follows by noting that: ah(e
I,n+1
u , vh) = 0 by definition ofΠell

V ; bh(vh, e
I,n+1
pT ) =

bh((wh, 0), e
I,n+1
p ) = 0 because ΠQ and Π̄Q are L2 projections into Qh and

Q̄h, respectively, and ∇ · Vh = Qh; bh((e
I,n+1
z , 0), qh) = 0 by the commut-

ing property of the BDM interpolation operator ΠQ∇ · v = ∇ · ΠV v for v ∈
[H1(Ω)]

d
, the H(div)-conformity of eI,n+1

z , and the boundary conditions on ΓF ;
and λ−1(dt(αe

I,n+1
p − eI,n+1

pT ), αqh + qTh)Ω = 0 because ΠQ is the L2-projection
into Qh. ⊓⊔

We are now ready to prove an a priori error estimate for the HDG and EDG-
HDG methods eq. (3.14).

Theorem 4.1 Let (u, pT , z, p) be a solution to eqs. (2.2) and (2.3) on the time
interval I = (0, T ] and let ū, p̄T , and p̄ be the traces of, respectively, u, pT , and
p on the mesh skeleton. Let (unh,p

n
Th, z

n
h ,p

n
h) ∈ Xh be the solution to eq. (3.14).

Suppose the numerical initial data is imposed according to eq. (4.3). The following
error estimates hold:

c
1/2
0 ∥pn − pnh∥Ω + λ−1/2 ∥α(pn − pnh)− (pnT − pnTh)∥Ω

+µ1/2|||un − unh|||v + κ−1/2
(︂ n∑︂
i=1

∆t ∥zi − zih∥
2

Ω

)︂1/2

≤ C1∆t+ C2h
l, (4.8a)

µ−1/2|||pnT − pnTh|||q ≤ C1∆t+ C3h
l, (4.8b)

where

C1 =Cmax {c1/20 , λ−1/2} ∥p, pT ∥W 2,1(I;L2(Ω)) ,

C2 =C
(︁
µ1/2 ∥u∥W 1,1(I;Hl+1(Ω)) + κ−1/2T 1/2∥z∥C0(I;Hl(Ω))

+max {c1/20 , λ−1/2} ∥p, pT ∥W 1,1(I;Hl(Ω))

)︁
,

C3 =C
(︁
µ1/2∥∂tu∥L1(I;Hl+1(Ω)) +max {c1/20 , µ−1/2} ∥p, pT ∥W 1,1(I;Hl(Ω))

+ κ−1/2T 1/2∥z∥C0(I;Hl(Ω))

)︁
.
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Proof Choose vh = dte
h,n+1
u , qTh = −eh,n+1

pT , wh = eh,n+1
z , and qh = eh,n+1

p in
the error equation in Lemma 4.2. Then,

ah(e
h,n+1
u , dte

h,n+1
u ) + κ−1(eh,n+1

z , eh,n+1
z )Ω

+ (c0dte
h,n+1
p , eh,n+1

p )Ω + λ−1(dt(αe
h,n+1
p − eh,n+1

pT ), αeh,n+1
p − eh,n+1

pT )Ω

=− bh(dte
I,n+1
u , eh,n+1

pT ) + κ−1(eI,n+1
z , eh,n+1

z )Ω

+ (c0(∂tp
n+1 − dtΠQp

n+1), eh,n+1
p )Ω

+ λ−1(α(∂tp
n+1 − dtΠQp

n+1)− (∂tp
n+1
T − dtΠQp

n+1
T ), αeh,n+1

p )Ω .

Using a(a− b) = 1
2 (a

2 + (b− a)2 − b2) ≥ 1
2 (a

2 − b2) and multiplying both sides of
the resulting inequality by ∆t, we arrive at

c0
2

(︂
∥eh,n+1
p ∥2Ω − ∥eh,np ∥2Ω

)︂
+
λ−1

2

(︂
∥αeh,n+1

p − eh,n+1
pT ∥2Ω − ∥αeh,np − eh,npT ∥2Ω

)︂
+

1

2
(ah(e

h,n+1
u , eh,n+1

u )− ah(e
h,n
u , eh,nu )) + κ−1∆t∥eh,n+1

z ∥2Ω

≤−∆tbh(dte
I,n+1
u , eh,n+1

pT ) +∆tκ−1(eI,n+1
z , eh,n+1

z )Ω

+∆t(c0(∂tp
n+1 − dtΠQp

n+1), eh,n+1
p )Ω

+ λ−1∆t(α(∂tp
n+1 − dtΠQp

n+1)− (∂tp
n+1
T − dtΠQp

n+1
T ), αeh,n+1

p )Ω

=:In+1
1 + In+1

2 + In+1
3 + In+1

4 .

(4.9)

We define

A2
i :=

c0
2
∥eh,ip ∥2Ω +

λ−1

2
∥αeh,ip − eh,ipT ∥2Ω +

1

2
ah(e

h,i
u , eh,iu ),

B2
i :=

κ−1

2
∆t∥eh,iz ∥2Ω ,

so that eq. (4.9) can be written as

A2
n+1 + 2B2

n+1 ≤ A2
n + In+1

1 + In+1
2 + In+1

3 + In+1
4 . (4.10)

We proceed by bounding Ii1, I
i
2, I

i
3, and I

i
4, starting with Ii1.

Restricting the error equation in Lemma 4.2 for vh with general index i, we
find the error equation

ah(e
h,i
u , vh) + bh(vh, e

h,i
pT ) = 0 ∀vh ∈ V h.

By eq. (3.6a), the above equality, eq. (3.5), the equivalence between |||·|||v and
|||·|||v′ [45, eq. (5.5)], and eq. (3.4),

C|||eh,ipT |||q ≤ sup
0̸=vh∈V h

bh(vh, e
h,i
pT )

|||vh|||v
= sup

0 ̸=vh∈V h

−ah(eh,iu , vh)

|||vh|||v

≤ Cµ|||eh,iu |||v ≤ Cµ1/2 (︁ah(eh,iu , eh,iu )
)︁1/2

,

(4.11)

implying that
µ−1/2|||eh,ipT |||q ≤ CAi. (4.12)
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We may now bound Ii1 using eq. (3.7) and eq. (4.12):

Ii1 ≤ ∆t|bh(dteI,iu , eh,ipT )| ≤ C∆t|||dteI,iu |||v|||e
h,i
pT |||q ≤ C∆tµ1/2|||dteI,iu |||vAi.

(4.13)
A bound for Ii2 follows from the Cauchy–Schwarz and Young’s inequalities:

Ii2 ≤ κ−1∆t∥eI,iz ∥Ω∥eh,iz ∥Ω ≤ κ−1

2
∆t∥eI,iz ∥2Ω +B2

i .

Using the Cauchy–Schwarz and triangle inequalities, we bound Ii3 as follows:

Ii3 ≤ c0∆t∥∂tpi − dtΠQp
i∥Ω∥eh,ip ∥Ω

≤ c0∆t(∥∂tpi − dtp
i∥Ω + ∥dteI,ip ∥Ω)∥eh,ip ∥Ω

≤ (2c0)
1/2∆t(∥∂tpi − dtp

i∥Ω + ∥dteI,ip ∥Ω)Ai.

To estimate Ii4, we first derive an auxiliary result. By the assumption that C∗µ ≤ λ
(see Section 2),

λ−1α2∥eh,ip ∥2Ω ≤ 2λ−1
(︂
∥αeh,ip − eh,ipT ∥2Ω

)︂
+ 2λ−1∥eh,ipT ∥2Ω

≤ 2λ−1
(︂
∥αeh,ip − eh,ipT ∥2Ω

)︂
+ 2(C∗µ)

−1∥eh,ipT ∥2Ω .

Combining this estimate with eq. (4.12) we obtain:

λ−1/2α∥eh,ip ∥Ω ≤ CAi. (4.14)

The Cauchy–Schwarz and triangle inequalities, together with eq. (4.14) now imply

Ii4 ≤ λ−1α∆t∥α(∂tpi − dtΠQp
i)− (∂tp

i
T − dtΠQp

i
T )∥Ω∥eh,ip ∥Ω

≤ Cλ−1/2∆t
(︂
α∥∂tpi − dtp

i∥Ω + α∥dteI,ip ∥Ω + ∥∂tpiT − dtp
i
T ∥Ω + ∥dteI,ipT ∥Ω

)︂
Ai.

If we define

Ei =Cµ
1/2∆t|||dteI,iu |||v + (2c0)

1/2∆t(∥∂tpi − dtp
i∥Ω + ∥dteI,ip ∥Ω)

+ Cλ−1/2∆t
(︂
α∥∂tpi − dtp

i∥Ω + α∥dteI,ip ∥Ω + ∥∂tpiT − dtp
i
T ∥Ω + ∥dteI,ipT ∥Ω

)︂
,

Di =
κ−1

2
∆t∥eI,iz ∥2Ω ,

we find, using eq. (4.10), that

(A2
i+1 −A2

i ) +B2
i+1 ≤ Ei+1Ai+1 +Di+1. (4.15)

Summing now for i = 0 to i = n − 1, and using A0 = 0, we obtain, after shifting
indices and using D0 ≥ 0 and B0 = 0,

A2
n +

n∑︂
j=1

B2
j ≤

n∑︂
j=1

EjAj +
n∑︂
j=1

Dj . (4.16)
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Then, by Lemma 4.1 we obtain

An +
(︂ n∑︂
i=1

B2
i

)︂1/2
≤ C

⎛⎝ n∑︂
i=1

Ei +
(︂ n∑︂
i=1

Di
)︂1/2

⎞⎠ . (4.17)

To prove eq. (4.8a), we therefore need to estimate
∑︁n
i=1Ei and (

∑︁n
i=1Di)

1/2.

By eqs. (3.4) and (4.2), we note that

µ1/2∆t
n∑︂
i=1

|||dteI,iu |||v ≤ C∆t
n∑︂
i=1

(ah(dte
I,i
u , dte

I,i
u ))1/2

≤ C∆tµ1/2
n∑︂
i=1

hl ∥dtui∥l+1,Ω ≤ Cµ1/2hl∥∂tu∥L1(I;Hl+1(Ω)) ,

where we used ∆tdtu
i =

∫︁ ti
ti−1 ∂tu(s)ds for the last inequality. Using this estimate,

together with eqs. (4.5a) and (4.5b), we find:

n∑︂
i=1

Ei =C

n∑︂
i=1

[︃
µ1/2∆t|||dteI,iu |||v + (2c0)

1/2∆t(∥∂tpi − dtp
i∥Ω + ∥dteI,ip ∥Ω)

+ λ−1/2∆t
(︂
α∥∂tpi − dtp

i∥Ω + α∥dteI,ip ∥Ω + ∥∂tpiT − dtp
i
T ∥Ω + ∥dteI,ipT ∥Ω

)︂]︃
,

≤Cµ1/2hl∥∂tu∥L1(I;Hl+1(Ω))

+ Cmax {c1/20 , λ−1/2}
(︁
∆t ∥∂ttp, ∂ttpT ∥L1(I;L2(Ω)) + hl ∥∂tp, ∂tpT ∥L1(I;Hl(Ω))

)︁
.

(4.18)

Next, by eq. (4.1),

n∑︂
i=1

Di =
n∑︂
i=1

κ−1

2
∆t∥eI,iz ∥2Ω ≤ Cκ−1(∆t)h2l

n∑︂
i=1

∥z(ti)∥2Hl(Ω)

≤ Cκ−1Th2l∥z∥2C0(I;Hl(Ω)),

(4.19)

where in the last inequality n∆t ≤ T is used. Combining eq. (4.17) with eqs. (4.18)
and (4.19) and the coercivity of ah eq. (3.4), we find:

c
1/2
0 ∥eh,np ∥

Ω
+ λ−1/2 ∥αeh,np − eh,npT ∥

Ω
+ µ1/2|||eh,nu |||v + κ−1/2

(︂ n∑︂
i=1

∆t ∥eh,iz ∥2Ω
)︂1/2

≤Cµ1/2hl∥∂tu∥L1(I;Hl+1(Ω))

+ Cmax {c1/20 , λ−1/2}
(︁
∆t ∥∂ttp, ∂ttpT ∥L1(I;L2(Ω)) + hl ∥∂tp, ∂tpT ∥L1(I;Hl(Ω))

)︁
+ Cκ−1/2T 1/2hl∥z∥C0(I;Hl(Ω))

≤c1∆t+ c2h
l

(4.20)
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where

c1 =Cmax {c1/20 , λ−1/2} ∥∂ttp, ∂ttpT ∥L1(I;L2(Ω))

≤Cmax {c1/20 , λ−1/2} ∥p, pT ∥W 2,1(I;L2(Ω)) ,

c2 =C
(︁
µ1/2∥∂tu∥L1(I;Hl+1(Ω)) +max {c1/20 , λ−1/2} ∥∂tp, ∂tpT ∥L1(I;Hl(Ω))

+ κ−1/2T 1/2∥z∥C0(I;Hl(Ω))

)︁
.

Next, by eq. (4.4), the triangle inequality, and the approximation error eq. (4.20),

c
1/2
0 ∥pn − pnh∥Ω + λ−1/2 ∥α(pn − pnh)− (pnT − pnTh)∥Ω + µ1/2|||un − unh|||v

+ κ−1/2
(︂ n∑︂
i=1

∆t ∥zi − zih∥
2

Ω

)︂1/2

≤c1/20 ∥eI,np ∥
Ω
+ λ−1/2 ∥αeI,np − eI,npT ∥

Ω
+ µ1/2|||eI,nu |||v +

(︂
2
n∑︂
i=1

Di
)︂1/2

+ c1∆t+ c2h
l.

(4.21)

Note that

c
1/2
0 ∥eI,np ∥

Ω
≤ Cc

1/2
0 hl ∥pn∥l,Ω ,

λ−1/2 ∥αeI,np − eI,npT ∥
Ω

≤ Cλ−1/2hl(∥pn∥l,Ω + ∥pnT ∥l,Ω),

µ1/2|||eI,nu |||v ≤ Cµ1/2hl ∥un∥l+1,Ω .

When combined with eqs. (4.19) and (4.21),

c
1/2
0 ∥pn − pnh∥Ω + λ−1/2 ∥α(pn − pnh)− (pnT − pnTh)∥Ω + µ1/2|||un − unh|||v

+ κ−1/2
(︂ n∑︂
i=1

∆t ∥zi − zih∥
2

Ω

)︂1/2

≤ c1∆t+ (c2 + c3)h
l,

(4.22)

where

c3 =C
(︂
c
1/2
0 ∥pn∥l,Ω + λ−1/2(∥pn∥l,Ω + ∥pnT ∥l,Ω) + µ1/2 ∥un∥l+1,Ω + κ−1/2T 1/2 ∥z∥C0(I;Hl(Ω))

)︂
=C

(︂
(c

1/2
0 + λ−1/2) ∥pn∥l,Ω + λ−1/2 ∥pnT ∥l,Ω + µ1/2 ∥un∥l+1,Ω + κ−1/2T 1/2 ∥z∥C0(I;Hl(Ω))

)︂
.

(4.23)
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Let us have a closer look at c2+c3. Using the Sobolev embeddingW s,q(I;Hl(Ω)) ↪→
C0(I;Hl(Ω)) for (s, q) = (1, 1) and (s, q) = (2, 1),

c2 + c3 ≤C
(︁
µ1/2 {︁∥∂tu∥L1(I;Hl+1(Ω)) + ∥un∥l+1,Ω

}︁
+ κ−1/2T 1/2∥z∥C0(I;Hl(Ω))

+max {c1/20 , λ−1/2}
{︁
∥∂tp, ∂tpT ∥L1(I;Hl(Ω)) + ∥pn∥l,Ω + ∥pnT ∥l,Ω

}︁ )︁
≤C

(︁
µ1/2 {︁∥∂tu∥L1(I;Hl+1(Ω)) + ∥u∥C0(I;Hl+1(Ω))

}︁
+ κ−1/2T 1/2∥z∥C0(I;Hl(Ω))

+max {c1/20 , λ−1/2}
{︁
∥∂tp, ∂tpT ∥L1(I;Hl(Ω)) + ∥p, pT ∥C0(I;Hl(Ω))

}︁ )︁
≤C

(︁
µ1/2 ∥u∥W 1,1(I;Hl+1(Ω)) + κ−1/2T 1/2∥z∥C0(I;Hl(Ω))

+max {c1/20 , λ−1/2} ∥p, pT ∥W 1,1(I;Hl(Ω))

)︁
,

proving eq. (4.8a).

Finally, eq. (4.8b) follows from eq. (4.4) and the triangle inequality, eq. (4.12),
eq. (4.20), and usual interpolation estimates for the L2-projection:

µ−1/2|||pnT − pnTh|||q ≤ µ−1/2|||eI,npT |||q + CAi

≤ c1∆t+
(︁
Cµ−1/2 ∥pnT ∥l,Ω + c2

)︁
hl

≤ c1∆t+
(︁
Cµ−1/2 ∥pT ∥C0(I,Hl(Ω)) + c2

)︁
hl

(4.24)

Let us have a closer look at the constant in front of the second term:

Cµ−1/2 ∥pT ∥C0(I,Hl(Ω)) + c2

≤C
(︁
µ1/2∥∂tu∥L1(I;Hl+1(Ω)) +max {c1/20 , λ−1/2} ∥∂tp, ∂tpT ∥L1(I;Hl(Ω))

+ κ−1/2T 1/2∥z∥C0(I;Hl(Ω)) + Cµ−1/2 ∥pT ∥C0(I,Hl(Ω))

)︁
≤C

(︁
µ1/2∥∂tu∥L1(I;Hl+1(Ω)) +max {c1/20 , µ−1/2} ∥p, pT ∥W 1,1(I;Hl(Ω))

+ κ−1/2T 1/2∥z∥C0(I;Hl(Ω))

)︁
,

where in the last step we used that C∗λ−1/2 ≤ µ1/2. This proves eq. (4.8b). ⊓⊔

We end this section by noting that the estimates in Theorem 4.1 for the dis-
placement, Darcy velocity, and total pressure are unconditionally robust in the
incompressible limit c0 → 0 and λ→ ∞.

5 Numerical examples

We now validate our theoretical analysis. As stated previously in remark 3.1,
the analysis in this paper holds both for HDG and EDG-HDG. As such, both
methods are implemented using the Netgen/NGSolve finite element library [41,
42]. Numerical results are compared to analytical solutions and some benchmark
problems.
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5.1 Convergence rates for a static problem

We consider a test case proposed in [31, Example 1]. Consider the static Biot
problem eq. (2.2) on Ω where eq. (2.2c) is replaced by

c0p+ λ−1α(αp− pT ) +∇ · z = g in Ω. (5.1)

We consider a domain Ω with four curved boundaries parametrized as

Γ1 =
{︁
ω ∈ [0, 1] : x1 = ω + γ cos(πω) sin(πω), x2 = −γ cos(πω) sin(πω)

}︁
,

Γ2 =
{︁
ω ∈ [0, 1] : x1 = 1 + γ cos(πω) sin(πω), x2 = ω − γ cos(πω) sin(πω)

}︁
,

Γ3 =
{︁
ω ∈ [1, 0] : x1 = ω + γ cos(πω) sin(πω), x2 = 1− γ cos(πω) sin(πω)

}︁
,

Γ4 =
{︁
ω ∈ [1, 0] : x1 = γ cos(πω) sin(πω), x2 = ω − γ cos(πω) sin(πω)

}︁
,

with γ = −0.08. We then define ΓD = Γ1 ∪ Γ3 ∪ Γ4, ΓP = Γ1 ∪ Γ2, ΓT = Γ2, and
ΓF = Γ3 ∪ Γ4. The solution to the Biot problem is taken as

u = a

[︄
sin(πx1) cos(πx2) + x21/(2λ)
− cos(πx1) sin(πx2) + x22/(2λ)

]︄
, p = b sin(πx1) sin(πx2). (5.2)

This solution eq. (5.2) is used to set the body force f , the source/sink term g,
and inhomogeneous boundary conditions. As parameters we set a = 10−4, b = π,
κ = 10−7, α = 0.1 and c0 = 10−5. We consider both mild incompressibility
(ν = 0.4) and quasi-incompressibility (ν = 0.49999) and consider two values for
E, namely E = 104 and E = 1. Furthermore, we consider the rates of convergence
for the lowest order (k = 1) and a higher order (k = 3) approximation (with k the
polynomial approximation in eq. (3.1)).

Theorem 4.1 does not present an estimate in the L2-norm for the displacement
and only a suboptimal estimate for the Darcy velocity. Nevertheless, since our main
objective here is to show the robustness of the discretization in the incompressible
limit, we present in Tables 5.1 and 5.2, for the HDG and EDG-HDG schemes,
respectively, the errors and rates of convergence of all unknowns in the L2-norm.
Let us first observe that the velocity and displacement converge at rate k+ 1 and
that the pressures converge at rate k. These are optimal rates of convergence.
We furthermore observe that the errors for all unknowns are independent of the
value of Poisson’s ratio ν and for the modulus of elasticity E. It is particularly
interesting to note that the choice E = 104 and ν = 0.49999 (corresponding to
λ ≈ 1.7 · 108) does not affect the quality of the approximation. This confirms the
robustness of the error estimates in Theorem 4.1 in the incompressible limit.

5.2 Convergence rates for the quasi-static problem

We now consider a manufactured solution for the quasi-static problem eq. (2.2)
on the unit square. We divide the boundary of our domain into

Γ1 = {(x1, x2) ∈ ∂Ω : x2 = 0} , Γ2 = {(x1, x2) ∈ ∂Ω : x1 = 1} ,
Γ3 = {(x1, x2) ∈ ∂Ω : x2 = 1} , Γ4 = {(x1, x2) ∈ ∂Ω : x1 = 0} ,
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Table 5.1 Rates of convergence for HDG the test case described in Section 5.1 for E = 1 or
E = 104, ν = 0.4 or ν = 0.49999, and for k = 1 or k = 3. Here r is the rate of convergence.

Cells ∥uh − u∥Ω r ∥pTh − pT ∥Ω r ∥zh − z∥Ω r ∥ph − p∥Ω r
k = 1, E = 104, ν = 0.4
384 4.2e-07 2.0 4.7e-02 1.1 5.6e-09 2.1 1.3e-01 1.0
1536 1.1e-07 2.0 2.2e-02 1.1 1.3e-09 2.1 6.3e-02 1.0
6144 2.6e-08 2.0 1.0e-02 1.1 3.3e-10 2.0 3.2e-02 1.0
24576 6.6e-09 2.0 5.0e-03 1.0 8.1e-11 2.0 1.6e-02 1.0
k = 1, E = 104, ν = 0.49999
384 4.3e-07 2.0 6.7e-02 1.2 3.9e-09 2.1 1.3e-01 1.0
1536 1.1e-07 2.0 2.9e-02 1.2 9.6e-10 2.0 6.3e-02 1.0
6144 2.7e-08 2.0 1.3e-02 1.1 2.4e-10 2.0 3.2e-02 1.0
24576 6.7e-09 2.0 6.3e-03 1.1 5.9e-11 2.0 1.6e-02 1.0
k = 3, E = 104, ν = 0.4
384 3.2e-10 4.0 9.1e-05 3.0 5.0e-12 4.0 1.8e-04 3.0
1536 2.0e-11 4.0 1.1e-05 3.1 3.0e-13 4.0 2.3e-05 3.0
6144 1.2e-12 4.0 1.3e-06 3.0 1.8e-14 4.0 2.8e-06 3.0
24576 7.6e-14 4.0 1.7e-07 3.0 1.1e-15 4.0 3.5e-07 3.0
k = 3, E = 104, ν = 0.49999
384 3.6e-10 4.0 1.7e-04 3.1 2.6e-12 4.0 1.8e-04 3.0
1536 2.2e-11 4.0 2.0e-05 3.1 1.6e-13 4.0 2.3e-05 3.0
6144 1.4e-12 4.0 2.4e-06 3.1 1.0e-14 4.0 2.8e-06 3.0
24576 8.5e-14 4.0 2.9e-07 3.0 6.4e-16 4.0 3.5e-07 3.0
k = 1, E = 1, ν = 0.4
384 6.2e-07 3.6 1.3e-02 1.0 3.7e-09 2.1 1.3e-01 1.0
1536 1.1e-07 2.5 6.3e-03 1.0 9.6e-10 2.0 6.3e-02 1.0
6144 2.6e-08 2.1 3.2e-03 1.0 2.6e-10 1.9 3.2e-02 1.0
24576 6.6e-09 2.0 1.6e-03 1.0 7.2e-11 1.9 1.6e-02 1.0
k = 1, E = 1, ν = 0.49999
384 6.4e-07 3.7 1.3e-02 1.0 3.9e-09 2.1 1.3e-01 1.0
1536 1.1e-07 2.5 6.3e-03 1.0 9.5e-10 2.0 6.3e-02 1.0
6144 2.7e-08 2.0 3.2e-03 1.0 2.4e-10 2.0 3.2e-02 1.0
24576 6.7e-09 2.0 1.6e-03 1.0 5.9e-11 2.0 1.6e-02 1.0
k = 3, E = 1, ν = 0.4
384 3.4e-10 4.1 1.8e-05 3.0 2.2e-12 3.7 1.8e-04 3.0
1536 2.0e-11 4.1 2.3e-06 3.0 2.0e-13 3.5 2.3e-05 3.0
6144 1.2e-12 4.0 2.8e-07 3.0 1.6e-14 3.7 2.8e-06 3.0
24576 7.6e-14 4.0 3.5e-08 3.0 1.1e-15 3.9 3.5e-07 3.0
k = 3, E = 1, ν = 0.49999
384 3.6e-10 4.0 1.8e-05 3.0 2.6e-12 4.0 1.8e-04 3.0
1536 2.2e-11 4.0 2.3e-06 3.0 1.6e-13 4.0 2.3e-05 3.0
6144 1.4e-12 4.0 2.8e-07 3.0 1.0e-14 4.0 2.8e-06 3.0
24576 8.5e-14 4.0 3.5e-08 3.0 6.4e-16 4.0 3.5e-07 3.0

and set ΓD = Γ1 ∪ Γ3 ∪ Γ4, ΓP = Γ1 ∪ Γ2, ΓT = Γ2, and ΓF = Γ3 ∪ Γ4. As exact
solution we take

u =

[︄
sin(πt) sin(πx1) sin(πx2)
sin(πt) sin(πx1) cos(πx2)

]︄
, p = sin(π(x1 − x2 − t)), (5.3)

and set body force terms, source/sink terms, initial and boundary conditions ac-
cordingly. As parameters we set E = 104, κ = 10−2, α = 0.1, c0 = 0.1, ν = 0.2.
We consider the solution over the time interval I = (0, 0.1] and show the rates
of convergence at t = 0.1 in Table 5.3 for HDG and EDG-HDG using k = 1 and
k = 2. We are interested in the spatial rates of convergence and so we implement
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Table 5.2 Rates of convergence for EDG-HDG the test case described in Section 5.1 for E = 1
or E = 104, ν = 0.4 or ν = 0.49999, and for k = 1 or k = 3. Here r is the rate of convergence.

Cells ∥uh − u∥Ω r ∥pTh − pT ∥Ω r ∥zh − z∥Ω r ∥ph − p∥Ω r
k = 1, E = 104, ν = 0.4
384 5.4e-07 2.1 7.1e-02 1.3 7.7e-09 2.2 1.3e-01 1.0
1536 1.3e-07 2.0 2.9e-02 1.3 1.7e-09 2.2 6.3e-02 1.0
6144 3.2e-08 2.0 1.3e-02 1.2 3.7e-10 2.2 3.2e-02 1.0
24576 8.1e-09 2.0 5.7e-03 1.1 8.7e-11 2.1 1.6e-02 1.0
k = 1, E = 104, ν = 0.49999
384 5.4e-07 2.1 1.6e-01 1.4 3.9e-09 2.1 1.3e-01 1.0
1536 1.3e-07 2.0 6.0e-02 1.4 9.6e-10 2.0 6.3e-02 1.0
6144 3.3e-08 2.0 2.3e-02 1.4 2.4e-10 2.0 3.2e-02 1.0
24576 8.1e-09 2.0 9.5e-03 1.3 5.9e-11 2.0 1.6e-02 1.0
k = 3, E = 104, ν = 0.4
384 3.4e-10 4.0 9.8e-05 3.1 5.3e-12 4.0 1.8e-04 3.0
1536 2.1e-11 4.0 1.2e-05 3.1 3.2e-13 4.1 2.3e-05 3.0
6144 1.3e-12 4.0 1.4e-06 3.0 1.9e-14 4.0 2.8e-06 3.0
24576 8.1e-14 4.0 1.7e-07 3.0 1.2e-15 4.0 3.5e-07 3.0
k = 3, E = 104, ν = 0.49999
384 4.0e-10 4.0 2.0e-04 3.2 2.6e-12 4.0 1.8e-04 3.0
1536 2.4e-11 4.0 2.3e-05 3.1 1.6e-13 4.0 2.3e-05 3.0
6144 1.5e-12 4.0 2.6e-06 3.1 1.0e-14 4.0 2.8e-06 3.0
24576 9.2e-14 4.0 3.1e-07 3.1 6.4e-16 4.0 3.5e-07 3.0
k = 1, E = 1, ν = 0.4
384 7.0e-07 3.3 1.3e-02 1.0 3.9e-09 2.0 1.3e-01 1.0
1536 1.3e-07 2.4 6.3e-03 1.0 1.1e-09 1.9 6.3e-02 1.0
6144 3.2e-08 2.1 3.2e-03 1.0 3.0e-10 1.8 3.2e-02 1.0
24576 8.0e-09 2.0 1.6e-03 1.0 7.8e-11 1.9 1.6e-02 1.0
k = 1, E = 1, ν = 0.49999
384 7.2e-07 3.4 1.3e-02 1.0 3.9e-09 2.1 1.3e-01 1.0
1536 1.4e-07 2.4 6.3e-03 1.0 9.5e-10 2.0 6.3e-02 1.0
6144 3.3e-08 2.1 3.2e-03 1.0 2.4e-10 2.0 3.2e-02 1.0
24576 8.1e-09 2.0 1.6e-03 1.0 5.9e-11 2.0 1.6e-02 1.0
k = 3, E = 1, ν = 0.4
384 3.7e-10 4.1 1.8e-05 3.0 2.3e-12 3.6 1.8e-04 3.0
1536 2.2e-11 4.1 2.3e-06 3.0 2.1e-13 3.5 2.3e-05 3.0
6144 1.3e-12 4.0 2.8e-07 3.0 1.6e-14 3.7 2.8e-06 3.0
24576 8.1e-14 4.0 3.5e-08 3.0 1.1e-15 3.9 3.5e-07 3.0
k = 3, E = 1, ν = 0.49999
384 4.0e-10 4.0 1.8e-05 3.0 2.6e-12 4.0 1.8e-04 3.0
1536 2.4e-11 4.0 2.3e-06 3.0 1.6e-13 4.0 2.3e-05 3.0
6144 1.5e-12 4.0 2.8e-07 3.0 1.0e-14 4.0 2.8e-06 3.0
24576 9.2e-14 4.0 3.5e-08 3.0 6.4e-16 4.0 3.5e-07 3.0

a second order backward differentiation formulae (BDF2) time stepping scheme
and take a time step of ∆t = 10−3 so that spatial errors dominate over temporal
errors. In Table 5.3, we observe optimal rates of convergence for all unknowns,
both for the HDG and EDG-HDG schemes. Furthermore, note that although the
error in the total pressure is relatively large, this has no effect on the errors in
the displacement, velocity and pore pressure of the fluid, which are all magnitudes
smaller.
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Table 5.3 Rates of convergence for HDG and EDG-HDG for the test case described in Sec-
tion 5.2 for k = 1 and k = 2. Here dofs are the total number of degrees-of-freedom and r is
the rate of convergence.

Dofs ∥uh − u∥Ω r ∥pTh − pT ∥Ω r ∥zh − z∥Ω r ∥ph − p∥Ω r

HDG

k = 1
896 1.7e-02 2.5 7.2e+02 1.1 4.1e-03 0.9 1.9e-01 0.7
3456 4.1e-03 2.1 3.6e+02 1.0 1.1e-03 1.9 9.3e-02 1.0
13568 1.0e-03 2.0 1.8e+02 1.0 3.0e-04 1.9 4.6e-02 1.0
53760 2.5e-04 2.0 9.0e+01 1.0 7.6e-05 2.0 2.3e-02 1.0
k = 2
1632 1.7e-03 1.6 1.1e+02 1.0 3.5e-04 3.3 2.8e-02 2.3
6336 2.1e-04 3.0 2.7e+01 2.0 4.3e-05 3.0 7.0e-03 2.0
24960 2.7e-05 3.0 6.8e+00 2.0 5.3e-06 3.0 1.8e-03 2.0
99072 3.4e-06 3.0 1.7e+00 2.0 6.8e-07 3.0 4.4e-04 2.0

EDG-HDG

k = 1
722 2.2e-02 2.3 7.4e+02 1.1 4.9e-03 0.4 1.8e-01 0.6
2786 5.5e-03 2.0 3.7e+02 1.0 1.2e-03 2.0 9.2e-02 1.0
10946 1.3e-03 2.0 1.8e+02 1.0 3.0e-04 2.0 4.6e-02 1.0
43394 3.3e-04 2.0 9.2e+01 1.0 7.5e-05 2.0 2.3e-02 1.0
k = 2
1458 1.8e-03 1.6 1.1e+02 1.1 4.4e-04 3.0 2.8e-02 2.3
5666 2.4e-04 2.9 2.8e+01 2.0 5.5e-05 3.0 7.0e-03 2.0
22338 3.0e-05 3.0 6.9e+00 2.0 6.7e-06 3.0 1.8e-03 2.0
88706 3.7e-06 3.0 1.7e+00 2.0 8.5e-07 3.0 4.4e-04 2.0

5.3 The footing problem

The two-dimensional footing problem has been proposed in the literature to
study the locking-free properties of numerical methods for the Biot equations [16,
31]. We follow here the setup of [2] and consider the domain Ω = (−50, 50)×(0, 75)
and model parameters κ = 10−4, c0 = 10−3, α = 0.1, E = 3 · 104, and ν = 0.4995
(so that λ ≈ 107). We define the boundaries Γ1 =

{︁
(x1, x2) ∈ ∂Ω, |x1| ≤ 50/3, x2 = 75

}︁
,

Γ2 =
{︁
(x1, x2) ∈ ∂Ω, |x1| > 50/3, x2 = 75

}︁
, and Γ3 = ∂Ω\(Γ1 ∪ Γ2) and impose

the following boundary conditions:

σn = (0,−σ0)T on Γ1, σn = 0 on Γ2, u = 0 on Γ3, p = 0 on ∂Ω,

where σ0 = 104. As initial conditions we impose u(x, 0) = 0 and p(x, 0) = 0. We
solve this problem with HDG until T = 50 using BDF2 time stepping. We choose
a time step of size ∆t = 1, take k = 2 in our finite element spaces, and compute
the solution on an unstructured mesh consisting of 169984 simplices.

We show the solution to this problem at time t = 50 in Figure 5.1. In this
incompressible limit we observe that the discretization results in pressure and
displacement solutions are free of, respectively, spurious oscillations and locking
effects.
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(a) Displacement u. (b) Darcy velocity z.

(c) Fluid pressure p. (d) Total pressure pT .

Fig. 5.1 The solution to the footing problem of Section 5.3 in the deformed domain at t = 50.

5.4 The cantilever bracket problem

The cantilever bracket problem was used in [2,29,33] to study locking phe-
nomena at low permeability and when the storage coefficient is zero. Consider the
domain Ω = (0, 1)2 and define

Γ1 =
{︁
(x1, x2) ∈ ∂Ω, x2 = 0

}︁
, Γ2 =

{︁
(x1, x2) ∈ ∂Ω, x1 = 1

}︁
,

Γ3 =
{︁
(x1, x2) ∈ ∂Ω, x2 = 1

}︁
, Γ4 =

{︁
(x1, x2) ∈ ∂Ω, x1 = 0

}︁
.

We impose the boundary conditions

z · n = 0 on ∂Ω, σn = (0,−1)T on Γ3, σn = 0 on Γ1 ∪ Γ2, u = 0 on Γ4.

At t = 0 we set u = 0 and p = 0. The model parameters are chosen as E = 105,
ν = 0.4, α = 0.93, c0 = 0, and κ = 10−7 [33]. As shown in [33], with these para-
meters continuous Galerkin numerical methods show spurious oscillations in the
pressure on a very short time interval. Therefore, we consider here the time inter-
val I = [0, 0.005]. In our discretization we combine the EDG-HDG discretization
with BDF2 time stepping, choose a time step of ∆t = 0.001, set k = 2 in our finite
element spaces, and compute the solution on a mesh consisting of 128 simplices.

We plot the solution in Figure 5.2. In Figure 5.2a we observe that the pressure
field at t = 0.001 is free from spurious oscillations, similar to the discontinuous
Galerkin solutions obtained in [33]. We further show in Figure 5.2b that the pres-
sure solution along the lines x = 0.26, x = 0.33, x = 0.4, and x = 0.46 at t = 0.005
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(a) Pressure p at t = 0.001. (b) Pressure p along different x-lines.

Fig. 5.2 The solution to the cantilever bracket problem Section 5.4 using EDG-HDG. Left:
the pressure solution at t = 0.001. Right: the pressure solution along different x-lines at time
t = 0.005.

is free of oscillations, agreeing with other stable finite element methods for this
problem [2,29,33].

6 Conclusions

An HDG and an EDG-HDG method have been presented and analyzed for the
total pressure formulation of the quasi-static poroelasticity model. Both discretiz-
ation methods are shown to be well-posed and space-time a priori error estimates
show robustness of the proposed methods when λ→ ∞ and c0 → 0; both methods
are free of volumetric locking. Numerical examples confirm our theory and further
show optimal spatial rates of convergence in the L2-norm.
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A The inf-sup condition for bh((wh, 0), qh)

By definition of bh eq. (3.3b),

bh((wh, 0), qh) := −(qh,∇ · wh)Ω⏞ ⏟⏟ ⏞
=:b1

h
(wh,qh)

+ ⟨q̄h, wh · n⟩∂T⏞ ⏟⏟ ⏞
=:b2

h
(wh,q̄h)

∀wh ∈ Vh,∀qh ∈ Q0
h. (A.1)

Let qh ∈ Qh. It is known (see, for example, [13, Section 4.1.4] or [28, Remark 3.3]) that there

exists w ∈ [H1
0,ΓF

(Ω)]
d := {v ∈ [H1(Ω)]

d : v|ΓF
= 0} such that

−(∇ · w, qh)Ω = ∥qh∥2Ω , ∥w∥1,Ω ≤ C∥qh∥Ω , (A.2)

for some positive constant C that only depends on Ω. Let ΠV : [H1(Ω)]
d → Vh be the

BDM interpolation operator [8, Section III.3] and observe that by the single-valuedness of q̄h,
continuity of ΠV w · n across interior faces, and since q̄h = 0 on ΓP and w = 0 on ΓF ,

b2h(ΠV w, q̄h) = ⟨q̄h, ΠV w · n⟩ΓF
= 0,

i.e.,ΠV w ∈ Ker b2 := {wh ∈ Vh : b2h(wh, q̄h) = 0 ∀q̄h ∈ Q̄h}. Recall also that (qh,∇·ΠV w)Ω =
(qh,∇ · w)Ω and ∥ΠV w∥Ω ≤ C∥w∥1,Ω . Then, by eq. (A.2),

sup
0 ̸=wh∈Ker b2

b1h(wh, qh)

∥wh∥Ω
≥

−(qh,∇ ·ΠV w)Ω
∥ΠV w∥Ω

≥
∥qh∥2Ω
C∥qh∥Ω

= C∥qh∥Ω .

Next, let wh := Lq̄h ∈ Pk(K)d where L is the local BDM interpolation operator [8] such that

(Lq̄h) · n = q̄h, ∥Lq̄h∥K ≤ Ch
1/2
K ∥q̄h∥∂K , K ∈ T . (A.3)

Then

sup
0 ̸=wh∈Vh

b2h(wh, q̄h)

∥wh∥Ω
≥

∥q̄h∥2∂T
∥wh∥Ω

≥
∥q̄h∥2∂T

C
∑︁
K∈T h−1

K ∥wh∥Ω

≥ Chminh
−1
max

(︂ ∑︂
K∈T

hK∥q̄h∥2∂K
)︂1/2

.

Therefore, by [20, Theorem 3.1],

sup
0 ̸=wh∈Vh

bh((wh, 0), qh)

∥wh∥Ω
= sup

0 ̸=wh∈Vh

b1h(wh, qh) + b2h(wh, q̄h)

∥wh∥Ω

≥ C
(︂
∥qh∥Ω + hminh

−1
max

(︁ ∑︂
K∈T

hK∥q̄h∥2∂K
)︁)︂

≥ C|||qh|||q .
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B Error estimates following from Taylor’s theorem

We prove here eqs. (4.5a) and (4.5b). Let D ⊂ Rd. Then for ψ a regular enough function
defined on [0, T ]×D, using Taylor’s theorem,

∆t∥∂tψm − dtψ
m∥0,D = ∥∆t∂tψm − (ψm − ψm−1)∥0,D

= ∥
∫︂ tm

tm−1

∂ttψ(t) (t− tm−1)⏞ ⏟⏟ ⏞
≤∆t

dt∥0,D

≤ ∆t

∫︂ tm

tm−1

∥∂ttψ(t)∥0,D dt

= ∆t∥∂ttψ∥L1(tm−1,tm;L2(D)),

from which eq. (4.5a) follows. Next, to show eq. (4.5b) we use the identity

∆tdte
I,m
ψ =

∫︂ tm

tm−1
(∂tψ(s)−ΠQ∂tψ(s)) ds,

and eq. (4.1). Then, by the approximation property of the L2-projection,

∆t

n∑︂
m=1

∥dteI,mψ ∥0,D ≤
n∑︂

m=1

∫︂ tm

tm−1
∥∂tψ(s)−ΠQ∂tψ(s))∥0,D ds

≤ Chl∥∂tψ∥L1(I;Hl(D)).
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