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Modélisation Mathématique et Analyse Numérique

A STRONGLY CONSERVATIVE HYBRIDIZABLE DISCONTINUOUS
GALERKIN METHOD FOR THE COUPLED TIME-DEPENDENT
NAVIER-STOKES AND DARCY PROBLEM

AvciL CESMELIOGLU!, JEONGHUN J. LEE? AND SANDER RHEBERGEN?®

Abstract. We present a strongly conservative and pressure-robust hybridizable discontinuous Galer-
kin method for the coupled time-dependent Navier—Stokes and Darcy problem. We show existence and
uniqueness of a solution and present an optimal a priori error analysis for the fully discrete problem
when using Backward Euler time stepping. The theoretical results are verified by numerical examples.
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1. INTRODUCTION

In this paper we present an analysis of a hybridizable discontinuous Galerkin (HDG) method for the coupled
Navier-Stokes and Darcy equations that model surface/subsurface flow. While various conforming and noncon-
forming finite element methods have been studied for the stationary Navier—Stokes and Darcy problem, see for
example [3,13,14,18,19,22,23], the literature on numerical methods for the time-dependent problem is limited.
The first numerical methods for the time-dependent problem were studied in [10,11]. To simplify the analysis,
however, these papers included inertia effects in the balance of forces at the interface. Existence and uniqueness
of a weak solution to the physically more relevant model, without inertia effects on the interface, was proven
in [7], while convergence of a discontinuous Galerkin method for this model was proven in [12]. Conforming
methods for the transient problem have been studied in [25,43].

The aforementioned papers for the time-dependent Navier—Stokes and Darcy problem have in common that
they consider the primal form of the Darcy problem. In contrast, we consider the mixed form of the Darcy
problem as this facilitates the formulation of a strongly conservative discretization, i.e., a discretization that
is mass conserving in the sense of H(div;)) where the velocity is globally H(div;)-conforming and, in the
absence of sources and sinks, pointwise divergence-free on the elements [28]. In particular, we consider an
HDG method [15] that is based on the HDG method for the Navier—Stokes equations [35] and a hybridized
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formulation of the mixed form of the Darcy problem [2], although nonconforming formulations based on other
strongly conservative discretizations, for example, [16,21,31,41], are possible.

Previously, we proved pressure-robustness of strongly conservative HDG methods for the Stokes/Darcy [9]
and stationary Navier—-Stokes/Darcy [8] problems, leading to a priori error estimates for the velocity that do
not depend on the best approximation of the pressure scaled by the inverse of the viscosity (see [27,32] for a
review of other pressure-robust discretizations). Using Backward Euler time stepping we now show existence
and uniqueness of a solution and derive an a priori error estimate to the fully-discrete time-dependent problem.
Compared to previous work on the time-dependent Navier—Stokes/Darcy problem [7,10-12,25,43], the novel
contributions of this work is therefore the introduction and analysis of a strongly conservative HDG discretization
and an a priori error estimate for the velocity that is independent of pressure.

The remainder of this paper is organized as follows. We present the time-dependent Navier—Stokes/Darcy
problem in section 2 and its HDG discretization in section 3. Consistency and well-posedness of the discrete
problem are shown in section 4 while a priori error estimates are proven in section 5. We end this paper with
numerical examples in section 6 and conclusions in section 7.

2. THE NAVIER-STOKES AND DARCY PROBLEM

We consider the time-dependent incompressible Navier—Stokes equations coupled to the Darcy equations on
a polyhedral domain € in R4™, dim = 2,3, and on the time interval J = (0,7). The domain is partitioned into
two non-overlapping subdomains Q° and Q¢ such that Q = Q*UQ4, Q* N QY = 0, and T := 9Q° N 9N?. The
boundary of the domain 9 and the interface I'! are assumed to be Lipschitz polyhedral. We define I'* and T'¢
to be the exterior boundaries of Q° and Q%, respectively. We partition I'Y :== ', UT'%, with I'4, N T4 = 0 and
14| > 0 and |T'%| > 0, and denote the outward unit normal on TV to Q7 (j = s,d) by n.

The Navier—Stokes equations are given by

O’ + V- (u* @u®) + Vp* =V - (2ue(u®)) = f* in Q% x J, (1a)
Vou' =0 in Q° x J, (1b)

where u® : Q% x J — RY™ is the velocity in Q°, p* : Q° x J — RYU™ is the pressure in Q°, e(w) = 3(Vw+(Vw)T),
p > 0 is the constant fluid viscosity, and f* : Q° x J — RY™ is a body force. In Q% the Darcy equations are
given by:

k" tud + Vpd =0 in Q¢ x J, (2a)
—V-ul =yl in Q4 x J, (2b)
where u? : Q¢ x J — RY™ ig the fluid velocity in Q%, p? : Q¢ x J — R is the piezometric head in Q¢ and x > 0

is the permeability constant. The Navier—Stokes equations are coupled to the Darcy equations by the following
interface conditions

ut n=ul-n on ' x J, (3a)
—2u(e(u®)n)t = apr 2 (u®)! on T x J, (3b)
(p*n — 2ue(u®)n) -n = p? on T x J, (3c)

where n is the unit normal vector on I'! pointing from Q° to Q¢, (v)! := v — (v-n)n is the tangential component
of a vector v, and o > 0 is an experimentally determined dimensionless constant. Note that eq. (3a) ensures
continuity of the normal component of the velocity across the interface, eq. (3b) is the Beavers—Joseph—Saffman
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law [4,38], and eq. (3¢) is a balance of forces. We assume the following initial and boundary conditions:

u®(z,0) = ug(x) in Q°, (4a)
u®=0 on I'* x J, (4b)
ul-n = on IT'Y x J, (4c)
pl=0 on 'Y x J, (4d)

where ug : Q% — RY™ is a solenoidal initial velocity field. We close this section by introducing v : 2% J — Rdim
and p: Q x J — R to be the functions such that u|q; = v/ and plg; = p? for j = s,d.

3. THE HDG METHOD

3.1. Notation

Let j = s,d. We denote by 773 = {K} a conforming triangulation of Q7 of shape-regular simplices K. Our
goal is to present a strongly conservative and pressure robust HDG discretization. A necessary requirement for
our discretization to achieve this is that the velocity field is globally H (div;2)-conforming [35,36]. For this
reason we assume that 7, = 7,° U T4 is a matching simplicial mesh, i.e., 7,° and 7, match at the interface.
Without this assumption, technical complications may arise to obtain a globally H(div;Q)-conforming velocity
field. We denote by hy the diameter of K € 7T;, and define the meshsize as h := maxge7;, hx. A face F is an
interior face if for two elements K+ and K~ in Th, F'= 0K TNOK™, and a boundary face if F' € 0K lies on
the boundary 9. The set of all facets in O and @ are denoted by, respectively, F;, and .7-',];, while the set of all
facets on the interface I' is denoted by ]-',{. The set of all facets on I'V are denoted by ]-',? J while the set of all

facets interior to €/ are denoted by F, ;"t’j . The sets of facets on I'4, and T'¢, are denoted by, respectively, ]_-,]lv <

and .7-',? ) By I'p and Fg we denote the union of facets in @ and ©’. The outward unit normal vector on K
for any element K € 7;5 is denoted by n7. On the interface I'', n = n® = —n. We will drop the superscript j
if the definition of the outward unit normal vector is clear.

We partition the time interval J into N equal intervals of length At = T/N. We define t" := nAt for
n = 0,...,N and note that t° = 0 and t¥ = T. A function f evaluated at t = " will be denoted by
fm:= f(t"). Furthermore, we define 5"t = fntl — ™ and d, f**! = 5L /At = (f*H — ) /At

Denoting by P,,,(D) the space of polynomials of total degree m on a domain D, we define the following finite
element spaces for the velocity approximation:

dim

Do € [P(K)"™, VK €T},
o € [P(K)T, VK €T}, j=s,d,
Wy € [Po(F)™ V FeF*, v, =0onTl%}.

Xp, = {vp € [LA(Q)]
X = {on € [LA()]

dim

Xp = {o € [L2(T)"™

For notational purposes, we write v, = (vs,01) € Xp, = X x Xj, and v5 = (vi,v5) € X = X3 x Xp.
Furthermore, for the pressure approximation we define the finite element spaces
Qn = {qn € L*(2
Qi ={qn e L*(V): qne P 1(K), YK eT'}, j=sd,
Qp, = {a;, € L*(T}) : g3 € P(F)V F € F°},
Qf = {g} e L*M@Y): ¢} e P(F)VFeF% gl =0onT%}.

)i gn € Po1(K), VK €T},
J

. _e — — —d . . . . .
We write q;, = (qn, G}, ) € Qp, = Qn X Q), X Q), and q}, = (qn, 33) € Q% = Q) x Q.
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For scalar functions p and ¢, we define

(P, @)K :=/ pgdz, VK €Ty, (P, Qo :=/ pgds, VK €Ty,
K oK
<p7q>F = / pqu, FC 8K7 VK € 7;“ (p7q)ﬂj = Z (pvq)Ka .7: 87d7
" KeT}
<p7q>a7’}{ = Z <p7Q>8Ka j:S,d, (paq)Q = Z /pqua
KeTi KeTy, 'K
(P, dor, = > (P @ox, (p.g)rr =Y (p,q)r
K€ETh FeF}

Similar notation is used for vector- and matrix-valued functions.

3.2. The semi-discrete problem

An HDG method for the stationary Navier—Stokes and Darcy problem was proposed in [8]. Its extension to
the time-dependent problem is given by: Let u‘;’o € X; N H(div; Q°) be the initial condition for the velocity in
Q° such that V -} = 0 pointwise on each K € 7;*. For t € J, find (us(t),p,,(t)) € X4 x Q,, such that for all
(vh,q,) € Xn x Qy,

(Orun, vi)as + an(un; wn, va) + ba(vn, Py) + ba(un, q,) = (f5,vn)as + (f4 an)aa. (5)

The different forms are defined as:

aj (u,v) = (2ue(u),e(v))qs + (2ﬁuhl}1 (u—u),v—"v)ar; (6a)
— (2ue(u)n, v — v)ar: — (2ue(v)n, u — o7,
a(u,v) == (us " u, v)ga (6b)
al (a,0) := (apx12at, 0%, (6¢)
ak(u,v) :=aj (u,v) + a®(u,v) + o’ (a,7), (6d)
th(w;u,v) = — (u®w, Vo) + (3w - n(u+0),v — D)ars (6e)
T (fw el (u— ), 0 — B)ars + (- n) B,
ap(w; w,v) =t (w; w,v) + ak (u,v) (61)

where 8 > 0 is a penalty parameter and where a,LL is the linear part of aj. For the velocity-pressure coupling
we have, for j = s, d, the forms:

B0, 7)== (0, Y 0o + (@00 o,

b (0,) = — (@, 00,

bn(v,q) =0} (0,q°) +b," (9,8°) + bjl (v, q%) + 0, (2,77,

3.3. The fully-discrete problem

Using backward Euler time-stepping, and lagging the convective velocity in the nonlinear term, we obtain
the following linear implicit discretization: Let ufl’o € X; N H(div; Q%) be the initial condition for the velocity



TITLE WILL BE SET BY THE PUBLISHER 5

in ° such that V-u;° = 0 pointwise on each K € 7;*. Find (u*!, pi!) € X}, x Q;, with n > 0 such that for
all (vi,qp) € Xp X Qp:

(deui ™ on) e 4 an(upsup ™ vp) 4+ by (vn, P + bn(ul ™ gy) = (£ on)as + (F gn)qa.  (7)

Remark 3.1. As observed previously in [8] for the stationary Navier—Stokes and Darcy problem, the velocity

solution to eq. (7) satisfies the following properties: (i) it is exactly divergence-free on elements in Q% i.e.,

V - up = 0 pointwise on each K € 7;%; (ii) it satisfies —V - uf = Hded’” pointwise on each K € T (where

H‘é is the L2-projection operator into Q%); (iii) the velocity solution is globally divergence-conforming, i.e.,

up € H(div;Q); and (iv) uf - n = 4} - n pointwise on each F € F!. Furthermore, uZ’” -n = 0 on '} and
s,n s

u,” -n=0onTI".

4. WELL-POSEDNESS

4.1. Preliminary results

Let D be a domain. Norms on W} (D), LP(D) = W)(D), H*(D) = W (D), and L*(D) are denoted by,
respectively, ||~HW§(D), Il o (pys Il p» and [|-]| p. Furthermore, for two real numbers a, b, and a Banach space
X with norm |||y, L*(a,b; X) is defined as the space of square integrable functions from [a,b] into X with
norm ||l z2(qp:x) = (f: [ £()])% dt)'/2 and L>(a, b; X) is the space of essentially bounded functions from [a, b]
to X with norm || f| e (4 4. x) = esssuppa ) ()]l x-

On ©° and Q¢, we define the function spaces

X*i={ve HX(Q)%™ : y=0on T}, Q%= H'(2),
Xt ={ve Y (QHI™ . y.n=00nT%}, Q' ={ge H*(Q") : q=0o0nTH}.

On Q, we then define X := {v € H(div; Q) : u® € Xslud € X% and Q := {q € L?(Q) : ¢° € Q°, q? € Q}.
The trace space of X* on facets in I'§ is denoted by X. If u € X*, we denote its trace by u := ~vx (u) where
7x : X* — X is the trace operator restricting functions in X* to I'j. Similarly, the trace space of @’ on facets

T is denoted by Q’, Yoi 1 Q7 — @’ is the trace operator, and if ¢ € Q7, then g := vqi(q) € Q.
Using the notation X := X x X and Q 1= Q x Q° x Q°, we define
X(h) = Xn+ X, X°()=X;+X° X(h)=Xn+X, Q) :=Q,+Q.

As in [8], we define the following norms on the extended function spaces:

2 2 2 —t112
Il = = llvlly + vl + 175 v e X(h),
2 2 2 2 2 _t112
ol = = vl + > hklvls i = vl s + Mollg o + 101 v e X(h),
KeTp

2 2 2
gl = llla*ll;.. + lla”ll.q q € Q(h),
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where
2 2 - 2
ollls,s == > (IVollk +hg v = ollax)
KeT;
2 2 2
ollly s = llolls, + > hklols
KeTy
2 2 - 2 - _ 2
ollly.q = 1vllgiv: 00 + > Wt (o - nll + Y- bt =0) - nllpp s
FeFI\(FIUFDY) KeT
2 2 52 .
Il ; ==lallas + D hrll@llox s 5= s,d-
KeT}
Here [v - n] is the usual jump operator and HU”iind = ||v|\?zd + V- UH?N. Let us furthermore note that
lonlly s = ll(wn, {on ), o> where [[on]y ), o- is the standard discrete H'-norm of vy, in Q° [6]. Finally, we

will also require the following two norms on the pressure in Q%

2 2 — 2
lgnll} poa = > IVanli + R O 1 074 [ Yan € QF,
KeT FeF M AuFp
2 2 - _ 2 d
llanllly pq = Z (IVanllx + hi lan = nllox) Vg, € Q).
KeTg

That [|gn||, g is @ norm on Q¢ follows because [I'})| > 0.
The following inequalities will be used in the remainder of this paper (see [42, eq. (5.5)], [23, Theorem 4.4
and Proposition 4.5], and [17, Lemma 1.46]):

lloalll, < llwnlly, < cellonll, Vop € X, (8a)
[onllgs < epllvnlly pas < cplilvall, s Vo, € X, (8b)
d
lgnllge < Cpp||qh||1,h,9d < Cpp|||qh|||1,h,d Vg, € Qy, (8c)
Vil e rry < esigrllvnllypos < csirllvalll, Vv, € X, 72> 2, (8d)
Vllox < cwhil " vl Vo € Pu(K), K €T, (8e)
[ollox < cerh

where c., ¢p, Csi,r, and ¢y, are positive constants independent of h and At.
For b;, we have:

bn(vp,

eullanll, < sup  2nlvnadn) Va, € Qn, (99)
OgévheXh |||vhmu

bn(0, )] < cuelloll, llall, V(v.q) € X (1) x Q. (ob)

Due to the use of different function spaces, the inf-sup condition eq. (9a) is different from that proven in [8].
We therefore prove eq. (9a) in appendix A. Equation (9b) is proven in [8, Lemma 3]. For aj, a¢, and af, we
have that for all u,v € X (h),

d — _ — _ _
a5, (w, )| < pesellullly (vl o la(u,0)] < ps~Hullgallvlige, o' (@0)] < aps™ 2 ||@||p 10, (10)

where ¢, > 0 is a constant independent of h and At. For vj, € X, we have

2 - 2 o _ 2
a; (vn, o) 2 pcsllvnlly g a®(onvn) 2 pe~Honllga, ol (On,08) = aps™ 2 (|0} I (11)
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where the first inequality holds for 5 large enough and where ¢, > 0 is a constant independent of h and At. A
direct consequence of egs. (10) and (11) is that

Jag; (u,v)| < pegelull, vl Vu,v € X (h), (12a)

|t (vn, on)| = pegeonlly; Yoy € X, (12b)

where ¢k, := max(cS,, k™, ar™/?) > 0 and ¢~ = min(cS,, s, ax~/?) > 0 are constants independent of h
and At, and where eq. (12b) holds for § large enough.

We also recall the following inequality from [8, Lemma 4], [6, Proposition 3.4] related to the form ¢;,. Assuming
that wy,we € X°(h) N H(div; Q%) are such that V-w; = V-wy = 0 on each K € T* it holds for any u € X*(h),

v € X7 that

[th (w1 w, ) — th(we; w, v)| < cwllwr —wally oo [l Ol . (13)

where ¢, > 0 is a constant independent of h and At.
Assuming w € X*®(h) N H(div;Q*) is such that V- w = 0 on each K € 7%, then [8, Lemma 5]

lan (w; w, v)| < cacpllulll, o], Vu,v € X (h), (14a)
lan (w; wn, vp)| < cacpplllwnlll, llvnll, Yup, v, € Xy, (14b)

where cac = 2¢2 max(cwp ™ |[wlly j, g0 + Ches k=1 ar™1/2). Let us now define

Z;, = {von € X5, b (vn.a3) + b, (00, 45) = 0 Vaj, € Q1)

Zy:={vh€Xn: Y () (vn,q))+ b7 (0n, 7)) =0 Yg;, € Qy} .
Jj=s,d

If we X*(h)N H(div; Q) such that V-w = 0 on each K € 7,7 and |w - n|p < %,ucge/(c%q +¢2;4) on the
interface, and if 3 is large enough that the first inequality in eq. (11) holds, then it was shown in [8, Lemma 6]
that,

an(w; v, vn) 2 cacttll[vnll} Von € Zn, (15)

where cqe = min (3¢5, k71 ax™1/?).

Using a proof similar to [8, Lemma 1], it is straightforward to obtain the following result.

Lemma 4.1 (Consistency). Suppose that (u, p) is the solution to eqs. (1) to (4) that satisfiesu € L*(J; X), p €
L2(J;Q), and Opu € L?(J; L2(Q%)). Let u = (u,u) and p = (p,p*,p?) and assume that f5 € CO(J; L*(Q)dim)
and f% € CO(J; L?(Q9)). Then (u,p) satisfies eq. (5) for all t > 0.

4.2. Existence and uniqueness
We start this section with some auxiliary results.

Lemma 4.2. For pi’" and u'fl’" that satisfy eq. (7), there exists a cpq > 0, independent of h and At, such that

d, ~1y,.d,
Py ™ Ml p,a < cpares™ lluy ™ llga - (16)
Proof. We will prove eq. (16) in three dimensions only noting that the proof in two dimensions is similar. To
ease notation we will drop the “time” superscript n. The proof follows the proof of [34, Lemma 2.1] with
modifications made to take into account Brezzi-Douglas—Marini (BDM) elements and HDG facet functions.
The local degrees of freedom for the BDM element are [5, Proposition 2.3.2]:

<’Uh . n,h)aK, V7, € Rk(aK) and ('Uh,Zh)K, Yz, € Nk,Q(K), (17)
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where Ry, (0K) := {F € L?(0K) : 7|r € Px(F), VF C 0K} and Nj_5(K) is the Nédélec space. Therefore, given
ple Qi, we define wy, € V& N H(div; Q%) such that

<wh - n, Fh)aK = h;{l <p;ll —]32, Fh)aK V7, € Rk((’)K), VK € Ed, (18&)
(wh, Zh)K = —(sz, Zh)K VZh (S Nk_g(K), VK € Ed. (18b)

Since Vpt € VP, 1(K) C [Pr_a]® € Ni_o(K) and since pi — p € Ry, (9K), we obtain from eq. (18) that

_ _ g2

(wp, '”apflz *pi>az< = hKl IIPZ *ph”ak VK € 77«77 (19a)
2

(wn, VD) Kk = = IVPR I % VK € T (19b)

Setting now v; = 0 and g, = 0 in eq. (7), and after integration by parts, we find for all v, € V¢ that:

0= (/”'K’_luiavh)ﬂd - (pZ7 V- Uh)ﬂd + <pi,'Uh . nd>87_,fl (20)
= (ur™ ufy, vn)aa + (Vph, vn)ad — (P — Bh, on - n%)o7a-

Choose vj, = wp, with wy, defined in eq. (18). By eq. (19), eq. (20), and the definition of |||p‘fb|||ih’d, we find

2 — —
PRI . = (™ it wn) e < g™ luf g llwnl|ga - (21)

To find out more about ||wy||g4, let us define the norm ||-[|, , for functions in Vid N H(div; Q4):

2 2 2
lwnllan = lwnllge + Y~ hellwn - nll% . (22)
FeF{

Consider now a single element K and denote by Fx the set of faces of K. In an approach similar to that used
in the proof of [33, Lemma 4.4], we have:

lwnll% + D hellwn-nlz S sup [(wnza)x*+ sup  hcl(wn - n,Ph) el
FeFx 2 €EN—2(K)? TrhERK(OK)
HZ}LHK:l ”’Fth?K:l

= sup  [(Vph,zn)klP+  sup  hghiP[(ph — D TR)ox | (23)
zhE./\/kfz(K)S ’F’LERk(aK)
lznll g =1 17n 1l =1

2 _ 2
< IVPillx + ki Iph — Phllok »

where the first line on the right hand side is by using the degrees of freedom eq. (17), the second by definition
of wy, given by eq. (18), and the last is by the Cauchy—Schwarz inequality. Therefore, after summing eq. (23)
over all K in T,%:

2 2 2 _ _ 2 2
lwnllge <llwnllon < Y (IVPRIK +hxt 106 = Pillar) = PRI a0
KeTg

The result follows after combining this with eq. (21). O
An immediate consequence of eq. (8¢c) and Lemma 4.2 is that if pi’n and ui’" satisfy eq. (7), then for
1<n<N:

d, d, d, — d,
||phn||Qd < Cpp ||phn||17h7gd < Cpp|||phn|||1,h,d < Cralik ! ||uhn||Qd ) (24)
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where ciq = cppCpa-
The following result, which was shown in [12, Theorem 5.2], will be used to prove the next lemma: there
exists a constant ¢ > 0, independent of A and At, such that
s d
an,vn - n)ri| < cllanlly oo llvnllg: Von € V3, Van € Qf, (25)

where 17,;* = {v, € X} @ bs(vp,qn) =0 Vg, € Q3 } with bs(v, ¢) := —(q, V-v)qs JrZFeFi”t’SUff’s%qE’ []-n)r

Lemma 4.3. Let u;™", uh and ph be (part of) the solution to eq. (7). There exists a constant csq; > 0,
independent of h and At, such that for alln > 1

By ™ - m)er | < eoair luy " lga lluy™ [l - (26)

Proof. For ease of notation we will drop the “time” superscript n. Then, note that
|(Ph, g, - nyee| < [Bh — P @, - npr| + (P, @5, - nhpe | < 1B — P wi, - e + [P, wf, - n)pe ] (27)

Since uj is a solution to eq. (7), by Remark 3.1 we know that V- uj, = 0 and [uj]-n =0on F € F;""*U ff’s
so that uj € V7. Therefore, using eq. (25),

|(pfts - nyrr| < Cllugllge 17111 p0a - (28)
Next, using eq. (8¢) and Lemma 4.2, we note that
1
|(p pha“h n)rr| < ( Z hic ||uj, - ””31{ Z hi ”ph ph||8K)
KETS KETd
s 1ped dp? 2 (29)
<C|up [l ( Z b 1P — phllor)
KeT?
<Clujllqs pzml,h,d < Cur~* [[uh [l U%”Qd .
The result follows by combining eqgs. (24) and (27) to (29). d
For the remainder of this section we define
y={v} € Z; : |||'ui|||vS < %umin (caecszg( 127q + C?i,4) L , CacCop 1)}

Let us remark that by eq. (8d) with r =2, [v} - n[| p2pry < sucy.(c2, + ¢ 4) "t for all v € Bj. This result,
in combination with eq. (15), is used in the following lemma to prove a well-posedness result.

Lemma 4.4. For0 <n < N —1, let u]" € B}. Then eq. (7) has a unique solution (u} ™, pi*!) € X; x Q.

Proof. Consider eq. (7) for the solution at time level t**1 which we write here as:

A (g™ ) g + an(upup ™ vn) + by (v, i) + b (upt gy,)

=2 (" vn)ge + (" vn)as + (9" an)aa. (30)

Given u;" € Bj we remark that, by eq. (8d) with » = 2 and eq. (15),

& (Un, VR e + an (Ul v, v1) > caeptl|vnll? Vor € Zy, (31)
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Furthermore, by eq. (14b) and eq. (8b), we obtain the following boundedness result:

Az (U, vn)as + lan(uy s wn, va)| < (3760 + crm) llwnll llvall, Vs, v € X, (32)

where
_ 9.2 Lo 12 2 -1 s =1 . —1/2
cp = 2c; max (5 min (CyCoeCyn(Chg + C5ia) ™ s Cac) + Coes i, QK /2y,

Here ¢y is an upper bound for ¢, using that w;™ € Bj,. Since u;" € Bj, boundedness of the right hand side of
eq. (30) follows from the Cauchy-Schwarz inequality. Existence of a unique solution (u} "', pi™) € X x Q),

to eq. (7) is now a consequence of eq. (31), eq. (32), eq. (9) and [5, Theorem 3.4.3]. O

Lemma 4.4 guarantees existence and uniqueness of a solution (u)*!,p™) € X}, x @), at time level n + 1
provided that u}™ € Bj. However, Lemma 4.4 does not guarantee that ;" "' € Bj. Therefore, the remainder
of this section is dedicated to showing that uZ’nH € Bj under a smallness assumption on the data. First
o and At
a bound on [|uf[|, (see Lemma 4.6). The steps used to obtain these results are similar to [12]. In Lemma
4.7 we then impose a smallness assumption on the data to show existence and uniqueness of the solution
(uy,pp) € X5, x Q, for all time levels 1 <n < N.

The following lemmas will be proven in three dimensions with similar proofs holding for two dimensions. We
assume that f* € C°(J; L2(Q°)3) and f¢ € C°(J; L?(24)). It will furthermore be useful to define

. k
we obtain bounds on ||dsu;’

|, s (which are proven in Lemma 4.5) after which we prove

m . H
™= % Atz lde 5 gy + td Atz lde 44+ g (33)
aclt 3T ¢ k=1
(M™)? := (M°)? + LeepnG* + F™, (34)
where
HAL s _
M°:=(1+ Csdi(%)lm) I f ’1||L2(Qs)s + Csaifik ™ Cra Hfd’1||L2(Qd) (35)
1 1 2, 2 et 2
2 . __ - “sdi s,1 sdi~td d,1
G = g (S A I g + PG ) (36)

Lemma 4.5. Let uZ’O =0 and let M°, G, F™ and G™ be defined as in eqs. (33) to (36). Suppose that eq. (7)
has a solution (uf,pf) for all1 <k <n. Fork =1,

||dtuf;1

g S M°, (37a)
1
Furthermore, if uflk € Bj forall0 <k <n, withl <n <N —1, then

||dtus n+1

o S M. (38)

Proof. We first prove eq. (37). Choose v} = ui’l, a;, = pr’l, vl =0,¢l =0, and ¢ = 71—)271 in eq. (7). At
n = 0, since u;’o = 0, this reduces to:

s, 2 s, s, _s, S, —d,
ﬁlluhlllgs +ah(uh1’uh1)+a (uhl’uhl) (f91 1) +bd(uh ,(0,p 1)) (39)
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We bound the second term on the right hand side:

—d,1 d,1 a1 d1
|bd(uh (0,20 = [{py, a“h 'nd>87'}f‘:|<ph Jug - n)pr |

|<ph ’ulszl n)pr| < cogipk™ ||uh)1||Qd ||Ufll

Qs

where the first equality is by definition, the second equality is because pi’l and ui’l -n¢ are single-valued on

F e f,i"t’d, ]’)Z’l =0 on FdD and ui’l -n% =0 on Fﬁl\,, and the third equality is because u} € H(div;Q) (see
Remark 3.1). Finally, the inequality is by Lemma 4.3. Combining this with eq. (39), the coercivity of aj and
a’ eq. (11), and the Cauchy-Schwarz inequality,

_ d,1 1
a0 T Coditth ™ [Jug g lluy lg. > (40)

_ —s,1 2 )1
2 sl 2, a2 @R < 1 g

ﬁ ||“h

directly implying, after ignoring the non-negative second and third terms on the left hand side, and canceling
i

Qs

ldeay g < 1 e + csaipnn™ gyl ga - (41)
Furthermore, applying Young’s inequality to both terms on the right hand side of eq. (40) we also find:

— _s,1 2 1 s 2 2 s,1 2
Rl e+ pc sy YIS o A+ ™2 @ e < % 1/ gs + ;déw gy g + W Iy e - (42)
Choosing ¢ = 1/At and reordering,
s,1 sdz 2
||| s [ 15 e + ety [y - (43)

v,8 = 2,uc$ 2K2c3,

2
To further bound egs. (41) and (43) we require a bound on ||ui’1||m. To obtain this bound, we set n = 0 and
choose (vi, q,) = (u), —ph) in eq. (7) and recall that u;° = 0 to find

(dtUZ’17uZ’1)m +ap (uh,up) = (f*1,uy 1) s — (fd’lypi’l)szd

2
Using that (dtu‘;’l,u;’l)m = At! ||u‘;’1||QS, the Cauchy-Schwarz inequality, egs. (11) and (24), and Young’s
inequality,

1,2 ; 12 - d,1 1 , - d,1
L e + cenlle I+ e e < || I T
2 P 12 2 u? 2
< 5 5 e+ 5 e S8 7 e+ 5 e
(44)
Choosing ¢ = 2/At and ¢ = ux~!, we find from eq. (44), after reordering, that
12 KAt | o102 2

[[uh Ml < W ||fg’1\|L2(Qs)3 + iy ||fd’1||L2(Qd)3 : (45)

Equation (37a) follows from eq. (45) and eq. (41). Equation (37b) follows from eq. (45) and eq. (43).

We proceed with proving eq. (38). Let 1 <n < N — 1. Consider eq. (7) at time levels n + 1 and n:

(dtui7n+1 UZ)QS + ah(uzg n+17 h) + bh(’l}h,pz+l> + bh(uz+17 qh,) = (f87n+17’uh)ﬂs + (fd7n+17 qh)Qd7

(dyuy™, ) e + an ()~ s ult, vp) + ba(vn, PR) + bn(ul, @) = (F5" vn)as + (f4", qn)qa



12 TITLE WILL BE SET BY THE PUBLISHER

n+1)

Subtracting the latter from the former, choosing (v, q,) = (§uh —0p and noting that

th(uy ™l Sul ) — by (wp ™ u, sul )

=t (up ™ oy Sup )+t (up s u, Sup ) =t (up ™ g, dup ),
we find

1

At (5’U/é ,n+1 _ 6u2n, 5’[1,5 n+1)

o Ftn(uy” ,uh,éuzﬂ) —tp(uy"™ L uh,éu}fl)

+an(up™; dul ™t Sul Ty = (550 sus ™ g + (84 Spt T ga.  (46)

Equation (8d) and qu’k € By, imply |[uf - nllp; < ucs (2, + ¢ 4)7" for 0 < k < n. Therefore, coercivity of
ap, eq. (15) holds. Also using the Cauchy—Schwarz inequality and eq. (8b):

1

+1 , 1 1, 1
~ (Sup™™ — Sup™, Sup ™) A ta(up ™ ug, Sur ) =t (up " T g, Sup )

s, s,n+1 d,n+1
+ Cacplll ST < cp 5™ H lgo 1505 o + 16F4" g 1605 Hlga - (47)

d, n-‘rl”l Y S C,U/,‘{_l ||6u;il,n+1

Then, following the same steps used to find eq. (24), ||5pd mtl lga < crapr™ ||5ud 1 | e sO that

A simple modification of the proof of Lemma 4.2 allows us to show that ||0p), lleya-

At (5 s,n+1 7 6u2’",5u2’n+1)95 + Caeﬂ‘”éuh—i_lm

1 — d,n+1
<ep 105 g 10w M|, o + coaps™ 8 FE g 1™ | (48)

+ [tn (w5 uy 75“Zn+1)_t (up"™ b sy aéusnﬂ)‘

To bound the convective terms we use eq. (13), eq. (8b), and Young’s inequality:

[tn (™ wy, Sup ) =t (up ™ S| < ewlldwy ™ ey M 0wy L,
c , 12
< 7III up " [, o ”Illvs+7“’IIIuZ”Illy,sllléui”+ [

Applying Young’s inequality to the first two terms on the right hand side of eq. (48),

Cp||5f”“| 156" Ml o+ Crapr” 1||5fd”+1\|9 1605l

Qs v,8

s,n C M n s,n+1 d,n+1
<2 o7 . + S o Lo IR, + oI,

and choosing ¢ = c,ep, we find after combining with eq. (48) that

1

,n+1 s ,n+1 w )
™ B ) g, + e — 5 i ) w1

2

< 6wy ™ |17 - (49)

v,s

2

’ 2 Ciglt d, 2 c i

1655 + 5l 544 G+ S s,
ae

2Cqept
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Multiplying both sides by 2, using the assumption that u;" € Bj, that a(a —b) > %(a2 —b%), and that
llwr M, o < llowup ™I,

1 12 1 2 2
A 10ur™ " llge = x5 10w llge + %Caeu|||5uﬁ+l\\\

o+ S g el (50)

Replacing n by k, summing for £ = 1 to k = n, using that dyu)’ ntl Atiléuf{"ﬂ and that 6ufl’ = uzl
(because u}® = 0), and the definition of F” (see eq. (33)):

o™ . < ey g, + S s 17 + P (51)

Equation (38) now follows by inserting egs. (37a) and (37b) into the above inequality. O

We are now ready to prove a bound on uZ‘H.

Lemma 4.6. Let u;,o =0, and let M™ be defined as in egs. (34) and (35) for 0 <n < N —1. If eq. (7) has a
solution (uf,pf) for all 0 < k < n such that uZ’k € Bj, then

2 c? " 2 s112 c? 1 2
i I < = () o 2 ey + 5y 1 e rsnaey) (52)

Proof. Choose (vy,q;) = (u)™, —pi™) in eq. (7). Coercivity of aj, eq. (15) (which holds by eq. (8d) and the

assumption that u;" € Bj) then implies:

3 1 1
(dtu;,n-l- s,n+

: d,
cuy " g+ caeptlllup I < (O e = (£ R ). (53)

Using the Cauchy—Schwarz inequality, eqs. (8b) and (24), Young’s inequality and eq. (38), we obtain:

d
Cactlllwp T IE <1 ui ™ as = (P4 " e = (dey ™ up " g |
Scp ||fs,n+1| . u;n+1”|v . + Craiks —1 Hfd n+1||Q Hud n-‘rl”Qd + ¢y Hdtug 71—‘,-1HQS |Hu9 n-‘rl‘ o
2 2
¢ c n+1y2 n+1p2 Gal® | pdni dn+1
Tp(M”) ; £ e + Xl I o + 2;% 174 g + 2 || "
The result follows by choosing x = caeu, and ¢ = cqeft, and using the definition of |||-|||,,- O

We end this section by proving existence and uniqueness for all time levels under a suitable data assumption.
Lemma 4.7. Let M™ be defined as in eq. (34). Assume the data satisfy for 1 <n < N —1,

2 0127 M™)2 6127 5112 C?dru’ dy?
- (@( )"+ P 1 N e (gip2(00y) + P 1 e (1522 (020))

HCqe Caclt )] 2

< |min
[ (QCsi,g(c%q + C?i,4) " 2¢u

(54)

Then, starting with qu’O =0, eq. (7) has a unique solution. Furthermore, for 1 < n < N, the velocity solution
is such that u;" € B} and the pressure solution satisfies,

S

3” HC, C 2

n (2 1.2 . ae aelb

< (3¢, +¢C,.) —5— |min , . 55
|||ph|||p — (2 ae ac) Cgb [ (2652'72(612)(1 C§i74) QCw )] ( )




14 TITLE WILL BE SET BY THE PUBLISHER
Proof. Existence and uniqueness of (uZH,pZH) under the assumption that u;™ € Bj, for 0 < n < N is
established by Lemma 4.4. That u;" € Bj, for 1 <n < N is due to egs. (52) and (54).

We now prove the pressure bound eq. (55). By the inf-sup condition eq. (9a) and the HDG method eq. (7),
with q;, =0, we find for 0 <n < N —1:

cbb|||pn+1||| < sup |bh(’UhapZ+1)| _ sup |(fs’n+l,’l)h)ﬂs - (dtUZJrlﬂ)h)Qs - ah(uZ;UZJrl,’Uh)‘
P oseexs vl 0£vrEXn lonll,

By the Cauchy—Schwarz inequality, egs. (8b) and (14b), squaring and using Hoélder’s inequality for sums,

2

2 _ 2 _ — 2
ller I, < 3(cpepy” 15" lge + cpey ldeuy g + caecyy 1l )

A bound for [[u} ||, is given by Lemma 4.6 and the data assumption eq. (54). Together with eq. (38) we
obtain

S

2
n41)2 2 —2 || £5|2 ny2 2 -2 27 . HCae Caelt
831 < 3(ceia” QL0 im gy + (7)) + i I (g ). (56)

Note that the data assumption eq. (54) implies that

s 2
2 =2 (| ps||2 ny2 1.2 -2 27 . HCae Caelt
e (1572 rzaiaey + 7)) < geecn’s® Imin (g—ra g, 500 - 7
The result follows from egs. (56) and (57). O

5. A PRIORI ERROR ESTIMATES

Let 11g be the L?-projection into @, and let IIy and I:Ifg, j = s,d, be the L?-projections into the facet spaces

V5, and Qfl, j = s,d, respectively. Let IIy : H(div;Q) N [LT(Q)]dim — Xp, N H(div;Q), where r > 2, be an
interpolant such that

(qn,V-lUyu)g = (qn, V - u)k Vgn € Py—1(K), (58)
Gp,n-Tyu)p = (G, n-u)p Vg, € Pi(F), V faces F of K, (59)

and with the properties that for any u € [Hk+1(K)]dim

)

[w —vull,, x < Chi™ lull, x m=0,1,2, max(l,m) <l<k+1, (60)

and for any u € [Wolo(K)]dim’
HU_HVUHLOO(K) < Chilulw (x)- (61)

Examples of such operators are the Brezzi-Douglas-Marini (BDM) and Raviart-Thomas (RT) interpolation
operators [5].

We partition the errors into their interpolation and approximation parts as ( —(p = eg — eg for ¢ = u,u,p,p’
and for j = s,d, where
el =u—Tyu, el =, — Iy, el =p—Tgp, el = pn —gp,
e, =7(u) —Iyu, en =y, — Myu, el =~(p) — Igp, el =y, — lgp.
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To be consistent with the notation for elements in X, Q;,, le, j = s,d, we also define

€5 = (¢5,85), €5 =(eS,e5,e5,), e =(,,e,), ¢=1Ih

ur u p.] ) p] ? ?

In the following we will use that the initial condition is given by uh = Iy up and so e = 0.

To determine the error equation we first note that by Lemma 4.1, the exact solution (u, p) satisfies eq. (5).
Therefore, subtracting eq. (5) at time level t = t" ™1, with (up, p,) replaced by (u,p), from eq. (7), splitting the
errors into their interpolation and approximation parts, using that by (vp, eI Mty = 0 for all v, € X, (since
g, g are L%-projections onto Qp, and @, respectively, and V -V}, = Qp,) and that by, (el q,) = 0 for all

q, € Q,, (by egs. (58) and (59) and properties of the L2-projection Ily ) we obtain:

(deel™™ vn)as + th(up; up ™ vg) — th (w5 w" T vg) + af (el Uh)+bh(vh7 el ™) + by (el qp)

= (dtei”“"l,vh)ﬂs + (O™t — dyu™t Un)gs + ah( Intl ,vp).  (62)

The following theorem now determines an upper bound for the approximation error e

Theorem 5.1. Suppose thatu € L>(0,T; [Hk‘*‘l(Q)](hm) such that u® € L2(0,T; [Wi(Q*)]"™), du € L2(0, T; [Hk(QS)]dim),
and Oyu € L*(0,T; [LQ(QS)]dlm). Suppose also that the data satisfies the assumptions of Lemma 4.7. Then, for
1<m<N,

m—1 m—1
2 2
el g + A > [ldeel ™ o + cacuit Y [llel 2
n=0 n=0

ok 1 2 “1y (12 2 (63)
<CCq[h™" {p Hat“HLZ(J;Hk(Qs)) + T ((1+ p )||U||Loo(J;Hk+1(Qs)))||UHL<>0(J;H/€+1(Q))}

+ (At {||3ttu\|iz(J;L2(Qs)) + ||atuH2L2(J;L2(QS)) ”u”iW(J;Hl(QS))}]v
where C; = exp(AtY 1, Lop ! ||u"+1||W1 @)
Proof. Consider the convective terms in eq. (62). We note that
th(uh,uzﬂ,vh) - th(u"H;u”H, ) =tn(uy; ey h,nt1 ,vp) — tp (U™ ei’”“,vh)

+ [tn (up; Hvu”+1,vh) — tp(u"; Hvu”+1,vh)]

+ [th (u"; :l__[\/’l,LnJrl7 'Uh) —thn (unJrl; HvunJrl, 'l)h)].
We furthermore note that
h,n+1 'Uh) th(uh eh n+1 ) +a ( h,n+1 vh)7

,'Uh) _ th<un+1; ei,n-&-l ) + ak ( I, n+17'Uh)7

ap(uy; ey

n+1l, _I,n+1
ap(u" e,

so that we can write eq. (62) as

(deel™ 1 op)ae + an(up; el vy) + b (vn, el ™) + by (el q),)
= (dtei’"'H, Un)gs T (8tu"+1 — dyu"tt, Un)as + ah(u"+1; ei’"“, vp) (64)

+ [th(u"; Hvu"+1, ’Uh) — th(uz; Hvu”+1, ’Uh)] + [th(u”+1; Hvu"+1, ’Uh) — th(u"; Hvu"+1, ’Uh)].
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Let us now choose (vp,q,) = (el +! —el"+1) in eq. (64). By the assumption on the data we have coercivity
of ap, eq. (15) so that:

(el B g + ol eh™ 12 < (el ek g, + (Dt — dpu, e,

(el o)
+ [t (u"; IIyutt, eZ’"H) —tp(up; IIyu™tt, eZ’"'H)] (65)
+ [th(un+1; l—Ivun—i-l7 eZ,n+1) o th(un; Hvu"+1, ez,n—&-l)]
5
= ZI]
j=1
Using eq. (74), eq. (60), eq. (8b), and Young’s inequality we find:
I h k - h
L < ldeel™ g et ™ lgs < CRE(A) T2 [105ull 2 g gt a0y €8l
C (66)
h 2 k — 2
<Aller™ I + ;hQ (AT Bl (g gnr e
where v > 0 will be chosen later. By eq. (72), eq. (8b), and Young’s inequality,
I < 0™ = du™ | g (el
h
< C(At)1/2 ||attu||L2(tn’tn+1;L2(QS)) |||eu’n+1|||y,s (67)
C
2 2
<ller ™, + ;At [Oseutl| T2 pn gnt1;12 (00 -
Observe that by eq. (14a), eq. (8a), [8, Lemma 7], and Young’s inequality,
h k h
I3 < Cacﬂ“”|e£’n+l|”v’Hleu7n+1”|v’ < Cﬂ’h Hun+1”k+1,9 |||eu7n+1|Hu
C 2
2
< Allet™ I3 + ;Mzh% [ PN
For I, we have
C 2 C 2 2
2 2
I, < 27|||eZ’"“H\U + ;h% HunH”kH,Qs unHkJrl,QS + ; Heﬁ”\ Qs “nHHWSl(Qs) ) (68)

the proof of which, due to its length, is given in appendix C.
By eq. (13), eq. (74), properties of ITy and ITy so that [[TIyu™*H[, ; < c[lu"™; o. (see [36, Eq. (28)]) and
Young’s inequality,

Iy < ¢ [ V(" = ")

< (A2 |0l 2 (gn nsr g1 o) 10"

Iy ", lew™ o

len™ s

1,00

C 2
2 2
<Aller™ I, + ;At 10eull 2 (g gm0y 10" 1 e
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Collecting the above estimates for Iy, ..., I5, combining with eq. (65), using that a(a—b) = 3(a? —b*+ (a—b)?),
choosing v = %caeu, and multiplying by 2A¢:

n 2 n

(llew™ M ge = llew™|

2 2
a-) el = el g + cacnirt|lel

— 2 2 - 2 2
SC[th{N 1 ||atu||L2(t",t"+1;Hk(QS)) + At ||un+1||k+179 + Atp 1 ||un||k+1,95 un+1Hk+1,QS }
- 2 2 2
+ (At)2ﬂ 1{ HattuHL2(t’",t"+1;L2(523)) + ||atu||L2(t",tn+1;LZ(QS)) ||u"+1||1’93 }

_ 2 2
+ At ||Un+1||w31(§zs) e g -

Summing from n = 0 to n = m — 1 and noting that 0 = 0 gives

m—1 m—1

2 2
el ™ e + A2 S [ldielh ™ . + cacpit > [lelm

n=0 n=0
_ 2 - 2 2
<Ch** {n! ||3tu||L2(J;Hk(Qs)) +T ((p+p) ||u||Loo(J;Hk+1(Qs))) Hu||L°°(J;Hk+1(Q))}
_ 2 2 2
+ CAE = {[|8ull 2,12 00y + 106l 72512 ey) [0l Lo (11 (209) )

m—1

S onaln2
+ CAt Z p +1HW31(QS)

n=0

h,n 2
|eun| Qs -

The result now follows by Gronwall’s inequality [29, Lemma 28] for all At > 0. O

By a triangle inequality and properties of the interpolant IIy, and projection IIy, we obtain the following
velocity error estimate that is independent of the pressure.

Corollary 5.2. Suppose that u, up, and the data satisfy the assumptions of Theorem 5.1. Then, for1 < m < N,
m—1

B T Caep St Y [l — a7

n=0

[ ™ — |

_ 2 _ 2 2
<Ch*{u! 0cullz2( g pre ey + (L + T+ 1 Y [ull g0 (7,041 o)) 1l oo (7 i1 ()
_ 2 2 2
+(At)?p! {Ouullr2 g2 o)) T+ 10l T2 g 2000y 1l oo (g, 11 00y -

6. NUMERICAL EXAMPLES

We implement the fully discrete HDG method eq. (7) in Netgen/NGSolve [39,40]. For all examples we choose
the penalty parameter as 3 = 8k? (see [1,37]), where k is the polynomial degree in the approximation spaces.

6.1. Rates of convergence

In this section we verify the rates of convergence by the method of manufactured solutions. For this we
consider the domains Q* = (0,1) x (0,0.5) and Q% = (0,1) x (=0.5,0). The interface is given by I'' = Q° N Q'
while T'$, = {z € T*: 2y =0o0r 2 =05}, Ty, =T*\I'}), T}, = {z €?: 25 =—05}, and 'y, = '\I'},. To
construct a manufactured solution, we consider the following inhomogeneous boundary conditions and modified
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interface conditions:

u® =U* onI'y x J,

ogn =5° on I'y x J,
ut-n=U? on 'Y, x J,

pd =pd on 1"% X J,
w-n=utn+ M on I'f x J,

—2p (e(u®)n)" = o™ 2 (u®) + (M®)! on T x J,
(o5n) -n = p? + MP on T x J,

where U®, S, U4, P4, M*, M¢, and MP, and the functions f* and f¢ in eqs. (1a) and (2b) are chosen such
that the exact solution is given by:

s _ . s | mxicos(mmiza —t)+1
p° = sin(3x1 — t) cos(4xa) + sin(2wx122), u= cos(ra1zs — 1) + 201 |
p? = cos(3z124 — t/10), u? = —(k/p)Vpe.

The initial condition for the velocity is set by first solving the stationary Stokes—Darcy problem with the above
boundary /interface conditions and functions f* and f?. In our simulations we choose x = 1074 and a = 1. We
consider polynomial degrees k = 1 (corresponding to approximating the cell pressure by piecewise constants
and the other unknowns by piecewise linear polynomials) and k = 2 (in which the cell pressure is approximated
by piecewise linears and the other unknowns by piecewise quadratic polynomials). We compare results obtained
by choosing u = 1071, 4 =103, and p = 107°.

Let us define e, := u — uj, and, similar to [23], [le.|% = Ckers leuld x + lewll5e). From Corollary 5.2
we expect that, for smooth enough solutions, |le,||; = O(h* + At). The spatial rate of convergence is indeed
observed in table 1 (to obtain these results we chose our time step as At = 0.8h**! and set J = (0,0.1)).
Table 1 also lists the L%norm of e, and e, := p — p;,. For the velocity we observe that ||e,||, = O(h**1) for
p= 107" and |ley|lq & O(hF*1/2) for u = 107°. For pu = 107 we have that [le, |, lies between O(hF+1/2)
and O(h**1), depending on whether k = 1 or k = 2. The slower convergence in the L?-norm for y = 1079 is
not surprising; the flow problem is advection dominated and analysis of HDG methods for the scalar advection
equation reveals a priori error estimates for the solution to be O(h**1/2) see [42, Lemma 4.8]. We furthermore
observe optimal rates of convergence for the pressure: |le, |, = O(h*).

We next consider the temporal rates of convergence. For this we consider a fine mesh with 9508 cells and
set k=2 and J = (0,1). In table 2 we vary the time step and present the errors and rates of convergence. All
errors are O(At).

Finally, let us remark that despite our analysis holding only under the small data assumption (see eq. (54)),
we are nevertheless able to compute the solution for very small values of viscosity. From tables 1 and 2 we even
observe that the variation in ||e, ||z for the different values of 4 is small, despite the upper bound in Corollary
5.2 depending on y and p~t.

6.2. Surface/subsurface flow with nonuniform permeability field

In this example we consider surface/subsurface flow. For this example we divide the domain 2 = (0,1) X

(—0.5,0.5) into two subdomains ° and Q9. We consider a case where the interface I'Y = Q5 N Q9 is not
horizontal (see fig. 1a). Furthermore, let I'}, = {# € T'?: x5 = —0.5}, and I'y, = T\I'{,. We then impose the
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TABLE 1. Errors and spatial rates of convergence for a manufactured solution (see section 6.1).
Results are for k = 1 and k = 2 with parameters k = 1074, o = 1, and p € {107%,1073,1075}.
Here e,, = v — uy, and e, = p — py. The rate of convergence is denoted by r.

Cells eyl r llewlle r HePHQ r

k=1, pu=10""T

152 4.8e-01 0.9 9.4e-03 1.9 1.1e-01 0.7
580 2.1e-01 1.2 1.8e-03 24 4.5e-02 1.3
2362 1.0e-01 1.0 4.2e-04 2.1 2.2e-02 1.0
9508 5.1e-02 1.0 9.8e-05 2.1 1.0e-02 1.1
k=1, pu=10"3

152 5.5e-01 09 1.4e-02 2.0 6.7e-02 1.1
580  2.5e-01 1.1 3.9e-03 1.9 3.3e-02 1.0
2362 1.2e-01 1.1 1.2e-03 1.7 1.6e-02 1.0
9508 5.6e-02 1.1 3.6e-04 1.7 7.9e-03 1.0
k=1, u=10"°

152 2.4e400 3.8 1.5e-01 4.3 7.8e-02 6.5
580  3.2e-01 2.9 2.5e-02 2.6 3.3e-02 1.3
2362 1.4e-01 1.2 5.6e-03 2.2 1.6e-02 1.0
9508 7.2e-02 0.9 1.6e-03 1.8 7.9e-03 1.0
k=2 pu=10""T

152 3.7e-02 2.1 5.9e-04 3.1 8.7e-03 2.5
580  7.6e-03 2.3 5.6e-05 3.4 1.9e-03 2.2
2362 1.7e-03 2.2 5.6e-06 3.3 4.8e-04 2.0
9508 4.0e-04 2.1 6.4e-07 3.1 1.2e-04 2.1
k=2 =103

152 4.7e-02 2.0 1.0e-03 2.7 5.5e-03 2.2
580  9.2e-03 2.3 1.3e-04 3.0 1.3e-03 2.1
2362 2.0e-03 2.2 1.6e-05 2.9 3.0e-04 2.1
9508 4.9¢-04 2.0 2.2e-06 2.9 7.6e-05 2.0
k=2 p=10"°

152 5.9e-02 4.0 3.6e-03 4.2 5.5e-03 3.1
580 1.0e-02 2.5 4.3e-04 3.1 1.3e-03 2.1
2362 2.4e-03 2.1 6.1e-05 2.8 3.0e-04 2.1
9508 5.3e-04 2.1 1.1le-05 2.5 7.6e-05 2.0

following boundary conditions:

21022 + 1)(1 — 21 /5)(cos(nt/5) + 15),0) on T'% x J,

(
d 0 on T'Y x J,
0

uS
u’-n
d

p

on 'Y x J,

and set f* = 0 and f? = 0. We consider both = 10~! and p = 1073 together with o = 0.5, and choose
the permeability to be piecewise constant such that p='x = 107" with r € [2,6] a random number that is
chosen differently in each element of the mesh in Q9. (The analysis presented in this paper assumes a constant
permeability, but noting that 0 < Kmin < k(2) < Kmax the analysis is easily extended to this situation.) A plot
of the permeability is given in fig. 1b. To set the initial condition for the velocity in 2° we solve the stationary
Stokes—Darcy problem.
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TABLE 2. Errors and temporal rates of convergence for a manufactured solution (see sec-
tion 6.1). Parameters: k=2, k =107% a =1, and p € {1071,1073,107°}. Here e, = u — uy,
and e, = p — p. The rate of convergence is denoted by r.

At leully m leullo 7 llepllg 7
p=10""1

1/8 3.5e-02 1.1 2.4e-03 1.1 8.0e-02 0.9
1/16 1.7e-02 1.1 1.2e-03 1.0 4.2e-02 0.9
1/32 8.2e-03 1.0 5.8¢-04 1.0 2.1e-02 1.0
1/64 4.1e-03 1.0 2.9e-04 1.0 1.1e-02 1.0
pu=10"3

1/8 1.5e-01 1.0 2.1e-02 0.9 3.0e-02 0.8
1/16 7.7e-02 0.9 1.1e-02 0.9 1.6e-02 0.9
1/32 4.0e-02 1.0 5.5e-03 1.0 8.3e-03 1.0
1/64 2.0e-02 1.0 2.8e-03 1.0 4.2e-03 1.0
p=10""°

1/8 1.5e-01 0.9 2.8e-02 0.9 2.2e-02 0.7
1/16 7.8e-02 0.9 1.5e-02 0.9 1.2e-02 0.9
1/32 4.0e-02 1.0 7.4e-03 1.0 6.2e-03 0.9
1/64 2.0e-02 1.0 3.8e-03 1.0 3.2e-03 1.0

We compute the solution on a mesh consisting of 91720 elements, using k = 2, a time step of At = 0.01,
and on the time interval J = (0,10). Plots of the velocity and pressure fields at different time levels are shown
in figs. 2 and 3, both for y = 107! and p = 1073. The velocity fields at ¢ = 0 and ¢ = 10 for both values
of viscosity are similar: flow in Q° away from the interface is more or less horizontal while in Q¢ flow finds
its way through the permeability maze in the direction of negative pressure gradient. At ¢t = 5.2 (when the
inflow magnitude of the velocity is close to its minimum), the behavior of the velocity fields when y = 1071
and g = 1072 are significantly different: when p = 10~ the velocity field is similar to that at ¢ = 0 and ¢ = 10,
but when ¢ = 1072 we obtain a large area of circulation. The pressure fields are similar for the two values of
viscosity and follow a more or less linear profile in Q¢. Pressure variations in ° are small.

7. CONCLUSIONS

We presented a strongly conservative HDG method for the coupled time-dependent Navier—Stokes and Darcy
problem. Existence and uniqueness of a solution to the fully discrete problem were proven assuming a small
data assumption. We furthermore determined a pressure-independent a priori error estimate for the discrete
velocity. This estimate is optimal in space in the combined discrete H!'-norm on * and H(div)-norm on Q¢,
and optimal in time. Our analysis is supported by numerical examples.

AC and JJL are funded by the National Science Foundation under grant numbers DMS-2110782 and DMS-2110781. SR
is funded by the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant program
(RGPIN-05606-2015).
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(c) p=10"1 t=5.2. (D) p=10"3,¢t=5.2.

e e e e
=—aa=—ao =

m 6.3 w55
| ] |
lO l0
(E) p =101, ¢t = 10. (F) p=10"3, ¢t = 10.

FIGURE 2. Velocity magnitude and velocity vector field at time levels ¢ = 0, ¢ = 5.2, and
t = 10. Left column: g = 107!, Right column: px = 1073. See also section 6.2.
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(E) p =101, ¢t = 10. (F) p=10"3, ¢t = 10.

FIGURE 3. Pressure magnitude and contour plots at time levels ¢t = 0, t = 5.2, and t = 10.
Left column: gz = 10!, Right column: g = 1073. For visualization purposes at t = 0 and
t = 10 we consider in Q7 the pressure interval [0,1570] divided into 50 contour lines using a
linear scale while in ° we consider the pressure interval [1500, 1570] divided into 100 contour
lines using a log scale. At ¢t = 5.2 we consider in Q¢ and Q° the pressure intervals [0,80] and
[75, 80], respectively. See also section 6.2.
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APPENDIX A. PROOF OF THE INF-SUP CONDITION EQ. (9a)

An inf-sup condition of the form eq. (9a) was proven in [8, Lemma 2] assuming that v = 0 on I'* and w-n = 0
', We modify this proof to take into account the boundary conditions eqs. (4b) to (4d). The proof requires

the BDM interpolation operator Iy : H(div; Q) N [L"(Q2)]"™ — X, N H(div; ), r > 2, which satisfies egs. (58)



TITLE WILL BE SET BY THE PUBLISHER 25

to (60) for all u € [HF1(K )]dim. We will also require the following function space:

d

dim

s fwe [HYQ))™ s w

[Hé,rsur}iv (Q)] rsurd, = 0} .

Defining

Eh(’uh? ((T;N(T}D) = Z (@g‘wvh 'nj>87’hj - <g{w@h 'nj>FI) )
j=s,d

Ker(by) := {vn € X © ba(vn, (@, 1) = 0 V(@) € @y, x Q1 },

and noting that by (v, q,) = —(qn, V-vn)a+bn(vn, (73,7%)), by [24, Theorem 3.1] the inf-sup condition eq. (9a)
holds for all q,;, € Q,, if there exist constants cp; > 0 and cp2 > 0, independent of h and At, such that

—(qn, V- vp)a
et llanllg < sup ~@nV_vi)a Van € Qn, (69a)
vpEKer(by) |||vh|Hv
Uh;éo
o2 1/2 i)h vn, (G5 l?d _s — = ~d
@3 Y helaille) < sup 2t ThnTh) V@ah) e 0L x QL (69b)

P i vrh€Xp |||Uh|||v
J_S7dKE7;f ’Uh,;éo

Compared to [8, Lemma 2], only the proof for eq. (69a) needs to be modified.
We first seek a suitable v;, € Ker(by). Let ¢, € Qn. By [30, Remark 3.3] there exists v € [H&)FSUF%(Q)]dim
such that
~(Vev,gn)a = lanlsy,  cogllvllig < llanllg (70)

where ¢,, > 0 is a constant independent of h and At. Let Iy : [Hl(QS)]dim — X, be the L2-projection into

the facet velocity space and note that the pair v;, = (Ilyv, [Ty v) lies in Ker(by,):

Bh((HVUa ﬁvv)a (Q}ia qz)) :<qu (HVU - ﬁVU) : ns>1"1 + <(]Z’ HVU : nS>Fs + <qia (HVU - ﬁvv) ' nd>F1 + @;l” HVU : nd>Fd
=(@, (v = v) - n*)pr + (@f, (v —v) - n)pr =0,

where the first equality is because IIyv - n? is continuous on element boundaries and q{L is single-valued. The
second equality is by properties of Iy and Iy, v-n? = 0 on I'* UT%, and q;f = 0 on I'Y,. Therefore,
(Ilyv, Tyv) € Ker(by).

We now proceed to find a bound for [||(IIyv, IIyv)|||, in terms of v, o- First, note that by definition,

= 2 2 — 2
(o, Ty o)[l2 4 = Ty v 3yq + > hp! | [y - n]|f5
FeFI\(FLUFD Y

_ = 2
+ Z hKl ||(HV’U_HVU)'”‘”8KI’TFI =: Il +Ig+[3
KeT;!

In [8, Lemma 2] it was shown that I; + I3 < C Hv||f qa- Furthermore, Iy = 0 because Ilyv € H(div; Q4) and
v =0 on I'Y,. Therefore, H|(va,ﬁvv)|||v7d < Cl|vll; ga- In the proof of [8, Lemma 2] it was also shown that

0Ty o, Ty o)lll, o < Cllvllyge s ITTve) e < C ol g - (71)

v,s —

By definition of ||-|||, and using the preceding bounds on [||(IIyv, Iy v)||, ., |(Tvo)!|pr, and ||(Iy v, Ty v)||l, 4
we find -
Iy v, Ty o), < Cllvllygq-
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Equation (69a) now follows from this and eq. (70):

2
_(Qhav 'Uh)Q > —(Qh,v ) va)ﬂ > ||qh||Q > CUJ H h”Q

sup > — > 2z
llvalll, Iy, My o), — Cloll q

vy EKer(by)
'l)h750

APPENDIX B. USEFUL INEQUALITIES

Let g be a sufficiently smooth function. Using Taylor’s theorem in integral form, it is shown in [26, Lemma
7.67]) that

182" = drg

Qs < CVAt HattgHLQ(tn’ty#l;Lz(Qs)) . (72)
A minor modification of the proof of eq. (72) leads to:

g™t = g"|

a: < CAU10ig™ lgs + 109l 2 gn o112 (00)))- (73)
We also have, by the fundamental theorem of Calculus and the Cauchy—Schwarz inequality, that

gt gt 1/2 gt 1/2

o= atgdtu<</ ) (/ 10912 d) < VALl o nsrigoeyy - (T4)
t"L

n+l n

lg

AppPENDIX C. PROOF OF EQ. (68)

To prove eq. (68) we will use the following result, which is due to a discrete Sobolev embedding [17, Theorem
5.3] and eq. (8b):
1/6
(> lvnlliowy) <Cllvnll,, Yon € Xa. (75)
KeTy

Let us first write 14 as:

n n+ 1 h,n+1
u™; Iy u )

( e )]
(un n+ h n+1) th(un; un+1 o HvunJrl, eZ,nJrl)]
=
(

Iy =[tn
=\t

— tp(up; Ty u™

>

7
h,n+1) 1 eZ,n+1)]

th(uﬁ, u” — 1ty (UZ, un+1 — ]._.[V’U,n+

n 1 hn+1)

" L elin i)

=ltn th(up;u
+ [th(uh; u" T — Hvu’“rl, ez,nﬂ) i th(un; utl HvunJrl, eZ’nHﬂ

= Iy + Iyo.
For I4; we note that since the second argument of ¢, is continuous almost everywhere:
g Y
) 1 _hn+ly _ In. 1 _h,n+l hon. 1 Jhntly _.
Ly = th(u” —ufsu™ el ™) =ty (e u T el ) —t (el el ") =2 Iipy + Luno.

We have by eq. (13) and Young’s inequality,

In un—o—l‘ll Ieh,n—l—l”'

Inii < ey lley

< WY [ 100 90" g [l (76)

C 2
2 2
< $yllel™ I, . + ;h% [0 [y 1,00 IVE" g -
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Next, using that ©”t! = @**! on facets,
1o h, B+l h, hontl _ hontl 1 h “hontl 1
Ing = —(u" " @ep™, Ve as + (en™ - n, (e —ep™ ™) w4 (e - e e

At this point we note that since eh ".n, éﬁ n+1 and 4! are single-valued on facets, and because v = 0 on I'®,
we have that (e . pn, ghntl. n+1>BT,f = (el hon -n,ebntl o ynt )L Therefore,

Ij10 = —(u"+1 ® eﬁ’", Veff”“)gs + < -n, eh ntl, ”+1>3Ths.

Integrating by parts, using that V - €™ = 0 on each K € T;?, the generalized Hélder’s inequality, eq. (75), and
Young’s inequality:

Ly =(V - ("™ @ ™), el " ge = (ef™ - Va1 el g

<lley

100 llen™ Ml o)

h h
<Cllew™ e [u" lwz o) llew™ Ml

C 2
2
VG A = e ™ e [

<s1lles (@)

Combining egs. (76) and (77) we find

C 2 C
2 2
I <Allel™ 15 + ;h% [u™[eq1.00 VU e + 5 llew 10 (78)

We next consider I45 which we first write as:

n+1’ez,n+1) n+17eﬁ,n+1)]

I42 :[th ’U,Z; u"+1 — Hvu — th(Hvu”; u"'H — Hv’LL

(
+ [th(HVu"' un+1 _ l__[vu"H eh,n—H) _ th(u"; un+1 _ ]i[‘/un-',-l7 eZ,n+1)]
(

=

I n+1 Z,n-}-l) _ th(u eI n+1 h,n-‘,—l)]

~~

n(IIyu™; e,
+[th(u eIn+1 Z,n—i—l) (Hvu eIn+1 Z,n—i—l)]

= Iyo1 + Iy2o.

For I49; we have by eq. (13), [8, Lemma 7], properties of ITy, and Iy, and Young’s inequality,

In+1||| |eh,n+1|H

1421 < Cw”HVu —u ||1 h,Qs |||6 v, s”

2 e

llew™ il sllle

= Cw ||eu
< Ch* ||un+1||k+1,QS ol lle

< Ch** Hun+l||k+1,ﬂs HunHkJrl,Qs |||eZ n+1|||v,s

hn+1H|

(79)

e
v

C 2 2
< 3™ Ml + S e g g0 " g 0
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For I495 we find, after integrating by parts,

Loy =ty (ups e " el ™) =ty (yu™; e e ™)
=(Ve, " el @ (ufy — Tyu™))or — (e ™ —ep™ ) @ (ufp — Tyu™))n, e ™ot
+ ((max(u}! - n,0) — max(ITyu™ - n,0))(el Tt — glntl) chntl _ghntly,
=(Ve, "M e @ el ™) — (e ™™ — ey ) @ep™)n, el ™ot
+ ((max(u} - n,0) — max(Iyu™ - n,0))(elntt — glntl) chntl _ghntly

R R R R

aT*
+ ((max(uy, - n,0) — max(ITyu" - n, ()))(e{t’"+1 — éi’"“), eZ’"“ — éZ’”“)aTs

=1499q + La20p + L420c.

For Iigz,, using generalized Holder’s inequality, eq. (75), that [u™+! —Tlyu" 1 (qs) < clu (s (see [20,
Theorem 16.4]) we have:

_ h,n In+1 _h,n+1
Liooq = (el™ - Vel el g,

< [let™|

Ve s ey et ™ Ml Lo e
len™ M, (80)

s
< Clley™
=Clle™]

< Clle™|

I.n+1
Cu |W31(Qs)
unJrl

Qs
R+l
u T s

le

+1
- Hvu" ‘W:il(Qa)

|eZ7n+1 |||’U,S'

Qs

n+1
Qs U \Wg(ns)

To bound I4295 let us first consider a single facet F' C 0K. By Holder’s inequality,

[ew™ - men™ (e ™ = el )l < llew sz py llew™ ™ = eh ™ Hlpaey llen™ iy ey - (81)

Noting that IIy Iy u = IIyu on F, we have:

lew™ =2, ps(ry = llu™t = Myt — (™) + My u™ | o )
= [Ty = Ty a™ | Lo oy
= [Ty (u"* — HVU”+1)||L3(F)

< O™ = Tyu™ ™ oy s

(82)

where the inequality is by [20, Lemma 11.18]. By a multiplicative trace inequality [20, Lemma 12.15], we have
that

||u”+1 - HVUnJrl HL3(F)

<clu —Tyu +1||L3(K) (hK/ [u" =Ty u +1HL3(K) + V(" = Tyu +1)||L3(K))7 (83)

and by [20, Theorem 16.4] we have

||un+1 _ Hvun+1||L3(K) SChK|Vun+1|W31(K)’

IV (@™ = Ty u™ ) s ey < 0™l ) -
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Combining egs. (82) to (84),

m+l  oIm 2/3|0, nt12/3 ~1/3,1/31 5, n+1)1/3 1) 1/3
||€£ o e’lIl, +1||L3(F) < ChK |VU +1|W31(K) (hK hK |VU +1|W31(K) + Hu Jr1||W31(K)) (85)
< h2/3 n+1
< chg” |lu ||W31(K)'
We also have, by a discrete trace inequality [17, Lemma 1.52], that
et lLar2py < ChK/ e HLS/z(K)» et +1||Loo(F) < Clew +1||L°°(K)' (86)
Combining eq. (81) with egs. (85) and (86)
(e, kT (Lt Loty o) <O e ey WL I sy €™ e
=C Heﬁ’nHL?’M(K) ||U7L+1HW31(K) ||eﬁ’n+1||Loo(K) :
By [17, Lemma 1.50], for dim = 2, 3,
n dim /6 n
el < ORI llel™ e (87a)
n —dim /6 n
ller +1HL°°(K) < Chy / et +1||L6(K)7 (87b)

so that

[(el™ - m, el (el — el ) pl < C ||€Z’n||L2(K) ||Un+1||W§(K) HeZ’nHHLG(K) :

Since we assumed F' C 0K it follows that

h,n+1 | (61,n+1 o él,n+1)>
u u

‘<eh’n ", 6y

u ox| < C ||BZ’n||L2(K) ||Un+1||W31(K) Heﬁ’nHHLﬁ(K) :

Summing over all elements in 7;°, using a generalized Holder’s inequality for the summation over the elements,
and eq. (75),

Loy <C Y llel™ |2y 1™ Ml ey llen™ o)

KeT
2 1/2 13 1/3 116 1/6
< C( Z ||€Z’ HLZ(K)) ( Z [[u +1HW31(K)) ( Z ||€Z’ +1||L5(K)) (88)
KeTp? KeTg KeT;

< Cllew™ 2o 1u" g oo llen ™l o-

Let us now consider I490.. Starting again with a single facet F' C 0K, we find using Holder’s inequality,

[{(max(uj; - n,0) — max(Iyu" - n,0)) (e — e, ), el — el p|

< || (max(uj; - n, 0) — max(Iyu’ -1, 0))l| a2 llew™ ™ = e, s gy % (89)
||€Z’n+1 _ éz,nJrl”Lx(F) .

Since a — max(a,0) is Lipschitz ( [6, Appendix A.3.1]), and using eq. (86):

Jmacc(u. - n, 0) — max(Iyu" - 0,0 oz

n n n —2/3 n
< Cllup, —1lyu ||L3/2(F) =C|lely ||L3/2(F) < Chg / et lLsr2(sy - (90)



30 TITLE WILL BE SET BY THE PUBLISHER
Furthermore, by [17, Lemma 1.50],

HeZ,nJrl _ éZ’nHHLm(F) < Chg—dim)/2 ”ez,n+1 _ éZ,n+1”L2 P (91)

From eq. (89), eq. (90), eq. (85), eq. (87a), and eq. (91) we therefore find that

7, 0)) (el — el el — gt g

[{(max(up - n,0) — max(ITyu™ ,

< Ch;{z/g HeZ’nHLs/z (K) leg ™ — él’nHHm(F legm+t = éZ’nHHLw(F) (by eq. (90))
< Chi 11| ssaaey PAE 110"l ey llel™ = B4 o ) (by eq. (85))
< Chczi;m /e ||€Z’n||L2(K) [[u” +1HW31(K) e+t — éZ’TH_1||L0°(F) (by eq. (87a))
< CR™lel™ |z aey ™l ey e~ ™2 el = @t o (by eq. (91))

n n —-1/2 n =h,n
<Clley L2y llu +1||W31(K) (hi / et — e +1||L2(F))7
where the last inequality is because h%m / 6h(é—dim)/ 2 < hl_(l/ % for dim = 2,3. Since F' C 0K it follows that

[{(max(u} - n,0) — max(Ilyu”™ - n, 0))(6£’n+1 - él’""’l) eh’"+1 — éh’"+1>3K|

—1/2

h, h ~h
< Clley n||L2 (K) HUHHHWI(K) (hy llegm*t — eu’n+1||L2(aK))~
Summing over all elements in 7,7 and by the Cauchy—Schwarz inequality,
h —1/2 h _
Tygee < C Z lew™ 2 xe) ||un+1||W31(K) (hy / [CHEE GZ’HHHLZ((&K))
KeTy
n+1 h, =1/2 hn+1 _ h, +1
<CII(11&X ™ iz ey Z lew™ L2y (hie "™ llew™ "lp2om))
KeTp (92)
1/2 h ahs 1/2
< CIT(HE% I\u"+1\IW31(K Z ||e ||L2(K) Z h ! llew L n+1||L2 8K))
h KeTg: KeTg:
h h
< O s e ™ g el

Combining egs. (80), (88) and (92), and applying Young’s inequality, we find the following bound for I9o:

2
Lizs < 3ryllen™ I + Sy 1) - (93)
Combining now eqgs. (79) and (93) we find that
C 2 2 C 2
Iyp < ’Y|||eh n+1|H ~ —nt* H“nHHkH,QS ||unHk+1,Qa‘ + Heh n| Qs n+1||W31(QS) )

which, when combined with eq. (78), gives us:

C

2 C
—h?* Hun—H ||k+1,QS

2 2
Iy < 29|lel™ 17 + u[iiy.00 + > el

112
Qs un+ ||W31(Qb)’

which is the desired result.
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