1 Co-producing research and data visualization for

environmental justice advocacy: The Milwaukee Flood-Healtl

Vulnerability Assessment

Highlights

2

3

4 5

6

7

8

9

10

11

12 13

14 15

16 17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

- We mapped flood risk by combining exposure and vulnerability to identify as in Milwaukee where interventions are most urgent based on a distribution at iustice lens.
- The spatial analysis is disseminated through a co-designed climate survive in the form of a storymap.
- Knowledge co-production enabled the generation and dissemin. fion of data accounting for the needs of end-users and the integration of up a expertises.
- When creating recommendations, a transdisciplinary tea is ould be used for prioritizing goals and interventions.
- Separating exposure and vulnerability, as well as brc king down vulnerability into themes, facilitates the interpretation of the final results.

Abstract

Many cities in the world are experiencing an in recision in the frequency and intensity of extreme precipitation. The resulting flooding is vise to cause widespread impacts on the health and livelihoods of urban dwellers. / .nsu ng an equitable implementation of flood risk reduction interventions requires considering the intersection of flood exposure with social vulnerability. Information on the uneven distribetion of vulnerability towards stormwater hazards can be difficult to capture, co. rorehend, and communicate, especially for local community organizations. Here, v , resent a co-production process in which place-based advocacy organizations and hea 'hcare practitioners actively participate in the identification of areas with significant flood in k based on the separate mapping of exposure and vulnerability hotspots. The nocest is applied in a case study in the city of Milwaukee, where we developed the Milwaukee , 'nod-Health Vulnerability Assessment (FHVA) to identify high priority areas for imp. * ienting stormwater management strategies including nature-based solutions such as urban usen infrastructure. We demonstrate how the co-production approach increase the 'alidity, reliability, and relevance of the assessment. We discuss this approach as the foundation of the FHVA analysis as well as supporting methods including data visualizations, in facilitate its use by advocacy organizations, urban planners, and policy makers. We 11. 1 co-production to be a critical component of making such flood vulnerability and exposure nalyses useful for diverse stakeholders who need to account for the uneven distribution of fle od risks.

Kr yw rds. participatory mapping, knowledge co-production, vulnerability, flood risk, discributional justice, climate change adaptation

Introduction

- 43 Observed and projected rises in the frequency and intensity of extreme precipitation posε an
- 44 urgent challenge to urban decision makers (Easterling et al., 2017; Hayhoe et al., 2018:
- Hemmati et al., 2022; Rahmstorf, 2017). In the United States, the frequency and cos'; of
- 46 extreme precipitation and flooding events have increased dramatically: During the read of
- 47 1980-2022, an average of 4.8 flooding and severe storm events incurring costs high. than
- one billion dollars occurred annually, whereas when considering the most recent period (e.g.
- 49 2017-2022), the annual average escalates to 12 (NOAA NCEI, 2023). According ... he
- 50 Fourth National Climate Assessment, regions like the US Northeast and M dw s' have
- observed an increase in heavy precipitation (defined as the percentage of algunual
- precipitation falling in the heaviest 1% of precipitation events) of 55% no '7% respectively,
- over the 1958-2016 period (Hayhoe et al., 2018). These challenges, however, are not limited
- to the technical aspects. Recently, scholars are increasingly emphasizing the risks of further
- amplifying already present inequalities if urban adaptation is un errord as only a
- technological challenge (Chu and Cannon, 2021; Meerow and Novel 2019; Shi et al.,
- 57 2016).
- In response to the rising challenge of extreme precipitation, cities are undertaking diverse
- adaptation approaches, including physical interventions regrating a range of gray, green,
- blue, and hybrid solutions to mitigate hazards (Depir :: `no : McPhearson, 2017; Lund et al.,
- 61 2019; Oral et al., 2020; Waryszak et al., 2021). Hyl rid gre en-gray solutions have recently
- gained traction in the form of urban green infrastructu. "JGI) and, more recently as nature-
- based solutions (NBS) (Frantzeskaki et al., 20 9: 3ii et al., 2007; Kabisch et al., 2016;
- Ramyar et al., 2021; Voskamp et al., 2023; Wai, Voet al., 2017). In the context of urban
- climate change adaptation, UGI and NBS 'ely c `a similar premise contributing to societal
- well-being by providing ecosystem services (FS), that mitigate the impacts of extreme
- weather events and other challeng's caused by climate change (Babí Almenar et al., 2021;
- 68 Gómez-Baggethun et al., 2013; Loven and Taylor, 2013). Here, we define UGI as the
- networks of natural and semi-nat aran paces that provide benefits to society (European
- 70 Commission, 2020, 2013). We canside this a suitably holistic definition of UGI, capable of
- accounting for its multiple tyr and junctions. NBS, on the other hand, can be understood
- as an umbrella concept that ancompasses UGI, in addition to broader concepts like
- ecosystem-based adaptation, unaster-risk reduction, and biodiversity conservation. In
- addition, the definition of NBS leverages the needs for addressing societal challenges and
- 75 transitioning towards more source-efficient, inclusive and sustainable growth models
- 76 (Faivre et al., 2017). For "stance, the United Nations recently defined NBS as "actions to
- protect, conserve, re tore, sustainably use and manage natural or modified terrestrial,
- freshwater, cc star and marine ecosystems which address social, economic and
- 79 environmental ballenges effectively and adaptively, while simultaneously providing human
- well-being, eccaysem services, resilience and biodiversity benefits" (United Nations
- 81 Environn, at Assembly, 2022).
- 82 To ϵ_4 uit $_4$ b'y $_6$ tect their residents from extreme weather events, cities must address the
- 83 unov dis ribution of exposure and vulnerability to the hazards considered (see Table 1 for
- 84 tí. definitions of exposure and vulnerability as per the Intergovernmental Panel on Climate
- (IPCC, 2012). Consequently, demand for regulating ES like stormwater mitigation
- 's cends to be framed as "need for risk reduction" (Wolff et al., 2015). Accounting for the current
- 87 distribution of exposure and vulnerability becomes especially important considering that
- 88 extreme weather events such as flooding and heatwaves tend to disproportionately affect low-

income and racialized, historically segregated communities (Hoffman et al., 2020; Tate et al., 2021; Wing et al., 2022). In addition, these groups are also the most deprived of urban green spaces (Grove et al., 2018; Hoffman et al., 2020; Rigolon, 2016). This distributional injustice of green spaces and risk, however, tends to be ignored in UGI planning for American cities, where planning prioritizes hydrologic (capacity to manage larger amounts of runoff) and economic (budget, cost, cost-benefit, and opportunities for future land development) factors to evaluate and allocate UGI interventions (Grabowski et al., 2022; Hoover et al., 2021). This reliance on technological factors over the uneven distribution of risks reflects the inherent links between distribution and the two other core dimensions of environmental justice, recognition and procedure (Langemeyer and Connolly, 2020). In UGI planning, recognition is reflected in the pluralistic preferences and needs that dictate how interventions are valued (Zafra-Calvo et al., 2017). Procedure, on the other hand, is associated with the inclusion or exclusion of certain voices in the decision making process, and how power relationships filter the framing and people's participation in decision making processes (He and Sikor, 2015). These three iustice dimensions interact and influence each other, as the values and perceptions recognized in UGI planning will vary depending on the actors involved in it, and consequently influence the UGI planning, design, and implementation process.

Table 1: Definitions of risk, hazard, exposure and vulnerability according to the IPCC (2012, p.32)

Risk	"the likelihood over a specified time period of severe alterations in the normal functioning of a community or a society due to hazardous physical events interacting with vulnerable social conditions, leading to widespread adverse human, material, economic, or environmental effects that require immediate emergency response to satisfy critical human needs and that may require external support for recovery"	
Hazard	"The potential occurrence of a natural or human-induced physical event that may cause loss of life, injury, or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, service provision, and environmental resources".	
Exposure	"The presence (location) of people, livelihoods, environmental services and resources, infrastructure, or economic, social, or cultural assets in places that could be adversely affected by physical events and which, thereby, are subject to potential future harm, loss, or damage".	
Vulnerability	"The characteristics of a person or group and their situation that influences their capacity to anticipate, cope with, resist, and recover from the adverse effects of physical events".	

107108

109

110111

112113

114

115116

117

118

111

1. 1

121

89

90

91

92

93

94

95

96

97

98 99

100

101

102

103

104

105

106

Several studies have primined the distribution of flood risk and/or vulnerability in American cities (Balica et al., 2021; Chang et al., 2021; de Sherbinin and Bardy, 2015; Herreros-Cantis et al., 2020; Palle hadka et al., 2022; Tate et al., 2021). These studies tend to focus on identifying areas the mitigating the impacts of flooding events should be prioritized due to the overlap high exposure and vulnerability. Such studies may, however, face several barriers to have leveraged by urban stakeholders such as UGI planners, government officials, and one stakeholders involved in managing flooding and its impacts. Furthermore, risk analyse may fail to serve the purpose of place-based environmental justice organizations and the civic poups advocating for just UGI planning. Scientific knowledge and data can be had fire and access due to data sharing restrictions (Overpeck et al., 2011) and the on relief experienced by non-academic stakeholders to access scientific journal publications Bilotulet al., 2015). Even when accessible, scientific information is commonly presented in overly complex ways (Plavén-Sigray et al., 2017), which limits its reach and impact on community awareness on climate risks and their uneven distribution (Hoffman et al., 2020;

Rouse et al., 2017). For instance, data and information usually requires specialized techn. 31 expertise such as geographic information systems, data science, and scientific terminolog or jargon specific to the field. Furthermore, the information presented deemed useful by researchers may not be relevant or applicable to the users' decision-making processes (Lemos et al., 2012).

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142143

144145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

167

্ৰ

167

168

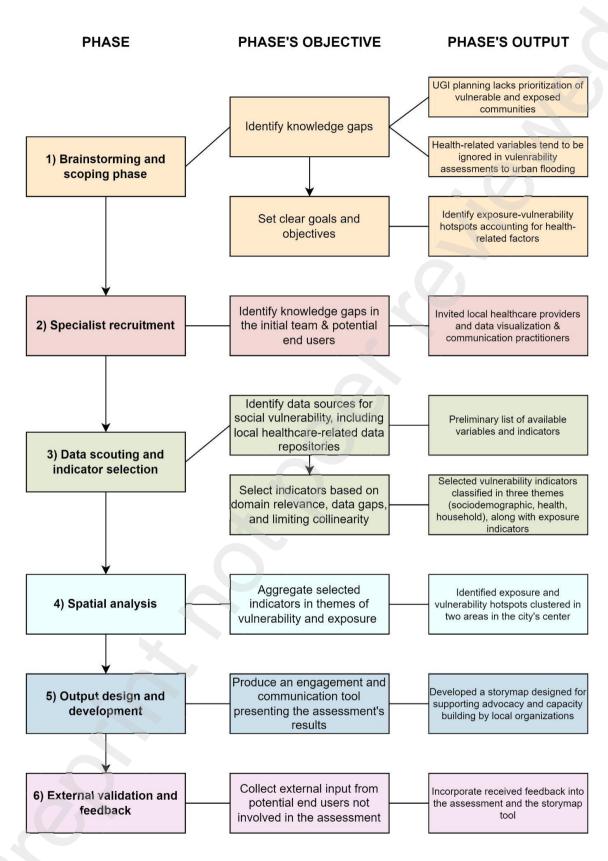
Explicit knowledge co-production has been widely praised for its capacity to increase the takeup of climate services, which are defined as tools aiming to "provide people and or rain, ations with timely, tailored climate-related knowledge and information that they can use or reduce climate-related losses and enhance benefits, including the protection of liv s, ' v ihoods, and property" (Vaughan and Dessai, 2014, p.588). In the context of climate services, co-production tends to be framed as the involvement of end-users in order to id null user needs and incorporate local knowledge (Vollstedt et al., 2021). Such an approac, fits under Olazabal (2018, p. 46)'s definition of co-production, framed as "a collaborative process in which shared and usable knowledge is produced out of a pool of diverse knr whe are a sources and types is fundamental for decision making in socio-ecological contexts a. for the transition to global sustainability". Recent examples of climate-services co-, oduction for climate change adaptation rely on spatial data science and communication to is, such as story maps, to communicate the impacts of sea-level rise (Vollstedt et al., 2021), guide the prioritization of investments for adaptation (Hinkel et al., 2023), and identification urban resilience strategies based on hazard exposure and vulnerability (Villani et al., 2023). Co-production, however, can provide additional benefits to the development of clirate services. First, involving civic organizations such as environmental justice or jar zations in knowledge co-production holds potential to empower marginalized voices by apporting their advocacy aimed at steering policy changes (Chambers et al., 2021). Seco. 1, it has been widely argued that participatory processes like co-production are valuable eyor I the project outcome, given their capacity to nurture collaboration, trust, and build capacitie. that may live beyond a project's co-production cycle (Vincent et al., 2018; Voinov a . Bousquet, 2010).

This paper introduces a co-pror uci. The exercise that involves end-users and experts from various disciplines to enhance the development of climate services. The primary objective of this exercise is to empower such about the remainder of advocating for more inclusive UGI, with a specific focus on addressing dispatines in advocating for more inclusive UGI, with a specific focus on addressing dispatines in advocating for more inclusive UGI, with a specific focus on addressing dispatines in advocating for more inclusive UGI, with a specific focus on addressing dispatines in advocating for more inclusive UGI, with a specific focus on addressing dispatines in advocates, and healthcare practitioners. This work led to the remained of Milwaukee's Flood Health-Vulnerability Assessment (FHVA), a spatial analysis communities appeal to the remained of the remained

In Section 2 the case study is presented, zooming into Milwaukee's flooding and UGI planning contexts. It section 3, we present the different phases of the co-production process and key discions that were informed by it. Section 4 presents the outcome of the spatial analysis by rese, ting the locations identified as exposure and vulnerability hotspots. Section 5 introduces the story map that was developed as a climate service for environmental justice advocacy. Section 6 discusses how the co-production process influenced the project's outcome, as well as lessons learned, and how future iterations may improve the process by further elevating.

Case Study Area

The city of Milwaukee, WI, is located in the Midwest region of the United States. Wir 1 a population of 577,222 people (US Census Bureau, 2020), it is the most populated city in 1. a state of Wisconsin. It also has been described as one of the most segregated cities in the J.C. (Cheng, 2022; Foltman and Jones, 2019; Spicuzza, 2019). The city is observing in the see in precipitation due to climate change (Hayhoe et al., 2018; Keuser, 2014; Schuster et a. 2012), and has experienced flash flooding events that result from a combination of extreme precipitation and urban development (i.e. expansion of impervious surfaces). A many example of extreme precipitation in Milwaukee took place in July 2010, when areas of the sity received 179 mm of precipitation over the course of 2.5 hours during a storm that it is cheld more than 228 mm over a 24 hours period (NOAA, 2010). As a result, severe "asi. flooding occurred across the city, causing thousands of sewer backups and damages to residences, businesses, and public property with an estimated cost of \$35.7 million (NOAA, n.g.).


Having allocated billions of dollars on UGI development f r to nwater management, Milwaukee is considered a national leader (Hopkins et al., 2 18). Gen infrastructure plans have been developed for the region (Milwaukee Metropolita, Sewerage District, 2013) and the city(The City of Milwaukee Environmental Collaboration Office, 2019). Both plans include spatially explicit assessments that identify locations where UGI deployment should be prioritized. In the assessments, technical and biophycinal citeria that drive the need for and potential cost-effectiveness of UGI interventions are crusic ered (Table 2). The indicators used by both UGI plans constitute a significant combination of valid criteria to site UGI. However, the assessments present two gaps in relation () the consideration of the spatial distribution of flood risk. First, the plans do not explicitly acrount for the uneven distribution of social vulnerability in a manner that accounts or no litiple dimensions (considering aspects like health, sociodemographic, household, and the s). Second, both plans lack an explicit hazard layer delimiting the distribution of anding under one or more event scenarios. Instead, the plans rely on proxy indicators (e.g. "in, arvious Surfaces"). The absence of a mapped hazard layer limits the degree to which the univen exposure to flooding can be assessed consistently across the city. Hence, while vese lans use thorough, spatially explicit approaches to distribute green infrastructing across Milwaukee, they overlook the reality that certain communities may need to ! prion zed based on their disproportionate risk.

The gaps in the criteria used to allocate UGI in Milwaukee reflect more than a need to enrich the types of informatical ansidered. Rather, they illustrate the necessity of involving a diversity of voices when preparing an understanding of where and why UGI should be prioritized. Moreover, the gaps identified call for empowering civic organizations to produce their own knowledge on the distribution of flood risk considering both vulnerability and exposure. By coproducing and owning this kind of knowledge, civic organizations would add assets to their advocacy toolking that enable them to use scientifically robust data often inaccessible to them in usable ormals.

Indicator	Regional Green Infrastructure Plan (2013)	Green Infrastructure Plan (2019)
Vacant land	*	*
Non-Brownfields		*
Areas Without Tree Canopy		*
Parks	*	*
Impervious Surface		*
Redevelopment Areas	*	
Improvement Districts / Community Development Block Grant Areas		*
Areas with Existing Green Infrastructure Strategies	*	
Potential Stream Corridor Rehabilitation locations	*	
High Inflow Areas to the Deep Tunnel	*	*
Potential Drainage Problem Areas	*	*
Potential High Sewer Inflow and Infiltration Areas	*	*
Known Stormwater Issue Areas (e.g. Sewer Backups)	*	*
High Pollutant Loading Areas	*	*
Depth to Bedrock		*
Depth to Groundwater		*
City-Owned Properties		*
Milwaukee Public Libraries and Schools		*
Schools		*
Parking Lots		*
Selective Sewer Separation Opportunities		*
Slopes		*

Co-production methodology and process

The process of co-producing Milwaukee's FHVA took place over six phases (Figure 1). At stal of 26 online meetings took place over the course of the project, during which members of use team involved in the process suggested, discussed, and provided feedback to specific actions taken during the project. While certain phases of the project occasionally overlapped value addressing more than one phase in a single meeting), they primarily followed a sequential progression. We hence present each phase in order to facilitate their interpretatio.

Figure 1: Flowchart showing the different phases followed during the co-production process, along with their objectives and their specific outputs.

222

224 Phase 1: Brainstorming and scoping phase

225 An initial team composed of researchers and a local environmental justice organiza on 226 gathered to identify specific research needs, potential research questions, and a ... iec. 227 timeline. In this phase, the conversations focused on developing a common understanding of 228 Milwaukee's current green infrastructure planning and policies context. In parallel, New 2016 229 research goals and capacities were defined and aligned. As a result, it was conc. dec that an 230 accessible, easy to interpret assessment of Milwaukee's uneven flood risk dictribution would 231 be beneficial for a diverse range of stakeholders in the city. In addition, the links between 232 health and flooding vulnerability was identified as a missing dimension in 30 mm in flood risk analyses, with only a few exceptional examples such as the Flood-Heal'h Valadality Index 233 234 developed by San Francisco's Department of Public Health (Wolff and Con. rford, 2016) and 235 a New York City-based vulnerability index focused on the adverse affect of coastal flooding 236 on health (Lane et al., 2013). Consequently, it was specifically and that including health-237 related variables would enrich the assessment beyond more co nr on vulnerability criteria.

238 Phase 2: Specialist recruitment

239 Milwaukee-based key stakeholders were identified and invited to partner with the project in order to a) incorporate participants that fulfilled the knc vledge needs identified by the initial 240 241 team and b) involve potential end-users of the tool to '-ev' oped as recommended by Swart 242 et al. (2017). Local healthcare providers with expe ie ce and/or knowledge on the interlinks between healthcare and flooding were contacted and invited to participate in the process, as 243 244 well as data visualization practitioners with exp artise and developing interactive geospatial tools 245 for communication. The contacted stakeholders "a e invited to propose other participants to 246 join the team, allowing a snowballing-based re ruitment. After the recruitment of additional specialists, the team was composed of 14 a tive participants (3 members of an environmental 247 248 justice organization, 7 healthcar pecialists, 3 researchers, and 1 data visualization 249 specialist).

250 Phase 3: Data Scouting and ind ator : election

253

254

255

256

257

258

259

260

261

262

263

Flood exposure and vulne abin, indicators were scouted and prepared for a selection process.

For exposure, two incorators reflecting flooding exposure in roads and residential properties were proposed by the result. Chers present in the team, based on experience mapping flood risk in other city-bised projects (Table 3). The rationale for assessing exposure based on roads and residential parcels is two-fold. First, it allows for a bi-dimensional assessment of exposure to lood, a with impacts on two separate sectors (transportation and private residential properties). Second, both indicators were available at the finest resolution possible, with both load, and residential parcels being available as vectorial data delimiting their exact boundarie. Residential units were considered impacted by flooding if their distance to any type at a soding was less than 10m in order to account for the resolution of the flood risk simular on Bertsch et al., 2022; Iliadis et al., 2023) and to account for possible indirect impacts or properties such as limited accessibility.

26. wo different flood hazards were considered: fluvial flooding and pluvial flooding. Fluvial flooding was considered based on the Flood Insurance Rate Map (FIRM) developed by the Federal Emergency Management Agency (FEMA). FEMA is in charge of generating flood

hazard maps that inform regulations, such as the obligation of flood insurance if a dwelling is located within the 100-year floodplain, the so-called Special Flood Hazard Area (SFHA) (Pralle, 2019). For pluvial flooding, a hazard map was generated using the City Catchment Analysis Tool (CityCAT) to simulate the flow of surface runoff during a 100-year, 1-hour storm (with a total precipitation of 3.03 inches). CityCAT computes the flow of water in real time accounting for infiltration based on the distribution of pervious / impervious surfaces (Glenis et al., 2018). The CityCAT tool uses several inputs: a digital elevations model (DEM) representing the local topography, a map of pervious land cover, a map of soil textures, and a design storm. The tool has been widely used to simulate flooding events across whole cities at varying resolutions (Glenis et al., 2013; Guerreiro et al., 2017; Iliadis et al., 2023). In the case of Milwaukee, a 10m resolution was used to simulate urban runoff, and a depth threshold of 4 inches (10cm) was set to map pluvial flooding hazard. A detailed description of the pluvial modeling process and the data inputs employed is provided in the Additional File 1. The two flood hazard types were combined into a single flood hazard layer, which was then used to develop the exposure indicators considered.

Table 3: Exposure indicators used to develop Milwaukee's FHVA exposure index.

267

268

269

270

271

272

273

274

275

276277

278

279

280

281

282

283

284

285 286

287

288 289

290

291

292

293

294

295296

297

298

299

300

301

302

303 304

Indicator	References	Data Source
% Total road area flooded	(Papilloud et al., 2020; Stefanidis et al., 2022)	Milwaukee's TopoPlanimetric map 2020 (Milwaukee County Land Information Office, 2020)
% Residential units exposed to flooding	(Ferguson and Ashley, 2017; Paulik et al., 2023; Stefanidis et al., 2022)	Milwaukee's Master Property List (MPROP), 2021. (Milwaukee Open Data, 2021)

For vulnerability, three main categories were considered: Health-, sociodemographic-, and household vulnerability (Table 4). Health vulnerability variables were selected under the guidance of the healthcare practitioners present in the team. First, health indicators available at the city level were scouted and presented to the team. Indicators were sourced from Health Compass Milwaukee (Milwaukee Health Care Partnership, n.d.), a local data repository that provides a comprehensive source of spatially distributed health-related information in Milwaukee County. Indicators were grouped into a preliminary list of 16 health-related variables suggested by the team's healthcare practitioners. Then, each participant (including both healthcare experts and non-experts) was asked to vote for what they considered to be the 3-5 most relevant health variables. Based on the voting, 8 health-related variables relevant for assessing flood vulnerability were selected. These were further narrowed down considering multicollinearity and avoiding variables whose indicators presented considerable data gaps (e.g. missing values across census tracts). Multicollinearity was checked using the Variance Inflation Factor (VIF), using the recommended threshold of VIF < 5 (McPhearson et al., 2021; Snee, 1973) to avoid high collinearity between variables. Different combinations of healthcare variables were presented to receive feedback from the healthcare practitioners in order to ensure that decisions based on the data's collinearity and quality were validated based on their expertise. In parallel to the selection of health vulnerability indicators, other vulnerability themes were discussed and selected. Two additional vulnerability themes (sociodemographic and household) were defined based on Wolff and Comerford (2016)'s themes applied to San Francisco's Flood-Vulnerability Index. In cases when data was not available to replicate a given indicator under each vulnerability theme, alternative indicators fitting under the

vulnerability theme at hand were proposed by members of the team based on outer information sources on social vulnerability (e.g. CDC's Social Vulnerability Index (Flanaga', et al., 2011)) and data availability. Under each vulnerability theme, the number of variatings considered was limited in order to facilitate the interpretation of the index and to reconcilinearity.

Table 4: Indicators selected and aggregated for the development of the different social vulnerability sub-indices.

References refer to case studies that used a similar indicator to assess vulnerability and/or the districtionar justice of flood risk.

SV theme	Indicator	References	Data Source
Health Vulnerability	% Adults with Diabetes	(Wolff and Comerford 2016)	Health Compass Milwaukee (datasets for year 2019) (Milwaukee Health Care Partnership n.d.)
	% adults with poor mental health over last 14 days	(Wolff and Comerford 2016; Chakraborty et al. 2020)	Health Compass Milwaukee (datasets for year 2019) (Milwaukee Health Care Partnership n.d.)
	Age-adjusted Emergency Room visits rate due to asthma	(Wolff and Comerford 2016; Peirce et al. 2022)	Health Compass Milwaukee (datasets for year 2019) (Milwaukee Health Care Partnership n.d.)
	% Population with a Disability	(Flanagan et al. 2011; Wolff and Comerford 2016; Chakraborty et al. 2020; Madajewicz 2020)	US Census Bureau, 5-year estimates for period 2015-2019 (US Census Bureau 2020b)
	% Adults without a Health Insurance	(Tate et al. 2021)	US Census Bureau, 5-year estimates for period 2015-2019 (US Census Bureau 2020b)
Sociodemographic Vulnerability	% Residents aged below 18 and above 65 years old	(Flanagan et al. 2011; Wolff and Comerford 2016; Chakraborty et al. 2020; Herreros- Cantis et al. 2020; Madajewicz 2020; Tate et al. 2021; Chang et al. 2021)	US Census Bureau, 5-year estimates for period 2015-2019 (US Census Bureau 2020b)
	% People with a salary below twice the federal poverty level	(Flanagan et al. 2011; Wolff and Comerford 2016; Herreros-Cantis et al. 2020; Tate et al. 2021)	US Census Bureau, 5-year estimates for period 2015-2019 (US Census Bureau 2020b)
	% People aged above 25 years old without a high school diploma	(Flanagan et al. 2011; Wolff and Comerford 2016; Chakraborty et al. 2020; Herreros- Cantis et al. 2020; Tate et al. 2021)	US Census Bureau, 5-year estimates for period 2015-2019 (US Census Bureau 2020b)
	% of the population aged 5 that speaks English "not well" or "not at all"	(Flanagan et al. 2011; Wolff and Comerford 2016; Chakraborty et al. 2020; Herreros- Cantis et al. 2020; Tate et al. 2021)	US Census Bureau, 5-year estimates for period 2015-2019 (US Census Bureau 2020b)
	% of residents self- identified as Black, Indigenous, People of	(Flanagan et al. 2011; Wolff and Comerford 2016; Chakraborty et	US Census Bureau, 5-year estimates for period 2015-2019

	Color (Identifying as non- white and/or Hispanic / Latinx)	al. 2020; Herreros- Cantis et al. 2020; Tate et al. 2021)	(US Census Bureau 2020b)
Household Vulnerability	% Households without a car	(Flanagan et al. 2011; Chakraborty et al. 2020; Herreros-Cantis et al. 2020)	US Census Bureau, 5-year estimates for period 2015-2019 (US Census Bureau 2020b)
	% Households built before 1950	(Chakraborty et al. 2020)	Milwaukee's Master Property File 2021 (Milwaukee Open Data 2021)
	% Households composed of a single adult living alone	(Wolff and Comerford 2016)	US Census Bureau, 5-year estimates for period 2015-2019

Phase 4: Spatial analysis

Generating the vulnerability index required a previous development of three separate vulnerability sub-indices, one per vulnerability theme considered. A sub-index approach was selected by the team to enable end-users to easily interpret vulnerability as a compound of different themes or dimensions. Aggregating the three sub-indices ensured equal influence of each theme on the final index, regardless of them having a different number of indicators considered. The data aggregation process and methodology were iteratively reported to the team by presenting intermediate and preliminary results, in order to ensure a common understanding of the quantitative outcomes of the analysis. The aggregations of indicators for each sub-index were computed by calculating the sum of the normalized indicators conforming each sub-index. This approach was deemed suitably interpretable by the team.

Exposure and vulnerability hotspots were mapped by individually selecting census tracts that ranked in the top 25% (top quartile) for the exposure and vulnerability indices, respectively. Then, both maps were overlapped to highlight locations where high vulnerability and high exposure co-occur. This approach was selected based on inputs by the team and external stakeholders regarding the difficult interpretability of a fully aggregated index. In an aggregated risk index, discerning whether high risk is the result of high exposure, high vulnerability, or a combination of both required diving into the underlying data. The results were presented to the full team to gather internal feedback and reactions on the hotspots identified, and to consider potential locations within Milwaukee that may serve as a zoomed-in case study and in future advocacy and engagement work.

Phase 5: Output design and development

As the analytical work reached completion, discussions shifted towards designing a user-friendly communication tool to disseminate the spatial analysis carried out. The main purposes for the tool were defined collectively during brainstorming sessions facilitated during the online meetings. The purposes of the communication tool were defined in alignment with those of the spatial analysis as a) to support advocacy and capacity-building efforts by multi-disciplinary groups ranging from non-governmental organizations to healthcare providers interested in urban adaptation to climate change and b) to broaden local decision-makers' understanding of the spatially explicit attributes that define flood risk and that should be

considered in risk mitigation policies and interventions. A story map format was selected query its advantages for dynamically representing spatial data while accompanying it with contex' aar text. Story maps are web-based applications capable of visualizing spatial data in an interactive manner (e.g. allowing to zoom in/out, navigating the map, and clicking or sp lial features to access expanded information). Maps can then be supported by additional excurs s such as text, graphs, and audiovisual materials. As web-based applications, story 1 aps can easily be made publicly available and shared. The story maps application developed by the Environmental Systems Research Institute (ESRI) was chosen given its suitable functionality as a communication and education tool (Cope et al., 2018; Harder and Frov 1, 2017). The design of the story map focused on developing a clear, concise parrat is of the analysis developed and its conclusions, as well as a consistent graphic layout (C vi and Kain, 2016). Two parallel tasks were carried out to develop the story map: A written echn.cal report and a storyboard. The technical report summarized the key methodological at a taken during the spatial analysis, while the storyboard organized the project's nar and identified the types of data and content necessary in each section of the map. The trayboard was created using a slideshow presentation program, which allowed any menber of the team to contribute regardless of their GIS skills. The researchers of the team led the development of the technical report, and the environmental justice organization members of the team focused on structuring the storyboard and transferring it into an actual proto, 'e of the tool. Both products were presented as drafted outputs, requesting the rest of the team for inputs and feedback during meetings. The process of co-designing the story rap ivolved designing, balancing, and integrating different mediums such as written text, raphs, maps, and their different layers.

Phase 6: External validation and feedback

To strengthen the validity and applicability of the project's output, external input was collected at the beginning and the ending of the project to review the project's goals, methods, and output's design. State-level public 'ealth officials from Wisconsin's Department of Health Services (DHS) working at the intersection of climate and health were consulted for feedback on the project's goals. Conversations sought to identify challenges faced by officials in the development of similar integrated floor risk assessments. Preliminary and final results were presented to the same officials violated demonstrations of the developed story map in order to receive feedback and to into them of the tool's availability. An additional live demonstration of the was carried out with the local environmental justice organization Milwaukee Water Commons in request to feedback on the storymap's relevance and usability.

Milwaukee's Flo. 'Hearn Vulnerability Assessment: Spatial Analysis Results

The results of 'he road analysis show the spatial distribution of flood exposure and flood vulnerability in Milwaukee at the Census Tract level. Exposure (Figure 2) shows a scattered distribution across the city. This spread is heavily influenced by the two flood hazard layers. As show in Figure 3, the pluvial flood hazard layer developed with the CityCAT modeling tool covers much larger area of the city than the fluvial flood hazard layer developed by FEMA. While Figure 3 is tood hazard layer covers a total area of 985 hectares (ha), the pluvial flood hazard layer developed by FEMA. While Figure 3 is tood hazard layer covers a total area of 985 hectares (ha), the pluvial flood hazard layer developed by FEMA. While Figure 4 is to developed by FEMA. While Figure 4 is to developed by FEMA. While Figure 5 is to developed by FEMA. While Figure 6 is to developed by FEMA. While Figure 6 is to developed by FEMA. While Figure 7 is to developed by FEMA. While Figure 7 is to developed by FEMA. While Figure 7 is to developed by FEMA. While Figure 8 is to developed by FEMA. While Figure 8 is to developed by FEMA. While Figure 8 is to developed by FEMA. While Figure 9 is to developed by FEMA.

3გ

344

345

346

347

348

349 350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370371

372

373

374

375

376

377

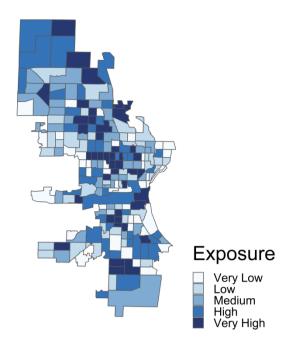
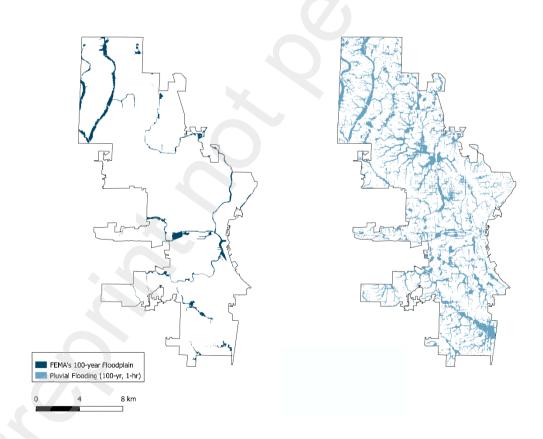
378

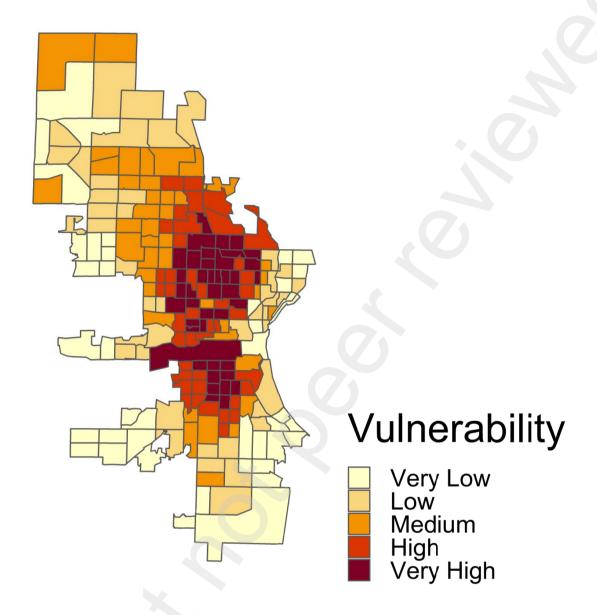
379 380

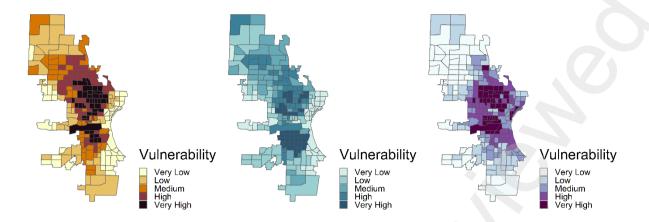
381

382

383 384


Figure 2: Flooding Exposure Index in Milwaukee, with scores sorted in quintiles.


Figure 3: Flood hazard distribution of the two flooding hazard types considered in the study. On the left, flood hazard according to FEMA's Special Flood Hazard Area (100-year floodplain). On the right, pluvial flooding according to a 100-yr 1-hour rain event simulated in CityCAT.

Flood vulnerability, in contrast, exhibits a clustered distribution with higher values concentrated in the city's center (Figure 4). This pattern is consistent across the sub-indices developed for each vulnerability theme, with minor variations in their north-south distribution. For instance, the socioeconomic vulnerability sub-index shows high index values further South of the carry's center, while high health vulnerability spreads further North instead. Finally, he will be vulnerability shows its high vulnerability values more concentrated in the city's center will out reaching as far North or South as the other two sub-indices.

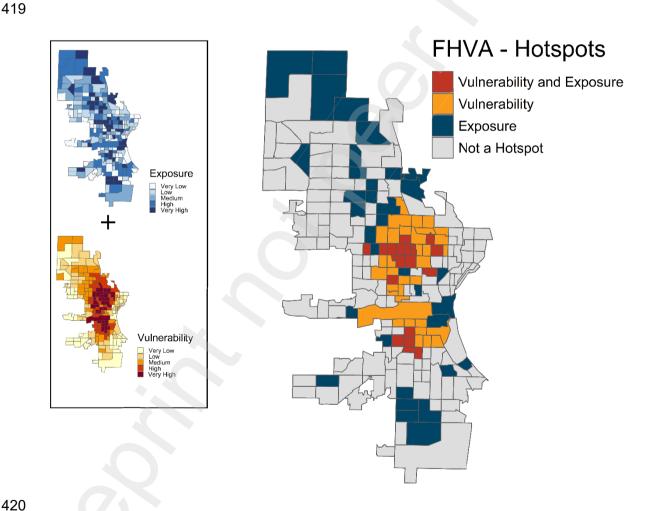

The distinct distributions of the exposure and vulnerability indices drive the qualitation of hotspots and their co-occurrence. Due to the clustering of high vulnerability of an sust tracts in Milwaukee's center, the co-occurrence of high exposure and high vulnerability of constrained to the same area (Figure 6). Out of a total of 209 census tracts, 18 w re a 'entified as both a vulnerability and exposure hotspot. Additionally, 34 census tracts are idea tified as vulnerability hotspots, and the same number of tracts are identified as exposure hotspot. Roughly 47,800 people (~8% of the city's total population) live in the tracts identified as exposure and vulnerability hotspots, with an additional ~86,600 (~14%) people ving in census tracts identified as vulnerability hotspots, and ~100,700 (~17%) in exposure hotspots. To facilitate interpretation by Milwaukee's residents, the zip codes that overlapped with either type of hotspot were also identified (Table 5).

Figure 4: Social Vulnerability Index resulting from the aggregation of the three vulnerability sub-indices. The vulnerability level categories correspond to a quintile-based classification.

Figure 5: Vulnerability sub-indices generated from the aggregation of indicators selected under each vulnerability theme. The vulnerability themes aggregated correspond to health variables (left), socioeconomic (middle), and household (right). The vulnerability level categories correspond to a quintile-based classification.

Figure 6: Overlap between Flood Exposure and Social Vulnerability hotspots across Milwaukee. Hotspots for exposure and vulnerability are defined as the top quartile (top 25%) of the two indices, respectively.

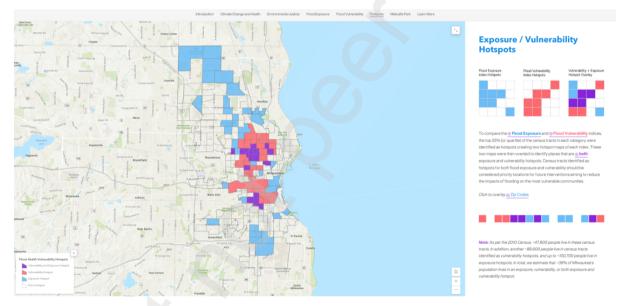
4° 5

4ა

Table 5: Zip codes in Milwaukee that intersect with one or more types of hotspot. Zip codes and census tracts have different boundaries, due to which any given zip code will intersect with more than one census tract. To account for this, for each zip code, every different hotspot type is listed.

Zip Code	Types of Hotspots
53224	Exposure
53223	Exposure
53225	Exposure
53218	Exposure
53209	Exposure; vulnerability
53216	Exposure; vulnerability
53206	Exposure and vulnerability; vulnerability
53212	Exposure and vulnerability; exposure; vulnerability
53210	Exposure and vulnerability; exposure; vulnerability
53208	Exposure and vulnerability; vulnerability
53205	Exposure and vulnerability; exposure; vulnerability
53233	Exposure; vulnerability
53203	Exposure; vulnerability
53202	Exposure
53204	Exposure and vulnerability; exposure; vulnerability
53214	Exposure; vulnerability
53215	Exposure and vulnerability; vulnerability
53219	Exposure
53221	Exposure
53207	Exposure

Milwaukee's Flood Health Vulnerability Assessment: The Story Map


The resulting story map is presented as a scrolling thread structured in eight different sections (https://storymaps.arcgis.com/stories/3e8187206bb542d897bceb8a3694a416).

First, an ir action highlights the project's goal, defined as "to provide critical information on both floor exporure and social vulnerability to support community-based advocacy and future planning to in gate potential flood and health risks". The assessment's structure is presented, guiding the reader through its exposure-vulnerability assessments. In two additional in armacine sections, the connections between climate change and health, as well as climate that are and environmental justice, are presented. In these sections, the distributions of flood isk, tree canopy, and impervious surfaces in Milwaukee are presented. Additional context is provided by comparing these factors with legacies of historic segregation, known as redlining 'Rothstein, 2017), illustrating the path dependencies connecting past racist policies with the

455 456

457

current distributional injustices of environmental risks (Hoffman et al., 2020; Mitchell and Franco, 2018). In this latter section, local contextual information is provided linking flooding exposure to socially vulnerable communities and to green infrastructure planning in Milwaukee. This allows to leverage the project's goal of illustrating the need to prioritize interventions in locations where vulnerability and exposure to flooding converge. The three following sections summarize the methods and results for assessing exposure, assessing vulnerability in its separate themes, and identifying hotspots based on the overlay of exposure and vulnerability (Figure 7). A seventh section provides a case study focused on a particular location in Milwaukee, Metcalfe Park (Figure 8). Metcalfe Park was selected as a case study given its overlap with census tracts classified as exposure and vulnerability hotspots, as well as with historically segregated areas. This case study aims to illustrate how the tool could be used at the neighborhood level to closely understand flooding exposure, its potential impacts, and to identify opportunities for interventions. Additional layers not included in the spatial analysis are provided for further context, such as the presence of polluted industrial sites. Finally, a concluding section provides information to get involved in future activities, flood preparation tips, and contact information for the different groups involved in the assessment.

Figure 7: Milwaukee's Flood Health Vulnerability Assessment - Story map presenting the overlay between exposure and vulnerability hotspots.

Figure 8: Milwaukee's Flood Health Vulnerability Assessment - Story map zoom into Metcalfe Park as an example case study, presenting high resolution flood hazard data and additional spatial data such as the location of polluted sites.

The story map includes functionalities that were added as a result of the internal and external feedback. Added functionalities were designed to facilitate the interpretation of the data presented, avoiding any possible "black-box" effect. For instance, the census tracts presented in any of the maps can be clicked on to deploy an attribute table with the specific indicator values that led to the tract's index value. In addition, a "View Alone" button allows users to isolate and visualize a specific indicator, allowing city-wide visualizations. Feedback received from potential users was highly focused on facilitating the geographic navigation of the maps, given that census tracts are not a familiar spatial unit for people. Because of this, an interactive zip-code layer was added. Additionally, the story map's user-friendliness is further enabled by using a basemap including street names.

Discussion

In this study, we presented Milwaukee's Flood Health Vulnerability Assessment and the underlying co-production process that was triggered by an observed lack of consideration for key vulnerability aspects in the spatial planning of green infrastructure in Milwaukee

(Milwaukee Metropolitan Sewerage District, 2013; The City of Milwaukee Environmental Collaboration Office, 2019). Ultimately, the project's outcomes aim to serve as advocacy and planning tools by illustrating the critical need for accounting for different dimensions of risk, taken as an aggregate of hazard, exposure, and vulnerability, when designing and allocating climate change adaptation interventions such as green infrastructure (Hoover et al., 2021; Meerow, 2020). In addition to the project's results, the co-production process through which they were produced also aimed to empower civic organizations that may lack access to data, information, and knowledge needed to support their efforts to advocate for policy changes and have their needs addressed (Chambers et al., 2021). The process resulted in a spatial analysis that identifies exposure and vulnerability hotspots, which co-occur in Milwaukee's central area. Additionally, a story map envisioned as a support tool for advocacy organizations, city officials, urban planners, and healthcare practitioners was produced as a tool to present the methods and results to a wide audience in an appealing, educational manner that combines spatial data visualization with supporting text, graphs, and audiovisual materials (Hoffman et al., 2020).

The indicators and hotpots mapped in this study may not only inform the siting of UGI and other NBS, but their implementation and design processes. For instance, areas with high disability or elderly rates may require interventions to focus on physical accessibility; high poverty rates may flag a need to ensure that jobs created in the implementation process provide opportunities to address wealth inequalities (Grabowski et al., 2023); and communities with a high rate of residents unable to properly communicate in English may ensure that the participatory processes linked to NBS and UGI planning offer information in other languages (Teron, 2016). UGI itself has been observed to provide a wide range of health benefits such as reducing stress levels, reducing risks for cardiovascular disease, and improving immune responses (Nieuwenhuijsen, 2021). Hence, health vulnerabilities like those mapped in this study may be used to inform the siting and design of UGI beyond the flood zones considered. Besides advancing the mapping of vulnerability in Milwaukee, this study considers pluvial flooding by simulating a 100-year, 1-hour storm event. The addition of pluvial flooding is critical to avoid the underrepresentation of flood hazards in Milwaukee's FHVA. Accounting for pluvial flooding allowed the identification of locations with potential to experience flooding while being far from FEMA's riverine floodplains. For instance, pluvial flooding was identified in the 30th Street Corridor and N 35th Street, a high vulnerability area in which Milwaukee's Metropolitan Sewerage District is currently deploying several large-scale UGI projects to address persistent flooding (Milwaukee 14 tropolitan Sewerage District, 2021a, 2021b).

Co-production process: be fits and lessons learned

51/

£.`1

Facilitating the int. action between domain experts and data scientists is crucial to realize the benefits that data science has to offer (Viaene, 2013). In the initial stages of the co-production process, the ssessment team was expanded in order to incorporate holders of specific knowledge domains that were identified as lacking in the original team. The inclusion of health experts in the eam was found to be crucial. For instance, the preliminary indicators list proposed as the a rates of the adult population as an indicator, to which health experts pointed the critical importance of including pediatric populations in asthma metrics. In addition to domain excepts, including other potential end-users (e.g. environmental justice organizations) was valuable to ensure the study's final usability (Hoffmann et al., 2020; Lemos et al., 2012). Thooting to step away from an originally intended "index" approach was the most important impact of including end users and consulting with external public officials. It was made clear that aggregating all the data into a single index makes it virtually impossible to understand the underlying drivers of a high value. Therefore, a "modular" approach by which vulnerability and

exposure indices are kept separate, enabling the user to understand the distinct distributions of both factors, was selected. Additionally, the hierarchical conceptualization of vulnerability as an aggregate of sub-indices or themes (Reckien, 2018; Tate, 2012) was also selected to facilitate the interpretation of the final results, as well as enabling users to focus on point alar themes that may be of higher concern depending on the use case.

The benefits of this co-production process so far highlighted are the result of the high interdisciplinarity of the team (Vollstedt et al., 2021). Furthermore, the incollogication of healthcare practitioners as domain experts fills a need for carrying out interaction of healthcare practitioners as domain experts fills a need for carrying out interaction of healthcare practitioners as domain experts fills a need for carrying out interaction of the project with health, climate change, and racial justice scholars (Deivanay age not al., 2023). This interdisciplinarity and interaction between researchers and stakehologies with domain expertise is key to enable collective learning (Olazabal et al., 2018). If key component of coproduction is the problem definition, which posed major challenges at the initial stages of the project. Several iterations were needed to refine the project's goals and and develop a frame of collaboration grounded on a mutual understanding of the project's conscities, assumptions, and the different roles of the members of the team. This is not in differ all as a weakness of the project, but a strength. It has been shown that involving stake olders and other participants in the very initial stages of the project increases the value, equational potential, and the credibility of its outcomes (Voinov and Bousquet, 2010). The challenges encountered, however, call for specifically budgeting time and resources the initial stages of co-production projects, as highlighted by others (Christel et al., 2018).

Study limitations and future steps

528

529

530 531

532

533

534

535

536

537

538

539

540 541

542

543

544

545

546 547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

5° 5

5₀.

568

Future steps complementing the process prostrate, may focus on limitations and further research needs identified. On the co-production side, future iterations may explore the further participation of policy makers and/or resident: from select communities. Including policy makers in the co-production process would crease the usability of their products in UGI planning. For instance, urban plan ers and pulicy makers may provide feedback on the indicators used in the assessment. high. Thing whether specific indicators should be excluded or added based on their needs. nvolving policy-makers, however, would require addressing potential power imbalances that . 'av .rise if their institutional authority influences decisions made during the co-production p. cess. Involving local residents in the development of future tools may facilitate ongoing alogues on self-advocacy and disaster preparedness. The story map developed has proven useful in contexts such as education and city-wide advocacy. Journalism, in addition, has emerged as an unexpected use of the tool since its release. Besides a feature significant focused on the story map itself (Looby, 2022), additional media pieces have becopublished relying on the story map to illustrate climate change, sustainability, a. 1 lo. 1 concerns on exacerbating flooding due to highway expansions (Chester, 20°; Schilte and Looby, 2023a, 2023b). However, the story map's capacity to engage with the residents of disproportionately vulnerable and exposed neighborhoods is yet to be eva uated Given examples of story maps created as environmental justice advocacy tools that engaged directly with community members during their development (Lung-Amam and 'vav kins, 220), the current story map may trigger new co-production cycles rather than forcing residents to adhere to its already existing version.

Regarding future analytical steps, understanding how current and projected UGI is distributed and performing in Milwaukee would reveal if interventions effectively address the areas most in need of flood risk mitigation identified in this study. Accounting for the performance of UGI addition to the distribution of risk would enable a supply-demand assessment in which

- distributional injustices of both UGI and hazards are presented and related to each other
- 570 (Herreros-Cantis and McPhearson, 2021). In addition, coupling flood risk with the distribution
- of polluted sites has been identified as a research avenue of interest for which a new co-
- 572 production cycle, including the recruitment of specialists in water quality and pollution, would
- 573 be needed.
- 574 Climate adaptation planning in Milwaukee: recent developments
- 575 Milwaukee's FHVA was triggered as a reaction to Milwaukee's city-wide UGI plans. Several
- 576 developments in Milwaukee's adaptation planning context have occurred in parallel to the
- 577 project. Albeit positive, these developments underscore the need for empowering the voices
- of organizations advocating for a risk and vulnerability-centered approach towards prioritizing
- 579 and designing UGI.
- In June 2023, Milwaukee County released the Milwaukee County Climate Action 2050 Plan,
- a county-wide vulnerability assessment focused on extreme heat, flooding, and air quality
- 582 (Milwaukee County, 2023). The assessment presents promising aspects such as the inclusion
- of residents' views through a city-wide survey and workshop discussions. However, the report
- acknowledges the over-representation of white, higher-income residents (90% of the survey
- respondents). Furthermore, the report presents other limitations such as not providing a
- 586 region-wide, spatially explicit flood vulnerability assessment and relying on CDC's Social
- Vulnerability Index as a pre-packaged, generalist vulnerability product. Some of these
- 588 limitations may reflect the way in which local residents participated in the assessment as
- sources of information in the initial stages of the project, rather than as knowledge co-
- 590 producers. Finally, the County's assessment exclusively considers FEMA's flood hazard areas
- to assess exposure, hence overlooking the widespread distribution of pluvial flooding. In
- 592 September 2023, Milwaukee city officials announced the award of \$12 million in funding to
- 593 increase access to green spaces and expand urban tree canopy in order to address the
- 594 challenges posed by climate change and create healthier communities(Urban Milwaukee,
- 595 2023; USDA Forest Service, 2023). The grant program explicitly states an intention to target
- 596 disadvantaged communities, reinforcing the need for a city-wide understanding of the
- distributions of risk as a combina, and vulnerability and exposure.

Conclusions

- In order to achieve a total and effective mobilization of resources for flood risk mitigation, cities
- investing on UGI and on or types of NBS must explicitly consider the uneven distribution of
- flooding exposure and ulnerability. The mapping of risk to extreme weather events in cities
- has been de elop over several iterations from an academic standpoint. However, the
- methods and knowledge developed through risk mapping processes lack relevance or
- accessibility is governments and place-based civic organizations.
- Here, we pres need the result of a co-production process that was rooted in the inclusion of
- potential and experts with relevant knowledge for increasing the study's validity and
- applicated to advocacy, urban planning, and education. The presented exercise triggered a
- shared learning process, allowing for the integration of the different expertises present in the
- 609 to m. The study's co-production approach facilitated the incorporation of voices commonly
- 61/ not represented in UGI planning, such as environmental justice advocates calling for an
- 6.1 equitable distribution of resources. As a result of the process, exposure and vulnerability
- 612 hotspots across Milwaukee were identified, concentrated in the central areas of the city.
- 613 Lesides the assessment, a web-based story map was developed for communication

purposes. The story map allows not only to visualize flooding exposure and vulnerab. "tv hotspots in Milwaukee, but also to disseminate the assessment's methods in an access ue and understandable manner.

References

- 620 621
- 622 623 624 625 626
- 627
- 628 629 630 631 632 633
- 634 635 636 637 638
- 639 640 641 642 643
- 644 645 646 647
- 648 649 650 651
- 652 653 654 655
- 656 657 658 659 660 661 662
- 663 664 665 666 667
- 668 669 670 671 672 673
- 674 675 676 677 678
- 67 J€ 0
- 68 . 682 683

- Babí Almenar, J., Elliot, T., Rugani, B., Philippe, B., Navarrete Gutierrez, T., Sonnemann, G., Geneletti, D., 2u 11 Nexus between nature-based solutions, ecosystem services and urban challenges. Land Use P 100, 104898. https://doi.org/10.1016/j.landusepol.2020.104898
- Balica, S.F., Wright, N.G., van der Meulen, F., 2012. A flood vulnerability index for coastal cities and assessing climate change impacts. Nat. Hazards 64, 73-105. https://doi.org/10.1007/s1106s 012-u234-
- Bertsch, R., Glenis, V., Kilsby, C., 2022. Building level flood exposure analysis using a hydrody amic model. Environ, Model, Softw. 156, 105490, https://doi.org/10.1016/j.envsoft.2022.105490
- Bilotta, G.S., Milner, A.M., Boyd, I.L., 2015. How to increase the potential policy impact of r..... nmental science research. Environ. Sci. Eur. 27, 9. https://doi.org/10.1186/s12302-015-0041-x
- Chambers, J.M., Wyborn, C., Ryan, M.E., Reid, R.S., Riechers, M., Serban, A., Lennet, J.J. Zvitanovic, C., Fernández-Giménez, M.E., Galvin, K.A., Goldstein, B.E., Klenk, N.L., Tengö, M., Reman, R., Cockburn, J.J., Hill, R., Munera, C., Nel, J.L., Österblom, H., Bednarek, A.T., Bennett, F.M., randeis, A., Charli-Joseph, L., Chatterton, P., Curran, K., Dumrongrojwatthana, P., Durán, A.P., ada, S.J., Gerber, J.-D., Green, J.M.H., Guerrero, A.M., Haller, T., Horcea-Milcu, A.-I., Leimona, D., tana, J., Rondeau, R., Spierenburg, M., Steyaert, P., Zaehringer, J.G., Gruby, R., Hutton, J. . . . 'ering, T., 2021. Six modes of co-production for sustainability. Nat. Sustain. 4, 983–996. https://doi rg/ J. 738/s41893-021-00755-x
- Chang, H., Pallathadka, A., Sauer, J., Grimm, N.B., Zimmerman, R., Chenc C war ec, D.M., Kim, Y., Lloyd, R., McPhearson, T., Rosenzweig, B., Troxler, T., Welty, C., Braner, I., Herreros-Cantis, P., 2021. Assessment of urban flood vulnerability using the social-ecological systems framework in six US cities. Sustain. Cities Soc. 68, 102786, https://doi.org/10.1016/j..cs.2021.102786
- Cheng, M., 2022. Milwaukee's still super segregated, but a few neigl porhoods have become more diverse [WWW Document]. WUWM 897 FM - Milwaukees NPR. URL http://www.wuwm.com/2022-04-05/milwaukeesstill-super-segregated-but-a-few-neighborhoods-have-brane ore-diverse (accessed 10.3.23).
- Chester, J., 2023. I-94 expansion: Milwaukee residents fear m re f Jo 'ing. Wis. Watch.
- Christel, I., Hemment, D., Bojovic, D., Cucchietti, F., Calvo, L., tefa er, M., Buontempo, C., 2018. Introducing design in the development of effective climate services. Serv., Climate services in practice: what we learnt from EUPORIAS 9, 111-121. https://doi.c g/1′.1^16/j.cliser.2017.06.002
- Chu, E.K., Cannon, C.E., 2021. Equity, inclusion, and justic as riteria for decision-making on climate adaptation in cities. Curr. Opin. Environ. Sustain. 51, 85, 94. //doi.org/10.1016/j.cosust.2021.02.009
- Cope, M.P., Mikhailova, E.A., Post, C.J., Schlautma, M.A. Carbajales-Dale, P., 2018. Developing and Evaluating ESRI -ducat onal Tool. Nat. Sci. Educ. Story Мар as an https://doi.org/10.4195/nse2018.04.0008
- Covi, M.P., Kain, D.J., 2016. Sea-Level Fise Risk Comi. inication: Public Understanding, Risk Perception, and Infor . *ion. Attitudes about Environ. Commun. 10, 612-633. https://doi.org/10.1080/17524032 2015. 37 3541
- de Sherbinin, A., Bardy, G., 2015. Sor al vu. erability to floods in two coastal megacities: New York City and Mumbai. Vienna Yearb. Popul Res. 1, 131–165.
- Deivanayagam, T.A., English, S., Hickel, P. nifacio, J., Guinto, R.R., Hill, K.X., Huq, M., Issa, R., Mulindwa, H., Nagginda, H.P., de Mor s & to, P., Selvarajah, S., Sharma, C., Devakumar, D., 2023. Envisioning environmental equity clima.e change, health, and racial justice. https://doi.org/10.1016/S0 1 7-6736(23)00919-4
- Depietri, Y., McPhearson T. 2017. Integrating the Grey, Green, and Blue in Cities: Nature-Based Solutions for Climate Change , aptation and Risk Reduction, in: Kabisch, N., Korn, H., Stadler, J., Bonn, A. (Eds.), Nature-Based Solutio, to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice, " and Practice of Urban Sustainability Transitions. Springer International Publishing, Cham, pp. 9⁴ 109. h. s://doi.org/10.1007/978-3-319-56091-5 6
- Easterling, D., Amold, J., Ynutson, T., Kunkel, K., LeGrande, A., Leung, L.R., Vose, R., Waliser, D., Wehner, M., 2017. Procention change in the United States. Publ. Agencies Staff US Dep. Commer.
- ∕ ⊃mmis⊾⊃n, 2020. Green infrastructure [WWW] European Document]. https://en.inment.ec.europa.eu/topics/nature-and-biodiversity/green-infrastructure_en (accessed
- European Commission, 2013. Communication From The Commission To The European Parliament, The Council, The Furr pean Economic And Social Committee And The Committee Of The Regions: Green .. astr. ture (GI) — Enhancing Europe's Natural Capital, 52013DC0249.
- Faivro N Fi z, M., Freitas, T., de Boissezon, B., Vandewoestijne, S., 2017. Nature-Based Solutions in the EU: inno ating with nature to address social, economic and environmental challenges. Environ. Res. 159, ວບຢ–518. https://doi.org/10.1016/j.envres.2017.08.032
- Fers, son, A.P., Ashley, W.S., 2017. Spatiotemporal analysis of residential flood exposure in the Atlanta, Georgia metropolitan area. Nat. Hazards 87, 989-1016. https://doi.org/10.1007/s11069-017-2806-6
- Flanagan, B.E., Gregory, E.W., Hallisey, E.J., Heitgerd, J.L., Lewis, B., 2011. A Social Vulnerability Index for Disaster Management. J. Homel. Secur. Emerg. Manag. 8. https://doi.org/10.2202/1547-7355.1792
- Foltman, L., Jones, M., 2019. How Redlining Continues To Shape Racial Segregation In Milwaukee [WWW Document]. URL https://apl.wisc.edu/shared/tad/redlining-milwaukee (accessed 10.3.23).

7 .7

- Gill, S.E., Handley, J.F., Ennos, A.R., Pauleit, S., 2007. Adapting Cities for Climate Change: The Role of the Change: The Rol
- Glenis, V., Kutija, V., Kilsby, C.G., 2018. A fully hydrodynamic urban flood modelling system representing fiding in green space and interventions. Environ. Model. Softw. 109, 212 292. https://doi.org/10.1016/j.envsoft.2018.07.018
- Glenis, V., McGough, A.S., Kutija, V., Kilsby, C., Woodman, S., 2013. Flood modelling for citie. us.... Cloud computing. J. Cloud Comput. Adv. Syst. Appl. 2, 7. https://doi.org/10.1186/2192-113λ-2
- Gómez-Baggethun, E., Gren, Å., Barton, D.N., Langemeyer, J., McPhearson, T., O'Farre", Andersson, E., Hamstead, Z., Kremer, P., 2013. Urban Ecosystem Services, in: Elmqvist, T., Fraç das M. Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, N., Sei dad, M., Seto, K.C., Wilkinson, C. (Eds.), Urbanization, Biodiversity and Ecosystem Services: Chair right of Opportunities: A Global Assessment. Springer Netherlands, Dordrecht, pp. 175–251. http://doi.org/10.1007/978-94-007-7088-1
- Grabowski, Z.J., McPhearson, T., Matsler, A.M., Groffman, P., Pickett, S.T., 2022. *** green infrastructure? A study of definitions in US city planning. Front. Ecol. Environ. 20, 152–167 *** the green infrastructure? A study of definitions in US city planning.
- Grabowski, Z.J., McPhearson, T., Pickett, S.T.A., 2023. Transforming US ur' an ,re n infrastructure planning to address equity. Landsc. Urban Plan. 229, 104591. https://doi.org/10. 2 6/j.l/ ndurbplan.2022.104591
- Grove, M., Ögden, L., Pickett, S., Boone, C., Buckley, G., Locke, D.H., Lord, C., 'Hall, B., 2018. The Legacy Effect: Understanding How Segregation and Environmental Injus' Le Unfold over Time in Baltimore. Ann. Am. Assoc. Geogr. 108, 524–537. https://doi.org/10.1080/2465 '52.2017.1365585
- Guerreiro, S.B., Glenis, V., Dawson, R.J., Kilsby, C., 2017. Pluvial Fix ding in European Cities—A Continental Approach to Urban Flood Modelling. Water 9, 296. htt/s://oiorg/10.3390/w9040296
- Harder, Brown (Eds.), 2017. The ArcGIS Book. 10 Big Ideas at au Apr ying the Science of Where. Esri Press, 380 New York Street, Redlands, California 92373-8100 http:///www.ni.org/10.5555/3169917
- Hayhoe, K., Wuebbles, D.J., Easterling, D.R., Fahey, S., Aohr w S., Kossin, J., Sweet, W., Vose, R., Wehner, M., 2018. Our Changing Climate. In Impacts, Risk and daptation in the United States: Fourth National Climate Assessment, Volume II. U.S. Global Cha. Casearch Program, Washington D.C., U.S.A.
- He, J., Sikor, T., 2015. Notions of justice in paymer s to cosystem services: Insights from China's Sloping Land Conversion Program in Yunna Province. Land Use Policy 43, 207–216. https://doi.org/10.1016/j.landusepol.2014.11.
- Hemmati, M., Kornhuber, K., Kruczkiewicz A. 2022. En. need urban adaptation efforts needed to counter rising extreme rainfall risks. Npj Urban S. fain. 2, 1–5. https://doi.org/10.1038/s42949-022-00058-w
- Herreros-Cantis, P., McPhearson, T., 2021. Mc ning supply of and demand for ecosystem services to assess environmental justice in New Y is C. L. Ecol. Appl. 0, e02390. https://doi.org/10.1002/eap.2390
- Herreros-Cantis, P., Olivotto, V., Grabo 'ski, Z., McPhearson, T., 2020. Shifting landscapes of coastal flood risk: environmental (in)justice of urb, 'chr. ige, sea level rise, and differential vulnerability in New York City. Urban Transform. 2, 9. htt .s., 'ni.org/10.1186/s42854-020-00014-w
- Hinkel, J., Garcin, M., Gussmann G., An. res, A., Barbier, C., Bisaro, A., Le Cozannet, G., Duvat, V., Imad, M., Khaleel, Z., Marcos, M., Indreros, R., Shareef, A., Waheed, A., 2023. Co-creating a coastal climate service to prioritise investments in erosion prevention and sea-level rise adaptation in the Maldives. Clim. Serv. 31, 100401. https://doi.org/10.1016/j.cliser.2023.100401
- Hoffman, J.S., Shandas, V., F. Meton, N., 2020. The Effects of Historical Housing Policies on Resident Exposure to Intra-Urban '... 'A Sudy of 108 US Urban Areas. Climate 8, 12. https://doi.org/10.3390/cli8010012
- Hoffmann, E., Rupp, J. Sanoc K., 2020. What Do Users Expect from Climate Adaptation Services? Developing an Information Natform Based on User Surveys, in: Leal Filho, W., Jacob, D. (Eds.), Handbook of Climate Services Cimate Change Management. Springer International Publishing, Cham, pp. 105–134. https://dii.org/1007/978-3-030-36875-3_7
- Hoover, F.-A., Me row, S., Grabowski, Z.J., McPhearson, T., 2021. Environmental justice implications of siting crite... in urban green infrastructure planning. J. Environ. Policy Plan. 0, 1–18. https://doi.org/10.1080/1523908X.2021.1945916
- Hopkins, N. S., G mm, N.B., York, A.M., 2018. Influence of governance structure on green stormwater ture investment. Environ. Sci. Policy 84, 124–133. https://doi.org/10.1016/j.envsci.2018.03.008
- lliadis C. Sc atsa. Ju, P., Glenis, V., Prinos, P., Kilsby, C., 2023. Urban Flood Modelling under Extreme Rainfall Con itions for Building-Level Flood Exposure Analysis. Hydrology 10, 172.ps://doi.org/10.3390/hydrology10080172
- IPC 2012. Managing the Risks of Extreme Events and Disasters to Advance Climage Change Adaptation.

 Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 8RU FNGLAND.
- Kabisch, N., Frantzeskaki, N., Pauleit, S., Naumann, S., Davis, M., Artmann, M., Haase, D., Knapp, S., Korn, H., Stadler, J., Zaunberger, K., Bonn, A., 2016. Nature-based solutions to climate change mitigation and

778

779

780 781

782 783

784

785

786 787 788

789 790

791

792 793

794

795

796 797

798 799

800

801

802 803

804

805

806

807

808

809

810

811

81′. 8′3

- 752
- adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 21, art39. https://doi.org/10.5751/ES-08373-210239
- Keuser, A., 2014. Precipitation Patterns and Trends in the Metropolitan Area of Milwaukee, Wisconsin. II. J. Geospatial Environ. Res. 1.
- Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., Matte, T., 2013. Health Effects of Coast? Tribs and Flooding in Urban Areas: A Review and Vulnerability Assessment, J. Environ, Public He Ith 2013. e913064. https://doi.org/10.1155/2013/913064
- Langemeyer, J., Connolly, J.J.T., 2020. Weaving notions of justice into urban ecosystem services re early, and practice, Environ, Sci. Policy 109, 1-14, https://doi.org/10.1016/j.envsci.2020.03.021
- Lemos, M.C., Kirchhoff, C.J., Ramprasad, V., 2012. Narrowing the climate information usability 4 p. 1. . . Clim. Change 2, 789-794. https://doi.org/10.1038/nclimate1614
- Looby, C., 2022. Interactive map pinpoints Milwaukee areas most at risk for flooding, relate an alth risks [WWW Document]. Milwaukee J. Sentin. URL https://www.jsonline.com/story/new /20' 2/' 2/28/as-urbanflooding-rises-new-map-pinpoints-vulnerable-milwaukee-spots/6974459300 / (acc / sed / .18.23).
- Lovell, S.T., Taylor, J.R., 2013. Supplying urban ecosystem services through multifunc. nai g. en infrastructure in the United States. Landsc. Ecol. 28, 1447-1463. https://doi.org/10.1007/s. \986 \13-9912-y
- Lund, N.S.V., Borup, M., Madsen, H., Mark, O., Arnbjerg-Nielsen, K., Mikkelsen, P.S., 2t '9. Integrated stormwater inflow control for sewers and green structures in urban landscapes. . . ustain. 2, 1003-1010. https://doi.org/10.1038/s41893-019-0392-1
- Lung-Amam, W.S., Dawkins, C., 2020. The power of participatory str y r ar ping: Advancing equitable development in disadvantaged neighbourhoods. Commun τ Γ εν. J. 55, 473–495. https://doi.org/10.1093/cdj/bsy064
- McPhearson, T., Grabowski, Z., Herreros-Cantis, P., Mustafa, A., Ortiz, L., 'ennedy, C., Tomateo, C., Lopez, B., Olivotto, V., Vantu, A., 2021. Pandemic Injustice: Spatial and Social L tributions of COVID-19 in the US
- Epicenter. J. Extreme Events 2150007. https://doi.org/10.1 +2/S234573762150007X

 Meerow, S., 2020. The politics of multifunctional green infrastructure, 'anning in New York City. Cities 100, 102621. https://doi.org/10.1016/j.cities.2020.102621
- Meerow, S., Newell, J.P., 2019. Urban resilience for whom, what, viren, where, and why? Urban Geogr. 40, 309-329. https://doi.org/10.1080/02723638.2016.1206395
- Milwaukee County, 2023. Milwaukee County Climate Action 20t. 1 Vulnerability Assessment. Milwaukee, WI. Milwaukee County Land Information Office, 2020. Topo ar netric and Cadastral - Download Data By Section Do am∈nt]. https://mclio.maps.arcgis.com/apps/webappviewe "and schtml?id=84c7b8d95af04cdda6b0c2ae2659053 1 (accessed 9.20.23).
- Milwaukee Health Care Partnership, n.d. 'ealth Compass Milwaukee [WWW Document].
- https://www.mmsd.com/what-we-o- aod-management/milwaukee-watershed-projects/30th-streetcorridor (accessed 11.10.23).
- Milwaukee Metropolitan Sewerage Dist ct, 221b. West Basin Flood Management Project [WWW Document]. http://www.nmsd.com/what-we-do/flood-management/milwaukee-watershedprojects/west-basin (accessed . `4.2').
- Milwaukee Metropolitan Sewerar Strict, 2013. MMSD Regional Green Infrastructure Plan. Milwaukee Metropolitan Sewerage strict.
- Milwaukee Open Data, 2021. Maste. Property List (MPROP) Historical City of Milwaukee Open Data Portal [WWW Document]. URI https://data.i. ilwaukee.gov/dataset/historical-master-property-file (accessed 9.20.23).
- Mitchell, B., Franco, J., 2 8. HOLC "redlining" maps: The persistent structure of segregation and economic inequality » NCRC. IN `RC
- Nieuwenhuijsen, M.J., 2, 1. Geen Infrastructure and Health. Annu. Rev. Public Health 42, 317-328. https://doi.org/10.114/annurev-publhealth-090419-102511
- 2010. 2010, July 22, Flash Flooding & Tornado Outbreak [WWW Document]. URL https://www.reath.r.gov/mkx/072210_flashflooding-tornadoes (accessed 8.22.23).
- NOAA, n.d. Stor 1 Eve. Database Event Details | National Centers for Environmental Information [WWW Docume. 1 https://www.ncdc.noaa.gov/stormevents/eventdetails.jsp?id=252191 URL 8.2^ _
- NOAA NCF., 2025 U.S. Billion-Dollar Weather and Climate Disasters. https://doi.org/10.25921/STKW-7W73
- Olazabal, N. Chia ai, A., Foudi, S., Neumann, M.B., 2018. Emergence of new knowledge for climate change apta. an. Environ. Sci. Policy 83, 46–53. https://doi.org/10.1016/j.envsci.2018.01.017
- Oral, I.V C rvan., P., Gajewska, M., Ursino, N., Masi, F., Hullebusch, E.D. van, Kazak, J.K., Exposito, A., Cipr etta, G., Andersen, T.R., Finger, D.C., Simperler, L., Regelsberger, M., Rous, V., Radinja, M., Lauglieri, G., Krzeminski, P., Rizzo, A., Dehghanian, K., Nikolova, M., Zimmermann, M., 2020. A review of nature-based solutions for urban water management in European circular cities: a critical assessment based on case studies and literature. Blue-Green Syst. 2, 112–136. https://doi.org/10.2166/bgs.2020.932
- Overpeck, J.T., Meehl, G.A., Bony, S., Easterling, D.R., 2011. Climate Data Challenges in the 21st Century. Science 331, 700-702. https://doi.org/10.1126/science.1197869

8 3

- Papilloud, T., Röthlisberger, V., Loreti, S., Keiler, M., 2020. Flood exposure analysis of road infrastructu. Comparison of different methods at national level. Int. J. Disaster Risk Reduct. 47, 1546. https://doi.org/10.1016/j.ijdrr.2020.101548
- Paulik, R., Zorn, C., Wotherspoon, L., Sturman, J., 2023. Modelling national residential building ex, Jure to flooding hazards. Int. J. Disaster Risk Reduct. 94, 103826. https://doi.org/10.1016/j.ijdrr.2025.103625
- Plavén-Sigray, P., Matheson, G.J., Schiffler, B.C., Thompson, W.H., 2017. The readability of scientin texts is decreasing over time. eLife 6, e27725. https://doi.org/10.7554/eLife.27725
- Pralle, S., 2019. Drawing lines: FEMA and the politics of mapping flood zones. Clim. Change 15. 227–237. https://doi.org/10.1007/s10584-018-2287-y
- Rahmstorf, S., 2017. Rising hazard of storm-surge flooding. Proc. Natl. Acad. Sc 1′4, 11806–11808. https://doi.org/10.1073/pnas.1715895114
- Ramyar, R., Ackerman, A., Johnston, D.M., 2021. Adapting cities for climate change tribugh urban green infrastructure planning. Cities 117, 103316. https://doi.org/10.1016/j.cities.20. 1.10. 16
- Reckien, D., 2018. What is in an index? Construction method, data metric, and weight. g scheme determine the outcome of composite social vulnerability indices in New York City. Reg. En., hange 18, 1439–1451. https://doi.org/10.1007/s10113-017-1273-7
- Rigolon, A., 2016. A complex landscape of inequity in access to urban parks A lier ture review. Landsc. Urban Plan. 153, 160–169. https://doi.org/10.1016/j.landurbplan.2016.05 %
- Rothstein, R., 2017. The Color of Law: A Forgotten History of How Our Governme... Jegregated America. Liveright Publishing Corporation, New York.
- Rouse, H., Bell, R., Lundquist, C., Blackett, P., Hicks, D., King, D.-N., 2017. Cc stal adaptation to climate change in Aotearoa-New Zealand. N. Z. J. M r. Freshw. Res. 51, 183–222. https://doi.org/10.1080/00288330.2016.1185736
- Schulte, L., Looby, C., 2023a. Ron Johnson said climate change could be good for Wisconsin. Experts disagree. [WWW Document]. Milwauker J. Sentin. URL https://www.jsonline.com/story/news/politics/2023/04, '8' on-) hnson-said-climate-change-could-begood-for-wisconsin-experts-disagree/70157996007/ (au on-) d 9.18.23).
- Schulte, L., Looby, C., 2023b. Over 2 inches of rain least Navaukee to release untreated waste water [WWW Document]. Milwaukee J. Sentin. URL https://www.jsonline.com/story/news/local/milwau. ^/ J23/02/27/heavy-rains-lead-to-sewer-overflow-in-milwaukee/69949853007/ (accessed 9.18 -3).
- Schuster, Z.T., Potter, K.W., Liebl, D.S., 2012. Asc sing tt : Effects of Climate Change on Precipitation and Flood Damage in Wisconsin. J. Hydrol. Eng. 1, 888–894. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000513
- Shi, L., Chu, E., Anguelovski, I., Aylett, A., hats, J., Goh, K., Schenk, T., Seto, K.C., Dodman, D., Roberts, D., Roberts, J.T., VanDeveer, S.D., 2016. Cadmap towards justice in urban climate adaptation research. Nat. Clim. Change 6, 131–137 https://doi.org/10.1038/nclimate2841
- Snee, R.D., 1973. Some Aspects of N northogonal Data Analysis. J. Qual. Technol. 5, 67–79. https://doi.org/10.1080/002240c 1977.11980577
- Spicuzza, M., 2019. Milwaukee is ' ie . ost racially segregated metro area in the country, Brookings report says. Milwaukee J. Sentin.
- Stefanidis, S., Alexandridis, V., The doridou, T., 2022. Flood Exposure of Residential Areas and Infrastructure in Greece. Hydrology 9, 145. https://doi.org/10.3390/hydrology9080145
- Swart, R.J., de Bruin, K., L. nain, S., Dubois, G., Groot, A., von der Forst, E., 2017. Developing climate information portals with users: Propines and pitfalls. Clim. Serv. 6, 12–22. https://doi.org/10.1016/j.cliser.2017.06.008
- Tate, E., 2012. Social v.... ability indices: a comparative assessment using uncertainty and sensitivity analysis. Nat. Hazards i3, 32. 347. https://doi.org/10.1007/s11069-012-0152-2
- Tate, E., Rahmai., M.A., ¬mrich, C.T., Sampson, C.C., 2021. Flood exposure and social vulnerability in the United States. Nai. ¬azai ¬azai
- Teron, L., 2016. Susta. ably Speaking: Considering Linguistic Isolation in Citywide Sustainability Planning. Sustaina. "ity 9, 289–294. https://doi.org/10.1089/sus.2016.29072.lt
- The City of Milwaukee Environmental Collaboration Office, 2019. City of Milwaukee Green Infrastructure Plan.

 The City of Milwaukee Environmental Collaboration Office, City of Milwaukee.
- United Nations Environment Assembly, 2022. Resolution adopted by the United Nations Environment Assembly 2 March 2022: 5/5. Nature-Based Solutions for Supporting Sustainable Development, INE 7/EA. J/Res.5.
- Urbar. '' wai lee, 2023. Baldwin Secures \$13.5 Million to Fight Climate Change, Expand Access to Green Space, Create Healthier Communities [WWW Document]. Urban Milwaukee. URL https://urbanmilwaukee.com/pressrelease/baldwin-secures-13-5-million-to-fight-climate-change-expand-access-to-green-space-and-create-healthier-communities/ (accessed 9.20.23).
- JS Census Bureau, 2020. U.S. Census Bureau QuickFacts: Milwaukee city, Wisconsin [WWW Document]. URL https://www.census.gov/quickfacts/fact/table/milwaukeecitywisconsin/PST045222 (accessed 8.28.23).

- Vaughan, C., Dessai, S., 2014. Climate services for society: origins, institutional arrangements, and de an elements for an evaluation framework. WIREs Clim. Change 5, 587–603. https://doi.org/10.1002/
- Viaene, S., 2013. Data Scientists Aren't Domain Experts. IT Prof. 15, 12–17. https://doi.org/10.1109/MIT .20.3. 3
 Villani, M.L., Giovinazzi, S., Costanzo, A., 2023. Co-Creating GIS-Based Dashboards to Democratize K. Aled Je on Urban Resilience Strategies: Experience with Camerino Municipality. ISPRS Int. J. Geo inf. 12, 65. https://doi.org/10.3390/iigi12020065
- Vincent, K., Daly, M., Scannell, C., Leathes, B., 2018. What can climate services learn from theory and p. ctice of co-production? Clim. Serv. 12, 48–58. https://doi.org/10.1016/j.cliser.2018.11.001
- Voinov, A., Bousquet, F., 2010. Modelling with stakeholders. Environ. Model. Softw., Themail Issue Modelling with Stakeholders 25, 1268–1281. https://doi.org/10.1016/j.envsoft.2010.03.007
- Vollstedt, B., Koerth, J., Tsakiris, M., Nieskens, N., Vafeidis, A.T., 2021. Co-productic of compared sorvices: A story map for future coastal flooding for the city of Flensburg. Clin. Sc... 22, 100225. https://doi.org/10.1016/j.cliser.2021.100225
- Voskamp, I., Timmermans, W., Roosenschoon, O., Kranendonk, R., van Rooij, S., v n Hattum, T., Sterk, M., Pedroli, B., 2023. Long-Term Visioning for Landscape-Based Spatial Pian. Experiences from Two Regional Cases in The Netherlands. Land 12, 38. https://doi.org/10.3?0^"and12010038
- Wamsler, C., Pauleit, S., Zölch, T., Schetke, S., Mascarenhas, A., 2017. Mai stroam in Nature-Based Solutions for Climate Change Adaptation in Urban Governance and Planning, A., Stabioch, N., Korn, H., Stadler, J., Bonn, A. (Eds.), Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice, Theory and Practice of Urban Sustainability Transitions. Springer International Publishing, Cham, pp. 257–273. https://doi.org/10.1007/c.78-3-319-56091-5_15
- Waryszak, P., Gavoille, A., Whitt, A.A., Kelvin, J., Macreadie, P.I., 2 21. Combining gray and green infrastructure to improve coastal resilience: lessons learnt from hybrio od defenses. Coast. Eng. J. 63, 335–350. https://doi.org/10.1080/21664250.2021.1920278
- Wing, O.E.J., Lehman, W., Bates, P.D., Sampson, C.C., Quin', N Smith, A.M., Neal, J.C., Porter, J.R., Kousky, C., 2022. Inequitable patterns of US flood risk in th / ithr pocene. Nat. Clim. Change 12, 156–162. https://doi.org/10.1038/s41558-021-01265-6
- Wolff, M., Comerford, C., 2016. Climate and Health: An .sse .sment of San Francisco's Vulnerability to Flooding & Extreme Storms. San Francisco Department of Fublic Health, San Francisco, California.
- Wolff, S., Schulp, C.J.E., Verburg, P.H., 2015. Mapping ec., and future perspectives. Ecol. Indic. 55, 15 3–17. https://doi.org/10.1016/j.ecolind.2015.03.016
- Zafra-Calvo, N., Pascual, U., Brockington, D., Consaet, I., Cortes-Vazquez, J.A., Gross-Camp, N., Palomo, I., Burgess, N.D., 2017. Towards an indicator spatial to assess equitable management in protected areas. Biol. Conserv. 211, 134–141. https://doi.org/10.1016/j.biocon.2017.05.014

Co-producing research and data visualization for environmental justice advocacy: The Milwaukee Flood-Healtl Vulnerability Assessment

Pablo Herreros-Cantis*1,2,3, Lawrence Hoffman^{4,5}, Christopher Kennedy³, Young Joel Charles⁶, Victoria Gillet^{6,7}, Anne Getzkin^{7,8}, Danya Littlefield⁹, Alexandria Zieli: ¬ki^{6, 7}, Joanne Bernstein^{6,11}, Rene' Settle-Robbinson^{6,12}, Johannes Langemeyer¹, Marc Ne¹, Timon McPhearson³

- 1 Institute of Environmental Science and Technology, Universitat Autò, ama de Barcelona, Edifici Z (ICTA-ICP), Carrer de les Columnes s/n, Campus de la LIAB, vo. 93 Cerdanyola del Vallès, Spain
- 2 Basque Centre for Climate Change, Scientific Campus of ne calcersity of the Basque Country, Sede Building 1, 1st floor, Leioa 48940, Spain
- 3 Urban Systems Lab, The New School, 79 5th Ave # 5, New York, NY 10003, USA
- 4 Groundwork Milwaukee, 227 W Pleasant St, Milwaukee, WI 53212, USA
- 5 Groundwork USA, 22 Main Street, 2nd floor You ke's, IY 10701, USA
- 6 Healthy Climate Wisconsin, 3918 Paunack ve Madison, WI 53711, USA
- 7 Aurora Health Care, 750 W. Virginia St. P.C. 30 341880, Milwaukee, WI 53204, USA
- 8 University of Colorado School of Mediane, 1 '001 E 17th Pl, Aurora, CO 80045, USA
- 9 Data You Can Use, 1240 N 10th St, Milwa vee, WI 53205, USA
- 10 Marquette University, Milwaukes, 1250 W Wisconsin Ave, Milwaukee, WI 53233, USA
- 11 Medical College of Wiscons' ı, 8ı `1 W Watertown Plank Rd, Milwaukee, WI 53226, USA
- 12 Outreach Community H **:altr. ?enter**, 220 West Capitol Drive Milwaukee, WI 53212, USA
- * Corresponding aution pullo.herrerosc@autonoma.cat; pablo.herreros@bc3research.org

 Authors' con'ribu 'ons

PHC: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, "sualization, Writing - original draft. LH: Conceptualization, Data Curation, Methodology, Project Admin, Visualization, Writing - Review. CK: Conceptualization, Funding, "quis ion, Methodology, Project Admin, Visualization, Writing - Review. YK: Project, Mini, Writing - Review. JC: Conceptualization, Writing - Review. VG: Conceptualization, Writing - Review. AG: Conceptualization, Writing - Review. DL: Conceptualization, Visualization, Writing - Review. AZ: Conceptualization, Writing - Review. JL: Conceptualization, Supervision, Writing - Review. MN: Conceptualization, Funding Acquisition, Supervision, Writing - Review. TM: Conceptualization, Funding Acquisition, Visualization, Writing - Review.

Funding

Research was supported by the Doctoral INPhINIT–INCOMING program, fellowship color (LCF/BQ/DI22/11940028), from "La Caixa" Foundation (ID 100010434), Kresge Foundation (G-2212-292844 and G-2108-291289), and the National Science Foundation (Awal 1s 1927167 and 1934933).

Acknowledgements

The authors of this study are thankful for the inputs provided by researc. are stakeholders external to the co-production team, which enhanced the study applicability. For this, the authors thank the members of Milwaukee Water Commons and Wisconsin's Department of Health Services who provided valuable feedback in consultations held across the project development. The authors also thank Drs. Glenis and First shaw for generously providing the CityCAT tool, and supporting in the solving of node. The elated problems.