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Abstract

Topic modeling is a widely utilized tool in text analysis. We investigate the optimal rate
for estimating a topic model. Specifically, we consider a scenario with n documents, a
vocabulary of size p, and document lengths at the order N . When N g c · p, referred to
as the long-document case, the optimal rate is established in the literature at

√
p/(Nn).

However, when N = o(p), referred to as the short-document case, the optimal rate remains
unknown. In this paper, we first provide new entry-wise large-deviation bounds for the
empirical singular vectors of a topic model. We then apply these bounds to improve the
error rate of a spectral algorithm, Topic-SCORE. Finally, by comparing the improved error
rate with the minimax lower bound, we conclude that the optimal rate is still

√
p/(Nn) in

the short-document case.
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1 Introduction

In today’s world, an immense volume of text data is generated in scientific research and in
our daily lives. This includes research publications, news articles, posts on social media,
electronic health records, and many more. Among the various statistical text models,
the topic model (Hofmann, 1999; Blei et al., 2003) stands out as one of the most widely
used. Given a corpus consisting of n documents written on a vocabulary of p words, let
X = [X1, X2, . . . , Xn] ∈ R

p×n be the word-document-count matrix, where Xi(j) is the count
of the jth word in the ith document, for 1 f i f n and 1 f j f p. Let A1, A2, . . . , AK ∈ R

p

be probability mass functions (PMFs). We call each Ak a topic vector, which represents
a particular distribution over words in the vocabulary. For each 1 f i f n, let Ni denote
the length of the ith document, and let wi ∈ R

K be a weight vector, where wi(k) is the
fractional weight this document puts on the kth topic, for 1 f k f K. In a topic model,
the columns of X are independently generated, where the ith column satisfies:

Xi ∼ Multinomial(Ni, d
0
i ), with d0i =

K∑

k=1

wi(k)Ak. (1)

Here d0i ∈ R
p is the population word frequency vector for the ith document, which admits a

convex combination of theK topic vectors. TheNi words in this document are sampled with
replacement from the vocabulary using probabilities in d0i ; as a result, the word counts follow
a multinomial distribution. Under this model, E[X] is a rank-K matrix. The statistical
problem of interest is using X to estimate the two parameter matrices A = [A1, A2, . . . , AK ]
and W = [w1, w2, . . . , wn].

Since the topic model implies a low-rank structure behind the data matrix, spectral
algorithms (Ke et al., 2023) have been developed for topic model estimation. Topic-SCORE
(Ke and Wang, 2024) is the first spectral algorithm in the literature. It conducts singular
value decomposition (SVD) on a properly normalized version of X, then uses the first K left
singular vectors to estimate A, and finally uses Â to estimate W by weighted least-squares.
Ke and Wang (2024) showed that the error rate on A is

√
p/(nN) up to a logarithmic factor,

where N is the order of document lengths. It matches with the minimax lower bound (Ke
and Wang, 2024) when N g c · p for a constant c > 0, referred to as the long-document
case. However, there are many application scenarios with N = o(p), referred to as the short-
document case. For example, if we consider a corpus consisting of abstracts of academic
publications (e.g., see Ke et al. (2023)), N is usually between 100 and 200, but p can be a
few thousands or even larger. In this short-document case, Ke and Wang (2024) observed
a gap between the minimax lower bound and the error rate of Topic-SCORE. They posted
the following questions: Is the optimal rate still

√
p/(Nn) in the short-document case? If

so, can spectral algorithms still achieve this rate?
In this paper, we give answers to these questions. We discovered that the gap between

the minimax lower bound and the error rate of Topic-SCORE in the short-document case
came from the unsatisfactory entry-wise large-deviation bounds for the empirical singular
vectors. While the analysis in Ke and Wang (2024) is effective for long documents, there
is considerable room for improvement in the short-document case. We use new analysis to
obtain much better large-deviation bounds when N = o(p). Our strategy includes two main
components: one is an improved non-stochastic perturbation bound for SVD allowing severe
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heterogeneity in the population singular vectors, and the other is leveraging a decoupling
inequality (de la Pena and Montgomery-Smith, 1995) to control the spectral norm of a
random matrix with centered multinomial-distributed columns. These new ideas allow us
to obtain satisfactory entry-wise large-deviation bounds for empirical singular vectors across
the entire regime of N g log3(n). As a consequence, we are able to significantly improve
the error rate of Topic-SCORE in the short-document case. This answers the two questions
posted by Ke and Wang (2024): The optimal rate is still

√
p/(Nn) in the short-document

case, and Topic-SCORE still achieves this optimal rate.
Additionally, inspired by our analysis, we have made a modification to Topic-SCORE

to better incorporate document lengths. We also extend the asymptotic setting in Ke and
Wang (2024) to a weak-signal regime allowing the K topic vectors to be extremely similar
to each other.

1.1 Related Literature

Many topic modeling algorithms have been proposed in the literature, such as LDA (Blei
et al., 2003), the separable NMF approach Arora et al. (2012, 2013), the method in Bansal
et al. (2014) that uses a low-rank approximation to the original data matrix, Topic-SCORE
(Ke and Wang, 2024), and LOVE (Bing et al., 2020). Theoretical guarantees were derived
for these methods, but unfortunately, most of them had non-optimal rates even when N g
c · p. Topic-SCORE and LOVE are the two that achieve the optimal rate when N g
c · p. However, LOVE has no theoretical guarantee when N = o(p); Topic-SCORE has
a theoretical guarantee across the entire regime, but the rate obtained by Ke and Wang
(2024) is non-optimal when N = o(p). Therefore, our results address a critical gap in the
existing literature by determining the optimal rate for the short-document case for the first
time.

Entry-wise eigenvector analysis (Erdős et al., 2013; Fan et al., 2018, 2022; Abbe et al.,
2020; Chen et al., 2021; Ke and Wang, 2022) provides large-deviation bounds or higher-
order expansions for individual entries of the leading eigenvectors of a random matrix.
There are two types of random matrices, i.e., the Wigner type (e.g., in network data and
pairwise comparison data) and the Wishart type (e.g., in factor models and spiked covari-
ance models (Paul, 2007)). The random matrices in topic models are the Wishart type,
and hence, techniques for the Wigner type, such as the leave-one-out approach (Ke and
Wang, 2022), are not a good fit. We cannot easily extend the techniques (Fan et al., 2018;
Chen et al., 2021) for spiked covariance models either. One reason is that the multinomial
distribution has heavier-than-Gaussian tails (especially for short documents), and using
the existing techniques only give non-sharp bounds. Another reason is the severe word fre-
quency heterogeneity (Zipf, 2013) in natural languages, which calls for bounds whose orders
are different for different entries of an eigenvector. Our analysis overcomes these challenges.

1.2 Organization and Notations

The rest of this paper is organized as follows. Section 2 presents our main results about
entry-wise eigenvector analysis for topic models. Section 3 applies these results to obtain
improved error bounds for the Topic-SCORE algorithm and determine the optimal rate in
the short-document case. Section 4 describes the main technical components, along with a
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proof sketch. Section 5 concludes the paper with discussions. The proofs of all theorems
are relegated to the Appendices A–E.

Throughout this paper, for a matrix B, let B(i, j) or Bij represent the (i, j)-th entry. We
denote ∥B∥ as its operator norm and ∥B∥2→∞ as the 2-to-∞ norm, which is the maximum
ℓ2 norm across all rows of B. For a vector b, b(i) or bi represents the i-th component. We
denote ∥b∥1 and ∥b∥ as the ℓ1 and ℓ2 norms of b, respectively. The vector 1n stands for
an all-one vector of dimension n. Unless specified otherwise, {e1, e2, . . . , ep} denotes the
standard basis of R

p. Furthermore, we write an k bn or bn j an if bn/an = o(1) for
an, bn > 0; and we denote an ≍ bn if C−1bn < an < Cbn for some constant C > 1.

2 Entry-Wise Eigenvector Analysis for Topic Models

Let X ∈ R
p×n be the word-count matrix following the topic model in (1). We introduce

the empirical frequency matrix D = [d1, d2, . . . , dn] ∈ R
p×n, defined by:

di(j) = N−1
i Xi(j), 1 f i f n, 1 f j f p . (2)

Under the model in (1), we have E[di] = d0i =
∑K

k=1wi(k)Ak. Write D0 = [d01, d
0
2, . . . , d

0
n] ∈

R
p×n. It follows that:

ED = D0 = AW.

We observe that D0 is a rank-K matrix; furthermore, the linear space spanned by the first
K left singular vectors of D0 is the same as the column space of A. Ke and Wang (2024)
discovered that there is a low-dimensional simplex structure that explicitly connects the
first K left singular vectors of D0 with the target topic matrix A. This inspired SVD-based
methods for estimating A.

However, if one directly conducts SVD on D, the empirical singular vectors can be noisy
because of severe word frequency heterogeneity in natural languages (Zipf, 2013). In what
follows, we first introduce a normalization on D in Section 2.1 to handle word frequency
heterogeneity and then derive entry-wise large-deviation bounds for the empirical singular
vectors in Section 2.2.

2.1 A Normalized Data Matrix

We first explain why it is inappropriate to conduct SVD on D. Let N̄ = n−1
∑n

i=1Ni denote
the average document length. Write D = AW + Z, with Z = [z1, z2, . . . , zn] := D − ED.
The singular vectors of D are the same as the eigenvectors of DD′ = AWW ′A′ +AWZ ′ +
ZW ′A′+ZZ ′. By model (1), the columns of Z are centered multinomial-distributed random
vectors; moreover, using the covariance matrix formula for multinomial distributions, we
have E[ziz

′
i] = N−1

i [diag(d0i )− d0i (d
0
i )

′]. It follows that:

E[DD′] = AWW ′A′ +
n∑

i=1

N−1
i

[
diag(d0i )− d0i (d

0
i )

′]

= AWW ′A′ + diag

( n∑

i=1

N−1
i d0i

)
−A

( n∑

i=1

N−1
i wiw

′
i

)
A′
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= n ·A
( n∑

i=1

Ni − 1

nNi
wiw

′
i

)

︸ ︷︷ ︸
≡ΣW

A′ +
n

N̄
· diag

( n∑

i=1

N̄

nNi
d0i

)

︸ ︷︷ ︸
≡M0

. (3)

Here AΣWA′ is a rank-K matrix whose eigen-space is the same as the column span of A.
However, because of the diagonal matrix M0, the eigen-space of E[DD′] is no longer the
same as the column span of A. We notice that the jth diagonal of M0 captures the overall
frequency of the jth word across the whole corpus. Hence, this is an issue caused by word
frequency heterogeneity. The second term in (3) is larger when N̄ is smaller. This implies
that the issue becomes more severe for short documents.

To resolve this issue, we consider a normalization of D to M
−1/2
0 D. It follows that:

E[M
−1/2
0 DD′M−1/2

0 ] = n ·M−1/2
0 AΣWA′M−1/2

0 +
n

N̄
Ip. (4)

Now, the second term is proportional to an identify matrix and no longer affects the eigen-

space. Furthermore, the eigen-space of the first term is the column span of M
−1/2
0 A, and

hence, we can use the eigenvectors to recover M
−1/2
0 A (then A is immediately known). In

practice, M0 is not observed, so we replace it by its empirical version:

M = diag

( n∑

i=1

N̄

nNi
di

)
. (5)

We propose to normalize D to M−1/2D before conducting SVD. Later, the singular vectors
of M−1/2D will be used in Topic-SCORE to estimate A (see Section 3).

This normalization is similar to the pre-SVD normalization in Ke and Wang (2024)
but not exactly the same. Inspired by analyzing a special case where Ni = N , Ke and
Wang (2024) proposed to normalize D to M̃−1/2D, where M̃ = diag(n−1

∑n
i=1 di). They

continued using M̃ in general settings, but we discover here that the adjustment of M̃ to
M is necessary when Ni’s are unequal.

Remark 1 For extremely low-frequency words, the corresponding diagonal entries of M are
very small. This causes an issue when we normalize D to M−1/2D. Fortunately, such an
issue disappears if we pre-process data. As a standard pre-processing step for topic modeling,
we either remove those extremely low-frequency words or combine all of them into a single
“meta-word”. We recommend the latter approach. In detail, let L ¢ {1, 2, . . . , p} be the
set of words such that M(j, j) is below a proper threshold tn (e.g., tn can be 0.05 times the
average of diagonal entries of M). We then sum up all rows of D with indices in L to a
single row. Let D∗ ∈ R

(p−|L|+1)×n be the processed data matrix. The matrix D∗ still has a
topic model structure, where each new topic vector results from a similar row combination
on the corresponding original topic vector.

Remark 2 The normalization of D to M−1/2D is reminiscent of the Laplacian normal-
ization in network data analysis, but the motivation is very different. In many network
models, the adjacency matrix satisfies that B = B0+Y , where B0 is a low-rank matrix and
Y is a generalized Wigner matrix. Since E[Y ] is a zero matrix, the eigen-space of EB is
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the same as that of B0. Hence, the role of the Laplacian normalization is not correcting the
eigen-space but adjusting the signal-to-noise ratio (Ke and Wang, 2022). In contrast, our
normalization here aims to turn E[ZZ ′] into an identity matrix (plus a small matrix that
can be absorbed into the low-rank part). We need such a normalization even under moderate
word frequency heterogeneity (i.e., the frequencies of all words are at the same order).

2.2 Entry-Wise Singular Analysis for M−1/2D

For each 1 f k f K, let À̂k ∈ R
p denote the kth left singular vector of M−1/2D. Recall that

D0 = ED. In addition, define:

M0 := EM = diag

( n∑

i=1

N̄

nNi
d0i

)
. (6)

Then, M
−1/2
0 D0 is a population counterpart of M−1/2D. However, the singular vectors of

M
−1/2
0 D0 are not the population counterpart of À̂k’s. In light of (4), we define:

Àk : the kth eigenvector of M
−1/2
0 E[DD′]M−1/2

0 , 1 f k f K. (7)

Write Ξ̂ := [À̂1, · · · , À̂K ] and Ξ := [À1, · · · , ÀK ]. We aim to derive a large-deviation bound
for each individual row of (Ξ̂− Ξ), subject to a column rotation of Ξ̂.

We need a few assumptions. Let hj =
∑K

k=1Ak(j) for 1 f j f p. Define:

H = diag(h1, · · · , hp), ΣA = A′H−1A, ΣW =
1

n

n∑

i=1

(1−N−1
i )wiw

′
i. (8)

Here ΣA and ΣW are called the topic-topic overlapping matrix and the topic-topic concur-
rence matrix, respectively, (Ke and Wang, 2024). It is easy to see that ΣW is properly scaled.
We remark that ΣA is also properly scaled, because

∑K
ℓ=1ΣA(k, ℓ) =

∑p
j=1

∑K
ℓ=1 h

−1
j Ak(j)Aℓ(j) =

1.

Assumption 1 Let hmax = max1fjfp hj, hmin = min1fjfp hj and h̄ = 1
p

∑p
j=1 hj. We

assume:
hmin g c1h̄ = c1K/p, for a constant c1 ∈ (0, 1).

Assumption 2 For a constant c2 ∈ (0, 1) and a sequence ´n ∈ (0, 1), we assume:

¼min(ΣW ) g c2, ¼min(ΣA) g c2´n, min
1fk,ℓfK

ΣA(k, ℓ) g c2.

Assumption 1 is related to word frequency heterogeneity. Each hj captures the overall
frequency of word j, and h̄ = p−1

∑
j hj = p−1

∑
k ∥Ak∥1 = K/p. By Remark 1, all

extremely low-frequency words have been combined in pre-processing. It is reasonable to
assume that hmin is at the same order of h̄. Meanwhile, we put no restrictions here on hmax,
so that hj ’s can still be at different orders.

Assumption 2 is about topic weight balance and between-topic similarity. ΣW can be
regarded as an affinity matrix of wi’s. It is mild to assume that ΣW is well-conditioned.
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In a special case where Ni = N and each wi is degenerate, ΣW is a diagonal matrix
whose kth diagonal entry is the fraction of documents that put all weights on topic k;
hence, ¼min(ΣW ) g c2 is interpreted as “topic weight balance”. Regarding ΣA, we have
seen that it is properly scaled (its maximum eigenvalue is at the constant order). When
K topic vectors are exactly the same, ¼min(ΣA) = 0; when the topic vectors are not the
same, ¼min(ΣA) ̸= 0, and it measures the signal strength. Ke and Wang (2024) assumed
that ¼min(ΣA) is bounded below by a constant, but we allow weaker signals by allowing
¼min(ΣA) to diminish as n → ∞. We also require a lower bound on ΣA(k, ℓ), meaning
that there should be certain overlaps between any two topics. This is reasonable as some
commonly used words are not exclusive to any one topic and tend to occur frequently (Ke
and Wang, 2024).

The last assumption is about the vocabulary size and document lengths.

Assumption 3 There exists N g 1 and a constant c3 ∈ (0, 1) such that c3N f Ni f c−1
3 N

for all 1 f i f n. In addition, for an arbitrary constant C0 > 0:

min{p,N} g log3(n), max{log(p), log(N)} f C0 log(n), p log2(n)fNn´2
n.

In Assumption 3, the first two inequalities restrict that N and p are between log3(n) and
nC0 , for an arbitrary constant C0 > 0. This covers a wide regime, including the scenarios of
both long documents (N g c · p) and short documents (N = o(p)). The third inequality is
needed so that the canonical angles between the empirical and population singular spaces
converge to zero, which is necessary for our singular vector analysis. This condition is mild,
as Nn is the order of total word count in the corpus, which is often much larger than p.

With these assumptions, we now present our main theorem.

Theorem 1 (Entry-wise singular vector analysis) Fix K g 2 and positive constants
c1, c2, c3, and C0. Under the model (1), suppose Assumptions 1–3 hold. For any constant
C1 > 0, there exists C2 > 0 such that with probability 1 − n−C1, there is an orthogonal
matrix O ∈ R

K×K satisfying that simultaneously for 1 f j f p:

∥e′j(Ξ̂− ΞO′)∥ f C2

√
hjp log(n)

nN´2
n

.

The constant C2 only depends on C1 and (K, c1, c2, c3, C0).

In Theorem 1, we do not assume any gap among the K singular values of M
−1/2
0 D0; hence,

it is only possible to recover Ξ up to a column rotation O. The sin-theta theorem (Davis and
Kahan, 1970) enables us to bound ∥Ξ̂−ΞO′∥2F =

∑p
j=1 ∥e′j(Ξ̂−ΞO′)∥2, but it is insufficient

for analyzing spectral algorithms for topic modeling (see Section 3). We need a bound for
each individual row of (Ξ̂− ΞO′), and this bound should depend on hj properly.

We compare Theorem 1 with the result in Ke and Wang (2024). They assumed that
´−1
n = O(1), so their results are only for the strong-signal regime. They showed that when

n is sufficiently large:

∥e′j(Ξ̂− ΞO′)∥ f C

(
1 + min

{ p

N
,

p2

N
√
N

})√hjp log(n)

nN
. (9)
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When N g c · p (long documents), it is the same bound as in Theorem 1 (with ´n = 1).
However, when N = o(p) (short documents), it is strictly worse than Theorem 1. We obtain
better bounds than those in Ke and Wang (2024) because of new proof ideas, especially
the use of refined perturbation analysis for SVD and a decoupling technique for U-statistics
(see Section 4.2).

3 Improved Rates for Topic Modeling

We apply the results in Section 2 to improve the error rates of topic modeling. Topic-SCORE
(Ke and Wang, 2024) is a spectral algorithm for estimating the topic matrix A. It achieves
the optimal rate in the long-document case (N g c · p). However, in the short-document
case (N = o(p)), the known rate of Topic-SCORE does not match with the minimax lower
bound. We address this gap by providing better error bounds for Topic-SCORE. Our results
reveal the optimal rate for topic modeling in the short-document case for the first time.

3.1 The Topic-Score Algorithm

Let À̂1, À̂2, . . . , À̂K be as in Section 2. Topic-SCORE first obtains word embeddings from these
singular vectors. Note that M−1/2D is a non-negative matrix. By Perron’s theorem (Horn
and Johnson, 1985), under mild conditions, À̂1 is a strictly positive vector. Define R̂ ∈
R
p×(K−1) by:

R̂(j, k) = À̂k+1(j)/À̂1(j), 1 f j f p, 1 f k f K − 1. (10)

Let r̂′1, r̂
′
2, . . . , r̂

′
p denote the rows of R̂. Then, r̂j is a (K − 1)-dimensional embedding of the

jth word in the vocabulary. This is known as the SCORE embedding Jin (2015); Ke and
Jin (2023), which is now widely used in analyzing heterogeneous network and text data.

Ke and Wang (2024) discovered that there is a simplex structure associated with these
word embeddings. Specifically, let À1, À2, . . . , ÀK be the same as in (7) and define the popu-
lation counterpart of R̂ as R, where:

R(j, k) = Àk+1(j)/À1(j), 1 f j f p, 1 f k f K − 1. (11)

Let r′1, r
′
2, . . . , r

′
p denote the rows of R. All these rj are contained in a simplex S ¢ R

K−1

that has K vertices v1, v2, . . . , vK (see Figure 1). If the jth word is an anchor word (Arora
et al., 2012; Donoho and Stodden, 2004) (an anchor word of topic k satisfies that Ak(j) ̸= 0
and Aℓ(j) = 0 for all other ℓ ̸= k), then rj is located at one of the vertices. Therefore,
as long as each topic has at least one anchor word, we can apply a vertex hunting (Ke
and Wang, 2024) algorithm to recover the K vertices of S. By definition of a simplex,
each point inside S can be written uniquely as a convex combination of the K vertices,
and the K-dimensional vector consisting of the convex combination coefficients is called
the barycentric coordinate. After recovering the vertices of S, we can easily compute the
barycentric coordinate Ãj ∈ R

K for each rj . Write Π = [Ã1, Ã2, . . . , Ãp]
′. Ke and Wang

(2024) showed that:

Ak ∝ M
1/2
0 diag(À1)Πek, 1 f k f K.

Therefore, we can recover Ak by taking the kth column ofM
1/2
0 diag(À1)Π and re-normalizing

it to have a unit ℓ1-norm. This gives the main idea behind Topic-SCORE (see Figure 1).
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A ? M1/2
0 diag(¿1)

Ã21

Ã22

î

Ã2p
rj

Ãj

Figure 1: An illustration of Topic-SCORE in the noiseless case (K = 3). The blue dots are
rj ∈ R

K−1 (word embeddings constructed from the population singular vectors),
and they are contained in a simplex with K vertices. This simplex can be recov-
ered from a vertex hunting algorithm. Given this simplex, each rj has a unique
barycentric coordinate Ãj ∈ R

K . The topic matrix A is recovered from stacking
together these Ãj ’s and utilizing M0 and À1.

The full algorithm is given in Algorithm 1. It requires plugging in a vertex hunting
(VH) algorithm. A VH algorithm aims to estimate v1, v2, . . . , vK from the noisy point cloud
{r̂j}1fjfp. There are many existing VH algorithms (see sec 3.4 of Ke and Jin (2023)). A VH
algorithm is said to be efficient if it satisfies that max1fkfK ∥v̂k−vk∥ f Cmax1fjfp ∥r̂j−rj∥
(subject to a permutation of v̂1, v̂2, . . . , v̂K). We always plug in an efficient VH algorithm,
such as the successive projection algorithm (Araújo et al., 2001), the pp-SPA algorithm (Jin
et al., 2024), and several algorithms in sec 3.4 of Ke and Jin (2023).

Algorithm 1 Topic-SCORE

Input: D, K, and a vertex hunting (VH) algorithm.

• (Word embedding) Let M be as in (5). Obtain À̂1, À̂2, · · · , À̂K , the first K left singular
vectors of M−1/2D. Compute R̂ as in (10) and write R̂ = [r̂1, r̂2, · · · , r̂p]′.

• (Vertex hunting). Apply the VH algorithm on {r̂j}1fjfp to get v̂1, · · · , v̂K .

• (Topic matrix estimation) For 1 f j f p, solve Ã̂∗
j from:

(
1 . . . 1
v̂1 . . . v̂K

)
Ã̂∗
j =

(
1
r̂j

)
.

Let Ã̃∗
j = max{Ã̂∗

j , 0} (the maximum is taken component-wise) and Ã̂i = Ã̃∗
j /∥Ã̃∗

j ∥1.
Write Π̂ = [Ã̂1, . . . , Ã̂p]

′. Let Ã = M1/2diag(À̂1)Π̂. Obtain Â = Ã[diag(1′pÃ)]
−1.

Output: the estimated topic matrix Â.

Additionally, after Â is obtained, Ke andWang (2024) suggested to estimate w1, w2, . . . , wn

as follows. We first run a weighted least-squares to obtain ŵ∗
i :

ŵ∗
i = argminw∈RK∥M−1/2(di −Awi)∥2, 1 f i f n. (12)

10



Then, set all the negative entries of ŵ∗
i to zero and re-normalize the vector to have a unit

ℓ1-norm. The resulting vector is ŵi.

Remark 3 In real-world applications, both n and p can be very large. However, since
R̂ is constructed from only a few singular vectors, its rows are only in dimension (K −
1). It suggests that Topic-SCORE leverages a ‘low-dimensional’ simplex structure and is
scalable to large datasets. When K is bounded, the complexity of Topic-SCORE is at most
O(npmin{n, p}) (Ke and Wang, 2024). The real computing time was also reported in Ke
and Wang (2024) for various values of (n, p). For example, when both n and p are a few
thousands, it takes only a few seconds to run Topic-SCORE.

3.2 The Improved Rates for Estimating A and W

We provide the error rates of Topic-SCORE. First, we study the word embeddings r̂j . By
(10), r̂j is constructed from the jth row of Ξ̂. Therefore, we can apply Theorem 1 to derive
a large-deviation bound for r̂j .

Without loss of generality, we set C1 = 4 henceforth, transforming the event probability
1 − n−C1 in Theorem 1 to 1 − o(n−3). We also use C to denote a generic constant, whose
meaning may change from one occurrence to another. In all instances, C depends sorely on
K and the constants (c1, c2, c3, C0) in Assumptions 1–3.

Theorem 2 (Word embeddings) Under the setting of Theorem 1, with probability 1 −
o(n−3), there exists an orthogonal matrix Ω ∈ R

(K−1)×(K−1) such that simultaneously for
1 f j f p:

∥r̂j − Ωrj∥ f C

√
p log(n)

nN´2
n

.

Next, we study the error of Â. The ℓ1-estimation error is L(Â, A) :=
∑K

k=1 ∥Âk −Ak∥1,
subject to an arbitrary column permutation of Â. For ease of notation, we do not explicitly
denote this permutation in theorem statements, but it is accounted for in the proofs. For
each 1 f j f p, let â′j ∈ R

K and a′j ∈ R
K denote the jth row of Â and A, respectively.

We can re-write the ℓ1-estimation error as L(Â, A) =∑p
j=1 ∥âj − aj∥1. The next theorem

provides an error bound for each individual âj , and the aggregation of these bounds yields
an overall bound for L(Â, A):

Theorem 3 (Estimation of A) Under the setting of Theorem 1, we additionally assume
that each topic has at least one anchor word. With probability 1 − o(n−3), simultaneously
for 1 f j f p:

∥âj − aj∥1 f ∥aj∥1 · C
√

p log(n)

nN´2
n

.

Furthermore, with probability 1− o(n−3), the ℓ1-estimation error satisfies that:

L(Â, A) f C

√
p log(n)

nN´2
n

.
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Theorem 3 improves the result in Ke and Wang (2024) in two aspects. First, Ke and
Wang (2024) assumed ´−1

n = O(1), so their results did not allow for weak signals. Second,
even when ´−1

n = O(1), their bound is worse than ours by a factor similar to that in (9).
Finally, we have the error bound for estimating wi’s using the estimator in (12).

Theorem 4 (Estimation of W ) Under the setting of Theorem 3, with probability 1 −
o(n−3), subject to a column permutation of Ŵ :

max
1fifn

∥ŵi − wi∥1 f C´−1
n

(√
p log(n)

nN´2
n

+ C

√
log(n)

N

)
.

In Theorem 4, there are two terms in the error bound of ŵi. The first term comes from
the estimation error in Â, and the second term is from noise in di. In the strong-signal case
of ´−1

n = O(1), we can compare Theorem 4 with the bound for ŵi in Ke and Wang (2024).
The bound there also has two terms: its second term is similar to ours, but its first term is
strictly worse.

3.3 Connections and Comparisons

There have been numerous results about the error rates of estimating A and W . For
example, (Arora et al., 2012) provided the first explicit theoretical guarantees for topic
modeling, but they did not study the statistical optimality of their method. Recently,
the statistical literature aimed to understand the fundamental limits of topic modeling.
Assuming ´−1

n = O(1), refs. (Ke and Wang, 2024; Bing et al., 2020) gave a minimax lower
bound,

√
p/(Nn), for the rate of estimating A, and refs. (Wu et al., 2023; Klopp et al.,

2023) gave a minimax lower bound, 1/
√
N , for estimating each wi.

For estimating A, when ´−1
n = O(1), the existing theoretical results are summarized

in Table 1. Ours is the only one that matches the minimax lower bound across the entire
regime. In the long-document case (N g c · p, Cases 1–2 in Table 1), the error rates in Ke
and Wang (2024); Bing et al. (2020) together have matched the lower bound, concluding
that

√
p/(Nn) is indeed the optimal rate. However, in the short-document case (N =

o(p), Case 3 in Table 1), there was a gap between the lower bound and the existing error
rates. Our result addresses the gap and concludes that

√
p/(Nn) is still the optimal rate.

When ´n = o(1), the error rates of estimating A were rarely studied. We conjecture that√
p/(Nn´2

n) is the optimal rate, and the Topic-SCORE algorithm is still rate-optimal.
We emphasize that our rate is not affected by severe word frequency heterogeneity. As

long as hmin/h̄ is lower bounded by a constant (see Assumption 1 and explanations therein),
our rate is always the same, regardless of the magnitude of hmax. In contrast, the error rate
in Bing et al. (2020) is sensitive to word frequency heterogeneity, with an extra factor of
hmax/hmin that can be as large as p. There are two reasons that enable us to achieve a flat
rate even under severe word frequency heterogeneity: one is the proper normalization of
data matrix, as described in Section 2.1, and the other is the careful analysis of empirical
singular vectors (see Section 4).

For estimating W , when ´−1
n = O(1), our error rate in Theorem 4 matches the minimax

lower bound if n g p log(n). Our approach to estimating W involves first obtaining Â and
then regressing di on Â to derive ŵi. The condition n g p log(n) ensures that the estimation

12



Table 1: A summary of the existing theoretical results for estimating A (n is the number
of documents, p is the vocabulary size, N is the order of document lengths, and
hmax and hmin are the same as in (8)). Cases 1–3 refer to N g p4/3, p f N < p4/3,
and N < p, respectively. For Cases 2–3, the sub-cases ‘a’ and ‘b’ correspond
to n g max{Np2, p3, N2p5} and n < max{Np2, p3, N2p5}, respectively. We have
translated the results in each paper to the bounds on L(Â, A), with any logarithmic
factor omitted.

Case 1 Case 2a Case 2b Case 3a Case 3b

Ke and Wang (2024)

√
p

Nn

√
p

Nn
p2

N
√
N

√
p

Nn
p
N

√
p

Nn
p2

N
√
N

√
p

Nn

Arora et al. (2012)
p4√
Nn

p4√
Nn

p4√
Nn

p4√
Nn

p4√
Nn

Bing et al. (2020)

√
p

Nn · hmax

hmin

√
p

Nn · hmax

hmin

√
p

Nn · hmax

hmin
NA NA

Bansal et al. (2014) N
√

p
n N

√
p
n N

√
p
n N

√
p
n N

√
p
n

Our results

√
p

Nn

√
p

Nn

√
p

Nn

√
p

Nn

√
p

Nn

error in Â does not dominate the overall error. This condition is often met in scenarios where
a large number of documents can be collected, but the vocabulary size remains relatively
stable. However, if n < p log(n), a different approach is necessary, requiring the estimation
of W first. This involves using the right singular vectors of M−1/2D. While our analysis
has primarily focused on the left singular vectors, it can be extended to study the right
singular vectors as well.

4 Proof Ideas

Our main result is Theorem 1, which provides entry-wise large-deviation bounds for singular
vectors of M−1/2D. Given this theorem, the proofs of Theorems 2–4 are similar to those
in (Ke and Wang, 2024) and thus relegated to the appendix. In this section, we focus on
discussing the proof techniques of Theorem 1.

4.1 Why the Leave-One-Out Technique Fails

Leave-one-out (Abbe et al., 2020; Ke and Wang, 2022) is a common technique in entry-wise
eigenvector analysis for a Wigner-type random matrix B = B0 + Y ∈ R

m×m, where B0 is
a symmetric non-stochastic low-rank matrix and Y is a symmetric random matrix whose
upper triangle consists of independent mean-zero variables. One example of such matrices
is the adjacency matrix of a random graph generated from the block-model family (Jin,
2015).

However, our target here is the singular vectors of M−1/2D, which are the eigenvectors
of B := M−1/2DD′M−1/2. This is a Wishart-type random matrix, whose upper triangular
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entries are not independent. We may also construct a symmetric matrix:

G :=

(
0 M−1/2D

D′M−1/2 0

)
∈ R

(p+n)×(p+n).

The eigenvectors of G take the form ûk = (À̂′k, ˆ̧
′
k)

′, 1 f k f K, where À̂k ∈ R
p and

ˆ̧k ∈ R
n are the kth left and right singular vectors of M−1/2D, respectively. Unfortunately,

the upper triangle of G still contains dependent entries. Some dependence is from the
normalization matrix M . It may be addressed by using the techniques developed by Ke and
Wang (2022) in studying graph Laplacian matrices. A more severe issue is the dependence
among entries in D. According to basic properties of multinomial distributions, D only
has column independence but no row independence. As a result, even after we replace M
by M0, the jth row and column of G are still dependent of the remaining ones, for each
1 f j f p. In conclusion, we cannot apply the leave-one-out technique on either B or G.

4.2 The Proof Structure in Ke and Wang (2024) and Why It Is Not Sharp for
Short Documents

Our entry-wise eigenvector analysis primarily follows the proof structure in Ke and Wang
(2024). Recall that À̂k ∈ R

p is the kth left singular vector of M−1/2D. Define:

G := M−1/2DD′M−1/2 − n

N̄
Ip, G0 := n ·M−1/2

0 AΣWA′M−1/2
0 . (13)

Since the identify matrix in G does not affect the eigenvectors, À̂k is the kth eigenvector
of G. Additionally, it follows from (7) and (4) that Àk is the kth eigenvector of G0. By (4):

G−G0 = M−1/2DD′M−1/2 −M
−1/2
0 E[DD′]M−1/2

0 . (14)

The entry-wise eigenvector analysis in Ke and Wang (2024) has two steps.

• Step 1: Non-stochastic perturbation analysis. In this step, no distributional assump-
tions are made on G. The analysis solely focuses on connecting the perturbation from
Ξ to Ξ̂ with the perturbation from G0 to G. They showed in Lemma F.1 (Ke and
Wang, 2024):

∥e′j(Ξ̂− ΞO′)∥ f C∥G0∥−1
(
∥e′jΞ∥∥G−G0∥+

√
K∥e′j(G−G0)∥

)
. (15)

• Step 2: Large-deviation analysis of G−G0. In this step, Ke and Wang (2024) derived
the large-deviation bounds for ∥G − G0∥ and ∥e′j(G − G0)∥ under the multinomial
model (1). For example, they showed in Lemma F.5 (Ke and Wang, 2024) that when
n is properly large, with high probability:

∥G−G0∥ f C
(
1 +N−1√p

)
√

np log(n)

N
. (16)

However, when N = o(p) (short documents), neither step is sharp. In (15), the second
term ∥e′j(G−G0)∥ was introduced as an upper bound for ∥e′j(G−G0)Ξ̂∥, but this bound is
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too crude. In Section 4.3, we will conduct careful analysis of ∥e′j(G−G0)Ξ̂∥ and introduce
a new perturbation bound which significantly improves (15). In (16), the spectral norm is
controlled via an ε-net argument (Vershynin, 2012), which reduces the analysis to studying
a quadratic form of Z; Ke and Wang (2024) analyzed this quadratic form by applying
martingale Bernstein inequality. Unfortunately, in the short-document case, it is hard to
control the conditional variance process of the underlying martingale. In Section 4.4, we
address it by leveraging the matrix Bernstein inequality (Tropp, 2012) and the decoupling
inequality (de la Pena and Montgomery-Smith, 1995; De la Pena and Giné, 2012) for U-
statistics.

4.3 Non-Stochastic Perturbation Analysis

In this subsection, we abuse notations to use G and G0 to denote two arbitrary p × p
symmetric matrices, with rank(G0) = K. For 1 f k f K, let ¼̂k and ¼k be the kth largest
eigenvalue (in magnitude) of G and G0, respectively, and let À̂k ∈ R

p and Àk ∈ R
p be the

associated eigenvectors. Write Λ̂ = diag(¼̂1, ¼̂2, . . . , ¼̂K), Ξ̂ = [À̂1, À̂2, . . . , À̂K ], and define Λ
and Ξ similarly. Let U ∈ R

K×K and V ∈ R
K×K be such that its columns contain the left

and right singular vectors of Ξ̂′Ξ, respectively. Define sgn(Ξ̂′Ξ) = U ′V . For any matrix B
and q > 0, let ∥B∥q→∞ = maxi ∥e′iB∥q.

Lemma 1 Suppose ∥G − G0∥ f (1 − c0)|¼̂K |, for some c0 ∈ (0, 1). Consider an arbitrary
p× p diagonal matrix Γ = diag(µ1, µ2, . . . , µp), where:

µj > 0 is an upper bound for ∥e′jΞ∥∥G−G0∥+ ∥e′j(G−G0)Ξ∥.

If ∥Γ−1(G − G0)Γ∥1→∞ f (1 − c0)|¼̂K |, then for the orthogonal matrix O = sgn(Ξ̂′Ξ), it
holds simultaneously for 1 f j f p that:

∥e′j(Ξ̂− ΞO′)∥ f c−1
0 |¼̂K |−1µj .

Since µj is an upper bound for ∥e′jΞ∥∥G − G0∥ + ∥e′j(G − G0)Ξ∥, we can interpret the
result in Lemma 1 as:

∥e′j(Ξ̂− ΞO′)∥ f C|¼̂K |−1
(
∥e′jΞ∥∥G−G0∥+ ∥e′j(G−G0)Ξ∥

)
. (17)

Comparing (17) with (15), the second term has been reduced. Since Ξ projects the vector
e′j(G − G0) into a much lower dimension, we expect that ∥e′j(G − G0)Ξ∥ j ∥e′j(G − G0)∥
in many random models for G. In particular, this is true for the G and G0 defined in (13).
Hence, there is a significant improvement over the analysis in Ke and Wang (2024).

4.4 Large-Deviation Analysis of (G−G0)

In this subsection, we focus on the specific G and G0 as defined in (13). The crux of
proving Theorem 1 lies in determining the upper bound µj as defined in Lemma 1. This is
accomplished through the following lemma.
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Lemma 2 Under the settings of Theorem 1, let G and G0 be as in (13). For any constant
C1 > 0, there exists C3 > 0 such that with probability 1−n−C1, simultaneously for 1 f j f p:

∥G−G0∥ f C3

√
pn log(n)

N
, ∥e′j(G−G0)Ξ∥ f C3

√
hjnp log(n)

N
.

The constant C3 only depends on C1 and (K, c1, c2, c3, C0).

We compare the bound for ∥G−G0∥ in Lemma 2 with the one in Ke and Wang (2024) as
summarized in (16). There is a significant improvement when N f p2. This improvement
primarily stems from the application of a decoupling inequality for U-statistics, as elaborated
below.

We outline the proof of the bound for ∥G − G0∥. Let Z = D − E[D] = [z1, z2, . . . , zn].
From (41)-(42) in Appendix A, G−G0 decomposes into the sum of four matrices, where it
is most subtle to bound the spectral norm of the fourth matrix:

E4 := M
−1/2
0 (ZZ ′ − E[ZZ ′])M−1/2

0 .

Define Xi = (M
−1/2
0 zi)(M

−1/2
0 zi)

′ − E[(M
−1/2
0 zi

)(
M

−1/2
0 zi)

′]. It is seen that E4 =∑n
i=1Xi, which is a sum of n independent matrices. We apply the matrix Bernstein in-

equality Tropp (2012) (Theorem 6) to obtain that if there exist b > 0 and Ã2 > 0 such that
∥Xi∥ f b almost surely for all i and ∥

∑n
i=1 EX

2
i ∥ f Ã2, then for every t > 0,

P

(∥∥
n∑

i=1

Xi

∥∥ g t
)
f 2p exp

(
− t2/2

Ã2 + bt/3

)
.

Determination of b and Ã2 requires upper bounds for ∥Xi∥ and ∥EX2
i ∥. Since each Xi is

equal to a rank-1 matrix minus its expectation, it reduces to deriving large-deviation bounds

for ∥M−1/2
0 zi∥2. Note that each zi can be equivalently represented by zi = N−1

i

∑N
m=1(Tim−

ETim), where {Tim}Ni

m=1 are i.i.d. Multinomial(1, d0i ). It yields that ∥M
−1/2
0 zi∥2 = I1 + I2,

where I2 is a term that can be controlled using standard large-deviation inequalities, and:

I1 := N−2
i

∑

1fm1 ̸=m2fNi

(Tim1
− ETim1

)M−1
0 (Tim2

− ETim2
).

The remaining question is how to bound |I1|. We notice that I1 is a U-statistic with
degree 2. The decoupling inequality (de la Pena and Montgomery-Smith, 1995; De la Pena
and Giné, 2012) is a useful tool for studying U-statistics.

Theorem 5 (A special decoupling inequality (De la Pena and Giné, 2012)) Let {Xm}Nm=1

be a sequence of i.i.d. random vectors in R
d, and let {X̃m}Nm=1 be an independent copy of

{Xm}Nm=1. Suppose that h : R2d → R is a measurable function. Then, there exists a constant
C4 > 0 independent of n,m, d such that for all t > 0:

P

(∣∣∣
∑

m ̸=m1

h(Xm, Xm1
)
∣∣∣ g t

)
f C4P

(
C4

∣∣∣
∑

m ̸=m1

h(Xm, X̃m1
)
∣∣∣ g t

)
.
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Let {T̃im}Ni

m=1 be an independent copy of {Tim}Ni

m=1. By Theorem 5, the large-deviation
bound of I1 can be inferred from the large-deviation bound of:

Ĩ1 := N−2
i

∑

1fm1 ̸=m2fNi

(Tim1
− ETim1

)′M−1
0 (T̃im2

− ET̃im2
) .

Using h(Tim1
, T̃im2

) to denote the summand in the above sum, we have a decomposition:
Ĩ1 = N−2

i

∑
m1,m2

h(Tim1
, T̃im2

) − N−2
i

∑
m h(Tim, T̃im). The second term is a sum of in-

dependent variables and can be controlled by standard large-deviation inequalities. Hence,
the analysis of Ĩ1 reduces to the analysis of Ĩ∗

1 := N−2
i

∑
m1,m2

h(Tim1
, T̃im2

). We re-write

Ĩ∗
1 as:

Ĩ∗
1 = N−2

i y′ỹ, with y :=

Ni∑

m=1

M
−1/2
0 (Tim − ETim), ỹ :=

Ni∑

m=1

M
−1/2
0 (T̃im − ET̃im).

Since ỹ is independent of y, we apply large-deviation inequalities twice. First, condi-
tional on ỹ, Ĩ∗

1 is a sum of Ni independent variables (randomness comes from Tim’s). We

apply the Bernstein inequality to get a large-deviation bound for Ĩ∗
1 , which depends on a

quantity Ã2(ỹ). Next, since Ã2(ỹ) can also be written as a sum of Ni independent vari-
ables (randomness comes from T̃im’s), we apply the Bernstein inequality again to obtain a
large-deviation bound for Ã2(ỹ). Combining two steps gives the large-deviation bound for
Ĩ∗
1 .

Remark 4 The decoupling inequality is employed multiple times to study other U-statistics-
type quantities arising in our proof. For example, recall that (G−G0) decomposes into the
sum of four matrices, and we have only discussed how to bound ∥E4∥. In the analysis of
∥E2∥ and ∥E3∥, we need to bound other quadratic terms involving a sum over (i,m), with
1 f i f n and 1 f m f Ni. In that case, we need a more general decoupling inequality. We
refer readers to Theorem 8 in Appendix A for more details.

Remark 5 The analysis in Ke and Wang (2024) uses an ϵ-net argument (Vershynin, 2012)
and the martingale Bernstein inequality (Freedman, 1975) to study ∥E4∥. In our analysis,
we use the matrix Bernstein inequality (Tropp, 2012), instead of the ϵ-net argument. The
matrix Bernstein inequality enables us to tackle each quadratic term related to each i sep-
arately instead of handling complicated quadratic terms involving summation over i and m
simultaneously. Additionally, we adopt the decoupling inequality for U-statistics (de la Pena
and Montgomery-Smith, 1995; De la Pena and Giné, 2012), instead of the martingale Bern-
stein inequality, to study all the quadratic terms arising in our analysis. The decoupling
inequality converts the tail anaysis of quadratic terms into tail analysis of (conditionally)
independent sums. It provides sharper bounds when the variables have heavy tails (which is
the case for the word counts in a topic model, especially when documents are short).

4.5 Proof sketch of Theorem 1

We combine the non-stochastic perturbation result in Lemma 1 and the large-deviation
bounds in Lemma 2 to prove Theorem 1. By Lemma 4, |¼K | g C−1n´n. It follows from
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Weyl’s inequality, the first claim in Lemma 2, and the assumption of p log2(n) f Nn´2
n that

with probability 1− n−C1 :

|¼̂K | g |¼k| ·
[
1−O

(
[log(n)]−1/2

)]
g C−1n´n.

In addition, it can be shown (see Lemma 4) that ∥e′jΞ∥ f Ch
1/2
j . Combining this with

the two claims in Lemma 2 gives that with probability 1− n−C1 :

∥e′jΞ∥∥G−G0∥+ ∥e′j(G−G0)Ξ∥ f C

√
hjnp log(n)

N
:= µj .

We hope to apply Lemma 1. This requires obtaining a bound for ∥Γ−1(G−G0)Γ∥1→∞.
Since Γ ∝ H1/2, it suffices to study ∥H−1/2(G − G0)H

1/2∥1→∞. Similar to the analysis of
∥e′j(G−G0)Ξ∥, we can show (see the proofs of Lemmas 7 and 8, such as (75)) that ∥e′j(G−
G0)H

1/2∥1 f CN−1/2[hjnp log(n)]
1/2 f C

√
hj/ log(n) · n´n, where the last inequality is

because of p log2(n) f Nn. We immediately have:

∥H−1/2(G−G0)H
1/2∥1→∞ = max

j

{
h
−1/2
j ∥e′j(G−G0)H

−1/2∥1
}
f Cn´n√

log(n)
f |¼̂K |

2
.

We then apply Lemma 1 to get ∥e′j(Ξ̂− ΞO′)∥ f C|¼̂K |−1µj f C(n´n)
−1µj . The claim

of Theorem 1 follows immediately by plugging in the value of µj as given above.

5 Summary and Discussion

The topic model imposes a “low-rank plus noise” structure on the data matrix. However,
the noise is not simply additive; rather, it consists of centered multinomial random vec-
tors. The eigenvector analysis in a topic model is more complex than standard eigenvector
analysis for random matrices. Firstly, the entries of the data matrix are weakly depen-
dent, making techniques such as leave-one-out inapplicable. Secondly, due to the significant
word frequency heterogeneity in natural languages, entry-wise eigenvector analysis becomes
much more nuanced, as different entries of the same eigenvector have significantly different
bounds. Additionally, the data exhibit Bernstein-type tails, precluding the use of random
matrix theory tools that assume sub-exponential entries. While we build on the analysis in
Ke and Wang (2024), we address these challenges with new proof ideas. Our results provide
the most precise eigenvector analysis and rate-optimality results for topic modeling, to the
best of our knowledge.

A related but more ambitious goal is obtaining higher-order expansions of the empirical
singular vectors. Since the random matrix under study in the topic model is the Wishart
type, we can possibly borrow techniques in (Bloemendal et al., 2016) to study the joint
distribution of empirical singular values and singular vectors. In this paper, we assume the
number of topics, K, is finite, but our analysis can be easily extended to the scenario of a
growing K (e.g., K = O(log(n))). We assume min{p,N} g log3(n). When p < log3(n),
it becomes a low-dimensional eigenvector analysis problem, which is easy to tackle. When
N < log3(n), it is the extremely short documents case (i.e., each document has only a finite
length, say, fewer than 20, as in documents such as Tweets). We leave it to future work.
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Appendix A. Preliminary Lemmas and Theorems

In this section, we collect the preliminaries lemmas and theorems that will be used in the
entry-wise eigenvector analysis. Under Assumption 3, Ni ≍ N̄ ≍ N . Therefore, throughout
this section and subsequent sections, we always assume N̄ = N without loss of generality.

The first lemma describes the estimates of the entries in M0 and reveals its relation to
the underlying frequency parameters, and further provides the large-deviation bound for
the normalization matrix M .

Lemma 3 (Lemmas D.1 & E.1 in (Ke and Wang, 2024)) Recall the definitions M =
diag(n−1

∑n
i=1Ndi/Ni), M0 = diag(n−1

∑n
i=1Nd0i /Ni), and hj =

∑K
k=1Ak(j) for 1 f j f

p. Suppose the conditions in Theorem 1 hold. Then:

M0(j, j) ≍ hj ; and |M(j, j)−M0(j, j)| f C

√
hj log(n)

Nn
,

for some constant C > 0, with probability 1 − o(n−3), simultaneously for all 1 f j f p.
Furthermore, with probability 1− o(n−3),

∥∥∥M−1/2M
1/2
0 − Ip

∥∥∥ f C

√
p log(n)

Nn
. (18)

Remark 6 In this lemma and other subsequent lemmas, “with probability 1− o(n−3)” can
always be replaced by “with probability 1 − n−C1”, for an arbitrary constant C1 > 0. The
small-probability events in these lemmas come from the Bernstein inequality or the matrix
Bernstein inequality. These inequalities concern small-probability events associated with an
arbitrary probability ¶ ∈ (0, 1), and the high-probability bounds depend on log(1/¶). When
¶ = n−C1, log(1/¶) = C1 log(n). Therefore, changing C1 only changes the high-probability
bound by a constant. Without loss of generality, we take C1 = 4 for convenience.

The proof of the first statement is quite similar to the proof detailed in the supplementary
materials of (Ke and Wang, 2024). The only difference is the existence of the additional
factor N/Ni. Thanks to the condition that Ni’s are at the same order, it is not hard to
see that M0(j, j) ≍ n−1

∑n
i=1 d

0
i (j),where the RHS is exactly the definition of M0 in (Ke

and Wang, 2024). Thus, the proof follows simply under Assumption 2. To obtain the
large-deviation bound, the following representation is crucial:

M(j, j)−M0(j, j) =
1

n

n∑

i=1

N

Ni

(
di(j)− d0i (j)

)
=

1

n

n∑

i=1

N

N2
i

Ni∑

m=1

Tim(j)− d0i (j),

where {Tim}nm=1 are i.i.d. Multinomial (1, d0i ) with d0i = Awi. The RHS is a sum of
independent random variables, thus allowing the application of Bernstein inequality. The
inequality (18) is not provided in the supplementary materials of (Ke and Wang, 2024), but
it follows easily from the first statement. We prove (18) in detail below.

By definition, it suffices to claim that:

∣∣∣∣

√
M0(j, j)√
M(j, j)

− 1

∣∣∣∣ f C

√
p log(n)

Nn
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simultaneously for all 1 f j f p. To this end, we derive:

∣∣∣∣

√
M0(j, j)√
M(j, j)

− 1

∣∣∣∣ f
∣∣M0(j, j)−M(j, j)

∣∣
√

M(j, j)(
√
M0(j, j) +

√
M(j, j))

Using the large-deviation bound |M(j, j)−M0(j, j)| f C
√
hj log(n)/(Nn) = o(hj) and

also the estimate M0(j, j) ≍ hj , we bound the denominator by:

√
M(j, j)

(√
M0(j, j) +

√
M(j, j)

)
g C

√
hj − o(hj)

(√
hj +

√
hj − o(hj)

)
g Chj

with probability 1− o(n−3), simultaneously for all 1 f j f p. Consequently:

∣∣∣∣

√
M0(j, j)√
M(j, j)

− 1

∣∣∣∣ f C

√
log(n)

Nnhj
f C

√
p log(n)

Nn
,

where the last step is due to hj g hmin g C/p. This completes the proof of (18).
The next Lemma presents the eigen-properties of the population data matrix.

Lemma 4 (Lemmas F.2, F.3, and D.3 in (Ke and Wang, 2024)) Suppose the con-
ditions in Theorem 1 hold. Let G0 be as in (13). Denote by ¼1 g ¼1 g . . . g ¼K the
non-zero eigenvalues of G0. There exists a constant C > 1 such that:

Cn´n f ¼k f Cn, for 2 f k f K, and ¼1 g C−1n+ max
2fkfK

¼K .

Furthermore, let À1, À2, . . . , ÀK be the associated eigenvectors of G0. Then:

C−1
√

hj f À1(j) f C
√
hj , ∥e′jΞ∥ f C

√
hj .

The above lemma can be proved in the same manner as those in the supplement materials
of (Ke and Wang, 2024). Given our more general condition on ΣA, which allows its smallest
eigenvalue to converge to 0 as n → ∞, the results on the eigenvalues are slightly different.
In out setting, only the largest eigenvalue is of order n and it is well-separated from the
others as the first eigenvector of n−1G0 has multiplicity one, which can be claimed by using
Perron’s theorem and the last inequality in Assumption 2. For the other eigenvalues, they
might be at the order of ´n in Assumption 2. The details are very similar to those in the
supplement materials of (Ke and Wang, 2024) by adapting our relaxed condition on ΣA, so
we avoid redundant derivations here.

Throughout the analysis, we need matrix Bernstein inequality and decoupling inequality
for U-statistics. For readers’ convenience, we provide the theorems below.

Theorem 6 Let X1, · · · , XN be independent, mean zero, n×n symmetric random matrices,
such that ∥Xi∥ f b almost surely for all i and ∥

∑N
i=1 EX

2
i ∥ f Ã2. Then, for every t g 0,

we have:

P

(∥∥∥
N∑

i=1

Xi

∥∥∥ g t

)
f 2n exp

(
− t2/2

Ã2 + bt/3

)
.
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The following two theorems are special cases of Theorem 3.4.1 in (De la Pena and Giné,
2012), which implies that using decoupling inequality simplifies the analysis of U-statistics
to the study of sums of (conditionally) independent random variables.

Theorem 7 Let {Xi}ni=1 be a sequence of i.i.d. random vectors in R
d, and let {X̃i}ni=1 be

an independent copy of {Xi}ni=1. Then, there exists a constant C̃ > 0 independent of n, d
such that:

P(|
∑

i ̸=j

X ′
iXj | g t) f C̃ P( C̃ |

∑

i ̸=j

X ′
iX̃j | g t)

Theorem 8 Let {X(i)
m }i,m, for 1 f i f n and 1 f m f N , be a sequence of i.i.d. random

vectors in R
d, and let {X̃(i)

m }i,m be an independent copy of {X(i)
m }i,m. Suppose that h :

R
2d → R is a measurable function. Then, there exists a constant C > 0 independent of

n,m, d such that:

P

(∣∣∣
∑

i

∑

m ̸=m1

h(X(i)
m , X(i)

m1
)
∣∣∣ g t

)
f C P

(
C
∣∣∣
∑

i

∑

m ̸=m1

h(X(i)
m , X̃(i)

m1
)
∣∣∣ g t

)

The key difference between the above theorems is attributed to the index set used across
the sum. In Theorem 7, the random variables are indexed by i and all pairs of (Xi, Xj)
are included; in contrast, Theorem 8 uses both i and m and consider only the pairs that
share the identical index i. However, both are viewed as special cases of Theorem 3.4.1 with
degree 2 in (De la Pena and Giné, 2012), which discussed a broader sequence of functions
{hij(·, ·)}i,j , where each hij(·, ·) can differ with varying i, j. By assigning all hij(·, ·) to the
same product function, we have Theorem 7; whereas Theorem 8 follows from specifying:

h(im)(jm1)(·, ·) =
{

h(·, ·), if i = j;
0, otherwise.

Appendix B. Proofs of Lemmas 1 and 2

B.1 Proof of Lemma 1

Using the definition of eigenvectors and eigenvalues, we have GΞ̂ = Ξ̂Λ̂ and G0Ξ = ΞΛ.
Additionally, since G0 has a rank K, G0 = ΞΛΞ′. It follows that:

Ξ̂Λ̂ = [G0 + (G−G0)]Ξ̂ = ΞΛΞ′Ξ̂ + (G−G0)Ξ̂ = ΞΞ′G0Ξ̂ + (G−G0)Ξ̂.

As a result:
e′jΞ̂ = e′jΞΞ

′G0Ξ̂Λ̂
−1 + e′j(G−G0)Ξ̂Λ̂

−1 . (19)

Note that G0Ξ̂ = GΞ̂ + (G0 −G)Ξ̂ = Ξ̂Λ̂ + (G0 −G)Ξ̂. We plug this equality into the first
term on the RHS of (19) to obtain:

e′jΞΞ
′G0Ξ̂Λ̂

−1 = e′jΞΞ
′Ξ̂ + e′jΞΞ

′(G0 −G)Ξ̂Λ̂−1

= e′jΞO
′ + e′jΞ(Ξ

′Ξ̂−O′) + e′jΞΞ
′(G0 −G)Ξ̂Λ̂−1,
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for any orthogonal matrix O. Combining this with (19) gives:

∥e′j(Ξ̂− ΞO′)∥ f ∥e′jΞ(Ξ′Ξ̂−O′)∥+ ∥e′jΞΞ′(G0 −G)Ξ̂Λ̂−1∥+ ∥e′j(G−G0)Ξ̂Λ̂
−1∥. (20)

Fix O = sgn(Ξ̂′Ξ). The sine-theta theorem (Davis and Kahan, 1970) yields:

∥Ξ′Ξ̂−O′∥ f |¼̂K |−2∥G−G0∥2. (21)

We use (21) to bound the first two terms on the RHS of (20):

∥e′jΞ(Ξ′Ξ̂−O′)∥ f ∥e′jΞ∥∥Ξ′Ξ̂−O′∥ f ∥e′jΞ∥ · |¼̂K |−2∥G−G0∥2,
∥e′jΞΞ′(G0 −G)Ξ̂Λ̂−1∥ f ∥e′jΞ∥ · |¼̂K |−1∥Ξ′(G0 −G)Ξ̂∥ f ∥e′jΞ∥ · |¼̂K |−1∥G−G0∥.

Since ∥G − G0∥ f (1 − c0)|¼̂K |, the RHS in the second line above dominates the RHS in
the first line. We plug these upper bounds into (20) to get:

∥e′j(Ξ̂− ΞO′)∥ f |¼̂K |−1∥e′jΞ∥∥G−G0∥+ ∥e′j(G−G0)Ξ̂Λ̂
−1∥

f |¼̂K |−1
(
∥e′jΞ∥∥G−G0∥+ ∥e′j(G−G0)Ξ̂∥

)
. (22)

We notice that the second term on the RHS of (22) still involves Ξ̂, and we further
bound this term. By the assumption of this theorem, there exists a diagonal matrix Γ such
that ∥Γ−1(G−G0)Γ∥1→∞ f (1− c0)|¼̂K |. It implies:

∥e′j(G−G0)Γ∥1 f (1− c0)µj |¼̂K |.

Additionally, for any vector v ∈ R
p and matrixB ∈ R

p×K , it holds that ∥v′B∥ f∑j |vj |∥e′jB∥ f∑
j |vj |∥B∥2→∞ f ∥v∥1∥B∥2→∞. We then bound the second term on the RHS of (22) as

follows:

∥e′j(G−G0)Ξ̂∥ f ∥e′j(G−G0)ΞO
′∥+ ∥e′j(G−G0)(Ξ̂− ΞO′)∥

f ∥e′j(G−G0)Ξ∥+ ∥e′j(G−G0)Γ∥1 · ∥Γ−1(Ξ̂− ΞO′)∥2→∞

f ∥e′j(G−G0)Ξ∥+ (1− c0)µj |¼̂K | · ∥Γ−1(Ξ̂− ΞO′)∥2→∞. (23)

Plugging (23) into (22) gives:

∥e′j(Ξ̂− ΞO′)∥ f |¼̂K |−1
(
∥e′jΞ∥∥G−G0∥+ ∥e′j(G−G0)Ξ∥

)

+ (1− c0)µj · ∥Γ−1(Ξ̂− ΞO′)∥2→∞

f |¼̂K |−1µj + (1− c0)µj · ∥Γ−1(Ξ̂− ΞO′)∥2→∞, (24)

where in the last line we have used the assumption that µj is an upper bound for ∥e′jΞ∥∥G−
G0∥ + ∥e′j(G − G0)Ξ∥. Note that ∥Γ−1(Ξ̂ − ΞO′)∥2→∞ = max1fjfp

{
µ−1
j ∥e′j(Ξ̂ − ΞO′)∥

}
.

We multiply both LSH and RSH of (24) by µ−1
j and take the maximum over j. It gives:

∥Γ−1(Ξ̂− ΞO′)∥2→∞ f |¼̂K |−1 + (1− c0)∥Γ−1(Ξ̂− ΞO′)∥2→∞, (25)

or equivalently, ∥Γ−1(Ξ̂−ΞO′)∥2→∞ f c−1
0 |¼̂K |−1. We further plug this inequality into (24)

to obtain:

∥e′j(Ξ̂− ΞO′)∥ f |¼K |−1µj + (1− c0) · c−1
0 |¼K |−1µj f c−1

0 |¼K |−1µj . (26)

This proves the claim.
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B.2 Proof of Lemma 2

The first claim is the same as the one in Lemma 5 and will be proved there.
The second claim follows by simply collecting arguments in the proof of Lemma 5, as

shown below: By (41), G−G0 = E1 + E2 + E3 + E4. It follows that:

∥e′j(G−G0)Ξ∥ f
4∑

s=1

∥e′jEsΞ∥. (27)

We apply Lemma 7 to get large-deviation bounds for ∥e′jEsΞ∥ with s ∈ {2, 3, 4}. This

lemma concerns ∥e′jEsΞ̂∥, but in its proof we have already analyzed ∥e′jEsΞ∥. In particular,
∥e′jE2Ξ∥ and ∥e′jE3Ξ∥ have the same bounds as in (46), and the bound for ∥e′jE4Ξ∥ only
has the first term in (47). In summary:

∥e′jEsΞ∥ f C

√
hjnp log(n)

N
, for s ∈ {2, 3, 4}. (28)

It remains to bound ∥e′jE1Ξ∥. We first mimic the steps of proving (50) of Lemma 7

(more specifically, the derivation of (80), except that Ξ̂ is replaced by Ξ) to obtain:

∥ejE1Ξ∥ f Cn∥e′j(M
1/2
0 M−1/2 − Ip)Ξ∥+ C∥e′jG0(M

1/2
0 M−1/2 − Ip)Ξ∥

+

4∑

s=2

∥e′jEs(M
1/2
0 M−1/2 − Ip)Ξ∥. (29)

We note that:

∥e′j(M
1/2
0 M−1/2 − Ip)Ξ∥ f ∥M1/2

0 M−1/2 − Ip∥ · ∥e′jΞ∥,
∥e′jG0(M

1/2
0 M−1/2 − Ip)Ξ∥ = ∥e′jΞΛΞ′(M1/2

0 M−1/2 − Ip)Ξ∥
f ∥e′jΞ∥ · ∥Λ∥ · ∥M

1/2
0 M−1/2 − Ip∥,

∥e′jEs(M
1/2
0 M−1/2 − Ip)Ξ∥ f ∥e′jEs∥ · ∥M1/2

0 M−1/2 − Ip∥.

For s ∈ {2, 3}, we have ∥e′jEs∥ f C
√

hjp log(n)/(Nn). This has been derived in the proof
of Lemma 7: when controlling ∥e′jE2Ξ∥ and ∥e′jE3Ξ∥ there, we first bound them by ∥e′jE2∥
and ∥e′jE3∥, respectively, and then study ∥e′jE2∥ and ∥e′jE3∥ directly). We plug these results
into (29) to obtain:

∥ejE1Ξ∥ f ∥M1/2
0 M−1/2 − Ip∥

(
n∥e′jΞ∥+ |¼1|∥e′jΞ∥+ C

√
hjnp log(n)

N

)

+ ∥e′jE4(M
1/2
0 M−1/2 − Ip)Ξ∥. (30)

For ∥e′jE4(M
1/2
0 M−1/2 − Ip)Ξ∥, we cannot use the same idea to bound it as for s ∈ {2, 3},

because the bound for ∥e′jE4∥ is much larger than those for ∥e′jE2∥ and ∥e′jE4∥. Instead, we
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study ∥e′jE4(M
1/2
0 M−1/2 − Ip)Ξ∥ directly. This part is contained in the proof of Lemma 8;

specifically, in the proof of (48). There we have shown:

∥e′jE4(M
1/2
0 M−1/2 − Ip)Ξ∥ f C

√
hj ·

p log(n)

N
. (31)

We plug (31) into (30) and note that ¼1 = O(n) and ∥e′jΞ∥ = O(h
1/2
j ) (by Lemma 4). We

also use the assumption that Nn g Nn´2
n g p log2(n) and the bound for ∥M1/2

0 M−1/2−Ip∥
in (18). It follows that

∥ejE1Ξ∥ f ∥M1/2
0 M−1/2 − Ip∥ · C

√
hj

(
n+

√
np log(n)

N
+

p log(n)

N

)

f ∥M1/2
0 M−1/2 − Ip∥ ·O(nh

1/2
j ) f C

√
hjnp log(n)

N
. (32)

We plug (28) and (32) into (27). This proves the second claim.

Appendix C. The complete proof of Theorem 1

A proof sketch of Theorem 1 has been given in Section 4.4. For the ease of writing formal
proofs, we have re-arranged the claims and analyses in Lemmas 1 and 2, so the proof
structure here is slightly different from the sketch in Section 4.4. For example, Lemma 5
combines the claims of Lemma 2 with some steps in proving Lemma 1; the remaining steps
in the proof of Lemma 1 are combined into the proof of the main theorem.

First, we present a key technical lemma. The proof of this lemma is quite involved and
relegated to Appendix D.1.

Lemma 5 Under the setting of Theorem 1. Recall G,G0 in (13). With probability 1 −
o(n−3):

∥G−G0∥ f C

√
pn log(n)

N
j n´n; (33)

∥e′j(G−G0)Ξ̂∥/n f C

√
hjp log(n)

nN

(
1 + ∥H− 1

2 (Ξ̂− ΞO′)∥2→∞

)
+ o(´n) · ∥e′j(Ξ̂− ΞO′)∥ ,

(34)

simultaneously for all 1 f j f p.

Next, we use Lemma 5 to prove Theorem 1. Let (¼̂k, À̂k) and (¼̂k, À̂k) be the k-th eigen-
pairs of G and G0, respectively. Let Λ̂ = diag(¼̂1, ¼̂2, . . . , ¼̂K) and Λ = diag(¼1, ¼2, . . . , ¼K).
Following (19) and (20), we have:

∥e′j(Ξ̂− ΞO′)∥ f ∥e′jΞ(Ξ′Ξ̂−O′)∥+ ∥e′jΞΞ′(G0 −G)Ξ̂Λ̂−1∥+ ∥e′j(G−G0)Ξ̂Λ̂
−1∥. (35)

In the sequel, we bound the three terms on the RHS above one-by-one.
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First, by sine-theta theorem:

∥e′jΞ(Ξ′Ξ̂−O′)∥ f C∥e′jΞ∥
∥G−G0∥2

|¼̂K − ¼K+1|2
.

For 1 f k f p, by Weyl’s inequality:

|¼̂k − ¼k| f ∥G−G0∥ j n´n (36)

with probability 1 − o(n−3), by employing (33) in Lemma 5. In particular, ¼1 ≍ n and
Cn´n < ¼k f Cn for 2 f k f K and ¼k = 0 otherwise (see Lemma 4). Thereby,
|¼̂K − ¼K+1| g Cn´n. Further using ∥e′jΞ∥ f C

√
hj (see Lemma 4), with the aid of

Lemma 5, we obtain that with probability 1− o(n−3):

∥e′jΞ(Ξ′Ξ̂−O′)∥ f C
√

hj · p log(n)
Nn´2

n

(37)

simultaneously for all 1 f j f p.
Next, we similarly bound the second term:

∥e′jΞΞ′(G0 −G)Ξ̂Λ̂−1∥ f C

n´n
∥e′jΞ∥∥G−G0∥ f C

√
hjp log(n)

Nn´2
n

. (38)

Here we used the fact that ¼̂K g Cn´n following from (36) and Lemma 4.
For the last term, we simply bound:

∥e′j(G−G0)Ξ̂Λ̂
−1∥ f C∥e′j(G−G0)Ξ̂∥/(n´n) . (39)

Combining (37), (38), and (39) into (35), by (34) in Lemma 5, we arrive at:

∥e′j(Ξ̂− ΞO′)∥ f C

√
hjp log(n)

Nn´2
n

(
1 + ∥H− 1

2 (Ξ̂− ΞO′)∥2→∞

)
+ o(1) · ∥e′j(Ξ̂− ΞO′)∥ .

Rearranging both sides above gives:

∥e′j(Ξ̂− ΞO′)∥ f C

√
hjp log(n)

Nn´2
n

(
1 + ∥H− 1

2 (Ξ̂− ΞO′)∥2→∞

)
, (40)

with probability 1− o(n−3), simultaneously for all 1 f j f p.

To proceed, we multiply both sides in (40) by h
−1/2
j and take the maximum. It follows

that:

∥H− 1

2 (Ξ̂− ΞO′)∥2→∞ f C

√
p log(n)

Nn´2
n

(
1 + ∥H− 1

2

0 (Ξ̂− ΞO′)∥2→∞

)
.

Note that
√
p log(n)/

√
Nn´2

n = o(1) from Assumption 3. We further rearrange both sides
above and get:

∥H− 1

2 (Ξ̂− ΞO′)∥2→∞ f
√

p log(n)

Nn´2
n

= o(1) .

Plugging the above estimate into (40), we finally conclude the proof of Theorem 1.
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Appendix D. Entry-Wise Eigenvector Analysis and Proof of Lemma 5

To finalize the proof of Theorem 1 as outlined in Appendix C, the remaining task is to
prove Lemma 5.

Recall the definition in (13) that:

G = M− 1

2DD′M− 1

2 − n

N
Ip, G0 = M

− 1

2

0

[ n∑

i=1

(1−N−1
i )d0i (d

0
i )

′
]
M

− 1

2

0 .

Write D = D0+Z, where Z = (z1, z2, . . . , zn) is a mean-zero random matrix with each Nzi
being centered Multinomial (Ni, Awi). By this representation, we decompose the perturba-
tion matrix G−G0 as follows:

G−G0 = M− 1

2DD′M− 1

2 −M
− 1

2

0 DD′M
− 1

2

0 +M
− 1

2

0

(
DD′ −

n∑

i=1

(1−N−1
i )d0i (d

0
i )

′ − n

N
M0

)
M

− 1

2

0

= (M− 1

2DD′M− 1

2 −M
− 1

2

0 DD′M
− 1

2

0 ) +M
− 1

2

0 ZD′
0M

− 1

2

0 +M
− 1

2

0 D0Z
′M

− 1

2

0

+M
− 1

2

0 (ZZ ′ − EZZ ′)M
− 1

2

0

= E1 + E2 + E3 + E4, (41)

where:

E1 := M− 1

2DD′M− 1

2 −M
− 1

2

0 DD′M
− 1

2

0 ,

E2 := M
− 1

2

0 ZD′
0M

− 1

2

0 , E3 := M
− 1

2

0 D0Z
′M

− 1

2

0

E4 := M
− 1

2

0 (ZZ ′ − EZZ ′)M
− 1

2

0 . (42)

Here the second step of (41) is due to the identity:

E(ZZ ′) +
n∑

i=1

N−1
i d0i (d

0
i )

′ − n

N
M0 = 0 ,

which can be obtained by:

E(ZZ ′) =
n∑

i=1

Eziz
′
i =

n∑

i=1

N−2
i

Ni∑

m,s=1

E(Tim − ETim)(Tis − ETis)
′,

with {Tim}Nm=1 being i.i.d. Multinomial (1, Awi).
Throughout the analysis in this section, we will frequently rewrite and use:

zi =
1

Ni

Ni∑

m=1

Tim − ETim (43)

as it introduces the sum of independent random variables. We use the notation d0i := Edi =
ETim = Awi for simplicity.
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By (41), in order to prove Lemma 5, it suffices to study:

∥Es∥ and ∥e′jEsΞ̂∥/n, for s = 1, 2, 3, 4 and 1 f j f p.

The estimates for the aforementioned quantities are provided in the following technical
lemmas, whose proofs are deferred to later sections.

Lemma 6 Suppose the conditions in Theorem 1 hold. There exists a constant C > 0, such
that with probability 1− o(n−3):

∥Es∥ f C

√
pn log(n)

N
, for s = 1, 2, 3 (44)

∥E4∥ = ∥M− 1

2

0 (ZZ ′ − EZZ ′)M
− 1

2

0 ∥ f Cmax
{√pn log(n)

N2
,
p log(n)

N

}
. (45)

Lemma 7 Suppose the conditions in Theorem 1 hold. There exists a constant C > 0, such
that with probability 1− o(n−3), simultaneously for all 1 f j f p:

∥e′jEsΞ̂∥/n f C

√
hjp log(n)

Nn
, for s = 2, 3 (46)

∥e′jE4Ξ̂∥/n f C

√
hjp log(n)

Nn

(
1 + ∥H− 1

2

0 (Ξ̂− ΞO′)∥2→∞
)
, (47)

with O = sgn(Ξ̂′Ξ).

Lemma 8 Suppose the conditions in Theorem 1 hold. There exists a constant C > 0, such
that with probability 1− o(n−3), simultaneously for all 1 f j f p:

∥e′jE4(M
1/2
0 M−1/2 − Ip)Ξ̂∥/n f C

√
hj ·

p log(n)

nN

(
1 + ∥H− 1

2 (Ξ̂− ΞO′)∥2→∞
)
, (48)

∥∥∥e′j
(
M1/2M

−1/2
0 − Ip

)
Ξ̂
∥∥∥ f C

√
log(n)

Nn
+ o(´n) · ∥e′j(Ξ̂− ΞO′)∥; (49)

and furthermore:

∥e′jE1Ξ̂∥/n f C

√
hjp log(n)

Nn

(
1 + ∥H− 1

2

0 (Ξ̂− ΞO′)∥2→∞
)
+ o(´n) · ∥e′j(Ξ̂− ΞO′)∥ . (50)

For proving Lemmas 6 and 7, the difficulty lies in showing (45) and (47) as the quantity E4

involves the quadratic terms of Z with its dependence on Ξ̂. We overcome the hurdle by
decomposing Ξ̂ = Ξ + Ξ̂ − ΞO′ and employing decoupling techniques (Theorems 7 and 8).
Considering the expression of E1, where DD′ is involved, the proof of (50) in Lemma 8
significantly rely on the estimates in Lemma 7, together with (48) and (49). The detailed
proofs are systematically presented in subsequent sections, following the proof of Lemma 5.
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D.1 Proof of Lemma 5

We employ the technical lemmas (Lemmas 6–8) to prove Lemma 5. We start with (33). By
the representation (41), it is straightforward to obtain that:

∥G−G0∥ f
4∑

s=1

∥Es∥ f C

√
pn log(n)

N
+ Cmax

{√pn log(n)

N2
,
p log(n)

N

}

for some constant C > 0, with probability 1− o(n−3). Under Assumption 3, it follows that:
√

pn log(n)

N2
j
√

pn log(n)

N
,

p log(n)

N
=

√
pn log(n)

N
·
√

p log(n)

Nn
j
√

pn log(n)

N

and: √
pn log(n)

N
= n ·

√
p log(n)

Nn
j n .

Therefore, we complete the proof of (33).
Next, we show (34). Similarly, using (44), (47), and (50), we have:

∥e′j(G−G0)Ξ̂∥/n f
4∑

s=1

∥e′jEsΞ̂∥/n

f C

√
hjp log(n)

Nn

(
1 + ∥H− 1

2

0 (Ξ̂− ΞO′)∥2→∞
)
+ o(´n) · ∥e′j(Ξ̂− ΞO′)∥ .

This concludes the proof of Lemma 5.

D.2 Proof of Lemma 6

We examine each ∥Ei∥ for i = 1, 2, 3, 4. We start with the easy one, ∥E2∥. Recall D0 = AW .
We denote by W ′

k the k-th row of W and rewrite W = (W1, · · · ,WK)′. Similarly, we use
Z ′
j , 1 f j f p to denote j-th row of Z. Thereby, Z = (z1, z2, . . . , zn) = (Z1, Z2, . . . , Zp)

′.

By the definition that E2 = M
−1/2
0 ZD′

0M
−1/2
0 , we have:

∥E2∥ = ∥M−1/2
0 ZW ′A′M−1/2

0 ∥ =
∥∥∥

K∑

k=1

M
−1/2
0 ZWk ·A′

kM
−1/2
0

∥∥∥

f
K∑

k=1

∥M−1/2
0 ZWk∥ · ∥A′

kM
−1/2
0 ∥. (51)

We analyze each factor in the summand:

∥M−1/2
0 ZWk∥2 =

p∑

j=1

1

M0(j, j)
(Z ′

jWk)
2, ∥A′

kM
−1/2
0 ∥ ≍ ∥A′

kH
−1Ak∥1/2 f C, (52)

where we used the fact that Ak(j) f hj for 1 f j f p. Hence, what remains is to prove a
high-probability bound for each Z ′

jWk. By the representation (43):

Z ′
jWk =

n∑

i=1

zi(j)wi(k) =

n∑

i=1

Ni∑

m=1

N−1
i wi(k)

(
Tim(j)− d0i (j)

)
.
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We then apply Bernstein inequality to the RHS above. By straightforward computations:

var(Z ′
jWk) =

n∑

i=1

Ni∑

m=1

N−2
i wi(k)

2
E
(
Tim(j)− d0i (j)

)2

f
n∑

i=1

N−1
i wi(k)

2d0i (j) f
hjn

N
,

and the individual bound for each summand is C/N . Then, one can conclude from Bernstein
inequality that with probability 1− o(n−3−c0):

|Z ′
jWk| f C

√
nhj log(n)/N + log(n)/N . (53)

As a result, considering all 1 f j f p, under pn−c0 f C from Assumption 3, we have:

∥M− 1

2

0 ZWk∥2 f C

p∑

j=1

h−1
j ·

(nhj log(n)
N

+
log(n)2

N2

)
f C

np log(n)

N
(54)

with probability 1− o(n−3). Here, in the first step, we used M0(j, j) ≍ hj ; the last step is
due to the conditions hj g hmin g C/p and p log(n) j Nn. Plugging (54) and (52) into
(51) gives:

∥E2∥ f C

√
np log(n)

N
. (55)

Furthermore, by definition, E3 = E′
2 and ∥E3∥ = ∥E2∥. Therefore, we directly conclude the

upper bound for ∥E3∥.
Next, we study E4 and prove (45). Notice that M0(j, j) ≍ hj for all 1 f j f p. It

suffices to prove:

∥H− 1

2 (ZZ ′ − EZZ ′)H− 1

2 ∥ f Cmax
{√pn log(n)

N2
,
p log(n)

N

}
. (56)

We prove (56) by employing Matrix Bernstein inequality (i.e., Theorem 6) and decoupling
techniques (i.e., Theorem 7). First, write:

H− 1

2 (ZZ ′ − EZZ ′)H− 1

2 =
n∑

i=1

(H− 1

2 zi)(H
− 1

2 zi)
′ − E(H− 1

2 zi)(H
− 1

2 zi)
′

=: n ·
n∑

i=1

1

n

(
z̃iz̃

′
i − Ez̃iz̃

′
i

)

=: n ·
n∑

i=1

Xi

In order to get sharp bound, we employ the truncation idea by introducing:

X̃i :=
1

n

(
z̃iz̃

′
i1Ei − Ez̃iz̃

′
i1Ei

)
, where Ei := {z̃′iz̃i f Cp/N},

29



for some sufficiently large C > 0 that depends on C0 (see Assumption 3) and 1Ei represents
the indicator function. We then have:

n
n∑

i=1

Xi = n
n∑

i=1

X̃i −
n∑

i=1

E(z̃iz̃
′
i1Ec

i
) (57)

under the event
⋂n

i=1 Ei. We will prove the large-deviation bound of H− 1

2 (ZZ ′−EZZ ′)H− 1

2

in the following steps.

(a) We claim that:

P(

n⋂

i=1

Ei) f 1−
n∑

i=1

P(Ec
i ) = 1− o(n−(2C0+3)) .

(b) We claim that under the event
⋂n

i=1 Ei:

∥∥∥n
n∑

i=1

Xi − n
n∑

i=1

X̃i

∥∥∥ = o(n−(C0+1)) .

(c) We aim to derive a high probability bound of n
∑n

i=1 X̃i by Matrix Bernstein inequality
(i.e., Theorem 6). We show that with probability 1− o(n−3), for some large C > 0:

∥∥∥
n∑

i=1

X̃i

∥∥∥ f Cmax
{√p log(n)

nN2
,
p log(n)

nN

}
.

If (a)–(c) are claimed, with the condition that N < Cn−C0 from Assumption 3, it is straight-
forward to conclude that:

∥H− 1

2 (ZZ ′ − EZZ ′)H− 1

2 ∥ = n
∥∥∥

n∑

i=1

X̃i

∥∥∥+ o(n−C0)

f Cmax
{√pn log(n)

N2
,
p log(n)

N

}
,

with probability 1− o(n−3). This gives (45), except that we still need to verify (a)–(c).
In the sequel, we prove (a), (b) and (c) separately. To prove (a), it suffices to show

that P(Ec
i ) = o(n−(2C0+4)) for all 1 f i f n. By definition, for any fixed i, Nizi is centered

multinomial with Ni trials. Therefore, we can represent:

zi =
1

Ni

Ni∑

m=1

(Tim − ETim), where Tim’s are i.i.d. multinomial(1, d0i ) for fixed i, (58)
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Then it can be computed that:

E(z̃′iz̃i) = Ez′iH
−1zi =

1

N2
i

Ni∑

m=1

E(Tim − ETim)′H−1(Tim − ETim)

=
1

N2
i

Ni∑

m=1

p∑

t=1

E(Tim(t)− d0i (t))
2h−1

t

=
1

N2
i

Ni∑

m=1

p∑

t=1

d0i (t)
(
1− d0i (t)

)
h−1
t f p

Ni
. (59)

We write:

z̃′iz̃i − E(z̃′iz̃i) = z′iH
−1zi − Ez′iH

−1zi = I1 + I2, (60)

where:

I1 :=
1

N2
i

Ni∑

m1 ̸=m2

(Tim1
− ETim1

)′H−1(Tim2
− ETim2

),

I2 :=
1

N2
i

Ni∑

m=1

(Tim − ETim)′H−1(Tim − ETim)− E(Tim − ETim)′H−1(Tim − ETim).

First, we study I1. Let {T̃im}Nm=1 be an independent copy of {Tim}Nm=1 and:

Ĩ1 :=
1

N2
i

Ni∑

m1 ̸=m2

(Tim1
− ETim1

)′H−1(T̃im2
− ET̃im2

).

We apply Theorem 7 to I1 and get:

P(|I1| > t) f CP(Ĩ1 > C−1t). (61)

It suffices to obtain the large-deviation of Ĩ1 instead. Rewrite:

Ĩ1 =
1

Ni

Ni∑

m1

(T̃im1
− ET̃im1

)′H−1/2
( 1

Ni

Ni∑

m=1

H−1/2(Tim − ETim)
)

− 1

N2
i

Ni∑

m=1

(Tim − ETim)′H−1(T̃im − ET̃im)

=: T1 + T2. (62)

We derive the high-probability bound for T1 first. For simplicity, write:

a = H−1/2
( 1

Ni

Ni∑

m=1

(Tim − ETim)
)
.
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Then, T1 = N−1
i

∑Ni

m=1(T̃im − ET̃im)′H−1/2a. We apply Bernstein inequality condition on

{Tim}Ni

m=1. By elementary computations:

var(T1|{Tim}Ni

m=1) =
1

N2
i

Ni∑

m=1

E

[(
(T̃im − ET̃im)′H−1/2a

)2∣∣∣a
]

=
1

Ni

p∑

j=1

d0i (j)
(
a(j)/h

1/2
j − (d0i )

′H−1/2a
)2

=
1

Ni

p∑

j=1

d0i (j)

hj
a2(j)− 1

Ni

[
(d0i )

′H−1/2a
]2

f ∥a∥2/Ni,

where we used that fact d0i (j) = e′jAwi f e′jA1K = hj . Furthermore, with the individual

bound N−1maxt{a(t)/
√
ht}, we obtain from Bernstein inequality that with probability

1− o(n−(2C0+4)):

|T1| f C

(√
log(n)

N
∥a∥+ 1

N
max

t

|a(t)|√
ht

log(n)

)
,

by choosing appropriately large C > 0. We then consider using Bernstein inequality to
study a(t) and get:

|a(t)| f C

√
log(n)

N
+ C

log(n)

N
√
hmin

simultaneously for all 1 f t f p, with probability 1 − o(n−(2C0+4)). As a result, under the
condition min{p,N} g C0 log(n) from Assumption 3, it holds that:

|T1| f C

(√
log(n)

N
∥a∥+ 1

N
max

t

|a(t)|√
ht

log(n)

)

f C

(√
p log(n)

N

[√ log(n)

N
+ C

log(n)

N
√
hmin

]
+

p

N

)

f C
p

N
. (63)
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We then proceed to the second term in (62), T2 = N−2
i

∑Ni

m=1(Tim−ETim)′H−1(T̃im−ET̃im).
Using Bernstein inequality, similarly to the above derivations, we get:

var(T2) = N−4
i

Ni∑

m=1

E

(
(Tim − ETim)′H−1(T̃im − ET̃im)

)2

= N−4
i

Ni∑

m=1

E

[ p∑

j=1

d0i (j)

h2j
(T̃im(j)− ET̃im(j))2 −

(
(d0i )

′H−1(T̃im − ET̃im)
)2]

= N−3
i

[ p∑

j=1

(d0i (j))
2(1− d0i (j))

h2j
−

p∑

j=1

d0i (j)
(d0i (j)

hj
− (d0i )

′H−1d0i

)2]

= N−3
i

[ p∑

j=1

(d0i (j))
2(1− 2d0i (j))

h2j
+
(
(d0i )

′H−1d0i

)2]

< 2
p

N3
.

The individual bound is given by N−2/hmin. If follows from Bernstein inequality that:

T2 f C

(√
p log(n)

N3
+

log(n)

N2hmin

)
(64)

with probability 1 − o(n−(2C0+4)). Consequently, by pluging (63) and (64) into (62) and
using Assumption 3,

|Ĩ1| ≲
p

N
(65)

with probability 1− o(n−(2C0+4)). By (61), we get:

|I1| f C

(√
log(n)

N
∥a∥+ p

N

)
(66)

with probability 1− o(n−(2C0+4)).
Second, we prove a similar bound for I2 with:

I2 =
1

N2
i

Ni∑

m=1

(Tim − ETim)′H−1(Tim − ETim)− E(Tim − ETim)′H−1(Tim − ETim).

We compute the variance by:

var(Tim − ETim)′H−1(Tim − ETim)

= E

(∑

t

h−1
t (Tim(t)− d0i (t))

2
)2

−
(
E

∑

t

h−1
t (Tim(t)− d0i (t))

2
)2

f
∑

t

h−2
t d0i (t)

[
(1− d0i (t))

4 + (1− d0i (t))d
0
i (t)

3
]
−
∑

t

h−2
t d0i (t)

2(1− d0i (t))
2

f
∑

t

h−1
t ≲ ph−1

min.
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This, together with the crude bound:

|(Tim − ETim)′H−1(Tim − ETim)− E(Tim − ETim)′H−1(Tim − ETim)| f Ch−1
min,

gives that with probability 1− o(n−(2C0+4)), for some sufficiently large C > 0:

|I2| f Cmax
{√p log(n)

N3hmin
,
log(n)

N2hmin

}
f C

p

N
, (67)

under Assumption 3. Combing (66) and (67), yields that:

z̃′iz̃i = z′iH
−1zi f Ez′iH

−1zi + |I1|+ |I2| f C
p

N

with probability 1 − o(n−(2C0+4)). Thus, we conclude the claim P(Ec
i ) = o(n−(2C0+4)) for

all 1 f i f n. The proof of (a) is complete.
Next, we show the proof of (b). Recall the second term on the RHS of (57). Using the

convexity of ∥ · ∥ and the trivial bound:

E|z̃′iz̃i1Ec
i
| f P(Ec

i )∥z̃′iz̃i∥max f h−1
minP(Ec

i ),

we get:

∥∥∥
n∑

i=1

E(z̃iz̃
′
i1Ec

i
)
∥∥∥ f

n∑

i=1

E
∥∥z̃iz̃′i1Ec

i

∥∥ =
n∑

i=1

E|z̃′iz̃i1Ec
i
| f o(n−(2C0+4))np = o(n−(C0+3)) .

Here, in the last step, we used the fact that p f nC0 , which follows from the second condition
in Assumption 3. This yields the estimate in (b).

Finally, we claim (c) by Matrix Bernstein inequality (i.e., Theorem 6). Towards that,
we need to derive the upper bounds of ∥X̃i∥ and ∥EX̃2

i ∥. By definition of X̃i, that is:

X̃i :=
1

n

(
z̃iz̃

′
i1Ei − Ez̃iz̃

′
i1Ei

)
,

we easily derive that:

∥X̃i∥ f 1

n

(
|z̃′iz̃i1Ei |+ ∥E(z̃iz̃′i1Ei)∥

)
f 1

n

(
|z̃′iz̃i1Ei |+ ∥E(z̃iz̃′i1Ec

i
)∥+ ∥E(z̃iz̃′i)∥

)
f Cp

nN

for some large C > 0, in which we used the estimate:

∥E(z̃iz̃′i)∥ = ∥H−1/2
E(ziz

′
i)H

−1/2∥ f N−1
i

∥∥∥H−1/2
(
diag(d0i )− d0i (d

0
i )

′
)
H−1/2

∥∥∥

f N−1
i

∥∥∥H−1/2diag(d0i )H
−1/2

∥∥∥+N−1
i

∣∣(d0i )′H−1d0i
∣∣

f 2

N
.

By the above inequality, it also holds that:

∥E(z̃iz̃′i1Ei)∥ f ∥E(z̃iz̃′i1Ec
i
)∥+ ∥E(z̃iz̃′i)∥ f C

N
.
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Moreover:

∥EX̃2
i ∥ =

∥∥n−2
E(∥z̃i∥2z̃iz̃′i1Ei)− n−2(Ez̃iz̃

′
i1Ei)

2
∥∥

f p

n2N
∥E(z̃iz̃′i1Ei)∥+

1

n2
∥E(z̃iz̃′i1Ei)∥2

f Cp

n2N2
.

Since EX̃i = 0, it follows from Theorem 6 that:

P

(∥∥∥
n∑

i=1

X̃i

∥∥∥ g t
)
f 2n exp

( −t2/2

Ã2 + bt/3

)
,

with Ã2 = Cp/(nN2), b = Cp/(nN). As a result:

∥∥∥
n∑

i=1

X̃i

∥∥∥ f Cmax
{√p log(n)

nN2
,
p log(n)

nN

}

with probability 1 − o(n−3), for some large C > 0. We hence finish the proof of (c). The
proof of (45) is complete now.

Lastly, we prove ∥E1∥ f C
√

pn log(n)/
√
N . By definition, we rewrite:
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1/2
0 )M
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0 − Ip)M
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0 . (68)

Decomposing D by D0 + Z gives rise to:
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N
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Applying Lemma 4, together with (55) and (56), we see that:

∥M− 1

2
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− 1

2
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Furthermore, it follows from Lemma 3 that:
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√
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Nn
, and ∥M−1/2M

1/2
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Combining the estimates above, we conclude that:

∥E1∥ f C

√
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N

We therefore finish the proof of Lemma 6.
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D.3 Proof of Lemma 7

We begin with the proof of (46). Recall the definitions:

E2 = M
− 1
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0 .

We bound:
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by the second inequality in (52). Similarly to how we derived (54), using Bernstein inequal-
ity, we have:
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with probability 1− o(n−C0−3). Consequently:
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√
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√
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√
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in view of p log(n)2 f Nn and hj g hmin g c/p from Assumption 3.
Analogously, for Ξ3, we have:
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where we used ∥W ′
kZ

′M−1/2
0 Ξ̂∥ f ∥M−1/2

0 ZWk∥ f
√
pn log(n)/

√
N from (54) and ∥e′jM
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C
√

hj . Hence, we complete the proof of (46).

In the sequel, we focus on the proof of (47). Recall that E4 = M
− 1

2

0 (ZZ ′ −EZZ ′)M
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2

0 .
We expect to show that:
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.

Let us decompose ∥e′jE4Ξ̂∥/n as follows:

n−1∥e′jE4Ξ̂∥ f n−1∥e′jE4Ξ∥+ n−1∥e′jE4(Ξ̂− ΞO′)∥ .
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We bound n−1∥e′jE4Ξ∥ first. For any fixed 1 f k f K, in light of the fact that M0(j, j) ≍ hj
for all 1 f j f p:
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where we used the facts that Àk(t) f
√
ht, d

0
i (j) f Chj , and

∑
t d

0
i (t) = 1. Furthermore,

with the trivial bound of each summand in J1 given by CN−2h
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j , it follows from the

Bernstein inequality that:
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with probability 1−o(n−3−C0). Here, we used the conditions that hj g C/p and p log(n)2 f
Nn.
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We proceed to estimate |J2|. Employing Theorem 8 with:
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it suffices to examine the high probability bound of:
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with probability 1− o(n−3−C0). Consequently, we arrive at:
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under the assumption that hj g C/p. As K is a fixed constant, we further conclude:
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with probability 1− o(n−3−C0).
Next, we estimate n−1∥e′jE4(Ξ̂− ΞO′)∥. By definition, we write:
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For (I)k, using Bernstein inequality, it yields that with probability 1− o(n−3−2C0):
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where the last step is due the the fact p log(n)2 f Nn from Assumption 3. As a result:
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Here, we used the Cauchy–Schwarz inequality to get:
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For (II)t, since it is a U-statistics, we then apply the decoupling idea, i.e., Theorem 8,

such that its high probability bound can be controlled by that of (ĨI)t, defined by:
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in light of p log(n)2 f Nn. Furthermore, notice that:
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It follows that:
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where the last step is due to the trivial bound that:
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for any 1 f m̃ f N . Thus, combining (73) and (74), under the condition hj g C/p, we
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with probability 1− o(n−3−C0).
Moreover, employing the estimate M0(j, j) ≍ hj for all 1 f j f p, it follows that:
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with probability 1− o(n−3−C0).
In the end, we combine (72) and (76) and consider all j simultaneously to conclude that:
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with probability 1 − o(n−3−C0). Combining all 1 f j f p, together with p f nC0 , we
complete the proof.

D.4 Proof of Lemma 8

We first prove (48) that:
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By the definition that E4 = M
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From (75), it holds that ∥e′jM
−1/2
0 (ZZ ′ − EZZ ′)∥1/n f C

√
hjp log(n)/

√
nN with proba-

bility 1− o(n−3−C0). Next, we bound:

∥M−1/2
0 (M

1/2
0 M−1/2 − Ip)Ξ̂∥2→∞ f ∥H−1/2(M

1/2
0 M−1/2 − Ip)Ξ∥2→∞

+ ∥H−1/2(M
1/2
0 M−1/2 − Ip)(Ξ̂− ΞO′)∥2→∞

The first term on the RHS can be bounded simply by:

∥H−1/2(M
1/2
0 M−1/2 − Ip)Ξ∥2→∞ f Cmax

i
|h−1/2

i

√
p log(n)/nN ·

√
hi|

f C
√

p log(n)/nN = o(1)

The second term can be simplified to:

∥H−1/2(M
1/2
0 M−1/2 − Ip)(Ξ̂− ΞO′)∥2→∞ = ∥(M1/2

0 M−1/2 − Ip)H
−1/2(Ξ̂− ΞO′)∥2→∞

f C

√
p log(n)

nN
· ∥H−1/2(Ξ̂− ΞO′)∥2→∞.

As a result:

∥e′jE4(M
1/2
0 M−1/2 − Ip)Ξ̂∥/n f C

√
hjp log(n)

nN
·
√

p log(n)

nN

(
1 + ∥H− 1

2

0 (Ξ− Ξ0O
′)∥2→∞

)

f C
√
hj ·

p log(n)

nN

(
1 + ∥H− 1

2 (Ξ̂− ΞO′)∥2→∞
)
. (77)

This proves (48).
Subsequently, we prove (49) that:
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by the condition that p log(n) j Nn. We therefore conclude (49), simultaneously for all
1 f j f p, with probability 1− o(n−3).

Lastly, we prove (50). By the definition:
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By Lemma 3, we derive:
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where we crudely bound |a′jΣWat| f hjht, and use Cauchy–Schwarz inequality that
∑p

t=1 ∥e′tΞ̂∥ f
√
p

√
tr(Ξ̂Ξ̂′) f K

√
p. In addition:

∥e′j(M
1/2
0 M−1/2 − Ip)Ξ̂∥/N f

∣∣∣
√

M0(j, j)/
√
M(j, j)

∣∣∣ · ∥e′j(Ip −M
−1/2
0 M1/2)Ξ̂∥

f C∥e′j(Ip −M
−1/2
0 M1/2)Ξ̂∥ ,

which results in:

∥ejE1Ξ̂∥/n f C∥e′j(Ip −M
−1/2
0 M1/2)Ξ̂∥+ C∥e′jG0(M

1/2
0 M−1/2 − Ip)Ξ̂∥/n

+
4∑

i=2

∥e′jEi(M
1/2
0 M−1/2 − Ip)Ξ̂∥/n. (80)

Combining (78), (79), (48), and (49) into the above inequality, we complete the proof of
(50).

42



Appendix E. Proofs of the Rates for Topic Modeling

The proofs in this section are quite similar to those in Ke and Wang (2024) by employing the
bounds in Theorem 1. For readers’ convenience, we provide brief sketches and refer to more
details in the supplementary materials of Ke and Wang (2024). Notice that Ni ≍ N̄ ≍ N
from Assumption 3. Therefore, throughout this section, we always assume N̄ = N without
loss of generality.

E.1 Proof of Theorem 2

Recall that:
R̂ = (r̂1, r̂2, . . . , r̂p)

′ = [diag(À̂1)]
−1(À̂2, . . . , ÀK).

Since the first eigenvector of G0 is with multiplicity one, which can been seen in Lemma 4,
and the fact that ∥G − G0∥ j n, it is not hard to obtain that O′ = diag(É,Ω′) where
É ∈ {1,−1} and Ω′ is an orthogonal matrix in R

K−1,K−1. Let us write Ξ̂1 := (À̂2, . . . , À̂K)
and similarly for Ξ1. Without loss of generality, we assume É = 1. Therefore:

∣∣À1(j)− À̂1(j)
∣∣ f C

√
hjp log(n)

Nn´2
n

,
∥∥e′j(Ξ̂1 − Ξ1)Ω

′∥∥ f C

√
hjp log(n)

Nn´2
n

. (81)

We rewrite:

r̂′j − r′jΩ
′ = Ξ̂1(j) ·

À1(j)− À̂1(j)

À̂1(j)À1(j)
−

e′j(Ξ̂1 − Ξ1Ω
′)

À1(j)
.

Using Lemma 4 together with (81), we conclude the proof.

E.2 Proof of Theorem 3

In this section, we provide a simplified proof by neglecting the details about some quantities
in the oracle case. We refer readers to the proof of Theorem 3.3 of Ke and Wang (2024) for
more rigorous arguments.

Recall the Topic-SCORE algorithm. Let V̂ = (v̂1, v̂2, . . . , v̂K) and denote its population
counterpart by V . We write:

Q̂ =

(
1 . . . 1
v̂1 . . . v̂K

)
, Q =

(
1 . . . 1
v1 . . . vK

)

Similarly to Ke and Wang (2024), by properly choosing the vertex hunting algorithm and
the anchor words condition, it can be seen that:

∥V̂ − V ∥ f C

√
p log(n)

Nn´2
n
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where we omit the permutation for simplicity here and throughout this proof. As a result:

∥Ã̂∗
j − Ã∗

j ∥ =

∥∥∥∥Q̂
−1

(
1
r̂j

)
−Q−1

(
1

Ωrj

)∥∥∥∥

f C∥Q−1∥2 · ∥V̂ − V ∥ · ∥rj∥+ ∥Q−1∥∥r̂j − Ωrj∥

f C

√
p log(n)

Nn´2
n

= o(1)

where we used the fact that ∥Q−1∥ f C whose details can be found in the proof of
Lemma G.1 in supplementary material of Ke and Wang (2024). Considering the truncation
at 0, it is not hard to see that:

∥Ã̃∗
j − Ã∗

j ∥ f C∥Ã̂∗
j − Ã∗

j ∥ f C

√
p log(n)

Nn´2
n

= o(1);

and furthermore:

∥Ã̂j − Ãj∥1 f
∥Ã̃∗

j − Ã∗
j ∥1

∥Ã̃∗
j ∥1

+
∥Ã∗

j ∥1
∣∣∥Ã̃∗

j ∥1 − ∥Ã∗
j ∥1
∣∣

∥Ã̃∗
j ∥1∥Ã∗

j ∥1

f C∥Ã̃∗
j − Ã∗

j ∥1 f C

√
p log(n)

Nn´2
n

. (82)

by noticing that Ãj = Ã∗
j in the oracle case.

Recall that Ã = M1/2diag(À̂1)Π̂ =: (ã1, . . . , ãp)
′. LetA∗ = M

1/2
0 diag(À1)Π = (a∗1, . . . , a

∗
p)

′.
Note that A = A∗[diag(1pA∗)]−1. We can derive:

∥ãj − a∗j∥1 f
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√

M(j, j) À̂1(j)Ã̂j −
√

M0(j, j) À1(j)Ãj
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1

f C∥
√
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M0(j, j) · ∥À̂1(j)− À1(j)∥ · ∥Ãj∥1

+ C
√
M0(j, j) · ∥À1(j)∥ · ∥Ã̂j − Ãj∥1

f Chj

√
p log(n)

Nn´2
n

, (83)

where we used (82), (81) and also Lemma 3. Write Ã = (Ã1, . . . , ÃK) andA∗ = (A∗
1, . . . , A

∗
K).

We crudely bound:

∣∣∣∥Ãk∥1 − ∥A∗
k∥1
∣∣∣ f

p∑

j=1

∥ãj − a∗j∥1 f C

√
p log(n)

Nn´2
n

= o(1) (84)

simultaneously for all 1 f k f K, since
∑

j hj = K. By the study of oracle case in Ke and
Wang (2024), it can be deduced that ∥A∗

k∥1 ≍ 1 (see more details in the supplementary
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materials of Ke and Wang (2024)). It then follows that:

∥âj − aj∥1 =
∥∥∥diag(1/∥Ã1∥1, . . . , 1/∥ÃK∥1)ãj − diag(1/∥A∗

1∥1, . . . , 1/∥A∗
K∥1)a∗j

∥∥∥
1

=
K∑

k=1

∣∣∣∣
ãj(k)

∥Ãk∥1
−

a∗j (k)

∥A∗
k∥1

∣∣∣∣

f
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k=1

∣∣∣∣
ãj(k)− a∗j (k)

∥A∗
k∥1

∣∣∣∣+ |a∗j (k)|
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∣∣∣∥Ãk∥1 − ∥A∗
k∥1
∣∣∣

f Chj

√
p log(n)

Nn´2
n

= C∥aj∥1

√
p log(n)

Nn´2
n

.

Here, we used (83), (84) and the following estimate:

∥a∗j∥1 =
√

M0(j, j) |À1(j)|∥Ã∗
j ∥ ≍ hj

Combining all j together, we immediately have the result for L(Â, A).

E.3 Proof of Theorem 4

The optimization in (12) has a explicit solution given by:

ŵ∗
i =

(
Â′M−1Â

)−1
Â′M−1di .

Notice that (A′M−1
0 A)−1A′M−1

0 d0i = (A′M−1
0 A)−1A′M−1

0 Awi = wi. Consequently:
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Â′M−1Â
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0 d0i

∥∥, (85)

since
∥∥(A′M−1

0 A)−1
∥∥ ≍

∥∥(A′H−1A)−1
∥∥ ≍ 1. What remains is to analyze:

T1 := ∥
(
Â′M−1Â−A′M−1

0 A
)
∥, and T2 :=

∥∥Â′M−1di −A′M−1
0 d0i

∥∥.

For T1, we bound:

T1 f ∥(Â−A)′M−1Â∥+ ∥A′(M−1 −M−1
0 )Â∥

+ ∥A′M−1
0 (Â−A)∥ .
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Using the estimates:
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it follows that:
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and similarly:
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As a result:
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Next, for T2, we bound:

T2 f ∥(Â−A)′M−1di∥+ ∥A′(M−1 −M−1
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where for (Â−A)′M−1di, given the low-dimension K, we crudely bound:
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and
∣∣âj(k)− aj(k)

∣∣ f ∥âj − aj∥1. We bound ∥A′(M−1 −M−1
0 )di∥ in the same manner. To

proceed, we analyze
∣∣A′

kM
−1
0 (di − d0i )

∣∣ for a fixed k. We rewrite it as:
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−1
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The RHS is an independent sum where Bernstein inequality can be applied. By elementary
computations, the variance is:
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and the individual bound is crudely N−1. It follows from Bernstein inequality that with
probability 1− o(n−4):
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We substitute the above equation, together with (86), into (85) and conclude that:
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.

Recall that the actual estimator ŵi is defined by:

ŵi = max{ŵ∗
i , 0}/∥max{ŵ∗

i , 0}∥1,

where the maximum is taken entry-wisely. We write w̃i := max{ŵ∗
i , 0} for short. Since wi

is always non-negative, it is not hard to see that:

∥w̃i − wi∥1 f C∥ŵ∗
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As a result, ∥w̃i∥1 = 1 + o(1). Moreover:
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with probability 1− o(n−4). Combining all i, we thus conclude the proof.
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